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Abstract: Mouse knockouts facilitate the study ofgene functions. Often, multiple abnormal phenotypes
are induced when a gene is inactivated. The International Mouse Phenotyping Consortium (IMPC)
has generated thousands of mouse knockouts and catalogued their phenotype data. We have
acquired metabolomics data from 220 plasma samples from 30 unique mouse gene knockouts and
corresponding wildtype mice from the IMPC. To acquire comprehensive metabolomics data, we have
used liquid chromatography (LC) combined with mass spectrometry (MS) for detecting polar and
lipophilic compounds in an untargeted approach. We have also used targeted methods to measure
bile acids, steroids and oxylipins. In addition, we have used gas chromatography GC-TOFMS for
measuring primary metabolites. The metabolomics dataset reports 832 unique structurally identified
metabolites from 124 chemical classes as determined by ChemRICH software. The GCMS and LCMS
raw data files, intermediate and finalized data matrices, R-Scripts, annotation databases, and extracted
ion chromatograms are provided in this data descriptor. The dataset can be used for subsequent
studies to link genetic variants with molecular mechanisms and phenotypes.

Keywords: Metabolic phenotyping; metabolomics; lipidomics; functional genomics; mouse knockouts;
IMPC; LC-MS; GC-MS

1. Summary

The human genome database has been instrumental to link cellular functions with genetic
variants [1]. Yet, biological functions remain unclear for many genes, hampering their applications in
clinical and translational approaches. Often, gene inactivation affects more than one biological function,
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known as gene pleiotropy. Similarly, genetic variants were also found to be associated with more than
one phenotype in population level genome wide association studies (GWAS) [2–5]. GWAS catalogues
such as the database of Genotypes and Phenotypes (dbGaP) started associating various phenotypes
with genetic variants [6], but such associations lack causal relationships. Gene functions can be
characterized on different biological levels from metabolite to cellular to whole-body phenotypes.

Here, animal models help chart molecular pathways from genetic variant to phenotype [7].
The International Mouse Phenotyping Consortium (IMPC) is a network of centers with expertise in
mouse genetics and phenotyping. The IMPC has established pipelines to generate knockout mice for
over 7000 genes and aims to cover all 20,000 protein coding genes in mice [8,9]. The consortium has
also identified mouse models for 360 diseases among the first 3328 mouse knockouts phenotyped [10].
The IMPC uses high throughput assays to measure phenotypes throughout the life of a knockout mouse
and have successfully associated 974 genes with metabolic phenotypes and diseases [11]. Biomedical
researchers can access IMPC services to receive specific knockout biospecimens and search associated
phenotype data using the mousephenotype.org website. All the IMPC generated data are publicly
available at http://www.mousephenotype.org.

Up to 10% of all human genes are involved in operation and regulation of metabolism [12] and it is
well known that metabolism is dysregulated in many diseases. Several genes have well-characterized
metabolic phenotypes that can be detailed by associating changes in metabolite levels (such as high
cholesterol or low plasma uric acid) with genetic variants. Currently, the IMPC measures only a few
metabolic endpoints such as body mass, plasma triglycerides, glucose tolerance, and basal blood
glucose levels, warranting the need to expand their metabolic phenotype spectrum [11]. Over the
past 20 years, metabolomics [13–15] has achieved an increased breadth and depth of analysis due to
advances in sensitivity and accuracy of mass spectrometers, and up to 900 identified metabolites can
be measured in blood plasma [16].

In this data descriptor, we provide a comprehensive metabolomics dataset and a phenotype
dataset for plasma specimens of 30 mouse knockouts and their strain-matched wild type controls.
Data were acquired by integrating three non-targeted assays (on primary metabolism, biogenic amines
and complex lipids) with two targeted assays (oxylipins and combined bile acids and steroids), using
both GC-TOFMS and different LC-MS protocols.

2. Data Description

Raw GC-TOFMS and LC-MS mass spectra files are available at the NIH Metabolomics Workbench
database (http://metabolomicsworkbench.org) (Accession number ST001154). Processed data matrices
for all assays are provided in Table S11. The filtered metabolomics dataset is provided in the Table S12.
Phenotype data for the mouse strains is provided at (Data citation 10). Data dictionary (Table S13),
data matrix (Table S14), and sample metadata (Table S15) are provided in the supplementary section.
Data file to sample label mapping is provided in the Table S10. The file also contains sample labels
to IMPC accession IDs so metabolite to phenotype data can be linked. Analysis sequences for each
assay are provided in Table S17 to check for batch effects or systematic error within the datasets.
Annotation files are provided in the Tables S3–S7. Multiple reaction monitoring (MRM) transitions for
the targeted assays are provided in Tables S8 and S9. Processed results for each assay are provided in
the Supplemental Table S11.

To ensure a high data quality dataset, the following strategies were adopted while analyzing
these samples: (a) use of internal standards mixture, (b) analysis of quality control blood plasma
samples; (c) analysis of blank samples to monitor carry-over and chemical artifacts including laboratory
contaminants; (d) removal of multiple metabolite detections in different metabolomic platforms;
(e) signal corrections using SERRF normalization for GC-TOFMS data, (f) removal of compounds with
> 50% missing values, (g) removal of compounds with > 50% RSD technical variance, (h) use of curated
annotation databases to form a target list for peak intensity data processing; and (i) mapping peaks
with compound identifiers and SMILES code for informatics analyses.

http://www.mousephenotype.org
http://metabolomicsworkbench.org
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To show the technical reproducibility of the utilized LC-MS assays, RSD for peak heights of the
internal standards were computed. Table 1 shows the RSD values for these standards. Median RSDs
for the detected compounds were 8% (GCMS), 11.5% (CSH-POS), 13% (CSH-NEG), 12% (HILIC-POS),
and 52% (HILIC-NEG). No batch effect was observed from the HILIC-POS, CSH-POS, and CSH-NEG
datasets. For HILIC-NEG, four batches were observed, and the signals were corrected using the
median-batch normalization, dividing the value for each metabolite by its median value within a batch.

Table 1. Overview of the analytical assays.

Assays Chromatography Mass
Spectrometer

Data Processing
Column Instrument

Assay 1: - Primary

Rtx-5Sil MS column (30 m length,
0.25 mm i.d., 0.25 microM 95%

dimethyl 5% diphenyl
polysiloxane film)

Agilent 6890 GC Leco GCTOF
Pegasus IV

ChromaTOF
4/BinBase

Assay 2 and 3: - Polar
(ESI + and ESI − )

Waters Acquity UPLC BEH
Amide column (150 mm length ×
2.1 mm i.d.; 1.7 µm particle size)

Thermo Vanquish
UHPLC

Thermo Q-Exactive
HF Orbitrap

NIST MS Search
and R-target search

Assay 4 and 5: - Lipids
(ESI − and ESI +)

Waters Acquity UPLC CSH C18
column (100 × 2.1 mm; 1.7 µm)

Thermo Vanquish
UHPLC

Thermo Q-Exactive
HF Orbitrap

NIST MS Search
and R-target search

Assay 6 and 7: - Bile
acids/steroids and

Oxylipins

Waters Acquity BEH C18 column
(1.7 µm, 2.1 mm × 100 mm)

Waters ACQUITY
UPLC I-Class

system

Sciex 6500+
QTRAP hybrid

MultiQuant 3.0.2
(AB Sciex)

Targeted assays utilized a ten-point calibration curve to calculate molar concentrations of the
target analytes. Values that did not pass the limit of quantification were not included in the data matrix,
leading to many missing values.

3. Methods

3.1. IMPC Consortium, Mouse Knockout Selection and Plasma Samples

The International Mouse Phenotyping Consortium (www.mousephenotype.org) provided blood
plasma samples for 30 knockout strains (Table 2). For each knockout line, three male and three female
mice were selected, and a total of 40 C57BL/6NCrl baseline control wild-type mice were used to
match the knockout strains. Plasma samples were shipped to the West Coast Metabolomics Center
(WCMC; http://metabolomics.ucdavis.edu) on dry ice. Samples were stored at −80 ◦C until analyzed.
Each sample was assigned a unique identifier according to the sampling date and time at The Centre
for Phenogenomics (TCP) (See Table S15). Twenty additional human pool plasma samples (BioIVT,
previously known as BioreclamationIVT) and up to 10 method blanks were analyzed along with the
mouse plasma samples for each analytical assay. Mouse knockout were selected if (1) plasma sample
for a knockout was already available at IMPC (2) PubMed literature searches for the gene yielded some
papers in reference to metabolism and (3) gene assayed in an IMPC proteomics assay.

All experimental procedures on animals received approval from the Animal Care Committee of
The Centre for Phenogenomics and were conducted in accordance with the guidelines of the Canadian
Council on Animal Care. TCP’s approved lincense numbers are - Animal Use Protocol (AUP) 0153,
0275, 0277, 0279. Additionally, all animal production followed the Animal Research: Reporting of
in vivo Experiments (ARRIVE) guidelines within the context of the International Mouse Phenotyping
Consortium (IMPC). The human plasma samples were commercially acquired from BioIVT and their
use was approved by the Independent Institutional Review Board, Florida. The study identification
number for BioIVT plasma samples is 201209942.

www.mousephenotype.org
http://metabolomics.ucdavis.edu
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Table 2. Details of the mouse strains.

NCBI Gene ID Gene Symbol IMPC Line Gene Description

235661 Dync1li1 K2P2 Dynein Cytoplasmic 1 Light Intermediate Chain 1

71742 Ulk3 K2P2 unc-51-like kinase 3

14380 G6pd2 KOMP2 Glucose 6-phosphate dehydrogenase 2

29875 Iqgap1 KOMP2 IQ motif containing GTPase activating protein 1

23980 Pebp1 KOMP2 phosphatidylethanolamine binding protein 1

30939 Pttg1 KOMP2 pituitary tumor-transforming gene 1

11947 Atp5b NorCOMM2 ATP synthase, H+ transporting mitochondrial F1 complex, beta subunit

11972 Atp6v0d1 NorCOMM2 ATPase H+ Transporting lysosomal V0 Subunit D1

12567 Cdk4 NorCOMM2 Cyclin Dependent Kinase 4

13361 Dhfr NorCOMM2 Dihydrofolate reductase

68421 Lmbrd1 NorCOMM2 LMBR1 domain containing 1

18005 Nek2 NorCOMM2 NIMA (never in mitosis gene a)-related expressed kinase 2

67963 Npc2 NorCOMM2 NPC intracellular cholesterol transporter 2

19193 Pipox NorCOMM2 Pipecolic acid oxidase

19877 Rock1 NorCOMM2 Rho-associated coiled-coil containing protein kinase 1

269378 Ahcy NorCOMM2 S-adenosylhomocysteine hydrolase

232345 A2m NorCOMM2 alpha-2-macroglobulin

230558 C8a NorCOMM2 complement component 8, alpha polypeptide

14420 Galc NorCOMM2 galactosylceramidase

26384 Gnpda1 NorCOMM2 glucosamine-6-phosphate deaminase 1

15926 Idh1 NorCOMM2 isocitrate dehydrogenase

67096 Mmachc NorCOMM2 methylmalonic aciduria cblC type, with homocystinuria

17855 Mvk NorCOMM2 mevalonate kinase

76293 Mfap4 NorCOMM2 microfibrillar-associated protein 4

54128 Pmm2 NorCOMM2 phosphomannomutase 2

16922 Phyh NorCOMM2 phytanoyl- CoA hydroxylase

18817 Plk1 NorCOMM2 polo-like kinase 1, serine/threonine protein kinase

19248 Ptpn12 NorCOMM2 protein tyrosine phosphatase, non-receptor type 12

24068 Sra1 NorCOMM2 steroid receptor RNA activator 1

22631 Ywhaz NorCOMM2 tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein

3.2. Metabolomics Facility

Metabolomics data for the mouse plasma were acquired using seven analytical assays using GC-MS
and LC-MS platforms (Table 1). All LC-MS methods were performed using electrospray ionization
(ESI). These assays are routinely used to generate metabolomics data at the WCMC for almost 30,000
samples per year, including many blood samples [13,15,17,18]. The WCMC use large and validated
lists of metabolite targets (Tables S3–S9), large mass spectral libraries from the MassBank of North
America (MoNA available at http://massbank.us) to annotate novel compounds, standardized samples
preparation and data acquisition methods, robust data processing using freely available MS-DIAL [19],
SERRF software [20], the BinBase mass spectral database [21] for covering over 150,000 GC-TOFMS
samples analyzed over the past 15 years, and a variety of data analysis and interpretation tools,
including statistics [22], pathway and network mapping [23], and metabolite enrichment analysis [24].
Figure 1 shows the overview of the metabolomics data generation and quality control workflow.

http://massbank.us
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thresholds. Abbreviation: GCMS—gas chromatography and mass spectrometry, LCMS—liquid 
chromatography and mass spectrometry and ESI—electrospray ionization. 

Figure 1. Overview of the metabolomics data generation and quality control workflow for 220 knockout
mouse plasma (KOMP2) samples. A less stringent relative standard deviation (RSD) and sample to
blank ratio were used because the effect size of two or more show a major effect. As raw spectra
files are provided for this study, a user can re-generate the data matrix with different thresholds.
Abbreviation: GCMS—gas chromatography and mass spectrometry, LCMS—liquid chromatography
and mass spectrometry and ESI—electrospray ionization.

3.3. Annotation Databases for Untargeted Metabolomics

3.3.1. Gas Chromatography and Mass Spectrometry

Every acquired GC-TOFMS spectrum for blood specimens has been stored in the BinBase database
for past 15 years at the WCMC. The database contain over 150,000 samples which can be queried through
the BinVestigate web GUI (https://binvestigate.fiehnlab.ucdavis.edu/#/) for identified or unknown
metabolites that are confidently detected in over 100 tissues and species [21]. The BinBase algorithm [25]
utilizes this annotation database to generate a raw result data matrix (Table S11). The current BinBase
annotation database is provided in supplementary Table S3 with 1205 annotated spectra for 588 unique
compounds detected in biological samples.

https://binvestigate.fiehnlab.ucdavis.edu/#/
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3.3.2. Hydrophilic Interaction Liquid Chromatography (HILIC) Mass Spectrometry

A database of target metabolites detected in HILIC-ESI-MS using both positive or negative
electrospray mode are provided in supplementary Tables S4 and S5. This target database was generated
by searching MS/MS spectra for blood specimens acquired in past three years against the NIST17
MS/MS, the LipidBLAST [26] and MoNA databases, in addition to a specific HILIC-retention time
MS/MS mass spectral library of 1200 authentic standards [27]. For negative ESI mode, the HILIC-NEG
annotation database yielded 107 identified compounds in the mouse plasma data set presented
here using mass-to-charge (m/z), retention time (RT), and fragmentation spectra (MS/MS) match.
An additional 45 compounds were annotated by m/z and MS/MS fragmentation matches and one
compound was annotated by m/z and RT match. The abundance of this one compound was too low to
trigger an experimental MS/MS event in data dependent MS/MS data acquisition methods. For the
positive ESI mode, the HILIC-POS annotation database of the mouse plasma dataset presented here
yielded 84 compounds that were annotated by m/z, RT, and MS/MS matching, 86 compounds annotated
by m/z, and MS/MS data only, and 28 compounds were annotated by m/z and RT match.

3.3.3. Charged Surface Hybrid Liquid Chromatography (CSH) and Mass Spectrometry

The CSH database for target mouse plasma lipids for positive and negative electrospray modes is
provided in the supplementary Tables S6 and S7. The database is generated by searching MS/MS spectra
for blood specimens acquired in past seven years against NIST17 MS/MS database and LipidBLAST
mass spectral libraries. The CSH-NEG annotation database contains 215 verified lipids with m/z and
MS/MS match; the CSH-POS annotation database contains 304 compounds with validated m/z and
MS/MS match.

3.4. Assay 1. Gas Chromatography and Mass Spectrometry

3.4.1. Sample Preparation

One milliliter of degassed, −20 ◦C cold solvent mixture of acetonitrile (ACN):isopropanol
(IPA):water (H2O) (3:3:2, v/v/v) was added to each 20 µL mouse plasma aliquot. Samples were
vortexed for 10 seconds, shaken for 5 min and then centrifuged for 2 min at 14,000 rcf (relative
centrifugal force). Two 450 µL supernatant aliquots were transferred to new tubes. To remove
any excess protein, the supernatant was extracted with 500 µL 1:1 acetonitrile:water and vortexed
for 10 seconds, centrifuged for 2 min at 14,000 rcf. The supernatant was transferred to a clean
tube and then dried down in a CentriVap concentrator. For derivatization, 10 µL of methoxyamine
hydrochloride in pyridine (40 mg/mL) was added to each sample and then shaken at 30 ◦C for 90 min.
Then 90 µL of N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA, Sigma-Aldrich) was added for
trimethylsilylation. C8–C30 fatty acid methyl esters (FAMEs) were added as internal standard (See
Supplementary Table S18) for retention time correction. Samples were shaken for 30 min at 37 ◦C.
These derivatized samples were analyzed by GC-MS using a Leco Pegasus IV time of flight mass
spectrometer. For more details see [28].

3.4.2. Data Acquisition

An Agilent 6890 gas chromatography instrument equipped with a Gerstel automatic linear
exchange systems (ALEX) which included a multipurpose sample dual rail and a Gerstel cold injection
system (CIS). The CIS temperature program was: 50 ◦C to 275 ◦C final temperature at a rate of 12 ◦C/s
and held for 3 min. Injection volume was 0.5 µL with 10 µL/s injection speed. Injection mode was
splitless with a purge time of 25 seconds. Injector liner was changed after every 10 samples. Injection
syringe was washed with 10 µL of ethyl acetate before and after each run. A Rtx-5Sil MS column (30 m
length, 0.25 mm i.d., 0.25 microM 95% dimethyl 5% diphenyl polysiloxane film). An additional 10 m
integrated guard column was used. Mobile phase was 99.9999% pure Helium gas with a flow rate of
1 mL/min. GC temperature program was: held at 50 ◦C for 1 min, ramped at 20 ◦C/min to 330 ◦C and
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then held for 5 min. A Leco Pegasus IV time of flight mass spectrometer was used to acquire data.
The transfer line temperature between gas chromatograph and mass spectrometer was set to 280 ◦C.
Electron ionization at −70 V was employed with an ion-source temperature of 250 ◦C. Acquisition rate
was 17 spectra/second with a scan mass range of 85–500 Dalton (Da).

3.4.3. Data Processing

Raw GC-TOF MS data files were preprocessed directly after data acquisition and stored as
ChromaTOF-specific peg files, as generic txt result files and additionally as generic ANDI MS cdf
files. ChromaTOF version 4.0 was used for data preprocessing without smoothing, 3 s peak width,
baseline subtraction just above the noise level, and automatic mass spectral deconvolution and peak
detection at signal/noise (s/n) levels of 5:1 throughout the chromatogram. Results in .txt format
were exported to a data server with absolute spectra intensities and further processed by a filtering
algorithm implemented in the metabolomics BinBase database. The BinBase algorithm (rtx5) used
the following settings: validity of chromatogram (107 counts/s), unbiased retention index marker
detection (MS similarity > 800, validity of intensity range for high m/z marker ions), retention index
calculation by 5th order polynomial regression. Spectra were cut to 5% base peak abundance and
matched to database entries from most to least abundant spectra using the following matching filters:
retention index window ±2000 units (equivalent to about ±2 s retention time), validation of unique
ions and apex masses (unique ion must be included in apexing masses and present at >3% of base
peak abundance), mass spectrum similarity must fit criteria dependent on peak purity and signal/noise
ratios and a final isomer filter. Failed spectra were automatically entered as new database entries if
signal/noise ratios were larger than 25 and mass spectral purity better than 80%. All thresholds reflect
settings for ChromaTOF v. 4.0. Quantification was reported as peak height using the unique ion as
default, unless a different quantification ion was manually set in the BinBase administration software
BinView. A quantification report table was produced for all database entries that were positively
detected in more than 10% of the samples of this mouse knockout study. A subsequent post-processing
module was employed to automatically replace missing values from the .cdf files. Prior to statistical
analyses, data were filtered by combining multiple signals associated with each unique metabolite due
to derivatization reactions. All metabolic signals were discarded if s/n > 3 in comparison to blanks, or if
replaced values were >3 the intensity of truly detected values. Data were normalized using a random
forest algorithm-based signal correction method [20] available at (http://serrf.fiehnlab.ucdavus.edu).

3.5. Assay 2 and 3. Hydrophilic Interaction Liquid Chromatography (HILIC) Q-Exactive HF Mass
Spectrometry for Polar Metabolites

3.5.1. Sample Preparation

Metabolites were extracted from 20 µL of mouse plasma using 1 mL of degassed, −20 ◦C cold
mixture of ACN:IPA:H2O (3:3:2, v/v/v). Samples were vortexed for 10 seconds, shaken for 5 min and
then centrifuged for 2 min at 14,000 rcf. Two 450 µL supernatant aliquots were transferred to new
tubes. One tube was stored as a backup aliquot and another was dried in a SpeedVac concentrator.
Sample were re-suspended with 100 µL of ACN:H2O (80:20, v/v) which contained deuterium labeled
internal standards (See Supplementary Table S18) prior to injection.

3.5.2. Data Acquisition

3 µL sample aliquots were injected on a Waters Acquity UPLC BEH Amide column (150 mm
length × 2.1 mm i.d.; 1.7 µm particle size) maintained at 45 ◦C. A Waters Acquity VanGuard BEH
Amide pre-column (5 mm × 2.1 mm i.d.; 1.7 µm particle size) was used as guard column. Mobile phase
A was 100% LC-MS grade H2O with 10 mM ammonium formate and 0.125% formic acid and mobile
phase B was 95:5 v/v ACN:H2O with 10 mM ammonium formate and 0.125% formic acid. Gradient
was started at 100% (B) for 2 min, 70% (B) at 7.7 min, 40% (B) at 9.5 min, 30% (B) at 10.25 min, 100% (B)

http://serrf.fiehnlab.ucdavus.edu
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at 12.75 min, and isocratic until 16.75 min. The column flow was 0.4 mL/min. Vanquish UHPLC
system (ThermoFisher Scientific) was used. A Thermo Q-Exactive HF Orbitrap MS instrument was
operated in positive and negative ESI mdoes respectively with the following parameters: mass range
60−900 m/z; spray voltage 3.6kV (ESI+) and −3kV (ESI−), sheath gas (nitrogen) flow rate 60 units;
auxiliary gas (nitrogen) flow rate 25 units, capillary temperature 320 ◦C, full scan MS1 mass resolving
power 60,000, data-dependent MSMS (dd-MSMS) 4 scans per cycle, normalized collision energy at 20%,
30%, and 40%, dd-MSMS mass resolving power 15,000. Thermo Xcalibur 4.0.27.19 was used for data
acquisition and analysis. Instruments was tuned and calibrated by manufacturer’s recommendations.

3.5.3. Data Processing

Raw data files were converted to the mzML format using the ProteoWizard MSConvert utility.
For each m/z values ion chromatogram was extracted with m/z thresholds of 0.005 Da and retention
time threshold of 0.10 min. Apex of the extracted ion chromatograph was used as peak height value
and exported to a text file. Peak height files for all the samples were merged together to generate a data
matrix. Targeted peak height signal extraction was performed using an R script which is provided at
the GitHub repository (https://github.com/barupal). HILIC-POS data were not normalized because
no batch effect was observed (Supplementary Figure S1). HILIC-NEG data were normalized by the
median value for each batch to remove batch effects.

3.6. Assay 4 and 5. CSH-C18 Q-Exactive HF Mass Spectrometry for Lipidomics

3.6.1. Sample Preparation

Lipids were extracted from a 20 µL aliquot of plasma. 225 µL of cold methanol (MeOH) containing
a mixture of deuterated lipid internal standards (See Supplementary Table S18) was added and samples
were vortexed for 10 s. Then 750 µL of methyl tertiary-butyl ether (MTBE) was added. Samples were
vortexed for 10 s and shaken for 5 min at 4 ◦C. Next, 188 µL water was added and samples were
vortexed for 10 s and centrifuged for 2 min at 14000 rcf. Two 350 µL aliquots from the non-polar layer
were prepared. One aliquot was stored at −20 ◦C as a backup and the other was evaporated to dry in
a SpeedVac. Dried extracts were resuspended using a mixture of methanol/toluene (9:1, v/v) (60 µL)
containing an internal standard [12-[(cyclohexylamino) carbonyl]amino]-dodecanoic acid (CUDA)]
used as a quality control. Method blanks and pooled human plasma (BioIVT) were prepared along
with the study samples for monitoring the data quality.

3.6.2. Data Acquisition

Extracted lipids were separated on an Acquity UPLC CSH C18 column (100 × 2.1 mm; 1.7 µm)
maintained at 65 ◦C. The mobile phases for positive mode consisted of 60:40 ACN:H2O with 10 mM
ammonium formate and 0.1% formic acid (A) and 90:10 IPA:ACN with 10 mM ammonium formate and
0.1% formic acid (B). For negative mode, the mobile phase modifier was 10 mM ammonium acetate
instead. The gradient was as follows: 0 min 85% (A); 0–2 min 70% (A); 2–2.5 min 52% (A); 2.5–11 min
18% (A); 11–11.5 min 1% (A); 11.5–12 min 1% (A); 12–12.1 min 85% (A); and 12.1–15 min 85% (A).
Sample temperature is maintained at 4 ◦C in the autosampler. 2 µL of sample was injected. Vanquish
UHPLC system (ThermoFisher Scientific) was used. Thermo Q-Exactive HF Orbitrap MS instrument
was operated in both positive and negative ESI modes respectively with the following parameters:
mass range 120−1700 m/z; spray voltage 3.6kV (ESI+) and −3kV (ESI−), sheath gas (nitrogen) flow rate
60 units; auxiliary gas (nitrogen) flow rate 25 units, capillary temperature 320 ◦C, full scan MS1 mass
resolving power 60,000, data-dependent MS/MS (dd-MS/MS) 4 scans per cycle, normalized collision
energy at 20%, 30%, and 40%, dd-MS/MS mass resolving power 15,000. Thermo Xcalibur 4.0.27.19
was used for data acquisition and analysis. The instrument was tuned and calibrated according to the
manufacturer’s recommendations.

https://github.com/barupal
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3.6.3. Data Processing

Raw data files were converted to the mzML format using the ProteoWizard MSConvert utility.
For each m/z values ion chromatogram was extracted with m/z thresholds of 0.005 Da and retention
time threshold of 0.10 min. Apex of the extracted ion chromatograph was used as peak height value
and exported to a txt file. Peak height files for all the samples were merged together to generate a
data matrix. Targeted peak height signal extraction was performed using an R script that is available
at https://github.com/barupal. Extracted ion chromatograms for each peak were saved as pictures.
CSH-POS and CSH-NEG data matrices were generated. No normalization was applied as minimum
signal drift was observed during analysis (Supplementary Figure S1).

3.7. Assay 6 and 7. Bile Acids-Steroids, and Oxylipin Targeted Analysis

3.7.1. Sample Preparation

After thawing on ice and vortexing, 50 µL of plasma from each sample was aliquoted to a
polypropylene 96-well plate for extraction. The samples were spiked with internal standards of bile acids,
steroids, and oxylipins at a concentration of 250 nM, resulting in a final concentration of 25 nM prior to
LC-MS analysis. The suspensions were treated with antioxidant (0.2 mL/mL butylated hydroxytoluene
and ethylenediaminetetraacetic acid (EDTA)). 10 µL of 1000 nM 1-cyclohexyluriedo-3-dodecanoic acid
(CUDA) and 1-Phenyl 3-Hexadecanoic Acid Urea (PHAU) were added as quality markers for the
analysis. ACN:MeOH 1:1 (v/v) were added to final volume of 250 µL. The samples were vortexed
and incubated at 20◦C for 30 min to precipitate protein. After centrifugation at 15,000 rcf for 5 min,
the supernatant was transferred to a 0.2 µm PVDF filter plate (polyvinylidene fluoride membrane,
Agilent). The solutions were collected in new polypropylene 96-well plates and stored at −20 ◦C
until analyzed.

3.7.2. Data Acquisition

For bile acids and steroids, reverse-phase liquid chromatography was performed on a Waters
Acquity BEH C18 column (1.7 µm, 2.1 × 100 mm) with its corresponding Vanguard precolumn at 45 ◦C
at a flow rate of 400 µL/min. Mobile phase A was LC-MS grade H2O with 0.1% formic acid; mobile
phase B was ACN with 0.1% formic acid. The 20 min gradient is: 0–0.5 min 10% B, 0.5–1 min 10–20% B,
1–1.5 min 20–22.5% B, 1.5–11 min 22.5–45% B, 11–12.5 min 45–95% B, 12.5–16 min 95% B, 16–16.5 min
95–10% B, 16.5–20 min 10% B.

For oxylipins, LC separation was conducted on the same column, but mobile phase A was H2O
with 0.1% acetic acid and B was ACN:IPA 90:10 (v/v) with 0.1% acetic acid. The column was maintained
at 45 ◦C at the flow rate of 250 µL/min. A 16 min gradient was used with 0–1 min gradient from
25–40% B, 1–2.5 min 40–42% B, 2.5–4.5 min 42–50% B, 4.5–10.5 min 50–65% B, 10.5–12.5 min 65–75% B,
12.5–14 min 75–85% B, 14–14.5 min 85–95% B, 14.5–15 min 95–25% B, 15–16 min 25% B.

Extracts were analyzed by liquid chromatography (Waters ACQUITY UPLC I-Class system)
coupled to a Sciex 6500+ QTRAP hybrid, triple quadrupole linear ion trap mass spectrometer. 5 µL
of each extract was injected. Scheduled multiple reaction monitoring (MRM) was performed with
optimized collision energies, de-clustering potentials, and collision cell exit potentials for individual
analyte. A LC-MRM targeted method was used to analyze both bile acids and steroids with positive
and negative polarity switching. Oxylipins were analyzed in another LC-MRM method in negative
ionization mode only. All analytes were quantified against 6-point calibration curves using internal
standards. Turbo Spray Ion Source parameters are: curtain gas (CUR) 25 psi, nebulizer gas (GS1)
50 psi, turbo-gas (GS2) 50 psi, electrospray voltage −4.5 kV/+3 kV, and source temperature 525 ◦C.
Nitrogen was used as the collision gas. Software Analyst 1.6.3 and MultiQuant 3.0.2 (AB Sciex) were
used for data acquisition and quantification. MRM transitions for the analytes are provided in the
supplementary Tables S8 and S9.
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3.7.3. Data Processing

MultiQuant version 3.0.2 was used for the peak integration and peak area computation.
Peak integration settings were: Gaussian smooth width at 1.0 points, retention half window at
10–15 s, updated expected RT checkbox ‘NO’, minimum peak width at 8 points, minimum peak height
at 750, noise at 40%, baseline subwindow at 1.7 min and peak splitting at 3 points. Multi-Quant
software was also used for computing the molar concentrations for the analytes by using calibration
curves created using internal standards as described in the supplementary file (Tables S8 and S9).

3.8. Data Merging and Filtering

Data matrices from each platform were combined to generate a joint dataset for all the samples.
It contained a total of 1215 signals of identified metabolites (Table S12). Afterwards, signals were
retained if relative standard deviation (RSD) was better than 50% and if fewer than 50% missing values
were observed (Table S13). The median RSD for compounds in QC sample was less than 20% for all
assays except the HILIC-NEG mode data. Overall, up to 70% compounds have a QC RSD of less than 20%
across all assays. A majority of labelled internal standards showed a relative standard deviation of less
than 20% in LC-MS assays (Table 3). We also justify that for gene knockout experiments, investigators
are usually interested in two or more folds effect sizes, so a 50% threshold should not compromise
the statistical power if large effect sizes are sought. For metabolites that were detected in multiple
platforms, data with the lowest relative standard deviation in the quality control samples were retained.
The filtered dataset had 832 metabolites (Table S14). The simplified molecular-input line-entry system
(SMILES) codes for all annotated lipids were obtained from the LipidBlast MSP file or from the PubChem
Compound Identifier Exchange service (https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi)
and provided in the data dictionary (Table S13). Chemical classes for the identified compounds were
estimated using the ChemRICH software. Sample metadata is provided in the Table S15.

Table 3. Relative standard deviation of labelled internal standards for the liquid chromatography/ mass
spectrometry (LC/MS) assays.

Assay Internal Standard Name m/z Value Retention Time (min) Relative Standard Deviation

CSHNEG FA (16:0)-d3 258.2515 2.3 8%

CSHNEG CUDA iSTD 339.2653 0.5 10%

CSHNEG MAG (17:0/0:0/0:0) 403.3066 3.0 9%

CSHNEG LPE (17:1) 464.2782 1.2 17%

CSHNEG LPC (17:0) 568.362 1.7 8%

CSHNEG Ceramide (d18:1/17:0) 610.5416 5.9 14%

CSHNEG PC (12:0/13:0) 694.4665 3.5 8%

CSHNEG PE (17:0/17:0) 718.5392 6.2 11%

CSHNEG PG (17:0/17:0) 749.5338 4.9 14%

CSHNEG SM (d18:1/17:0) 775.5971 5.3 52%

CSHPOS LPC(17:0) 510.3554 1.7 5%

CSHPOS PC(12:0/13:0) 636.4599 3.5 6%

CSHPOS Cer(d18:1/17:0) 552.535 5.8 7%

CSHPOS SM(d18:1/17:0) 717.5905 5.0 7%

CSHPOS PE(17:0/17:0) 720.5538 6.2 7%

CSHPOS CUDA 341.2799 0.7 8%

CSHPOS LPE(17:1) 466.2928 1.2 8%

https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi
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Table 3. Cont.

Assay Internal Standard Name m/z Value Retention Time (min) Relative Standard Deviation

CSHPOS MG(17:0/0:0/0:0) 367.2819 3.0 9%

CSHPOS CE(22:1) 729.652 11.5 10%

CSHPOS DG(12:0/12:0/0:0) 474.4153 4.2 12%

CSHPOS Cholesterol d7 376.3955 4.7 12%

CSHPOS DG(18:1/2:0/0:0) 416.3371 3.2 17%

CSHPOS TAG d5(17:0/17:1/17:0) 874.7882 10.9 20%

CSHPOS Sphingosine(d17:1) 286.2741 1.1 21%

HILICNEG 15N2-l-Arginine 175.0974 9.41 22%

HILICNEG CUDA 339.2642 1.1 11%

HILICNEG D3-Creatinine 115.0694 4.71 12%

HILICNEG D3-dl-Alanine 91.0581 7.97 19%

HILICNEG D3-dl-Aspartic acid 135.048 9.09 27%

HILICNEG D3-dl-Glutamic acid 149.0636 8.65 27%

HILICNEG D5-l-Glutamine 150.0922 8.46 20%

HILICNEG Val-Tyr-Val 378.2023 6.79 9%

HILICPOS 15N2-l-Arginine 177.113 9.53 9%

HILICPOS CUDA 341.2799 1.16 11%

HILICPOS D3-1-Methylnicotinamide 140.0898 6.25 5%

HILICPOS D3-AC(2:0) 207.1419 7.21 7%

HILICPOS D3-Creatine 135.0956 8.15 9%

HILICPOS D3-Creatinine 117.085 4.95 4%

HILICPOS D3-dl-Alanine 93.0738 8.17 8%

HILICPOS D3-dl-Aspartic acid 137.0636 9.34 9%

HILICPOS D3-dl-Glutamic acid 151.0793 8.85 7%

HILICPOS D3-Histamine, N-methyl- 129.1214 7.35 20%

HILICPOS D3-l-Carnitine 165.1313 7.83 6%

HILICPOS D5-l-Glutamine 152.1078 8.67 11%

HILICPOS D9-Betaine 127.1427 7.25 13%

HILICPOS D9-Butyrobetaine 155.174 7.83 6%

HILICPOS D9-Choline 113.1635 5.18 6%

HILICPOS D9-Crotonobetaine 153.1584 7.86 9%

HILICPOS D9-TMAO 85.1322 5.57 8%

HILICPOS Val-Tyr-Val 380.218 6.95 24%

3.9. Phenotype Dataset

The phenotype dataset for each mouse knockout strainwas downloaded from the IMPC database
(www.mousephenotype.org) using their R-package IMPCData. First, allele accession numbers were
matched to the IMPC database identifiers. Then, for each mouse accession, phenotype data were
retrieved using the mouse strain identifier and phenotype identifiers (Table S1). The overall phenotype
dataset is provided in the Table S2.

4. User Notes

Users can utilize raw spectra files, processed results, and the merged metabolomics dataset for the
integration of phenotype and metabolomics dataset for each knockout strain. Raw spectra files should
be used to check the quality of detected peaks and to annotate unknown metabolites with new mass
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spectral libraries. Raw data files can be converted to mzML format for importing in other software
such as mzR or MZ-Mine. Proper data transformation and scaling for each data matrix from the assays
is recommended before performing univariate and multi-variate statistical analysis. The dataset is
particularly interesting for researchers who focus on the biological functions of the 30 genes studied
here, specifically, their potential roles in metabolism. We performed a ChemRICH class annotation
for the structurally identified compounds and found that almost 80 chemical classes werecovered.
These chemical groups can be associated with genes and with phenotypes. We foresee this dataset’s
use in developing next generation bioinformatics as well as in teaching courses for metabolomics and
as a test case for benchmarking software. As we have provided the annotation database, mass spectral
libraries and protocol details, these resources can be used to re-create similar datasets for other cohorts
of the blood plasma specimens.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/5/101/s1,
Table S1: Phenotype details; Table S2: Phenotype data for knockouts; Table S3: WCMC—GCMS annotation
database; Table S4: WCMC—HILIC annotation database (ESI POS); Table S5: WCMC—HILIC annotation
database (ESI NEG); Table S6: WCMC—CSH annotation database (ESI POS); Table S7: WCMC—CSH annotation
database (ESI NEG); Table S8: WCMC—Targeted metabolomics database (Bile Acids and Steroids); Table S9:
WCMC—Targeted metabolomics database (Oxylipins); Table S10 Sample and file name mapping; Table S11: Raw
metabolomics dataset for mouse knockouts; Table S12: Filtered metabolomics dataset; Table S13: Data Dictionary;
Table S14: Data Matrix; Table S15: Sample metadata; Table S16: Reagents and material used; Table S17: Analysis
sequences for all assays; Table S18: Internal standards for LCMS assays; Figure S1: Total ion chromatogram plots
for LC-MS data of quality control samples.

Author Contributions: All authors contributed in writing the manuscript. O.F., K.C.L. and D.B. conceptualized
the study. A.M.F., L.M.J.N., C.M. and K.C.L. generated the mouse strains and provided the plasma samples.
D.B. generated the consolidated metabolomics dataset. D.B. and S.F. performed statistical analysis. Y.Z. and D.B.
retrieved the phenotype data. T.S., G.B. and P.F. and Y.C. did targeted Assays for Bile acids, Steroids and Oxylipins.
B.S.R., B.H., T.S., C.S.B., J.S.F., M.R.S. and B.W. did LCMS data acquisition. C.S.B., J.S.F. and D.B. processed
LCMS data. L.V., G.W. and O.F. processed GC-TOFMS data. T.K., M.R.S. and A.V. contributed LC-MS/MS mass
spectral libraries.

Funding: The study was funded by the “West Coast Metabolomics Center for Compound Identification” was
provided by the National Institutes of Health under the award number NIH U2C ES030158 (to O.F.) and U42
OD012210 (MMRRC), U2C DK092993 (MMPC), and UM1 OD023221 (KOMP2) grants (to K.L), and by Genome
Canada and Ontario Genomics under award number OGI- 051(to C.M.).

Acknowledgments: We thank staff members of the West Coast Metabolomics Center, The Centre for
Phenogenomics (a member of the IMPC) and the Mouse Metabolic Phenotyping Center for their support
in implementing the project.

Conflicts of Interest: The authors declare no conflict of interest.

Data Set: The dataset is available at the MetabolomicsWorkbench repository (accession ID: ST001154)

Data Set License: License under which the data set is made available (CC0).

References

1. Gallagher, M.D.; Chen-Plotkin, A.S. The Post-GWAS Era: From Association to Function. Am. J. Hum. Genet.
2018, 102, 717–730. [CrossRef]

2. Barupal, D.K.; Lee, S.J.; Karoly, E.D.; Adhya, S. Inactivation of metabolic genes causes short- and long-range
dys-regulation in Escherichia coli metabolic network. PLoS ONE 2013, 8, e78360. [CrossRef]

3. Guo, L.; Milburn, M.V.; Ryals, J.A.; Lonergan, S.C.; Mitchell, M.W.; Wulff, J.E.; Alexander, D.C.; Evans, A.M.;
Bridgewater, B.; Miller, L.; et al. Plasma metabolomic profiles enhance precision medicine for volunteers of
normal health. Proc. Natl. Acad. Sci. USA 2015, 112, E4901–E4910. [CrossRef]

4. Long, T.; Hicks, M.; Yu, H.C.; Biggs, W.H.; Kirkness, E.F.; Menni, C.; Zierer, J.; Small, K.S.; Mangino, M.;
Messier, H.; et al. Whole-genome sequencing identifies common-to-rare variants associated with human
blood metabolites. Nat. Genet. 2017, 49, 568–578. [CrossRef]

5. Shin, S.Y.; Fauman, E.B.; Petersen, A.K.; Krumsiek, J.; Santos, R.; Huang, J.; Arnold, M.; Erte, I.; Forgetta, V.;
Yang, T.P.; et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 2014, 46, 543–550.
[CrossRef]

http://www.mdpi.com/2218-1989/9/5/101/s1
http://dx.doi.org/10.1016/j.ajhg.2018.04.002
http://dx.doi.org/10.1371/journal.pone.0078360
http://dx.doi.org/10.1073/pnas.1508425112
http://dx.doi.org/10.1038/ng.3809
http://dx.doi.org/10.1038/ng.2982


Metabolites 2019, 9, 101 13 of 14

6. Ramos, E.M.; Hoffman, D.; Junkins, H.A.; Maglott, D.; Phan, L.; Sherry, S.T.; Feolo, M.; Hindorff, L.A.
Phenotype-Genotype Integrator (PheGenI): Synthesizing genome-wide association study (GWAS) data with
existing genomic resources. Eur. J. Hum. Genet. 2014, 22, 144–147. [CrossRef] [PubMed]

7. Ulland, T.K.; Song, W.M.; Huang, S.C.; Ulrich, J.D.; Sergushichev, A.; Beatty, W.L.; Loboda, A.A.; Zhou, Y.;
Cairns, N.J.; Kambal, A.; et al. TREM2 Maintains Microglial Metabolic Fitness in Alzheimer’s Disease. Cell
2017, 170, 649–663.e613. [CrossRef] [PubMed]

8. Skarnes, W.C.; Rosen, B.; West, A.P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A.O.; Thomas, M.;
Harrow, J.; Cox, T.; et al. A conditional knockout resource for the genome-wide study of mouse gene function.
Nature 2011, 474, 337–342. [CrossRef] [PubMed]

9. Brown, S.D.; Moore, M.W. Towards an encyclopaedia of mammalian gene function: The International Mouse
Phenotyping Consortium. Dis. Model. Mech. 2012, 5, 289–292. [CrossRef]

10. Meehan, T.F.; Conte, N.; West, D.B.; Jacobsen, J.O.; Mason, J.; Warren, J.; Chen, C.K.; Tudose, I.; Relac, M.;
Matthews, P.; et al. Disease model discovery from 3,328 gene knockouts by The International Mouse
Phenotyping Consortium. Nat. Genet. 2017, 49, 1231–1238. [CrossRef]

11. Rozman, J.; Rathkolb, B.; Oestereicher, M.A.; Schutt, C.; Ravindranath, A.C.; Leuchtenberger, S.; Sharma, S.;
Kistler, M.; Willershauser, M.; Brommage, R.; et al. Identification of genetic elements in metabolism by
high-throughput mouse phenotyping. Nat. Commun. 2018, 9, 288. [CrossRef]

12. Brunk, E.; Sahoo, S.; Zielinski, D.C.; Altunkaya, A.; Drager, A.; Mih, N.; Gatto, F.; Nilsson, A.; Preciat
Gonzalez, G.A.; Aurich, M.K.; et al. Recon3D enables a three-dimensional view of gene variation in human
metabolism. Nat. Biotechnol. 2018, 36, 272–281. [CrossRef]

13. Showalter, M.R.; Nonnecke, E.B.; Linderholm, A.L.; Cajka, T.; Sa, M.R.; Lonnerdal, B.; Kenyon, N.J.; Fiehn, O.
Obesogenic diets alter metabolism in mice. PLoS ONE 2018, 13, e0190632. [CrossRef]

14. Germain, A.; Ruppert, D.; Levine, S.M.; Hanson, M.R. Prospective Biomarkers from Plasma Metabolomics
of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Implicate Redox Imbalance in Disease
Symptomatology. Metabolites 2018, 8, 90. [CrossRef]

15. Nagy-Szakal, D.; Barupal, D.K.; Lee, B.; Che, X.; Williams, B.L.; Kahn, E.J.R.; Ukaigwe, J.E.; Bateman, L.;
Klimas, N.G.; Komaroff, A.L.; et al. Insights into myalgic encephalomyelitis/chronic fatigue syndrome
phenotypes through comprehensive metabolomics. Sci. Rep. 2018, 8, 10056. [CrossRef]

16. Hu, J.R.; Grams, M.E.; Coresh, J.; Hwang, S.; Kovesdy, C.P.; Guallar, E.; Rhee, E.P.; Shafi, T. Serum Metabolites
and Cardiac Death in Patients on Hemodialysis. Clin. J. Am. Soc. Nephrol. 2019. [CrossRef]

17. Barupal, D.K.; Fan, S.; Wancewicz, B.; Cajka, T.; Sa, M.; Showalter, M.R.; Baillie, R.; Tenenbaum, J.D.; Louie, G.;
Alzheimer’s Disease Neuroimaging Initiative; et al. Generation and quality control of lipidomics data for the
alzheimer’s disease neuroimaging initiative cohort. Sci. Data 2018, 5, 180263. [CrossRef]

18. Fahrmann, J.F.; Grapov, D.D.; Wanichthanarak, K.; DeFelice, B.C.; Salemi, M.R.; Rom, W.N.; Gandara, D.R.;
Phinney, B.S.; Fiehn, O.; Pass, H.; et al. Integrated Metabolomics and Proteomics Highlight Altered
Nicotinamide- and Polyamine Pathways in Lung Adenocarcinoma. Carcinogenesis 2017. [CrossRef]

19. Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.;
Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis.
Nat. Methods 2015, 12, 523–526. [CrossRef]

20. Fan, S.; Kind, T.; Cajka, T.; Hazen, S.L.; Tang, W.H.W.; Kaddurah-Daouk, R.; Irvin, M.R.; Arnett, D.K.;
Barupal, D.K.; Fiehn, O. Systematic Error Removal Using Random Forest for Normalizing Large-Scale
Untargeted Lipidomics Data. Anal. Chem. 2019, 91, 3590–3596. [CrossRef]

21. Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Zheng, Y.; Ogiwara, A.; Meissen, J.;
Showalter, M.; Takeuchi, K.; et al. Identifying metabolites by integrating metabolome databases with mass
spectrometry cheminformatics. Nat. Methods 2018, 15, 53–56. [CrossRef] [PubMed]

22. Wanichthanarak, K.; Fan, S.; Grapov, D.; Barupal, D.K.; Fiehn, O. Metabox: A Toolbox for Metabolomic Data
Analysis, Interpretation and Integrative Exploration. PLoS ONE 2017, 12, e0171046. [CrossRef] [PubMed]

23. Barupal, D.K.; Haldiya, P.K.; Wohlgemuth, G.; Kind, T.; Kothari, S.L.; Pinkerton, K.E.; Fiehn, O. MetaMapp:
Mapping and visualizing metabolomic data by integrating information from biochemical pathways and
chemical and mass spectral similarity. BMC Bioinform. 2012, 13, 99. [CrossRef] [PubMed]

24. Barupal, D.K.; Fiehn, O. Chemical Similarity Enrichment Analysis (ChemRICH) as alternative to biochemical
pathway mapping for metabolomic datasets. Sci. Rep. 2017, 7, 14567. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/ejhg.2013.96
http://www.ncbi.nlm.nih.gov/pubmed/23695286
http://dx.doi.org/10.1016/j.cell.2017.07.023
http://www.ncbi.nlm.nih.gov/pubmed/28802038
http://dx.doi.org/10.1038/nature10163
http://www.ncbi.nlm.nih.gov/pubmed/21677750
http://dx.doi.org/10.1242/dmm.009878
http://dx.doi.org/10.1038/ng.3901
http://dx.doi.org/10.1038/s41467-017-01995-2
http://dx.doi.org/10.1038/nbt.4072
http://dx.doi.org/10.1371/journal.pone.0190632
http://dx.doi.org/10.3390/metabo8040090
http://dx.doi.org/10.1038/s41598-018-28477-9
http://dx.doi.org/10.2215/CJN.12691018
http://dx.doi.org/10.1038/sdata.2018.263
http://dx.doi.org/10.1093/carcin/bgw205
http://dx.doi.org/10.1038/nmeth.3393
http://dx.doi.org/10.1021/acs.analchem.8b05592
http://dx.doi.org/10.1038/nmeth.4512
http://www.ncbi.nlm.nih.gov/pubmed/29176591
http://dx.doi.org/10.1371/journal.pone.0171046
http://www.ncbi.nlm.nih.gov/pubmed/28141874
http://dx.doi.org/10.1186/1471-2105-13-99
http://www.ncbi.nlm.nih.gov/pubmed/22591066
http://dx.doi.org/10.1038/s41598-017-15231-w
http://www.ncbi.nlm.nih.gov/pubmed/29109515


Metabolites 2019, 9, 101 14 of 14

25. Skogerson, K.; Wohlgemuth, G.; Barupal, D.K.; Fiehn, O. The volatile compound BinBase mass spectral
database. BMC Bioinform. 2011, 12, 321. [CrossRef]

26. Kind, T.; Liu, K.H.; Lee, D.Y.; DeFelice, B.; Meissen, J.K.; Fiehn, O. LipidBlast in silico tandem mass
spectrometry database for lipid identification. Nat. Methods 2013, 10, 755–758. [CrossRef]

27. Blazenovic, I.; Kind, T.; Sa, M.R.; Ji, J.; Vaniya, A.; Wancewicz, B.; Roberts, B.S.; Torbasinovic, H.; Lee, T.;
Mehta, S.S.; et al. Structure Annotation of All Mass Spectra in Untargeted Metabolomics. Anal. Chem. 2019,
91, 2155–2162. [CrossRef]

28. Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted
Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.4.1–30.4.32. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/1471-2105-12-321
http://dx.doi.org/10.1038/nmeth.2551
http://dx.doi.org/10.1021/acs.analchem.8b04698
http://dx.doi.org/10.1002/0471142727.mb3004s114
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Summary 
	Data Description 
	Methods 
	IMPC Consortium, Mouse Knockout Selection and Plasma Samples 
	Metabolomics Facility 
	Annotation Databases for Untargeted Metabolomics 
	Gas Chromatography and Mass Spectrometry 
	Hydrophilic Interaction Liquid Chromatography (HILIC) Mass Spectrometry 
	Charged Surface Hybrid Liquid Chromatography (CSH) and Mass Spectrometry 

	Assay 1. Gas Chromatography and Mass Spectrometry 
	Sample Preparation 
	Data Acquisition 
	Data Processing 

	Assay 2 and 3. Hydrophilic Interaction Liquid Chromatography (HILIC) Q-Exactive HF Mass Spectrometry for Polar Metabolites 
	Sample Preparation 
	Data Acquisition 
	Data Processing 

	Assay 4 and 5. CSH-C18 Q-Exactive HF Mass Spectrometry for Lipidomics 
	Sample Preparation 
	Data Acquisition 
	Data Processing 

	Assay 6 and 7. Bile Acids-Steroids, and Oxylipin Targeted Analysis 
	Sample Preparation 
	Data Acquisition 
	Data Processing 

	Data Merging and Filtering 
	Phenotype Dataset 

	User Notes 
	References



