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We develop a general formalism for the quantum kinetics of chiral fermions in a background
electromagnetic field based on a semiclassical expansion of covariant Wigner functions in the Planck
constant 7. We demonstrate to any order of 7 that only the time-component of the Wigner function is
independent while other components are explicit derivative. We further demonstrate to any order of # that a
system of quantum kinetic equations for multiple-components of Wigner functions can be reduced to one
chiral kinetic equation involving only the single-component distribution function. These are remarkable
properties of the quantum kinetics of chiral fermions and will significantly simplify the description and
simulation of chiral effects in heavy ion collisions and Dirac/Weyl semimetals. We present the unintegrated
chiral kinetic equations in four-momenta up to O(#?) and the integrated ones in three-momenta up to O(#).
We find that some singular terms emerge in the integration over the time component of the four-
momentum, which result in a new source term contributing to the chiral anomaly, in contrast to the well-
known scenario of the Berry phase term. Finally we rewrite our results in any Lorentz frame with a
reference four-velocity and show how the non-trivial transformation of the distribution function in different

frames emerges in a natural way.

DOI: 10.1103/PhysRevD.98.036019

I. INTRODUCTION

Recently the properties of chiral fermions in electro-
magnetic fields have been extensively studied in high
energy heavy ion collisions [1,2] as well as in Dirac or
Weyl semimetals [3—5]. One of the most important effects
for chiral fermions is the chiral magnetic effect (CME)
[6-11] (for reviews, see, e.g., Refs. [1,2]). The CME is
closely related to the chiral anomaly and topological
structure of gauge fields [12-14]. Any imbalance in the
number of right-handed and left-handed quarks and anti-
quarks due to topological charge fluctuations of gauge
fields may induce an electric current along the magnetic
field which leads to a charge separation effect (CSE).
Though it is very challenging to pin down the CME or its
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consequences such as the CSE in heavy ion collisions
[15-18], the CME has recently been confirmed in Dirac or
Weyl semi-metals [3-5]. The chiral vortical effect (CVE)
[9,19-23] is another phenomenon for chiral fermions in a
fluid, where the vorticity can be regarded as the local ortibal
angular momentum and can lead to the polarization of
particles through spin-orbit couplings [24,25]. The polari-
zation of A hyperons has been measured recently for the
first time in the STAR experiment at Relativistic Heavy Ion
Collider (RHIC) [26].

The kinetic theory is an important tool to describe
these novel properties of chiral fermions in phase space
[27-31]. The covariant Wigner function is a powerful
and systematic quantum kinetic approach [32-38]: it has
been shown that the CME, CVE and covariant chiral
kinetic equation (CCKE) can be derived from covariant
Wigner functions [23,39-42]. The Wigner functions
have multiple components which are entangled with
each other, while in the Boltzmann-like equation the
single-component distribution function is involved. It is
unknown to what extent that a fermionic quantum

Published by the American Physical Society
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system can be described by the Boltzmann-like distri-
bution function.

In this paper we will develop a semiclassical expansion
of the covariant Wigner function in the Planck constant 7.
This expansion is very general and does not require
quasiequilibrium conditions, so it is very different from
the expansion in space-time gradients and field strengths
near equilibrium [23,39-41]. In this formalism, we can
derive the quantum kinetic equations for the covariant
Wigner function order by order. We will show how to
disentangle the covariant Wigner function and reduce a
system of quantum kinetic equations for multiple compo-
nents of the covariant Wigner function to one chiral kinetic
equation (CKE) involving only the single-component
distribution function. We will also present other pro-
perties of the CKE and the chiral anomaly. Finally we
will generalize our results to any Lorentz frame with a
reference four-velocity. We will show that the side-jump
effect naturally emerges from the change of the first
order distribution function when one chooses a different
four-velocity.

We use the same sign convention for the fermion charge
Q as in Refs. [23,34,39-41]. The sign convention for the
axial vector component of the Wigner function is the same
as in Refs. [23,39-41] but opposite to Ref. [34].

II. COVARIANT WIGNER FUNCTIONS

In a background electromagnetic field, the quantum
analogue of a classical phase-space distribution for fer-
mions is the covariant Wigner function [32-34],

W(x. p) = (:W(x, p)1), (1)

where W(,,;(x, p) is the Wigner operator, the brackets
denote the ensemble average and the colons the normal
ordering of the operators, and x and p are the space-time
and four-momentum vector respectively. The Wigner
operator is defined by

A d*y ipys 1
Was(x, p) = a7 P\ x5y
1 1 1
><U(X+2y’x—2y>wa<x—2y), (2)

where y, and y; are Dirac spinors with @, § being the
spinor indices running from 1 to 4, the gauge link U is
defined as U(xy,x,) = exp[-iQ [ dz,A"(z)] along a
straight path between the points x; and x, with A#(z)
being the vector potential of the background electromag-
netic field. The Wigner function can be decomposed in 16
independent generators of Clifford algebra,

1 1
W= |F+irP+rV+rr A+ 56””34 - )

whose coefficients F, P, V,, 'Au and §,, are the scalar,
pseudoscalar, vector, axial-vector and tensor components
of the Wigner function respectively. For massless fer-
mions, V, and A, are decoupled from the rest compo-
nents which can be linearly combined into the vector
component of the covariant Wigner function with chi-
rality (VWC) [23,40],

Tl ) =3 Wl p) s AP @)

where s = &£ is the chirality and 4 =0, 1, 2, 3 denotes
the Lorentz indices. These components satisfy following
equations (see Egs. (5.12)—(5.21) of Ref. [34])

"7, (x. p) = 0.
G'T,(x,p) =0,
2s(T" T4 = TP J%) = —he"°G,, T3, (5)

where €#*°f is the antisymmetric tensor and the operators
[T* and G* are defined by

1
¥ = p = h i (2)QF*.

G" = & — jy(2) QF™ 8L, (6)

where z=hA/2 with A=0, -0, being the differential
operator, and j,(z)=sinz/z and j;(z) = (sinz — zcosz)/
7> are spherical Bessel functions. Note that 9, in the
operator A acts only on F* to its right but not on other
functions. We see that we have recovered the 7 depend-
ence explicitly in Egs. (5) and (6) in order to perform the
A expansion.

We see that each equation in (5) is a polynomial in the
Planck constant 7. So we can make a semiclassical
expansion in powers of 7 for J, and the operators IT*
and G*. We note that the idea of the semiclassical
expansion in 7 for the Wigner functions in electromagnetic
fields was first proposed in Ref. [34] but without con-
crete calculations. It was recently used in Refs. [29,42-45]
for chiral fermions at O(h). The expansions of II#
and G* are

_ . n 7(n) _ N n
jﬂ_Zohjﬂ J H”—Z()hz H/(lzn)’
Gt = Z;hZ"G’(‘Zn), (7)

where n are nonnegative integers and we have suppressed
the helicity indices of 7, (x, p) for simplicity of notations.
We see that the operator I[T* and G* have only even-order
terms and can be put into compact forms (n # 0)
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-1)"n
Hﬂ — ( Azn_lFl‘”af,
(@m) 2271 (2 + 1)
-1 n+1
G" (D) AM P, (8)

@n) = 2212 + 1)1
Up to the second order these operators have the form

Q

M noo_ _ 2 v AP
IV = Iy, + 10, = p* = S AP0,
Q

_ M — vap | =
G' = G, + G = ok QF”8D+24

n2AZFOL. (9)
We can write these operators explicitly in time and
space components: IT* = (I, IT), G* = (G, —G), whose
expressions in each order are displayed in Eq. (A4).

III. SEMICLASSICAL EXPANSION:
A GENERAL FORMALISM

In this section we make a semiclassical expansion in
powers of 7 for Eq. (5) using the expansions of 7 ,, [1# and
G" in Egs. (7), (8).

Let us write Eq. (5) explicitly in time and spatial
components

My Jo -1 J =0, (10)
GoJo+G-T =0, (11)
AGoT +GJo) = 2s(TL x ). (12)
—hG x J = 2s(ILT o - ,T). (13)

where we have used J* = (J(,J). We note that
Eqgs. (12), (13) come from the third line of Eq. (5).
These equations can be grouped into evolution equations
with the operator G, which has the time derivative,
Egs. (11), (12), and constraint equations without it,
Egs. (10), (13).

Inserting Eq. (7) into Egs. (10)—(13) and using Egs. (8),
(9), we obtain a system of quantum kinetic equations at any
power of 7. The evolution equation (11) at O(#") and (12)
at O(A"*!) read

2 ,
DG 60 g =0, (14)

Z [ (()21‘) Jr=2) 4 G2 jén—Zi)]
i=0
[(n+1)/2]
— 2 Z 3§ (&) Xj<”_2i+1), (15)

i=0

where [n/2] denotes the largest integer bounded by /2. We
emphasize again that Eqgs. (14) and (15) are called the

evolution equations due to the fact that the former contains
the time derivative term 0,7 E)”) while the latter contains
90,J™. In Eq. (15) we see that the time derivative term
GY 7™ is on the left-hand side while the (1 -+ 1)th order
term p x J "1 is on the right-hand side, so it seems to be
impossible to obtain the nth order solution J*) without
knowing the (n + 1)th order one, but we will show that it is
possible due to some good properties of J#. The constraint
equation (10) and (13) at O(#") and O(A"*!) respectively
read

A6y i)
PIRLE iV A

i=0

—®) . g=2)] =0, (16)

[(n+1)/2] . - 5 ‘
2s Z [H(ZZ)j(()"_ i+1) _ H(() ’)J(n—2l+1)]
i=0
/2 .
- — ZG(zz) x J(n=20). (17)
i=0

We note that Egs. (15) and (17) come from Egs. (12) and
(13) respectively which relate the (n + 1)th order terms on
the right-hand side to the nth order terms on the left-hand
side. Equation (16) leads to mass-shell conditions from
which one can determine the dispersion relations of chiral
fermions.

From Eq. (17) we can solve J"+1) as

(/2]
n P (n+1) S 2i n—2i
Jhth) = Z 7 +——) G@) x gh-2)
po”° 2po ;
play
+ p_ Z [H(Zl)j(()”_ i+1) _ H(() l)J(n—ZWl)}.
0 =1

(18)

We see that on the right-hand side all J terms are in lower
order than J*1), and the only (n + 1)th order term is
(p/po)j(()"H). Equation (18) also holds for n = —1 which
gives 7O = (p/po) T -

By recursively applying Eq. (18) to all lower order 7,
we can finally express J (1) in terms of J. g) for
i=1,2,...,n+1. When substituting Eq. (18) into
Eq. (15), the highest order term p x J "+ on the right-
hand side of Eq. (15) is vanishing due to the term
(p/po)J, (()"“) in J*+1. Therefore the evolution equa-
tion (15) for J™ can be finally converted to an equation
for j((f) (i=1,2,...,n) with a term of ~6tjf)'1) at the
highest order, therefore Eq. (15) is closed and can be
considered as another evolution equation for 7, (()") besides
Eq. (14). We call this equation the derived evolution
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equation for 7" as it is from that for 7, while we call
Eq. (14) the original one. Then the question arises: is the
derived evolution equation consistent with the original one?
The answer is positive for any order n. By using Eq. (18)
and mathematical induction, we can prove that Eq. (15) is
automatically satisfied for any n once the evolution
equation (14) and the mass-shell conditions in Eq. (16)
are satisfied with Eq. (18). This means that to any order of 7
the evolution equations for the vector component J are
redundant, the only one that is needed is the original
evolution equation for the time-component 7, constrained
by the mass-shell conditions. The proof of this statement is
given in Appendix.

In summary, we have proved to any order of # that only
the time-component of the VWC is independent while the
spatial components can be derived from it explicitly. We
further demonstrate to any order of # that a system of
quantum kinetic equations for multiple-components of
Wigner functions can be reduced to one chiral kinetic
equation involving only the single-component distribution
function. These are remarkable properties of the quantum

|

GV g0 4 GO
JY + GO
G(()0> T £ GO jéz) + G(()2> JO L@

Gy

kinetics of chiral fermions, which, if combined with
collision terms [42,46], will significantly simplify the
description and simulation of quantum kinetic evolution
for chiral effects in heavy ion collisions and chiral materials
such as Dirac or Weyl semimetals.

IV. SECOND ORDER RESULTS

As an application of the general formalism, in this
section we will derive the chiral kinetic equations and
Jo to the second order in 7.

We write the explicit forms of evolution equations in (14)
forn=20,1, 2 as

G((]O) jg’) +GO. 70 =,
G(()O)j(()” +GO. 70 =0,

GV 7% 460 . g0 = P70 GO . g0 (19)

The explicit forms of evolution equations in (15) for
n=-1,0,1, 2 read

0=2s(px T,
Ty =2s(p x I),
jf)l) =2s(p x TP 4+ 1% x FO),

Ty =2s(px O + 1@ x FO). (20)

The first line is obtained under the implied assumption that 7 (()_l) = 0and J-" = 0. We see in Eq. (20) that the first line is
degenerated to a constraint condition for J(© and p x J 1) appears in the nth order equation. As we have argued in the
previous section that the nth order equation finally involves the same or lower order quantities. We will see explicitly that
this is really the case.

The constraint equations in (16) for n =0, 1, 2 read

pody —p- T =0,
Pojél) —p-JW =0,

poj(()z) —p- T+ H(()z)j(()()) —-m® . g0 =, (21)
which provide mass-shell conditions in each order. The constraint equations in (17) for n = —1, 0, 1, 2 read
0=2s(poT " ~pJy").
GO x O = 25(po TV — Pj(()1>)’
GO x 70 = 25(poT® - pJP + P 7O @ 7)),
GO x TP+ 6P x JO = 25(po T @) =gy + 1P TV @ g(). (22)

From Eq. (22), we can express J in terms of 7, order by order,

036019-4
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JO = ﬂjg))’
Po
WP 7m ) % g0
J - \.70 + —G X j s
Po 2po
g P 0 S qoy g0 Lp®z0ge 0
0 0 »
Po 2po 0 Po
g2 50, 5 goxgo_Ltpy@go Lyogh 5 gox o, (23)
Po 2po Po Po 2po

We see that J!) depends on J© = (p/po)jg)), so JW
is finally determined by 7 and 7\. Similarly J® is
determined by (7, (()0), J (()l), J (()2)), and J® is determined
by (7, 70, 72, 7). So we have explicitly shown
that 7 is determined by 7, up to the order n. Another
property of J") with n = 0, 1, 2, 3 in Eq. (23) is that the
first contribution is proportional to (p/py)J, f)”>, when
simplifying p x J in Eq. (20) by using Eq. (23) the
highest order term (p/po)J, é") is vanishing. So each
evolution equation of (20) for J (()") involves only terms
of J, up to the order n. This is a good property of the
VWC, with which we can verify that the evolution
equations (20) for J are satisfied automatically if the
evolution equations (19) for J, and the constraint equa-
tions (21) are satisfied. This means the evolution equa-
tions (20) for the vector component 7 are redundant. As an

example, we look at the first two equations of (20). It is
|

TV = pofOs(p?),

|

easy to check that the first equation of (20) holds following
Eq. (23). Let us consider the second equation of (20), in
which we insert the second line of Eq. (23) to obtain

1
G070 4 070 = P GO xg®), (24

which is another evolution equation in the zeroth order in
addition to the original one in (19). Using the first equation
of (23), the mass-shell condition in the zeroth order in (21),
and the zeroth order evolution equation in (19), one can
verify that Eq. (24) is automatically satisfied. In the same
way, one can verify that the last two equations in (20) are
also satisfied provided Eqgs. (19), (21), (23) hold.

We have proved in the semiclassical expansion that only

J (()i) are independent and J can be expressed by all 7, ((f) up

to that order. We can solve 7 (()i) order by order through the

mass-shell conditions which are obtained by substituting

(23) into (21). Then we can find the solutions for .7, 80’1’2) as

5" = pof a(p?) + sQ(p - B)F VS (p2).

T5) = pof®8(p?) +s0(p - B)F VS (p?) + 0> — f0" (p?)

(p-B)*
2po

1 1
+ AP {G“’) x [—G(‘” x (pf“’)é(pz))] } — 2o pr 015 p2)
p p

Po

1
2P (M ~ 1) fO5(p?), (25)

where £, f() and £ are arbitrary scalar functions of x
and p without singularity at p> = 0 and can be determined
only by the original evolution equations in (19). Here we
have used the derivative of a delta function &' (y)=

ds(y)/dy. We can combine 7, (()0), J ((]l> and the first three
terms of 7, (()2) to obtain

1
jo“Pof(x,Pﬁ(Pz‘f’th%P'B)v (26)

where f(x, p) = f©O + af() 4 A2 2. We see that to the
first order the energy poles have been shifted to

ES) = +E,(1 F hsQB-Q,), (27)

where E,, = |p| is the energy of the free fermion and Q, =
p/(2|p]?) is the Berry curvature in momentum space. The
energy correction can be regarded as the magnetic moment
energy of chiral fermions [29,40,43,47]. So to the first
order the on-shell condition is modified by the magnetic
moment energy, but this does not work at the second order
due to the last three terms of 7 (()2) which give the rest O(%?)
contributions. The evolution equations (19) can also be
combined to give the CKE in four-momentum up to O(#?),
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1

h
e e P L SEUR

(28)

where the first two terms give the contribution up to the first order in 7 and also part of the second order contribution, and

C(f) denotes the rest second order contribution given by

1

Clf) =5 (p”Gf?)%JrG(O)) : [

4

ol ~2 2
- p'GY [?Hﬁ 'p f5(p2)] + G prrs(p?).

Unlike the first order term in Eq. (28) which is proportional
to the helicity s, there is no explicit helicity dependence in
the second order corrections besides f;. The second and
third lines of Eq. (29) contribute only for varying or
inhomogeneous fields and vanish in constant background
fields, i.e. only the first line of Eq. (29) survives in constant
fields as the second order contribution to the CKE. Actually
the first line of Eq. (29) is nonvanishing even without
background fields if there is a gradient of the distribution
function.

L goy <Lg<0) X pf(s(pZ))]
Po

(e B e0) | e - )|

Po

Po
1

(29)

V. CHIRAL KINETIC EQUATION IN THREE-
MOMENTUM AND CHIRAL ANOMALY

To obtain the CKE in three-momentum, we perform the
integration of the CKE in four-momemtum in Eq. (28) over
po from —co to o0. The contribution from the (—oo, 0) part
of the integral gives the CKE for antiparticles while the
(0, o0) part gives that for particles. We will present here
the CKE in three-momentum to O(#) for particles. Up to
the first order, the explicit form of Eq. (28) reads

[P0, + QE - ,) b (V, + B0, + 0B x,)]| o 7 + T2}

Po

+ % {(vx +QEd, + 0B xV,) x [ﬁ (V. + QEQ,, + OB x v,,)] }

‘ [pf<0)5<p2 N shQp - B)] _o.

Po

After the integration of the above equation over p in the
range (0, o0), we obtain the CKE in three-momentum
(Ip| # 0) to O(h) for particles (not antiparticles) which has
been previously derived [29,42-45],

(1+ns0Q,-B)0,f(x.E,.p)

1
——B 'fo<va P
2IpP »P)

+[QE+QvxB +hSQ2(E'B)Qp] Vo f(x.E,.p)=0,
(31)

+ [v+nsQ(E xQ,) +hsQ

where E=E — 0!V, E\" is the effective electric field,

v= VpEﬁ,+> is the effective velocity, and f(x, E e p) is the
distribution function on the mass-shell. It should be noted
that in the integration over p, from 0 to co some infrared

(30)

[

singular terms emerge from the derivative in p, which
cannot be dropped causally. It turns out that there are two
additional terms in the above CKE which are singular at
|p| = 0 but were previously neglected,

hs(E-B)(V,-Q,)f(x.E,.p)

~limyo 3" (B p)(B- )3 (A2 = p))f (v A.p). (32)

where A is an infrared cutoff introduced to regularize the
integral over p, at po = 0. The last term comes from total
derivatives in p, before integration over p,. We show the
cutoff A explicitly in order to emphasize its singularity
nature. Actually this term can be finally regularized into the
term proportional §”(|p|) and the dependence on A will
disappear eventually. Note that these two terms in (32) only
exist at p = 0 or in the deep infrared region of momentum.
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In this region, the kinetic description of chiral fermions
or the semiclassical expansion may not be valid. In this
case we need to consider all quantum contributions
including the quantum mechanical description of the
particle motion [28].

Although these new terms do not contribute to the chiral
kinetic equation at finite momentum, it is present in the
anomalous conservation equation which is derived by
integrating over the full momentum,

ath + Vx : j
nsQ?

=-— /d3p|:(E-B)Qp-fo+(E'B)(Vp'Qp)f

2

—limy_o = (E - p)(B-p)5'(A* = p*)f |, (33)
where the first term inside the square brackets in Eq. (33) is
what is obtained before, the last two terms are related to
those in Eq. (32). The contributions to the chiral anomaly
from the first and last term are identical at the limit A — O,
while the second term gives the same magnitude but the
different sign. Of course the last two terms cancel at the
limit A = 0, but we can see it differently: the first two terms
combine into a total divergence and vanish after the
integration over p, while the last term contributes to the
anomaly. This implies that the chiral anomaly may arise
from another source other than the well-known Berry phase
in three-momentum, which seems to be consistent with the
observation of Ref. [48].

VI. WIGNER FUNCTIONS IN A GENERAL
LORENTZ FRAME

In Secs. III-V, we work in a specific Lorentz frame. It is
easy and straightforward to rewrite all formula in a general
Lorentz frame. To this end, we need to introduce a timelike
4-vector u* with normalization u% = 1. In general, u# can
depend on space-time coordinates, but for simplicity we
assume u* is a constant vector. The purpose of this section
is to show how to formulate our approach in a Lorentz
covariant form, we will only consider the contributions up
to the first order of 7. With the auxiliary vector u#, we can
always decompose any vector X* into the component
parallel to u* and that perpendicular to u*,

Xt = (X - u)u" + X", (34)

with X - u = 0. For u* = (1,0,0,0) we have the normal
decomposition: X -u = X, and X* = (0,X). In such a
decomposition, we can rewrite the Wigner equations (10)—
(13) or (19)—(22) at the zeroth order as

u-Vu-J0+v.70 =0, (35)
5.7 = p, Iy = 0. (36)

pu(u-TO) = (- p)Ty" =0, (38)
and the equations of the first order as

w-Vu- g0 +v.70 =0, (39)

25(pu TV = BTN
= —€upcl [(M V)j
+p

(- p)(u-TW)

25[p,(u- JW) -

Vo(u- JO).  (40)
A (41)

(- p) TV = —€peu? VP TO0, (42)

where V¥ = G’(‘O) = 0% — QF™9Y%. Just as we have shown
in Secs. III and 1V, Egs. (36) and (40) are redundant. From
Egs. (38) and (42), we obtain

u.j(0>
/) - ) 43
I =h (43)
. 7(1) _
=) _ - u "7 vpo 7
wo= P u-p 2u 0 uN T,
Cu-gJWw 1 u-Jo
:p,u _SQBﬂ—<
u-p u-p\ u-p
s - (u-JO
- oy NV , 44
2u-p)° "( u-p> “)

where B* = 1 e#*y,F ,; is the magnetic field four-vector.
We see from Eq. (44) that only the timelike component
u - J© is independent and spatial components depend on
it. Using the mass-shell conditions (37) and (41) we obtain
the general solution,

u-Jo

= FOI§(p? 45
P FP6(p?), (45)

VA B-p
= fUs(p?) —sQ—=—fO8 (p?).  (46)

u - p u - p

It follows that

T = p,fO5(p?), (47)

B-p
Tl = put V3(0%) = s0pye, - 108 (%)

B
=0 FOS(p?) =5t PV V5(?),

(48)

Summing them up gives rise to the VWC up to the first
order,
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T, =TV + gl

B- B
zé(pz—th—p> {pﬂf—th—”f—hs
u-p u-p 2

1
W €;w/m u” pp vaf:| ’ (49)

with f = £ + zf(1). Then the covariant chiral kinetic equation up to the first order is given by

— hs

v, {5(1)2 - thl:_—';’) (p” — hsQ f

Now all the expressions are written in a general Lorentz
frame with the observer’s velocity u”. Setting u* =
(1,0,0,0) leads to the comoving frame chosen in previous

sections.
We can also choose any other velocity u), to make the

decomposition in (34). Then J ,(,0) and J f,l) in Egs. (47),
(48) can be expressed with u,,

jl(p{) =p! u' T s

vpo 0
iy 3w T (5

which have been rewritten in different but equivalent form
from Eqgs. (47), (48) for convenience in the following. We

can show that J f,0> and J, ﬁ,]) are independent of the choice
of u*. We can easily check J %) =J ’(‘0) as

8700 = T = Tl
(u-p)u' - T)) =W p)u-Tq)

— ph
P - p)(u-p)
- u/’u/o—(p/)jgo) _ po—j/(JO))
(u' - p)(u-p)
=0, (53)

where we have used j’('()) x p* in the second to last
equality. We can also verify J 2’;) = j’(‘l). To this end,
we evaluate the difference

8T =Tt =Ty
sp”e’l”/’”u,lu,’,vl,j,(,o)
2(u"-p)(u-p)
spre (Vo T4 ) = w(u, Vo T4
- 2(u'-p)(u-p) ’

where we have used Egs. (40), (42) in obtaining the first
term. We can rewrite the numerator of the second term by
interchanging indices in the summation,

(54)

p 2(u-p)

e”’“/’"u,,ppva> f] =0. (50)

P uy(,V, T, = (0,907,
= (premor — preror)uul N, T (55)

So Eq. (54) can be simplified as

2(u’ - p)(u-p)

« (pﬂej,ypg + pie/wap _ pbeﬂlo‘p)uiuzvpjgo)
N
= S o) P P Y, T

=0, (56)

o
0Ty =

where we have used Eqgs. (35)-(38) and the identity

py eﬂvo’/) + pﬂeua/)ﬂ + pueo'/)yﬂ + po"e/);dv + p/)eﬂivo' =0.

(57)

Note that the first term of Eq. (54) gives the nontrivial
transformation of the first order distribution function %[2”
from the change of the observer’s velocity

5(“ : jm) _ _Sei””‘/‘umivpjéo), (58)
u-p 2(u" - p)(u- p)

which is related to the side-jump term [42,46]. We see
that the distribution function in our approach can be
unambiguously defined at the level of quantum field theory
whose transformation in different frame emerges in a
transparent way.

VII. SUMMARY

The quantum kinetics of chiral fermions is described by
the vector component of the covariant Wigner function with
chirality (VWC). We propose a semiclassical expansion of
the VWC in background electromagnetic fields in the
Planck constant 4. This expansion is very general and
does not require quasiequilibrium conditions as in our
previous works. We have shown to any order of 7 that
only the time-components (can be regarded as effective
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distribution functions) of the VWC are independent, while
the spatial components can be derived explicitly. We have
further demonstrated to any order of 7 that a system of the
quantum kinetic equations for multiple-components of
VWC can be reduced to one chiral kinetic equation
(CKE) for the single-component distribution function.
These are remarkable properties of quantum kinetics of
chiral fermions and will significantly simplify the descrip-
tion and simulation of chiral effects in heavy ion collisions
and chiral materials such as Dirac or Weyl semimetals. We
have also derived the CKE in four-momentum up to the
second order of /. We found additional terms in the CKE to
O(h) which take effects in the infrared regime of momen-
tum and can contribute to the chiral anomaly in the CKE
other than the well-known Berry phase term. We also show
our method can be generalized to any Lorentz frame with
a reference four-velocity in a transparent way. The side-
jump effect naturally emerges from the change of the first
order distribution function when one chooses a different
four-velocity.
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APPENDIX: PROOF OF THE
STATEMENT IN SEC. I

We will give the key steps to prove the following
statement in Sec. II: for any n, Eq. (7) is automatically
satisfied once the evolution equation (6) and the mass-shell
conditions in Eq. (8) are satisfied with Eq. (9). This
statement can be put in another way: in the system of
equations (6)—(9) for any n, Eq. (7) is redundant. We will
call it the lemma for later reference. It is convenient to
rewrite G* and IT# as

GH = ; fszl(lk), I+ = ; thl(lk)’ (Al)

where the zeroth order operators are given by G’(‘O) =0 —
F* 9l and H’(‘O) = p*. For higher orders with k > 1, these
operators have the following forms

Gl = —Ced*Feop, T}, = kC, AT FO),  (A2)
with the coefficients C, defined by
1 -1 k -1 k/2

2T (k4 1)1

Note that for convenience we have absorbed the charge Q
into the field strength QF* — F* so that it does not
appear in all formulas. The coefficients (A3) are equivalent
to those in Eq. (5) of the manuscript since all odd k terms
vanish. We write these operators in three-dimension forms,
0
H(() )= Po-
H(O) =p,
ny) = —kCA*'E -V,
n® = kC A (ED,, + BxV,),
GY) =9,+E-V,,
0) _
GO =V +Ed, +BxV,,
G = C,AFE -V,

GW = CAY(ED, + B x V,). (A4)

For convenience we can rewrite Egs. (6), (7), (8), (9) as

n

MG T 60 g =0, (a5)
k=0
n n+1
[G(()k)J(n—k) + G(k)jé"—k)] — 2 ZH(k) x Jn=k+1),
k=0 k=0
(A6)
[Hé’” jg)”‘k) —1w . g0=R] = 0, (A7)
k=0
n n+1
ZG<k) x J =) = _ZSZ [H<k)j(()n—k+1> _Hék)j(n—kJrl)]’
k=0 k=0
(A8)

We call these equations the nth order equations or of order
n although 7, (()"H), J it Hé"H) and II"*1) appears in
the right-hand sides of Egs. (A6) and (A8). According to
this definition, the equations of order n — 1 can be obtained
by the replacement n — n — 1 in Egs. (A5)—(AS8). From
Eq. (A8), we obtain
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Fre) < Z G x Fnb In the following, we will prove the lemma by the
mathematical induction method. It is straightforward to

. verify that the lemma holds for the order n = 0, 1, 2. Hence

n —k+1) () Ar(n—k+1 we assume Eq. (A6) holds up to the order n — 1 withn > 3

+ Z e Z I Fo >> - (A9) and that Eqs.q(AS), (A7), (Ap9) are satisfied up to the order
n, we need to prove that Eq. (A6) holds for the order n.

Note that this equation is another form of Eq. (A8) so it is of Substituting the expression (A9) into the right-hand side
order n. (RHS) of Eq. (A6) gives rise to
2s g:l (0) ( (k) 7 ( k+1)) g—:l (k) (n—k+1)
RHS = —-— ) MW x (Il;" TV~ +2s ) MW x gl
Po k=1 0
2 n+1 n—k+1 ; 1 o= —k
=-=37 % mn® x gkt +_ZZH (G x Fnk=D)
Po= 1= Po = 1=
n+l n—k+1 2S n+l
+ ZZH x [0 g {rD Z D] 5 Fln—kt1)
Poi= =0 "o =
n+l

Using following relations

n+1 n—k+1 n+1

SN m® <m0 g¢ Y = 23k DkC AT BT, (A11)
k=0 [=0 k=1
n+1 n+1
Z [H(O),Hék)] x Jh—k+1) — ZkaAk—lE x J(n=k+1)
k=1 k=1
n+1
=) k(= )CAR2V(E - V,)] x 0=k, (A12)
k
n+1 1 1 n+1
Z |:H(k),—:| Xpoj(n—k+1) _ __ZkaAk IR % J n—k+1)
k=1 Po Po k=
1 n+1
—ka (k= 1)CA2(0,ED,, + 0B x V) x 1), (A13)
Po f—

and the Maxwell’s equation 9,B + V x E = 0, we obtain

o n+1 n—k+1 1 S = —k
RHS = _Z Z Ho ) x Jn—k=l+1) 4 o % (G(z) % J(n—k—l))
Po'= o Poi= =0
2 n+l s
— 25k + DEC A BTV L B x gk, (A14)
Poi=
We further use the identity C;, = (k =y Ci_» and finally rewrite the RHS as
2 n+1 n—k+1 1 & n—k
RHS :__Z Z Ho k) s gl=k=t+1) L = G ( D) x gn-k 1)
P00 P0 =0 =0
s n—1
+ N A (BIITY 4 E x gk, (A15)
2po =
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We now work on the left-hand side (LHS) of Eq. (A6),

n—1 n
LHS ——Go [ZH - —l—% Gl XJ(”‘““—ZHSC)J(”_I{)}

Po — k=0 k=1

(&) 7 (n—k k
+;GO J! >+;G(>

1 n . n—1 n
= — <Z H(k)G(()O)jé k) + %ZGU{) x GéO)JW—l—k) B Z H(()k)Gf)O)j(n—H)

k=0 k=0 k=1

1 1 e n=l1 n
T <Z (e | It +% (G GW] x Fin-1-b — 3 [GéO)’Hék)]j(n_k))

Po \iSo oy =1
+3 6P T+ 6wy, (A16)
=1 =0

Using Eq. (AS) for k < n and Eq. (A6) for k < n —1 yields

2 n+1 n—k+1 1 n n—k
LHS — - 2> Z H(()k)H(l) % J(n—k—H—l) +— Zn(k) ( x J(n—k 1)
Po = 1o Po = =0
1 n n—k 1 n n—k p .
4 M0 . GW — GW . [I0) g k=) — — ), Gf. d jf" )
Po 1= 1=o Po =0 =0
LR i) 0 k=l LSS () i o {nmked)
+— [G ’Hz }Jl +_Z [HO ’G }‘70
Poi= 1= Po 1= =0
1 n n—k ; i s n—1 n—1-k /
_ [H(k), G( )]j(()" ) Z [G(k), G(())} % J(n—l—k—l)
Poi= =0 Poi= =0
1 & n—k ® 0 i) s n—1 n—1-k « " (ne1—kl)
+— My, Gy 1T+ — — GH xGg, . (A17)
Po = =0 Poi= =0
We use following relations
n n—k
(1‘[(1) .Gl — g .H<l))J(n-k-l> =0, (A18)
k=0 1=0
"Lk ! ! k=1
(9.6 - (6. m) 7" =0, (A19)
k=0 =0
R ) () 7ln—k=1)
(My, W] — MW, G’ Ty ™" =0, (A20)
k=0 =0
n—1 n—1-k -1
[G(k ]Xj"lkl ZCAkJrlEXjnlk (A21)
k=0 =0
n n—k
[H(() )’ G( )]j(n—k—l) =0, (A22)
k=0 =0
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._.

1-k
> GMx

0 =0

n—1 n—

~
Il

(nlkl

n—1

ZC Ak'HBjn 1= k

(A23)

where we have used the Maxwell’s equation 9,B + V x E = 0 to obtain Egs. (A21), (A23). Finally we arrive at

LHS=-—Y Z_:

ZC Ak+l(Bj" 1-k) —|—EXJ(” 1- k)
2170

which is exactly the same as the RHS in Eq. (A15).

Xjnkl+1+ zn:ZH

G x Fr-kD)

Po1= =0

(A24)
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