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OR I G I NA L ART I C L E
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Abstract
The neural substrates of intelligence represent a fundamental but largely uncharted topic in human developmental
neuroscience. Prior neuroimaging studies have identified modest but highly dynamic associations between intelligence and
cortical thickness (CT) in childhood and adolescence. In a separate thread of research, quantitative genetic studies have
repeatedly demonstrated that most measures of intelligence are highly heritable, as are many brain regions associated with
intelligence. In the current study, we integrate these 2 streams of prior work by examining the genetic contributions to
CT–intelligence relationships using a genetically informative longitudinal sample of 813 typically developing youth, imaged
with high-resolution MRI and assessed with Wechsler Intelligence Scales (IQ). In addition to replicating the phenotypic
association between multimodal association cortex and language centers with IQ, we find that CT–IQ covariance is nearly
entirely genetically mediated. Moreover, shared genetic factors drive the rapidly evolving landscape of CT–IQ relationships
in the developing brain.
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Introduction
Intelligence represents a defining characteristic of the human
species. The emergence of our intelligence parallels the rapid
evolutionary expansion of the cerebral cortex in primates gen-
erally and in Homo sapiens specifically (Gilbert et al. 2005; Roth

and Dicke 2005). Perhaps not surprisingly, genetic studies have
established that intelligence quotient (IQ), the predominant
psychologic construct of intelligence, is highly heritable. For
example, twin studies have estimated that between 60% and
80% of the observed individual differences in full scale IQ are
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attributable to additive genetic factors (i.e., a2 of 0.60–0.80).
Metrics of intelligence thus rank among the most heritable of
all cognitive measures (Posthuma et al. 2002; Deary et al. 2006;
Polderman et al. 2015). Although IQ itself is a relatively stable
measure over the lifespan, there is evidence that the influence
of genetic factors on intelligence may change over time, partic-
ularly from infancy to childhood (Bartels et al. 2000; Deary et al.
2006).

The advent of neuroimaging has enabled the search for the
neural substrates of human intelligence in vivo. Initial studies
using magnetic resonance imaging (MRI) reported modest cor-
relations between brain volumes and intelligence (Andreasen
et al. 1993; Reiss et al. 1996; Gur et al. 1999). A subsequent
meta-analysis (N = 1530) estimated that the correlation
between total brain volume and IQ is 0.33, or approximately
11% of the total phenotypic covariation (Mcdaniel 2005).
Although small, the association between intelligence and brain
volumes appears almost entirely under genetic control
(Posthuma et al. 2002; Koenis et al. 2017).

More recent neuroimaging studies have investigated the
neural correlates of human intelligence with increased regional
specificity. For example, voxel-level analyses of gray matter
have found that IQ correlates with gray matter density in the
dorsolateral prefrontal cortex, anterior prefrontal cortex, orbito-
frontal cortex, precuneus, cingulate, and the lateral temporal
lobes (Frangou et al. 2004; Haier et al. 2004). When considered
together, the preponderance of structural and functional neuro-
imaging data suggests that general intelligence is most associ-
ated with a frontoparietal network involving language centers,
association cortex, and frontopolar cortex (Jung and Haier 2007;
Gläscher et al. 2010; Basten et al. 2015). Brain structure in these
regions also is among the most heritable in both children
(Lenroot et al. 2009) and adults (Thompson et al. 2001; Rimol
et al. 2010).

Intelligence is a trait that has remarkable stability over the
lifespan, with IQ in early childhood highly predictive of IQ mea-
sured in the eighth decade of life (Deary et al. 2004).
Nevertheless, there is converging evidence that the associa-
tions between brain morphology and intelligence are influ-
enced by neurodevelopmental changes. In children, the
prefrontal cortex and anterior cingulate cortex are most associ-
ated with intelligence (Reiss et al. 1996; Wilke et al. 2003), while
in adolescence there is an emergence of novel associations
with the orbitofrontal and middle frontal cortices (Frangou
et al. 2004). In a longitudinal study of 307 children and adoles-
cents, Shaw et al. (2006) found that the correlations between IQ
and cortical thickness (CT) were highly dynamic, with pheno-
typic correlations peaking during middle childhood. Moreover,
the trajectory of CT was more closely related to intelligence in

youth than were static measures of CT, with the dorsolateral
and superior frontal cortices having the strongest associations.
There is evidence that intelligence and measures of cortical
thickness change are influenced by common genes (Brans et al.
2010).

The extant literature suggests that genetics, neuroanatomic
specificity, and age are all critical to understanding the neural
substrates of intelligence. In the current study, we report
results from analyses examining these factors simultaneously
via multivariate latent growth structural equation models in a
large, genetically informative neuroimaging dataset.

Materials and Methods
Subjects

A total of 813 typically developing children, adolescents and
young adults from 410 families were recruited by the Child
Psychiatry Branch of the National Institute of Mental Health
(NIMH). The sample included pediatric, adolescent, and young
adult monozygotic twins (MZ, N = 252), dizygotic twins (DZ, N =
133), siblings of twins (N = 110), and singleton (N = 318) family
members (summarized in Table 1). Details of this sample have
been described elsewhere (Schmitt et al. 2014b). Parents of pro-
spective participants were interviewed by phone and asked to
report their child’s developmental, educational, and health his-
tory. Subjects were excluded if they had been diagnosed with a
psychiatric disorder, taken psychiatric medications, had experi-
enced brain trauma, or had any condition known to affect gross
brain development. Inclusion criteria were a minimum gesta-
tional age of 29 weeks and a minimum birth weight of 1500 g.
Approximately 80% of families responding to the ads met inclu-
sion criteria.

For each subject, age-appropriate versions of a Wechsler
Intelligence scale were administered. Full scale IQ data were
available for 794 (98%) of the participants. In total, 712 subjects
(88%) were administered the Abbreviated Intelligence Scale
(WASI), 52 (6%) were administered the Intelligence Scale for
Children-Revised (WISC-R), and the remaining 6% of subjects
undergoing either a version of the Preschool and Primary Scale
of Intelligence (WPPSI) or the Adult Intelligence Scale (WAIS).

For twin subjects, zygosity was determined by DNA analysis
of buccal cheek swabs (BRT Laboratories and Proactive
Genetics) using 9–21 unlinked short tandem repeat loci for a
minimum certainty of 99%. We obtained verbal or written
assent from the child and written consent from the parents (or
adult participants) for their participation in the study. The
Combined Neurosciences Institutional Review Board (CNS-IRB)
at the National Institutes of Health approved the protocol.

Table 1 Demographic characteristics of the sample

MZ DZ Siblings of twins Singletons Total

Sample size 252 133 110 318 813
Mean age at first scan (years ∓SD) 11.3 (3.8) 9.6 (3.5) 12.0 (4.4) 11.7 (5.1) 11.3 (4.4)
Mean scan interval (years ∓SD) 2.4 (0.66) 2.4 (0.67) 2.3 (0.86) 2.3 (0.85) 2.4 (1.1)
Gender 117 F (46%) 62 F (47%) 61 F (55%) 143 F (45%) 383 F (47%)

135M (54%) 71M (53%) 49M (45%) 175M (55%) 430M (53%)
SES (Hollingshead index) 44.2 (18.6) 43.0 (15.1) 43.0 (17.9) 40.5 (20.4) 42.6 (18.7)
Handedness 218 R (87%) 108 R (81%) 88 R (82%) 284 R (89%) 698 R (87%)

16M (6%) 15M (11%) 7M (7%) 18M (6%) 56M (7%)
14 L (5%) 10 L (8%) 12 L (11%) 14 L (5%) 50 L (6%)

FSIQ 110.3 (12.1) 110.7 (11.5) 113.4 (13.4) 115.4 (12.9) 112.7 (12.7)
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MRI Acquisition

All MRI images were acquired on the same General Electric
1.5 T Signa Scanner located at the National Institutes of Health
Clinical Center in Bethesda, Maryland. A 3-D spoiled gradient
recalled echo sequence in the steady state sequence was used
to acquire 124 contiguous 1.5-mm thick slices in the axial plane
(TE/TR = 5/24ms; flip angle = 45°, matrix = 256 × 192, NEX = 1,
FOV = 24 cm, acquisition time 9.9min). A Fast Spin Echo/Proton
Density weighted imaging sequence was also acquired for clini-
cal evaluation. A total of 1748 MRI datasets were used in the
current study (Fig. 1). Up to 8 MRI scans were performed per
individual, with sibships containing up to 5 members. The
mean interval between scans was 2.4 years.

Image Analysis

All MR images were imported into the CIVET pipeline for auto-
mated structural image processing (Ad-Dab’bagh et al. 2006).
Briefly, the native MRI scans were registered into standardized
stereotaxic space using a linear transformation (Collins et al.
1994) and corrected for nonuniformity (Sled et al. 1998). The
registered and corrected volumes were segmented into white
matter, gray matter, cerebrospinal fluid, and background using
a neural net classifier (Zijdenbos et al. 2002). The gray and
white matter surfaces were fitted using deformable surface-
mesh models and nonlinearly aligned toward a template sur-
face (MacDonald et al. 2000; Robbins et al. 2004; Kim et al. 2005).
The gray and white matter surfaces were resampled into native
space. Cortical thickness was measured in native-space using
the linked distance between the white and pial surfaces
(MacDonald et al. 2000; Lerch and Evans 2005). This data has
been made publicly available (Schmitt et al. 2014a).

Statistical Analysis

Each subject’s neuroanatomic measures were imported into
the R statistical environment for analysis (R Core Team 2006).
The data were reformatted such that each record represented
family-wise (rather than individual-wise) data. The subsequent
dataset contained up to 8 MRI scans per individual, up to 5 indi-
viduals per family, and 81 924 measures of cortical thickness
per subject. Latent growth curve models were then used to
decompose the phenotypic covariance between cortical thick-
ness and IQ. A traditional longitudinal growth curve model

uses repeated measures to estimate changes in means and var-
iances with time (Duncan and Duncan 2004). Compared with
other longitudinal methods, latent growth curve models have
the advantage that they allow for direct age-based predictions,
are robust to missing data cells, and are customizable to unique
data structures (Mcardle and Epstein 2013).

Genetic modeling was performed in OpenMx, a structural
equation modeling package fully integrated into the R environ-
ment (Boker et al. 2011; Neale et al. 2016). First, variance
decomposition of IQ was performed using the classic ACE
model with an extended twin design (Posthuma and Boomsma
2000). Then at each vertex, a genetically informative quadratic
latent growth curve model was constructed (Neale and McArdle
2000; McArdle et al. 2004) similar in structure to a model previ-
ously used to decompose covariance between lobar morphol-
ogy and demonstrate its changes with time (Schmitt et al.
2018). In the current study, rather than simultaneously analyz-
ing 2 neuroanatomic regions of interest, a vertex-level measure
of cortical thickness and full scale IQ were included and iter-
ated over all vertices (Fig. 2). This model represents a “bivari-
ate” extension of the single-ROI model described previously to
quantify changes in brain heritability with age (Schmitt et al.
2014b). In order to understand changes in the patterns of
genetic relationships between neuroanatomic structures, the
variances and covariances between the 3 latent growth curve
factors per individual were decomposed into additive genetic
(A) and environment components (E). Each of these compo-
nents was specified as a Cholesky decomposition, which fac-
tors any symmetric positive definite matrix into a lower
triangular matrix of free parameters postmultiplied by its
transpose (Neale and Cardon 1992).

The rich family structure in the present data made it possi-
ble to employ an extended twin design (Posthuma and
Boomsma 2000; Posthuma et al. 2000). Because the study design
acquired panel rather than cohort longitudinal data, the age at
scan was integrated into the model as a dynamic (e.g., defini-
tion) variable to individualize growth curve predictions (Mehta
and West 2000). Models were fitted by maximum likelihood,
which is efficient and yields asymptotically unbiased parame-
ter estimates. In order to test the statistical significance of
genetic factors on CT–IQ covariance, the original model was

Figure 1. Age distribution of the sample. Each point represents a high-

resolution MRI, with connected points indicating data from the same subject.

Subjects are color-coded based on study group (MZ = red, DZ = green, siblings

of twins = blue, singletons = black).

Figure 2. Simplified path diagram. Rectangles denote observed measures of full

scale IQ and cortical thickness (measured at up to 8 timepoints), with circles

indicating latent variables. Changes with time are modeled with a latent

growth curves, allowing for both linear and nonlinear effects with age. Variance

and CT–IQ covariance were decomposed into genetic (A), environmental (E),

and error (ε) components. Paths in red were constrained to unity, green paths

were defined as age at timepoint i, purple paths were set to age2 at timepoint i,

and α represents the degree of kinship between 2 family members. The remain-

ing paths were freely estimated. The paths in blue contribute to genetically

mediated CT–IQ covariance. While only 2 related individuals are shown, the

model included up to 5 members per family.
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compared with a submodel in which genetic covariance paths
were removed; differences in log-likelihood between these
models generally follow a χ2 distribution with degrees of free-
dom equal to number of parameters removed (Neale and
Cardon 1992; Visscher 2004; Dominicus et al. 2006). A similar
approach was performed for environmental covariance, as well
as for testing for changes over time (i.e., while retaining main
effects). Because several prior studies have shown little role of
the shared environment (c2) on the variance of brain structures
in children (Wallace et al. 2006; Peper et al. 2007; Lenroot et al.
2009; Schmitt et al. 2018), it was excluded from the model in
order to reduce the computational burden. Similarly, since prior
studies have shown little effect of sex on variance in cortical
thickness (Schmitt et al. 2014b), sex moderators on variance
components were not estimated. Control of multiple compari-
sons was performed via false discovery rate (Genovese et al.
2002).

For each timepoint–vertex pair, ROI genetic covariance
matrices with full scale IQ were calculated based on parameter
estimates from the full model. Genetic correlations (rG) were
then calculated by standardizing the genetic covariance matrix,
mathematically defined for vertex i as follows:

=
⁎

r
A

A A
G FSIQ

G FSIQ

G FSIQ
,

,
i

i

i

Since rG can be misleading when heritabilities are low, as an
alternative metric we also calculated the genetic contribution
to covariance (pcorG), which adjusts rG by the heritability (a2):

= ⁎ ⁎pcor a r aG vertex G FSIQ
2 2

i i FSIQ,

This statistic is also sometimes referred to as the “bivariate
heritability.” In order to visualize how these parameters change
over time, rG, pcorG, and the phenotypic correlation (rP) were
projected on to the brain surface at multiple timepoints from
ages 6 to 18.

CT–IQ Relationships Beyond Adolescence

In order to examine differences between CT and IQ relation-
ships between adolescents and adults, we analyzed data from
the genetically informative subsample of the Human
Connectome Project (HCP). This publicly available dataset
includes cross-sectional cognitive and neuroimaging measures
for 188 MZ and 298 DZ adult twins (191 males, 291 females).
Precise subject ages are not available, but the sample included
56 subjects ages 22–25 years, 240 from 26 to 30, 186 ages 31–35,
and 4 subjects over 35 years. Intelligence was assessed via the
NIH Toolbox’s “Total Cognition” composite score (NTC); this
score correlates highly (r = 0.95) with traditional constructs of

Figure 3. FDR-corrected probability maps of CT–IQ covariance. Main effects of phenotypic, genetic, and environmental factors on CT–IQ covariance, as well as effects

of genetic and environmental factors on changes in covariance over time. Similar maps with discrete significance thresholds are also provided in Figure S1.
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cognition in adults (Heaton et al. 2014). All subjects also had
high-resolution structural neuroimaging data postprocessed
with Freesurfer; details have been described elsewhere (Van
Essen et al. 2012). We used the 32k vertex-level measures of
cortical thickness smoothed with a 5mm kernel via the “cifti-
smoothing” command from the Connectome Workbench (Van
Essen et al. 2012). Traditional univariate ACE models for CT and
NTC were implemented while simultaneously regressing on
gender and age level, followed by bivariate CT–NTC Cholesky
decomposition to assess for shared genetic influences.

Results
There were significant phenotypic correlations between CT and
IQ in broad regions of the dorsolateral prefrontal cortex, orbito-
frontal cortices, parietal lobes (particularly supramarginal gyri),
superior temporal gyri, and left lingual and parahippocampal
gyri (Figs 3 and S1). Probability maps testing for the significance
of genetic contributions to CT–IQ covariance had a very similar
pattern, with the most significant regions including dorsolat-
eral prefrontal cortex, orbitofrontal cortex, perisylvian temporal
lobes, and lingual gyri (Figs 3 and S1). Genetic influences on
dorsolateral prefrontal cortex were more widespread in the left
hemisphere. While the CT of Broca’s area was significantly
associated with IQ via genetic factors, its homolog in the right
inferior frontal gyrus was not. Similar patterns were observed
when examining how shared genetic factors influence changes
in CT–IQ covariance over time, with regions of the bilateral
inferior parietal lobes, left greater than right orbital cortex, left
dorsolateral frontal cortex, and bilateral lingual gyri. These
findings were in sharp contrast to probability maps testing for
contributions of the environmental influence on CT–IQ covari-
ance, which were not significant after correction for multiple
testing.

Correlations between IQ and global mean CT were generally
weak and peaked near 10 years of age (Fig. S2). Consistent with
prior studies, vertex-level phenotypic correlations between CT
and IQ were of modest magnitude, generally ranging from
−0.10 to 0.40. There was substantial regional variation; the
regions of the brain with the strongest correlations changed
substantially over childhood and adolescence (Fig. 4). In chil-
dren under 10, there were relatively homogeneous but weak
global correlations. During middle childhood, a wave of
increased correlational strength spread over the dorsolateral
prefrontal cortex and the parietal lobes, peaking between 10
and 11 years of age. With the approach of adulthood, pheno-
typic correlations generally decreased (even below that seen in
early childhood). However, in the frontopolar cortex and left
lingual gyrus, progressive increases in phenotypic correlations
continued throughout adolescence and were among the stron-
gest correlations seen at any time point.

IQ was highly heritable in our sample, with approximately
66% of its variance attributable to additive genetic (a2) factors;
variance attributable to shared environmental (c2) and
individual-specific (e2) sources was substantially lower (a2 =
0.66 [95% CI: 0.48–0.85], c2 = 0.17 [0.00–0.34], e2 = 0.17 [0.01–0.22]).
The contribution of genetic factors to individual differences in
IQ was statistically significant (χ2 = 46.23, df = 1, P-value
<0.0001), while contributions from the shared environment
were not significant. The heritability of CT generally increased
over time (Fig. S3). Genetic correlations between IQ and CT
largely paralleled the phenotypic correlations (Figs 4 and S3).
Genetic correlations were somewhat higher, but similarly were
strongest in mid-childhood and involved dorsolateral

prefrontal, inferior parietal cortex, and right greater than left
posterior–superior temporal lobes, with the emergence of
strong correlations in the orbitofrontal cortex and left lingual
gyrus in late adolescence. The proportion of the phenotypic
covariance attributable to genetic factors (pcorG) mirrored phe-
notypic correlations and were similar in magnitude, indicating
that a large proportion of CT–IQ covariance was mediated via
genetic factors. The dynamic nature of these relationships can
be appreciated in Supplementary Movies (Supplementary
Movies 1–11).

In the HCP data, heritability of CT in adults was high
throughout most of the brain, similar in pattern to the late ado-
lescents from the NIH sample (Fig. 5). Lower heritability esti-
mates were seen in the right inferior frontal lobe and inferior
temporal lobes, although most regions were statistically signifi-
cant. Heritability for NTC was also high, with approximately
70% of the phenotypic variance attributable to genetic effects
(a2 = 0.71 [95% CI: 0.45–0.78]; c2 = 0.00 [0.00–0.08]; e2 = 0.29 [95%
CI: 0.20–0.38]); genetic effects on NTC were highly significant
(χ2 = 22.6, df = 1, P-value <0.0001). CT–NTC correlations were
weak in adults and did not reach statistical significance after
correction for multiple testing. However, the regions of stron-
gest correlation largely mirrored those seen in late adolescence
in the NIH sample, with orbitofrontal, parahippocampal, and
fusiform gyri among the regions with the strongest shared
genetic influences (Figs 5 and S4).

Discussion
The current study supports prior work suggesting modest but
significant correlations between IQ and several regions of the
cerebral cortex, most notably superior frontoparietal cortex,
language centers, and the frontopolar cortex. We observed that
the strength of these correlations changed rapidly in youth,
with the strongest associations for most cortical regions seen
during middle childhood. Our data also suggest that similar to
prior analyses using brain volumes (Posthuma et al. 2002;
Wallace et al. 2010), the relationships between IQ and CT are
largely genetically mediated. Moreover, the genetic influences
on CT–IQ covariance were highly dynamic in childhood and
adolescence.

Most prior studies investigating the phenotypic relation-
ships between intelligence and CT have implicated similar neu-
roanatomic regions. For example, in 216 typically developing
children and adolescents ages 6–18 (mean age 12.1), Karama
et al. (2009) found associations in the left greater than right
multimodal association, lateral prefrontal, parahippocampal/
fusiform, and extrastriate cortex. In a sample of 181 older chil-
dren and young adults (mean age 16.31), Menary et al. (2013)
found statistically significant correlations in the rostral frontal,
posterior temporal, parahippocampal/fusiform gyri, and left
inferior parietal lobes. In 225 young adults (mean age 20.9),
Choi et al. (2008) found strongest associations between IQ and
CT in the left hemisphere, primarily in the anterior temporal
cortex, temporal operculum, and lateral parietal cortex. Overall
our results are similar to these prior studies and largely support
the hypothesis that human intelligence is dependent on dis-
tributed networks primarily involving multimodal association
cortex (Jung and Haier 2007; Deary et al. 2010).

Our longitudinal findings provide additional evidence that
neurodevelopmental timing is critical in understanding CT–IQ
relationships, and support the hypothesis that discrepancies in
the existing literature may largely be owed to differences in
sample age. Not surprisingly, the results in the current study
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are therefore most concordant with prior studies when age is
considered during comparison. For example, using data
acquired at 2 timepoints (mean ages 11.59 and 13.55 years),
Burgaleta et al. (2014) investigated how rates of change in CT
influence CT–IQ associations in 431 children. They found that
CT–IQ relationships were strongest in the left posterior frontal
lobe. We similarly observe prominent CT–IQ correlations in the
left posterior frontal lobe during this age range; however, we
also find that these relationships substantially decrease in
strength with the onset of adolescence. Menary et al. (2013)
also observed that the strength of CT–IQ relationships decrease
in adolescence when their sample was split into age groups
(ages 9.0–16.45 vs. 16.46–24.0 years), as did Shaw et al. (2006).
Yet despite these global decreases in the second decade of life,

we observe regional increases in CT–IQ correlations in the fron-
topolar cortex in late adolescence. The emergence of robust
associations between frontopolar (BA 10) cortex and IQ have
also been reported in older samples of adolescents (Frangou
et al. 2004) and young adults (Narr et al. 2007), as well as via
lesion mapping in older adults (Gläscher et al. 2010). We also
observed that frontopolar cortex had among the highest genetic
correlations with intelligence in the adult HCP data, although
overall strength of associations with were weak in this sample,
possibly owed its broad age range.

Intelligence represents one of the most stable psychological
traits over the human life span (Plomin and Stumm 2018), a
somewhat paradoxical observation considering the rapid and
regionally specific changes of its correlates with the brain. It

Figure 4. Dynamic changes between cortical thickness and full scale IQ over childhood and adolescence. Maximum likelihood estimates of the phenotypic correlation

(rP), genetic correlations (rG), and the genetic contribution to covariance (pcorG) shown for ages 6–17. Changes with time can be viewed dynamically in the

Supplementary Movies. Additional views are also provided in Figure S1.
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seems highly implausible that the most important neural sub-
strates of intelligence “migrate” throughout the cerebrum with
age. Rather, the observed CT–IQ relationships may represent a
proxy for a wave of maturational changes in brain regions that
are closely coupled to intellectual ability. To our knowledge,
this hypothesis was first implied by Shaw et al. (2006), who
identified that differences in CT trajectories were strongly
related to levels of intelligence. Our results indicate that the
observed dynamic changes in CT–IQ relationships in youth are
nearly entirely genetically mediated. Recent large genome wide
association (GWAS) studies have begun to identify the genes
associated with intelligence (Sniekers et al. 2017; Hill et al.
2018). Although to date only a small fraction (<10%) of the vari-
ance in intelligence can be attributed to a specific genetic vari-
ant, the candidate genes thus far identified have established
roles in neurodevelopmental regulation, neurogenesis, synapse
formation, and other neurodevelopmental processes (Hill et al.
2018). Given that neurodevelopment continues well into adult-
hood and is dependent on multiple factors including cellular
proliferation, synaptogenesis, and myelination (Huttenlocher
1979; Petanjek et al. 2011; Miller et al. 2012), it is therefore not
surprising that we see evidence of changes in neurogenetic
influences on IQ with time. Although genotypes themselves are
fixed, gene expression in the brain changes throughout child-
hood, adolescence, and early adulthoods in both nonhuman
primates (Bakken et al. 2016) and humans (Kang et al. 2011).

The extant literature on how genetic factors mediate asso-
ciations between cortical thickness and intelligence is limited.
To our knowledge, there is only one similar prior study in
children (Brouwer et al. 2014). In this study, Brouwer et al.
examined a large sample of pediatric twins scanned at approxi-
mately 9 (N = 190) and 12 (N = 124) years of age. They found
decreases in CT–IQ phenotypic correlations of the superior and
middle frontal gyri between the 2 timepoints. Bivariate variance
decomposition at the second timepoint (age 12) suggested that
the observed correlations between CT and IQ were largely

driven by shared genetic factors. Our study is similar in that we
also identified that this age range is a crucial timepoint for CT–
IQ covariance, correlations are rapidly changing during this
interval, and that genetics appears to be the dominant factor
driving these relationships. The studies differ in that Brouwer
et al. reports largely negative CT–IQ correlations. The exact rea-
son for this discrepancy is unclear, but there are differences in
design that make the 2 studies largely complementary. The
narrow age ranges of Brouwer et al. provides a unique perspec-
tive on changes occurring near the onset of puberty, while the
larger sample, broad age range, vertex-level image processing,
and longitudinal statistical design of the current study provides
a comprehensive overview of the links between neurodevelop-
ment and intelligence in youth. Our findings are similar to a
study of gray matter density by Hulshoff Pol et al. (2006), which
also found modest but positive genetically mediated correla-
tions with intelligence in medial frontal cortex, occipital cortex,
and parahippocampal gyrus.

Limitations

There are several limitations of the current study that must be
considered when interpreting these findings. First, although a
convenient and reproducible metric, full scale IQ represents an
imperfect proxy for general intelligence (g). Second, we assume
that IQ is stable with time and measurement invariant with
age; although the literature generally supports this assumption
(Wicherts 2016), there is some evidence that small temporal
changes in intelligence correlate with subtle structural and
functional MRI changes in adolescence (Ramsden et al. 2011).
Furthermore, there is some evidence that the heritability of IQ
changes with age (Deary et al. 2006). Third, given the computa-
tional demands of our analyses, we only report findings on full
scale IQ. Although examining components of IQ remains a
potential avenue for future investigation, prior work has sug-
gested that brain–behavior correlates with components of IQ is

Figure 5. Genetics of adult cortical thickness and cognition in the Human Connectome Project (HCP) dataset. Heritability of cortical thickness (a2) and corresponding

FDR-corrected probability maps (pa2) are provided, as well as the genetic correlation (rG) and genetic contribution to covariance (pcorG) between cortical thickness and

the NIH Toolbox construct of total cognition; genetic covariances were not statistically significant after correction for multiple testing.
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largely mediated by g (Karama et al. 2011). Fourth, although
standard quality control techniques were employed, we did not
explicitly investigate the role of motion artifacts on our data;
differences in motion related to zygosity or age could poten-
tially influence our results (Couvy-Duchesne et al. 2014; Reuter
et al. 2015). It is therefore reassuring that our findings integrate
well into the extant literature. Finally, given the observed
changes in the role of genetic factors with time, our findings
are unlikely to extrapolate to other populations outside of our
studied age range. Further investigations on neonatal/perinatal
and adult populations will be required to fully understand the
dynamic nature of gene–brain–intelligence relationships
throughout the life cycle.
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Supplementary material is available at Cerebral Cortex online.
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