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ABSTRACT OF THE DISSERTATION

Genome-wide mapping and analysis of chromosome architecture in human tissues

by

Anthony Schmitt
Doctor of Philosophy in Biomedical Sciences
University of California, San Diego, 2017

Professor Bing Ren, Chair

Gene expression in mammals is regulated by complex networks involving higher order chromatin
organization, transcription factor binding, histone and DNA biochemical modifications and other
mechanisms. Our understanding of the functional relationship between 3D chromosome architecture and
gene regulation has been limited by the technologies to map 3D chromatin looping and the breadth of cell
or tissue types analyzed. During my Ph.D. I have addressed technological shortcomings in the field by
developing a high-resolution method for mapping chromatin interaction profiles at thousands of loci in a
single assay, termed Capture-HiC. We have shown that Capture-HiC is capable of obtaining interaction
profiles for contiguous loci, and when used in conjunction with HaploSeq phasing technology, can obtain

targeted haplotype phasing information for medically relevant loci such as the MHC and KIR loci. Also

Xiv



during my Ph.D. I have greatly advanced our understanding of the functional relationship between
chromatin organization and gene regulation through Hi-C analysis in 21 human cell lines and primary adult
tissues. We have discovered that chromosome architecture in human tissues exhibits distinguishing
signatures of local spatially active regions. These regions, termed FIREs, are highly tissue-specific,
enriched for active enhancers and GWAS variants, and conserved between human and mouse. We also find
that FIREs exhibit promiscuous local interaction behavior and a significant degree of self-interaction.
Further, I have developed high-resolution promoter Capture-HiC technology, and used this to map
promoter-centered long-range interactomes in 27 human cell and tissue types. We find that promoter-
centered interactions in tissues lie within dynamic interaction networks, which cluster by developmental
lineage. Most surprisingly, we find widespread promoter-promoter interactions that impact distal gene
expression, including hundreds of promoter regions harboring GWAS variants that have functional
implications on distal genes. Together, through Hi-C and Capture-HiC analyses in human tissues, we have
developed a rich resource for understanding chromatin folding and gene regulation. We anticipate these
studies to lay a foundation for future experiments designed to further understand the gene-regulatory
function of chromatin folding as well as the future study of how deleterious variants in cis-regulatory

elements perturb gene regulation.
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TECHNOLOGIES AND TECHNIQUES

© THE 3D GENOME

REVIEWS

Genome-wide mapping and analysis
of chromosome architecture

capture (3C) techniques and data analysis.

Recent studies have revealed the existence of millions
of potential cis-regulatory elements in the human
genome, with a great number of them residing in inter-
genic regions and away from their target gene pro-
moters'2. The distal elements, which largely consist of
enhancers, influence the transcription of target genes
through looping of chromatin fibres*!! during animal
development'*'*, Evidence of chromatin looping has
been detected for many enhancers'’-*'. However, the
mechanisms by which chromatin interactions are
formed and maintained during development remain to
be elucidated.

The chromosome conformation capture (3C)
method and its derived 3C-based technologies (termed
C-technologies) are commonly used for studying chro-
matin interactions in eukaryotic cells*-?7 (TABLE 1).
These techniques have uncovered general features of
genome organization, which include the existence of
hierarchical chromatin structures, such as compart-
ments®, topologically associating domains (TADs)®'°,
sub-TADs"!, insulated domains'” and chromatin
loops”.However, different C-technologies and analysis
strategies have produced variable data on chromatin
domains and DNA loops; for example, 100-fold differ-
ences have been seen in the total number of statistically
significant chromatin interactions between studies'*%;
and different studies have used similarly sounding
terminologies to describe different structural features
(such as ‘loops’ versus ‘significant interactions’ and
‘contact domains’ versus ‘topological domains’), thus
clouding our understanding of chromosome topo-
logy in cells*?. It is unclear whether the differences in
numbers of chromatin domains and loops identified
in different studies are due to experimental protocols
or data analysis algorithms.

Anthony D. Schmitt!, Ming Hu?3 and Bing Ren*

Abstract | Chromosomes of eukaryotes adopt highly dynamic and complex hierarchical structures
in the nucleus. The three-dimensional (3D) organization of chromosomes profoundly affects DNA
replication, transcription and the repair of DNA damage. Thus, a thorough understanding of
nuclear architecture is fundamental to the study of nuclear processes in eukaryotic cells.

Recent years have seen rapid proliferation of technologies to investigate genome organization
and function. Here, we review experimental and computational methodologies for 3D genome
analysis, with special focus on recent advances in high-throughput chromatin conformation

In this Review, we discuss recent experimental
and computational advances in C-technologies. We
briefly catalogue all C-technologies, and place special
emphasis on a few key areas of recent technologi-
cal advancements regarding methods for chroma-
tin fragmentation, approaches for proximity ligation
and the use of a target-enrichment step before per-
forming ultra-high-throughput sequencing. We also
thoroughly explore the recent computational advance-
ments that have been developed to analyse data sets
produced by C-technologies (termed C-data). We
detail the approaches for interrogating various C-data
sets, placing special emphasis on methodologies to
account for experimental biases, assessment of the res-
olution of a data set, extraction of global chromosome
organization features and identification of chromatin
interactions. We also propose key factors for consider-
ation when selecting the appropriate computational
methods to analyse C-data. Owing to space limit-
ations, this Review does not cover alternative applica-
tions of C-data, such as haplotype phasing®-*’, genome
assembly*'~*, metagenomic applications*** and three-
dimensional (3D) chromosome modelling?*?37%,
Readers can find excellent reviews on these topics else-
where*>*-2, We conclude by providing perspective on
the challenges that remain ahead.

C-technologies: advances and adaptations

3C was invented as a general method to study chromo-
some organization in eukaryotic cells®. It combines
protein crosslinking and proximity ligation of DNA to
detect long-range chromatin interactions between pairs
of genomic loci. Briefly, nuclei are isolated following
treatment of cells with formaldehyde, which crosslinks
the chromatin proteins to their associated DNA to

NATURE REVIEWS | MOLECULAR CELL BIOLOGY

VOLUME 17 | DECEMBER 2016 | 743
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REVIEWS

Table 1| A tabulation of known chromosome conformation capture technologies

Assay Full assay name Refs Related
abbreviation protocols or
guidelines
1 versus 1*
3C Chromosome conformation capture 43 97-100
1 versus Many/All*
Multiplexed Multiplexed chromosome conformation capture sequencing 101 102
3C-seq
Open-ended3C  Open-ended chromosome conformation capture 103 -
3C-DSL Chromosome conformation capture combined with DNA selectionand ligation 104 =
4C Circular chromosome conformation capture 45 105
4C Chromosome conformation capture-on-chip 51 =
4C-seq Chromosome conformation capture-on-chip combined with high-throughput 106 46,72,
sequencing 107,108
TLA Targeted locus amplification 30 =
e4C Enhanced chromosome conformation capture-on-chip 109 110
ACT Associated chromosome trap 111 112
Many versus Many*
5C Chromosome conformation capture carbon copy 52 113-116
ChIA-PET Chromatin interaction analysis paired-end tag sequencing 23 -
Many versus All*
Capture-3C Chromosome conformation capture coupled with oligonucleotide capture 25 =
technology
Capture-HiC Hi-C coupled with oligonucleotide capture technology 58 -
All versus All*
GCC Genome conformation capture = 117
Hi-C Genome-wide chromosome conformation capture 22 69,70,118
ELP Genome-wide chromosome conformation capture with enrichment of 119 -
ligation products
TCC Tethered conformation capture 24 -
Single-cell Hi-C  Single-cell genome-wide chromosome conformation capture 38 96
Insitu Hi-C Genome-wide chromosome conformation capture with in situ ligation 27 -
DNase Hi-C Genome-wide chromosome conformation capture with DNase | digestion 49 =
Micro-C Genome-wide chromosome conformation capture with micrococcal 50 =

nuclease digestion

*1', "Many’ and ‘All’ indicate how many loci are interrogated in a given experiment. For example, ‘1 versus All’ indicates that the
experiment probes the interaction profile between 1 locus and all other potential loci in the genome. ‘All versus All' means that
one can detect the interaction profiles of all loci, genome-wide, and their interactions with all other genomic loci.

fix the chromatin structure. The crosslinked DNA is
then digested using restriction enzymes and the ends
of the digested DNA fragments are re-ligated in diluted
conditions that strongly favour ligation of the juxtaposed
DNA fragments. The frequency of ligation between two
genomic loci is then assessed using PCR or direct DNA
sequencing. Although proximity ligation had earlier
been used to detect DNA loops between the rat pro-
lactin promoter and a distal enhancer in uncrosslinked
cells*, the inclusion of formaldehyde crosslinking in 3C
enhanced the efficiency and robustness of proximity
ligation reactions*®, thereby enabling broad adoption
of the 3C technique for high-throughput analyses of
chromosome architecture.

744 | DECEMBER 2016 | VOLUME 17

Over the years, many additional modifications
have been introduced to 3C techniques that further
enhanced the scale, resolution and efficiency of chro-
mosome conformation analyses. First, with the rapid
advances in DNA sequence analysis technologies, 3C
quickly developed into genome-scale methods with the
adoption of microarray technology and eventually ultra-
high-throughput DNA sequencing as a way to measure
the frequency of proximity ligation products (TABLE 1).
As only a fraction of DNA fragments generated by the
C-technologies are legitimate ligation products between
distinct genomic loci, it is necessary both to enrich for
ligation junctions and to reduce or eliminate unligated
DNA fragments. To achieve this, biotin-labelling with

www.nature.com/nrm

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



biotin-conjugated nucleotides has been used to fill-in the
5’ overhangs left by restriction digestion before prox-
imity ligation. Following proximity ligation, the ligation
products are biotin-labelled at the ligation junctions®?,
Biotinylated nucleotides at the ends of unligated DNA
molecules are conventionally removed by a dedicated
T4 DNA polymerase reaction® or during the end-repair
step of the library preparation procedure?. Biotinylated
ligation junctions are eventually isolated by affinity
purification and subject to ultra-high-throughput DNA
sequencing, generating genome-wide chromatin con-
tact maps that reflect chromosome organization in a
cell population. The first rendition of this procedure,
known as Hi-C, has now been widely used®.

Hi-C

A high-throughput,
genome-wide chromosome
conformation capture assay
using affinity purification of
labelled-DNA ligation junctions
to measure pairwise interaction
frequencies in cell populations.

a MNase digestion site

DNase | digestion - -
site

RE cutsite
c Dilution proximity ligation

Ligation Diluted protein
junction complex

In situ proximity ligation

Biotin In situ
protein

Chromatin
complex

2 Biotin pulldown 4 Illumina
_ 1Reverse 3 Enzymatic library
) fragmentation preparation

2 Mechanical 4 Illumina
1Reverse fragmentation library
X-links 3 Biotin pulldown preparanon

In situ
ligated
nuclei

—7 R
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To increase the resolution of chromosome confor-
mation analyses, modifications have also been made to
the restriction digestion step (FIC. 1a). At the very core of
C-technologies is the need to first fragment the chroma-
tin of crosslinked nuclei to generate DNA ends capable of
re-ligating to other spatially proximal fragmented ends®.
Until recently, restriction digestion has been generally
carried out using ‘6-cutters’ — type Il restriction enzymes
that recognize a six-base-pair sequence motif. The finest
resolution possible using 6-cutter fragmentation would
in theory be the size of the restriction fragment gener-
ated (termed fragment-level resolution). The closest
to achieving this was a recent high-resolution analysis
of human fetal lung fibroblast, which achieved nearly

b
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capture probes
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53 ‘Wash away unbound DNA :

255,

Sz

capture-probes to DNA sequences of interest (step 1), the immobilization of
this library of probe-target sequence duplexes on streptavidin beads (step 2)

a|Chromatin fragmentation can be achieved using type Il restriction enzymes
(REs), which cut at enzyme-specific recognition motifs’*#’, endonucleases
such as DNase |, which fragments DNA at sites of open chromatin®***, and
micrococcal nuclease (MNase), which fragments chromatin in histone linker
sequences*’. b | Hi-C includes the sequencing of all biotin-labelled ligation
products, which are enriched by biotin-affinity purification and subsequent
library preparation?***’°, In Capture-HiC, sequences of interest can be
enriched from a Hi-C DNA library to obtain highly multiplexed, targeted
interaction profiles?****. This involves the hybridization of biotinylated

and the washing away of unbound DNA, leaving only the captured probe-
library duplexes (step 3). ¢| Proximity ligation in Hi-C sample preparation was
originally done after nuclei were lysed and chromatin complexes were
diluted, to favour intramolecular ligation events?*¢*° (left). An alternative
strategy is to carry out the proximity ligation step within intact nuclei?’**
before nuclear lysis and DNA-protein crosslink reversal (right). d | Single-cell
Hi-C* (top) differs from cell-population Hi-C*%" (bottom) by the plating of
nuclei, the sorting of them individually into tubes and the processing of them
using a modified library preparation protocol. X-links, crosslinks.
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Chromosome conformation

capture carbon copy

(5C). A high-throughput
chromosome conformation
capture assay that examines
the spatial proximity of two
defined sets of genomic
regions, measured using a pair
of DNA oligos corresponding
to the sequences upstream
and downstream of the
ligation junction.

Target size

The cumulative length
{in base pairs) targeted
by capture probes in a
Capture-HiC experiment.

fragment-level resolution, requiring over 3.4-billion valid
chromatin contacts (over 5.6-billion raw read-pairs)*.
Although 4-cutters potentiate higher-resolution analyses
of genome conformation by means of producing smaller
restriction-fragment sizes, the total number of restriction
fragments genome-wide is ~16-fold higher and the total
number of possible pairwise contacts is 256-fold higher.
Accordingly, 4-cutter fragmentation was initially applied
in targeted chromatin conformation analysis using 4C
(circular chromosome conformation capture; also known
as chromosome conformation capture-on-chip) tech-
nology, as 4C interrogates the chromatin looping land-
scape of only a single restriction fragment with the rest
of the genome, rather than all possible pairwise contacts
genome-wide**%, Genome-wide analyses with 4-cutter
fragmentation were performed in flies*’, in part owing to
their relatively small genome size compared to mouse or
human, which significantly reduces the total number of
possible pairwise contacts. To date, the finest resolution
analysis of mammalian genomes has been carried out
using a 4-cutter?. In this study, 4.9 billion valid chroma-
tin contacts were required to obtain 1 kb-resolution Hi-C
maps in a single cell type (‘1kb resolution’ is explained
further below). Other methods have now been used for
chromatin fragmentation, each offering a unique set
of advantages and disadvantages. DNase I has recently
been shown to fragment chromatin of crosslinked nuclei
for Hi-C applications*** (FIG. 1a). Similarly, micrococcal
nuclease (MNase) has been used to fragment chroma-
tin before proximity ligation in yeast nuclei, helping to
achieve nucleosome-level resolution of chromatin organ-
ization®. In addition, mechanical shearing was used to
fragment chromatin in a 4C protocol variant and was
suggested to be sufficient to fragment chromatin for
Hi-C¥, although to our knowledge no Hi-C data from
mechanical shearing have yet been published.
Conventional Hi-C requires billions of DNA sequenc-
ing reads to achieve truly genome-scale coverage at
kilobase-pair resolution'?’. By contrast, the first targeted
approaches, such as 4C and chromosome conformation
capture carbon copy (5C), are PCR-based C-technologies,
using PCR enrichment to analyse chromatin contact
profiles of a single locus**! or across a continuous locus,
respectively®. Although these methods are less expensive
than Hi-C and are based on relatively straight-forward
protocols, they suffer from low throughput (4C) or
complex primer design (5C) and, importantly, do not
include the key advantage of Hi-C, which is the enrich-
ment of valid ligation products using biotin-labelling of
ligation junctions and affinity purification. To gain cost-
effectiveness while preserving the efficiency afforded by
genome-wide C-techniques, two strategies have been
developed that also generate targeted 3C data. First,
chromatin immunoprecipitation (ChIP) was introduced
before the proximity ligation step to enrich for DNA
associated with specific DNA-binding proteins, chroma-
tin modifiers or histone modifications. This method,
termed chromatin interaction analysis by paired-end tag
sequencing (ChIA-PET), allows for targeted analysis of
chromatin conformation at binding sites of transcription
factors or at transcriptionally active chromatin domains.

It also has the benefit of achieving a higher resolution
compared to Hi-C, as only ligation products involving the
immunoprecipitated molecule are sequenced.

Second, Hi-C has recently been combined with tar-
get enrichment and sequencing (Capture-HiC) to reveal
chromatin contacts of mammalian gene promoters****-”
and other specific genomic loci?***%-%, Unlike 4C and
5C, Capture-HiC involves first generating a library of
proximity-ligated DNA fragments using one of sev-
eral published Hi-C methods. Next, biotinylated RNA
or DNA oligonucleotide probes are hybridized to
specific sequences of interest (for example, gene pro-
moters) within the Hi-C library, followed by affinity
purification of the biotinylated probe-library duplexes,
stringent washing of bound DNA and finally ultra-high-
throughput DNA sequencing (FIG. 1b). Control over
which genomic loci are interrogated in a Capture-HiC
experiment is determined by the user when designing
the capture probes. Importantly, ligation frequencies
of probed regions detected from Capture-HiC experi-
ments are highly similar to ligation frequencies meas-
ured by high-resolution, whole-genome Hi-C data®,
yet Capture-HiC data sets are obtained at a small frac-
tion of the cost because only the probed regions are
analysed, underscoring both the quality and efficiency
of this method. Current Capture-HiC approaches have
varied substantially with respect to template Hi-Clibrary
preparation procedure, target selection, capture probe
design and target enrichment protocol (TABLE 2). Thus,
data generated from such experiments vary widely with
respect to the quality of target enrichment; for example,
the on-target rate differs between studies. One consist-
ent tendency is that Capture-HiC data from studies with
larger target size have substantially higher on-target rates
than data from studies with smaller captured regions,
ranging from ~65% on target in select promoter Capture-
HiC studies™***” to 5-15% when capturing small contin-
uous regions or interspersed loci®****, Interestingly, no
reports to our knowledge have implemented the ‘double-
capture’ strategy for small target sizes, which uses two
consecutive captures to increase the on-target rates for
difficult-to-capture templates®’. Additionally, promoter
Capture-HiC data generated using either RNA or DNA
probes have reported differing on-target rates, with
RNA probes currently outperforming DNA probes™¥.
However, the first and only report of genome-wide pro-
moter Capture-HiC using DNA probes also used 4-cutter
library preparation, rather than 6-cutter, making it chal-
lenging to interpret which design approach is superior.
Overall, variations in Hi-C library preparation, probe
design, target size, number of probes allocated to each
target locus and user expertise contribute to the vari-
able quality and depth of coverage across loci in each
study, making concrete experimental recommendations
premature and creating challenges for downstream data
analyses, as discussed in the next section.

A substantial, although variable (~7-50%), proportion
of Hi-C contacts detected in mammals using the original
Hi-C protocol originate from inter-chromosomal (‘trans’)
ligation events®'**22¢>-¢%, The reported frequency of trans
contacts varies tremendously across cell types and even
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Table 2 | Design and implementation of Capture-HiC experiments

Oligo array vendor

Agilent SureSelect
Agilent SureSelect
In-house*

In-house*

Roche Nimblegen SeqCap

Agilent SureSelect
Agilent SureSelect
Agilent SureSelect
Agilent SureSelect

Roche Nimblegen SeqCap DNA

Probe Organism Target (or targets) Control (or controls) Hi-C library Refs
protocol
RNA  Human Breast cancerrisk loci Size-matched gene dessert regions  Hind lll dilution Hi-C 58
RNA  Human Colon cancer risk loci N/A Hind lll dilution Hi-C 59
RNA  Human MHC and KIR loci N/A Hind lll dilution Hi-C 29
RNA  Human Three ~2-Mb loci N/A Mbo | insitu Hi-C 60
DNA  Human LncRNA promoters B-Globin LCR, NANOG, and SOX2 loci  DNase | dilution Hi-C 49
RNA  Mouse Promoters Random ligation library* Hind lll dilution Hi-C 56
RNA  Mouse Promoters Random ligation library* Hind Il Dilution Hi-C 57
RNA  Human Promoters Random ligation library* Hind Il Dilution Hi-C 54
RNA  Human Promoters and autoimmune HBA locus Hind Il dilution Hi-C 53
disease risk loci
Mouse Promoters Intergenic and exonic regions Mbo | dilution Hi-C 55

HBA, haemoglobin subunit alpha; LCR, locus control region; LncRNA, long non-coding RNA; N/A, not applicable. *Single-strand DNA oligonucleotides are obtained
from CustomArray and synthesized into RNA probes in-house. *In the random ligation library, crosslinks are reversed before the proximity ligation reaction.

Bin size

A measure of Hi-C data
resolution. A bin is a fixed,
non-overlapping genomic
span to which Hi-C reads
are grouped to increase
the signal of chromatin
interaction frequency.

biological replicates, and they are much less reproducible
than the intra-chromosomal (‘cis’) contacts. This raises
the possibility that many of these ligation products result
from random inter-molecular ligations occurring during
sample preparation in diluted conditions. In the original
Hi-C protocol, following restriction digestion and biotin-
labelling, nuclei are lysed using sodium dodecyl sulphate
(SDS) and crosslinked chromatin complexes are diluted
before proximity ligation?>%7° (FIG. 1¢). Since the inception
of Hi-C, 4C protocols have forgone the nuclear lysis step
by way of omitting SDS treatment; conducting proxim-
ity ligation without intentional lysis of dilution, result-
ing in fewer observed trans contacts™ "2 A recent study
also indicated that in Hi-C, nuclear lysis and dilution of
chromatin complexes before proximity ligation can be
omitted, corroborating the observation that proximity
ligation can occur within intact nuclei® (FIG. 1¢). By adapt-
ing Hi-C with this modified ligation procedure (a process
from here termed in situ Hi-C), a substantial improve-
ment in the fraction of legitimate, informative ligation
products is achieved without affecting the accuracy of
conformation capture?”**%, with fewer random trans con-
tacts, higher reproducibility of contacts across a range
of distances and even reduction of previously described
experimental bias®®. Thus, in situ Hi-C seems to be the
preferred protocol moving forward. However, as Hi-C
data can be used only to infer genome organization based
on observed contact frequencies, true evaluation of the
superior protocol requires comparison to a set of known
true interaction frequencies, which does not exist in a
comprehensive fashion. Moreover, evaluating data qual-
ity based solely on the fraction of observed trans or long-
range cis contacts is not entirely appropriate, as cells may
indeed have highly intermingled chromosomes, depend-
ing perhaps on cell cycle stage. Instead, additional metrics
should be used for assessing data quality, such as esti-
mating random collision frequency® and analysis of read
orientation as a function of linear genomic distance'**.
The improved efficiency of in situ proximity ligation
and Hi-C facilitated the examination of chromatin organ-
ization in single mammalian cells using single-cell Hi-C,
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which provided a deeper understanding of cell-to-cell
variability in chromosome architecture®® (FIG. 1d).
In single-cell Hi-C, cell populations are subjected to the
initial steps of in situ Hi-C but, before crosslink reversal,
the intact nuclei are sorted into individual tubes and sub-
jected to a modified Hi-C-library preparation procedure
and multiplexed PCR amplification. This strategy was
applied in mouse T helper cells and produced genome-
wide contact maps for 74 individual cells, with 10 of these
maps being of high enough quality for further analysis*.
The resulting single-cell contact maps, despite being
very sparse (at 1 Mb bin size), confirmed the existence
of chromosome territories and TADs while highlighting
the cell-to-cell variability of chromosome architecture.
Merged single-cell maps are similar to Hi-C data gener-
ated from millions of cells, supporting the reliability of
the single-cell data. A key limitation of the method is that
only a small number of unique chromatin contacts, up
to 30,000 in the published work?, were detected. This
represents less than 2.5% of the total number of theor-
etical chromatin contacts in a mouse cell. The sparse data
set probably results from inefficient steps in the existing
protocol, such as enzymatic chromatin fragmentation,
biotin-labelling, proximity ligation and conventional
Illumina TruSeq library preparation. Removing the
biotin-labelling step and performing sticky-end ligation,
as in 3C, may potentiate the detection of more unique
ligation junctions, as ligation junction detection will
not depend on high efficiency of the enzymatic biotin-
labelling reaction or the efficiency of blunt-end ligation.
Additionally, more-efficient library preparation methods
designed specifically to handle low inputs, such as tag-
mentation’, may improve the yield and absolute number
of detectable ligation junctions.

Computational analysis of C-data

The rapid development of C-technologies and fast
accumulation of large amounts of data have posed great
challenges for data analysis and interpretation, and neces-
sitated the development of sophisticated computational
tools that can accurately identify long-range chromatin
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Restriction enzyme
fragment lengths

The total genomic length in
each bin that is within 500 bp
of restriction enzyme cut
sites used in the Hi-C

library preparation.

Mappability

The probability of a
read-mapping uniquely to
the effective fragment length
sequence within each bin.

Poisson distribution

A probability distribution for
the discrete random variable
in which the variance is the
same as the mean.

Negative binomial
distribution

A probability distribution

for the discrete random
variable in which the variance
is larger than the mean.

Hi-C contact matrices
Symmetric, two-dimensional
matrices (M), for which each
matrix entry (M) represents
the raw or normalized contact
frequency between bin i

and bin j.

interactions and reveal the general principles of chro-
matin motion and organization. It is important to note
that, although the observed frequency of proximity-
ligation products has been used to infer the 3D distances
between a pair of DNA sequences, procedures including
crosslinking, chromatin fragmentation, biotin-labelling
and re-ligation can all introduce biases that complicate
the interpretation of observed contact frequencies™".
Additionally, the resolution of analysis in the available
data sets remains to be rigorously defined. To overcome
these challenges, statistically solid and computationally
efficient bioinformatics pipelines are essential. Several
computational algorithms and tools have been developed
in recent years, specifically for analysing C-data. Below,
we discuss several key issues that need to be considered.

A ing for experimental bias. Similarly to analy-
sis of data generated by ChIP followed by sequencing
(ChIP-seq) and RNA sequencing (RNA-seq), analysis
of C-data can be confounded by multiple layers of bias
that originate from different steps of experimental pro-
cedures. Accounting for these biases (at times referred to
as bias removal or normalization) is the first and arguably
the most important step in C-data analysis. Efficient and
effective removal of multiple systematic biases is critical
for the success of any subsequent analysis of C-data as
well as for the proper interpretation of results.

In general, there have been two types of approaches
to account for biases in C-data. The first class of bias-
removal approaches account for biases in an explicit
fashion — by assuming that all sources of systematic
biases are known based on biases determined empir-
ically from the observed data (FIC. 2; TABLE 3). The second
class of bias-removal approaches account for biases
in an implicit way — by assuming no known source
(or sources) of bias, and assuming that the cumulative
effect of the bias is captured in the sequencing coverage of
each locus (or ‘bin’). In other words, as Hi-C is a genome-
wide assay, the implicit models assume that each locus
should receive equal sequence coverage after biases are
removed. These implicit models all rely on some imple-
mentation of matrix-balancing algorithms, and from here
on they are referred to as the matrix-balancing methods
[FIG. 2; TABLE 3). Therefore, selecting the appropriate bias-
removal methodology depends on whether the sources
of the biases in the data are assumed to be known or
unknown. In a seminal study, restriction enzyme fragment
lengths, GC content and sequence mappability were identi-
fied as three major sources of experimental biases in Hi-C
data”. The key challenge is to estimate the combinator-
ial bias effect between two interacting loci. To address
this challenge, the binary contact status between any two
fragment-ends was modelled as the Bernoulli random
variable. Next, to estimate the bias effects, the maximal
likelihood approach was applied to the joint likelihood
function, which is defined as the product of Bernoulli
probability mass function for all possible fragment end
pairs. In practice, to make such computation feasible,
all interacting loci were first grouped into bins based
on the percentiles of each bias factor. Next, an empirical
distribution was used to estimate such combinational

bias effects, leading to a statistically effective but com-
putationally intensive bias-removal method”. Later on,
HiCNorm, which is a generalized linear regression-based
method, was developed to remove the above-mentioned
three systematic biases in Hi-C data”™ (FIG. 2b; TABLE 3).
Differing from the first explicit model”, which used a
Bernoulli distribution to model the binary contact status
between any two fragment-ends, HICNorm directly
models the contact frequency between any two bins
as a Poisson distribution or a negative binomial distrib-
ution™. Noticeably, analysing binned Hi-C data enables
HiCNorm to adopt a simple parametric form for the
combinatorial bias effect, resulting in much-improved
computational efficiency.

In addition to these two explicit approaches, implicit,
matrix-balancing approaches have been widely used to
account for biases in Hi-C data and rely on two different
assumptions. First, the combinatorial-bias effect between
two interacting loci can be simplified as the product of
the two locus-specific bias effects. Second, if there is no
bias effect (that is, when all bias has been accounted for),
the total genome-wide contact summation for each locus
will be a constant, implying that each locus has ‘equal
visibility’ to the Hi-C assay. Based on these two assump-
tions, classic matrix-balancing algorithms have been
used to account for systemic bias. For example, the first
method that described balancing Hi-C contact matrices was
termed vanilla coverage? (FIG. 2¢). To account for bias, the
observed contact frequency between locus A and locus B
is divided by the product of the total genome-wide con-
tact frequency at locus A and the total genome-wide
contact frequency at locus B, and the ratio is used as the
normalized contact frequency (FIC. 2c). Later, iterative
correction and eigenvector decomposition (ICE) was
introduced (FIG. 2d; TABLE 3); this process iterates through
the vanilla coverage procedure until there is convergence
of the normalized contact frequency, thereby further
reducing the coverage variability from locus to locus but
greatly increasing the computational cost to achieve bias
removal”. Since ICE was introduced, several efforts have
been made to improve its computational efficiency**®.
Meanwhile, a fast version of the matrix-balancing
Sinkhorn-Knopp algorithm®, originally described by
Knight and Ruiz*, has been applied to account for biases
in the finest resolution Hi-C data sets?” (TABLE 3). Matrix-
balancing methods may also be preferred when analysing
Hi-C data prepared with other chromatin-fragmentation
approaches, such as DNase I or mechanical sharing®, as
matrix-balancing methods assume that the source of
bias is unknown, and the presence of empirically deter-
mined biases from these Hi-C data sets has not yet been
thoroughly examined. In practice, both explicit and
implicit approaches have been used to account for biases
in Hi-C data; therefore, it would be helpful to conduct a
comprehensive comparison between the two approaches.
To date, only a partial comparison has been made, which
highlighted the differences in reproducibility of cis and
trans interaction frequencies at low resolution®. A novel
computational framework that combines the strengths
of the two approaches may enable more accurate bias
removal and higher computational efficiency.
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Figure 2| C ison of p al methods to for biasin
Hi-C data. We reprocessed high-resolution Hi-C data from IMR90 cells**
uniformly until the bias-removal step, at which point either raw contact
matrices were generated or normalization was conducted with one of
three methods. Here, we illustrate a semi-quantitative comparison
of human chromosome 7 (chr7) for 3 genomic resolutions (whole
chromosome, a multi-megabase (multi-Mb) locus and a topologically
associating domain (TAD)) at 40 kb bin size for a raw Hi-C contact matrix
(part a), an explicit model of bias removal (HiCNorm) (part b), and two
methods of matrix-balancing algorithms for bias removal, namely a fast,
rough, single-iteration balancing method, vanilla coverage (VC) (part ¢) and
iterative correction and eigenvector decomposition (ICE) (part d). It can be
visually appreciated that the explicit or implicit assumptions made by each
method to account for biases result in quantitative differences in the
normalized interaction frequency between loci. The intensity gradient is a
linear increase from zero to the maximum noted (units are observed read
counts for the raw matrices, and normalized read counts for the normalized
matrix columns). Depicted are a series of symmetrical Hi-C contact
matrices at various genomic resolutions. The rows (i) and columns (j)

13771 1365

137.71 136.5 137.71

of each matrix represent bins along a chromosome, in this case various
regions of human chr7. Each matrix entry [i,j] represents the observed or
normalized interaction frequency between a pair of genomic loci. Pairwise
interactions observed at higher frequency are depicted as a darker red
colour along the colour gradient, whereas light red coloration represents
very few observed interactions in the Hi-C data. The gradient units for raw
matrices (part a) are ‘observed interaction frequency’ and the units for
HiCNorm, VC and ICE (parts b-d) are ‘normalized interaction frequency’,
which become increasingly apparent when analysing more-local Hi-C
contacts (closer to the diagonal). Matrix entries near the matrix diagonal
represent pairwise interactions between loci that are proximal in linear
genomic distance (i~j), whereas matrix entries far off the diagonal (i>>})
represent pairwise interactions between loci that are very distal in linear
genomic distance. For whole-chromosome and TAD resolutions, the
maximalsignal intensity was set to the ninety-ninth percentile for the given
matrix. For the multi-Mb resolution, the maximal intensity was set to the
ninety-fifth percentile value of the given matrix. Each matrix is a
symmetrical matrix, NxN, and the chromosome coordinate information is
given below each matrix in megabases.
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Table 3| Approaches to account for systematic biases in Hi-C data

Approach Model assumption*  Impl ion* Comp ional Refs
speed

Yaffe and Three systematic biases Perland R Slow 77

Tanay

HiCNorm Three systematic biases R Fast 78

ICE Equalvisibility Python Fast 79

Knight and Equalvisibility JAVA Fast 27

Ruiz

HiC-Pro Equalvisibility Pythonand R Very fast 80

ICE, iterative correction and eigenvector d position. *Model refers to the

inherent assumptions in the computational model used to account for bias in Hi-C data.
These approaches can be classified based on their model assumptions: they are either explicit,
assuming that systematic biases are known (three systematic biases), or implicit, assuming
systemic biases are unknown and all the bias is captured by the sequencing coverage of each
bin (equal visibility). implementation refers to the programming language in which the
normalization programme is written.

Bait-specific bias

An experimental bias in the
Capture-HiC procedure,
referring to the unequal
probability of probe
hybridization to the target
sequence as a result of variable
sequence content and
hybridization properties.

Other-end-specific bias

An experimental bias in the
Capture-HiC procedure,
referring to the unequal
probability of ligation between
the bait locus and its
interacting restriction fragment
as a result of variable local
genomic features.

As discussed above, Capture-HiC technologies meas-
ure chromatin conformation at target loci at high resolu-
tion**. Thus, in addition to the systemic experimental
biases already present in Hi-C data, Capture-HiC data
contain additional biases, owing to uneven capture effi-
ciency at targeted loci as well as to some capture bias
generated when both interacting sequences are targeted by
capture probes (compared to when just one end is being
probed), which manifests as sequence coverage variability
at each locus™*¢*, To specifically account for such cover-
age asymmetry in Capture-HiC data, the CHICAGO
(Capture-HiC analysis of genomic organization) algor-
ithm was developed; this estimates the bait-specific bias
and the other-end-specific bias separately®*. Moreover, it
estimates the bait-specific bias by grouping the probed
loci with similar local interacting profiles, whereas the
other-end-specific bias is estimated by grouping the non-
probed loci with similar distal interacting profiles. More
studies are needed to fully explore the combinatorial effect
of the bait-specific bias and the other-end-specific bias in
Capture-HiC data.

Although several methods to account for experimental
bias are available (TABLE 3}, they should be used with great
caution. The validity of each approach depends heavily
on its explicit or implicit model assumptions. The explicit
approaches assume that the systematic biases are known
and taken into account in the statistical model to account
for inherent biases in the observed Hi-C contact matrix.
These methods can be overly conservative and run the risk
of missing additional sample-specific biases whereby the
normalized Hi-C data may still be affected by unknown
biases, namely biases not taken into account in the
explicit model. For example, DNA-circularization bias*
is not accounted for in the current explicit approaches.
By contrast, the matrix-balancing approaches rely on the
equal visibility assumption: that each locus throughout
the genome has equal likelihood of being engaged in a
3D contact captured by the Hi-C protocol. Therefore,
matrix-balancing algorithms assume that, after remov-
ing all biases, the normalized Hi-C contact matrix should
have constant row (and column) summation. If these row
summations are scaled to one, then each matrix entry
represents an approximate contact probability between
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two loci, whereas following bias removal from explicit
models, the matrix entries represent normalized con-
tact counts. The equal visibility assumption may seem
intuitive, as Hi-C is indeed a genome-wide sequencing
technique and approximately equal coverage across the
genome may be expected. However, there are many biases
that are known to affect read coverage in Hi-C data, such
as the restriction cut site position and the mappability
and GC content of sequences flanking the restriction
enzyme cut sites””. Moreover, it has also been appreciated
that the restriction enzyme used in library preparation is
biased towards cutting at open chromatin regions®. These
experimental biases, some of which are unique to Hi-C
and do not exist for other whole-genome sequencing
library preparation methods, will clearly bias the Hi-C
sequencing coverage; therefore, matrix-balancing assumes
that the cumulative effect of all bias factors is captured in
the coverage of each locus. Coverage distribution across
bins in Hi-C data is Gaussian (continuous), with several
bins having absolutely no coverage, owing to poorly anno-
tated sequence content, lack of restriction enzyme cut sites
or other known experimental biases. In general, the bins
with no observed coverage are ignored during matrix-
balancing. However, bins with very poor coverage can
sometimes be corrected by orders of magnitude to have
balanced coverage compared with the rest of the genome.
Coverage of conventional whole-genome sequencing data
is also not perfectly even, so the justification to balance
coverage in Hi-C data is imperfect. Finally, as Hi-C data
sets seem to be rapidly moving towards high-resolution
analyses, it remains unclear which bias assumptions are
more appropriate at smaller bin sizes compared with the
larger bin sizes that have until recently predominated in
the analyses of Hi-C data. Given the limitations of both
explicit approaches and matrix-balancing approaches,
we recommend that users conduct careful quality con-
trol and experimental validation for the normalized Hi-C
data sets. In addition, to ensure reproducibility, it is desir-
able to compare the normalized results from multiple
biological replicates and from different computational
approaches. It is also good practice to conduct Hi-C data
analyses using both types of bias-removal approaches, as
this eliminates the possibility of making a discovery that is
dependent on the type of bias-removal method.

Resolution of C-data. To study chromosomal spatial
organization, the resolution at which to examine the data
needs to be determined. As mentioned above, the res-
olution of a Hi-C experiment is often conveyed as the size
of the genomic loci (or bins) used to compute the mean-
ingful chromatin contacts between pairs of genomic
loci'®?”. To determine the correct resolution, it must
first be appreciated that the linear increase of resolution
requires a quadratic increase in total sequencing depth.
For example, the first Hi-C study collected 8.7 million
reads to study the human genome at 1 Mb and 100kb
resolutions?2. The highest resolution Hi-C maps to date
collected over 4.9 billion reads to study the human
genome at 1 kb resolution”, demonstrating a 3-orders of
magnitude increase in sequencing depth for a 2-orders
of magnitude increase in resolution. Noticeably, the
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Principal component
analysis

(PCA). A statistical approach
for multivariate data analysis.
PCA converts a set of
correlated variables into a set
of linearly uncorrelated
variables named principal
components, each of which is a
linear combination of the
original correlated variables.

First eigenvector

The coefficients of the linear
combination in the first
principle component, which
has the largest variance among
all principal components. In
Hi-C data analysis, the sign of
the first eigenvector was used
to determinate the Aand B
compartments.

linear genomic distance between two interacting loci is
also a key factor required to determine the appropriate
resolution. Because Hi-C contact frequency dramatically
decreases as the linear genomic distance increases, in
practice, only interactions within a certain range of linear
genomic distance are considered. For example, a recent
study analysed 5-10-kb-resolution Hi-C data for pairwise
interactions within a linear genomic distance of 2Mb"*.

Despite these general principles of resolution,
researchers must still arbitrarily select the bin size for
which to analyse their Hi-C data, and definitive guidelines
for appropriate bin size determination are lacking. Most
available approaches for determining bin size are heuristic
and difficult to transfer to other experimental settings.
For example, resolution has been defined in one study
as the smallest bin size for which more than 1,000 valid
chromatin contacts can be observed in at least 80% of
the bins?”. Although this lays out a quantitative criterion,
it lacks clear theoretical and experimental justification.
It may be argued that the resolution of Hi-C data should
be determined by the specific biological questions at
hand and interpreted from a statistical perspective. For
example, suppose the computational task is the detection
of enhancer-promoter interactions. First, a set of experi-
mentally validated interacting loci (true positives) and a
set of random collisions (true negatives) must be collected;
then, the strength (frequency) of chromatin contacts for
both must be quantified. The difference in the distribution
of chromatin interaction frequency between the true pos-
itives and true negatives can then be used to calculate the
total sequencing depth that is required to justify the statis-
tical validity of the pre-specified sensitivity and specificity.
Such statistically based power analyses and careful experi-
mental design will help to determine the optimal resolu-
tion of a specific Hi-C data set and to facilitate appropriate
biological interpretation and discovery.

Analyses of features of global chromatin conformation.
The development of the Hi-C technique enabled the
characterization of global features of chromatin organ-
ization (TABLE 4), leading to the discovery of compartmen-
talization of chromosome folding within the nucleus.
Genomic regions at two distinct nuclear compartments,
arbitrarily labelled compartment A and compartment B,
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display high contact frequency within the same compart-
ment and low contact frequency between the com-
partments. Compartment A roughly corresponds to the
euchromatin and features higher gene density, whereas
compartment B corresponds to the heterochromatin and
is largely made up of gene deserts. Compartment B is
also closely correlated with lamina-associated domains
(LADs). Interestingly, this large-scale genome compart-
mentalization is highly dynamic during the differen-
tiation of human embryonic stem cells®’ and between
normal and cancer cells?, suggesting compartmental-
ization has a crucial role in mediating genome function
and cell identity.

Principal component analysis (PCA) on intra- or
inter-chromosomal Hi-C contact maps can be applied to
designate compartments A and B*%”. More specifically,
the sign of the first eigenvector determines the compart-
ment label. Although PCA is easy to implement and has
straightforward interpretation, it has two major caveats.
First, for some chromosomes, the sign of the first eigen-
vector represents the short and long chromosome arms,
rather than the typical A and B patterns observed in most
other chromosomes. In this case, the sign of the second
eigenvector should be used to determine the compart-
ment designation. Second, the sign of the first eigenvector
is an arbitrary identification method. Without additional
information, the compartment cannot be determined.
In practice, regions with high gene density can be assigned
as compartment A, and regions with low gene density as
compartment B.

In general, each compartment is continuous and sev-
eral megabases in size, reflecting relatively large-scale
chromatin architecture. In addition, recent Hi-C analysis
at high resolution discovered that sub-compartments,
which are distinct compartments within the conven-
tional A and B compartments, may exist; these span
smaller genomic regions and correlate with the under-
lying chromatin biochemical activity?”. Higher resolution
Hi-C or 5C studies revealed that compartments consist
of TADs®", In mammals, TADs are approximately 1 Mb
in size, conserved across cell types and species, and may
serve as the basic unit of genome structure and function.
A more comprehensive discussion of the structure and
function of TADs can be found in a recent review®”.

Table 4| Approaches for the analysis of global chromatin conformation

Approach  Objective Pros Cons Refs
PCA Detect nuclear Easy to implement; straightforward First eigenvector may not work; 22
compartments interpretation arbitrary compartment assigning

DI/HMM Detect TADs Model the change of upstream and Heuristic tuning parameters 6
downstream interaction bias

Arrowhead  Detect TADs High computational efficiency with Heuristic tuning parameters 27
dynamic programming

Insulation Detect TADs Robust to different sequencing depth; Heuristic tuning parameters 90

score can detect dynamics of TAD boundaries

Armatus Detect TADs TAD calling robust in different resolutions  Fails to provide uncertainty in 88

TAD calling
HiCseg Detect TADs Models the uncertainty in Hi-C data Fails to detect multi-level TADs 89

DI, directionality index; HMM, hidden Markov model; PCA, principle component analysis; TAD, topologically associating domain.
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Hidden Markov model
(HMM). A statistical model
assuming that the observed
data are determined by a set
of unobserved (nidden) states
with the Markov property:
the future state depends on
only the current state and is
independent of all the
previous states.

Heuristic tuning parameters
The parameters in the
statistical models and
computational pipelines that
are not estimated from the
observed data but are
determined based on prior
knowledge and expectation.

Global background model
The statistical model for the
expected chromatin contact
frequency estimated from
genome-wide measurements. It
is used to systematically
identify significant pairwise
Hi-Cinteractions throughout
the genome. All interacting loci
pairs at a given linear distance
share the same global
background model.

Non-parametric spline
A statistical approach to fit
the observed data using

a piecewise-defined
polynomial function.

Table 5| Approaches for chromatin contact peak-calling

Approach Assumption on Pros Cons Refs
background model

Jinetal Clobal background ~ Models contact-frequency uncertainty  Variability of local chromatin 19
as anegative binomial distribution organization may introduce biases

Fit-Hi-C Global background  Accurate background model using Variability of local chromatin 91
non-parametric spline organization may introduce biases

GOTHIC Global background ~ Models contact-frequency uncertainty  Variability of local chromatin 54
as binomial distribution organization may introduce biases

HIiCCUPS  Local background Designed for high-resolution Hi-Cdata Deep sequencing is required 27

HMRF Global or local Models spatial dependency among High computation cost 93

background adjacent, interacting loci

GOTHIC, genome organisation through HiC; HICCUPS, Hi-C computational unbiased peak search; HMRF, hidden Markov random field.

Developing computational approaches for detecting
TADs is an active research area (TABLE 4). The first pub-
lished approach was based on a hidden Markov model
(HMM)®. For each given bin, the total number of inter-
actions located 2 Mb upstream and 2 Mb downstream were
calculated and quantified in a metric termed the direc-
tionality index. It was assumed that the total number of
upstream and downstream interactions are comparable at
the centre of TADs but are highly imbalanced at bins adja-
cent to TAD boundary regions. Based on such an assump-
tion, an HMM was used to capture the sharp transition
from the upstream interaction bias to the downstream
interaction bias at the TAD boundary regions, which
is a distinctive signature of two spatially separate, self-
interacting domains. Later on, the Arrowhead algorithm
was used to annotate contact domains genome-wide?.
Dynamic programming was used to ensure efficient
implementation of the Arrowhead algorithm to the high-
resolution Hi-C data. Meanwhile, the Armatus algorithm
was developed for detecting consistent TAD patterns at
different resolutions*. In addition, the HiCseg algor-
ithm can narrow down the problem of annotating TADs
from 2D image segmentation to linear (1D) segment-
ation®. Similarly, a sliding insulation score approach was
recently introduced that also transforms the Hi-C contact
matrix into an intuitive 1D insulation score vector®. This
approach has been demonstrated to detect dynamics of
TAD boundary strength in different experimental con-
ditions*. Importantly, most of these approaches rely on
heuristic tuning parameters, such as the threshold on the
maximal linear genomic distance between two interacting
loci when computing the directionality index, which is a
measure of orientation biases in chromatin interactions
originating from a genomic locus, or the window size for
computing insulation, which is a measure of interaction
permissibility across a genomic locus. Currently, we
suggest researchers try different tuning parameters and
visually check the TAD coordinates alongside the Hi-C
contact matrix to ensure the validity and reproducibility
of TAD-calling results. It is also likely that the hierarchi-
cal level of genome organization that can be detected is
affected by the tuning parameters. For example, smaller
insulation windows or small directionality index windows
are more capable of detecting smaller scale chromatin
folding structures compared with larger windows.
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A key challenge in the analysis of global chromatin
conformation lies in the fact that the genome is folded
into multiple hierarchical structures, from compartments
to TADs, nested sub-TAD structures and individual
chromatin loops. Understanding the principles under-
lying this hierarchical chromosome organization requires
the development of novel computational approaches.
An excellent review*' highlights the recent computa-
tional advance in the analysis of global chromosome
organization.

Analyses of local features of chromosome conformation.
Asa result of ever-increasing DNA sequencing through-
put and decreasing sequencing cost, high-resolution
Hi-C data sets are attainable and have enabled the
analysis of chromatin contacts at nearly kilobase res-
olution. As this resolution is nearly the size of individ-
ual cis-regulatory elements, high-resolution Hi-C data
sets can be interrogated for fine-mapping of long-range
cis-regulatory interactions and provide novel insights on
transcription regulation mechanisms. To that end, many
computational approaches have been developed for
detecting biologically meaningful long-range chroma-
tin contacts, which is a process termed peak-calling
(TABLE 5). In pioneering work, chromatin contact fre-
quencies obtained from Hi-C data were modelled as a
negative binomial distribution and a global background
model was devised that consists of both systematic bias
factors and the linear genomic distance factor'. The Fit-
HiC algorithm uses a non-parametric spline approach to
model the background-chromatin contact frequency”.
Both methods take advantage of a global background
model in which the expected interaction frequency of a
given pair of loci follows the trend derived from genome-
wide contact frequencies at a given linear genomic dis-
tance. In both methods, peak-calling led to millions of
statistically significant chromatin contacts; however, by
using the global background model, this approach may
over-estimate chromatin interactions, leading to false
positives. Meanwhile, the GOTHIC (genome organ-
isation through HiC) algorithm uses a simple binomial
distribution model to simultaneously remove biases in
Hi-C data and detect significant interactions by assum-
ing that the global background interaction frequency
of two loci depends also on the relative genome-wide
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Benjamini—Hochberg
multiple-testing correction
A statistical procedure that
uses stringent statistical
significance thresholds to
control the false discovery rate
when performing multiple
comparisons.

Local background model
The statistical model for the
expected chromatin contact
frequency estimated from local
chromatin interaction
properties. Each pair of
interacting loci has a unique
local background model, which
depends on the definition of its
local neighbouring regions.

coverage™. Another feature of GOTHiC is that it imple-
mented the Benjamini-Hochberg multiple-testing correction
to control for the false discovery rate. By applying this
method to a Hi-C data set from mouse cells, ~90,000
statistically significant interactions could be identified®2.
By contrast, HICCUPS (Hi-C computational unbiased
peak search) uses a local background model and has been
applied to detect chromatin loops in several human and
mouse cell lines at 1 kb or 5kb resolution from in situ
Hi-C data?”. HICCUPS identified around ~2,500-10,000
chromatin loops, depending on the resolution of the data
set. Recently, the computational problem of detecting
significant chromatin interactions was tackled from a
different angle, by assuming that the background model
(either a global background or a local background) is
known and by developing a hidden Markov random
field (HMRF) algorithm to model the spatial depend-
ency among neighbourhood interacting loci® (TABLE 5).
In other words, the dependency implies that, if two loci
are inferred to be spatially proximal based on Hi-C
data, then all the neighbouring loci will have a higher
probability of interacting. The HMRF algorithm can
achieve higher reproducibility and improves statistical
power, especially for the analysis of pairwise contacts
in high-resolution Hi-C data. In the future, it would be
of great interest to compare the interaction frequency at
these identified peaks, as well as other loci, among dif-
ferent experimental conditions and biological contexts.
A software package named diffHiC* was recently devel-
oped to detect dynamic chromatin interactions across
experimental conditions or cell types. Using the same
statistical framework of the edgeR (empirical analysis of
DGE in R) package®, which has achieved great success
in detecting differentially expressed genes in RNA-seq
data, diffHiC has the potential to become a powerful tool
for differential-interaction analysis.

Capture-HiC shows great promise in the detection
of chromatin interactions at loci of interest?+*>¢-¢’, The
computational methods for the analysis of Capture-
HiC data are still under development. One study used
a heuristic observed read-count cut-off in identifying
significant interactions, but this lacks solid statistical
justification®. Later on, a statistical model based on a
convolution of negative binomial and Poisson distrib-
utions was proposed to account for background dis-
tribution in the Capture-HiC data*. As Capture-HiC
technology becomes more popular, novel computational
methods will be developed to better-characterize its data.

Several key issues need to be considered with the
above peak-calling approaches. First, whether to use a
global background model or a local background model
is still under debate. Unlike peak-calling in ChIP-
seq data analysis, in which input DNA is frequently
used as control, it is unclear how to characterize the
random collision frequency between chromatin loci.
Second, to detect biologically meaningful chromatin
interactions, such as those between individual cis-
regulatory elements, a great number of candidate loci
needs to be considered when statistically determining if
any two loci of interest are interacting more frequently
than expected. In practice, this imposes a challenging
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multiple-comparisons problem, which requires highly
intensive computation and rigorous statistical justifi-
cation. Third, biologically meaningful, long-range
chromatin contacts are spatially and temporally
dynamic. Without a ‘gold standard’ of true-positive
and true-negative chromatin contacts, it is difficult
to fully evaluate the sensitivity and specificity of each
approach. Moreover, to address biological hypotheses,
it is important to conduct targeted analyses across dif-
ferent cell types to identify cell-type-specific chroma-
tin contacts™, It is just as important to closely examine
cell-type-common chromatin contacts where cell-type-
specific enhancer activation is observed, as these may
be controlled by different transcription-factor-binding
events, rather than by differential chromatin looping?.
However, the careful evaluation of technical variabil-
ity and biological variability of chromatin interaction
frequency as well as the comprehensive experimental
validation of cell-type-specific chromatin interactions
are still lacking. We envision that further advancement
in both experimental technologies and computational
algorithms for the targeted analysis of chromatin
conformation will occur in the near future.

Future perspectives

Although C-technologies have been increasingly used,
current experimental protocols have some significant
limitations that could prevent the uncovering of addi-
tional chromatin organization features. First, common
methods produce only static molecular interaction
maps that overlook the temporal dynamics of chroma-
tin in live cells and disregard cell-to-cell variability in a
population, potentially leading to incorrect models of
chromatin organization. Second, current maps of chro-
matin interaction still lack the fine resolution needed to
resolve interactions between individual cis-regulatory
elements, greatly limiting our ability to interrogate the
functional roles of chromatin structure in gene regu-
lation. Third, current methods for mapping chroma-
tin interactions permit the efficient mapping of only
pairwise interactions, thus failing to detect potential
multi-way interaction hubs that are suspected to exist in
the nucleus. Last, with various different techniques for
mapping and analysing chromatin topology, a critical
comparison of these methods is greatly needed.

The recently launched 4D Nucleome Project will
address these challenges through a multi-pronged
approach. In particular, new data standards for assess-
ing different experimental protocols and data analy-
sis methods will be developed. Such standards could
include pairs of DNA loci for which chromatin inter-
actions have been rigorously assessed genetically, bio-
chemically and by using microscopy imaging. This
US National Institutes of Health (NIH) common fund
initiative is also expected to develop improved methods
for generating high-resolution chromatin-interaction
maps, through a combination of substantial optimiza-
tion and improvement of experimental protocols,
innovative algorithms for data analysis and structural
modelling. New methods for determining chromo-
some organization in small numbers of cells or even
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single cells will be developed, along with methods that
generate complementary views of genome organization
without fixation, restriction digestion or ligation.
Live-cell imaging tools and analysis approaches are
needed that can accurately inform on dynamic chromatin
organization both within and between TADs. Multicolour
live-cell 3D imaging tools will be particularly useful for
studying chromatin motion in live cells. The results of
such experiments could uncover the basic principles
governing dynamic chromatin organization at vari-
ous scales in mammalian cells and help to interpret the
contact probability data obtained from C-technologies.
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Abstract

understanding transplantation biology.

these two loci that collectively span 4-megabases.

immunity and disease.

Keywords: HaploSeq, MHC, HLA-Typing, KIR, Phasing

Background: The MHC and KIR loci are clinically relevant regions of the genome. Typing the sequence of these
loci has a wide range of applications including organ transplantation, drug discovery, pharmacogenomics and
furthering fundamental research in immune genetics. Rapid advances in biochemical and next-generation sequencing
(NGS) technologies have enabled several strategies for precise genotyping and phasing of candidate HLA alleles.
Nonetheless, as typing of candidate HLA alleles alone reveals limited aspects of the genetics of MHC region, it is
insufficient for the comprehensive utility of the aforementioned applications. For this reason, we believe phasing the
entire MHC and KIR locus onto a single locus-spanning haplotype can be a critical improvement for better

Results: Generating long-range (>1 Mb) phase information is traditionally very challenging. As proximity-ligation based
methods of DNA sequencing preserves chromosome-span phase information, we have utilized this principle to
demonstrate its utility towards generating full-length phasing of MHC and KIR loci in human samples. We accurately
(~99 %) reconstruct the complete haplotypes for over 90 % of sequence variants (coding and non-coding) within

Conclusions: By haplotyping a majority of coding and non-coding alleles at the MHC and KIR loci in a single assay, this
method has the potential to assist transplantation matching and facilitate investigation of the genetic basis of human

Background

The major histocompatibility complex (MHC) and the
killer cell immunoglobulin-like receptor (KIR) are im-
portant regulators of human immune responses and are
involved in many human diseases [1, 2]. These loci are
highly polymorphic, allowing an extensive antigen-
presenting repertoire that enables strong immunity
against a wide range of foreign antigens, pathogens and
tumor cells [1-3]. At the same time, its immunogenic
heterogeneity can also create incompatibility in allotrans-
plantation procedures, causing graft rejections and graft-
versus-host disease (GVHD) [4, 5]. Furthermore, many of
the hundreds of genes within these immunogenic loci are
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increasingly recognized as major susceptibility genes for
drug hypersensitivity reactions and appear to play a
significant role in numerous diseases, including cancer
[6-8]. Taken together, the clinical implications of these
loci make it useful to determine the sequence type of these
molecules.

Typing of human leukocyte antigen (HLA) genes, lo-
cated within the MHC locus, has traditionally been
achieved in low resolution using serotyping techniques
[9]. With advancements in technologies including PCR
and more recently, next generation DNA sequencing
(NGS), molecular-based methods have now enabled
more clinically significant high-resolution HLA typing
[10-12]. Notably, single-molecule NGS-based DNA se-
quencing has been demonstrated to resolve allele ambi-
guity by generating haplotypes of entire genes,
resulting in super high-resolution (8-digit) haplotyping
of HLA genes [13, 14]. However, even precise gene-
level haplotyping may not be sufficient for many

© 2015 Selvaraj et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http//creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
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applications. For example, while gene-level haplotyping
for several candidate HLA genes can reduce risk of graft
failure in transplantation matching, recipients could still
be susceptible to graft-versus-host disease, as the totality
of transplantation associated genes have not been fully
understood. In particular, reports suggest that non-HLA
gene families such as inflammatory genes, immune recep-
tors, or others across the MHC or KIR haplotype can
contribute to transplantation biology [15-17]. In addition,
the strong linkage disequilibrium (LD) patterns across the
MHC and KIR loci can allow coordinated functional activ-
ities of alleles on the same haplotype, complicating our
understanding of transplantation biology [4, 5, 9, 18, 19].
Indeed, knowledge of haplotypes across several HLA
genes has been shown to generate improved transplant-
ation outcome predictions [19, 20] and can therefore fa-
cilitate determination of novel haplotype patterns for drug
discovery and genome-wide association studies [21]. In
summary, it appears useful to haplotype the entirety of the
MHC and KIR loci to enable better understanding of
immune genetics through analyses of compound hetero-
zygous alleles.

Several experimental protocols have been developed to
construct long-range haplotypes. Specifically, methods
have been developed to generate mega-base-sized haplo-
types [22-25], while others can phase the entire chromo-
some [26—29]. However, the adaptability of these methods
to generate user-defined targeted haplotypes is unclear.
More recently, Targeted Locus Amplification (TLA) has
been developed to accomplish targeted phasing [30], but
as the haplotypes from TLA are limited to a few-hundred
kilobases, they may not be amenable for phasing large
mega-base scale loci such as the MHC. Here, we develop
a method, referred to as targeted HaploSeq, to generate
full-length complete haplotypes of MHC and KIR loci
from a single assay. Specifically, targeted HaploSeq com-
bines the previously published HaploSeq [26] method
developed for genome-wide haplotype phasing, with
oligo capture and sequencing. As a proof of principle,
we have applied targeted HaploSeq to the MHC and
KIR loci in human lymphoblastoid cells. We phased
over 90 % of the alleles in MHC and KIR loci at an esti-
mated accuracy of ~99 %. To our knowledge, targeted
HaploSeq is the first method to phase the MHC and
KIR loci into a single haplotype structure. These results
establish the utility of targeted HaploSeq for MHC and
KIR typing in biomedical research as well as clinical
settings.

Results and discussion

Experimental design

In the targeted HaploSeq method, a conventional Hi-C li-
brary [31] is generated using HindIII restriction digestion
and amplified to obtain suitable material for oligonucleotide

Page 2 of 7

probe-based enrichment of the target loci (Fig. la).
Briefly, based on simulation results (Additional file 1:
Fig. S1), we computationally generated the probe se-
quences, at 4X tiling density, using the SureDesign
Software (Agilent Technologies) and targeted the non-
repetitive +/- 400 bp regions adjacent to HindlIII cut
sites over the MHC and KIR loci (Fig. 1b, Additional
file 2: Fig. S2a). In addition, to facilitate better phasing
of genic regions, we designed probes across the exons
within the MHC locus (Fig. 1a).

Next, by performing capture-sequencing [32, 33], we
generated targeted HaploSeq data in GM12878 lym-
phoblastoid cells at 2x whole-genome sequencing
depth with 30-50 fold target enrichment across the
MHC and KIR loci (Fig. 2a, Additional file 2: Fig. S2b).
More than 90 % of probes had at least 5-fold sequence
coverage compared to data from virtual probes with
an average of ~100 fold enrichment. This highlights
the sensitivity of the probes from our targeted Haplo-
Seq protocol. Next, to validate the quality of our tar-
geted HaploSeq data, we compared it to a previously
published HaploSeq dataset [26] generated from the
same cell line. As HaploSeq utilizes chromatin inter-
action patterns to reconstruct haplotypes, we com-
pared these between the two datasets and observed a
high concordance (r?=0.8, Fig. 2b, Additional file 3:
Fig. S3a, b). By using haplotype inference from the
parent—child trio whole-genome sequencing (WGS)
data [34], we examined the fraction of chromatin in-
teractions between the homologous chromosomes (h-
trans interactions), whose rarity is critical for accurate
de novo haplotyping. Similar to HaploSeq, targeted
HaploSeq data rarely exhibit h-trans interactions
(Additional file 4: Fig. S4a).

Of note, the MHC locus appears to have a higher h-
trans ratio in both HaploSeq and targeted HaploSeq
datasets, but several lines of evidence suggest that these
might be systematic errors from sequencing and ana-
lysis protocols. First, reads supporting h-trans interac-
tions are primarily observed in complex regions with
high variant density (Additional file 4: Fig. S4b). Sec-
ond, >85 % of h-trans interactions from targeted Haplo-
Seq dataset originate from the same end of a given
paired-end fragment. Lastly, about 95 % of these same-
end h-trans interactions are also observed in long-
fragment reads (LFR) in previously published Moleculo
datasets [25] from the same individual, indicating that a
significant fraction of these h-trans interactions could
have arisen from incorrect local haplotype inferences
from the parent-child trio WGS data (Fig. 2c, d,
Additional file 5). Taken together, our targeted Haplo-
Seq data is of high quality and therefore enables accur-
ate analyses of haplotype structures across the MHC
and KIR loci.
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Fig. 1 Targeted HaploSeq experimental design. a Outline of the Targeted HaploSeq protocol. Briefly, crosslinked chromatin is digested using restriction
enzyme(s) of choice. The digested chromatin ends are biotinylated and ligated in a spatially proximal manner, enabling formation of signature artificial
fragments—where spatially proximal distinct chromatin segments are combined into a single fragment. Target-specific oligonucleotide probes are then
used to capture and enrich for user-defined proximity-ligated artificial fragments, to create a targeted HaploSeq library. This library is sequenced and used
to generate locus-spanning haplotypes. b lllustration of oligonucleotide probe design: A browser shot of the 3.5 Mb MHC region illustrating location of
probes near Hindlll cut sites. The inset shows probe targets near HLA-A gene. Specifically, we tiled 120 nt probes (blue) at 4X density across non-repetitive
segments around Hindlll cut sites. In addition, we also targeted exonic regions of the MHC locus, as depicted in yellow

High-resolution and accurate phasing of MHC and KIR loci 50 %, from 2.3 to 1.06 %, we still observe a majority of
By utilizing heterozygous genotype identifications (SNVs)  phasing errors occurring in the high variant density re-
from the trio-based WGS data [34], we used the HaploSeq  gions (Fig. 2e¢). This suggests that the accuracy can poten-
and LCP protocols to perform de novo haplotyping. We  tially be further improved by using long-read or single
generated a single haplotype structure over the MHC  molecule technologies that may be more suitable for map-
locus resolving over 90 % of ~9,400 heterozygous alleles  ping such complex regions. Of note, unlike switch
and we used the trio-based haplotype structure to errors—the standard method to calculate phasing error
estimate the accuracy of our approach to be ~97.7 %  rates where an incorrect haplotype block is penalized only
(Additional file 6: Fig. S5). However, as the parent-child  once, we estimate error by testing each variant independ-
trio data could have accumulated incorrect phasing at re-  ently and therefore our error rate represents worst-case
gions with high variant density, we repeated the de novo  scenario. To this end, as the density of variants affects the
haplotyping protocol after ignoring variants that we found  resolution of HaploSeq-based haplotyping, we observed a
to be h-trans in both our and LFR datasets. Consequently, relatively lower resolution phasing for the KIR locus
our phasing accuracy improved to 98.94 % (Additional (Additional file 1: Fig. S1b). Regardless, we obtained accur-
file 6: Fig. S5). Despite reducing the phasing error by over  ate phasing of 348 out of 353 variants resolved at the KIR
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(See figure on previous page.)

Fig. 2 High-resolution and accurate phasing of MHC and KIR loci. a (i) Top chart demonstrates enrichment of targeted HaploSeq reads at the

100 kb binned MHC locus and the bottom plot shows number of probes in 100 kb bins used across the MHC locus. Visually, we can observe a
high correlation between these plots, demonstrating the expected relationship between density of probes and the sequencing depth of targeted
HaploSeq reads. (ii) To illustrate the sensitivity of probes, we virtually created random probes flanking Hindlll cut sites and compared the enrichment in
targeted HaploSeq data from these regions to the data from regions containing true probes. We observe ~100 fold more reads from true regions (on
target, yellow) than the random regions (off target, green) and this fold-enrichment suggests high-sensitivity of our probes. b High correlation of targeted
HaploSeq and the previously published HaploSeq datasets from GM12878 cells at the MHC locus (= 08). ¢ An example of haplotype inconsistency in
the parent-child trio WGS data. Specifically, HapA (TGT-blue) and HapB (CAG-red) represent two haplotypes inferred from the trio dataset. Single-end
reads from targeted HaploSeq (top) and Moleculo long-fragment reads (bottom) support a case of an inter-haplotype adjacent SNP-pair (green) and
therefore raises an inconsistency with the parent-child trio haplotype inference. d Overall, ~95 % of the targeted HaploSeq reads representing
homologous-trans (h-trans) interacting SNVs are concordant with the Moleculo LFR data. e High-resolution phasing capabilities of targeted HaploSeq
method at the MHC locus. Completeness represents the collection of all heterozygous SNVs (red) within the MHC locus. Resolution represents the set

of phased or resolved heterozygous SNVs in a single haplotype structure. While we observe ~1 % error, these errors are highly concentrated in the
high variant density regions. The bottom section represents phasing of only exonic variants. f Similar figure as e) for the KIR locus

loci (Fig. 2f). Together, we resolved ~90 % of alleles
among the MHC and KIR loci at ~99 % accuracy
(Additional file 4: Fig. S4), demonstrating that our
approach can generate complete, high-resolution and
accurate haplotypes.

As current HLA typing protocols primarily type candi-
date genes across the MHC loci, we analyzed our
method’s phasing capabilities across heterozygous genes
from MHC and KIR loci. In total, we resolve ~92 % of
heterozygous variants, representing over 92 % of hetero-
zygous genes, at an accuracy of 99.34 % (Fig. 2e, f,
Additional file 7: Fig. S6). In this regard, we generate
highly accurate phasing for several “classical” genes used
in conventional HLA typing protocols. For example, in
the case of genes such as HLA-B, HLA-C, HLA-DRBI,
HLA-DQA1, HLA-DQBI1, HLA-DPA1 and HLA-DPB1,
we resolve phasing of >99.5 % of the heterozygous vari-
ants at 100 % accuracy. Similarly at the KIR loci, we ac-
curately predict all but one exonic variant (Additional
file 7: Fig. S6). To our knowledge, our method is the first
to demonstrate high-resolution and accurate haplotyping
across the entire MHC and KIR loci, phasing not only
the highly diverse major and minor alleles, but also other
important immunological genes and variants at non-
genic regions across the locus together in a single haplo-
type structure.

Conclusions

Here, we describe the targeted HaploSeq method to gen-
erate large mega-base scale haplotypes in human cells.
Using this technology, we reconstruct complete phase
information of MHC and KIR loci. In principle, targeted
HaploSeq is blind to genotyping and can be used to
identify genetic variants de novo within the targeted loci.
For example at the MHC locus, our method identified
~27 % of variants at an accuracy of 99.76 and 89.21 %
for heterozygous and homozygous genotypes, respect-
ively. This performance can be further improved with
the use of multiple 4-base or 6-base cutters during Hi-C

library preparation [35], instead of a single 6-base recog-
nizing restriction enzyme as demonstrated in this manu-
script. Alternatively, computational strategies such as
population-based imputation can be also be used to gen-
erate comprehensive genotyping [36].

High-resolution genotyping and phasing of immuno-
genic loci such as MHC and KIR has several applications.
First, it has the potential to greatly improve the practice of
HLA typing/matching for clinical transplantation proce-
dures [13, 15, 20, 37], as this method provides access to
alleles that are otherwise un-typed using current methods.
In addition, with population-scale MHC and KIR haplo-
typing, our method can help to elucidate a refined set of
minimal alleles that confer the highest risk for GVHD,
thereby informing follow-up cost-effective selective typing
of these most informative alleles. Second, as our method
phases coding and non-coding cis-regulatory sequences
together, one can study patterns of compound heterozy-
gosity and linkage of human immune variation [7, 16, 17].
Finally, several studies have uncovered numerous
disease-associated HLA and KIR alleles and by under-
standing long-range haplotypes, we can now start to
unravel mechanistic underpinnings of human immune
disorders [21, 38, 39].

Recently, proximity-ligation methods such as Hi-C
have been demonstrated to be useful in assembling ge-
nomes de novo [40, 41]. As targeted HaploSeq obtains
high-quality chromatin interaction datasets, similar to
Hi-C [31], this methodology can potentially be used to
generate diploid assembly of complex regions, such as
the MHC or T-cell receptor beta (Tcrb) locus [42], of
human and other large genomes. Similarly, Hi-C has
also recently been used in metagenomics studies to
deconvolute the species present in complex micro-
biome mixtures [43, 44]. With the advent of targeted
HaploSeq, it is now possible to capture distinct loci that
are informative and discriminative enough to delineate
species mixtures based on the captured proximity-
ligation fragments.
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Taken together, we present targeted HaploSeq and
demonstrate its application for targeted phasing of HLA
and KIR loci in the human genome. We believe that this
method will lead to new avenues in biomedical research
and in personalized clinical genomics.

Data access

All sequencing data have been submitted to the Gene
Expression Omnibus (GEO) database and will be publi-
cally available upon publication. Data has been made
available under the accession number GSE65726.

Ethics
Not applicable, non-human subjects.

Additional files

Additional file 1: Figure S1. Targeting regions around Hindlll cut sites
allows complete and high-resolution haplotyping of MHC and KIR loci. a) (i)
and (ii) depict completeness and resolution at MHC locus, respectively. We
simulated reads across +/— 400 bp from Hindlll cut sites in the MHC region to
study our ability to obtain complete and high-resolution haplotypes. As the
MHC region has a high-density of het. variants (a het. variance every ~300
bases), 2X sequencing coverage is enough to generate complete haplotypes,
regardless of read length. On the same lines, we obtain high-resolution seed
haplotypes at low sequencing coverage. b) (i) and (i) depict completeness
and resolution at KIR locus respectively. On the contrary, as the KIR locus has a
lower density of variants, high sequencing coverage is required to obtain
complete haplotypes. In particular, 40 bp reads are not enough to obtain
complete phasing even at 50X coverage and therefore is omitted in the
resolution plot. Similary, even at high sequencing coverage, resolution is very
limited regardingless of read length. (TIFF 8219 kb)

Additional file 2: Figure S2. Targeted enrichment at the KIR genomic
locus. a) Genome browser shot of the ~1 Mb KIR region. The inset shows
targets near KIR3DL2 gene, depicting target regions (green) around
Hindlll cut sites and repeat segments (red). We tiled 120-bp probes (blue)
at 4X density accross these non-repeat target regions. b) (i) Top Plot
demonstrates enrichment of GM12878 Targeted-HaploSeq reads at the
100 kb binned KIR locus while the bottom plot shows number of probes
used across the KIR locus. Together, these plots show a high correlation
among probes and read enrichment. (ii) Plot demonstrating sensitivity of
capture probes—the true probes capture reads ~100 fold than random
probes created virtually near Hindlll cut sites (TIFF 8219 kb)

Additional file 3: Figure S3. Targeted HaploSeq data has large pool of
long insert fragments. a) Insert-size distribution of targeted Haploseq
(green) and b) HaploSeq (purple) in GM12878 LCLs. Both these datasets
have similar amount of long-insert fragments which is critical for long
range haplotyping. (TIFF 8219 kb)

Additional file 4: Figure S4. Homologous chromosomal interactions are
rare and most of them are enriched in high variant density regions of the
MHC loci. Using haplotypes indentified from the parent-trio whole genome
seguencing data, we define homologous trans (h-trans) interactions in the
Targeted Haploseq (green) and HaploSeq—from our previous publication
(purple). a) h-trans interactions are rare —< 1 % in whole genome (i), about
5-6 % in the MHC locus (i) and <0.5 % in KIR locus (jii). While h-trans
interactions are <1 % whole-genome, we see them in significantly higher
fractions at the MHC locus (~5 %). Interestingly, majority of these are found
at regions with very high variant density (b), suggeting that the haplotype
predictions from parent-trio data at these regions could be error-prone,
which in-turn results in higher h-trans in HaploSeq datasets. (TIFF 8219 kb)

Addi I file 5: Online Methods. (DOCX 149 kb)

Additional file 6: Figure S6. Targeted HaploSeq generates a single
(complete) haplotype structure across MHC/KIR locus. The performance

Page 6 of 7

metric of the Targeted HaploSeq protocol, measured by completeness
(span of the haplotype bloc), resolution (fraction of het. alleles resolved),
and accuracy. While each of these metrics were defined after performing
read-based as well as population based haplotyping, seed resolution is
estimated only based on read-based haplotyping. The overall resolution
is defined as the weighted average among all alleles accross the MHC
and KIR loci together. We observe over 50 % decrease in error rate from
2.3 to 1.06 % after correcting for potential incorrect local haplotypes from
parent-trio data. (TIFF 8219 kb)

Additional file 7: Figure S7. Targeted HaploSeq generates high quality

phasing of heterozygous genes. Over 92 % of exonic het. variants are
phased at an accuracy of 99 %. (TIFF 8219 kb)
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Generation of Hi-C libraries. GM12878 (Coriell) cells were cultured in
suspension in 85% RPMI media supplemented with 15% FBS and 1X
penicillin/streptomycin. Cells were harvested, fixed in 1% formaldehyde, and 5
million cells were subject to the Hi-C protocol as previously described’. Prior to
target enrichment, Hi-C libraries were amplified by 14 cycles of PCR using a
high-fidelity (Fusion) polymerase. The number of pre-enrichment PCR cycles can
be tailored depending on how much DNA is required for downstream target
hybridization reactions. In this case, we performed several parallel PCR reactions
using small amounts of bead-bound Hi-C library input at 14 cycles to obtain

sufficient material.

Generation of RNA baits. Probes were computationally designed using the
SureDesign software suite (Agilent Technologies). The custom design targeted
the upstream and downstream 400bp adjacent to Hindlll cut sites spanning the
MHC (chr6:29689001-33098550) and KIR (chr19:54538900-55596120) loci using
the hg19 genome build. SureDesign parameters were set to 4X tiling density,
maximum probe boosting, and maximum repetitive sequence masking. We also
targeted MHC exons at 2X tiling density, balanced boosting, and maximum
repetitive element masking. In sum, 8,702 unique probes sequences were
computationally generated, of which 6,413 correspond to regions flanking Hindlll
cut sites across the MHC locus, 765 correspond to HLA exons, and 1,524 probes
were allocated to regions flanking Hindlll cut sites across the KIR locus. In total,

12,298 probes were synthesized after considering some probes are duplicated in
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the design due to the boosting parameter of SureDesign. Using the probe
sequences output by SureDesign, single-stranded DNA (ssDNA) oligos were
synthesized by CustomArray Inc. ssDNA oligos contained universal forward and
reverse priming sequences. Universal forward priming sequences contained a
truncated SP6 RNA polymerase recognition sequence that is engineering to be
completed upon PCR amplification of the ssDNA oligos. The reverse universal
priming sequence contained a BsrDI recognition sequence for 3' dsDNA probe
cleavage prior to in vitro transcription. To convert ssDNA oligos into biotinylated
RNA baits, ssDNA oligos were first diluted to 200pg/ul and then PCR-amplified
using high-fidelity DNA polymerase (KAPA) and purified using Ampure XP beads
(Beckman Coulter). As mentioned, the PCR reaction also serves the purpose to
complete the remainder of the 5 SP6 recognition sequence. Next, reverse
priming sequences were removed by digesting the dsDNA with BsrDI (New
England Biosciences) and purified again using Ampure XP beads to remove the
digested fragments. Lastly, we performed in vitro transcription (IVT) according to
manufacturers protocol (Ambion) in the presence of biotinylated UTP (Epicentre).
RNA was then column-purified (Qiagen), diluted to working concentration

(500ng/ul) and stored at -80 until use.

Generation of targeted HaploSeq libraries. To enrich our Hi-C libraries for
proximity ligation fragments mapping to the MHC and KIR loci, we performed
target enrichment using our custom RNA baits, followed by PCR amplification

and sequencing. Briefly, 500ng of Hi-C library was incubated overnight at 65
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degrees with 500ng of biotinylated RNA probe along with 2.5ug of human Cot-1
DNA (Life Technologies), 2.5ug Salmon Sperm DNA (Life Technologies) and
blocking primers at a final concentration of 6.67uM. Next, RNA:DNA hybrids were
isolated using T1 streptavidin-coated beads (Invitrogen) while DNA molecules
not bound by RNA baits were washed away. Finally, captured products were
resuspended in water and PCR amplified (Fusion) on-bead using 10-11 cycles.
Lastly, PCR products were purified using AMPure XP beads (Beckman Coulter)
and then subject to next-generation sequencing on lllumina HiSeq2500 to obtain

approximately 51M reads pairs.

Genotyping. Variant calls and genotypes for GM12878 were downloaded from
1000 genomes project’ and these were used for de novo haplotype
reconstruction from targeted HaploSeq data. Predicted haplotypes were
compared with phasing Information for GM12878 from the 1000 genomes project

to estimate accuracy.

Read Alignment. We mapped targeted HaploSeq reads to the hg19 genome.
Reads were aligned using BWA Mem?® (Version: 0.7.5a-r405) as single end and
these reads were manually paired using in-house scripts. Unmapped reads were
removed and PCR duplicate reads were removed using Picard (Version: 1.49).
The aligned datasets were then finally processed with GATK* (Version: March

2013) for indel realignment and variant recalibration. The alignment process
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resulted in ~86% of reads mapping to genome in a non-duplicative fashion, of

which about 7% of the reads mapped to the MHC/KIR loci.

Simulations of haplotype completeness and resolution over MHC and KIR
loci. Here, we used different combinations of read length and coverage to obtain
predictions at various haplotyping resolutions (Supplementary Figure 1). In
particular, we used read lengths of 40, 50, 75, 100, 150 and 250 bases at
coverage up to 50X of the MHC and KIR loci. To maintain the Hi-C insert
distributions, we used human H1 Hi-C® intra-chromosomal read starting positions
at the MHC/KIR locus where at least one end of the pair-end is within 400bp from
the Hindlll cut-sites. We constructed graphs with nodes representing
heterozygous variants in GM12878 (MHC/KIR) and edges corresponding to
reads that cover multiple variants. These graphs allowed to us to predict
completeness and resolution of the haplotypes through simulated data.
Specifically, if the edge covers from “first” to the “last” SNP, the graph is 100%
complete and the fraction of SNPs covered or phased in the longest graph is
termed resolution. From various simulations (Supplementary Figure 1), the high
density of heterozygous variants in the MHC loci allows complete and high-
resolution haplotypes with low sequencing coverage. On the other hand, longer

reads are necessary to obtain complete haplotypes in the KIR loci.

Target Enrichment violin plots. The violin plots (Figure 2aii and Supplementary

Figure 2bii) represent reads per probe in two cases. In the first case, we take the
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actual probe locations in the MHC and KIR locus and estimate the read count per
probe. In the second case, we designed “virtual” probes randomly across the
genome (excluding the MHC and KIR loci) but confined to regions adjacent to
Hindlll cut sites similar to actual probes. We then counted reads per virtual
probe. A 100-fold difference between read counts in these two cases
demonstrates that our oligonucleotide based capture is sensitive in obtaining

data from the targeted loci.

Homologous Trans interaction estimations. We used haplotype predictions
from parent-child trio dataset? to estimate the fraction of cis and fraction of
homologous frans interaction (read1 and read2 map between the two
homologous chromosomes) from the targeted HaploSeq data and the HaploSeq
data. As reported earlier in the HaploSeq method®, we observe rare homologous
interactions genome-wide (excluding MHC locus, Supplementary Figure 4ai).
However, the fraction of homologous trans (or h-trans) is notably higher in the
MHC locus (Supplementary Figure 4aii). Interestingly, the vast majority of these
h-trans interactions from the MHC locus occur in regions with very high

heterozygous variant density (Supplementary Figure 4b).

Haplotyping. Using variant calls and genotypes from the 1000 genomes
project?, we used HaploSeq protocol® to generate locus-spanning haplotypes

across the MHC and KIR locus.
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Using Moleculo LFR data to decipher discordancy in haplotype calls. We
downloaded raw reads from Moleculo LFR data from GM12878 cells’. We
adopted the Hi-C mapping strategy for Moleculo data. A snapshot of the data is
described in Figure 2c. In order to estimate an overall rate for concordance
among targeted HaploSeq and Moleculo data regarding the inter-haplotypes from
parent-trio data, we did the following; Using the haplotype predictions from
parent-child trio data, we first grouped all the SNP-pairs that represented inter-
haplotype interactions from targeted HaploSeq. Then, for all these SNP-pairs, we
asked what fraction of them is also inter-haplotype from Moleculo data. This
fraction was approximately 67%. However, it turns out that these 67% of SNP-
pairs are the well-supported inter-haplotype junctures, as they represent ~95%
the inter-haplotype reads from targeted HaploSeq. In other words, 95% of inter-
haplotype reads from the targeted HaploSeq data are concordant with molecule
data (Figure 2d). Consequently, these SNPs from these SNP-pairs were
removed from the genotype list and the haplotyping analysis was repeated,
resulting in more than a 50% reduction in haplotyping error (Supplementary

Figure 5).

Exon Phasing. We downloaded RefSeq gene list for hg19 build and kept only
the longest transcript for a given gene in both the MHC and KIR locus. Therefore,
each gene is represented by only one canonical transcript and the heterozygous
variants from the exons of these canonical transcripts were used for the

haplotyping analysis (Figure 2e,f and Supplementary Figure 6).
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Genotype Predictions using targeted HaploSeq data. We used GATK pipeline

and UnifiedGenotyper to call variants. We retained genotype predictions that had

a sequencing depth of at least 10 and had a PASS filter after the GATK variant

recalibration step.
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Supplementary Figure 1: Targeting regions around Hindlll cut sites allows complete and
high-resolution haplotyping of MHC and KIR loci.

a) (i) and (ii) depict completness and resolution at MHC locus, respectively. We simulated
reads across +/- 400bp from Hindlll cut sites in the MHC region to study our ability to obtain
complete and high-resolution haplotypes. As the MHC region has a high-density of het. vari-
ants (a het. variant every ~300 bases), 2X sequencing coverage is enough to generate com-
plete haplotypes, regardless of read length. On the same lines, we obtain high-resolution seed
haplotypes at low sequencing coverage. b) (i) and (ii) depict completness and resolution at KIR
locus respectively. On the contrary, as the KIR locus has a lower density of variants, high
sequencing coverage is required to obtain compelete haplotypes. In particular, 40bp reads are
not enough to obtain complete phasing even at 50X coverage and therefore is omitted in the
resolution plot. Similarly, even at high sequencing coverage, resolution is very limited regard-
less of read length.
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Supplementary Figure 2: Targeted enrichment at the KIR genomic locus.

a) Genome browser shot of the ~1Mb KIR region. The inset shows targets near KIR3DL2 gene,
depicting target regions (green) around Hindlll cut sites and repeat segments (red). We tiled
120-bp probes (blue) at 4X density accross these non-repeat target regions. b) (i) Top Plot
demonstrates enrichment of GM12878 Targeted-HaploSeq reads at the 100kb binned KIR
locus while the bottom plot shows number of probes used accross the KIR locus. Together,
these plots show a high correlation among probes and read enrichment. (ii) Plot demonstrating
sensitivity of capture probes - the true probes capture reads ~100 fold than random probes
created virtually near Hindlll cut sites.
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Supplementary Figure 3: Targeted HaploSeq data has large pool of long insert fragments.
a) Insert-size distribution of targeted Haploseq (green) and b) HaploSeq (purple) in GM12878
LCLs. Both these datasets have similar amount of long-insert fragments which is critical for long
range haplotyping.
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Supplementary Figure 4: Homologous chromosomal interactions are rare and most of
them are enriched in high variant density regions of the MHC loci.

Using haplotypes identified from the parent-trio whole genome sequencing data, we define
homologous trans (h-trans) interactions in the Targeted Haploseq (green) and HaploSeq - from
our previous publication (purple). a) h-trans interactions are rare - <1% in whole genome (i),
about 5-6% in the MHC locus (ii) and <0.5% in KIR locus (iii). While h-trans interactions are
<1% whole-genome, we see them in significantly higher fraction at the MHC locus (~5%).
Interestingly, majority of these are found at regions with very high variant density (b), suggest-
ing that the haplotype predictions from parent-trio data at these regions could be error-prone,
which in-turn results in higher h-trans in HaploSeq datasets.
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Supplementary Figure 5: Targeted HaploSeq generates a single (complete) haplotype

structure across MHC/KIR locus.

The performance metric of the Targeted HaploSeq protocol, measured by completness (span of
the haplotype block), resolution (fraction of het. alleles resolved), and accuracy. While each of
these metrics were defined after performing read-based as well as populaiton based haplotyp-
ing, seed resolution is estimated only based on read-based haplotyping. The overall resolution
is defined as the weighted average among all alleles accross the MHC and KIR loci together.
We observe over 50% decrease in error rate from 2.3% to 1.06% after correcting for potential

incorrect local haplotypes from parent-trio data.
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Overall 92.43 92.69 99.34

Supplementary Figure 6: Targeted HaploSeq generates high quality phasing of hetero-
zygous genes
Over 92% of exonic het. variants are phased at an accurcay of 99%.



Acknowledgements
Chapter 2, in full, is a reprint of the material as it appears in BMC Genomics, volume 16, Nov 5 2015.

Selvaraj, Siddarth; Schmitt, Anthony D.; Dixon, Jesse R.; Ren, Bing. The dissertation author was the co-

primary investigator and co-primary author of this paper.

35



Chapter 3

OPEN

ACCESS
Cell’ress

Cell Reports

A Compendium of Chromatin Contact Maps Reveals
Spatially Active Regions in the Human Genome

Anthony D. Schmitt,’.212.13 Ming Hu,®124* Inkyung Jung,-'5 Zheng Xu,*1%:11 Yunjiang Qiu,.* Catherine L. Tan,.13
Yun Li,* Shin Lin,® Yiing Lin,” Cathy L. Barr,? and Bing Ren™16.*

Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA

2UCSD Biomedical Sciences Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
3Division of Biostatistics, Department of Population Health, New York University School of Medicine, 650 First Avenue, New York,

NY 10016, USA

“Departments of Genetics, Biostatistics, and Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
SUSCD Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla,

CA 92093, USA

©Division of Cardiology, Department of Medicine, University of Washington, 850 Republican Street, Seattle, WA 98108, USA
7Department of Surgery, Washington University School of Medicine, 660 S Euclid Ave., Campus Box 8109, St. Louis, MO 63110, USA
8Krembil Research Institute University Health Network, The Hospital for Sick Children, The University of Toronto, Krembil Discovery Tower,

60 Leonard Ave. 8KD-412, Toronto, ON M5T 2S8, Canada

°Department of Cellular and Molecular Medicine, Moores Cancer Center and Institute of Genome Medicine, UCSD School of Medicine, 9500

Gilman Drive, La Jolla, CA 92093, USA

10Quantitative Life Sciences Initiative, University of Nebraska, Lincoln, NE 68583, USA
11Department of Statistics, University of Nebraska, Lincoln, NE 68583, USA

12Co-first author

13pPresent address: Arima Genomics Inc., 6404 Nancy Ridge Dr., San Diego, CA, 92121, USA
14Present address: Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue,

Cleveland, OH 44195, USA

15Present address: Department of Biological Sciences, KAIST, Daejeon 34141, South Korea

18Lead Contact
*Correspondence: hum@ccf.org (M.H.), biren@ucsd.edu (B.R.)
http://dx.doi.org/10.1016/j.celrep.2016.10.061

SUMMARY

The three-dimensional configuration of DNA is inte-
gral to all nuclear processes in eukaryotes, yet our
knowledge of the chromosome architecture is still
limited. Genome-wide chromosome conformation
capture studies have uncovered features of chro-
matin organization in cultured cells, but genome
architecture in human tissues has yet to be
explored. Here, we report the most comprehensive
survey to date of chromatin organization in human
tissues. Through integrative analysis of chromatin
contact maps in 21 primary human tissues and
cell types, we find topologically associating do-
mains highly conserved in different tissues. We
also discover genomic regions that exhibit unusu-
ally high levels of local chromatin interactions.
These frequently interacting regions (FIREs) are en-
riched for super-enhancers and are near tissue-
specifically expressed genes. They display strong
tissue-specificity in local chromatin interactions.
Additionally, FIRE formation is partially dependent
on CTCF and the Cohesin complex. We further
show that FIREs can help annotate the function of
non-coding sequence variants.

2042 Cell Reports 17, 2042-2059, November 15, 2016 © 2016 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

INTRODUCTION

Chromosome conformation capture (3C)-based techniques
have begun to reveal molecular details of nuclear organization
in eukaryotic cells (Dekker et al., 2002; Dixon et al., 2012,
2015; Dostie et al., 2006; Fraser et al., 2015; Jin et al., 2013; Lie-
berman-Aiden et al., 2009; Rao et al., 2014; Seitan et al., 2013;
Simonis et al., 2006; Sofueva et al., 2013; Vietri Rudan et al.,
2015; Zuin et al., 2014). It is now clear that each chromosome
occupies a separate space in the interphase nucleus, known
as a “chromosome territory,” which is partitioned into distinct
neighborhoods or compartments (Lieberman-Aiden et al.,
2009; Meaburn and Misteli, 2007). Within each compartment, to-
pologically associating domains (TADs) constrain chromatin in-
teractions (Dixon et al., 2012, 2016; Nora et al., 2012; Sexton
et al., 2012). Within each TAD, chromatin interactions between
distal cis-regulatory elements occur in a cell-type-dependent
manner to allow modulation of promoter activity by enhancers
(Dryden et al., 2014; Montavon and Duboule, 2013; Phillips-Cre-
mins et al., 2013; Simonis et al., 2006; Tang et al., 2015). Previous
3D genome analyses have been largely limited to cultured cells
and a small collection of primary cell types. By contrast, our
knowledge of chromatin organization in human tissues is still
scarce. Variation in chromatin interaction patterns among
diverse tissue types remains poorly defined, and its functional
relationship with gene regulation remains to be characterized.
This is a critical shortcoming because diseases pertaining to
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specific organ systems are often not easy to recapitulate in vitro.
Therefore, systematic characterization of chromosome architec-
ture across a broad set of well-annotated primary tissues could
be of great value for further study of genome function.

Recent studies of chromatin modification landscapes across a
large number of human tissues and cell types have greatly
improved our understanding of genome function and regulation
(ENCODE Project Consortium, 2012; Roadmap Epigenomics
Consortium et al., 2015). The research has revealed that over
12% of the genome possesses cell-type-specific chromatin
signatures consistent with them acting as cis-regulatory se-
quences. However, to better understand how these DNA se-
quences contribute to tissue- and cell-type-specific gene
expression patterns, it is necessary to characterize the chro-
matin architecture in each tissue. Here, we report integrative
analysis of chromatin organization maps of 14 human tissues
and 7 human cell lines for which complete epigenome datasets
have been generated by the Epigenome Roadmap Consortium,
ENCODE, or the National Institute of Child Health and Human
Development (NICHD) (ENCODE Project Consortium, 2012;
Roadmap Epigenomics Consortium et al., 2015). We developed
a computational method to discover the spatially active chro-
matin segments termed frequently interacting regions (FIREs).
We find FIREs are enriched for active enhancer regions,
harboring super-enhancers as well as disease-associated vari-
ants in the corresponding disease-relevant tissue type. In addi-
tion, FIREs are substantially conserved between human and
mouse genomes of the same cell type, and their formation de-
pends in part on the Cohesin complex and CTCF. Finally, most
FIREs exhibit promiscuous interactions in the local chromatin
neighborhood. These observations improve our understanding
of the role of dynamic chromatin organization in the regulation
of tissue-specific gene expression programs in human cells.

RESULTS

Compendium of Chromatin Organization Maps across

21 Human Cell and Tissue Types

We conducted Hi-C analysis on 14 primary human tissues
collected from four donors (Figure 1A), for which epigenome
datasets had been produced as part of the NIH Epigenome Road-
map project (Roadmap Epigenomics Consortium et al., 2015). We

combined the resulting datasets with those previously generated
by us for seven cultured cell types using a common experimental
protocol that was reported separately (Dixon et al., 2012, 2015;
Jin et al.,, 2013; Selvaraj et al., 2013). The combined datasets
were processed using a common data processing pipeline, after
merging data from biological replicates deemed as reproducible
(Figures S1A-S1E). Collectively, we analyzed >8.6 billion unique
contacts, out of which >2.5 billion were long-range (>15 kb)
intra-chromosomal contacts, with 80SM unique contacts and
254M long-range cis contacts per cell line and 214M unique con-
tacts and 53M long-range cis contacts per tissue type (Table S1).
We first analyzed compartment A/B patterns in each tissue/cell
type (Figure 1B; Table S2). As previously reported for cultured
human cells (Dixon et al., 2015), we observed substantial com-
partment A/B switching across primary tissues (Figures 1B and
1C), finding that 59.6% of the genome is dynamically compart-
mentalized in different tissues and cell types. These data also un-
derscore the significant degree of compartment conservation
across the genome, revealing that as much as 40.4% of the
genome is invariant, which is a statistically significant degree of
invariant genome compartmentalization (chi-square test p value <
2.2e—16) (Figure S1F).

TADs have been reported to be stable across different cell
types and experimental conditions and conserved in related spe-
cies (Dixon et al., 2012, 2015; Rao et al., 2014; Zuin et al., 2014).
To investigate the degree of TAD boundary conservation in pri-
mary human tissues, we applied the insulation score method
(Crane et al., 2015), which is robust in sequencing depth (Figures
S1G-S1I) to identify TAD boundaries at 40-kb bin resolution (Ta-
ble S3). We identified a total of 3,010 distinct TAD boundaries in
21 samples (14 tissues and 7 cell lines). Upon careful inspection
of a broad panel of genetic loci (Figures 1A and 1D) as well as
systematic comparison across samples (Figures 1D and 1E),
we find that TAD boundaries are indeed highly conserved across
different cell lines and tissues. These results are highly signifi-
cant, considering that, by chance, only 1.7% of TAD boundaries
are expected to share for all (chi-square test p value < 2.2e—16).

Identification of Frequently Interacting Regions in the
Human Genome

As a means to investigate conserved and tissue-specific chro-
matin interactions, we first used Fit-Hi-C (Ay et al., 2014) to

Figure 1. Global Features of 3D Genome Organization in 7 Cell Lines and 14 Adult Tissues

(A) llustration of the primary 21 Hi-C datasets analyzed, depicting the cell (left panel) or tissue (right panel) origin of the samples as well as the germ layer origin for
tissues (right panel). Hi-C interaction patterns across an 11.68-Mb region (chr12:82,840,000-94,520,000) are shown for all 7 cell lines and 14 tissues at 40-kb bin
resolution.

(B) Genome browser snapshot showing compartment A/B patterns (PC1 value) across chromosome 2 in 21 samples, with 7 cell lines at the top and 14 primary
adult tissues on the bottom. Compartment A/B patterns are at 1-Mb bin resolution. Positive PC1 in blue corresponds to compartment A, and negative PC1 in
yellow corresponds to compartment B.

(C) Bar plots showing the degree of conservation of A/B compartment labels of 21 human cell lines and adult tissues. The y axis is the fraction of the genome
conserved by the 22 possible combinations of compartment A/B designations. The label below each bar represents the composition of the compartment
designations. For example, “16A/5B" represents the genomic region where 16 samples exhibit a compartment A label and the other five samples exhibit a
compartment B label.

(D) Genome browser snapshot showing topological domain boundaries across chromosome 7 in 21 samples, with 7 cell lines at the top and 14 primary adult
tissues on the bottom. Boundaries are identified at 40-kb bin resolution.

(E) Bar plots showing the degree of topological domain boundary conservation across 21 human cell lines and tissues. For each putative boundary region, we
tallied how many samples have a boundary within that region (see Supplemental Experimental Procedures). Shown here is a total fraction of TAD boundary
regions, whereby the y axis is the fraction of TAD boundaries conserved at least a certain number of samples, as categorized along the x axis.

2044 Cell Reports 17, 2042-2059, November 15, 2016
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identify significant chromatin interactions at various significance
thresholds (Table S4). However, Fit-Hi-C, like other peak-calling
methods (Jin et al., 2013; Rao et al., 2014; Xu et al., 2015, 2016),
is sensitive to sequencing depth, and therefore we found consid-
erable variation in total chromatin contacts between samples,
precluding any statistically rigorous comparative peak-calling
analysis across tissues. However, upon closer examination
of the chromatin contacts near the contact matrix diagonal
(+ 200 kb from the matrix diagonal), we noticed that some re-
gions exhibit unusually high levels of local contact frequency in
a tissue-type-dependent manner (Figure 2A). We therefore
developed a computational approach to normalize and compare
local interaction frequencies across all 21 tissues and cell
types. Specifically, we developed a Poisson-regression-based
normalization approach (termed as “HiCNormCis”) to normalize
the total raw local (15-200 kb) cis contacts for each 40-kb bin
genome-wide (Figure S2A; Supplemental Experimental Proce-
dures). This method removes bias from three sources known
to affect Hi-C data, including effective restriction fragment
lengths, GC content, and sequence mappability (Hu et al.,
2012; Yaffe and Tanay, 2011). Compared to other normaliza-
tion approaches, such as HiCNorm (Hu et al., 2012), vanilla
coverage (Lieberman-Aiden et al., 2009), and iterative correction
and eigenvector decomposition (ICE) (Imakaev et al.,, 2012),
HiCNormCis achieved the best performance for bias removal
(Figure S2B). Lastly, we used a Gaussian distribution to approx-
imate the normalized total local cis contacts (Figure S2C), and
converted HICNormCis output values to —In(p value), which we
define as the final “FIRE score.” FIREs (also termed “FIRE
bins”) are therefore defined as bins with a one-sided p value
less than 0.05, corresponding to —In(p value) greater than 3 (Fig-
ure 2A). We found that our FIRE scores were highly reproducible
(Figures S2D and S2E), and robust to sequencing depth (Figures
S2A and S2F), choice of restriction enzymes in Hi-C library prep-
aration (Figures S2G and S2H), as well as choice of experimental
protocols, such as dilution Hi-C or in situ Hi-C (Figure S2l).

We first identified FIREs in GM12878 and IMR90 cells (Figures
2A and 2B). Global analysis of FIREs revealed a dispersed distri-
bution along the genome (Figure 2B). We next determined FIREs

in the remainder of tissues and cell lines (Tables S5 and S6) after
removing local genomic feature biases (Figure S2J). We then
explored how FIREs are positioned in relation to A or B compart-
ments as well as in relation to TAD boundaries (not chromatin
“loops”). Careful inspection of FIRE positioning and genome-
wide enrichment analyses indicated that FIREs are enriched in
compartment A and depleted in compartment B (Figures 2C
and 2D; Table S7). We also examined the FIRE distribution within
TADs, and found that FIREs are depleted near TAD boundaries
and enriched within TADs and toward the TAD center (Figures
2E and 2F).

FIREs, Chromatin Loops, and Insulated Neighborhoods

We further analyzed FIREs at 5-kb resolution using previously
published in situ Hi-C data in IMR90 and GM12878 (Rao et al.,
2014), and compared FIRE positioning relative to the smaller
(~185 kb) chromatin “loops.” As expected, FIREs are signifi-
cantly enriched for chromatin loop anchors (chi-square test
p value < 2.2e—16); however, ~90% of FIREs are within loops,
and these FIREs demonstrate unique properties to be discussed
in the following sections. Our data indicate that FIREs are hot-
spots of local chromatin interactions that are distinct from com-
partments, TADs, and chromatin loops (Rao et al., 2014), which
are generally anchored by convergent CTCF binding. By
contrast, most FIREs are located within TADs and chromatin
loops, indicating they represent specific loci “within the loop”
at higher resolution. Similarly, FIREs are likely distinct from insu-
lated neighborhoods due to the high positional overlap between
the CTCF-mediated “chromatin loops” and “insulated neighbor-
hoods” (Ji et al., 2016). Our analysis of FIREs and insulated
neighborhoods at 40-kb resolution in H1 cells indicates that insu-
lated neighborhoods are also enriched for FIREs (chi-square test
p value = 5.32e—15), but >70% of insulated neighborhoods do
not contain a FIRE (Figure S3D) (also discussed more below).

FIREs Are Tissue-Specific and Located Near Cell
Identity Genes

To characterize the tissue-specificity of FIREs, we combined all
21 datasets (7 cell lines and 14 tissues), and performed a

Figure 2. Identification and Positional Enrichment of Frequently Interacting Regions

(A) lllustrative examples showing the FIRE score methodology. Hi-C contact maps from a 6.68-Mb region (chr19:40,480,000-47,160,000) are shown for GM12878
and IMRSO0 cells at 40-kb bin resolution (top). To the right of the contact maps are line plots showing the fully processed FIRE score for each 40-kb bin. Ared line is
drawn at the significance cutoff. The second row of contact maps illustrates FIRE scores in a sub-matrix (chr19:41,560,000-43,200,000) of the above contact
maps (black box). Line plots directly below show the intermediate stage in the FIRE score calculation, which is the output from HiICNormCis (see Supplemental
Experimental Procedures). Genome-wide HICNormCis normalized counts are then Z score transformed and converted to a —In(p value) scale to obtain the final
FIRE score (bottom line plots). Dashed columns highlight two 40-kb bins, one showing a FIRE peak in GM12878 cells, but not in IMR30 cells, and the other
showing a low FIRE score in both cell types.

(B) Chromosome ideograms showing the genome-wide positional distribution of FIRE bins in GM12878 (blue, n = 4,769) and IMRS0 (maroon, n = 4,729). Genome-
wide visualization captures both conserved and specific FIRE bins. Only autosomes are depicted.

(C) Genome browser snapshot of compartment A/B patterns in 21 samples across chromosome 6 (top), and a genome browser snapshot of a 90-Mb subset of
chromosome 6 (chr6:25,000,000-115,000,000) showing compartment A/B patterns for 21 samples (top set, blue/yellow) and FIRE calls (bottom set, maroon).
(D) Bar plots showing an enrichment analysis of FIRE positioning within either compartment A or B, illustrating FIREs are enriched in compartment A and depleted
in compartment B compared to random permutation of the FIRE bin location within each sample (*p < 5.0e—7; **p < 7.0e—13; *p < 2.2e—16; chi-square test).
Statistical tests correspond to the significance of FIRE enrichment in compartment A.

(E) Line plot showing an example of IMR30 FIRE bin positioning relative to TADs (see Supplemental Experimental Procedures). The red line depicts the observed
counts (y axis) of actual IMR90 FIRE bins, whereas the gray dashed line shows the counts of permuted FIRE bin locations. The x axis ranges from 0 to 0.5, where
0 represents TAD boundaries and 0.5 represents TAD center points.

(F) Heat map showing the TAD position enrichment analysis across all 21 samples. Shown are the log2(observed/expected) values for each distance increment,
as computed in (E).

2046 Cell Reports 17, 2042-2059, November 15, 2016

40



Height

FIRES.

Genes

41

OPEN

ACCESS
CellPress

10 20 30 40 50 60

3
8
g

i
H
£
g
S

15

200kb

s3wmi  sawer  eswe eswe

SX
PA
LG

FIRE score

62 64 66 68
genome coordinates (Mbp)

GM12878-specific FIREs
(n = 1464 bins)

Regulation of Immune System Process
Immune Response

Immune System Process|

Regulation of Immune Response

Positive Regulation of Immune System Process
Regulation of Lymphocyte Activation|
Regulation of Cell Activation

Innate Immune Response

pon ivating Signal
Regulation of Leukocyte Activation
Positive Regulation of Cell Activation
Regulation of Response to Stimulus
Multi-organism Process
Activation of Inmune Response |
Cytokine-mediated Signaling Pathway|

0

PO

AD

IMR90
MsC

NPC
TRO
H1
MES
AO
w
RV

BL

(n= 8731 bins)

200kb hg19
- | TeM  TMTMRI  TESNDI  TEIMDI  SO0MDI  S1MD
2 — —

- == AD
- AO
- BL
. (<]
- HC
-G
g el
®
w
&
£ .
°
786 788 790 792
genome coordinates (Mbp)
E Brain-specific FIREs
(n=912bins)
Axon Choice Point Recognition
Cellular Response to Amino Acid Starvation
Cell Communication
Neuron Projection Morphogenesis |
Negative Regulation of Autophagy|
Cellular Component Movement|
Neuron Recognition
Regulation of Autophagy |
Locomotion
Axonogen:
Generation of Neurons|
Cell Development
‘Chemotaxis
Neuron Development |
Axon " " N
o 5 10 15 20
-log(p)
(legend on next page)

Cell Reports 17, 2042-2059, November 15, 2016 2047



OPEN

ACCESS
Cell

comparative analysis (Figure 3A; Table S6). Approximately
38.8% (8,142/20,974 bins) of FIREs were identified in only one
tissue or cell type, and approximately 57.7% (12,094/20,974
bins) of FIREs were identified in two or fewer, revealing the highly
tissue-specific nature of FIREs (Figure S2K). Further, a hierarchi-
cal clustering analysis of genome-wide FIRE scores revealed
similarities among certain cell types, such as H1 and MES, as
well as MSC and IMR90 (Dixon et al., 2015) (Figure 3A). As ex-
pected, tissues from the same organ (brain: cortex and hippo-
campus; heart: left ventricle and right ventricle) clustered
together (Figure 3A). Tissue-specific FIREs tend to be positioned
in close proximity to genes related to the cellular identity (Figures
3B and 3C). For example, within a GM12878-specific FIRE is the
promoter for CD70, a gene well known for its role in immune cell
activation and maturation (Arens et al., 2004) (Figure 3B). More-
over, ~110 kb from a FIRE region present only in brain tissues is
an alternative ROBO1 promoter, a gene involved in axon guid-
ance during development (Leyva-Diaz et al., 2014) (Figure 3C).
To extend these observations to all tissue-specific FIREs and
to interpret the functional roles and disease relatedness of these
FIREs, we performed GREAT analysis (McLean et al., 2010) (Ta-
bles S8 and S9). The results showed that genes in close prox-
imity to tissue-specific FIREs are related to the functionality of
that tissue/cell type (Figures 3D and 3E; Tables S8 and S9).
Moreover, using only our 5-kb resolution FIRE calls in
GM12878 and IMR90, we also found abundant sample-specific
FIREs (~57% of FIREs are sample specific), and confirmed that
sample-specific FIREs are positioned near cell identity genes
(Tables S8 and S9) at a higher resolution. Collectively, these re-
sults suggest that FIREs are closely associated with cell identity
and tissue function.

FIREs Are Enriched for Active Enhancers

and Super-Enhancers

Because FIREs tend to be positioned near genes related to cell
identity and tissue function, we posited that FIREs may be en-
riched for active enhancers. To test this hypothesis, we analyzed
previously generated ChIP-seq data for six histone modifications
(H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, and
H3KS9me3) for these tissues and cell types (Roadmap Epigenom-
ics Consortium et al., 2015). We observed that FIREs display a
high density of active chromatin features (e.g., H3K27ac and
H3K4me1), and overlap with super-enhancers found in the
same tissues (Hnisz et al., 2013) (Figure 4A). We then character-
ized the histone modification signatures across 1-Mb regions

centered at FIREs. FIREs are ubiquitously enriched for two active
enhancer marks, H3K4me1 and H3K27ac, and depleted for the
repressive chromatin mark H3K27me3 (Figure 4B), whereas
enrichment of other marks did not show clear patterns (Fig-
ure S3A). FIREs also overlap with typical enhancers and super-
enhancers (Hnisz et al., 2013) annotated in the cell lines and tis-
sues where such data are available (Figures 4C and 4D). For
example, 35.0% of typical enhancers and 77.8% of super-en-
hancers annotated in GM12878 cells overlap FIREs (Fisher's
exact test p value < 2.2e—16) (Figures 4C and 4D). Importantly,
we also found significant enrichment for FIREs at typical en-
hancers and super-enhancers (chi-square test p value <
2.2e—16) when analyzing FIREs at 5-kb bin resolution (Table
S6) using previously published high-resolution Hi-C data in
GM12878 and IMR90 (Rao et al., 2014) (Figure S3B). Also, with
respect to previously annotated chromatin loops (Rao et al.,
2014), we find that the aforementioned 90% of FIREs that
do not overlap loop anchors are also significantly enriched
for typical and super-enhancers (chi-square test p value <
2.2e—16). For example, we observed GM12878-specific FIREs
corresponding to a GM12878-specific super-enhancer, whereas
the same locus in IMRS0 lacks any enhancer or FIRE, despite
sharing a conserved chromatin loop (Figure S3C). These FIRE
analyses at 5-kb resolution corroborate our findings at 40-kb
resolution, and indicate that FIREs represent distinct structural
entities with differing biochemical properties compared to chro-
matin loops. As anticipated, we also find a significant overlap be-
tween FIREs and super-enhancer domains in mouse embryonic
stem cells (MESCs) at 40-kb resolution (chi-square test p value =
0.0052), but not polycomb domains (Dowen et al., 2014; Jiet al.,
2016), further underscoring the role of FIREs in active gene regu-
lation (Figure S3D).

Because many FIRE bins were found in clusters, we stitched
together adjacent FIRE bins and ranked them by cumulative Z
score, revealing that a small proportion of FIRE clusters (termed
“super-FIREs") contain the majority of bins with the most sig-
nificant local interaction frequency (Figure S3E). Strikingly,
compared to all FIREs (Figure S3F), we observed some tissues,
in which nearly 100% of super-FIREs contain either a super-
enhancer or typical enhancer (Figure S3G), suggesting that the
bins with the highest local interaction frequency almost always
mark active enhancer(s). Analysis of super-FIREs not containing
an enhancer revealed a moderate enrichment for H3K27me3
across most testable samples, but no other clear trends (Figures
S3H-S3M). Given this striking relationship, we wondered to what

Figure 3. FIREs Are Tissue-type Specific and Enriched Near Genes Involved in Tissue Function

(A) At the top is a dendrogram resulting from a hierarchical clustering analysis using genome-wide FIRE scores for each sample. The y axis is the Euclidean
distance between FIRE scores from any two samples. The heat map below shows a subset of FIRE bins (n = 8,371), corresponding to FIRE bins that are called as
FIRE in only one or two samples. For ventricle tissues, brain tissues, IMR90/MSC, and H1/MES, FIREs specific to two samples are allowed in the definition of

sample specific.

(B) Genome browser snapshot showing a GM12878-specific FIRE region (chr19:6,560,000-6,640,000) (top, maroon) in an 800-kb region around CD70
(chr19:6,583,193-6,604,114). Below is a line plot of FIRE scores for each sample, showing the GM12878-specific FIRE peak (blue).

(C) Genome browser snapshot showing a brain-specific FIRE region (chr3:78,920,000-78,960,000), shared by CO and HC, in a 760-kb region within ROBO1
(chr3:78,646,338-79,068,609). Below is a line plot of FIRE scores for each tissue showing CO (yellow) and HC (pea green) FIRE peaks.

(D) GREAT biological process analysis of genes surrounding GM12878-specific FIRE bins (n = 1,464 bins), showing biological processes highly related to immune
functions. Plotted values are the —log10 of the Bonferroni-corrected binomial p values.

(E) Same as (D), except using genes surrounding brain (CO and HC) specific FIRE bins (n = 912 FIRE bins) showing several significant processes highly related to
brain functionality. Plotted values are the —log10 of the Bonferroni-corrected binomial p values.
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extent FIRE analysis could be used to predict the locations of
typical and super-enhancers in GM12878. By varying the signif-
icance thresholds for FIRE calling and performing a receiver
operating characteristic (ROC) area under curve (AUC) analysis,
we find an impressive predictive power of FIRE analysis to iden-
tify typical enhancers and super-enhancers using Hi-C data
alone (AUC = 0.813 and AUC = 0.906, respectively) (Figures
S3N and S30). Taken together, the high overlap between
super-enhancers and FIREs, as well as the enrichment of tissue
identity genes near tissue-specific FIREs, implicates a potential
cis-regulatory role for FIREs in facilitating tissue-specific gene
expression.

FIREs Are Near Tissue-Specifically Expressed Genes

Because super-enhancers are known to be tissue-specific and
positioned near cell identity genes, we asked if FIREs are nearby
genes that are more transcriptionally active in the corresponding
tissue/cell types. By re-analyzing publicly available RNA-seq
data (Roadmap Epigenomics Consortium et al., 2015), we
indeed found a strong correlation between cell/tissue-specific
FIREs and cell/tissue-specific expression of nearby genes. For
example, the GRIN2A gene, which encodes an important ligand-
and voltage-gated N-methyl-D-asparate (NMDA) receptor sub-
unit implicated in epilepsy (Kingwell, 2013) and schizophrenia
(Ohi et al., 2016), is predominantly expressed in brain tissues,
and the transcription start site (TSS) is ~197 kb from a brain-spe-
cific FIRE (Figure 4E). In GRIN2A, the relative gene expression in
cortex (CO) is the highest among all tissues (Figure 4F; see Sup-
plemental Experimental Procedures). We also calculated the
relative gene expression for each gene within 200 kb of a tis-
sue-specific FIRE across all tissues and found significant corre-
lation between tissue-specific FIREs and tissue-specifically ex-
pressed genes (Figure S3P). For example, we found that the
GM12878-specific FIRE gene set contained genes with signifi-
cantly higher relative expression in GM12878 compared to any

other FIRE gene set (two-sample t test p value < 9.26e—6)
(Figure S3P).

Intrigued by these observations in brain tissue and lympho-
blast cells, we applied a more systematic mean-rank gene set
enrichment test (see Supplemental Experimental Procedures)
to further understand the relationship between FIREs and gene
expression patterns. For example, in cortex tissue, there is a
clear difference between the mean ranks of genes neighboring
brain-specific FIREs compared to random FIRE positioning (Fig-
ures 4G and 4H). Importantly, this type of analysis can be used to
study the extent to which tissue-specific FIRE genes are ex-
pressed by testing all combinations of relative expression rank
lists and tissue-specific FIRE gene sets (Figure 4G). In other
words, if tissue-specific FIRE genes are primarily expressed in
that same sample, the enrichment signal should track the diago-
nal of an all by all comparison (Figure 4G) and generally lower
enrichment off the diagonal where the sample for the rank list
and FIRE gene set are different. Indeed, we observed this trend,
although the neural progenitor cell (NPC)-specific FIRE gene set
is ranked higher in the cortex and hippocampus, which may be
expected, given that they prominently consist of neural cells or
neural progenitors. Taken together, our results suggest that tis-
sue-specific FIREs are likely involved in tissue-specific gene
expression.

FIREs Are Conserved in Humans and Mice

If FIREs play a role in gene regulation and developmental pro-
grams, one would expect that such chromatin features would
be conserved evolutionarily (Dixon et al., 2012, 2015; Vietri Ru-
danetal., 2015). To test this hypothesis, we compared FIREs be-
tween humans and mice in three different sample types (embry-
onic stem cells, neural progenitor cells, and cortex tissue) (Dixon
et al., 2012, 2015; Fraser et al., 2015; Shen et al., 2012). We
found that FIREs are significantly conserved in these compari-
sons (Figure 5A). Specifically, 33.0% of human cortex FIREs

Figure 4. FIREs Are Enriched for Active Enhancers and Positioned Near Tissue-Type-Specific Genes

(A) Normalized Hi-C contact matrix in left ventricle tissue showing a 2.76-Mb locus (chr2:40,000,000-42,760,000). Below are genome browser tracks for pre-
viously published (Hnisz et al., 2013) LV super-enhancers (red), LV FIRE bins (brown), and UCSC genes, including isoforms (blue). To the right is the continuous LV
FIRE score along this locus.

(B) Heat maps showing the local enrichment (see Supplemental Experimental Procedures) of H3K27me3 (left), H3K4me1 (middle), and H3K27ac (right), centered
on FIRE bins for each cell line or adult tissue. H3K27me3 data were not available for CO or HC.

(C) Bar plot showing the observed overlap between actual FIRE bins and previously characterized typical enhancers (blue) (Hnisz et al., 2013) for each available
cell line or tissue that has both Hi-C data and typical enhancer calls. Expected values are also shown (green), which are calculated by permuting the location of
FIRE bins within each tissue and calculating the overlap with typical enhancers. The y axis shows the percentage of typical enhancers overlapped by FIREs.
(D) Same as (C), except showing the percentage of super-enhancers overlapped by FIRE bins for each testable cell line or tissue.

(E) Genome browser snapshot showing an example of sample-specific gene expression near sample-specific FIREs. Shown here is a 780-kb locus
(chr16:9,820,000-10,600,000) around GRIN2A (chr16:9,852,375-10,276,611). At the top, FIRE tracks (maroon) for each sample, showing the brain-specific FIRE
(chr16:10,040,000-10,080,000, highlighted in yellow) ~197 kb away from GRIN2A TSS. Below, RNA-seq data (Roadmap Epigenomics Consortium et al., 2015)
for all samples except OV (blue), showing GRIN2A is mainly expressed in brain tissues.

(F) Bar plot indicating the relative gene expression (see Supplemental Experimental Procedures) of GRIN2A across 20 samples.

(G) All-by-all mean-rank enrichment analysis result showing gene expression specificity of genes within 200 kb of sample-specific FIRE bins (see Supplemental
Experimental Procedures). Each row is a different sample type for which the sample-specific FIRE gene set is collected, and columns are the sample type used to
calculate the relative expression rank of each gene. IMR30/MSC, M1/MES, and brain tissues were previously shown to have highly overlapped FIRE bins
(Figure 3A) and are therefore grouped. The color for each row of the heat map indicates the enrichment. Outlined in thick black boxes along the diagonal are the
matrix entries for which the sample for the sample-specific FIRE gene set and expression rank list are the same. Highlighted in a thin yellow box is the analysis
portrayed in (H).

(H) Line plot illustrating a single mean-rank enrichment analysis. The plot shows the relative gene expression values (y axis) in the cortex as a function of their
numeric ranking (x axis) in the cortex. Vertical dashed lines show the position of the observed mean rank of cortex-specific FIRE genes (red dash), and the
expected mean rank based on size-matched randomly selected non-FIRE bins in the cortex (gray dash). The inset is the calculation of the enrichment score.
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Figure 5. FIREs Are Conserved across Evolution and Mediated by Cohesin

(A) Venn diagrams showing the significant number of conserved FIRE bins when lifting over mouse FIREs onto the human genome (left column) or lifting over
human FIREs onto the mouse genome (right column) in either embryonic stem cells (top row, p value < 5.0e—16), neural progenitor cells (middle row, p value <
2.2e—16), and cortex tissue (bottom row, p value < 2.2e—16). Significance evaluated using a Fisher’s exact test (see Supplemental Experimental Procedures).
(B) Normalized Hi-C contact matrix in human cortex (left) and mouse cortex (right) for a 2-Mb syntenic region (human chr3:78,000,000-80,000,000; mouse
chr16:71,520,000-73,520,000) showing a conserved FIRE (connected black lines) within the same tissue type but across species. Below is a UCSC gene track,
and to the right of the contact matrix is the continuous FIRE score across the locus. For the human data, the Hi-C contact matrix, gene track, and FIRE score plot
have been inverted to show synteny with the mouse data.

©) i Hi-C contact ices (red and white) or delta matrix (green and blue) for the 1.96-Mb locus (chr1:55,400,000-57,360,000) illustrating the change
of interaction frequency between TEV and HRV. Directly below the delta matrix are binding profiles of CTCF and the Cohesin subunit SMC3 in wild-type HEK cells
(Zuin et al., 2014) as well as TAD boundary annotations. To the right of the Hi-C delta matrices is the continuous FIRE Z score difference between TEV and HRV.
Below is a delta matrix at a zoomed-in 800-kb region (chr1:55,560,000-56,360,000) for TEV-HRV, showing the greatest reduction of FIRE score occurs at the bin
with co-binding of CTCF and SMC3. The FIRE Z score difference is plotted to the right of the subtraction matrices.

(D) Box plots showing the change in Z score at FIREs overlapping bins bound by CTCF but not SMC3 “CTCF-only” (left plot), all CTCF peaks (middle plot), and
CTCF and SMC3 co-binding (right plot) for the comparison of TEV and HRV. The red boxes show distributions of FIRE score change at FIRE bins called in wild-
type cells minus the mutant cells, whereas the blue boxes are distributions for FIRE score change at FIRE bins called in wild-type cells but between biological
replicates of wild-type cells. These comparisons show the significant reduction of FIRE score at all CTCF peaks, and especially at CTCF SMC3 co-bound peaks
overlapping FIRE bins (‘p = 1.0e—4; **p = 4.04e—5; two-sample t test).

(E) Similar to (D), except analysis of Z score change was done considering FIREs overlapping the Cohesin subunit Rad21 peaks using previously published Hi-C
dataand Rad21 ChlP-seq data in mouse neural stem cells (left plot) and mouse post-mitotic astrocytes (middle plot) (Sofueva et al., 2013). Comparison of Z score
change upon deletion of Rad21 shows a significant decrease compared to changes observed between biological replicates (p < 0.01; **p < 2.2e—16; two-sample
t test).

(F) Similar to (E), except analysis of Z score change was conducted on previously published Hi-C data and Rad21 ChlP-seq data in mouse thymocytes (Seitan
et al., 2013). Comparing the distributions of Z score changes at FIRE bins bound by Rad21 shows a significant reduction in Z score between the wild-type and
Rad21 knockout cells compared to changes between wild-type biological replicates (**p < 2.2e—16; two-sample t test).
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are also FIREs in the mouse cortex, whereas only 8.7% is ex-
pected by chance (Fisher’s exact test p value < 2.2e—16). For
example, retuming to the ROBO1 locus, we found that both
the mouse and human cortex have only one FIRE bin in the
2-Mb region around ROBO1, and the single FIRE position is
conserved across species (Figure 5B). Interestingly, the degree
of FIRE conservation between a human and mouse is the highest
in cortex tissue and less, although statistically significant, in em-
bryonic stem cells and neural progenitor cells (ESC p value <
5.0e—16; NPC p value < 2.2e—16, Fisher's exact test) (Figure 5A).
More generally, by randomly sampling syntenic bins across a
range of FIRE scores, we find a modest yet significant correlation
of FIRE score between a human and a mouse in each cell
type (Pearson correlation coefficient = 0.20-0.42; p value <
2.2e—16) (Figures S4A-S4F). These data indicate a tendency
for the local contact frequency to be conserved in syntenic re-
gions throughout the human and mouse genome as well as con-
servation of the strongest locally interacting hotspots.

CTCF and Cohesin Complex Contribute to
Establishment of FIREs

We posited that FIREs might be mediated by the Cohesin com-
plex, which has been previously shown to modulate enhancer/
promoter interactions in mammalian cells (Kagey et al., 2010).
To test this hypothesis, we re-analyzed three previously pub-
lished Hi-C datasets, in which a Cohesin subunit was experimen-
tally depleted in human or mouse cells (Seitan et al., 2013; So-
fueva et al., 2013; Zuin et al., 2014), and investigated FIRE
scores upon loss of a Cohesin subunit. We began by systemat-
ically examining the Hi-C datasets generated in HEK293 cells
before and after depletion of the Cohesin subunit SMC3 (Fig-
ure 5C). Because the Cohesin complex is frequently bound
together with CTCF throughout the genome, we focused our
analysis to CTCF-only binding sites and CTCF/SMC3 co-bound
peaks. SMC3-only peaks were ignored because only ~0.7% of
SMC3 peaks overlapping FIREs were not co-occupied with
CTCF (Figure S4G). We then compared FIRE score changes at
FIRE bins upon loss of SMC3. We observed a significant
decrease of the FIRE score at CTCF/SMC3 co-bound sites
(two-sample t test p value = 6.78e—6 for TEV-HRV) (Figures 5C
and 5D). By contrast, there is no statistically significant FIRE
score decrease at FIRE bins that had CTCF binding without bind-
ing of SMC3 (Figure 5D). Quantitatively similar results were seen
in mouse neural stem cells, post-mitotic astrocytes, and thymo-
cytes in the case of Rad21 deletion (two-sample t test p value =
0.0011 for post-mitotic astrocytes; two-sample t test p value <
2.2e—16 for both neural stem cells and thymocytes) (Figures
5E and 5F) (Seitan et al., 2013; Sofueva et al., 2013). Importantly,
the significant decrease of the FIRE score was only observed at
FIRE bins. Cohesin loss did not systemically affect FIRE scores
atrandomly selected and size-matched (5% of the genome) con-
trol regions (Figures S4H and S4l). We also re-analyzed Hi-C
data in HEK293 cells, in which CTCF had been experimental
knocked down (Zuin et al., 2014), and again observed that
FIRE score is most significantly reduced at FIRE bins occupied
by CTCF/SMC co-binding in wild-type cells (Figure S4J). Collec-
tively, these results, as well as the significant enrichment of
Cohesin at FIRE bins (Figure S4K), suggest that both CTCF
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and the Cohesin complex contribute to the formation of FIREs,
and such a mechanism is likely conserved across the human
and mouse.

FIREs Are Enriched for Disease-Associated SNPs

Our analyses have indicated that FIREs are enriched for active
enhancers and super-enhancers (Figures 4A-4D; Figures S3B,
S3C, S3F, S3G, S3N, and S30). Because typical and super-en-
hancers contain a significant proportion of disease-associated
SNPs (Hnisz et al., 2013), we further investigated the overlap be-
tween FIREs and disease-associated SNPs. First, we mapped
4,327 previously annotated disease-associated non-coding
SNPs to FIREs defined in each cell line and tissue (see Supple-
mental Experimental Procedures) (Hnisz et al., 2013). Consistent
with previous results (Hnisz et al., 2013), we observed 7.06 and
3.76 SNPs per megabase, and among 354 GM12878 FIREs
overlapped with super-enhancers and 2,800 GM12878 FIREs
overlapped with typical enhancers, respectively (Figure S5A).
Surprisingly, among 1,615 GM12878 FIREs that do not overlap
an annotated enhancer, we also observed 3.33 SNPs per mega-
base, which is ~2.3-fold higher than the genome-wide SNP den-
sity (1.42 SNPs per megabase) (Figure S5A). Importantly, these
SNPs would not be captured by directly overlapping super-en-
hancers or typical enhancers with disease-associated SNPs
(Hnisz et al., 2013).

Next, we examined the overlap between disease-associated
SNPs and FIREs for 456 diseases and quantitative traits (Hnisz
et al., 2013). We defined the enrichment score for each disease
as the ratio between the proportion of SNPs overlapped with
FIREs and the proportion of FIRE bins in the genome. Strikingly,
numerous immune-related diseases exhibit strong SNP en-
richment in GM12878, but mild or weak enrichment in the
other cell lines or tissues (Figure 6A). In fact, the vast majority
of the top enrichment scores come from diseases previously
implicated with immune pathology (Jostins et al., 2012) (Fig-
ure 6A). Motivated by these observations, we closely examined
genes near FIREs harboring disease-associated SNPs, and
found many genes associated with that type of disease. For
example, two SNPs associated with acute lymphoblastic leuke-
mia (ALL), rs6683977 and rs546784, are within a GM12878-spe-
cific super-FIRE (Figure 6B) and within PDE4B, a gene associ-
ated with ALL (Yang et al., 2011).

We then conducted an SNP enrichment analysis for the tissue
datasets and observed similar results for some diseases and
quantitative traits, with the most striking findings in the brain
and liver (Figures 6C and 6D; Figures S5C and S5D). A careful ex-
amination of SNP and FIRE overlap also revealed disease candi-
date genes. For example, two Alzheimer’s disease-associated
SNPs, rs3851179 and rs536841, are within a brain FIRE (Fig-
ure S5B). Here, rs3851179 is within a brain-specific super-
enhancer, whereas rs536841 is outside the super-enhancer.
Interestingly, this brain-specific FIRE overlaps with PICALM,
which contains the SNP (rs3851179) previously related to the
incidence of late-onset Alzheimer’s disease (Liu et al., 2016).

The presence of deleterious variants has been shown to
mediate the expression of distal genes and confer pathology
through DNA looping (Smemo et al., 2014). Therefore, we
posited that significantly interacting bin pairs (i.e., “peaks”)
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anchored at SNP-bearing FIREs (termed “FIRE peaks”) may be
enriched for SNP-gene pairs, relative to peaks anchored at non-
FIRE bins (termed “non-FIRE peaks”). To explore this, we first
used Fit-Hi-C (Ay et al., 2014) (see Supplemental Experimental
Procedures) and a stringent statistical significance (FDR <
1e—6) cutoff to obtain the most confident peak calls within a
2-Mb genomic distance for all samples in our primary cohort
(Supplemental Information). We found that this significance cut-
off corresponds well to previously published total peak counts
(Jinet al., 2013) and can also be used to link disease-associated
SNPs to genes previously implicated in a particular disease. For
example, Fit-Hi-C peak-calling analysis in GM12878 lympho-
blasts reveals a highly significant (FDR = 6.29e—83) pairwise
Hi-C contact between a bin containing a SNP associated with
ALL (rs6964969) and a distal (~130 kb) TSS of IKZF1, a gene pre-
viously implicated in ALL (Mullighan et al., 2009) (Figures 6E and
6F). To further explore SNP-gene-pair linkages in our tissue da-
tasets, we collected statistically associated SNP-gene pairs
from the GTEx eQTL database in tissues matching our Hi-C da-
tasets (GTEx Consortium, 2015; Lonsdale et al., 2013). We then
selected six of our higher resolution tissue Hi-C datasets that
were also present in GTEx for further analysis and found that
FIRE peaks were indeed significantly enriched for SNP-gene
pairs compared to non-FIRE peaks (Table S4). However, this
may be expected because FIREs are enriched for disease-asso-
ciated SNPs, and FIREs are likely to have more local peaks than
non-FIREs based on the definition of FIRE. Therefore, we
analyzed the enrichment of GTEx SNP-gene pairs in subsets of
the most significant FIRE peaks (i.e., the lowest FDR bin pairs).
We found that the most statistically significant FIRE peaks ex-
hibited the strongest enrichment of SNP-gene pairs, and relaxing
the FDR for peak calling results in statistically significant, but less
enriched, SNP-gene pairs (Figures 6G-6J; Table S4).

Local Chr

FIREs Display Pr
Interactions
Although FIREs are identified on the basis of their cumulative
local contact frequency, this could result from FIREs either hav-
ing a single local target with exquisitely high contact frequency or
numerous local targets with moderate to high contact frequency.
Because FIREs and super-FIREs are highly enriched for active
enhancers, exploring the interaction patterns of FIRE regions
may provide further insight into the interaction behavior of active
cis-regulatory loci. First, as expected, we find that FIREs are
highly enriched for local interactions compared to non-FIREs,
but, unexpectedly, this contact enrichment extends in many
cases to an ~500-kb genomic distance (Figure 7A). Because
FIREs tend to be positioned near the TAD center, it's likely that
FIREs are highly interactive with all loci within the confines of
their respective TADs. Next, using the most statistically con-
fident (FDR < 1e—6) Hi-C contacts determined by Fit-Hi-C, we
find that FIREs have significantly more local (<200 kb) peaks
compared to non-FIREs (Figures 7B and 7C; Table S4) (two-
sample t test p value < 0.01 for ovary (OV) and small bowel
(SB); < 2.2e—16 for remaining samples), with an average of three
to seven local peaks per FIRE bin, depending on the sample and
sequencing depth (Figures 7B and 7C; Table S4). One example
is the BCL11A locus in GM12878 lymphoblast cells, where
numerous enhancer-bearing FIRE bins significantly interact
with each other and with the bin containing the promoter for
BCL11A (Figure 7D). Interesting, BCL11A is also known to be
involved in numerous lymphoid pathologies (Satterwhite et al.,
2001).

To further quantify the contacts between FIREs, we examined
the contact frequencies of FIREs and non-FIRE bins across a
spectrum of genomic distances within 2 Mb. We find a signifi-
cantly high contact frequency between FIREs beyond 200 kb

Figure 6. FIREs Are Enriched with Disease-Associated GWAS SNPs

(A) Heat map showing the enrichment of disease-associated GWAS SNPs (see Supplemental Experimental Procedures) in FIRE bins for each cell line or tissue

(columns). Rows represent the enrichment of disease-associated SNPs for one disease, and all rows in the presented heat map are sorted from high to low based

on enrichment score in GM12878 (lymphoblast cell line). Only diseases with >15 SNPs are shown. Noted to the right are the top 15 diseases for which disease-

associated SNPs are most enriched in GM12878 FIREs, showing the high enrichment of several diseases (all except mean corpuscular volume) with previously

noted immune-mediated pathology (Jostins et al., 2012).

(B) Normalized Hi-C contact matrix of a 2.16-Mb locus (chr1:65,120,000-67,280,000) in GM12878 cells. The tracks below depict the presence of two SNPs
i with acute lympt ic leukemia (rs546784 and rs6683977) located within a FIRE bin (brown, chr1:66,760,000-66,800,000), ~30 kb outside of a

GM12878-specific super-enhancer (red) and also within the PDE4B gene sequence. To the right of the Hi-C contact matrix is the FIRE score.

(C) Bar plots showing the enrichment of Parkinson’s disease-associated SNPs across 14 primary adult tissue FIRE annotations, also highlighting the highest

enrichment in FIREs from both brain tissues (CO and HC).

(D) Bar plots showing the enrichment of SNPs associated with the quantitative triglycerides trait across 14 primary adult tissue FIRE annotations, also highlighting

the highest enrichment in liver FIREs.

(E) Normalized Hi-C contact matrix (top) in GM12878 for a 4.04-Mb locus (chr7:48,440,000-52,480,000) centered on /KZF1 (red text). The Hi-C color scale ranges

from the 15'" to 99" percentile normalized contact frequencies within this locus. The reflected matrix shows the statistically significant (FDR < 1e—6) bin-pairs

within 2-Mb genomic distance across the locus. Only bin pairs with FDR < 1e—6 are yellow; the rest are black. Between the matrices are a UCSC gene annotations

(blue, top), RNA-seq data (red), H3K27Ac data (black), typical enhancer annotations (Hnisz et al., 2013) (purple), FIRE annotations (brown), TAD boundary

calls (blue), and an SNP that is statistically linked to the IKZF1 TSS (green). The blue lines outline the 440-kb locus (chr7:50,240,000-50,680,000) that is

shown in (F).

(F) Same as (E), except a zoomed-in snapshot of a 440-kb locus (chr7:50,240,000-50,680,000) centered on a SNP-bearing FIRE bin (chr7:50,440,000—

50,480,000) containing the 3' UTR of IKZF1 and the SNP rs6964969. The blue box outlines the bin pair that is the significant interaction between previously known

SNP-gene pairs.

(G) Bar plots showing the enrichment of liver GTEx eQTLs in FIRE peak bin pairs as a function of the subset of top liver FIRE peaks (based on the lowest false

discovery rate) determined by Fit-Hi-C.

(H) Same as (G), except using aorta GTEx eQTLs, FIREs, and FIRE peaks.

(I) Same as (G), except using left ventricle GTEx eQTLs, FIREs, and FIRE peaks.

(J) Same as (G), except using cortex GTEx eQTLs, FIREs, and FIRE peaks.
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(A) Heat map showing the relationship between the mean observed contact frequencies at FIREs compared to the mean observed contact frequency
at non-FIREs. Enrichment is shown as the ratio between the two contact observed mean contact frequencies (FIRE:non-FIRE) per unit genomic distance, from =
40 kb to = 2 Mb, centered on FIRE bins. Each row represents the analysis of a different sample, and the color intensity corresponds to the enrichment value.

(legend continued on next page)
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(Figures 7E and 7F), often up to ~500 kb and even up to 2 Mb in
some cell lines and tissues (Figure S5E; Table S4). Furthermore,
we find a significant proportion of FIREs are targets of other
FIREs (chi-square test p value < 1e—5 for OV and < 2.2e—16
forthe rest of the samples) (Figures 6, 7E, 7G, 7H, and S5E; Table
S4). Taken together, these data support the notion that FIREs
represent spatially active regions in the genome.

DISCUSSION

3C and related technologies have been instrumental for under-
standing the hierarchical organization of mammalian genomes.
Comparative analyses across cell types or species have thus
far revealed a number of organizational features, including dy-
namic chromosomal compartments (Dixon et al., 2015; Lieber-
man-Aiden et al., 2009), TADs (Dixon et al., 2012; Nora et al.,
2012; Sexton et al., 2012), sub-TADs (Phillips-Cremins et al.,
2013), insulated neighborhoods (Dowen et al., 2014), and chro-
matin loops (Rao et al., 2014). Here, through a comprehensive
survey of chromatin organization in 21 human tissues and cell
types, we report the finding of a previously under-appreciated
feature of chromatin organization, FIRE, defined as regions
that show substantial levels of local chromatin interactions.
FIREs are distinct structural features compared to the previously
described 3D genome features, such as TADs, chromatin loops,
and compartments. FIREs are enriched in compartment A and
display strong tissue-type specificity, with nearly 60% of the
FIREs found in two or fewer tissues and cell types out of 21 sur-
veyed. Perhaps most surprisingly, FIREs appear to engage in
promiscuous chromatin interactions within their local chromatin
neighborhood. The majority of the FIREs identified interact with
multiple partners, while the reported chromatin loops typically
connect two genomic regions together. Thus, FIREs are hot-
spots of local chromatin interactions. Finally, FIREs likely repre-
sent genomic regions actively engaged in gene regulation.
Indeed, they reside near cell-identity genes, harbor significant
levels of active chromatin marks, and are enriched for active en-
hancers, especially super-enhancers.

Further analysis reveals FIREs are closely related to previously
reported super-enhancers (Hnisz et al., 2013). In GM12878 cells,
in which deeply sequenced Hi-C data were available, nearly
100% of the super-enhancers are FIREs. Such an observation
sheds light on the spatial architecture of super-enhancers and
other active enhancers. Specifically, our results suggest that in
addition to the high density of transcription factor binding and

active chromatin modification, these long-range control ele-
ments also share a unique spatial feature: a high level of local
chromatin interactions. Three additional properties about FIREs
carry implications for the understanding of chromatin organiza-
tion of enhancers. First, FIREs are not only highly interactive
within 200 kb, but also highly interactive beyond 200 kb.
Because FIREs are often positioned toward the TAD center,
this likely means these FIREs are free to explore and interact
with a substantial fraction of the TAD structure. Second, we
find that FIREs often have numerous significant local interaction
partners. Coupled with the observation that FIREs and super-
FIREs are highly enriched for enhancers, this uncovers the pro-
miscuously interactive behavior of active enhancer sequences.
This could mean that enhancers are likely to explore and physi-
cally engage with several loci in their local neighborhood in
search for compatible targets. Lastly, we find that FIREs are
highly self-interactive, even beyond the local (+200 kb) neigh-
borhood. This underscores the significant degree of active
cis-regulatory element spatial clustering occurring within the
topological framework of larger domains. These observations,
in conjunction with the notion that FIREs exhibit a high degree
of tissue-specificity, reveal the degree to which tissues contain
unique chromatin folding signatures at their active cis-regulatory
elements. Through their heightened local contact frequency,
FIREs are likely to engage with several cis-regulatory elements
in their TADs and cooperatively regulate gene expression.

By analyzing the effects of Cohesin depletion in three indepen-
dent studies involving both mouse and human cells, we found
that the Cohesin complex is a key mediator of FIREs, and this
mechanism is conserved across species. Previous analyses of
chromatin architecture in mammalian cells indicated that loss
of Cohesin results in a reduction of interaction frequency within
TADs (“intra-TAD"), whereas knockdown of CTCF results in
both loss of intra-TAD contact frequency and an increase in in-
ter-TAD contact frequency (Zuin et al., 2014). Our re-analysis
of these data in the context of very local chromatin interaction
frequency indicates that upon loss of Cohesin or CTCF, the
most dramatic reduction in FIRE score at FIRE bins was
observed at loci containing CTCF/Cohesin co-bound peaks
but not CTCF-only sites. We further demonstrate the Cohesin
dependence of FIREs in murine neural progenitor cells, astro-
cytes, and thymocytes, supporting a conserved mechanism of
FIRE establishment.

In sum, by generating a rich resource of chromatin contact
maps across 21 human tissues and cell types and exploring

(B) Box plot for GM12878 showing the distributions of a number of statistically significant (FDR < 1e—6) Hi-C contacts within 200 kb emanating from non-FIRE

(blue box) or FIRE (yellow box) bins (two-sample t test p value < 2.2e—16).
(C) Same as (B), except analysis of liver data.

(D) Comparison of the normalized contact matrix (top triangle) to statistically confident (FDR < 1e—6) pairwise contacts (bottom triangle) in GM12878 across a
440-kb locus centered on BLC11A. Between the matrices are the UCSC gene annotations (blue), RNA-seq (red), H3K27Ac (black), typical enhancer annotations
(purple) (Hnisz et al., 2013), and FIRE annotations (brown). Color bar values of the Hi-C contact matrix correspond to the 15! and 99 percentiles, respectively,
across this locus. In the lower triangle matrix, only the most confident bin pairs (FDR < 1e—6) are colored yellow.

(E) Line plots in GM12878 showing the normalized Hi-C contact frequency (y axis) as a function of genomic distance (x axis) for three categories of pairwise
interactions: FIRE-FIRE interactions (red line), FIRE-non-FIRE interactions (pink line), and non-FIRE-non-FIRE interactions (gray line).

(F) Same as (E), except analysis is in bladder tissue.

(G) Venn diagram showing the overlap between all annotated FIRE bins (red circle) in GM12878 and all bins that are involved in statistically significant (FDR <

1e—6) pairwise contacts (blue circle).
(H) Same as (G), except analysis is in liver tissue.
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with integrative analytic methods, we have cataloged 3D
genome interactions at various hierarchical levels and uncov-
ered the highly dynamic nature of local interaction hotspots.
These results provide insights into the chromatin organization
in mammalian cells.

EXPERIMENTAL PROCEDURES

Hi-C

Hi-C experiments on all human tissues were performed as previously
described using the Hindlll restriction enzyme (Lieberman-Aiden et al.,
2009), with minor modifications pertaining to handling flash frozen primary
tissues (Leung et al., 2015). All previously published Hi-C datasets
analyzed in this study were generated using the original “dilution” Hi-C
protocol (Lieberman-Aiden et al., 2009) and Hindlll, unless otherwise noted
(Table S1).

Hi-C Data Processing

Newly generated Hi-C datasets were sequenced on either the lllumina
HiSeq2000 or HiSeq2500 instrument. Published datasets were obtained
from the SRA and converted to fastq files. Data were then processed using
a custom pipeline, beginning with aligning each read end to the mm9 or
hg19 reference genomes using BWA -mem. Chimeric read ends were filtered
to keep only 5’ alignments with MAPQ > 10, and then read ends were paired
and de-duplicated. Raw contact matrices were constructed using in-house
scripts, and then further processed using HICNormCis (described below) or
using HiICNorm (Hu et al., 2012), Vanilla Coverage (Rao et al., 2014), or ICE
(Imakaev et al., 2012), where indicated.

Compartment A/B Identification
Compartment A/B analysis was performed at 1-Mb resolution, as previously
described (Lieberman-Aiden et al., 2009), using the “prcomp” function in R
on the Pearson correlation matrix.

of T I D
Topological domain boundaries were identified at 40-kb bin resolution using
the previously described insulation score analysis approach, with two minor
modifications (Crane et al., 2015). Because mammalian TAD have been previ-
ously identified to be ~1 Mb, a 1-Mb genomic region was used rather than
500 kb. Additionally, a 200-kb window, rather than 100 kb, was used for
calculation of the delta vector.

Interacting Regi

We developed a Poisson-regression-based normalization approach, named
“HICNormCis,” to identify FIRE bins. Specifically, we first partitioned the entire
genome into bins, and calculated the total number of intra-chromosomal
(“cis") interactions in the contact distance range of 15-200 kb for each bin.
Bins with low mappability (<0.9) around Hindlll cut sites were removed.
HiCNormCis then takes into account biases from three known factors known
to bias observed Hi-C contact counts, including effective fragment length, GC
content, and mappability (Yaffe and Tanay, 2011) (related to Figures 2 and S2).
Let Y; represent the total cis interactions (15-200 kb) for the ith bin. Addition-
ally, let F;, GC;, and M; represent the effective fragment length and GC repre-
sent content and mappability in the ith bin, respectively. The detailed calcula-
tion of F;, GC;, and M; is described in our previous work (Hu et al., 2012).
Assume Y; follows a Poisson distribution, with a mean of ;. We fitted a Poisson
regression model as follows: log 6; =8, + 8¢F; + 8gcGCi + ByM;, and defined
the residual R, = Y;/exp(Bo + B¢F; + BocGC; + BiyM,) as the normalized total
cis interaction. Noticeably, exp(ﬁo) is proportional to the overall sequencing
depth, and the residual R; has a mean of 1. Therefore, the normalized total
cis interactions are robust to different sequencing depths, and are directly
comparable among different samples. Visual inspection revealed that R; fol-
lows a Gaussian distribution (related to Figure S2). Therefore, we converted
R; to the corresponding Z score and —In(p value). The same approach can
theoretically be applied to any Hi-C dataset generated using a restriction
enzyme and at any bin size.

Identification of Significant Hi-C Contacts

Statistically significant contacts in Hi-C data were identified at 40-kb resolution
using Fit-Hi-C, as previously described (Ay et al., 2014) (see Supplemental
Experimental Procedures). We used the default Fit-Hi-C code to calculate a
p value and q value for each bin pair within a 2-Mb genomic distance. For all
analyses in this study, we used a conservative peak-calling threshold of
FDR < 1e-6.

ACCESSION NUMBERS

The accession number for the Hi-C and re-analyzed RNA-seq data reported in
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Figure S1. Hi-C data reproducibility and compartment A/B conservation, related to Figure 1.

Scatter plots from replicates of LG, showing the genome-wide of the PC1 values used for the Compartment A/B
analysis. The plot title contains the Pearson correlation coefficient of all 1Mb bin-pairs. The x- and y-axes are
labeled according to their tissue type and donor. For example, LG2 corresponds to Lung tissue from donor 2.

Same as Panel A, except analysis of biological replicates for PO.

Same as Panel A, except analysis of biological replicates for PA.

Same as Panel A, except analysis of biological replicates for SX.

Bar plots showing the statistically significant fraction of overlapping TAD boundaries in LG, PO, PA, and SX (Chi
squarest test p value < 2.2e-16).

Bar plots showing the observed (top) and expected (bottom) distributions of compartment A/B conservation. Labels
on the x-axis indicate the number of samples and compartment label for which there is conservation and the Y-axis
indicates the total genome fraction that corresponds to that compartment label. For example, 16A/5B indicates the
total number of 1Mb bins for which 16 human cell lines or tissues had an A compartment label and 5 samples had a
B compartment label. In the bottom table, the ‘Compartment’ column indicates the how many samples are shared for
each compartment label, while the ‘Expected’ and ‘Observed’ columns indicate how many 1Mb bins fall into
‘Compartment’ category. Statistical analysis comparing the observed and expected distributions are done with Chi-
square test, and statistical analysis of having complete conservation across all samples (i.e. 21A or 21B) was done
with a binomial test.

Table showing the total number of topological domain boundaries detected using the insulation square method
(Crane et al., Nature, 2015) applied to downsampled Hi-C from H1 cells. The left column indicates what fraction of
the full H1 dataset was obtained from downsampling, and the right column indicates the total number of TAD
boundaries detected.

Table showing the absolute number of TAD boundary regions overlapping all putative boundaries identified across
all downsampling samples (middle column). The right column indicates the corresponding fraction out of all
putative boundaries identified across all downsampling samples. The left column indicates what fraction of the full
H1 dataset was obtained from downsampling.

Table showing the percentages of TAD boundaries that were unique to subsets of the downsampled H1 datasets. The
left column indicates how many of the 7 degrees of sampling share a particular TAD boundary region. The middle
column indicates how many TAD boundaries regions were common to a particular subset denoted in the left column.
The right column is the corresponding fraction the common TAD boundary regions are of the total putative
boundaries in downsampled H1.
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Figure S2. FIRE calling methodology, related to Figure 2.

Box plot showing the distribution of the total raw 15-200kb cis interactions per bin in each sample. Box plots for
various degrees of downsampling of H1 rep2 (Dixon .., 2015) are shown in green, cell lines are shown in blue, and
primary tissue Hi-C data is shown in yellow.

Table showing the Pearson correlation coefficient (PCC) between local contact summation of each bin with their
respective effective restriction fragment length, GC content, and mappability (as rows). The normalization method
(or lack thereof for raw matrix) to prepare the Hi-C contact data is listed as column headers. PCC values are rounded
to the nearest hundredth.

Density plots showing the distribution of HiICNormCis outputs for each sample. The y-axes show the density and the
x-axes are the HICNormCis output values. The sample name is indicated in the title of each plot.

Scatterplots showing the genome-wide pairwise correlation of FIRE score between two biological replicates for H1,
MES, MSC, NPC, TRO, LG, PA, PO, and SX. Inset is the Pearson correlation coefficient.

Pie charts showing the overlapping FIRE calls in 9 pairs of biological replicates from cell lines or tissues. Same 9
samples as Panel D. (Chi-square test p value < 2.2¢-16).

Left, table showing the number of long-range cis interactions in a downsampled replicate of H1 (H1 rep2 from
Dixon et al., 2015) Hi-C data. The ‘Sample’ column indicates what fraction of the full dataset was extracted during
downsampling, and ‘cis>15kb’ is the total number of long-range cis interactions from the downsampled data. To the
right, a table showing the Pearson correlation coefficient (PCC) of the genome-wide FIRE scores for downsampled
H1 data. Each row/column corresponds to what downsampled fraction of the Hi-C data was used for the correlation
analysis. Each table entry is the PCC.

Scatter plots showing the genome-wide Pearson correlation coefficient (PCC) between 3 different samples,
including two biological replicates of mES cells prepared using HindIII and 1 sample of mES cells prepared using
Ncol (data from Dixon et al., 2012). Inset is the genome-wide PCC value.

Pie chart showing the significant FIRE bin overlap between two biological replicates of mES cells prepared with
HindIII (left), or mES HindIII repl and mES Ncol (middle), or mES HindIII rep2 and mES Ncol (right). (Chi-
square test p value < 2.2e-16).

Pie charts showing the significant FIRE bin overlap between samples either prepared using the in situ ligation
procedure (right) or the “dilution ligation” procedure (left). (Chi-square test p value < 2.2e-16).

Table showing the Pearson correlation coefficient (PCC) for total cis interactions counts (within 15-200kb distance)
and fragment length of a given bin (column ‘F’), GC content (column ‘GC’), and mappability (column ‘M), either
before (group ‘Before HICNormCis’), or after normalization (group ‘After HICNormCis’), and for each sample
(rows).
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Figure S3. Analysis of chromatin biochemical features at FIREs and super-FIREs, related to Figure 4.

Heatmaps showing the local enrichment (see Supplemental Methods) of H3K36me3 (left), H3K9me3 (middle), and
H3K4me3 (right), centered on FIRE bins for each cell line or tissue. Local enrichment is calculated relative to the
peaks per bin for H3K4me3, and RPKM values for H3K36me3 and H3K9me3. H3K36me3 and H3K9me3 data
were not available for CO or HC.

Bar plots showing the fraction of typical or super-enhancers overlapped by observed FIRE calls (blue bars) in
GM12878 (left plot) and IMR90 (right plot) at 5kb resolution (Rao et al., 2014), or size-matched randomly permuted
FIRE calls (green bars). Within each plot, analysis of typical enhancers is on the left, analysis of super-enhancers is
on the right.

Genome browser snapshot of the PREX1 locus (chr20:47,263,536-47,534,527) in GM 12878 (top set of tracks) and
IMR90 (bottom set of tracks). Shown for each cell line are previously annotated (Rao et al., 2014) chromatin loops
(blue; square is loop anchor, dash to loop), H3K27Ac signal (black), FIREs defined at 5kb resolution (brown), and
previously annotated (Hnisz et al., 2013) super-enhancers (red). The bottom of the snapshot shows the positioning of
UCSC genes at this locus.

Table showing the overlap between FIREs, super-enhancer domains, polycomb domains in mESCs (Dowen et al.,
2014) (top section) and insulated neighborhoods in H1 cells (Ji et al., 2016) (bottom section). Tabulated are the total
number of domains or insulated neighborhoods, how many are overlapped by a FIRE, and how many are expected
to overlap based on random permutation of FIRE positioning in that respective cell type. The Chi-square test p-value
is reported in the right column.

Line plots showing the cumulative FIRE scores (y-axis) of ranked stitched FIRE bins (x-axis) from the FIREs with
the lowest cumulative FIRE scores (left side) to the highest FIRE scores (right side). The red vertical line indicates
the inflection point, whereby stitched FIRE bins to the right of this line are called as super-FIREs.

Stacked bar plots showing the fraction of FIREs containing at least 1 super-enhancer (SE, blue bars), typical
enhancer (TE, green bars), or no SE or TE (yellow bars). Each row is the analysis of a different cell or tissue type.
Same as Panel F, except analysis of super-FIREs.

Bar plots showing the enrichment (y-axis) of H3K27me3 at super-FIREs that do not contain any annotated typical
enhancer or super-enhancers. Each bar represents the analysis of a different tissue, which has been previously
annotated for super-enhancers (Hnisz et al., 2013). Hippocampus (HC) tissue is not shown because there is no
H3K27me3 ChIP-seq data in HC.

Same as Panel H, except analysis of H3K4mel.

Same as Panel H, except analysis of H3K27ac.

Same as Panel H, except analysis of H3K36me3. No ChIP-seq data available for HC.

Same as Panel H, except analysis of H3K9me3. No ChIP-seq data available for HC.

Same as Panel H, except analysis of H3K4me3.

Line plot showing the relationship between the True Positive rate, defined as the fraction of FIRE bins overlapping
typical enhancers (Hnisz et al., 2013), and the False Positive rate, defined as the fraction of FIRE bins not
overlapping a typical enhancer, as a function of the significance threshold using to define FIREs in GM12878 cells.
(AUC=0.813).

Same as Panel N, except for super-enhancers (Hnisz et al., 2013). (AUC=0.906).

Genome-wide analysis showing the relative gene expression levels for genes within 200kb of GM12878-specific
FIREs. Genes within 200kb of GM12878-specific FIREs were collected, and then for each sample, the relative gene
expression levels are calculated. Shown are the box plots of the distribution of relative gene expression levels for
each sample indicating that GM 12878 relative gene expression levels are higher than any other sample (Two-sample
t-test p-value < 2.2e-16 compared to brain, OV, LI, SB, SX, PA, LG, AD, NPC, ventricle, and IMR90/MSC; p-value
< 5.66e-7 compared to PO; p-value < 2.93e-8 compared to BL; p-value < 1.04e-9 compared to TRO; p-value <
4.84e-10 compared to HI/MES; p-value < 9.26e-6 compared to AO). Boxplots show the median (black line) and
interquartile range.
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Figure S4
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Figure S4. FIRE score species conservation and reduction upon loss of Cohesin, related to Figure 5.

Scatterplot showing the correlation between randomly selected non-FIRE bins in mouse ES cells that liftover to the
hg19 reference genome. Shown on the x-axis are the FIRE scores from the randomly selected mouse bins that can be
liftover to hg19. Shown on the y-axis are the FIRE scores in the corresponding human bins. The PCC value is shown
in the bottom right corner.

Scatterplot showing the correlation between randomly selected non-FIRE bins in human ES cells that liftover to the
mm?9 reference genome. Shown on the x-axis are the FIRE scores from the randomly selected human bins that can
be liftover to mm9. Shown on the y-axis are the FIRE scores in the corresponding mouse bins. The PCC value is
shown in the bottom right corner.

Same as Panel A, expect using NPC cell data.

Same as Panel B, except using NPC cell data.

Same as Panel A and C, except using cortex tissue data.

Same as Panel B and D, except using cortex tissue data.

Pie charts showing the overlap between FIRE bins called in the TEV sample and bins bound by CTCF only (blue
shading, left), SMC3 only (pink shading, right), or co-bound peaks (blue+pink overlap, center).

Box plots depicting the change in Z-score in a random sampling of 5% of bins in TEV and HRV cells. There is no
significant change in FIRE score in either comparison. Change in Z-score is used for comparison, rather than change
in FIRE score (-In(p-value)), since Z-score has approximate Gaussian distribution.

Same as Panel H, except for comparing mAST (floxed — deleted, left boxplot), mNSC (floxed-deleted, middle
boxplot), and T-cells (WT-Knockout). In all cases, there is not significant change in FIRE score at a random
sampling of FIRE bins. Change in Z-score is used for comparison, rather than change in FIRE score (-In(p-value)),
since Z-score has approximate Gaussian distribution.

Box plots showing the change in Z-score at FIREs overlapping bins bound by CTCF but not SMC3 “CTCF-only”
(left column), all CTCF peaks (middle column), and CTCF and SMC3 co-binding (right column) for the comparison
of siCONTROL and siCTCF samples. The red boxes show distributions of FIRE score change at FIRE bins called in
wild type cells minus the mutant cells, while the blue boxes are distributions for FIRE score change at FIRE bins
called in wild type cells but between biological replicates of wild type cells. These comparisons show the significant
reduction of FIRE score at all CTCF peaks, and especially at CTCF SMC3 co-bound peaks overlapping FIRE bins
(*p=4.88e-5, **p=3.89¢-9; two sample t-test). Change in Z-score is used for comparison, rather than change in FIRE
score (-In(p-value)), since Z-score has approximate Gaussian distribution.

Bar plots showing the significant enrichment of CTCF, SMC3, or Rad21 in FIREs from control samples in 3
different studies (From left to right - One-sample t-test p value < 1.11e-15, < 6.54e-14, < 1.71e-10, < 1.33e-13, and
< 2.2e-16). The sample name is indicated across the x-axis, and the log2(O/E) values are plotted on the y-axis.
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Figure S5. Analysis of non-coding disease-associated SNPs in FIREs and FIRE-FIRE contacts, related to Figure 6.

Bar plot showing the number of non-coding GWAS SNPs per megabase in FIRE overlapping super-enhancers (SE),
FIREs overlapping typical enhancers (TE), and FIREs not overlapping either TE or SE. The horizontal line indicates
the genome-wide SNP frequency. All analysis was done using GM12878 FIRE data.

Normalized Hi-C contact matrix of a 920kb locus (chr11:85,280,000-86,200,000) in human hippocampus tissue
(HC). The tracks below show the presence of two Alzheimer’s disease associated SNPs (rs536841 and rs3851179)
located within a broad FIRE region (brown, chr11:85,840,000-85,880,000). One SNP resides within a HC super-
enhancer (red) and the other SNP resides outside of the super-enhancer but within the FIRE region. Both SNPs
reside in close proximity to PICALM, as shown in the bottom UCSC gene track. Right of the Hi-C contact matrix is
the continuous FIRE score across this locus.

Enrichment of Alzheimer’s disease-associated SNPs across 14 primary tissue FIRE annotations, showing the highest
enrichment in FIREs from both brain tissues (CO and HC).

Enrichment of SNPs associated with quantitative HDL cholesterol metrics across 14 primary tissue FIRE
annotations, showing the highest enrichment in liver FIREs.

Normalized Hi-C contact matrix (top) in GM12878 for a 5.14Mb locus (chr2:60,900,000-66,040,000) illustrating the
extent of statistically significant FIRE-FIRE interactions. Hi-C color scale ranges from low to high, corresponding to
the 15" and 99" percentile contact frequencies within this locus. The reflected matrix shows the statistically
significant (FDR<1e-6) Hi-C contacts within 2Mb genomic distance across the locus. Only bin-pairs with FDR<Ie-
6 are yellow, and the rest are black. Between the matrices are UCSC gene annotations (blue, top), RNA-seq data
(red), H3K27Ac data (black), typical enhancer annotations (Hnisz et al., 2013) (purple), super-enhancer annotations

(Hnisz et al., 2013) (red), FIRE annotations (brown), super-FIRE annotations (cyan), and TAD boundary calls (blue).
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2. Supplemental tables.

Table S1. Hi-C Data Manifest and Quality Metrics, Related to Figure 1

Table S2. Compartment A/B Patterns and PC1 values, Related to Figure 1, 2

Table S3. TAD boundary annotations, Related to Figure 1, 2

Table S4. Fit-Hi-C peak calling summary, and related analyses, Related to Figure 6, 7

Table S5. Genome-wide FIRE scores, Related to Figure 2

Table S6. FIRE calls and sample-specific FIRE calls in the primary cohort, Related to Figure 2, 3
Table S7. Observed and Expected Values of FIREs in Compartment A and B, Related to Figure 2

Table S8. Gene Ontology (GO) analysis of genes near sample-specific FIREs; top biological process terms, Related
to Figure 3

Table S9. Gene Ontology (GO) analysis of genes near sample-specific FIREs; top disease ontologies, related to
Figure 3



3. Supplemental experimental protocols.

Tissue Collection

For all human tissues except for dorsolateral prefrontal cortex (CO) and hippocampus (HC), samples were collected
as previous described as part of the Epigenome Roadmap Consortium collection (The Roadmap Epigenomics
Consortium, 2015). Human dorsolateral prefrontal cortex (CO) and hippocampus (HC) tissue were obtained from
the National Institute of Child Health and Human Development (NICHD) Brain Bank for Developmental Disorders.
Ethics approval was obtained from the University Health Network and The Hospital for Sick Children for use of the
tissues. The two specimens used here were from a single male donor, age 31, who was classified as healthy.

4. Computational methods.

Histone ChIP-Seq data processing and peak-calling

Published single- or paired-end ChIP-Seq raw data were downloaded for H3K4mel, H3K4me3, H3K27ac,
H3K9me3, H3K27me3, and H3K36me3 from GEO database under accession number GSE16256 and from SRA
database under accession umber SRP000941 (Roadmap Epigenomics Consortium et al., 2015). The raw data were
aligned to hgl9 human reference genome using BWA-mem. Unmapped, non-uniquely mapped, and low quality
(less than 10 quality score) reads were removed. We also removed PCR duplicate reads with PicardTools. ChIP-seq
peaks were identified using MACS2 with the following parameters (--format=BAM -g mm -m 5 50 -p le-5) with
corresponding input ChIP-Seq data as a background model. We also calculated input normalized RPKM values for
H3K9me3, H3K27me3, and H3K36me3 in each 40kb bin.

RNA-Seq data processing

Published RNA-Seq raw sequencing data were downloaded from GEO database under accession number GSE16256
SRP000941 (Roadmap Epigenomics Consortium et al., 2015). RNA-Seq raw reads were aligned to hgl9 human
reference genome using BWA-mem. Unmapped and non-uniquely mapped reads were removed. Transcription
levels were obtained based on GENCODE annotation v19 and normalized to FPKM values using Cufflinks. FPKM
values from multiple replicates or multiple donors were combined together and the mean FPKM value was
calculated for each gene.

Hi-C data processing

Unpublished Hi-C libraries described in this manuscript were sequenced on either Illumina HiSeq2000 or
HiSeq2500 instrument. All other published Hi-C data were downloaded from SRA and converted to paired-end
FASTAQ files. Paired-end reads were then aligned independently to either the hg19 human reference genome or mm9
mouse reference genome using BWA-mem. As BWA-mem retains multiple alignments for a single read-end if it
maps in two locations (i.e. a chimeric read), we kept only the 5’ alignments for each read-end. Read-pairs in which
both read-ends had mapping quality greater than 10 were paired using in-house scripts and converted into BAM files
using Samtools. PCR duplicates were then removed using PicardTools. If downsampling was performed, we then
used PicardTools ‘DownsampleSam’ function to downsample this final processed BAM file. Then, raw contact
matrices were constructed using in-house scripts, and then further processed using HiCNormCis (described below)
for the FIRE analysis. For all other Hi-C analyses not pertaining to FIRE scores, Hi-C data were normalized using
HiCNorm (Hu et al., 2012), Vanilla Coverage (Rao et al., 2014), or ICE (Imakaev et al., 2012), where indicated. For
all datasets of similar nature [such as the main cell lines in this study (GM 12878, IMR90, H1, H1-derived) or the
primary tissue collection, or the samples from each respective publication], we performed quantile normalization on
HiCNorm matrices to normalize for differences in sequencing depth between samples within each group. This was
done prior to any downstream comparative analyses.

Compartment A/B Calling
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Compartment A/B analysis was performed at 1Mb resolution as previously described (Lieberman-Aiden et al.,
2009). First of all, we calculated the average read count for each 1Mb bin in each sample. For cell line data, we
removed 1Mb bins with average read count <=100. For tissue data, we removed 1Mb bins with average read count
<=10. We used different thresholds for cell line data and tissue data, since tissue data have generally lower
sequencing depth than the cell line datasets. Such filtering step has removed around 10% low coverage regions in
the entire genome. Due to varying sequencing depths, the filtered regions are slightly different in each sample, and
only bins which had a numeric value across all samples were used for downstream compartment analysis. After
generating the first three principle components using the ‘prcomp’ function in R on the Pearson correlation matrix,
we visually examined the first principle component (PC1) in each of 7 cell lines and 14 tissues, and found that for a
few tissues the PC1 vectors of chr3 and chrX correspond to two chromosome arms, instead of A/B compartment. In
specific, these outliers are PC1 vector of chr3 in bladder (BL), dorsolateral prefrontal cortex (CO), hippocampus
(HC), lung (LG), psoas muscle (PO), aorta (AO), left ventricle (LV), right ventricle (RV), and PC1 vector of chrX in
adrenal gland (AD), dorsolateral prefrontal cortex (CO), hippocampus (HC), pancreas (PA), psoas muscle (PO), left
ventricle (LV), right ventricle (RV). For those outliers, the second principle component (PC2) was used to call A/B
compartment. Visual examination of those PC2 vectors confirmed they match to the plaid-pattern observed in the
normalized Hi-C contact matrices, instead of two chromosome arms.

Compartment A/B Conservation Analysis

To estimate the degree of compartment label conservation (related to Figure 1b, c; Figure S1f), we first scanned
every 1Mb bin across the genome and counted the number of cell lines or tissue types that shared the same
compartment label, and recorded which label was shared. By performing this at genome-wide scale, we obtained an
observed distribution of A/B compartment conservation (Figure 1c, Figure S1f). To statistically determine if this
distribution deviates from expectation, or to statistically test the significance of ubiquitous conservation (same label
in all cell lines and tissue types), we first created an expected distribution of compartment conservation. First, for
each cell line or tissue type, we randomly permuted the compartment label for each bin, while preserving the total
number of A or B compartments on each chromosome. We then conducted the same conservation enumeration
described for the observed data, and obtained an expected distribution of conservation (Figure S1f). This distribution
was compared to the observed distribution using a Chi-square test. Testing the significance of observing the same
compartment label (“ubiquitous conservation”) across all cell lines or tissue types was done by comparing to the
expected values using a binomial test.

TAD Boundary Reproducibility and Conservation Analyses

To estimate the degree of TAD boundary region conservation across samples in the primary cohort (related to Figure
1d, e; Figure Sle), we first identified TAD boundaries at 40Kb bin resolution for each sample independently, and
then concatenated unique boundary bins across all samples into a single putative boundary region reference file.
Consecutive TAD boundaries within 200Kb distance were also merged into a TAD boundary “region”. Merging of
adjacent boundary bins was performed because often times larger TAD boundaries (up to 400Kb) may result in
slightly shifted (by a few bins) boundary calls between samples, and though they do not directly overlap, then both
are a bin within the same boundary region. Moreover, in previous reports, TAD boundaries have been defined as 40-
400Kb (Dixon et al., 2012) while regions >400kb are characterized as regions of “disorganized chromatin”. Given
this, and after defining boundary “regions” using our approach, the final list of unique TAD boundary regions
ranged in size from 40-400Kb, consistent with previous definitions (Dixon et al., 2012). Using the cumulative list of
TAD boundary regions, we evaluated the fraction of the total number of cell lines and tissues that had a boundary
bin overlap with the given boundary region. To evaluate the overlap of TAD boundaries between tissue Hi-C
biological replicates (LG, PA, PO, SX), boundaries within 80kb of each other were considered overlapping, which
may underestimate the true boundary overlap since TAD boundaries have been previously defined as up to 400kb,
and large boundaries regions are subject to technical variation in TAD calling at 40kb resolution. A chi-square test
was used to evaluate statistical significance of TAD boundary overlap between replicates.

TAD Boundary Reproducibility and Conservation Analyses



To understand if our TAD identification method is robust across the sequencing depths used in this manuscript, we
downsampled H1 rep2 Hi-C data (Dixon et al., 2015) as described above, and constructed HICNorm contact maps.
We then applied the insulation square method (Crane et al., 2015) to identify TAD boundaries. To determine what
fraction of TAD boundaries within a given downsampled dataset overlap other putative TAD boundaries in H1
downsampled data, we first collected all putative TAD boundary regions from each of the 7 samples and made a
reference putative boundary file (approximately 2,700 putative TAD boundary regions). For each downsampled
dataset, we then asked what fraction of TAD boundary regions overlaps the boundaries in the reference putative
boundary list (related to Figure S2h). To understand what fraction of TAD boundary regions are shared across all
downsampled datasets we calculated the percentage of TAD boundaries that were unique to subsets of the
downsampled files, including TAD boundaries that were shared across all downsampling datasets (related to Figure
S2i).

Comparison of FIREs and chromatin loops and insulated neighborhoods

To explore the relationship between FIREs and chromatin loops, we called FIREs using the methods described in
this manuscript, except at 5kb resolution using in situ Hi-C data in GM 12878 and IMR90 (Rao et al., 2014). To
compute the enrichment of chromatin loops in FIREs, we first assigned each chromatin loop anchor to a 5kb bin
using the previously published loop annotations. We then computed the observed overlap between 5kb FIREs and
5kb loop anchors, and the expected overlap by permuting the FIRE positioning. Statistical significance was
computed using Chi-square test. Conversely, to analyze the enrichment for FIREs at chromatin loop anchors, we
conducted the same type of analysis, except asking what fraction of loop anchors are overlapped by a FIRE.

To explore the relationship between FIREs and insulated neighborhoods, super-enhancer domains and
polycomb domains, we computed the enrichment (observed overlap / expected overlap) of 40kb FIREs at insulated
neighborhoods defined in H1 cells (Ji et al., 2016), and the enrichment of 40kb FIREs at super-enhancer domains
and polycomb domains in mESCs (Dowen et al., 2014). Statistical significance was computed using Chi-square test.

Identifying super-FIREs

To identify super-FIREs, we used a similar approach of that used to identify super-enhancers (Hnisz et al., 2013).
First we merged all book-ended FIRE bins into large continuous FIRE regions. We then ranked the merged FIRE
regions by their cumulative Z-score, and plotted the ranked FIRE regions as a function of their cumulative Z-score
(related to Figure S3c). We then found the inflection point of the line plot, and defined the FIRE regions to the right
of the inflection point as super-FIREs. The same procedure can be done for 5kb bin resolution FIREs, but by
stitching FIRE bins within 15kb of one another.

Enrichment of FIRE in compartment A or compartment B

Using the compartment A/B calls at 1Mb resolution for each sample, observed FIRE bins were categorized into
either compartment A or compartment B, depending on which compartment the FIRE bin resided. For all observed
FIRE calls, the total compartment A overlap and compartment B overlap were enumerated (Opirg(a) O Opris). TO
generate expected values, FIRE bins were randomly permuted while preserving the total number of FIREs per
sample and per chromosome, and then re-categorized into either compartment A or compartment B (Egirga) OF
Erire(s))- Enrichment for compartment A or compartment B was calculated as either 10g2(Oprg(ay Errea)) and
10g2(Orrey Erre)), respectively. To statistically evaluate the significance of enrichment of FIREs in
compartment A or compartment B, for we created a two by two table using total compartment A overlap and
compartment B overlap in observed FIRE calls (Ofirga) Or Opres) and expected FIRE calls (Erre(a) OF Erires))s
respectively. Chi-square test was performed to access the statistical significance (related to Table S7) and the
process was performed independently for each sample.

FIRE positioning relative to TAD

For each sample and each FIRE bin, we found the TAD for which the FIRE bin resides using TAD calls for that
given sample (related to Figure 2e, f). For each FIRE bin within a given TAD, we set the center position of the TAD
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to 0.5 relative distance units, corresponding to ‘halfway’ between each adjacent TAD boundary. We then computed
the distance from the TAD center to the boundary (Dent:), as well as the distance of the FIRE bin to the nearest
boundary (Dgire). Selecting the nearest boundary ensures the Dy Will always be less than or equal to Deener- The
relative distance units of the FIRE within a TAD are then computed as (Dgre/Dcenter)/2-

FIRE clustering analysis

We performed hierarchical clustering analysis using all samples in our primary cohort. Specifically, we first used the
normalized total cis interaction (HiCNormCis) value for each 40Kb bin, and calculated the Euclidean distance of
two genome-wide FIRE score vectors between any two samples, using the R function “dist”. We then used the R
function “hclust” with option “single linkage” to perform the hierarchical clustering analysis (related to Figure 3a).
Next, we selected 40Kb bins which are cell line or tissue specific FIREs, and visualized their HICNormCis scores
using software JAVA TreeView (Saldanha, 2004).

Genomic Regions Enrichment of Annotations Tool (GREAT) analysis

We performed the GREAT analysis (McLean et al., 2010) to investigate the biological processes and disease
ontologies for genes in the neighborhood of cell line or tissue specific FIRE bins (related to Figure 3d, e; Table S8-
9). Specifically, we input our list of cell- or tissue-specific FIRE bins for each sample into the GREAT software
(http://bejerano.stanford.edu/great/public/html/), and allowed the software to test neighboring genes for biological
process and disease ontology enrichment. GREAT then evaluates the statistical significance of enrichment for each
biological process, compared to the whole genome background. A Bonferroni-corrected Binomial test was used to
obtain the p-value. Reported are the top fifteen biological processes ranked by the most significant p-values, in
GM12878-specific FIREs and brain-specific FIREs, respectively (related to Figure 3e, f) and top terms for all
samples as well as top disease ontologies are found in Tables S8-9.

Histone Local Enrichment Analysis

For each 40Kb FIRE bin in each sample, we calculated either the number of peaks per bin (for narrow peaks
H3K27ac, H3K4mel and H3K4me3) or the RPKM values per bin (for broad peaks H3K27me3, H3K9me3 and
H3K36me3) and then calculated these values for each of the 12 bins upstream and 12 bins downstream of the FIRE
bin, creating a vector of 25 values, centered on the FIRE bin (related to Figure 4b; Figure S3a). Those 25 values
represent the histone mark profile in 1Mb region centered at each FIRE bin. As a control, to generate an expected
histone mark profile, we randomly permuted the location of FIRE bins ten times within each sample, and calculated
the averaged peak count or RPKM value at each position across ten random permutations. To calculate the local
enrichment, we first calculated the ratio between observed value and expected value for each of the 25 positions
around a FIRE bin, creating an enrichment score profile. Then, to assess the magnitude of local enrichment, we
normalized each enrichment score relative to the local minima, by taking the log2 of the position enrichment divided
by the minimum local enrichment. This converts the data to have a local enrichment of 0 at the local minima and
specifically allows one to appreciate the enrichment of FIRE bins relative to the local neighboring bins, rather than
relative to genome-wide levels.

Mean-rank Gene Set Test

To determine if genes near sample-specific FIREs tend to be expressed predominantly in the same tissue, we
adapted the Mean-rank Gene Set Test concept, originally described in the ‘Limma’ R package (Ritchie et al., 2015)
(https://bioconductor.org/packages/release/bioc/html/limma.html). Conceptually, the mean-rank gene set test
evaluates whether a particular subset of genes is highly ranked relative to other genes in terms of a given statistic.
Then using the Wilcoxon test, evaluates the null hypothesis that the mean rank of a subset of genes is not different
than the expected mean ranking. A ‘p-value’ is generated by using the ‘WilcoxGST” function in the Limma R
package whereby the statistic parameter is a ranked list of relative gene expression values (with 1 being the gene
with the highest relative expression, defined more below), and the index parameter is the positional indices of the
genes within 200kb of a sample-specific FIRE set. However, the Wilcoxon test only evaluates if the mean rank of
the test genes are different from the expected ranking, therefore not specifically addressing whether the mean rank is
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more towards 1 compared to the expected ranking. Therefore, we present the results as the difference between the
expected rank and actual mean rank, whereby a positive value indicates that the mean ranking is closer to 1 than the
expected ranking.

In more detail, for each cell line or tissue, we first collected genes whose transcription start site (TSS) is
within 200kb of a sample-specific FIRE. The collection of these genes within 200kb of sample-specific FIREs make
up the sample-specific FIRE gene set, termed “FIRE genes”. To prepare the Relative Expression rank file for each
cell line or tissue, we used RNA-Seq data to first filter out genes with zero FPKM in all 21 samples, and then
transformed the expression values into Log2(FPKM+1) values. Next, we divided each gene expression value by its
cumulative gene expression sum across all 21 samples, to create the relative gene expression value (related to Figure
4f). For each sample, we then sorted all genes by their relative gene expression to assign each gene an expression
rank, with 1 being the gene with the highest relative gene expression in that sample. Using these ranks for each
sample, we calculated the mean expression rank for genes from a sample-specific FIRE gene set (related to Figure
4h), and then across all sample-specific FIRE gene sets (related to Figure 4g). A gene set enriched for sample-
specific expression is expected to have a lower numeric mean rank (towards 1). By random chance, the mean rank
will be approximately half of the total number of expressed genes. Therefore, we defined the enrichment score as the
expected mean rank — observed mean rank. A large positive enrichment score indicates that genes within 200kb of
sample-specific FIREs are primarily expressed in that sample relative to others, whereas a large negative enrichment
score indicates that genes within 200kb of sample-specific FIREs are lowly expressed in that sample relative to other
samples.

FIRE bin conservation

To investigate the degree of conservation of FIRE bins between human and mouse in three difference cell types
(related to Figure 5a, b), we first identified FIRE bins using our HICNormCis approach in the human and mouse
samples. Next we identified breakpoints of major genomic rearrangements between human and mouse based on
UCSC "net" alignments (Chiaromonte et al., 2001; Kent et al., 2003; Schwartz et al., 2003). To identify breakpoints
in hg19, we used the alignment where hg19 is the target genome and mm9 is the query genome
(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/vsMm9/hg19.mm9.net.gz). To identify breakpoints in mm9, we
used the alignment where mm39 is the target and hg19 is the query
(http://hgdownload.soe.ucsc.edu/goldenPath/mm9/vsHg19/mm9.hg19.net.gz). From each alignment, we calculated
the genomic coordinates of the boundaries of all "fill" and "gap" blocks of size >50kb. We sorted these coordinates
and then recursively merged those that are separated within 25kb into a single genomic interval. The resulting set of
merged intervals defined our breakpoints. Any FIRE bins containing human<->mouse synteny breakpoints as
defined above were removed from downstream analyses. UCSC liftover tool was then used to convert the genomic
location of FIREs between hg19 human reference genome and mm9 mouse reference genome. Since in many cases
the a 40kb bin in one species lifts over to a region that is part of 2 40kb bins in the other species, we considered a
“conserved FIRE” if 1 of the 2 bins was a FIRE call. As a control, we also lifted over the genomic location of
randomly permuted FIREs (that don’t contain a breakpoint) between human and mouse, and calculated the number
of FIREs that are conserved. For each of the six comparisons in Figure 6a, we also obtained the expected level of
conservation. A Chi-square test was used to evaluate the statistical significance of FIRE conservation between
human and mouse.

FIRE score conservation

To estimate the FIRE score conservation between human and mouse across a range of FIRE scores (related to Figure
S4a-f), we randomly selected 4,000 40Kb bins, and used UCSC liftover tool to convert the genomic location of the
randomly selected 40Kb bins between hg19 human reference genome and mm9 mouse reference genome. Since in
many cases the a 40kb in one species lifts over to a region that is part of 2 40kb bins in the other species, we took the
average FIRE score of the 2 40kb bins when conducting the correlation analysis. We then made a scatter plot of
FIRE scores between the paired human and mouse datasets at the syntenic 40Kb bins, and calculated the Pearson
correlation coefficient.

Change in FIRE score upon loss of Cohesin or CTCF



To investigate the impact of Cohesin loss on local interaction frequency (i.e. on FIRE tendency), we evaluated the
change in local interaction frequency (as ‘Change in Z-score’) upon loss of Cohesin (related to Figure 5c-e) or
CTCEF (related to Figure S4;j). In these analysis, we used the Z-score for each FIRE bin, instead of negative -In(p-
value), since Z-scores has approximate Gaussian distribution. For comparison of Z-score change between “control
cells” (defined within each experiment as the condition without Cohesin manipulation or CTCF knockdown) and
experimental cells (defined within each experiment as the condition with Cohesin depletion or knockout, or CTCF
knockdown), we first identified the most confident FIRE bins in control cells, defined as FIRE bins in both control
biological replicates. Next, we calculated the change of Z-score between control and experimental, at those selected
most confident FIRE bins. As an analysis control, we also calculated the change of Z-score between two control
biological replicates at the same set of high confidence FIRE bins. A two sample t-test was used to evaluate the
statistical significance of the difference in Z-scores between control vs. experimental, as well as between two
biological replicates of control samples. Since two WT biological replicates are symmetric, we took the absolute
value of the difference in Z-score between the biological replicates. Therefore, the Z-score difference between two
control biological replicates is always positive, and is a fair comparison to the Z-score difference between control
and experimental.

CTCF and SMC3/Rad21 Enrichment Analysis

To determine if FIREs are enriched for CTCF or SMC3 (in TEV sample) or Rad21 (in mAST_floxed mNSC_floxed
or Tcell WT samples), we calculated how many CTCF or Cohesin subunit peaks are present in FIREs. We also
permuted FIRE positioning 10 times, and asked the same question to obtain a distribution of expected values. To
determine statistical significance, we compared this observed value to the expected distribution using a one-sample
t-test.

FIRE and disease-associated SNP analyses

We collected the 4,378 non-coding disease associated GWAS SNPs (referred to hereafter as “SNPs”) used in a
previous study (Hnisz et al., 2013), and converted each SNP ID to its genomic location in hg19 human reference
genome, using NCBI dbSNP online tool (http://www.ncbi.nlm.nih.gov/projects/SNP/dbSNP.cgi?list=rslist),
resulting in 4,327 SNPs. Next, we mapped each SNP to FIRE bins identified from each of 7 cell lines and 14 tissues,
and calculated the SNP density, defined as the number of mapped SNPs per 1Mb of FIRE bins. We further divided
FIRE bins based on their overlap with typical enhancers and super-enhancers, and calculated the SNP density within
each sub FIRE groups. Additionally, we performed disease-based FIRE SNP overlap analysis. For each of 456
diseases, we defined the enrichment score as the ratio between the proportion of SNPs overlapped with FIRE bins
and the proportion of FIRE bins in the genome. Higher enrichment score indicates stronger overlap between SNPs
and FIRE bins.

Calling Significant Interaction Pairs in Hi-C data

Statistically significant contacts in Hi-C data were identified using Fit-Hi-C, as previously described (Ay et al.,
2014). First, Fit-Hi-C assumes that the expected contact frequency is a function of genomic distance. Fit-Hi-C also
assumes the observed contact counts follow a Poisson model for non-peak Hi-C bin-pairs, (i.e.

0; 1—~P0isson(l(d,— j))), and assumes an observed contact count is significantly higher than this Poisson variable for
a peak bin-pairs (i.e. a statistically significant Hi-C contact). Fit-Hi-C conducts fitting and removing outliers
iteratively. Fit-Hi-C requires the user to specify the range of genomic distance to assess for statistical significance.
Based on this genomic distance input and for each iteration, Fit-Hi-C first bins the specific genomic distance into B
bins (by default B=100), then estimates the mean observed contact count of currently labeled non-peak bin-pairs
from each bin and then fits a spline curve }.(d i 1-) based on average observed count at each distance determined by B
and the user-input distance cutoff. For example, if one were to input B=50 and 2Mb genomic distance, then the
spline curve will fit the mean contact count across 50 distance data points. Then, Fit-Hi-C tests each observed count
0;; against the calibrated Poisson distribution Poissun(}.(di j)). Fit-Hi-C rejects the null hypothesis when p value is
small and labels this observation as a significant bin-pair “peak” (a significant Hi-C contact). In the next iteration,
Fit-Hi-C conducts the same processes of calibrating the background distribution and significance testing. After
converting our Hi-C contact matrix into the correct input format for Fit-Hi-C, we used the default Fit-Hi-C code to
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calculate a p value and q value (a false discovery rate, FDR) for each bin-pair within 2Mb genomic distance. The
generic example code for Fit-Hi-C can be found here: (https://noble.gs.washington.edu/proj/Fit-Hi-C/). For all
analyses in this study (except where noted) we used a conservative peak-calling threshold of FDR<1e-6. This is
based on the observation that more relaxed peak calls (FDR<0.05, the Fit-Hi-C default parameter) seemed to
overcall peaks, and, FDR<le-6 corresponds to ~1 million total peaks in IMR90, very similar to previous reports (Jin
etal., 2013).

eQTL Enrichment Analyses

Statistically significant SNP-gene pairs were downloaded from the GTEx Portal (http://www.gtexportal.org/home/),
using Version 6 (filed called GTEx_Analysis V6_eQTLs.zip). Since only a subset of our tissue types can be found
in the GTEx dataset, we extracted 6 GTEx datasets corresponding to 6 of our higher depth tissue Hi-C datasets. The
following files were used from the GTEx datasets: Adrenal_Gland_Analysis.snpgenes, Liver_Analysis.snpgenes,
Brain_Frontal Cortex_BA9_Analysis.snpgenes, Artery_Aorta_Analysis.snpgenes,
Heart_Left Ventricle Analysis.snpgenes, Heart_Left Ventricle_Analysis.snpgenes.

To evaluate whether statistically significant contacts emanating from FIRE bins are enriched for SNP-gene
pairs, and also to address whether the most significant Hi-C peaks are further enriched for SNP-gene pairs compared
to less significant Hi-C peaks, we first used Fit-Hi-C to generate q values (i.e. FDRs) for all bin-pairs within 2Mb
genomic distance for each tissue type and sub-selected higher depth tissue datasets in which we also obtained GTEx
information (i.e. 6 tissues listed above). For the analysis of each sample, we first ranked significant bin-pairs by their
FDR, from most significant pairwise contact to contacts with FDR approaching 0.05 (default Fit-Hi-C significance
cutoff). This generates a genome-wide ranked list of significant pairwise contacts. We then divided significant bin-
pairs into two groups depending on whether the anchor bin is a FIRE bin or non-FIRE bin, creating two groups
termed “FIRE bin peaks” and “non-FIRE bin peaks”. In order to evaluate whether there is a difference in the
presence of known SNP-gene pairs emanating from FIRE bins compared to non-FIRE bins, we selected the top 1K-
20K significant FIRE peaks at 1K step size. As a control, we randomly selected a size-matched statistically
significant bin-pairs emanating from non-FIRE bins. To evaluate whether FIRE peaks contained more SNP-gene
pairs than non-FIRE bin peaks, we tested whether the average number of SNP-gene pairs captured by the top set of
FIRE peaks is significantly higher than the size-matched control set (from non-FIRE bin peaks), using a one-side
two-sample t test. Due to the random nature of selecting the size-matched control set, we generated 10 control
datasets for each comparison (i.e. 1k, 2k...20k). To assess if the most significant FIRE bin peaks are more enriched
for SNP-gene pairs than less significant FIRE bin peaks, we have plotted the 1og2(O/E) values for the top
1k,2k,3,4k,5k,10k,15k FDR groups (related to Figure g-j). Using a p value here is not entirely appropriate to address
this analysis since p values for two-sample t tests are sensitive to sample size.

FIRE peak analyses

To evaluate whether FIREs have more local peaks than non-FIREs, we used Fit-Hi-C peak-calling results at
stringent statistical significance (FDR<1e-6) to obtain distributions of the number of peaks emanating from FIRE
bins or size-matched randomly permuted non-FIRE bins. To determine if the observed number of peaks from FIREs
is greater than non-FIREs, we used a two-sample t-test.

To determine if FIREs self-interact at higher frequency than FIREs with non-FIREs or non-FIREs with
non-FIREs, we first collected all FIRE bins, and then for each distance (d) from 40kb to 2Mb, we calculated the
mean interaction frequency in which a FIRE bin was contacting another FIRE bin. Therefore, for each distance
increment, we obtain a mean FIRE-FIRE interaction frequency. We then repeated the same procedure, but this time
calculating the interaction frequency of FIREs with non-FIREs at each distance increment. Lastly, we randomly
permuted FIRE bin locations to obtain a set of random non-FIRE bins and then calculated the interaction frequency
with other non-FIRE bins for each distance increment. Then, for each genomic distance increment, we compared the
FIRE-FIRE frequency with either the FIRE-nonFIRE or nonFIRE-nonFIRE using a two-sample t-test (related to
Figure 7e; Table S4). This process was done independently for each sample.

To evaluate if FIREs are often the significant contact target of other FIREs we first collected all significant
(FDR<l1e-6) FIRE target bins determined by Fit-Hi-C, as well as all FIRE bins. We then intersected the FIRE target
bins and FIRE bin annotations, creating three groups: FIRE targets that are non FIREs, FIRE targets that are FIREs,
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and FIRE bins that are not targets of other FIREs (related to Figure 7g, h). The statistical significance of whether a
FIRE bin is more likely a target of another FIRE bin was evaluated using a chi-square test.
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Chapter 4

A compendium of promoter-centered long-range chromatin interactions in 27 human tissues and cell

types

Introduction

Genome-Wide Association Studies (GWAS) have uncovered thousands of genetic variants that are
associated with human diseases and phenotypic traits (/). The fact that these variants are generally located
in non-coding sequences and are enriched for distal cis-regulatory elements (cRE) suggests that a
substantial fraction of them may contribute to pathogenesis of disease by affecting transcriptional
regulation of specific genes (2, 3). However, to formally test this hypothesis, it is critical to first identify the
target genes of cis-regulatory elements. cREs modulate transcription of their target genes from a distance
through long-range chromatin interactions (4-7). Mapping of chromatin architecture by chromosome
conformation capture (3C) techniques such as 4C-seq, ChIA-PET and Hi-C (8-12) (13, 14) (11, 15) could
uncover long-range interactions between cREs and therefore may reveal promoter-enhancer targeting
relationships. Recently, Hi-C combined with capture sequencing has provided a cost-effective way to map
chromatin interactions at specific regions at high-resolution (12, 16-19). In the current study, we used the
capture Hi-C strategy to generate high-resolution maps of promoter-centered chromatin interactions across

27 human tissue/cell types.

Results

We performed Promoter Capture Hi-C (pcHi-C) (Fig. S1) using 280,445 custom-made RNA
capture probes to interrogate chromatin interactions centered at 19,539 well annotated human gene
promoters across 27 different human tissues or cell types representing a wide spectrum of cell lineages
(Fig. S2A-C, Table S1, 2) (20, 21). The capture probes synthesis efficiency was highly reproducible
between two replicates (Fig. S2D) and covered nearly all targeted promoters (99%) (Fig. S2E). On the
other hand, the coverage of capture probes across different target promoters was highly variable (Fig. S2F-

G), which can introduce experimental bias to the pcHi-C data. To remove such experimental biases
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together with intrinsic sequence biases, we first normalized observed interaction frequencies based on the
“capturability” of each DNA fragment using a B-spline regression model (Fig. S3A, see Methods). We then
defined significant pcHi-C interactions after removing distance dependent background signals (Weibull p
value < 0.01, Table S3) (see Methods).

Analysis of the pcHi-C data resulted in promoter-centered long-range interaction map at DNA
fragment resolution (Fig. 1A, see Methods). Based on HindlII restriction sites, 514,738 DNA fragments
were defined where 8,698 fragments contain at least one promoter and 126,604 fragments contain at least
one putative cRE based on H3K27ac signals (see Methods). In total, we identified 561,574 significant
pcHi-C interactions across 27 human cell/tissue types (Fig. 1A, Fig. S4A, B). The majority of significant
pcHi-C interactions were within 500kb (89%, Fig. S4B) and were significantly enriched for promoter-
promoter (P-P, 7.3%, Fisher Exact p value < 2.2e-16) and promoter-cRE (P-cRE, 36.7%, Fisher Exact p
value < 2.2e-16) interactions (Fig. S4C, see Methods) compared to random expectations. We noted that
many non-annotated distal regions that interact with promoters were actually marked by diverse
transcription factors (22) (Fig. S4D, E), suggesting that most promoter-centered long-range interactions are
associated with functional elements in the human genome. Interestingly, P-P interactions tend to show
shorter interaction distances compared to other interactions (Fig. S4F).

Two independent lines of evidence support the reliability of the identified chromatin interactions.
We first compared the results of IMR90 pcHi-C and a previous high-resolution Hi-C dataset from the same
cell line (/7). We found that 90% of promoters showed statistically significant similarity in their long-range
interaction profiles between the two datasets (Fig. SSA-C, see Methods). Second, we compared the
significant pcHi-C interactions with previous 4C-seq datasets at six loci in the human H1 embryonic stem
cells and H1-derived Mesenchynal Stem Cells (MSC) (/0) and promoter-centered “loops” from IMR90 in
situ Hi-C results and lymphoblast cells (LCL) (/5) (see Methods). The pcHi-C results showed high
concordance with these orthogonal datasets (Fig. SSD-F). Taken together, our pcHi-C approach is a highly
efficient and accurate means to detect to identify significant promoter-centered long-range interactions with

low sequencing cost.
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Taking advantage of the chromatin and transcriptome datasets collected for these tissue/cell types
analyzed by the ENCODE (22) and Roadmap Epigenome consortiums (2/), we next carried out integrative
analysis to examine the relationship between the long-range chromatin interactions and chromatin states
(10, 11). In this analysis we excluded 6 tissue types due to the comparatively low sequencing coverage.
Consistent with previous reports (9, /2), pcHi-C interactions are often found at active chromatin regions
(Fig. 1B). Notably, certain DNA fragments showed extensive long-range interactions with multiple
promoters (Fig. S6A). We systematically defined these promiscuously interacting regions from promoter-
promoter interaction maps as P-P interaction hotspot (iHS) or from promoter-other interaction maps as P-O
iHS (Poisson p value < 0.01, see Methods). For each cell/tissue type we identified around 700~1400 such
interaction hotspots (Table S4). According to the classic enhancer-promoter communication model,
physical interactions between transcription factors (TFs) bounds at enhancer and promoter regions facilitate
enhancer/promoter communication (23, 24). As we also observed that long-range promoter-centered
interactions are associated with TFs (Fig. S5D, E), we first sought to explore the relationship between the
interaction hotspots and TF binding patterns. We examined the TF ChIP-seq data from H1 and GM 12878
generated by the ENCODE consortium (22) (Table S5-6, see Methods) and found that both P-P and P-O
iHS significantly overlap with the TF clusters (Fig. 1C, Fig. 6B-E), which were often found in super
enhancer regions and cell-type specific (25). As expected, both P-P and P-O iHS are cell/tissue type
specific (Fig. 1D and Fig. S6F) and P-O iHS cluster along the germ layers of each tissue/cell type (Fig. 1D,
Fig. S6G). Super-enhancers are known to be key regulatory sequences for regulating important cellular
identity genes (25, 26), and we found that super-enhancers significantly overlap with P-O iHS (Fig. S6H)
and also are highly associated with corresponding cell/tissue types (Fig. S6I). For example, a P-O iHS in
left ventricle tissue consists of a super-enhancer interacting with multiple promoters, each with high
transcriptional activity compared to non-interacting promoters (Fig. 1E). Taken together, our results
suggest a strong association between TF clusters/super-enhancers and long-range interaction hotspots and
their functional implication on gene regulation.

Identification of functional long-range promoter-cRE interactions is critical to dissect gene

regulatory mechanisms. Historically, correlation-based approaches using chromatin state information at
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promoters and distal ¢cRE have been widely used for this purpose (27, 28). Although we observed
statistically significant correlation of H3K27ac signals between significant promoter-cRE interaction pairs
from pcHi-C across cell/tissue types (Fig. S7A, KS-test p value < 2.2e-16) many of them showed modest
correlation. Thus, we sought to examine the similarity of promoter-cRE pairs identified by either pcHi-C or
correlation-based approaches, and also examine the enrichment of functional relationships in pairs defined
by each method. When we defined the same number of promoter-cRE pairs using H3K27ac correlation we
found that only 6% of promoter-cRE pairs overlapped the significant promoter-cRE interaction pairs based
on pcHi-C (Fig. S7B, see Methods). To test which model is more accurate to detect regulatory
relationships, we utilized eQTL information obtained from GTEx database (29) (see Methods). Several
examples illustrate the consistent promoter-cRE pairs detected by both eQTL relationships and significant
pcHi-C interactions (Fig. 2A, Fig. STC-E). We systematically assessed the enrichment of eQTL
relationships with the matched tissue types between our pcHi-C and GTEx database (29), which tissue-type
specific information is not available for correlation-based methods, and found that the significant
interaction pairs based on pcHi-C are highly enriched in eQTL relationships (Fig. 2B, Fig. S7F). Next, we
aggregated all significant interactions from pcHi-C and eQTL relationships (29) to compare with the
correlation-based method. eQTLs were 6-fold more enriched in promoter-cRE interaction pairs based
solely on pcHi-C, which is much higher than eQTL enrichment in promoter-cRE pairs identified solely
based on the correlation-based method (Fig. S8A), indicating that DNA looping information is critical to
identify regulatory long-range promoter-cRE relationships.

Formation of chromatin interactions is a critical step during transcriptional activation of a gene by
distal enhancers (30, 31). Since we observed dynamic long-range promoter-cRE interactions across
cell/tissue types (Fig. 1A, Fig. S8B), we asked to what extent are long-range promoter-cRE interactions
correlated with variations in gene expression. We focused this analysis on 3,454 testable promoters (Fig.
S8C-D, see Methods), which are those covered by at least 4,000 pcHi-C reads in more than 10 cell/tissue
types. We found that transcription levels of 66% of gene are positively correlated (PCC > 0.5) with the
chromatin interactions profiles between the gene promoter and at least one distal element (Fig. S8E, see

Methods). For example, the interaction between POU3F3 promoter and one cRE showed highly correlated
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dynamic patterns between pcHi-C interaction strength (left-hand side Fig. 2C) and POU3F3 gene
expression (right-hand side Fig. 2C). Our results provide support for using long-range chromatin
interactions as a tool to infer target genes for distal regulatory elements. We provided a list of significant
promoter-cRE interaction pairs identified from pcHi-C (Table S7).

We also found extensive long-range promoter-promoter interactions (21,479 unique P-P
interactions) in our datasets (Fig. S4C). Widespread P-P interactions have been observed before in culture
mammalian cells, and our results extended the observation to diverse primary human tissues and cell types
(14, 32). These promoter pairs that exhibit strong interactions also display striking correlative chromatin
activities across diverse cell/tissue types (average PCC is 0.41, 0.59, 0.52, and 0.04 for H3K27ac,
H3K4mel, H3K4me3, and random permutation) (Fig. 3A-B). For example, dynamic H3K27ac signals at
TMED4 promoter are highly correlated with those at significantly interacting promoters based on our pcHi-
C result (Fig. 3A) We also calculated correlation coefficients of transcription levels across 27 cell/tissue
types for promoter-promoter pairs defined by our pcHi-C, ChIA-PET (/4), adjacent promoters, and
randomly selected pairs (see Methods). To our surprise, transcription levels between interacting promoter
pairs are only weakly correlated (average PCC is 0.15, Fig. 3C,), even lower than adjacent promoter pairs
(average PCC is 0.26). Indeed, we often found that non-expressed gene promoters interact with highly
expressed gene promoters (Fig. SOA).

We hypothesized that promoter regions can function as enhancer and thus able to regulate distal
genes through long-range promoter-promoter interactions. This is in part based on the observation of
widespread enhancer signatures or activities at promoter regions (2/, 33) and enhancer-like function of
IncRNA promoters (34). We termed these promoter regions as Enhancer-like TSS Proximal eLement
(EPL). In support of the functional significance of the EPL, we found that ~11000 eQTLs collected from
GTEx database for all available tissue types are in fact P-P interaction pairs (Fig. 3F, Fig. S9B, see
Methods). For instance, a significant pcHi-C interaction is found between BLCAP and GHRH gene
promoter regions in aorta, and one significant eQTL (rs55705839) of BLCAP gene is located in the GHRH
promoter in the same tissue type (Fig. 3D). Interestingly this eQTL did not show any meaningful

associations with an adjacent downstream gene (GHRH) or nearby genes except BLCAP (Fig. 3E). There is
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no significant association between rs55705839 and GHRH in other tissue types according to GTEx
database (29). Another example is P-P interactions between POUSF'1 (Oct4) gene and two promoters
(CCHCRI and TCF19), which were found to regulate POUS5F I using a functional screening approach (in
submission).

To further test whether EPLs act their function in cis to their target genes, we investigated allele-
biased chromatin activities in terms of H3K27ac ChIP-seq at EPLs and their interacting promoters. If EPLs
act as regulatory sequences, we would expect concordant allelic biases of chromatin activities at EPLs and
their interacting promoters. Since the hapolotyes of the genomes analyzed in this study were previously
phased (21), we defined allelically biased promoter activities using H3K27ac ChIP-seq datasets (see
Methods). Around 70% of significant P-P pairs are biased in the same allele, which is very significant
concordance rate compared to random expectation (Fig. SOC, *** Empirical P value <0.001, see Methods).
For example, in sigmoid colon transcriptionally repressed VSTM1 gene promoter showed P1 allele biased
activity and interacted with active OSCAR gene promoter that biased in the same allele (Fig. 3G). Our
results provide further support for the enhancer-like function of promoter regions or very promoter
proximal regulatory sequences. Our results also provide insight into functional roles of EPLs in regulation
of transcription of both the immediate adjacent genes and spatially proximal distal genes.

The promoter-centered long-range interaction maps generated in this study could serves as a
resource to infer the target genes of sequences harboring disease-associated sequence variants. For
example, a genetic determinant of human obesity is located in the first intron of 70 gene, and this genetic
determinant affects the distal genes /RX3 and /RX5 instead of FTO (6, 7). The pcHi-C interactions captured
these known functional relationships (Fig. 4A). Uncovering disease-disease relationships can greatly
advance our understanding of mechanisms underlying human disease (35, 36), yet the lack of GWAS-SNP
target gene information prevents the estimation of disease associations. However, as our promoter-centered
long-range interaction maps can provide putative target genes we sought to explore the relationships
between diseases by linking GWAS variants and their target genes. We obtained GWAS SNP information
from the GWAS Catalog database (/) and expanded the list based on Linkage Disequilibrium (LD)

information (>0.8 1%, see Methods), resulting in 87,433 putative disease-associated genetic variants. Based
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on significant pcHi-C interactions in each cell/tissue type we predicted putative target genes of these
variants. We found that frequently targeted genes were enriched amongst a set of reported disease-
associated genes (Fig. SI0A-B, see Methods), supporting the capability of our promoter-centered long-
range interaction maps to detect GWAS-SNP target genes.

We further grouped GWAS-SNPs in terms of their ‘mapped trait’ annotation as GWAS sub-
categories (see Methods). After that we identified putative target genes of GWAS-SNPs in each GWAS
sub-category. Based on the similarity of these putative target genes between GWAS sub-categories we
performed K-means clustering and grouped them into 30 clusters (see Methods). This analysis uncovers
several clusters of GWAS sub-categories with interesting biologically relevant features (Fig. 4B). For
example, autoimmune related disease (C1 and C28), brain disorders (C2), obesity related phenotypes
(C19), and eyes related phenotypes (C22) were grouped together respectively. The recent striking report on
the immune basis of Alzheimer’s disease (37) was also well characterized in our approach (blue boxed
region in Fig. 4B). We also revealed a novel association between autoimmune related diseases and cancers
(C1 in Fig. 4B), which need to be investigated further. Interestingly, several genes related to immune
system such as HLA-DRB5 and BTNL?2 were frequently recognized as putative GWAS-SNP target genes
regardless of disease types, may suggesting the importance of immune system in various diseases. To
further understand the related biological functions of GWAS-SNP target genes we carried out gene
ontology (GO) analysis (see Methods). For example, putative target genes in C1 were enriched by immune
system related signaling pathways and biological functions that are biologically relevant to autoimmune
diseases (Fig. 4C). The summarized GO biological functional enrichment result in each cluster defined in
Fig. 4B provides both relevant and novel biological insights to corresponding disease and trait types (Fig.
4D).

Lastly, we identified 859 GWAS SNPs that reside promoter regions but interact with distal genes
both as eQTLs (29) and long-range chromatin interactions. For example, the genetic variant rs12691307
located in KCTD13 gene promoter regions has been identified as a schizophrenia-associated genetic locus
(38) (Fig. S10C). However this gene has no specific functional association with schizophrenia so far. In

contrast, the distal target gene both as eQTLs and pcHi-C, DOCA2 functions on calcium-dependent
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spontaneous release of neurotransmitter. We found many similar examples (Fig. S10D, E). Traditionally,
the GWAS-SNPs located at promoters are assumed to target immediate downstream genes, but our results
provide an additional view to interpret GWAS-SNPs with a novel mechanistic insight by considering long-

range promoter-promoter interactions.

Discussion

In summary we generated high-resolution promoter-centered long-range interaction maps across
diverse human cell/tissue types and provided a resource to understand human disease associated variants.
The maps would enable further investigation into the role of distal elements in target gene expression and
uncover mechanisms of long-range gene regulation exhibited by both enhancers and promoters. This
resource provides a new tool to interpret the function of GWAS-SNPs and dissect gene regulatory networks

in human cells.

Methods

Obtaining human tissue samples

Esophagus, lung, liver, pancreas, small bowel, sigmoid colon, thymus, bladder, adrenal gland, aorta,
gastric, heart, ovary, psoas, spleen, and fat tissues were obtained from deceased donors at the time of organ
procurement at the Barnes-Jewish Hospital (St. Louis, USA) as part of the Epigenome Roadmap
Consortium collection (27). Samples were flash frozen with liquid nitrogen. The same tissue types from
different donors were combined together during downstream data analysis. Human dorsolateral prefrontal
cortex (DLPFC) and hippocampus (HC) tissues were obtained from the National Institute of Child Health
and Human Development (NICHD) Brain Bank for Developmental Disorders. These two samples were
from a healthy single male donor, age 31. Ethics approval was obtained from the University Health

Network and The Hospital for Sick Children for use of the tissues.

Hi-C library on human tissue samples and early embryonic cell types
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Human tissue samples were flash frozen and pulverized prior to formaldehyde cross-linking. Fibroblasts
(IMR90) and lymphoblast (GM 12878 and GM19240) cells were cultured and formaldehyde cross-linked
with 5 million cells for each Hi-C library. Hi-C was then conducted on the samples as previously described
(40). Previously constructed Hi-C libraries (/0) were used for hRESC (H1) and early embryonic cell types

including mesendoderm, mesenchymal stem cell, neural progenitor cells, and trophoblast-like cells.

Generation of capture RNA probes

In order to perform promoter capture Hi-C we computationally designed RNA probes that capture promoter
regions of previously annotated human protein coding genes. Capture regions were selected for 19,704
protein coding genes across 22 autosomes and X chromosome according to GENCODE v19 annotation.
For each transcription start site, the two nearest left hand- and right hand-side HindIII restriction sites were
selected. Six capture oligos were designed at 120 nucleotide (nt) length and 30nt tiling overhang. Oligos
were designed upstream and downstream 300bp adjacent to each restriction site. As two restriction sites
were chosen for each transcription start site, in total 12 capture oligos were designed to target each
promoter region. Capture sequences overlapped with directly adjacent HindlIII restriction sites were
removed. GC contents of 94% capture sequences were ranged from 25% to 65%. Since some HindIII
fragments contain multiple TSS, 14,508 promoter regions (73%) were uniquely targeted by RNA probes,
while the remaining promoters are shared by at least one other promoter in a HindIII fragment. In total, our
capture oligo design generated 280,445 unique probe sequences including randomly selected capture
regions (i.e. gene deserts). Single-stranded DNA oligos were then synthesized by CustomArray Inc. Single-
stranded DNA oligos contained universal forward and reverse primer sequences (total length 31nt),
whereby the forward priming sequence contained a truncated SP6 recognition sequence that was completed
by the overhanging forward primer during PCR amplification of the oligos. After PCR, double-stranded
DNA was converted into biotinylated RNA probes through in vitro transcription with the SP6 Megascript

kit and in the presence of a biotinylated UTP, as previously described (41).

Promoter Capture Hi-C library construction
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Promoter Capture Hi-C library was constructed by performing a target enrichment protocol (enriching
target promoter centered proximity ligation fragments from Hi-C library using capture RNA probes).
Briefly, incubated 500ng Hi-C library 24h at 65 °C within the humidified hybridization chamber with 2.5ug
human Cot-1 DNA (Life Technologies), 2.5ug salmon sperm DNA (Life Technologies), and p5/p7
blocking oligos with hybridization buffer mix (10X SSPE, 10mM EDTA, 10X Denhardts solution, and
0.26% SDS) and 500ng RNA probes. Enriched RNA probe hybridized proximity ligation fragments using
50ul T1 streptavidin beads (Invitrogen) with 30min incubation at RT followed by additional 15min
incubation in wash bufferl (1X SSC and 0.1% SDS). Washed three times beads bound DNA fragments
with 500ul of pre-warmed (65 °C) wash buffer2 (0.1X SSC and 0.1% SDS), and resuspended in nuclease-
free water. Performed qPCR and amplified capture Hi-C library on beads. Purified PCR products with

AMPure XP beads followed by sequencing.

Promoter Capture Hi-C library sequencing, read alignment, and off-target read filtering

Promoter Capture Hi-C library sequencing procedures were carried out as described previously according
to Illumina HiSeq2500 or HiSeq4000 protocols with minor modifications (Illumina, San Diego, CA). Read
pairs from Promoter Capture Hi-C library were independently mapped human genome hg19 using BWA-
mem and manually paired with in house script. Unmapped, non-uniquely mapped, and PCR duplicates
were removed. Trans-chromosomal read pairs and putative self-ligated products (<15kb read pairs) were
removed. Off-target reads were removed when both read pairs did not match to capture probe sequences.

The on-target rates in Promoter Capture Hi-C library were ranged from 17% to 44%.

Promoter Capture Hi-C normalization

Interaction frequencies obtained from Promoter Capture Hi-C were normalized in terms of DNA fragment
level restricted by HindIIl. We defined DNA fragment that spans each HindlIII restriction site. The start and
end of DNA fragment was defined by taking midpoint of adjacent upstream and downstream restriction
site, respectively. We merged adjacent DNA fragments within 3kb. As a result, 514,738 DNA fragments

were defined. Median length of DNA fragments was 4.8kb. After that, we calculated raw interaction
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frequencies at DNA fragment resolution and performed normalization to remove experimental biases
caused by intrinsic DNA sequence biases such as GC contents, mappability, and effective fragment lengths,
RNA probe synthesis efficiency bias, and RNA probe hybridization efficiency bias. Although RNA probe
synthesis efficiency was highly reproducible between replicates (0.98 Pearson correlation coefficient, Fig.
S2D) the coverage of capture probes was highly variable across target regions (Fig. S2F, G). Due to the
high complexity of different types of experimental biases, we defined a new term named “Capturability”
that means the probability of the region being captured. We assumed that “Capturability” represents all
combined experimental biases and can be estimated as a total number of capture reads spanning a given
DNA fragment divided by a total number of capture reads. We found that “Capturability” in each DNA
fragment is highly reproducible across samples. Therefore, we defined universal “Capturability” as
summation of all “Capturability” defined in each sample. The basic idea of our normalization approach is
correcting raw interaction frequency using “Capturability” of two DNA fragments. During normalization
we processed promoter-promoter interactions and promoter-other interactions, separately because promoter
regions tend to show very strong “Capturability” as our capture probes were designed to target promoter
regions. Also, we only considered promoter-centered long-range interactions within 2Mb from TSS. Let Y
represents raw interaction frequency between DNA fragment i and j. Let C; represents “capturability”
defined in DNA fragment i. Assume Y follows a negative binomial distribution with mean p and variance
u+ ap?. We fitted a negative binomial regression model as follows: log u; = B + B1BS(C;) + B.BS(C)),
and defined the residual Rj; =Y;/ exp(Bo + B1BS(C) + B, BS(CJ-)) as a normalized interaction frequency
between DNA fragment i and j. BS represents a basis vector obtained from B-spline regression function.
The purpose of B-spline regression function is dimension reduction during fitting a negative binomial

regression model.

Identification of significant chromatin interactions
In order to identify significant pcHi-C chromatin interactions we removed distance dependent background
signals from normalized interaction frequencies. Again, we assumed that normalized interaction

frequencies R;; follow a negative binomial distribution with mean p and variance p + ap?. As similar to
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above interaction frequency normalization step, we calculated expected interaction frequency at a given
distance by fitting to a negative binomial regression model with basis vectors obtained from B-spline
regression of distance between two DNA fragments. Let D;;represents expected interaction frequency at a
given distance d calculated from a negative binomial regression model. Distance dependent background
signals were removed by taking signal to background ratio as follow: (R; + avg(R;))/ (D; + avg(Ry)).
Significant pcHi-C interactions were defined in terms of 0.01 p-value thresholds by fitting normalized
interaction frequencies (after removing distance dependent background signals) with 3-paramters Weibull

distribution.

Validation of significant pcHi-C interactions in IMR90

The visual inspection of normalized interaction frequencies from IMR90 Promoter Capture Hi-C suggests
highly reproducible results compared to high resolution IMR90 Hi-C with only 10% sequencing depth (Fig.
S5A). The average correlation coefficient of normalized interaction frequency at upstream and downstream
2Mbp regions of each promoter was 0.57 between IMR90 Hi-C and Promoter Capture Hi-C (Fig. S5B),
which is statistically significant compared to randomly permutated data (KS-test p value <2.2e-16). Next,
we compared the significant Promoter Capture Hi-C interactions with “loops” identified from in situ
IMR90 or GM 12878 Hi-C experiments (/5). We only considered “loops” emanating from promoter

containing DNA fragments defined in our Promoter Capture Hi-C result.

Functional annotation of DNA fragment

We annotated functional elements to each DNA fragment. If DNA fragment contains at least one annotated
protein coding TSS we assigned the fragment as promoter containing DNA fragment. Next, we defined
putative distal cis-regulatory elements using H3K27ac peaks across all 27 cell and tissue types. We
combined these peaks and merged if the peaks are within 3kb each other, resulting in 126,604 putative
distal cis-regulatory elements. We assigned the ¢cRE containing DNA fragment if the DNA fragment

contains at least one cis-regulatory element. When a DNA fragment contains both TSS and ¢RE we defined
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the fragment as a promoter-containing DNA fragment because our data is highly biased to capture promoter

regions.

Enrichment of functional elements in promoter interacting regions.

In order to test the enrichment of functional elements in promoter interacting regions, we first calculated
the expected coverage by each type of element. 8,698 DNA fragments contain at least one promoter
(2.6%), 8,217 DNA fragments contain both promoter and distal cRE (4.2%), 126,604 DNA fragments
contain at least one cRE (28.3%) and 371,219 DNA fragments (28.3%) contain neither promoter nor cREs.
Both promoter and distal ¢cRE containing DNA fragments were considered as promoter containing DNA

fragment. Fisher-exact test was performed for the statistical test.

Identification of interaction hot spots

We observed that a certain DNA fragment frequently interacts with multiple promoters. To systematically
identify such highly interacting regions (i.e interaction hot spots) we first investigate the distribution of the
number of interaction frequencies with promoters for each DNA fragment. To minimize experimental
biases caused by capturing promoter regions, we conducted our analysis by separating promoter-promoter
interactions and promoter-other interactions. For each cell or tissue-type, we selected highly interaction
regions in terms of 0.01 p value cutoff after fitting the number of interacting promoters with Poisson
distribution. We termed these highly interacting regions as promoter interaction hotspot (P-P iHS) from

promoter-promoter interactions and other interaction hotspot (P-O iHS) from promoter-other interactions.

Identification of TF clusters for H1-hESC and GM12878.

Transcription factor ChIP-seq experiments on human lymphoblast (GM12878) and human embryonic stem
cell (H1-hESC) by ENCODE were collected. These ChIP-seq reads were aligned against human genome
hg19 using BWA-mem with default parameters. We collected only uniquely mapped reads with 10 or
greater alignment quality score. Samtools version 1.3 sorted these bam files by coordinate and we removed

duplicated reads by Picard. Peak calling of individual ChIP-seq experiments was performed with MACS2
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callpeak with default parameters (42). We defined TF clusters by calling peaks from combined bed files of
TF peaked regions using MACS2 bdgpeakcall. The regions occupied by multiple TF peaks were
recognized as TF clusters. To minimize parameter dependent bias, we retrieved TF cluster regions 40 times
with various parameter sets as following; minimum # of TFs within cluster (5 or10), minimum length of
cluster (2-fold increase from 100bp to 1600bp), maximum gap length within cluster (2-fold increase from
100bp to 51.2kb). Final TF clusters were defined when the region is dected as TF clusters more than 20

times from 40 different parameter set.

Permutation test of TF clusters and super-enhancers

Permutation test was performed to measure how TF clusters are enriched near interaction hotspot. Bedtools
shuffleBed generate genomic locations that resemble actual TF clusters with the same size but different
genomic coordinate as shuffled random clusters. Bedtools intersectBed identified overlap between
interaction hotspots and TF clusters or shuffled random clusters. Average and standard deviation of
shuffled random clusters were calculated from 10,000 sets of random data sets. Similarly, enrichment of
super-enhancers was conducted by generating random data sets with the same size but different genomic

coordinate. The list of super-enhancers were obtained from the author’s website (25).

k-medoids clustering of interaction hotspot and hierarchical clustering of cell/tissue types based on
interaction hotspot

We first collect all P-P or P-O interaction hotspots in each cell/tissue types, respectively as putative
interaction hotspot DNA fragments. Then, assigned —log10 (interaction hotspot p value) for each putative
interaction hotspot DNA fragment in each cell/tissue type, resulting in an interaction hotspot p value profile
where each entry indicates —log10 (p value). Using the interaction hotspot p value profiles, we carried out
hierarchical clustering between 21 samples with Pearson correlation metric. To test cell/tissue type
specificity of interaction hotspots we conducted k-medoids (k=50) clustering of all putative interaction
hotspots using JuliaStats package. After generating 50 k-medoids clusters we manually reorder the clusters

in terms of hierarchical clustering result in above.
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Correlation-based H3K27ac promoter-enhancer pairs

In order to define promoter-enhancer pairs by using correlation based approaches, we first calculate input
normalized RPKM values at enhancer and promoter regions. We take log2(H3K27ac RPKM +1)-
log2(input RPKM +1) as the input normalized H3K27ac RPKM values. By collecting H3K27ac ChIP-seq
results for all 27 cell/tissue types, each enhancer or promoter region has a 1 by 27 H3K27ac RPKM vector.
We computed Pearson correlation coefficient of these vectors between all pairs of enhancer and promoter
within 1IMbp. We selected top ranked enhancer-promoter pairs with the same number of significant
enhancer-promoter interaction pairs defined by using pcHi-C as a correlation-based H3K27ac promoter-

enhancer pairs.

Comparison between eQTL relationships and promoter-other significant chromatin interactions

In order to validate functional enrichment for significant promoter-other pcHi-C interactions we compared
significant eQTL relationship for all matched tissue types (n=13, AD, AO, DLPFC, EG, HC, LF, L1, LV,
OV, PA, SB, SG, and SX) from GTEx database. We only considered eQTLs that are located in the
fragment without a gene and target a gene located in the other fragment. After that, we counted the number
of eQTLs that match the significant P-O pcHi-C interactions. For random expectation values, we
downloaded all tested eQTLs and randomly selected the same number of significant eQTLs and counted
the number of matched eQTLs. Standard deviation of error bars were obtained from 1,000 iteration of

random eQTLs.

To compare functional enrichment of promoter-cRE pairs between pcHi-C and correlation-based methods,
we combined all eQTL relationships from 13 tissue types used in the above analysis. After that, we
calculate the number of matched eQTLs in promoter-cRE pairs by pcHi-C and by a correlation-based
method. 6,381 and 2,354 eQTLs were matched to promoter-cRE pairs in pcHi-C and the correlation-based

method, respectively. For the random expectation values, we randomly selected the same number of
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promoter-cRE pairs and calculate standard deviation of error bars from 100 iterations of random promoter-

cRE pairs.

Comparison between eQTL relationships and promoter-promoter significant chromatin interactions
We collected all eQTL relationships from GTEx database with 44 tissue types as putative eQTL
relationships. After that, we counted the number of eQTLs that match the significant P-P pcHi-C
interactions where we considered eQTLs that resided within 2.5kb from TSS. For random expectation
values, we randomly selected P-P pairs within 1Mbp as the same number of significant P-P chromatin
interactions and then counted the number of eQTLs that match the random P-P pairs. Average and standard
deviation values were calculated after performing random selection of P-P pairs 1,000 times. To ensure the
result is not biased depending on distance between P-P pairs we also tested randomly selected P-P pairs
within 500kb and 100kbp , but found that the significant P-P pcHi-C pairs are always significantly matched

with eQTL relationships compared to randomly selected P-P pairs.

Linking between dynamic long-range P-O interactions and variations in gene expression

We linked dynamic long-range P-O interaction to variations in gene expression. We first collected testable
promoter regions because of different sequencing depth across samples or capture probe density across
promoter regions. Based on P-O pcHi-C interaction profiles between GM 12878 two biological replicates,
we found that the reproducibility of the pcHi-C interaction profiles is affected by the coverage of reads at
promoter regions. We found that 4,000 is a minimum number of reads spanning at promoters to fairly
compare P-O interaction profiles between samples. We collected testable promoters when the promoter is
covered by more than 4,000 reads at least 10 cell/tissue types, resulting in 3,454 testable promoters. For
those testable promoter regions, we filtered again based on gene expression variations. We defined the gene
expression is variable when the maximum and minimum FPKM values of the gene show more than 2-fold
difference, resulting in 2,903 testable promoters. After that we computed Pearson correlation coefficient
(PCC) between pcHi-C normalized interaction frequencies and variations in gene expressions (FPKM) for a

given promoter. The pcHi-C normalized interaction frequencies represent chromatin interactions between
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the promoter and another DNA fragment within 2Mbp from the TSS. We only considered P-O pairs
showing over 0.5 absolute PCC value. If the variations of gene expressions are only positively correlated
(>0.5 PCC) with other fragments, we defined the gene is linked by dynamic long-range interactions
positively (n=1,250). If the variations of gene expression is only negatively correlated (>0.5 PCC) with
other fragments, we defined the gene is linked by dynamic long-range interactions negatively (n=276). If
the variations of gene expressions show both positively and negatively correlation with dynamic long-range
interactions, we defined the gene is linked by dynamic long-range interactions both positively and

negatively (n=661).

Linking between allele biased promoter activities and significant P-P chromatin interactions

In order to support cis-regulatory function of promoters on distal gene regulation, we utilized allelically
biased promoter activity information. We first defined allelelically biased promoters using very deeply
sequenced paired-end H3K27ac ChIP-seq data for matched 14 tissue types (AD, AO, EG, GA, LG, LV,
OV, PA, PO, RA, RV, SG, SX, and TH). We denoted one allele as P1 and another allele as P2. We
obtained haplotype-resolved these ChIP-seq data from our previous study (2/) and collected testable
promoter regions when the promoter was covered more than 15 allele specific reads, resulting in 131,535
testable promoters. Then we calculated binomial p value between P1 and P2 alleles and defined allele
biased promoter activity in terms of 0.05 FDR cutoff (n=10,844). For each tissue type, we collected testable
significant P-P pcHi-C interactions where both promoters are allelically biased. Without any restriction of
distance information we found 46 testable significant P-P pcHi-C interaction pairs and among them 61% of
pairs were concordantly biased in the same allele. When we restrict the distance between P-P pairs as less
than 100kb, we found 32 testable significant P-P pcHi-C interaction pairs and among them 72% of pairs
were concordantly biased in the same allele. For the random expectation, we randomly assigned the biased

allele for testable promoters and iterated this procedure 1,000 times.

Extended GWAS-SNPs list with LD information.
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As GWAS-SNPs obtained from GWAS catalogue database contain tag SNP information only, we extended
the GWAS-SNP information using linkage disequilibrium (LD) structure. LD scores were calculated using
PLINK for five different populations obtained from 1000 genome phase 3 data. For each tag SNP we
included all associated SNPs showing tight LD score (>0.8) for all five populations (AFR, AMR, EAS,

EUR, and SAS).

Enrichment test of disease genes in putative GWAS-SNP target genes.

In order to test the enrichment of disease associated genes in GWAS-SNP putative target genes we first
downloaded the list of putative disease associated genes from GeneCard database, resulting in 9,989
disease associated genes. Then, for each cell/tissue type we defined putative target genes of GWAS-SNPs
based on significant pcHi-C interactions in each cell/tissue type. To remove false putative target genes, we
only considered putative target genes that frequently interact with multiple GWAS-SNPs. We used top 20
frequently targeted genes as high confident putative target genes and calculated the ratio between disease-

associated genes and other genes as a measure of disease gene enrichment.

Clustering of GWAS sub categories based on putative target genes

Based on “mapped traits” from GWAS catalog database, we first grouped GWAS-SNPs into sub
categories. For each sub categories we defined putative target genes by aggregating all unique significant
pcHi-C interactions. We only considered sub categories containing more than 5 putative target genes,
resulting in 907 sub categories. Based on the frequency of putative target genes in each sub category we
calculated PCC between sub categories, resulting in 907 by 907 symmetric PCC matrix. We performed K-
mean clustering (n=30) for this matrix. 367 sub categories were grouped into 29 clusters, but rest of them

was not grouped well. We only focused on these 29 well-clustered groups during downstream analysis.

Analysis of functional enrichment using DAVID
We use DAVID 6.8 Beta version to perform the functional enrichment test. We use all human genes as

background and we select UP_ TISSUE, KEGG PATHWAY, and GO_BP as functional annotations.
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Jung et al Figure 1
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Figure 4.1. Mapping long-range promoter-centered chromatin interactions on 27 human tissue and
cell types.

(A) Significant interactions identified from pcHi-C across multiple cell/tissue types, with the darkness of
the purple corresponding to the strength of the interactions. RefSeq genes are presented together. (B)
Depiction of identified long-range promoter-centered interactions across a 3.7 Mb locus in lymphoblast
cells (LCL) (top). Shown below are histone modification signals obtained from ChIP-seq analyses (39) as
well as accessible chromatin regions measured from DNasel hypersensitivity assay (C) Depiction of
Promoter-Promoter interaction hotspots (P-P iHS), Promoter-Other interaction hotspots (P-O iHS), and
transcription factor (TF) clusters identified in GM 12878 cells for the same region shown in Fig. 1B. Below
are 67 TF binding profiles obtained form ChIP-seq analysis, and RefSeq genes. Highlighted in translucent
blue are overlapping iHS and TF clusters. (D) Heatmap showing cell/tissue-type specific P-O iHS. Each
row represents a distinct cell or tissue type (n=21), and each column is a unique P-O iHS (n=3,951). The
color bar ranges from non-statistical significance (N.S) to high significance. The dendrogram (right-hand
side) is based on hierarchical clustering of P-O iHS similarities between cell and tissue types. Cell and
tissue types are colored based on their developmental origin, or cell line status as indicated. (E) Snapshot
illustrating the promiscuous interaction profile of a Left Ventricle (LV) super-enhancer, overlapping with
P-O iHS. The top rows depict histone modification signals as measure by ChIP-seq, followed by
transcriptional levels measure RNA-seq in LV. Below are RefSeq genes, and then observed interactions
emanating from the LV super-enhancer (highlighted in translucent orange). Interactions detected by pcHi-C
are colored in purple, with the darkness of the purple corresponding to the strength of the interactions.
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Figure 4.2. Long-range promoter-distal cRE interactions are enriched for functional relationships.

(A) Illustrative Locus zoom plot of eQTLs for VLDLR (top) and significant pcHi-C interactions emanating
from the VLDLR promoter region in Aorta tissue (bottom). Dots along the locus zoom plot represent SNPs,
and their significance effect on VLDLR gene expression levels is plotted along the left y-axis. Dots are also
color-coded based on their Linkage Disequilibrium (LD) scores with a tag SNP. The blue line traveling
across the scatterplot indicates the recombination rate, as plotted along the right y-axis. (B) Barplots
showing the number of matched eQTLs with significant P-O pcHi-C interactions and the number of
matched randomly selected eQTLs with significant P-O pcHi-C interactions for sigmoid colon (SG),
esophagus (EG), and ovary (OV). Fisher-exact test was performed for statistical significant (¥*** < p value
10e-3). (C) Illustrative example of dynamic gene expression showing positive correlation with changes in
long-range promoter-cRE interaction frequency. The top interaction shows the significant interaction
between the POU3F3 promoter and a distal cRE ~350kb upstream in hippocampus tissue (HC). The bar
plot below and left shows the normalized pcHi-C interaction frequencies between POU3F3 promoter and
the distal cRE and the right shows the gene expression levels of POU3F3, highlighted in blue.
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Figure 4.3. Widespread promoter-promoter interactions in distal gene regulation.

(A) Browser snapshot of the TMED4 locus, showing promoter-promoter interactions that correspond to
correlated H3K27ac signals at promoters. Shown and the top are RefSeq genes, and below are H3K27ac
histone modification signals as measured by ChIP-seq. Highlighted by blue boxes are promoters who are
linked both by highly correlated H3K27ac signal and by significant pcHi-C interactions. A highlighted by
gray box is an adjacent promoter of TMED4. Below, are PCC values and links based on H3K27ac signal
and links based on pcHi-C. (B) Density plots showing the PCC distributions of H3K27ac (blue), H3K4mel
(orange), and H3K4me3 (green) signals for promoter-promoter pairs exhibiting significant DNA looping
interactions detected by pcHi-C. A density plot showing the PCC distributions of H3K27ac signals for
randomly selected promoter-promoter pairs (gray). X-axis indicates PCC of histone modification signals
between promoter-promoter pairs across 27 cell/tissue types. (C) Box plot showing the PCC distributions
of gene FPKM signals for randomly selected promoter-promoter pairs (dark blue) compared to promoter-
promoter pairs exhibiting significant pcHi-C interactions (blue), promoter-promoter pairs defined by ChIA-
PET (green), and adjacent promoter-promoter pairs within 20kb (yellow). KS-test was performed for
statistical significance (*** < p value 0.005). (D) Illustrative LocusZoom plot of eQTLs for BLCAP gene
expression in Aorta. Both BLACP gene promoter region and GHRH promoter that contain significant
eQTLs are highlighted in translucent orange, Dots along the LocusZoom plot represent SNPs, and their
significance of association with BLCAP gene expression is plotted along the left y-axis. Dots are also color-
coded based on their LD score with a tag SNP (rs55705839). The blue line traveling across the LocusZoom
plot indicates the estimated recombination rate, as plotted along the right y-axis. Gene expression levels
detected by RNA-seq and RefSeq genes position are plotted below the LocusZoom plot. (E) Bar plots
showing the eQTL association of genes with the SNP rs55705839, with the most significant association
with the distal gene, BLCAP. Y-axis indicates —log10 eQTL p values. (F) Bar plots showing the absolute
number of eQTLs that are matched with promoter-promoter interactions identified from pcHi-C data
(darkblue) and randomly selected promoter-promoter pairs (blue). Error bar indicates standard deviation
from 1,000 random data sets. Fisher-exact test was performed for statistical significance (*** p value <
2.2e-16). (G) Illustrative example of concordant allelically-biased H3K27ac signals at promoters which are
linked through a significant pcHi-C interactions in SG tissue. RefSeq genes are shown at the top, followed
by allelically mapped H2K27ac signal (P1 and P2). Highlighted in orange boxes are the promoters for
VSTM1 and OSCAR, which show allelically biased H3K27ac signals towards the P1 allele (red).



98

Jung etal,, Figure 4

A Mesenchymal stem cell (chr16)

T dod i [ .

Lo bt s Bt soidoe bt 0 i bt |
whicd i . hi‘, .l

H3K27me3

bbbl e i
bl e

H3Kdmel

H3K27ac|

|
wakames| | |

RefSeq i o vecmmes — R

o VRS

151421085

3
S
5
£
o
B (Geneti determinant o human obesity) RXS promoter IRXS promoter

B C

GWAS mapped traits ordered by K-means clusters

* — UP_TISSUE: Peripheral biood leukocyte

KEGG_PATHWAY: Syst

GWAS mapped traits ordered by K-means dlusters
-Iog 10 (P value)

1 50 100 150

PCC of putat trai

Double-strand bresk repair
CENp-

GWAS mapped
ordered by K.
«
]
i
i
.
e
—
z

-log10 (p-val

- — - — ==

Hierachical clustering of GO biolgoical functions

Figure 4.4. Putative target genes of GWAS SNPs linked by promoter-centered long-range chromatin
interactions.

(A) Browser snapshot of the FTO/IRX3/IRX5 locus in mesenchymal stem cells (MSC). Highlighted in
orange boxes is the intronic enhancer in F70 bearing the genetic determinant for human obesity,
rs1421085, as well as the promoters for /RX3 and /RX5. The top tracks show histone modification signals
obtained from ChIP-seq analysis. Below are RefSeq genes, follow by all significant long-range interactions
originating from the promoters of /RX3 or /RX5. (B) Shown are K-means clustering (n = 29) results of
disease-disease associations using putative GWAS-SNP target gene similarities. Each dot indicates PCC of
the target gene similarities between GWAS sub-categories. Clusters are shown along the arbitrary order of
K-means clusters from cluster 1 to cluster 29 as from top to bottom and from left to right. Representative
diseases or traits are shown together for several clusters. (C) Gene ontology analysis of putative target
genes in cluster] using DAVID. GO terms are presented according to p-values (green dots). UP_TISSUE is
for up-regulated tissue type, GO_BP is for GO biological process. P values of corresponding GO terms
using nearest gene information are shown as gray dots. (D) Hierarchical clustering of GO biological
processes (each column, n=109) across the K-means clusters (each row, n=29). Each entry indicate —
log10(p) value of GO biological processes in the corresponding cluster. Several representative biological
processes are described together.
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Figure S4.1. Capture Hi-C design, probe synthesis, and target enrichment workflow.

(A) Schematic of probe design for promoter Capture-HiC experiments. For each promoter (black
rectangle), two flanking HindIII cut sites were identified. A 15bp buffer was then added to each side of the
HindIII cut site, and then 3 120-mer capture probes were allocated to each side of the HindlIII cut site, with
a 30bp shift between adjacent probes. In total, 12 capture probes were assigned to each promoter, and all
probes were targeted towards the Watson Strand cut site. (B) Schematic workflow of custom RNA probe
synthesis. From top to bottom, ssDNA probe synthesis by CustomArray, Inc, PCR amplification with SP6
recognition sequence completion and purification, BsrDI digest and purification, in vitro transcription in
the presence of biotinylated UTP and purification, and pooling of probe batches using equal mass ratios.
(C) Schematic workflow of target enrichment of Hi-C libraries (Promoter Capture-Hi-C). From top to
bottom, preparation of library mix, hybridization buffer, and probe mix, following by combining the mixes
and overnight incubation to bind probes to Hi-C template. Then, preparation of streptavidin beads and wash
buffers. Then, binding RNA:DNA duplexes to streptavidin beads and rigorous washing to remove off-
target binding. And lastly, PCR amplification of the resulting Promoter Capture-Hi-C library.
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Figure S4.2. Overview of samples and datasets and capture probe quality control.

(A) Schematic overview of the cell and tissue types analyzed by Promoter Capture-Hi-C, and note of other
datasets available for these samples. Embryonic or embryonic-derived cell types are on the left, and tissues
are tabled on the right according to their developmental origin. (B) Snapshot of Promoter Capture-Hi-C
probe density from RNA-seq analysis of the capture probes. Two replicates of probe synthesis and
subsequent RNA-seq are shown, followed by Gencode gene annotations. (C) Zoomed-in snapshot of
Promoter Capture-Hi-C probe density from RNA-seq analysis of the capture probes. Below the replicate
RNA-seq datasets are the HindlIII cut sites and Gencode gene annotations, illustrating that the vast majority
of probe density is only found around HindIII cut sites flanking promoters. (D) Scatter plot showing the
reproducibility of probe density from RNA-seq data across two probe synthesis experiments. Each dot on
the scatter plot represents a single promoter, and the value is the aggregate probe density from all probes
assigned to that given promoter. (E) Venn diagram showing the number of targeted regions that contain
detectable probe density based on RNA-sequencing of the capture probes from each replicate of probe
synthesis. (F-G) Histogram of the probe densities measured by RNA-seq (x-axis) in each promoter from
replicate 1 (F) and replicate 2 (G) of probe synthesis.
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Figure S4.4. General characterization of promoter-centered long-range interactions.

(A) Snapshot of a locus showing promoter-centered long-range interactions from Promoter Capture-Hi-C
data in H1 cells (bottom, purple loops) in the context of TADs (blue rectangles) detected from Hi-C data
(top, red) in H1 cells. RefSeq genes are shown at the bottom. (B) Histogram showing the distribution of
genomic distances of promoter-centered long-range interactions. The cumulative fraction of promoter-
centered long-range interactions is plotted as a red line, and corresponds to values plotted along the right y-
axis. (C) Pie chart showing the classification of all unique significant pcHi-C interactions obtained from all
tissues and cell types. P-P corresponds to promoter-promoter interactions; P-O corresponds to promoter
interactions with non-promoters. P-O class of interactions has been sub-divided to P-O with cRE and rest of
P-O. (D-E) Pie chart showing the classification of all unique significant pcHi-C interactions from Promoter
Capture-Hi-C in LCL (D) and H1 (E). The rest of P-O class of interactions has been sub-divided again to
show P-O interactions that are also TF binding sites.
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Figure S4.5. Validation of Promoter Capture-Hi-C.

(A) Browser snapshot of the CCL gene cluster, highlighting the similarity of promoter-centered interactions
from Promoter Capture-Hi-C and high resolution Hi-C data in IMR90 cells. The top two tracks show
histone modification signals for H3K4me3 and H3K27ac, obtained from ChIP-seq data, and RefSeq genes.
Below, are promoter-centered DNA looping interactions obtained from Promoter Capture-Hi-C in IMR90
cells (blue loops), and promoter-centered DNA looping interactions from high-resolution Hi-C data in
IMRO90 (purple loops). (B) Overlapping histograms, showing the PCC of promoter centered interaction
profiles between Promoter Capture-Hi-C and high resolution Hi-C data in IMR90 cells. Each data point in
orange color represent the PCC of the interaction profile of a single promoter between the two datasets. In
gray, each data point represents the PCC of interaction profiles of randomly selected promoter-pairs
between the two datasets. (C) Histogram showing distribution of PCC p values of interaction profiles of a
single promoter between the two datasets. (D-F) ROC plots showing the prediction performance of
Promoter Capture Hi-C result compared to 4C-seq (D), in situ Hi-C loops anchored at promoters
lymphoblast cells (E), and in sizu Hi-C loops anchored at promoters in IMR90 (F).
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Figure S4.6. Characterization of interaction hotspots (iHS).

(A) Histogram showing the distribution of number of interacting promoters for each DNA fragment in H1.
(B-C) Bar plots showing the number of P-O iHS in lymphoblast cells (LCL) (B) or H1 (C) overlapping
with TF clusters compared to random expectation. Fisher-exact test was performed for statistical
significance (*** p value < 2.2e-16). (D-E) Bar plots showing the number of P-P iHS in lymphoblast cells
(LCL) (D) or H1 (E) overlapping with TF clusters compared to random expectation. Fisher-exact test was
performed for statistical significance (*** p value < 2.2e-16). (F) Heatmap showing cell/tissue-type
specific P-P iHS. Each column represents a distinct cell or tissue type, and each row is a putative P-P iHS.
The color bar ranges from low statistical significance, to high significance of P-P iHS p-value. The above
dendrogram is clustered using the hierarchal clustering based on PCC of P-P iHS similarity between
samples. (G) Heatmap showing PCC of P-O iHS similarities. The above dendrogram is clustered using the
hierarchal clustering based on the PCC between samples. (H) An array of bar plots showing the number of
P-O iHS overlapping with super-enhancers (left, purple), compared to random expectation (right, blue).
Each bar plots represents an analysis of a different cell or tissue, depending on which cells/tissues have
super-enhancer annotations. (I) Box plots showing the overlapping score between super-enhancers and P-O
iHS when the super-enhancer annotation set and iHS set are from the same tissue (‘matched’, orange), or
from different tissues (‘different’, gray). KS-test was performed for statistical significance (** p value <
0.01).
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Figure S4.7. Enrichment of eQTL relationships in significant P-cRE interactions.

(A) Density plots showing the distribution of PCC for H3K27ac signals at true P-cRE pairs identified from
Promoter Capture-Hi-C (blue), compared to expected distributions of PCC values (gray). (B) Venn diagram
illustrating the amount of overlapping of P-cRE pairs identified from Promoter Capture-Hi-C data (orange)
and P-cRE pairs identified using correlation-based approaches (blue). (C-E) Illustrative locus zoom plots
of eQTLs for CHML (C), MIOS (D), and STARD10 (E) gene expression in lung, liver, and spleen,
respectively. RefSeq genes position is plotted below the locus zoom plot. Significant Promoter Capture Hi-
C are shown as purple in the bottom. (F) Array of bar plots showing number of matched eQTL
relationships between significant P-O pcHi-C interactions compared to random expectation across 10
matched tissue/cell types from GTEx database. Significant P-O pcHi-C interactions highly enriched by
eQTL relationships compared to random expectation in all 10 matched tissue/cell types based on Fisher-
exact test p-values (<0.001).
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Figure S4.8. Dynamic long-range promoter-cRE interactions.

(A) Bar plots showing fraction of matched eQTL relationships in uniquely identified significant Promoter
Capture Hi-C interactions after aggregate all 27 cell/tissue types, uniquely identified by correlation-based
method, and random expectation. Standard deviation of error bars is shown for random expectation
(n=100). Fisher-exact test was performed for statistical significance (*** p value < 2.2e-16). (B) Illustrative
dynamic long-range promoter-centered interactions for MYC promoter across multiple cell and tissue types.
Orange boxes highlighted tissue type specific, tissue type invariant, and known MY C enhancer
interactions. MYC promoter region is highlighted as black. (C) A 3D-scatter plot between numbers of
Promoter Capture Hi-C read coverage of promoters between GM 12878 repl, rep2, and PCC of normalized
interaction frequencies between two replicates for each promoter. Each dot indicates individual promoter.
The hyperplane is shown for regression result. (D) Bar plots showing median PCC of promoter and other
normalized interaction frequencies between two biological replicates GM 12878 in terms of minimum
coverage of Promoter Capture Hi-C reads at promoters. (E) Pie chart showing the percentage of genes
whose gene expression levels are correlated by dynamic promoter-other interactions, positively, negatively,
or both.
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Figure S4.9. Functional promoter-promoter interactions.

(A) A scatter plot showing of gene expression FPKM values of significant pcHi-C P-P pairs in H1. Each
dot indicates each gene. (B) Illustrative locus zoom plot of eQTLs for PVR gene expression in right
ventricle. Both PVR gene promoter region and PVRL2 promoter that contain significant eQTLs are
highlighted in translucent orange. Dots along the locus zoom plot represent SNPs, and their significance of
association with PVR gene expression is plotted along the left y-axis. Dots are also color-coded based on
their LD score with a tag SNP. The blue line traveling across the scatterplot indicates the estimated
recombination rate, as plotted along the right y-axis. RefSeq genes position is plotted below the locus zoom
plot. Significant Promoter Capture Hi-C interactions in RV were shown as purple in the bottom. (C) Bar
plots showing the fraction of significant pcHi-C P-P pairs that concordantly biased in the same allele (left,
purple), compared to random expectation (right, teal). Standard deviation of error bars was calculated from
1000 times random expectation values.
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Figure S4.10. Promoter located GWAS-SNPs and their putative distal target genes.

(A) Barplot showing the enrichment of disease-associated genes (y-axis) in top 20 high confident putative
target genes of GWAS-SNPs identified by pcHi-C maps across cell and tissue types (x-axis). Black line
indicates no enrichment of disease-associated genes compared to other genes. (B) Line plot showing the
fraction of disease associated genes in GWAS-SNP putative target genes identified by DLPFC Promoter
Capture Hi-C data. The genes are ranked (x-axis) in terms of frequency targeted by GWAS-SNPs. (C-E)
Ilustrative several examples showing putative target genes of GWAS-SNPs that resided in promoter
proximal regions and target distal genes by both eQTL relationships and Promoter Capture Hi-C result.



Table S4.1. List of cell/tissue types analyzed in this study
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Samples Tissue/cell type

AD STLO002 Adrenal Gland

AO STL002 Aorta

AO STLO003 Aorta

BL STLO001 Bladder

DLPFC Dorsolateral Prefrontal Cortex
EG_STL002 Esophagus

FT STL002 Fat

IMR90 Fibroblasts
GA_STL002 Gastric

GA_STLO003 Gastric

HC Hippocampus

HI Human ES cells
LV_STL001 Left Ventricle
LV_STL003 Left Ventricle

LI STLO11 Liver

LG_STLO001 Lung

LG_STL002 Lung

GM12878.repl Lymphoblasts
GM12878.rep2 Lymphoblasts
GM19240 Lymphoblasts
MSC.repl Mesenchymal Stem Cell
MSC.rep2 Mesenchymal Stem Cell
ME Mesendoderm

NPC Neural Progenitor Cell
OV_STL002 Ovary

PA_STL002 Pancreas

PA_STLO003 Pancreas

PO_STLO001 Psoas

PO_STLO003 Psoas

RA_STL003 Right Artrium
RV_STL001 Right Ventricle
RV_STL003 Right Ventricle
SG_STLO001 Sigmoid Colon
SB_STL002 Small Bowel
SB_STLO001 Small Bowel

SX STLO001 Spleen

SX STLO003 Spleen

TH_STLO001 Thymus

TB Trophoblast




Table S4.2. Number of processed reads
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Tissue Trans_target Cis_target Self target Total read
AD 21189399 16562245 15701347 258605662
AO 21377741 18073853 19497645 258079376
BL 19127398 16708591 20757180 293419345
DLPFC 14693048 15456589 11210022 190395167
EG 3979711 2548027 3846385 57973772

FT 3418500 3155609 4042855 63282029

GA 33563029 17767829 31333830 283205529
LCL 52538294 61292977 33491869 424713922
H1 16280869 18490970 16652197 207432338
HC 19096377 18868512 16072830 164780406
IMR90 16534785 22902355 16810314 168302264
LG 37427610 17759143 26821237 389985523
LI 16169255 13920351 20183454 253040895
LV 43954536 20527913 26589758 350765301
ME 10351330 16852133 15223522 96531837

MSC 8477823 31160058 16619223 144584470
NPC 27684792 8439809 15900447 128845471
ov 27058343 12047340 17769330 241662445
PA 22450998 13975650 18959814 244227059
PO 9000450 5916505 6930829 87699425

RA 3601248 2012229 3486904 52853723

RV 34167423 17182471 20265717 281406073
SB 35145481 20051901 28740253 323151259
SG 2016586 1740077 2486683 46896920

SX 18189701 10225803 16381391 192495180
TB 9259870 9422392 6745688 68223281

TH 35147513 14994797 21521930 246537737
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Table S4.3. Number of significant long-range promoter-centered interactions from pcHi-C

Tissue/cell-type Number of interactions
AD 22964
AO 28876
BL 29856
DLPFC 26285
EG 991
FT 1705
GA 11564
LCL 37344
H1 45397
HC 17346
IMR90 49332
LG 12708
LI 27346
LV 20141
ME 45480
MSC 73242
NPC 8669
ov 5749
PA 8446
PO 6026
RA 923
RV 16172
SB 10891
SG 567
SX 11777
TB 26046

TH 15731




Table S4.4. Total number of interaction hotspots (Poisson P value < 0.01)
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Tissue/cell type Number of interaction hotspots
AD 743
AO 952
BL 952
DLPFC 743
GA 475
GM 1200
H1 1319
HC 676
IMR90 1420
LG 475
LI 952
LV 587
ME 1420
PA 377
RV 587
SB 402
SX 439
TB 952
TH 512
MSC 1319
NPC 402




Table S4.5. List of TF ChIP-seq data to define GM 12878 TF clusters
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TF Number of peaks SRA accession ID
ATF2 25922 SRX190236
BATF 56935 SRX100583
BCL3 27935 SRX100387
BCLAF1 12138 SRX100554
BHLHE40 30235 SRX150509
CHD2 20388 SRX150458
CREBI1 32576 SRX190216
CTCF 34460 SRX150690
EBF1 30572 SRX150455
EGR1 19053 SRX190186
ELF1 34951 SRX100541
EP300 18036 SRX150641
MAX 14357 SRX150597
MAZ 18017 SRX150363
MEF2A 25785 SRX100556
MTA3 17290 SRX190185
MXII1 16048 SRX150510
NFATCI1 22246 SRX190235
NFYB 15000 SRX150586
PAXS 48119 SRX100436
PBX3 31282 SRX100577
PML 14882 SRX190227
RAD21 48659 SRX150412
RUNX3 90498 SRX190349
SIN3A 10673 SRX150411
SMC3 24493 SRX150456
SP1 49101 SRX100408
SPI1 64814 SRX100576
SRF 12766 SRX100395
STATSA 10225 SRX190177
TBL1XR1 11263 SRX150732
TBP 16668 SRX150732
TCF12 49332 SRX100434
ZNF143 34116 SRX150692
ZNF384 10930 SRX186607




Table S4.6. List of TF ChIP-seq data to define HI-hESC TF clusters
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TF Number of peaks SRA accession ID
ATF2 23883 SRX190198
BACHI1 15407 SRX150659
CEBPB 24803 SRX150375
CHDI1 7427 SRX186640
CHD2 12886 SRX150377
CREBI1 36040 SRX190352
CTBP2 20048 SRX150542
CTCF 58646 SRX067423
E2F6 46692 SRX190355
EGR1 8405 SRX100475
EP300 14776 SRX100587
GABPA 20837 SRX100469
HDAC2 18928 SRX186668
JUND 19605 SRX100574
KDM4A 29948 SRX186675
MAFK 13639 SRX150372
MAX 82405 SRX190354
MXII1 8604 SRX150373
NANOG 18796 SRX100482
PHF8 20069 SRX100482
RAD21 68538 SRX150459
RBBP5 18346 SRX186780
REST 20314 SRX100410
SAP30 22515 SRX186768
SIN3A 37272 SRX150369
SP1 29549 SRX100422
SP4 16194 SRX190199
TAF1 31733 SRX100495
TAF7 9255 SRX100546
TBP 26635 SRX150383
TCF12 26383 SRX100472
TEAD4 53037 SRX190301
USF1 43955 SRX100471
YY1 46580 SRX100558
ZNF143 39522 SRX150593
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Chapter 5

Conclusion

Summary

We have conducted several studies to either develop new technologies for mapping 3D genome
architecture, or to investigate genome architecture across human tissues using genome-wide chromatin
architecture mapping technologies. First, we have developed the Capture-HiC technique, which we show
can be used to obtain ultra-high resolution maps of interaction profiles for user-defined loci throughout the
genome'. When combined with the HaploSeq algorithm®, we also show the capability of Capture-HiC
(termed Targeted HaploSeq) to obtain high-resolution, accurate, and complete haplotype phasing
information for the MHC and KIR loci. In ongoing work from our lab and in collaboration with Jerry
Morris (UCSD), we are extending this work into patient samples in a proof-of-concept study to determine if
targeted HaploSeq can match donor and recipients in transplant clinics by way of improved MHC locus
phasing. Second, we have performed Hi-C analysis in twenty-one human cell lines and primary tissues, and
have discovered a novel 3D structure that we have termed frequently interacting regions (FIREs). FIREs
are the most highly locally interactive sequences in the genome, and through integration with other
epigenomic datasets” *, we find that FIREs are sample-specific, positioned near cell identity genes and
towards the center of TADs, mediated by Cohesin, and enriched for active enhancers and disease-
associated genetic variation. FIREs are also promiscuously interactive loci with several significant local
interaction partners, of which many are also other FIREs.

This analysis has highlighted several important points about the interaction landscape of enhancer-
bearing loci in human tissues. First, although it is known that enhancers impart their function through long-
range chromatin interactions, it is surprising that the most highly locally interactive sequences in the
genome are enriched for enhancers, rather than other regulatory sequences such as promoters. Second, it
reinforces a model whereby enhancers are highly interactive with their local neighborhood, which may

include additional enhancer(s) as well as promoter(s). This brings to light an important distinction, which is
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that enhancers may only impart a gene-regulatory function on a single gene, but this function is mediated
by a more complex local interaction network potentially involving simultaneous enhancer-enhancer and
enhancer-promoter looping. An alternative hypothesis is that enhancers are highly interactive regions
“searching” for their correct interaction partner. This searching may be somewhat stochastic, until a correct
protein-protein interaction is established between the enhancer and its suitable regulatory target. In this
way, enhancers interact highly with its neighboring loci, but only impart a function on a single interaction
target. In the context of these two models, it is intriguing to think of how deleterious genetic variants
abrogate the function of enhancers, but in order to more finely address these questions, one must analyze
interaction profiles at the resolution of individual cis-regulatory elements.

To better understand the gene-regulatory function of DNA looping between cis-regulatory
elements, as well as the potential impact of disease-associated variants, we have implemented promoter
Capture-HiC’ to map the interaction profiles of nearly 20,000 well-annotated gene promoters across twenty
seven human cell lines and primary adult tissue types. We have analyzed this invaluable resource of
interaction maps to identify tissue-specific promoter-enhancer interactions and interactions hotspots that
may be involved in complex gene regulation networks. We also suggest a widespread role for promoters to
regulate distal gene expression through interaction with other promoters, an event termed enhancer-like
promoter elements (EPLs). Lastly, we utilize rich annotations of disease-associated variants from GWAS
studies® to systematically pinpoint the target genes of thousands of genetic variant loci. Notably, this study
provides a wealth of critical information linking disease-associated risk loci to target genes in the disease-
relevant tissue types, a significant advance in the post-GWAS era, and ultimately helps link 3D DNA

looping, to both gene regulation mechanisms and candidates for disease pathogenesis.

Technical Challenges, Implications and Future Perspectives

In recent years, the applications of chromosome conformation capture data have broadened

9,10

beyond 3D genome architecture mapping, to now include haplotype phasing"”®, genome assembly” '® and
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12 With respect to my work developing targeted HaploSeq,

deconvoluting mixtures of microorganisms
certain technical challenges remain to realize the ultimate goal of bringing this technology to prospective
clinical use.

In terms of assay performance, an ideal targeted HaploSeq platform would be able to call SNPs de
novo from the Hi-C data with high accuracy and sensitivity, and then accurately and completely phase
those same SNPs. In order to call SNPs de novo with high sensitivity, one must be have adequate sequence
coverage across the entire locus (for targeted HaploSeq) or genome (for HaploSeq). In Hi-C, this is
problematic since sequence coverage has been conventionally limited by the choice of restriction enzyme
(RE) used to prepare the Hi-C library. For example, when preparing libraries with HindlIIl, a theoretical
maximum of 23% of the genome can be covered due to the relative paucity of HindIII cut sites throughout
the genome'*, which has limited the amount of SNPs covered by sequence reads to 22-27%"*. Hi-C has
also been performed using more frequently cutting RE in flies', and recently methodological
advancements in the Hi-C protocol have brought 4-cutters to use in human samples'. However, even a
single 4-cutter only has an 83% theoretical genome coverage maximum, indicating that nearly 20% of the
genome will be “blind” to de novo SNP detection from Hi-C data alone. Going forward, I envision SNP
detection from Hi-C will be greatly aided by the use of multiple buffer-compatible RE, such as
combinations of 4-cutter and 6-cutter RE. At a glance, combining a single 4-cutter and 6-cutter increases
the genome coverage to 90%, and additional enzymes could theoretically be added. Alternatively, other
methods for chromatin fragmentation during Hi-C have the potential to improve genome coverage. For
example, DNase has been used to prepare Hi-C libraries, and has been shown to yield 62% genome
coverage with shallow sequencing (40M reads)". If this were increased to a typical 30-35X genome, or
used in targeted HaploSeq, one may achieve nearly complete genome coverage, though the upper bounds
are currently unknown. Another option is chromatin fragmentation using miccrococcal nuclease, which has
been shown to prepare Hi-C libraries in yeast cells'®. Theoretically, this assay would obtain sequence
coverage where any nucleosomes are positioned in a given cell, and since nucleosome positioning may be
relatively dynamic in a cell population, Hi-C from MNase fragmentation could be the superior enzymatic

approach. Lastly, non-enzymatic approaches, such as mechanical shearing, have used to fragment
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chromatin for 4C (http://www.nature.com/protocolexchange/protocols/1979) and suggested to work well
for Hi-C, though no published data exists to examine genome coverage'”. Finally, one can partially
circumvent the problem of reads mapping adjacent to cut sites by performing Hi-C, but instead preparing
such libraries for long-read sequencing platforms such as PacBio or Oxford Nanopore. Though
experimentally possible, the high cost and relatively low coverage from the current PacBio instrument
precludes use on large genomes, such as humans.

In addition to the sequence coverage limitation, the Hi-C assay itself, and therefore Haploseq, is
too laborious and expensive for clinical adoption. The most rapid Hi-C protocol published to date still takes
3-4 hands-on working days, while industry-standard NGS workflows are typically single-day automated
procedures. Additionally, a single Hi-C experiment in its current form can cost >$300 in reagents alone,
which also precludes clinical adoption. The combination of speed, automation-compatibility, and cost
efficiency must be dramatically improved to enable use of Haploseq or targeted Haploseq in clinical
settings.

Despite the robustness and efficiency of the most improved Hi-C protocol', several shortcomings
persist that prevent further study of chromatin organization in important biological contexts. First, Hi-C has
traditionally been used to study genome organization from cell populations, requiring >2M cells for a
single experiment. Recent modifications to the Hi-C protocol have enabled Hi-C analysis of single-cells'”
' but close examination of these methods still reveal significant shortcomings, such as the low number of
single-cells analyzed in a single experiment (throughput), or the low number of detectable interactions per
cell (sensitivity), respectively. I suspect that implementation of microfluidics technology, such as the 10X
Genomics instruments, will facilitate drastically increased throughput and sensitivity for single-cell
chromosome conformation capture analysis.

Hi-C has been invaluable for mapping pairwise interactions genome-wide in many contexts, such

19,20

as in response to exogenous stimuli'**’, manipulation of architectural proteins> >, or for charting 3D

152425 such as the work described in this dissertation. However, the

genomes across several cell types
technical limitations of Hi-C to detect more complex multi-way interactions arise from at least two flaws;

1) Hi-C depends on chromatin digestion and re-ligation, so only spatially proximal DNA that can
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efficiently undergo these molecular biology steps are detectable by Hi-C. This means that many spatially
proximal sequences are likely to go undetected, due to natural inefficiencies in the Hi-C molecular biology
steps. 2) Hi-C libraries are currently only prepared for short-read sequencing (SRS) on Illumina
instruments. [llumina SRS can only sequence 500bp DNA fragments, and therefore are likely to only detect
pairwise ligation events on a single sequenced DNA fragment. Recent analysis of Hi-C libraries prepared
using 4-cutters estimates that only 0.05% of sequenced fragments actually contain more than 2 Hi-C
restriction fragments (i.e. a multi-way interaction), thereby precluding the analysis of multi-way
interactions from Hi-C data®®. To circumvent this problem, Darrow and colleagues have proposed the use
of a modified 3C protocol using a pseudo-2-cutter RE, which fragments the genome into much smaller
fragments compared to 4-cutters and increases the likelihood of a multi-way interaction to be present in an
Illumina SRS sequenced DNA fragment. This has been shown to increase the frequency of muti-way
interactions from 0.05% to 0.6% (13-fold increase), however this is still too infrequent for high resolution
multi-way interaction mapping in large human genomes, but potentially suitable for smaller genomes such
as fly or yeast. Going forward, one promising unpublished technology, namely Genome Architecture
Mapping (GAM) from the Pombo Lab, may be able to gain deeper insights into the complex multi-way
interaction hubs occurring in nuclei as seen in microscopy studies. GAM is a promising technique whereby
nuclei are fixed and sectioned onto a microscopy slide, and then individual nuclei “slices” are laser-
captured and DNA from each nuclei slice is prepared for NGS. Given that each cell has a unique planar
slice through its nuclei, the spatial proximity of any set of DNA sequences can be inferred from how
frequently they are detected in the same planar slice. Though this method does not depend on the numerous
sequential molecular biology steps in Hi-C, it does depend on efficient library preparation from the scarce
about of DNA collected from individual nuclei slices and the resolution is somewhat limited to the
thickness of the planar slice.

One final technical hurdle towards better understanding chromatin organization through 3C
technologies is mapping chromatin dynamics over time. Currently, the obvious brute force approach is to
crosslink cells at many points across a time interval and perform high-resolution comparative Hi-C,

however, this is unlikely to give much insight into chromatin dynamics since Hi-C is a cell population
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assay, meaning too much noise from random chromatin motion will be present in the data to draw clear
conclusions. Instead, I believe advances in high-resolution microscopy techniques and sophisticated
computational algorithms will be better suited to detect chromatin motion and looping in individual cells
across the dimension of time.

In addition to technical obstacles related to mapping 3D genomes, significant technical challenges
also remain with respect to the faithful analysis of 3D genomes. First, as high-resolution Hi-C data is

1320 50 are the number of approaches for identifying a statistically

becoming more readily available
significant DNA looping interaction. Thus far, the field is divided in how to computationally identify a
“significant interaction”. Two lines of thought divide the 3D genomics field on this matter, depending on
one’s belief of which background model should be used to identify a significant pairwise interaction.
Choice of a global background model has resulted in the calling of ~1,000,000 significant pairwise
contacts>, while a local background model has resulted in identifying only 10,000 significant contacts'.
Going forward, I believe that the determination of which model is more “accurate” will be greatly aided by
the fields continuing ability to decipher between a statistically significant interaction compared to a
functional interaction. In other words, a complete set of significant interactions and functional interactions
may indeed be overlapping, however, not entirely synonymous. For example, if loci A-B are significant
interacting, but loss of the A-B interaction (via genetic manipulation) has no detectable quantitative effects
(via chromatin state, expression, etc), then it’s likely that the interaction has no direct and discernable
function. Therefore, the highest performing computational algorithm for functional 3D genomics will have
the highest sensitivity and specificity to detect functional interactions, even if they are not statistically
significant. In order to train these algorithms to detect functional interactions, significant work remains to
identify and characterize a reference set of functional interactions. Currently, projects in our lab as part of
the 4D Nucleome Project are working to characterize the interactions of 100 enhancers using CRISPR-
Cas9 technology, in order to identify and describe the biochemical and DNA looping characteristics of
functional and non-functional interactions. Additional work from our lab, and others, are developing high-

throughput functional screening tools for a similar purpose. At the end of the day, the best algorithms will
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likely incorporate several data types (ChIP-seq, Hi-C, RNA-seq, etc) to predict function DNA looping
interactions.

In practice, identifying significant changes in DNA looping in response to experimental
manipulation or disease context is also of critical importance. For example, many studies to date have
challenged the 3D genome “system” by adding a stimulus or by genetically manipulating the cell line'*>*
*® Here, a key question simply is how does a given experimental manipulation change the 3D genome, and
naturally, what changes are significant? One potential approach may be to identify functional interactions
in each condition independently, and then compare between conditions, while another approach would be
to identifying the statistically significant differential interactions between conditions, analogous to
identifying differentially expressed genes in RNA-seq data. Thus far, the recent diffHiC analysis package®’
has made significant advances towards this goal, but ultimately it is the differential functional interactions
that have biological consequences. In other words, detecting a significantly differential interaction
frequency is a computational task, while detecting differential functional interactions requires deeper
insight into the function of a given interaction.

Lastly, as the 3D genomics field moves forward, there is dire need to unify on best practices for
data generation and analysis, as well as terminology use to describe 3D genome structural features. For
example, several labs around the world each have their own adaptation to Hi-C and Hi-C analysis pipelines.
When experimental and computational methods differ, it makes the interpretation of results across studies
very difficult, and may lead to the discovery of new structural features that may simply be a result of
inconsistent experimental or computational methods. Further, terminologies in the field have become
infiltrated with a plethora of new terms to define essential the same structural features. For example, there
seems to be increasing confusion about the terminologies ‘TADs’, ‘sub-TADs’, ‘contact domains’, ‘loop

domains’, and ‘insulated neighborhoods’!> 2+ 2% %
b

. The trouble with the latter 4 terminologies is they refer
to highly overlapping regions of the genome and essentially annotate the same sequences. Although they
were defined using different 3C-derived technologies (5C, Hi-C, and ChIA-PET), they all essentially

describe chromatin interaction domains, mediated by a single outer-most loop structure. It seems clear that

genome folding is organized hierarchically®®?', but much concerted efforts going forward needs to be spent
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reviewing the 3D structures proposed in the literature, and unifying a set of distinct chromatin architectural
features. Hi-C has now been around for seven years, and with lower sequencing costs and improved Hi-C
protocols, Hi-C data is becoming increasing more common. Going forward, I envision a unified effort to
bring the 3D genomics community to a common ground in terms of protocols, computational methods, and
structural feature definitions. I also envision the next few years to include the continued generation of Hi-C
maps across >100 cell and tissue types (analogous to ChIP-seq and ENCODE)), as well as the explosion of
high-throughout functional screening and the 3D genomics community focusing on functional interaction
mapping and detection. Lastly I imagine a steady increase in the number of studies linking alternations in
the 3D genome to disease pathogenesis, which has already been demonstrated in a number of seminal
studies™ .

In summary, I feel the work presented in this dissertation has made considerable contribution to
the 3D genomics field through development of chromatin architecture mapping technologies and through
analysis of chromatin organization across dozens of human tissues and cell types. I hope that many of the

core insights gained through these studies will have a broader impact on clinical haplotyping, gene

regulation, and interpreting the function of disease-associated genetic variation.
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