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A Canonical Approach to Forces in Molecules 

 

Jay R. Walton 

Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368 

Luis A. Rivera-Rivera, Robert R. Lucchese, and John W. Bevan∗ 

Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255 

 

Abstract 

In a previous study, we introduced a generalized formulation for canonical 

transformations and spectra to investigate the concept of canonical potentials strictly within the 

Born-Oppenheimer approximation. Data for the most accurate available ground electronic state 

pairwise intramolecular potentials in H2
+, H2, HeH+, and LiH were used to rigorously establish 

such conclusions. Now, a canonical transformation is derived for the molecular force F(R) from 

the Hellmann-Feynman Theorem with H2
+, the simplest molecule as molecular reference. These 

transformations are demonstrated to be inherently canonical to high accuracy but distinctly 

different from those corresponding to the respective potentials of H2, HeH+, and LiH. Further 

applications of this methodology to Mg2, benzene dimer and to water dimer are also considered 

within the radial limit. The implications of these results for electrostatic model of chemical 

bonding will be considered and discussed using this fundamentally force-based canonical 

approach.  

  

																																																								
∗ To whom correspondence should be addressed. E-mail: bevan@mail.chem.tamu.edu 
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1. Introduction 

It is recognized that almost all molecular phenomena may be attributed directly or 

indirectly to the forces between atoms [1]. Recently, the source of chemical bonding particularly 

that involving the history and philosophy of covalent bonding has been reviewed [2] and 

describes the diversity of approaches used to consider the fundamental physical basis of 

chemical bonding. This included the force-based concept of chemistry [3, 4] for the electrostatic 

model of bonding that has been the subject of extensive consideration and acceptance. In another 

recently published work, by Bacskay and Nordholm [5], the origin of bonding in the simplest 

molecule H2
+ has been considered supporting a mechanism proposed by Hellmann [6] that 

lowering of kinetic energy and associated electron delocalization are considered as the 

stabilization of the molecule and the key mechanism of bonding [7-9]. This conclusion was in 

contrast with the perspective of Slater [10], Feynman [3], Bader [11], and others who maintained 

that the source of stabilization of electrostatic potential energy lowering is attributed to the 

electron density binding regions between the nuclei. The work of Bacskay and Nordholm [5] 

proposes that the electrostatic model of covalent bonding fails to provide a real insight or 

explanation of bonding while the kinetic energy mechanism is both sound and accurate.   

In a previous study, we introduced a generalized formulation of canonical 

transformations and spectra. These investigations explored the concept of a canonical potential 

strictly within the Born-Oppenheimer approximation for the most accurate available ground 

electronic state pairwise intermolecular potentials in H2, HeH+, and LiH [12]. Explicit 

canonically-based transformations have also been developed for transformation to a canonical 

potential for both these diatomics as well as two body intermolecular interactions [13,14]. The 

latter include several categories of bonding from van der Waals, hydrogen and halogen bonded 
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systems. The term canonical potential in these cases refers to a class of molecules with respect to 

a dimensionless function obtained from each molecule within the defined class by a readily 

invertible algebraic transformation. Furthermore, to be deemed canonical, the dimensionless 

potentials obtained from all of the molecules within the defined class by the canonical 

transformation must agree to within a specified order of accuracy. Now, a unified canonical 

approach to the molecular force, F(R), in the systems H2, HeH+, and LiH is introduced based on 

H2
+ as molecular reference. These transformations of F(R) are demonstrated to be inherently 

canonical to high accuracy but the transformations have a distinctly different form from those 

corresponding to their respective Born-Oppenheimer potentials E(R). To illustrate further 

applications of this methodology this approach is extended to systems with significantly different 

bonding characteristics. These will include Mg2 [15], benzene dimer [16], and water dimer [17] 

considered within the radial limit. We shall, additionally, consider application of the developed 

force-based canonical approach to give insight into the electrostatic approach to chemical 

bonding initially advocated by Slater [10]. 

 

2. Methods 

In constructing canonical representations of potentials for diatomic molecules [12,14], we 

developed an approach based upon a method for decomposing a 1-dimensional potential curve 

into a finite numbers of canonical sections that have the same scale invariant “shape” across a 

broad class of molecules. The notion of scale invariant shape utilized in this approach asserts that 

each designated section of the potential curve for one molecule has a unique counterpart in 

another molecule for which there exits an affine transformation to a single dimensionless curve. 
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Each such affine transformation is determined by the requirement that its endpoints map linearly 

to the endpoints of the single dimensionless “canonical” curve. 

The key to identifying the counterpart sections of two given dimensional potentials was 

found to lie with their associated force distributions. More specifically, the 1-dimensional 

potential E(R) has an associated force distribution   F(R) := − ′E (R) . For a given diatomic 

potential, Re denotes its equilibrium separation, with F(Re) = 0 (See Figure 1) and E(Re) = –De is 

the depth of the potential well. Also, the “maximum attractive” force Fm was defined by 

  
Fm := max R>Re

F(R) . In additional for R > Rm, the sequence of separation distances Rm < Raj, j = 

1, 2, …, was defined by |F(Raj)| = Fm2–j where Ra1 is the separation distance at which the 

attractive force has been reduced to half its maximum value, etc. Correspondingly, for R < Re, 

the sequence Rrj, j = 0,1, …, is defined by F(Rrj) = Fm2j where Rr0 is the separation distance at 

which the repulsive force equals the magnitude of the largest attractive force, etc. It was 

observed previously [12,14] that for given j, sections of the potential curves for two different 

molecules in the considered classes defined by Ra(j-1) < R < Raj or Rrj < R < Rr(j-1) are canonical. 

Thus, identifying the canonical nature of the potentials for the considered classes of molecules 

rests fundamentally upon the associated force distributions. In the present contribution, this 

intrinsic connection between the canonical nature of molecular potentials and their associated 

force distributions is deepened by demonstrating that the force distributions are themselves 

canonical. 

The sequences Raj and Rrj defined above for identifying canonical segments of potential 

curves can initially be generalized. Specifically, given 1 < α , the sequence Rm < Raj(α), j = 1, 2, 

…, can be defined by |F(Raj(α))| = Fmα–j. For R < Rm, the sequence Rrj above must be modified to 
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Rrj(α), j = 1, 2, …, and defined by F(Rrj(α)) = Fm(αj – 2). Clearly, the original sequences Raj and 

Rrj correspond to α = 2. Also, for all α > 1, it is implicit that Rr0(α) = Ra0(α) = Rm. 

For α > 2, the sequences Raj(α) and Rrj(α) are less dense on the interval 0 < R while for 1 

< α < 2, the sequences are more dense. The choice of α is thus guided by the required accuracy of 

a canonical representation of a given potential for an intended application. For example, it was 

shown in Ref. [12] that by appealing to both the piecewise affine transformation to canonical 

form and its inverse, one can construct a representation of the potential for any molecule in the 

considered class in terms of the potential for one of the molecules chosen as reference. In Ref. 

[12] this was taken to be H2
+ the simplest molecular system. These canonical representations for 

each molecule in the considered class where then substituted into the Schrödinger equation to 

compute an approximations to its energy spectrum. This use of the canonical representation of a 

potential required considerable accuracy. Other applications of these canonical potential 

representations might be less demanding on accuracy. 

2.1. Canonical Force Distribution 

This section begins with introducing a simple dimensionless force distribution obtained 

from its dimensional counterpart F(R) by a piecewise affine transformation. Subsequently, a 

somewhat more general piecewise affine transformation and associated dimensionless form are 

introduced that more accurately identifies canonical sections of force curves. These 

transformations to dimensionless form treat the attractive (R > Rm) and repulsive (0 < R < Rm) 

sides of the dimensional force curves separately. 

2.2. Piecewise Affine Transformation to Canonical Dimensionless Form 

For j = 1, 2, …, define the dimensionless (attractive) force distribution  
Faj (x;α )  for 0 ≤ x 

≤ 1 by: 
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Faj (x;α ) :=

Fs (xRaj (α )+ (1− x)Ra(j−1)(α ))α
j +α

(α −1)
,     (1) 

where 

Fs (R) :=
F(R)
Fm

          (2) 

is the force distribution scaled by its maximum attractive value and 

x =
R − Ra( j−1)(α )
Raj (α )− Ra( j−1)

    for    Ra( j−1)(α ) < R < Raj (α ) .     (3) 

Correspondingly, one can define the dimensionless (repulsive) force distribution  
!Frj (x;α )  

for 0 ≤ x ≤ 1 by: 

 
Frj (x;α ) :=

(Fs (xRrj (α )+ (1− x)Rr(j−1)(α ))+ 2)α
1− j −1

(α −1)
     (4) 

with 

x =
R − Rr( j−1)(α )
Rrj (α )− Rr( j−1)

    for    Rrj (α ) < R < Rr(j−1)(α ) .     (5)  

2.3. Inverse Canonical Transformation 

The affine transformations in Eqs. (1) and (4) are readily inverted by the formulas: 

 α
jFs (R) = (α −1) Faj (x;α )−α     for    Ra( j−1)(α ) < R < Raj (α )     (6) 

and x given by Eq. (3), and 

 α
1− j (Fs (R)+ 2) = 1+ (α −1) Frj (x;α )    for    Rrj (α ) < R < Rr(j−1)(α )     (7) 

with x given by Eq. (5). 

The dimensionless forms Eqs. (1) and (4) are called canonical relative to a given class of 

molecules if they agree up to a specified order of accuracy for every molecule in the given class. 

It follows that by choosing one molecule in the given class as reference, then the force 
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distribution for every other molecule in the class can be approximated to a specified order of 

accuracy by a piecewise affine scaling of the reference force distribution. More specifically, let 

F∗(R∗)  denote the reference force distribution and F(R) the force distribution for any other 

molecule in the given class. Appealing to Eqs. (1), (6), (4), and (7) one concludes that: 

Fs (R) = Fs
∗(R∗) ,         (8) 

where 

R∗ =

Ra( j−1)
∗ (α )+

Raj
∗ (α )− Ra( j−1)

∗ (α )
Raj (α )− Ra(j−1)(α )

⎛

⎝⎜
⎞

⎠⎟
R − Ra(j−1)(α )( ),     Ra(j−1)(α ) < R < Raj (α )

Rr( j−1)
∗ (α )+

Rrj
∗ (α )− Rr( j−1)

∗ (α )
Rrj (α )− Rr(j−1)(α )

⎛

⎝⎜
⎞

⎠⎟
R − Rr(j−1)(α )( ),     Rrj (α ) < R < Rr(j−1)(α )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

  (9) 

and hence that: 

F(R) = Fm
Fm

∗ F
∗(R∗) .         (10) 

2.4. Generalized Canonical Transformation 

As stated above, it proves helpful to generalize Eqs. (1) – (10) to more accurately identify 

canonical segments of force curves for molecules in the given class. Specifically, having chosen 

one molecule in the given class as reference, a sequence of generalized canonical forms 

 
Faj (x;α;γ j )  and  

Frj (x;α;γ j ) , j = 1, 2, …, can be defined as follows. 

 
Fa1(x;α;γ 1) :=

Fs (xRa1(α;γ 1)+ (1− x)Rm )+1
Fs (Ra1(α;γ 1))+1

       (11) 

 
Fr1(x;α;γ 1) :=

Fs (xRr1(α;γ 1)+ (1− x)Rm )+1
Fs (Rr1(α;γ 1))+1

,      (12) 

where 

Ra1(α;γ 1) := γ 1Ra1(α )+ (1−γ 1)Rm        (13) 
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Rr1(α;γ 1) := γ 1Rr1(α )+ (1−γ 1)Rm        (14) 

and with γ 1  chosen to satisfy: 

 

Fa1(0.5;α;γ 1) = Fa1
∗ (0.5;α )    for    R > Rm

Fr1(0.5;α;γ 1) = Fr1
∗(0.5;α )    for    R < Rm

⎧
⎨
⎪

⎩⎪
.      (15) 

For j = 2, 3, …,  
!Faj (x;α;γ j )  and  

!Frj (x;α;γ j )  are defined inductively through: 

 

Faj (x;α;γ j ) :=
Fs (xRaj (α;γ j )+ (1− x)Ra( j−1)(α;γ j−1))− Fs (Ra(j−1)(α;γ j−1))

Fs (Raj (α;γ j ))− Fs (Ra(j−1)(α;γ j−1))
  (16) 

 

Frj (x;α;γ j ) :=
Fs (xRrj (α;γ j )+ (1− x)Rr( j−1)(α;γ j−1))− Fs (Rr(j−1)(α;γ j−1))

Fs (Rrj (α;γ j ))− Fs (Rr(j−1)(α;γ j−1))
  (17) 

where γ j  is chosen to satisfy: 

 

Faj (0.5;α;γ j ) = Faj
∗(0.5;α )    for    R > Rm

Frj (0.5;α;γ j ) = Frj
∗(0.5;α )    for    R < Rm

⎧
⎨
⎪

⎩⎪
      (18) 

with 

Raj (α;γ j ) := γ jRaj (α )+ (1−γ j )Ra( j−1)(α;γ j−1)       (19) 

Rrj (α;γ j ) := γ jRrj (α )+ (1−γ j )Rr( j−1)(α;γ j−1) .      (20) 

For this generalized canonical form to be considered canonical,  
!Faj (x;α;γ j )  and 

 
!Frj (x;α;γ j )  must agree with the reference forms  

!Faj
∗(x;α )  and  

!Frj
∗(x;α ) , respectively, to a 

desired degree of accuracy, as is demonstrated below for the considered class of molecules in 

which H2
+ is taken as reference. It follows that for each j, the portions of the force curves F(R) 

for Ra( j−1)(α;γ j−1) < R < Raj (α;γ j )  and F∗(R∗)  for Ra( j−1)
∗ (α ) < R∗ < Raj

∗ (α )  have the “same 

shape” in that one can write F(R) as a simple affine scaling of F∗(R∗) . In particular, from Eq. 

(11), one can write for Rm < R < Ra1(α;γ 1)  
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Fs (R) =
α

α −1
(1+ Fs (Ra1(α;γ 1))) 1+ Fs

∗ Rm
∗ + (Ra1

∗ − Rm
∗ )

(Ra1(α;γ 1)− Rm )
(R − Rm )

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −1 . (21) 

Similarly, from Eq. (12), one has fore Rr1(α;γ 1) < R < Rm  

Fs (R) =
(1+ Fs (Rr1(α;γ 1)))

(α −1)
1+ Fs

∗ Rm
∗ + (Rr1

∗ − Rm
∗ )

(Rr1(α;γ 1)− Rm )
(R − Rm )

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ −1 .  (22) 

In the next section, these results are illustrated by taking F(R) to be the force distribution 

for the target molecules (H2, HeH+, LiH, Mg2, benzene dimer, and water dimer) and F∗(R∗) to be 

the force distribution of the reference molecule, H2
+.  

 

3. Results  

As discussed above, the key requirements for the dimensionless force distribution are 

given by Eqs. (11) and (12). A prescribed degree of accuracy across the class of molecules is 

also required for the dimensionless force to be considered canonical. Figure 2 is a plot of Eqs. 

(11) and (12) for the reference molecule H2
+ and the target molecules H2, HeH+, and LiH. These 

four molecules were previously studied [12] in which it was demonstrated that their potentials 

had a dimensionless canonical form. Similarly, Fig. 3 is a plot of (11) and (12) for H2
+, water 

dimer, benzene dimer, and magnesium dimer. More precisely, Table I gives the relative errors of 

this agreement between the dimensionless force distribution Eqs. (11) and (12) of the reference 

molecule H2
+ and the other indicated molecules, where the Relative Error between two functions 

f1(x) and f2(x) over the interval a ≤ x ≤ b is defined by: 

Relative Error :=
f1(x)− f2 (x) dx

a

b

∫

f1(x) dx
a

b

∫
.       (23) 
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To illustrate applications of the formulas in Eqs. (21) and (22), Fig. 4 gives plots of the 

force distribution for the water dimer and its approximation using the H2
+ reference force 

distribution. The relative error between these two force distribution curves is 0.0015. 

 

4. Discussion 

Initially, the concept of canonical potential was introduced to give a unified perspective 

on a range of ground state electronic potentials in diatomic molecules from CO, H2
+, H2, HF, 

LiH, Li2, O2, and Ar2 and one-dimensional intermolecular cuts through the potentials of OC-

HBr, OC-HF, OC-HCCH, OC-HCN, OC-HCl, OC-HI, OC-BrCl and OC-Cl2. The ground state 

dissociation energies De ranged, over almost three orders of magnitude from 99.3 cm-1 to 90683 

cm-1 and involved a wide range of different categories of chemical bonds from ionic to covalent 

to van der Waals, hydrogen bonded and halogen bonded pairwise interactions [13]. In 

subsequent studies this canonical approach was developed further generalized and improved 

[12,14] and its accuracy tested to high level within the Born-Oppenheimer approximation for 

molecules with few electrons. In the current studies, we have addressed the question as to 

whether canonical applications can be developed from the perspective of force with the 

versatility and accuracy corresponding to those already developed for canonical transformations 

and applications involving potentials. Although force is generically defined with respect to the 

negative of the derivative of potential, there is no expectation that their canonical transformations 

are necessarily the same and indeed this is found to be so. Figure 2 illustrates the dimensionless 

canonical force distributions for H2
+ (solid curve), H2 (red circles), HeH+ (blue squares) and LiH 

(green diamonds). The dimensionless canonical force distribution for H2
+ (solid curve) vs water 

dimer (red circles), benzene dimer (blue squares) and Mg2 (green diamonds) for j = 1 and α = 2 
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are also shown in Figure 3. These figures demonstrate clearly the ability of the proposed 

canonical approach to transform the force distribution of a wide range of prototypical species in 

different chemical bonding categories to a single dimensionless form. In each case, the 

transformed dimensionless force distributions of the selected prototypical systems can be 

superimposed on the corresponding dimensionless force distribution of the selected reference 

molecule H2
+, the simplest molecule. Relative errors between the dimensionless canonical force 

distribution for this reference H2
+ and those for HeH+, H2, LiH, Mg2, water dimer and benzene 

dimer for α = 2 are shown in Table 1. These results demonstrate that canonical transformations 

do exist for force within a maximum relative error of < 0.008. The estimated errors can be 

compared with results for transformations in the corresponding potentials that have been 

calculated in the case of certain of the prototype molecules studied. The corresponding relative 

errors are approximately a factor of two smaller, probably a consequence of the greater difficulty 

in determining force information relative to that corresponding to potential. 

The generation of accurate intermolecular interactions potentials, and thus forces, of 

water is a theoretical and computational challenging problem. Recent works have produced 

accurate potentials for water dimer [17-19], water trimer [20,21], and many body water 

interactions [20-22] exploiting the limits of current theoretical methods computational 

capabilities. Figure 4 shows the radial force distribution of water dimer generated from H2
+. 

Comparing with the true force distribution [17], the relative error is 0.0015. Taking in 

consideration the simplicity of the canonical approach in terms of computational cost, these 

results can be view as a truly remarkable. Efforts are underway to extend this canonical approach 

to other degree of freedom in water dimer.  

Now that we have developed and demonstrated semi-empirically that canonical 
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applications involving force do exist, questions arise as to whether they can give insight into the 

fundamental nature of chemical bonding and in particular into the electrostatic model. It is 

recognized that the developed procedures have implications with respect to the fundamental 

origins of chemical bonding that go back to the initial conceptualization and developments of 

such bonding [1-11]. The electrostatic model of chemical bonding, in particular, at a fundamental 

level is force-based as emphasized in the original work of Feynman [3]. Detailed consideration 

of the basis of this perspective has been extensively reviewed through application of the 

Hellmann-Feynman and Virial theorems for diatomic molecules by Bader [11]. The latter 

considered the variation of V (electronic potential) and T (electronic kinetic energy) with 

internuclear distance R leading to the criterion that it is the minimization of the potential energy 

correlated with maximization of electron density between the nuclei that determines binding 

energy. The additional availability of very accurate potentials for H2
+

, H2, HeH+, and LiH [12] 

within the Born-Oppenheimer approximation and the developed canonical approaches to 

potential and force have now provided an avenue of investigating the fundamental nature of this 

electrostatic model of bonding from a totally different perspective. The latter will require an 

additional investigation of the canonical behavior of electronic kinetic energy T(R), the quantity 

RF(R) in addition to the canonical dependence of V(R) and F(R). Such investigations are 

currently underway and will be the subject of future publications.  

Concerning the canonical nature of both the potential E(R) and its associated force F(R) 

that has been demonstrated for the considered class of molecules, there is a strong argument for 

viewing the canonical nature of the force as the more fundamental notion. Indeed, having 

demonstrated that the force is canonical for a given class of molecules, it follows immediately 

that the associated potential must also be canonical (see Appendix A for proof), whereas, the 
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reverse implication is false in general. That is, the potentials for a given class of molecules can 

be canonical, as defined above, without immediately implying that their associated force 

distributions are also canonical. That must be demonstrated through a separate analysis. 

5. Conclusions 

In previous investigations, we have demonstrated that the concept of canonical potentials 

could give a unified perspective on a wide categories of chemical bonding from ionic to covalent 

molecules as well as weakly bound including van der Waals, hydrogen and halogen bonded 

intermolecular interactions. From the fundamental perspective of the Hellmann-Feynman 

Theorem, corresponding canonical studies have now been promulgated through consideration of 

force. From such canonical perspectives, we have now demonstrated that for a prototype group 

of molecules (H2
+, H2, HeH+, and LiH for which extremely accurate potentials within the Born-

Oppenheimer exist), it has been possible to determine accurate force distributions and 

demonstrate their canonical nature. Furthermore, we have now extended such analyses to 

molecular species with different bonding characteristics including Mg2 and the radial analyses of 

benzene and water dimer. The canonical force approach developed is thus demonstrated to be 

equally applicable in these cases. The latter prototypical systems have great significant in 

modeling molecular aggregation of magnesium, π-stacking interactions in structural biology, and 

the fundamental properties water in all phases of matter. The developed canonical force 

application should be ubiquitous and have other widespread applications in molecular modeling.   

The reported results will be essential in subsequent applications that will require an 

additional investigation of the canonical behavior. These will included the electronic kinetic 

energy T(R), the quantity RF(R) in addition to the canonical dependence of V(R) and F(R) and 

other applications to chemical bonding through study of the Virial and Hellmann-Feynman 
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theorems. Such investigations are currently underway and will be the subject of future 

publications.  
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Appendix A: Canonical Force Implies Canonical Potential 

In this appendix, it is shown that if for a given class of molecules, it has been shown that 

their force distributions are canonical in the sense discussed above, then their associated 

potentials must also be canonical. The proof of this assertion is given for the attractive side of the 

simplified canonical dimensionless form presented in Section 2.2. The proofs for the repulsive 

side of the simplified form and for the more general canonical form presented in Section 2.4 are 

similar and hence omitted. 

Let   E(R)  and   F(R) = − ′E (R)  denote the potential and associated force distribution for a 

generic molecule in the chosen class, and let   E
*(R)  and   E

′∗ (R)  denote the reference potential 

and force. Consider the dimensionless force distribution for   F(R)  given by Eqs. (1) – (3), and 

for the reference molecule by: 

   
Fa

*
j (x;α ) :=

Fs
*(xRaj

* (α )+ (1− x)Ra( j−1)
* (α ))α j +α

(α −1)
,     (A1) 

where  

  
Fs

*(R*) := F *(R*)
Fm

*          (A2) 

is the reference force distribution scaled by its maximum attractive value and 

  
x =

R* − Ra( j−1)
* (α )

Raj
* (α )− Ra( j−1)

* for Ra( j−1)
* (α ) < R* < Raj

* (α ) .     (A3) 

Force is considered canonical if 

   
Fa j (x;α ) ≈  Fa

*
j (x;α )          (A4) 

for all molecules within the chosen class with 
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R − Rr( j−1) (α )
Rrj (α )− Rr( j−1) (α )

= x =
R* − Ra( j−1)

* (α )
Raj

* (α )− Ra( j−1)
* (α )

      (A5)  

for 

  
Raj (α ) < R < Ra( j−1) (α ) and Ra( j−1)

* (α ) < R* < Raj
* (α ) .    (A6) 

More precisely, Eq. (A4) requires that: 

    
| Fa j (x;α )− Fa

*
j (x;α ) |  <   for 0 ≤ x ≤1,      (A7) 

where    0 < 1  is a specified error tolerance. Also, from Eq. (A5), one sees that: 

   

R* = λ j[R] := Ra( j−1)
* (α )+

(Raj
* (α )− Ra( j−1)

* (α ))
(Raj (α )− Ra( j−1) (α ))

(R − Ra( j−1) (α ))

    = Ra( j−1)
* (α )+ λ j (R − Ra( j−1) (α )).

   (A8) 

Notice that   
λ j[R]  is an affine mapping (that is, 

   ′λ j[R]= λ j  where 
  
λ j  is a constant) of the 

interval   
Ra(j−1) (α ) < R < Ra (α )  onto the interval 

  
Ra( j−1)

* (α ) < R* < Raj
* (α ) . 

Appealing to the inverse canonical transformation in Eq. (6), it follows that: 

   
Fs(R)α j +α = (α −1) Fa j (x;α ) ≈ (α −1) Fa

*
j (x;α ) = Fs

*(R*)α j +α    (A9) 

from which it follows that: 

  
Fs(R) ≈ Fs

*(R*) = Fs
*(λ j[R]) for Ra( j−1) (α ) < R < Raj (α )     (A10) 

or more precisely that: 

   
| Fs(R)− Fs

*(λ j[R]) |  <   for Ra( j−1) (α ) < R < Raj (α ) .    (A11) 

Now, define the scaled potentials   Es(R) := E(R) / Fm  and   Es
*(R*) := E*(R*) / Fm

* . 

Then one concludes that for   
Ra( j−1) (α ) < R < Raj (α ) : 
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Es(Ra( j−1) (α ))− Es(R) = FsRa ( j−1) (α )

R

∫ (r)dr

≈ Fs
*

Ra ( j−1) (α )

R

∫ (λ j[r])dr

= 1
λ j

Fs
*

λ j [ Ra ( j−1) (α )]

λ j [ R]

∫ (ρ)dρ

= 1
λ j

Fs
*

[ Ra ( j−1)
* (α )]

λ j [ R]

∫ (ρ)dρ

= 1
λ j

(Es
*(Ra( j−1)

* (α ))− Es
*(λ j[R])).

    (A12) 

From Eq. (A12), it follows that: 

    

| Es(R)− A[Es
*(λ j[R])] |  ≤  |

Ra ( j−1) (α )

R

∫ Fs(r)− Fs
*(λ j[r]) | dr

< (Raj (α )− Ra( j−1) (α ))(α −1)
    (A13) 

with the affine transformation   A[⋅]  defined by: 

    
A[Es

*(λ j[R])] :=
Es

*(λ j[R])− Es
*(Ra( j−1)

* (α ))
λ j

− Es(Ra( j−1) (α )).    (A14) 

Thus, from Eq. (A13), one sees that up to a specified order of approximation, the scaled potential 

  Es(R)  is equivalent to an affine transformation of the scaled reference potential 
  
Es

*(λ j[R]) . 

Hence   E(R)  for   
Ra( j−1) (α ) < R < Raj (α )  and   E

*(R*)  for 
  
Ra( j−1)

* (α ) < R* < Raj
* (α )  have, up to the 

specified order of error, the same canonical form in the sense define above. 

Next consider the generalized canonical transformation and its inverse of Section 2.4 

given by formulas Eqs. (11) – (22). Corresponding to Eqs. (A4) –  (A6) one shows that: 

   
Fa j (x;α ;γ j ) ≈  Fa

*
j (x;α )         (A15) 

for all molecules within the chosen class with 
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R − Ra( j−1) (α )
Raj (α ;γ j )− Ra( j−1) (α )

= x =
R* − Ra( j−1)

* (α )
Raj

* (α )− Ra( j−1)
* (α )

     (A16) 

for 

  
Ra( j−1) (α ) < R < Raj (α ;γ j ) and Ra( j−1)

* (α ) < R* < Raj
* (α ).     (A17) 

Then Eq. (A7) and (A8) take the form: 

    
| Fa j (x;α ;γ j )− Fa

*
j (x;α ) |  <  for 0 ≤ x ≤1      (A18) 

and 

   

R* = λ j[R] := Ra( j−1)
* (α )+

(Raj
* (α )− Ra( j−1)

* (α ))
(Raj (α ;γ j )− Ra( j−1) (α ))

(R − Ra( j−1) (α ))

= Ra( j−1)
* (α )+ λ j (R − Ra( j−1) (α )),

    (A19) 

where one notices now  that   
λ j[R]  is an affine mapping (that is, 

   ′λ j[R]= λ j  where 
  
λ j  is a 

constant) of the interval   
Ra( j−1) (α ) < R < Raj (α ;γ j )  onto the interval 

  
Ra( j−1)

* (α ) < R* < Raj
* (α ) . A 

key observation is that: 

  
Fs(Raj (α ;γ j ))α

j = 1 if and only if γ j = 1.       (A20) 

Since   
Raj (α ;1) = Raj (α )  and   

Raj (α )  is chosen to satisfy Eq. (A20). Following a rather 

lengthy calculation similar to that leading to Eq. (A12), one can show that Eqs. (A13) and (A14) 

generalize to: 

    

| Es(R)− A[Es
*(λ j[R])] |  <  (Raj (α ;γ j )− Ra( j−1) (α )) | Fs(Raj (α ;γ j )α

j +α |(
+α 1−

Fs(Raj (α ;γ j ))α
j +α

α −1

⎞

⎠
⎟⎟

  (A21) 

and 
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A[Es
*(λ j[R])] :=

Es
*(λ j[R])− Es

*(Ra( j−1)
* (α ))

λ j

⎛

⎝
⎜

⎞

⎠
⎟

Fs(Raj (α ;γ j ))α
j +α

α −1

⎛

⎝
⎜

⎞

⎠
⎟

−Es(Ra( j−1) (α )).

  (A22) 

It is not difficult to show that Eqs. (A21) and (A22) reduce to Eqs. (A13) and (A14) when   
γ j = 1  

because 
  
Fs(Raj (α ;γ j ))α

j →−1  as   
γ j →1. It is important to notice that the order of accuracy in 

the approximation of   Es(R)  by 
   A[Es

*(λ j[R])]  depends upon both   , the order of error in the 

canonical force approximation, and also the second term in Eq. (A21). The second term in Eq. 

(A21) can be made small by  
γ j  being near 1 and by taking α  near 1. It is important to recognize 

that the value of  
γ j  used here is chosen to satisfy Eq. (18), that is, 

   
Fa j (0.5;α ;γ j ) =  Fa j

* (0.5;α ) . If 

one constructs the canonical potential directly, that is, not from the canonical force distribution 

as done in this appendix, then  
γ j  is chosen to satisfy  

   
Eaj (0.5;α ;γ j ) =  Eaj

* (0.5;α ).          (A23) 

In general, these two values of  
γ j  will not be the same, though the difference will not be great. 

However, the error in the approximation of 
   
Eaj (x;α ;γ j )  by 

   
Ea

*
j (0.5;α )  for   0 ≤ x ≤1 will be 

smaller when  
γ j  is chosen according to Eq. (A23) rather than by Eq. (18). 
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Table I 
Relative errors between the dimensionless canonical force distribution for the reference molecule 
H2

+ and those for HeH+, H2, LiH, Mg2, water dimer, and benzene dimer for α = 2. 
Molecule Ra0 – Ra1 Ra1 – Ra2 Rr1 – Rr0 Rr2 – Rr1 

H2 0.00254 0.00133 0.0061 0.000588 
HeH+ 0.00419 0.000422 0.00131 0.0015 
LiH 0.00805 0.00477 0.0016 0.000746 

Benzene Dimer 0.00322 0.00112 0.00721 0.0025 
Water Dimer 0.00101 0.00114 0.00493 0.00179 

Mg2 0.00589 0.00617 0.00674 0.00153 
 
 
 
 
 
 
 
 

 
 
Figure 1. The potential, E(R), (dotted curve) and force distribution, F(R), (solid curve) for the 
reference molecule H2

+. 
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Figure 2. Dimensionless canonical force distributions for H2

+ (solid curve), H2 (red circles), 
HeH+ (blue squares) and LiH (green diamonds). 
 
 

 
 
Figure 3. Dimensionless canonical force distribution for H2

+ (solid curve) vs water dimer (red 
circles), benzene dimer (blue squares) and Mg2 (green diamonds) for j = 1 and α = 2. 
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Figure 4. True force distribution for water dimer (solid curve) vs. approximation using force 
distribution for H2

+ (red circles) with α = 2. 
 
 
  

R(
◦
A)

Re Rm Ra1(α; γ1)

Rr1(α; γ1)

�

�
�
�
����������

����
���

�� ��� ��

���

���

����

����

����

��	��

F (R)(cm−1)

Wednesday, August 26, 15



	 23	

References 
 
[1] I. M. Torrens, Intermolecular Potentials, Academic Press, New York, 1972, p 3. 

[2] P. Needham, Studies in History and Philosophy of Science 45, 1 (2014).  

[3] R. P. Feynman, Phys. Rev. 56, 340 (1939). 

[4] B. M. Deb (Ed.), The force concept in chemistry, Van Nostrand Reinhold, New York, 1981.  

[5] G. B. Bacskay and S. Nordholm, J. Phys. Chem. A. 117, 7946 (2013). 

[6] H. Hellmann, Zeitschrift für Physik 85, 180 (1933).  

[7] M. Feinberg and K. Ruedenberg, J. Chem. Phys. 54, 1495 (1971).  

[8] M. Feinberg and K. Ruedenberg, J. Chem. Phys. 55, 5804 (1971). 

[9] K. Ruedenberg and M. W. Schmidt, J. Phys. Chem. A 113, 1954 (2009).  

[10] J. C. Slater, J. Chem. Phys. 1, 687 (1933).  

[11] R. F. W. Bader, The Nature of Chemical Binding, in The Force Concept in Chemistry, 
edited by B. M. Deb (Van Nostrand Reinhold, New York, 1981), pp. 39-136.  

[12] J. R. Walton, L. A. Rivera-Rivera, R. R. Lucchese, and J. W. Bevan, J. Phys. Chem. A 119, 
6753 (2015). In this reference, the notation V(R) corresponds to the notation E(R) used in the 
current work. 

[13] R. R. Lucchese, C. K. Rosales, L. A. Rivera-Rivera, B. A. McElmurry, J. W. Bevan, and J. 
R. Walton, J. Phys. Chem. A 118, 6287 (2014). In this reference, the notation V(R) corresponds 
to the notation E(R) used in the current work. 

[14] J. R. Walton, L. A. Rivera-Rivera, R. R. Lucchese, and J. W. Bevan, Phys. Chem. Chem. 
Phys. 17, 14805 (2015). 

[15] E. Czuchaj, M. Krosnicki, and H. Stoll, Theor. Chem. Acc. 107, 27 (2001). 

[16] R. Podeszwa, R. Bukowski, and K. Szalewicz, J. Phys. Chem. A 110, 10345 (2006). 

[17] A. Shank, Y. Wang, A. Kaledin, B. J. Braams, and J. M. Bowman, J. Chem. Phys. 130, 
144314 (2009). 

[18] V. Babin, C. Leforestier, and F. Paesani, J. Chem. Theory Comput. 9, 5395 (2013).  

[19] P. Jankowski, G. Murdachaew, R. Bukowski, O. Akin-Ojo, C. Leforestier, and K. 
Szalewicz, J. Phys. Chem. A 119, 2940 (2015). 

[20] U. Góra, W. Cencek, R. Podeszwa, A. van der Avoird, and K. Szalewicz, J. Chem. Phys. 



	 24	

140, 194101 (2014). 

[21] V. Babin, G. R. Medders, and F. Paesani, J. Chem. Theory Comput. 10, 1599 (2014). 

[22] G. R. Medders, A. W. Götz, M. A. Morales, P. Bajaj, and F. Paesani, 143, 104102 (2015). 

 

 




