
UC Davis
UC Davis Previously Published Works

Title
The ambiguity of simplicity in quantum and classical simulation

Permalink
https://escholarship.org/uc/item/3s67k7kn

Journal
Physics Letters A, 381(14)

ISSN
0375-9601

Authors
Aghamohammadi, Cina
Mahoney, John R
Crutchfield, James P

Publication Date
2017-04-01

DOI
10.1016/j.physleta.2016.12.036
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3s67k7kn
https://escholarship.org
http://www.cdlib.org/


Santa Fe Institute Working Paper 16-02-005
arXiv:1602.08646

The Ambiguity of Simplicity in Quantum and Classical Simulation
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(Dated: December 29, 2016)

A system’s perceived simplicity depends on whether it is represented classically or quantally. This
is not so surprising, as classical and quantum physics are descriptive frameworks built on different
assumptions that capture, emphasize, and express different properties and mechanisms. What is
surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two
systems can change sign when moving between classical and quantum descriptions. Here, we examine
the minimum required memory for simulation. We see that the notions of absolute physical simplicity
at best form a partial, not a total, order. This suggests that appeals to principles of physical
simplicity, via Ockham’s Razor or to the “elegance” of competing theories, may be fundamentally
subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the
ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

Keywords: quantum information, information theory, stochastic process, hidden Markov model,
ε-machine

PACS numbers: 03.67.-a 05.30.-d 89.75.Kd 89.70.+c

We are to admit no more causes of natural things
than such as are both true and sufficient to
explain their appearances.

Isaac Newton, 1687
Philosophiæ Naturalis Principia Mathematica,

Book III, p. 398 [1]

Introduction Beyond his theory of gravitation, devel-
opment of the calculus, and pioneering work in optics,
Newton engendered a critical abstract transition that has
resonated down through the centuries, guiding and even
accelerating science’s growth: Physics began to perceive
the world as one subject to concise mathematical Laws.
Above, Newton suggests that these Laws are not only
a correct perception but they are also simple. Conse-
quently, one should abandon the Ptolemaic epicycles for
Newton’s elegant F = ma and Fg ∝ m1m2/r

2.
The desire for simplicity in a theory naturally leads us to
consider simplicity as a means for comparing alternative
theories. Here, we compare the parsimony of two de-
scriptions of stochastic processes—one classical and one
quantum. Classical versus quantum comparisons have,
of late, captured our attention both for reasons of prin-
ciple and of experiment. Quantum supremacy holds that
quantum systems behave in ways beyond those that can
be efficiently simulated by classical computers [2]. A sin-
gle cold 2D Fermi gas supports coexistence of both quan-
tum mechanical states at its core and classical states on
its periphery [3, 4]. The overriding impression is that
now is an interesting time for the foundations of quan-
tum mechanics. The following adds a new phenomenon
to these debates on the balance of classical and quantum
theories, as concerns the simplicity of their descriptions.
To start, we consider a Nature full of stationary stochas-
tic processes. A theory, then, is a mathematical ob-
ject capable of yielding a process’ probabilities. We

can straightforwardly say that one process is more ran-
dom than another via comparing their temperatures or
thermodynamic entropies. But how to compare them
in terms of their structural simplicities? We make use
of a well developed measure of simplicity in stochastic
processes—the statistical complexity—a measure of in-
ternal memory [5] or the minimum required memory to
simulate a process. It provides a concrete and inter-
pretable answer to the question, which process is struc-
turally simpler? By applying this comparison, we may
order all processes from the simplest to the most compli-
cated [6].
With recent progress in quantum computation [7–9], an
interesting twist comes about if we add quantum me-
chanics to our modeling toolbox. Descriptions that act
on a quantum substrate offer new and surprising options.
For example, it was shown that a quantum mechanical
description can lead to a simpler representation [10–14]
and even in some cases infinitely simpler [15, 16]. Re-
cently, this quantum advantage was verified experimen-
tally [17]. Proceeding with these methods, we discover
what is most surprising: the relative simplicity of clas-
sical and quantum descriptions can change. Specifically,
there are stochastic processes, A and B, for which clas-
sical theory says A is simpler than B, but quantum me-
chanics says B is simpler than A. What started out as a
neat classical array is upended by a new quantum sim-
plicity order. This means quantizing a simple classical
model may not be as simple as quantizing a more compli-
cated classical model. As a consequence model selection
is complicated by the addition of a quantum model class.
Classical and Quantum Simplicity We consider sta-
tionary, ergodic processes: each a bi-infinite sequence
of random variables X−∞:∞ = . . . X−2X−1X0X1X2 . . .
where each random variable Xt takes some value xt in
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a discrete alphabet set A and where all probabilities
Pr(Xt, . . . , Xt+L) are time-invariant.
How is their degree of randomness quantified? Infor-
mation theory [18] measures the uncertainty in a sin-
gle observation X0 via the Shannon entropy: H[X0] =
−∑x∈A Pr(x) log2 Pr(x) and the irreducible uncertainty
per observation via the entropy rate [19]: hµ =
limL→∞H[X0:L]/L. If we interpret the left halfX−∞:0 =
. . . X−2X−1 as the “past” and the right half X0:∞ =
X0X1X2 . . . as the “future”, we see that the entropy
rate is the average uncertainty in the next observable
given the entire past: hµ = H[X0|X−∞:0]. Thus, as we
take into account past correlations, the naive uncertainty
H[X0] reduces to hµ.
How reducible is our uncertainty in the future X0:∞
knowing the past X−∞:0? The answer is given by the
mutual information between the past and the future—
the excess entropy [20]: E = I [X−∞:0 : X0:∞]. With hµ
and E, we measure randomness and predictability, re-
spectively.
Let’s say we want to simulate a given process. To do this
we write a computer code that follows an algorithm and
allocate the memory the algorithm needs. For a given
process computational mechanics [21] identifies the opti-
mal algorithm—the process’ ε-machine. This is a unifi-
lar hidden Markov model [22] that uses only the mini-
mum required memory for simulation. We view a process’
ε-machine as the “theory” of a process in that it specifies
a mechanism that exactly simulates a process’ behaviors.
In this way, computational mechanics supplements E and
hµ with a measure of structure—the minimum required
amount memory to simulate the given process.
The ε-machine consists of causal states σ ∈ S defined by
an equivalence relation ∼ that groups histories, say x−∞:t
and x−∞:t′ , that lead to the same future predictions
Pr(Xt:∞|·): x−∞:t ∼ x−∞:t′ ⇐⇒ Pr(Xt:∞|x−∞:t) =
Pr(Xt′:∞|x−∞:t′). From this, one concludes that a pro-
cess’ ε-machine is, in a well defined sense, its simplest
predictive theory.
Translating this notion of simplicity into a measurable
quantity, we ask: What is the minimum memory neces-
sary to implement optimal prediction? The answer is the
historical information stored in the ε-machine. Quanti-
tatively, this is the Shannon entropy of the causal-state
stationary distribution {πσ}, the statistical complexity:

Cµ = H [S] = −
∑
σ∈S

πσ log2 πσ , (1)

It is well known that the excess entropy is a lower-bound
on this structural measure: E ≤ Cµ. In fact, this relation
is only rarely an equality [23]. And so, while E quantifies
the amount to which a process is subject to explanation
by its ε-machine “theory”, this simplest theory is typi-
cally larger, informationally speaking (Cµ), than the pre-
dictability benefit it confers. That said, the ε-machine is

the best (simplest) theory. Thus, we use Cµ to define our
notion of classical simplicity. It provides an interpretable
ordering of processes—process A is simpler than process
B when CAµ < CBµ .
We may also consider the recently proposed
quantum-machine representation of processes [10–
12]. The quantum-machine consists of a set {|ηk(L)〉} of
pure signal states that are in one-to-one correspondence
with the classical causal states σk ∈ S. Each signal
state |ηk(L)〉 encodes the set of length-L words that
may follow σk, as well as each corresponding conditional
probability. Fixing L, we construct quantum states:

|ηj(L)〉 ≡
∑

wL∈AL

∑
σk∈S

√
Pr(wL, σk|σj) |wL〉 |σk〉 , (2)

where wL denotes a length-L word and Pr(wL, σk|σj) =
Pr(X0:L = wL,SL = σk|S0 = σj). The resulting Hilbert
space is the product Hw ⊗ Hσ. Factor space Hσ is of
size |S|, the number of classical causal states, with basis
elements |σk〉. Factor space Hw is of size |A|L, with basis
elements |wL〉 = |x0〉 · · · |xL−1〉.
The quantum measure of memory is the von Neumann
entropy of the stationary state:

Cq = −Tr (ρ log ρ) , (3)

where ρ =
∑
i πi |ηi〉 〈ηi|. This quantum analog of mem-

ory is generically less than the classical: Cq ≤ Cµ. Also,
due to the Holevo bound [10, 24], E ≤ Cq. Though rare
in process space, the classical and quantum informational
sizes are equal exactly when both models are “maximally
simple” : E = Cq = Cµ.
Ising Chain Simplicity The Ising spin-chain Hamilto-
nian is given by:

H = −
∑
<i,j>

(Jsisj + bsi) , (4)

where si, the spin at site i, takes values
{
− 1,+1

}
, J is

the nearest-neighbor spin coupling constant, and b is the
strength of the external magnetic field.
In equilibrium the bi-infinite chain of spin random
variables defines a stationary stochastic process which
has been analyzed using computational mechanics [25].
Importantly, spins obey a conditional independence:
Pr(X0:∞|x−∞:0) = Pr(X0:∞|x0). That is, the “future”
spins (right half) depend not on the entire past (left half)
but only on the most recent spin x0. The conclusion (see
Supp. Materials) is that the two-state Markov chain pro-
cess is minimally represented by the ε-machine in Fig. 1.
Using Eq. (1), the statistical complexity is directly cal-
culated as a function of p and q. Figure 2 shows that
Cµ is a monotonically increasing function of tempera-
ture T : 1 − Cµ ∝ T−2 at high T . In particular, for the
three processes chosen at temperatures Tα < Tγ < Tδ,
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σ1 σ2↑ :p
↓ :1− p

↑ :1− q

↓ :q

FIG. 1. The ε-machine for the nearest-neighbor Ising spin
chain has two causal states σ1 and σ2. If the last observed
spin x0 is up (s0 = +1) the current state is σ1 and if it’s down
(s0 = −1) is σ2. If the current state is σ1, with probability
p the next spin observed is up and, if the current state is σ2,
with probability q the next spin observed is down.

Cαµ < Cγµ < Cδµ.
Consider now the quantum representation of these spin
configurations. Each causal state is mapped to a pure
quantum state that resides in a spin one-half space [13]:

|σ1〉 = √p |↑〉+
√

1− p |↓〉
|σ2〉 =

√
1− q |↑〉+√q |↓〉 . (5)

(We use a more compact spin up/down notation, rather
than the quantum machine notation of Eq. (2).) Intu-
itively, the quantum overlap accounts for the fact that the
conditional predictions Pr(X0:∞|σ1) and Pr(X0:∞|σ2)
share some subset of future outcomes. The density ma-
trix is then:

ρ = π1 |σ1〉 〈σ1|+ π2 |σ2〉 〈σ2| . (6)

Computing the quantum analog Cq = −Tr (ρ log ρ) as a
function of temperature, Fig. 2 shows that this quantum
size is generically well below the classical size Cµ. Thus,
the quantum theory for the Ising chain is simpler than
the classical: Cαq < Cαµ , Cγq < Cγµ , and Cδq < Cδµ. Given
the nature of progress in quantum information and com-
putation [26, 27], it is notable, but perhaps no longer so
surprising, that there exists such a quantum representa-
tional advantage.
Ambiguity of Simplicity Absolute sizes aside, what can
we say about the associated process rankings? How does
the notion of “simpler” survive the transition from clas-
sical to quantum description?
Observe (Fig. 2) that, unlike the classical measure Cµ,
the quantum simplicity Cq is not monotonic in temper-
ature: Cαq < Cδq < Cγq . Moreover, the maximum Cq
occurs at temperature TCq

' 1.63 while the excess en-
tropy is maximized at temperature TE ' 1.53. These
straightforward observations provide the kernel of sev-
eral counterintuitive consequences.
First, what is the consequence of nonmonotonicity? Take
the processes α and γ in Fig. 2. Classically and quantally,
α is simpler than γ. In contrast, the ranking of processes
γ and δ changes, Cγµ < Cδµ and Cγq > Cδq .
In this way, even the familiar 1D Ising spin chain illus-
trates what is a general phenomenon—the ambiguity of

0 1 2 3 4 5
T

0.0

0.2

0.4

0.6

0.8

1.0

α

γ

δ

Cµ

Cq

E

FIG. 2. Classical and quantum measures of Ising chain sim-
plicity: Statistical complexity Cµ, quantum state complexity
Cq, and excess entropy E versus temperature T in units of
J/kB at b = 0.3 and J = 1. (Cµ(T ) and E(T ) after Ref. [28]
and Cq(T ) after Ref. [13].) Three particular spin processes
are highlighted α, γ, and δ at temperatures Tα, Tγ , and Tδ.

Classical Quantum

CAµ

CBµ

CAq

CBqConsistent

Classical Quantum

CAµ

CBµ

CAq

CBq

Ambiguous

FIG. 3. (left) Classical and quantum rankings provide a
consistent interpretation of which process is simpler. (right)
Rankings reverse. And so, the question of simplicity is am-
biguous.

simplicity. How general? Consider two generic processes
A and B, for which no change in ranking occurs under
the quantum lens. This indicates a consistency between
the two representational viewpoints, at least with respect
to processes A and B: CAµ > CBµ and CAq > CBq . Fig-
ure 3(left) illustrates this circumstance. It can also be the
case that the simplicity ranking of A and B changes when
moving from classical to quantum representation. We re-
fer to this as ambiguity. See Fig. 3(right). One concludes
that the basic question—“Which process is simpler?”—
no longer has a well defined answer.
How generic are consistency and ambiguity in the Ising
spin chain parameter space? In Fig. 4 we construct an
ambiguity diagram that compares all pairs of processes
at temperatures T1 and T2 in the range [0, 5]. There,
we fix the magnetic field b = 0.3 and coupling constant
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FIG. 4. Ambiguity diagram for Ising spin chain: Each point
corresponds to a pair of Ising spin chains at temperatures T1
and T2 with J = 1 and b = 0.3. Given the inherent symme-
try, the figure shows only half of the T1 × T2 square. Consis-
tency is found near the (T = 0) axes, while ambiguity dom-
inates the remainder of parameter space. Curved boundary
between these two regions ends at a temperature correspond-
ing to max(Cq): TCq ' 1.63 (marked as a red dash).

J = 1. We find that the only consistent pairs are those
within a shrinking envelope around the axes (T1 = 0 and
T2 = 0). The bulk of parameter space, then, contains
ambiguously ranked pairs. The singular feature of the
diagram is the leftmost point along the boundary be-
tween the two regimes. This occurs at the temperature
TCq

' 1.63 where we find the maximum value of Cq.
Monotonicity of Cµ ensures that the transition between
consistency and ambiguity depends on a reordering of Cq
(not Cµ) values.
A notable case occurs when b = 0: there is no external-
field induced symmetry-breaking. As a consequence,
Cµ = 1 for all temperatures and Cq is a decreasing func-
tion of temperature. This means that, for every pair
of temperatures, we are at the border line of ambiguity.
Classically they are as simple as each other, but quantally
the system at the higher temperature is simpler.
Robustness of ambiguity One may object that this am-
biguity is merely an artifact of the particular quantum
construction or its size measure Cq. This is a valid con-
cern, especially since minimality of this (or any other
quantum representation) has not been established. Crit-
ically, the essence of ambiguity does not depend on this
contingency, as we now show.
Denote by C̃q the memory measure of an optimal quan-
tum model1 Q̃ built according to some hypothetical,
quantum scheme. Since C̃q, like Cq, is also bounded be-
tween E and Cµ [10, 24], we can define sufficient criteria
for consistency and ambiguity between C̃q and Cµ. We
assume that the hypothetical model Q̃ is no less efficient
than the original quantum-machine: C̃q ≤ Cq.

1 The quantum model with minimum Von Neumann entropy over
it’s states.

Assume that for processes A and B, B is classically sim-
pler. Then, the stronger criterion EA > CBq ensures that
any Q̃ must yield consistency in rankings and is there-
fore, what we call, certainly consistent. See Fig. 5(left).
Similarly, if EB > CAq , we know that any Q̃ must yield
an ambiguous ordering and is certainly ambiguous. See
Fig. 5(right).
Figure 6 illustrates these stricter relations within the
same Ising parameter region; compare Fig. 4. The cen-
tral region does not satisfy either strict constraint. As
expected, the certainly consistent (ambiguous) area is a
proper subset of the consistent (ambiguous) area.
One concludes that no matter what future improvements
may be found in quantum representations, these “cer-
tain” subregions are robust. This is a strong statement
about how one can or cannot systematically rank the
simplicity of systems classically and quantally. Again,
the basic Ising spin chain is sufficiently rich to illustrate
these new phenomena.
Discussion How common is ambiguity? The Supple-
mentary Materials show that it is quite common in
the analogous (nearest-neighbor, ferromagnetic) two-
dimensional Ising system. Perhaps, however, the am-
biguity of simplicity is special to spin systems. The Sup-
plementary Materials establish that it is, in fact, a much
more general phenomenon, by introducing a set of eas-
ily satisfied conditions such that two simplicity functions
over a set of structured objects must yield ambiguous or-
dering. In particular, taking the space of all ε-machines
as a set and Cµ and C̃q as the two measures , we find that
these conditions are satisfied. The general consequence is
that either the two measures selected are trivially equal
or ambiguity must exist. In other words, if the world is
not ambiguous, quantum mechanics cannot simplify its
explanation. One concludes that ambiguity is necessary
for quantum simplification.
Closing Remarks The comparison of classical and quan-
tum descriptions calls into question basic scientific prac-
tices that rely on a belief in the simplicity of the physical
world. These two worlds disagree on simplicity ranking.
Monitoring model simplicity is far from being the sole
domain of physics. It is key in a variety of statistical in-
ference tasks, notably in model selection [29]. Thus, the
ambiguity of simplicity will have major practical conse-
quences in a future that relies on quantum computing
instead of classical.
Imagine competing models of some finite data D. In
Bayesian inference, one widely employed methodology,
choosing one model over another requires specifying a
prior probability distribution over models [30]. Such pri-
ors are commonly constructed to favor simpler models.
Indeed, there is a long history of methods that avoid
overfitting to data by incorporating simplicity measures
into model selection, including Akaike’s Information Cri-
terion [31], Boltzmann Information Criterion [32], Min-
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FIG. 5. Constraining hypothetical, as-yet-unknown frame-
works for building quantum models Q̃: Appealing to size
measures Cq and E and without knowing any further details
about Q̃, we can still identify processes for which classical and
quantum simplicity orderings must certainly be consistent or
ambiguous. Cases exist that fall into neither of these stricter
categories.
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FIG. 6. Certain ambiguity diagram: Each point corresponds
to a pair of Ising spin chains at temperatures T1 and T2 with
J = 1 and b = 0.3. Dashed line marks Fig. 4’s consitent-
ambiguous border. Certainly consistent (ambiguous) is a
proper subset of consistent (ambiguous). Local extrema of
max(E) and Cq = max(E) along the new boundaries are
marked with short blue lines at the corresponding temper-
atures. Long red lines mark the same values as in Fig. 4.

imum Description Length [33], and Minimum Message
Length [34].
Classically, we may find that model A is simpler than
B and increase its prior accordingly. Given that the two
likelihoods Pr(D|A) and Pr(D|B) are similar enough, our
inference identifies A as preferred. As we showed, the
tables may turn dramatically when evaluating quantum
models; we might find there that B is much simpler. We
must then reconcile the fact that the quantum lens re-
veals a different answer.
We introduced the ambiguity of simplicity focusing on
classical and quantum descriptions of classical processes.

Quantum supremacy [2] suggests we go further to ex-
plore how (and if) ambiguity manifests when model-
ing quantum processes. This can be probed in the 1D
quantum Heisenberg spin chain [35], for example. Mea-
suring each spin in the z-direction yields a stochastic
process—one that can be described classically or quan-
tally. The Heisenberg spin chain is realized experimen-
tally in the quasi-1D magnetic order found in antiferro-
magnetic KCuF3 crystals [36–38]. One can then adapt
the methods of 1D chaotic crystallography [39] to extract
the ε-machine and quantum-machine descriptions of the
quantum crystalline structure from scattering measure-
ments. These and perhaps other experiments will pro-
vide an entrée to analyzing the ambiguity of simplicity
in quantum systems.
Supplementary Materials: Details on spin system cal-
culations and proof of the robustness theorem for the
ambiguity of simplicity.
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Supplementary Materials
The Ambiguity of Simplicity

Cina Aghamohammadi, John R. Mahoney, and James P. Crutchfield

To ground the notion of simplicity, the main text couched the discussion in terms as physical (and familiar) as possible
by considering the Ising spin chain from statistical physics [S1]—a model that historically played a critical role in
understanding phase transitions [S2], spin glasses [S3], and lattice gasses [S4]. Its impact has reached well beyond
physics, too, to ecology [S5], financial economics [S6], and neuroscience [S7]. Specifically, the main text focused on
the one-dimensional nearest-neighbor Ising spin chain in the thermodynamic limit, showing how it inherently contains
an ambiguous simplicity ordering. Here, we provide additional details underlying that analysis, generalize the result
to show that ambiguity also appears in the, perhaps even more familiar, 2D Ising lattice, and finally establish the
robustness of ambiguity via a theorem that lays out its most basic conditions.

ON SPIN CHAIN SIMPLICITY

Importantly, spins in the 1D chain obey a conditional independence: Pr(X0:∞|x−∞:0) = Pr(X0:∞|x0). That is, the
“future” spins (right half) depend not on the entire past (left half) but only on the most recent spin x0. Therefore,
spin configurations resulting from the Hamiltonian in Eq. (4) can be modeled by a simple two-state Markov chain
consisting of up (↑) and down (↓) states with self-transition probabilities [S8]:

p ≡ Pr(↑ | ↑) = N+/D and
q ≡ Pr(↓ | ↓) = N−/D ,

where N± = expβ(J ± b) and:

D = exp (βJ) cosh (βb) +
√

exp (−2βJ) + exp (2βJ)sinh(βb)2
,

with β = 1/(kBT ).
Calculating the ε-machine via the causal-state equivalence relation is straightforward. There are exactly two causal
states; except when p = 1 − q where we find only one causal state. The conclusion is that the two-state Markov
chain process is minimally represented by the ε-machine in Fig. 1. Using Eq. (1), the statistical complexity is directly
calculated as a function of p and q:

Cµ = −
( 1− q

2− p− q
)

log2

( 1− q
2− p− q

)
−
( 1− p

2− p− q
)

log2

( 1− p
2− p− q

)
.

Figure 2 showed that Cµ is a monotonically increasing function of temperature T : 1 − Cµ ∝ T−2 at high T . In
particular, for the three processes chosen at temperatures Tα < Tγ < Tδ:

Cαµ < Cγµ < Cδµ .

Recall that Fig. 4 demonstrated that the presence of ambiguity is robust: There exist parameter regions in which the
ambiguity is stable against alternative quantum representations—alternatives that arguably could lead to different
simplicity metrics.
To address how common ambiguity is, consider ambiguity in the analogous (nearest-neighbor, ferromagnetic) two-
dimensional Ising system. To answer this question we need to come back and look closely at the important difference
between Cµ and Cq. While Cq is a smooth function of ε-machine’s transition probabilities, this is not generally true
for Cµ. Consider Fig. 1 for p and q close to p = 1/2. In this case, we have a uniform distribution over causal states
and consequently Cµ ' 1. For the quantum-machine, using Eq. (5), two states are very close to each other meaning
〈σ1|σ2〉 ' 1. The consequence is Cq ' 0. Now, lets look at the case where p = q = 1/2. The two causal states are not
distinguishable and we only have one causal state and as a result Cµ = 0. We also have |σ1〉 = |σ2〉 which leads to
Cq = 0. The lesson here is that Cq smoothly tracks how distinguishable states are, but Cµ tracks if causal states are
exactly distinguished or not.
Recall that for the 1D Ising chain at high temperatures p 6= q; in particular, though they are both are close to 1/2,
they are never equal. The consequence is Cq ' 0 and Cµ = 1. What about for the 2D Ising model? At the extreme
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T = 0 and for any nonzero value of external field, the ground state will be in uniform alignment with the field. This
means that any random variable constructed from spin variables must have vanishing entropy. Lacking a complete
computational mechanics of structure in two-dimensional patterns (though see Ref. [S9, S10]), it is still clear that
any analog of statistical complexity (and thereby Cq) will vanish at T = 0 for such uniform configurations.
At very high T , though, spins become increasingly uncorrelated and the configurational conditional probability dis-
tribution associated with each causal state approaches uniformity, but as a set the distributions remain distinct. That
is, for any sufficiently high finite temperature, the system has some, perhaps weak, correlation that keeps the distri-
butions from becoming identical. In other words, causal states in this regime remain probabilistically distinct. So, as
with the 1D case, at very high temperature (T � 1, but T 6=∞) Cµ(T ) is not zero.
What can we say about Cq in this limit? For high T � 1 spin randomness makes the quantum states {|η〉} (Eq. (2))
more and more indistinguishable. And so, their increasing overlaps 〈ηi|ηj〉 → 1, driving Cq to zero monotonically.
The conclusion is that for the 2D Ising, at T ≈ 0 and T � 1, we have the same qualitative picture for the simplicity
measures as depicted in Fig. 2. This brief argument says that ambiguity exists in the 2D Ising spin model as well.

AMBIGUITY ROBUSTNESS THEOREM

First, we lay bare the mathematical argument and then we interpret it in terms of the physical setting of the main
text.
Consider a set of objects S and two functions over the set F1 : S → G and F2 : S → G. Space G consists of elements
that can be compared as follows.
If there exists s1, s2 ∈ S, such that F1(s1) > F1(s2) and F2(s1) < F2(s2), then we say these functions are ambiguous
over S.
We define three conditions for the set and functions.
Condition A The two functions map onto the whole space G: F1(S) = G and F2(S) = G.
Condition B For all g ∈ G there exists x ∈ S such that F1(x) = F2(x) = g.
Condition C Assume � is a dense, total order on space G.
Theorem 1. Given two functions F1 and F2 that map set S to space G and satisfy Conditions A, B, and C: No
ambiguity implies that for all x ∈ S, F1(x) = F2(x).
Proof. We prove the contrapositive by contradiction. Assume there exists x ∈ S such that F1(x) 6= F2(x). Without
loss of generality, let F1(x) � F2(x). Since � is a dense total order on G, there is g ∈ G such that F1(x) � g � F2(x).
By Condition B, there exists y ∈ S such that F1(y) = F2(y) = g. Trivially then, F1(x) � F1(y) and F2(x) � F2(y).
This demonstrates ambiguity and completes the proof.
We can interpret this in the setting of stationary processes with measures Cµ and C̃q and discuss the space of all
possible quantum sizes. More specifically, consider the case F1 = Cµ and F2 = C̃q. We know that for any value y ∈ R,
there exists an ε-machine with Cµ = C̃q = E = y. This satisfies the assumption. Then, our results say that if the
world is not ambiguous, the two measures are equivalent. In other words, the quantum advantage Cµ/C̃q requires
ambiguity.

[S1] S.. G. Brush. Rev. Mod. Phys., 39(4):883, 1967.
[S2] R. Peierls. Math. Proc. Cambridge Phil. Soc., 32(03):477–481, 1936.
[S3] S. F. Edwards and P. W. Anderson. J. Physics F: Metal Physics, 5(5):965, 1975.
[S4] T.-D. Lee and C.-N. Yang. Phys. Rev., 87(3):410, 1952.
[S5] A. E. Noble, J. Machta, and A. Hastings. Nature Comm., 6:6664, 2015.
[S6] D. Sornette. Rep. Prog. Physics, 77(6):062001, 2014.
[S7] E. Schneidman, M. J. Berry, R. Segev, and W. Bialek. Nature, 440(7087):1007–1012, 2006.
[S8] D. P. Feldman and J. P. Crutchfield. Discovering non-critical organization: Statistical mechanical, information theoretic,

and computational views of patterns in simple one-dimensional spin systems. 1998. Santa Fe Institute Working Paper
98-04-026.

[S9] D. P. Feldman. Computational Mechanics of Classical Spin Systems. PhD thesis, University of California, Davis, 1998.
Published by University Microfilms Intl, Ann Arbor, Michigan.

[S10] D. P. Feldman and J. P. Crutchfield. Phys. Rev. E, 67(5):051103, 2003.


	The Ambiguity of Simplicity in Quantum and Classical Simulation 
	Abstract
	Acknowledgments
	References
	On Spin Chain Simplicity
	Ambiguity Robustness Theorem
	Supplementary Citations




