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ABSTRACT OF THE DISSERTATION 

 

Genome-wide mapping and analysis of chromosome architecture in human tissues 
 

 

by 

 

Anthony Schmitt 

Doctor of Philosophy in Biomedical Sciences 

University of California, San Diego, 2017 

Professor Bing Ren, Chair 

 

Gene expression in mammals is regulated by complex networks involving higher order chromatin 

organization, transcription factor binding, histone and DNA biochemical modifications and other 

mechanisms. Our understanding of the functional relationship between 3D chromosome architecture and 

gene regulation has been limited by the technologies to map 3D chromatin looping and the breadth of cell 

or tissue types analyzed. During my Ph.D. I have addressed technological shortcomings in the field by 

developing a high-resolution method for mapping chromatin interaction profiles at thousands of loci in a 

single assay, termed Capture-HiC. We have shown that Capture-HiC is capable of obtaining interaction 

profiles for contiguous loci, and when used in conjunction with HaploSeq phasing technology, can obtain 

targeted haplotype phasing information for medically relevant loci such as the MHC and KIR loci. Also 



	

xv 
	

during my Ph.D. I have greatly advanced our understanding of the functional relationship between 

chromatin organization and gene regulation through Hi-C analysis in 21 human cell lines and primary adult 

tissues. We have discovered that chromosome architecture in human tissues exhibits distinguishing 

signatures of local spatially active regions. These regions, termed FIREs, are highly tissue-specific, 

enriched for active enhancers and GWAS variants, and conserved between human and mouse. We also find 

that FIREs exhibit promiscuous local interaction behavior and a significant degree of self-interaction. 

Further, I have developed high-resolution promoter Capture-HiC technology, and used this to map 

promoter-centered long-range interactomes in 27 human cell and tissue types. We find that promoter-

centered interactions in tissues lie within dynamic interaction networks, which cluster by developmental 

lineage. Most surprisingly, we find widespread promoter-promoter interactions that impact distal gene 

expression, including hundreds of promoter regions harboring GWAS variants that have functional 

implications on distal genes. Together, through Hi-C and Capture-HiC analyses in human tissues, we have 

developed a rich resource for understanding chromatin folding and gene regulation. We anticipate these 

studies to lay a foundation for future experiments designed to further understand the gene-regulatory 

function of chromatin folding as well as the future study of how deleterious variants in cis-regulatory 

elements perturb gene regulation.
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Chapter 2 

  

METHODOLOGY ARTICLE Open Access

Complete haplotype phasing of the MHC
and KIR loci with targeted HaploSeq
Siddarth Selvaraj1†, Anthony D. Schmitt1,2†, Jesse R. Dixon1,3 and Bing Ren1,4,5*

Abstract

Background: The MHC and KIR loci are clinically relevant regions of the genome. Typing the sequence of these
loci has a wide range of applications including organ transplantation, drug discovery, pharmacogenomics and
furthering fundamental research in immune genetics. Rapid advances in biochemical and next-generation sequencing
(NGS) technologies have enabled several strategies for precise genotyping and phasing of candidate HLA alleles.
Nonetheless, as typing of candidate HLA alleles alone reveals limited aspects of the genetics of MHC region, it is
insufficient for the comprehensive utility of the aforementioned applications. For this reason, we believe phasing the
entire MHC and KIR locus onto a single locus-spanning haplotype can be a critical improvement for better
understanding transplantation biology.

Results: Generating long-range (>1 Mb) phase information is traditionally very challenging. As proximity-ligation based
methods of DNA sequencing preserves chromosome-span phase information, we have utilized this principle to
demonstrate its utility towards generating full-length phasing of MHC and KIR loci in human samples. We accurately
(~99 %) reconstruct the complete haplotypes for over 90 % of sequence variants (coding and non-coding) within
these two loci that collectively span 4-megabases.

Conclusions: By haplotyping a majority of coding and non-coding alleles at the MHC and KIR loci in a single assay, this
method has the potential to assist transplantation matching and facilitate investigation of the genetic basis of human
immunity and disease.

Keywords: HaploSeq, MHC, HLA-Typing, KIR, Phasing

Background
The major histocompatibility complex (MHC) and the
killer cell immunoglobulin-like receptor (KIR) are im-
portant regulators of human immune responses and are
involved in many human diseases [1, 2]. These loci are
highly polymorphic, allowing an extensive antigen-
presenting repertoire that enables strong immunity
against a wide range of foreign antigens, pathogens and
tumor cells [1–3]. At the same time, its immunogenic
heterogeneity can also create incompatibility in allotrans-
plantation procedures, causing graft rejections and graft-
versus-host disease (GVHD) [4, 5]. Furthermore, many of
the hundreds of genes within these immunogenic loci are

increasingly recognized as major susceptibility genes for
drug hypersensitivity reactions and appear to play a
significant role in numerous diseases, including cancer
[6–8]. Taken together, the clinical implications of these
loci make it useful to determine the sequence type of these
molecules.
Typing of human leukocyte antigen (HLA) genes, lo-

cated within the MHC locus, has traditionally been
achieved in low resolution using serotyping techniques
[9]. With advancements in technologies including PCR
and more recently, next generation DNA sequencing
(NGS), molecular-based methods have now enabled
more clinically significant high-resolution HLA typing
[10–12]. Notably, single-molecule NGS-based DNA se-
quencing has been demonstrated to resolve allele ambi-
guity by generating haplotypes of entire genes,
resulting in super high-resolution (8-digit) haplotyping
of HLA genes [13, 14]. However, even precise gene-
level haplotyping may not be sufficient for many

* Correspondence: biren@ucsd.edu
†Equal contributors
1Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA
4Department of Cellular and Molecular Medicine, and UCSD Moores Cancer
Center, University of California San Diego, La Jolla, CA 92093, USA
Full list of author information is available at the end of the article

© 2015 Selvaraj et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Selvaraj et al. BMC Genomics  (2015) 16:900 
DOI 10.1186/s12864-015-1949-7
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Chapter 4 

 

A compendium of promoter-centered long-range chromatin interactions in 27 human tissues and cell 

types 

Introduction 

Genome-Wide Association Studies (GWAS) have uncovered thousands of genetic variants that are 

associated with human diseases and phenotypic traits (1). The fact that these variants are generally located 

in non-coding sequences and are enriched for distal cis-regulatory elements (cRE) suggests that a 

substantial fraction of them may contribute to pathogenesis of disease by affecting transcriptional 

regulation of specific genes (2, 3). However, to formally test this hypothesis, it is critical to first identify the 

target genes of cis-regulatory elements. cREs modulate transcription of their target genes from a distance 

through long-range chromatin interactions (4-7). Mapping of chromatin architecture by chromosome 

conformation capture (3C) techniques such as 4C-seq, ChIA-PET and Hi-C (8-12) (13, 14) (11, 15) could 

uncover long-range interactions between cREs and therefore may reveal promoter-enhancer targeting 

relationships.  Recently, Hi-C combined with capture sequencing has provided a cost-effective way to map 

chromatin interactions at specific regions at high-resolution (12, 16-19). In the current study, we used the 

capture Hi-C strategy to generate high-resolution maps of promoter-centered chromatin interactions across 

27 human tissue/cell types.  

 

Results 

We performed Promoter Capture Hi-C (pcHi-C) (Fig. S1) using 280,445 custom-made RNA 

capture probes to interrogate chromatin interactions centered at 19,539 well annotated human gene 

promoters across 27 different human tissues or cell types representing a wide spectrum of cell lineages 

(Fig. S2A-C, Table S1, 2) (20, 21). The capture probes synthesis efficiency was highly reproducible 

between two replicates (Fig. S2D) and covered nearly all targeted promoters (99%) (Fig. S2E). On the 

other hand, the coverage of capture probes across different target promoters was highly variable (Fig. S2F-

G), which can introduce experimental bias to the pcHi-C data. To remove such experimental biases
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together with intrinsic sequence biases, we first normalized observed interaction frequencies based on the 

“capturability” of each DNA fragment using a β-spline regression model (Fig. S3A, see Methods). We then 

defined significant pcHi-C interactions after removing distance dependent background signals (Weibull p 

value < 0.01, Table S3) (see Methods). 

Analysis of the pcHi-C data resulted in promoter-centered long-range interaction map at DNA 

fragment resolution (Fig. 1A, see Methods). Based on HindIII restriction sites, 514,738 DNA fragments 

were defined where 8,698 fragments contain at least one promoter and 126,604 fragments contain at least 

one putative cRE based on H3K27ac signals (see Methods). In total, we identified 561,574 significant 

pcHi-C interactions across 27 human cell/tissue types (Fig. 1A, Fig. S4A, B). The majority of significant 

pcHi-C interactions were within 500kb (89%, Fig. S4B) and were significantly enriched for promoter-

promoter (P-P, 7.3%, Fisher Exact p value < 2.2e-16) and promoter-cRE (P-cRE, 36.7%, Fisher Exact p 

value < 2.2e-16) interactions (Fig. S4C, see Methods) compared to random expectations. We noted that 

many non-annotated distal regions that interact with promoters were actually marked by diverse 

transcription factors (22) (Fig. S4D, E), suggesting that most promoter-centered long-range interactions are 

associated with functional elements in the human genome. Interestingly, P-P interactions tend to show 

shorter interaction distances compared to other interactions (Fig. S4F).    

Two independent lines of evidence support the reliability of the identified chromatin interactions. 

We first compared the results of IMR90 pcHi-C and a previous high-resolution Hi-C dataset from the same 

cell line (11). We found that 90% of promoters showed statistically significant similarity in their long-range 

interaction profiles between the two datasets (Fig. S5A-C, see Methods). Second, we compared the 

significant pcHi-C interactions with previous 4C-seq datasets at six loci in the human H1 embryonic stem 

cells and H1-derived Mesenchynal Stem Cells (MSC) (10) and promoter-centered “loops” from IMR90 in 

situ Hi-C results and lymphoblast cells (LCL) (15) (see Methods). The pcHi-C results showed high 

concordance with these orthogonal datasets (Fig. S5D-F). Taken together, our pcHi-C approach is a highly 

efficient and accurate means to detect to identify significant promoter-centered long-range interactions with 

low sequencing cost. 
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Taking advantage of the chromatin and transcriptome datasets collected for these tissue/cell types 

analyzed by the ENCODE (22) and Roadmap Epigenome consortiums (21), we next carried out integrative 

analysis to examine the relationship between the long-range chromatin interactions and chromatin states 

(10, 11). In this analysis we excluded 6 tissue types due to the comparatively low sequencing coverage. 

Consistent with previous reports (9, 12), pcHi-C interactions are often found at active chromatin regions 

(Fig. 1B). Notably, certain DNA fragments showed extensive long-range interactions with multiple 

promoters (Fig. S6A). We systematically defined these promiscuously interacting regions from promoter-

promoter interaction maps as P-P interaction hotspot (iHS) or from promoter-other interaction maps as P-O 

iHS (Poisson p value < 0.01, see Methods). For each cell/tissue type we identified around 700~1400 such 

interaction hotspots (Table S4). According to the classic enhancer-promoter communication model, 

physical interactions between transcription factors (TFs) bounds at enhancer and promoter regions facilitate 

enhancer/promoter communication (23, 24). As we also observed that long-range promoter-centered 

interactions are associated with TFs (Fig. S5D, E), we first sought to explore the relationship between the 

interaction hotspots and TF binding patterns. We examined the TF ChIP-seq data from H1 and GM12878 

generated by the ENCODE consortium (22) (Table S5-6, see Methods) and found that both P-P and P-O 

iHS significantly overlap with the TF clusters (Fig. 1C, Fig. 6B-E), which were often found in super 

enhancer regions and cell-type specific (25). As expected, both P-P and P-O iHS are cell/tissue type 

specific (Fig. 1D and Fig. S6F) and P-O iHS cluster along the germ layers of each tissue/cell type (Fig. 1D, 

Fig. S6G). Super-enhancers are known to be key regulatory sequences for regulating important cellular 

identity genes (25, 26), and we found that super-enhancers significantly overlap with P-O iHS (Fig. S6H) 

and also are highly associated with corresponding cell/tissue types (Fig. S6I). For example, a P-O iHS in 

left ventricle tissue consists of a super-enhancer interacting with multiple promoters, each with high 

transcriptional activity compared to non-interacting promoters (Fig. 1E). Taken together, our results 

suggest a strong association between TF clusters/super-enhancers and long-range interaction hotspots and 

their functional implication on gene regulation.  

Identification of functional long-range promoter-cRE interactions is critical to dissect gene 

regulatory mechanisms. Historically, correlation-based approaches using chromatin state information at 
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promoters and distal cRE have been widely used for this purpose (27, 28). Although we observed 

statistically significant correlation of H3K27ac signals between significant promoter-cRE interaction pairs 

from pcHi-C across cell/tissue types (Fig. S7A, KS-test p value < 2.2e-16) many of them showed modest 

correlation. Thus, we sought to examine the similarity of promoter-cRE pairs identified by either pcHi-C or 

correlation-based approaches, and also examine the enrichment of functional relationships in pairs defined 

by each method. When we defined the same number of promoter-cRE pairs using H3K27ac correlation we 

found that only 6% of promoter-cRE pairs overlapped the significant promoter-cRE interaction pairs based 

on pcHi-C (Fig. S7B, see Methods). To test which model is more accurate to detect regulatory 

relationships, we utilized eQTL information obtained from GTEx database (29) (see Methods). Several 

examples illustrate the consistent promoter-cRE pairs detected by both eQTL relationships and significant 

pcHi-C interactions (Fig. 2A, Fig. S7C-E). We systematically assessed the enrichment of eQTL 

relationships with the matched tissue types between our pcHi-C and GTEx database (29), which tissue-type 

specific information is not available for correlation-based methods, and found that the significant 

interaction pairs based on pcHi-C are highly enriched in eQTL relationships (Fig. 2B, Fig. S7F). Next, we 

aggregated all significant interactions from pcHi-C and eQTL relationships (29) to compare with the 

correlation-based method. eQTLs were 6-fold more enriched in promoter-cRE interaction pairs based 

solely on pcHi-C, which is much higher than eQTL enrichment in promoter-cRE pairs identified solely 

based on the correlation-based method (Fig. S8A), indicating that DNA looping information is critical to 

identify regulatory long-range promoter-cRE relationships.  

Formation of chromatin interactions is a critical step during transcriptional activation of a gene by 

distal enhancers (30, 31). Since we observed dynamic long-range promoter-cRE interactions across 

cell/tissue types (Fig. 1A, Fig. S8B), we asked to what extent are long-range promoter-cRE interactions 

correlated with variations in gene expression. We focused this analysis on 3,454 testable promoters (Fig. 

S8C-D, see Methods), which are those covered by at least 4,000 pcHi-C reads in more than 10 cell/tissue 

types. We found that transcription levels of 66% of gene are positively correlated (PCC > 0.5) with the 

chromatin interactions profiles between the gene promoter and at least one distal element (Fig. S8E, see 

Methods). For example, the interaction between POU3F3 promoter and one cRE showed highly correlated 
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dynamic patterns between pcHi-C interaction strength (left-hand side Fig. 2C) and POU3F3 gene 

expression (right-hand side Fig. 2C). Our results provide support for using long-range chromatin 

interactions as a tool to infer target genes for distal regulatory elements. We provided a list of significant 

promoter-cRE interaction pairs identified from pcHi-C (Table S7).  

We also found extensive long-range promoter-promoter interactions (21,479 unique P-P 

interactions) in our datasets (Fig. S4C). Widespread P-P interactions have been observed before in culture 

mammalian cells, and our results extended the observation to diverse primary human tissues and cell types 

(14, 32). These promoter pairs that exhibit strong interactions also display striking correlative chromatin 

activities across diverse cell/tissue types (average PCC is 0.41, 0.59, 0.52, and 0.04 for H3K27ac, 

H3K4me1, H3K4me3, and random permutation) (Fig. 3A-B). For example, dynamic H3K27ac signals at 

TMED4 promoter are highly correlated with those at significantly interacting promoters based on our pcHi-

C result (Fig. 3A) We also calculated correlation coefficients of transcription levels across 27 cell/tissue 

types for promoter-promoter pairs defined by our pcHi-C, ChIA-PET (14), adjacent promoters, and 

randomly selected pairs (see Methods). To our surprise, transcription levels between interacting promoter 

pairs are only weakly correlated (average PCC is 0.15, Fig. 3C,), even lower than adjacent promoter pairs 

(average PCC is 0.26). Indeed, we often found that non-expressed gene promoters interact with highly 

expressed gene promoters (Fig. S9A).  

We hypothesized that promoter regions can function as enhancer and thus able to regulate distal 

genes through long-range promoter-promoter interactions.  This is in part based on the observation of 

widespread enhancer signatures or activities at promoter regions (21, 33) and enhancer-like function of 

lncRNA promoters (34). We termed these promoter regions as Enhancer-like TSS Proximal eLement 

(EPL). In support of the functional significance of the EPL, we found that ~11000 eQTLs collected from 

GTEx database for all available tissue types are in fact P-P interaction pairs (Fig. 3F, Fig. S9B, see 

Methods). For instance, a significant pcHi-C interaction is found between BLCAP and GHRH gene 

promoter regions in aorta, and one significant eQTL (rs55705839) of BLCAP gene is located in the GHRH 

promoter in the same tissue type (Fig. 3D). Interestingly this eQTL did not show any meaningful 

associations with an adjacent downstream gene (GHRH) or nearby genes except BLCAP (Fig. 3E). There is 
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no significant association between rs55705839 and GHRH in other tissue types according to GTEx 

database (29). Another example is P-P interactions between POU5F1 (Oct4) gene and two promoters 

(CCHCR1 and TCF19), which were found to regulate POU5F1 using a functional screening approach (in 

submission).  

To further test whether EPLs act their function in cis to their target genes, we investigated allele-

biased chromatin activities in terms of H3K27ac ChIP-seq at EPLs and their interacting promoters. If EPLs 

act as regulatory sequences, we would expect concordant allelic biases of chromatin activities at EPLs and 

their interacting promoters. Since the hapolotyes of the genomes analyzed in this study were previously 

phased (21), we defined allelically biased promoter activities using H3K27ac ChIP-seq datasets (see 

Methods). Around 70% of significant P-P pairs are biased in the same allele, which is very significant 

concordance rate compared to random expectation (Fig. S9C, *** Empirical P value <0.001, see Methods). 

For example, in sigmoid colon transcriptionally repressed VSTM1 gene promoter showed P1 allele biased 

activity and interacted with active OSCAR gene promoter that biased in the same allele (Fig. 3G). Our 

results provide further support for the enhancer-like function of promoter regions or very promoter 

proximal regulatory sequences. Our results also provide insight into functional roles of EPLs in regulation 

of transcription of  both the immediate adjacent genes and spatially proximal distal genes. 

The promoter-centered long-range interaction maps generated in this study could serves as a 

resource to infer the target genes of sequences harboring disease-associated sequence variants. For 

example, a genetic determinant of human obesity is located in the first intron of FTO gene, and this genetic 

determinant affects the distal genes IRX3 and IRX5 instead of FTO (6, 7). The pcHi-C interactions captured 

these known functional relationships (Fig. 4A).  Uncovering disease-disease relationships can greatly 

advance our understanding of mechanisms underlying human disease (35, 36), yet the lack of GWAS-SNP 

target gene information prevents the estimation of disease associations. However, as our promoter-centered 

long-range interaction maps can provide putative target genes we sought to explore the relationships 

between diseases by linking GWAS variants and their target genes.  We obtained GWAS SNP information 

from the GWAS Catalog database (1) and expanded the list based on Linkage Disequilibrium (LD) 

information (>0.8 r2, see Methods), resulting in 87,433 putative disease-associated genetic variants. Based 
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on significant pcHi-C interactions in each cell/tissue type we predicted putative target genes of these 

variants. We found that frequently targeted genes were enriched amongst a set of reported disease-

associated genes (Fig. S10A-B, see Methods), supporting the capability of our promoter-centered long-

range interaction maps to detect GWAS-SNP target genes.  

We further grouped GWAS-SNPs in terms of their ‘mapped trait’ annotation as GWAS sub-

categories (see Methods). After that we identified putative target genes of GWAS-SNPs in each GWAS 

sub-category. Based on the similarity of these putative target genes between GWAS sub-categories we 

performed K-means clustering and grouped them into 30 clusters (see Methods). This analysis uncovers 

several clusters of GWAS sub-categories with interesting biologically relevant features (Fig. 4B). For 

example, autoimmune related disease (C1 and C28), brain disorders (C2), obesity related phenotypes 

(C19), and eyes related phenotypes (C22) were grouped together respectively. The recent striking report on 

the immune basis of Alzheimer’s disease (37) was also well characterized in our approach (blue boxed 

region in Fig. 4B). We also revealed a novel association between autoimmune related diseases and cancers 

(C1 in Fig. 4B), which need to be investigated further. Interestingly, several genes related to immune 

system such as HLA-DRB5 and BTNL2 were frequently recognized as putative GWAS-SNP target genes 

regardless of disease types, may suggesting the importance of immune system in various diseases. To 

further understand the related biological functions of GWAS-SNP target genes we carried out gene 

ontology (GO) analysis (see Methods). For example, putative target genes in C1 were enriched by immune 

system related signaling pathways and biological functions that are biologically relevant to autoimmune 

diseases (Fig. 4C). The summarized GO biological functional enrichment result in each cluster defined in 

Fig. 4B provides both relevant and novel biological insights to corresponding disease and trait types (Fig. 

4D).   

Lastly, we identified 859 GWAS SNPs that reside promoter regions but interact with distal genes 

both as eQTLs (29) and long-range chromatin interactions. For example, the genetic variant rs12691307 

located in KCTD13 gene promoter regions has been identified as a schizophrenia-associated genetic locus 

(38) (Fig. S10C). However this gene has no specific functional association with schizophrenia so far. In 

contrast, the distal target gene both as eQTLs and pcHi-C, DOCA2 functions on calcium-dependent 
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spontaneous release of neurotransmitter. We found many similar examples (Fig. S10D, E). Traditionally, 

the GWAS-SNPs located at promoters are assumed to target immediate downstream genes, but our results 

provide an additional view to interpret GWAS-SNPs with a novel mechanistic insight by considering long-

range promoter-promoter interactions.  

 

Discussion 

In summary we generated high-resolution promoter-centered long-range interaction maps across 

diverse human cell/tissue types and provided a resource to understand human disease associated variants.  

The maps would enable further investigation into the role of distal elements in target gene expression and 

uncover mechanisms of long-range gene regulation exhibited by both enhancers and promoters. This 

resource provides a new tool to interpret the function of GWAS-SNPs and dissect gene regulatory networks 

in human cells. 

 

Methods 

Obtaining human tissue samples 

Esophagus, lung, liver, pancreas, small bowel, sigmoid colon, thymus, bladder, adrenal gland, aorta, 

gastric, heart, ovary, psoas, spleen, and fat tissues were obtained from deceased donors at the time of organ 

procurement at the Barnes-Jewish Hospital (St. Louis, USA) as part of the Epigenome Roadmap 

Consortium collection (21). Samples were flash frozen with liquid nitrogen.  The same tissue types from 

different donors were combined together during downstream data analysis. Human dorsolateral prefrontal 

cortex (DLPFC) and hippocampus (HC) tissues were obtained from the National Institute of Child Health 

and Human Development (NICHD) Brain Bank for Developmental Disorders. These two samples were 

from a healthy single male donor, age 31. Ethics approval was obtained from the University Health 

Network and The Hospital for Sick Children for use of the tissues.  

 

Hi-C library on human tissue samples and early embryonic cell types 
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Human tissue samples were flash frozen and pulverized prior to formaldehyde cross-linking. Fibroblasts 

(IMR90) and lymphoblast (GM12878 and GM19240) cells were cultured and formaldehyde cross-linked 

with 5 million cells for each Hi-C library. Hi-C was then conducted on the samples as previously described 

(40). Previously constructed Hi-C libraries (10) were used for hESC (H1) and early embryonic cell types 

including mesendoderm, mesenchymal stem cell, neural progenitor cells, and trophoblast-like cells. 

 

Generation of capture RNA probes  

In order to perform promoter capture Hi-C we computationally designed RNA probes that capture promoter 

regions of previously annotated human protein coding genes. Capture regions were selected for 19,704 

protein coding genes across 22 autosomes and X chromosome according to GENCODE v19 annotation. 

For each transcription start site, the two nearest left hand- and right hand-side HindIII restriction sites were 

selected. Six capture oligos were designed at 120 nucleotide (nt) length and 30nt tiling overhang. Oligos 

were designed upstream and downstream 300bp adjacent to each restriction site. As two restriction sites 

were chosen for each transcription start site, in total 12 capture oligos were designed to target each 

promoter region. Capture sequences overlapped with directly adjacent HindIII restriction sites were 

removed. GC contents of 94% capture sequences were ranged from 25% to 65%. Since some HindIII 

fragments contain multiple TSS, 14,508 promoter regions (73%) were uniquely targeted by RNA probes, 

while the remaining promoters are shared by at least one other promoter in a HindIII fragment. In total, our 

capture oligo design generated 280,445 unique probe sequences including randomly selected capture 

regions (i.e. gene deserts). Single-stranded DNA oligos were then synthesized by CustomArray Inc. Single-

stranded DNA oligos contained universal forward and reverse primer sequences (total length 31nt), 

whereby the forward priming sequence contained a truncated SP6 recognition sequence that was completed 

by the overhanging forward primer during PCR amplification of the oligos. After PCR, double-stranded 

DNA was converted into biotinylated RNA probes through in vitro transcription with the SP6 Megascript 

kit and in the presence of a biotinylated UTP, as previously described (41).  

 

Promoter Capture Hi-C library construction 
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Promoter Capture Hi-C library was constructed by performing a target enrichment protocol (enriching 

target promoter centered proximity ligation fragments from Hi-C library using capture RNA probes). 

Briefly, incubated 500ng Hi-C library 24h at 65 °C within the humidified hybridization chamber with 2.5ug 

human Cot-1 DNA (Life Technologies), 2.5ug salmon sperm DNA (Life Technologies), and p5/p7 

blocking oligos with hybridization buffer mix (10X SSPE, 10mM EDTA, 10X Denhardts solution, and 

0.26% SDS) and 500ng RNA probes. Enriched RNA probe hybridized proximity ligation fragments using 

50ul T1 streptavidin beads (Invitrogen) with 30min incubation at RT followed by additional 15min 

incubation in wash buffer1 (1X SSC and 0.1% SDS). Washed three times beads bound DNA fragments 

with 500ul of pre-warmed (65 °C) wash buffer2 (0.1X SSC and 0.1% SDS), and resuspended in nuclease-

free water. Performed qPCR and amplified capture Hi-C library on beads. Purified PCR products with 

AMPure XP beads followed by sequencing.  

 

Promoter Capture Hi-C library sequencing, read alignment, and off-target read filtering 

Promoter Capture Hi-C library sequencing procedures were carried out as described previously according 

to Illumina HiSeq2500 or HiSeq4000 protocols with minor modifications (Illumina, San Diego, CA). Read 

pairs from Promoter Capture Hi-C library were independently mapped human genome hg19 using BWA-

mem and manually paired with in house script. Unmapped, non-uniquely mapped, and PCR duplicates 

were removed. Trans-chromosomal read pairs and putative self-ligated products (<15kb read pairs) were 

removed. Off-target reads were removed when both read pairs did not match to capture probe sequences. 

The on-target rates in Promoter Capture Hi-C library were ranged from 17% to 44%.  

 

Promoter Capture Hi-C normalization  

Interaction frequencies obtained from Promoter Capture Hi-C were normalized in terms of DNA fragment 

level restricted by HindIII. We defined DNA fragment that spans each HindIII restriction site. The start and 

end of DNA fragment was defined by taking midpoint of adjacent upstream and downstream restriction 

site, respectively. We merged adjacent DNA fragments within 3kb. As a result, 514,738 DNA fragments 

were defined. Median length of DNA fragments was 4.8kb. After that, we calculated raw interaction 
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frequencies at DNA fragment resolution and performed normalization to remove experimental biases 

caused by intrinsic DNA sequence biases such as GC contents, mappability, and effective fragment lengths, 

RNA probe synthesis efficiency bias, and RNA probe hybridization efficiency bias. Although RNA probe 

synthesis efficiency was highly reproducible between replicates (0.98 Pearson correlation coefficient, Fig. 

S2D) the coverage of capture probes was highly variable across target regions (Fig. S2F, G). Due to the 

high complexity of different types of experimental biases, we defined a new term named “Capturability” 

that means the probability of the region being captured. We assumed that “Capturability” represents all 

combined experimental biases and can be estimated as a total number of capture reads spanning a given 

DNA fragment divided by a total number of capture reads. We found that “Capturability” in each DNA 

fragment is highly reproducible across samples. Therefore, we defined universal “Capturability” as 

summation of all “Capturability” defined in each sample. The basic idea of our normalization approach is 

correcting raw interaction frequency using “Capturability” of two DNA fragments. During normalization 

we processed promoter-promoter interactions and promoter-other interactions, separately because promoter 

regions tend to show very strong “Capturability” as our capture probes were designed to target promoter 

regions. Also, we only considered promoter-centered long-range interactions within 2Mb from TSS. Let Yij 

represents raw interaction frequency between DNA fragment i and j. Let 𝐶" represents “capturability” 

defined in DNA fragment i. Assume Yij follows a negative binomial distribution with mean µ and variance 

µ + αµ&. We fitted a negative binomial regression model as follows: log 𝜇+ = 𝛽. + β0BS(C") + β&𝐵𝑆(C"), 

and defined the residual R"9 = Y"/ exp β. + β0𝐵𝑆(𝐶") + β&BS(C9)  as a normalized interaction frequency 

between DNA fragment i and j. BS represents a basis vector obtained from B-spline regression function. 

The purpose of B-spline regression function is dimension reduction during fitting a negative binomial 

regression model.  

 

Identification of significant chromatin interactions 

In order to identify significant pcHi-C chromatin interactions we removed distance dependent background 

signals from normalized interaction frequencies. Again, we assumed that normalized interaction 

frequencies R"9	follow a negative binomial distribution with mean µ and variance µ + αµ&. As similar to 
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above interaction frequency normalization step, we calculated expected interaction frequency at a given 

distance by fitting to a negative binomial regression model with basis vectors obtained from B-spline 

regression of distance between two DNA fragments. Let Dij represents expected interaction frequency at a 

given distance d calculated from a negative binomial regression model. Distance dependent background 

signals were removed by taking signal to background ratio as follow: (Rij + avg(Rij)) / (Dij + avg(Rij)). 

Significant pcHi-C interactions were defined in terms of 0.01 p-value thresholds by fitting normalized 

interaction frequencies (after removing distance dependent background signals) with 3-paramters Weibull 

distribution. 

 

Validation of significant pcHi-C interactions in IMR90 

The visual inspection of normalized interaction frequencies from IMR90 Promoter Capture Hi-C suggests 

highly reproducible results compared to high resolution IMR90 Hi-C with only 10% sequencing depth (Fig. 

S5A). The average correlation coefficient of normalized interaction frequency at upstream and downstream 

2Mbp regions of each promoter was 0.57 between IMR90 Hi-C and Promoter Capture Hi-C (Fig. S5B), 

which is statistically significant compared to randomly permutated data (KS-test p value <2.2e-16). Next, 

we compared the significant Promoter Capture Hi-C interactions with “loops” identified from in situ 

IMR90 or GM12878 Hi-C experiments (15). We only considered “loops” emanating from promoter 

containing DNA fragments defined in our Promoter Capture Hi-C result.  

 

Functional annotation of DNA fragment 

We annotated functional elements to each DNA fragment. If DNA fragment contains at least one annotated 

protein coding TSS we assigned the fragment as promoter containing DNA fragment. Next, we defined 

putative distal cis-regulatory elements using H3K27ac peaks across all 27 cell and tissue types. We 

combined these peaks and merged if the peaks are within 3kb each other, resulting in 126,604 putative 

distal cis-regulatory elements. We assigned the cRE containing DNA fragment if the DNA fragment 

contains at least one cis-regulatory element. When a DNA fragment contains both TSS and cRE we defined 
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the fragment as a promoter-containing DNA fragment because our data is highly biased to capture promoter 

regions.  

 

Enrichment of functional elements in promoter interacting regions. 

In order to test the enrichment of functional elements in promoter interacting regions, we first calculated 

the expected coverage by each type of element. 8,698 DNA fragments contain at least one promoter 

(2.6%), 8,217 DNA fragments contain both promoter and distal cRE (4.2%), 126,604 DNA fragments 

contain at least one cRE (28.3%) and 371,219 DNA fragments (28.3%) contain neither promoter nor cREs. 

Both promoter and distal cRE containing DNA fragments were considered as promoter containing DNA 

fragment. Fisher-exact test was performed for the statistical test.   

 

Identification of interaction hot spots 

We observed that a certain DNA fragment frequently interacts with multiple promoters. To systematically 

identify such highly interacting regions (i.e interaction hot spots) we first investigate the distribution of the 

number of interaction frequencies with promoters for each DNA fragment. To minimize experimental 

biases caused by capturing promoter regions, we conducted our analysis by separating promoter-promoter 

interactions and promoter-other interactions. For each cell or tissue-type, we selected highly interaction 

regions in terms of 0.01 p value cutoff after fitting the number of interacting promoters with Poisson 

distribution. We termed these highly interacting regions as promoter interaction hotspot (P-P iHS) from 

promoter-promoter interactions and other interaction hotspot (P-O iHS) from promoter-other interactions.  

 

Identification of TF clusters for H1-hESC and GM12878. 

Transcription factor ChIP-seq experiments on human lymphoblast (GM12878) and human embryonic stem 

cell (H1-hESC) by ENCODE were collected. These ChIP-seq reads were aligned against human genome 

hg19 using BWA-mem with default parameters. We collected only uniquely mapped reads with 10 or 

greater alignment quality score. Samtools version 1.3 sorted these bam files by coordinate and we removed 

duplicated reads by Picard. Peak calling of individual ChIP-seq experiments was performed with MACS2 
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callpeak with default parameters (42). We defined TF clusters by calling peaks from combined bed files of 

TF peaked regions using MACS2 bdgpeakcall. The regions occupied by multiple TF peaks were 

recognized as TF clusters. To minimize parameter dependent bias, we retrieved TF cluster regions 40 times 

with various parameter sets as following; minimum # of TFs within cluster (5 or10), minimum length of 

cluster (2-fold increase from 100bp to 1600bp), maximum gap length within cluster (2-fold increase from 

100bp to 51.2kb). Final TF clusters were defined when the region is dected as TF clusters more than 20 

times from 40 different parameter set.  

 

Permutation test of TF clusters and super-enhancers 

Permutation test was performed to measure how TF clusters are enriched near interaction hotspot. Bedtools 

shuffleBed generate genomic locations that resemble actual TF clusters with the same size but different 

genomic coordinate as shuffled random clusters. Bedtools intersectBed identified overlap between 

interaction hotspots and TF clusters or shuffled random clusters. Average and standard deviation of 

shuffled random clusters were calculated from 10,000 sets of random data sets. Similarly, enrichment of 

super-enhancers was conducted by generating random data sets with the same size but different genomic 

coordinate. The list of super-enhancers were obtained from the author’s website (25).  

 

k-medoids clustering of interaction hotspot and hierarchical clustering of cell/tissue types based on 

interaction hotspot 

We first collect all P-P or P-O interaction hotspots in each cell/tissue types, respectively as putative 

interaction hotspot DNA fragments. Then, assigned –log10 (interaction hotspot p value) for each putative 

interaction hotspot DNA fragment in each cell/tissue type, resulting in an interaction hotspot p value profile 

where each entry indicates –log10 (p value). Using the interaction hotspot p value profiles, we carried out 

hierarchical clustering between 21 samples with Pearson correlation metric. To test cell/tissue type 

specificity of interaction hotspots we conducted k-medoids (k=50) clustering of all putative interaction 

hotspots using JuliaStats package. After generating 50 k-medoids clusters we manually reorder the clusters 

in terms of hierarchical clustering result in above.  
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Correlation-based H3K27ac promoter-enhancer pairs 

In order to define promoter-enhancer pairs by using correlation based approaches, we first calculate input 

normalized RPKM values at enhancer and promoter regions. We take log2(H3K27ac RPKM +1)-

log2(input RPKM +1) as the input normalized H3K27ac RPKM values. By collecting H3K27ac ChIP-seq 

results for all 27 cell/tissue types, each enhancer or promoter region has a 1 by 27 H3K27ac RPKM vector. 

We computed Pearson correlation coefficient of these vectors between all pairs of enhancer and promoter 

within 1Mbp. We selected top ranked enhancer-promoter pairs with the same number of significant 

enhancer-promoter interaction pairs defined by using pcHi-C as a correlation-based H3K27ac promoter-

enhancer pairs.   

 

Comparison between eQTL relationships and promoter-other significant chromatin interactions 

In order to validate functional enrichment for significant promoter-other pcHi-C interactions we compared 

significant eQTL relationship for all matched tissue types (n=13, AD, AO, DLPFC, EG, HC, LF, LI, LV, 

OV, PA, SB, SG, and SX) from GTEx database. We only considered eQTLs that are located in the 

fragment without a gene and target a gene located in the other fragment. After that, we counted the number 

of eQTLs that match the significant P-O pcHi-C interactions. For random expectation values, we 

downloaded all tested eQTLs and randomly selected the same number of significant eQTLs and counted 

the number of matched eQTLs. Standard deviation of error bars were obtained from 1,000 iteration of 

random eQTLs.  

 

To compare functional enrichment of promoter-cRE pairs between pcHi-C and correlation-based methods, 

we combined all eQTL relationships from 13 tissue types used in the above analysis. After that, we 

calculate the number of matched eQTLs in promoter-cRE pairs by pcHi-C and by a correlation-based 

method. 6,381 and 2,354 eQTLs were matched to promoter-cRE pairs in pcHi-C and the correlation-based 

method, respectively. For the random expectation values, we randomly selected the same number of 
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promoter-cRE pairs and calculate standard deviation of error bars from 100 iterations of random promoter-

cRE pairs.    

 

Comparison between eQTL relationships and promoter-promoter significant chromatin interactions 

We collected all eQTL relationships from GTEx database with 44 tissue types as putative eQTL 

relationships. After that, we counted the number of eQTLs that match the significant P-P pcHi-C 

interactions where we considered eQTLs that resided within 2.5kb from TSS. For random expectation 

values, we randomly selected P-P pairs within 1Mbp as the same number of significant P-P chromatin 

interactions and then counted the number of eQTLs that match the random P-P pairs. Average and standard 

deviation values were calculated after performing random selection of P-P pairs 1,000 times. To ensure the 

result is not biased depending on distance between P-P pairs we also tested randomly selected P-P pairs 

within 500kb and 100kbp , but found that the significant P-P pcHi-C pairs are always significantly matched 

with eQTL relationships compared to randomly selected P-P pairs.  

 

Linking between dynamic long-range P-O interactions and variations in gene expression 

We linked dynamic long-range P-O interaction to variations in gene expression. We first collected testable 

promoter regions because of different sequencing depth across samples or capture probe density across 

promoter regions. Based on P-O pcHi-C interaction profiles between GM12878 two biological replicates, 

we found that the reproducibility of the pcHi-C interaction profiles is affected by the coverage of reads at 

promoter regions. We found that 4,000 is a minimum number of reads spanning at promoters to fairly 

compare P-O interaction profiles between samples. We collected testable promoters when the promoter is 

covered by more than 4,000 reads at least 10 cell/tissue types, resulting in 3,454 testable promoters. For 

those testable promoter regions, we filtered again based on gene expression variations. We defined the gene 

expression is variable when the maximum and minimum FPKM values of the gene show more than 2-fold 

difference, resulting in 2,903 testable promoters. After that we computed Pearson correlation coefficient 

(PCC) between pcHi-C normalized interaction frequencies and variations in gene expressions (FPKM) for a 

given promoter. The pcHi-C normalized interaction frequencies represent chromatin interactions between 
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the promoter and another DNA fragment within 2Mbp from the TSS. We only considered P-O pairs 

showing over 0.5 absolute PCC value. If the variations of gene expressions are only positively correlated 

(>0.5 PCC) with other fragments, we defined the gene is linked by dynamic long-range interactions 

positively (n=1,250). If the variations of gene expression is only negatively correlated (>0.5 PCC) with 

other fragments, we defined the gene is linked by dynamic long-range interactions negatively (n=276). If 

the variations of gene expressions show both positively and negatively correlation with dynamic long-range 

interactions, we defined the gene is linked by dynamic long-range interactions both positively and 

negatively (n=661).  

 

Linking between allele biased promoter activities and significant P-P chromatin interactions 

In order to support cis-regulatory function of promoters on distal gene regulation, we utilized allelically 

biased promoter activity information. We first defined allelelically biased promoters using very deeply 

sequenced paired-end H3K27ac ChIP-seq data for matched 14 tissue types (AD, AO, EG, GA, LG, LV, 

OV, PA, PO, RA, RV, SG, SX, and TH). We denoted one allele as P1 and another allele as P2. We 

obtained haplotype-resolved these ChIP-seq data from our previous study (21) and collected testable 

promoter regions when the promoter was covered more than 15 allele specific reads, resulting in 131,535 

testable promoters. Then we calculated binomial p value between P1 and P2 alleles and defined allele 

biased promoter activity in terms of 0.05 FDR cutoff (n=10,844). For each tissue type, we collected testable 

significant P-P pcHi-C interactions where both promoters are allelically biased. Without any restriction of 

distance information we found 46 testable significant P-P pcHi-C interaction pairs and among them 61% of 

pairs were concordantly biased in the same allele. When we restrict the distance between P-P pairs as less 

than 100kb, we found 32 testable significant P-P pcHi-C interaction pairs and among them 72% of pairs 

were concordantly biased in the same allele. For the random expectation, we randomly assigned the biased 

allele for testable promoters and iterated this procedure 1,000 times.  

 

Extended GWAS-SNPs list with LD information. 
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As GWAS-SNPs obtained from GWAS catalogue database contain tag SNP information only, we extended 

the GWAS-SNP information using linkage disequilibrium (LD) structure. LD scores were calculated using 

PLINK for five different populations obtained from 1000 genome phase 3 data. For each tag SNP we 

included all associated SNPs showing tight LD score (>0.8) for all five populations (AFR, AMR, EAS, 

EUR, and SAS).  

 

Enrichment test of disease genes in putative GWAS-SNP target genes. 

In order to test the enrichment of disease associated genes in GWAS-SNP putative target genes we first 

downloaded the list of putative disease associated genes from GeneCard database, resulting in 9,989 

disease associated genes. Then, for each cell/tissue type we defined putative target genes of GWAS-SNPs 

based on significant pcHi-C interactions in each cell/tissue type. To remove false putative target genes, we 

only considered putative target genes that frequently interact with multiple GWAS-SNPs. We used top 20 

frequently targeted genes as high confident putative target genes and calculated the ratio between disease-

associated genes and other genes as a measure of disease gene enrichment.   

 

Clustering of GWAS sub categories based on putative target genes 

Based on “mapped traits” from GWAS catalog database, we first grouped GWAS-SNPs into sub 

categories. For each sub categories we defined putative target genes by aggregating all unique significant 

pcHi-C interactions. We only considered sub categories containing more than 5 putative target genes, 

resulting in 907 sub categories. Based on the frequency of putative target genes in each sub category we 

calculated PCC between sub categories, resulting in 907 by 907 symmetric PCC matrix. We performed K-

mean clustering (n=30) for this matrix. 367 sub categories were grouped into 29 clusters, but rest of them 

was not grouped well. We only focused on these 29 well-clustered groups during downstream analysis.     

 

Analysis of functional enrichment using DAVID 

We use DAVID 6.8 Beta version to perform the functional enrichment test. We use all human genes as 

background and we select UP_TISSUE, KEGG_PATHWAY, and GO_BP as functional annotations. 
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Figure 4.1. Mapping long-range promoter-centered chromatin interactions on 27 human tissue and 
cell types.  

(A) Significant interactions identified from pcHi-C across multiple cell/tissue types, with the darkness of 
the purple corresponding to the strength of the interactions. RefSeq genes are presented together. (B) 
Depiction of identified long-range promoter-centered interactions across a 3.7 Mb locus in lymphoblast 
cells (LCL) (top). Shown below are histone modification signals obtained from ChIP-seq analyses (39) as 
well as accessible chromatin regions measured from DNaseI hypersensitivity assay  (C) Depiction of 
Promoter-Promoter interaction hotspots (P-P iHS), Promoter-Other interaction hotspots (P-O iHS), and 
transcription factor (TF) clusters identified in GM12878 cells for the same region shown in Fig. 1B. Below 
are 67 TF binding profiles obtained form ChIP-seq analysis, and RefSeq genes. Highlighted in translucent 
blue are overlapping iHS and TF clusters. (D) Heatmap showing cell/tissue-type specific P-O iHS. Each 
row represents a distinct cell or tissue type (n=21), and each column is a unique P-O iHS (n=3,951). The 
color bar ranges from non-statistical significance (N.S) to high significance. The dendrogram (right-hand 
side) is based on hierarchical clustering of P-O iHS similarities between cell and tissue types. Cell and 
tissue types are colored based on their developmental origin, or cell line status as indicated. (E) Snapshot 
illustrating the promiscuous interaction profile of a Left Ventricle (LV) super-enhancer, overlapping with 
P-O iHS. The top rows depict histone modification signals as measure by ChIP-seq, followed by 
transcriptional levels measure RNA-seq in LV. Below are RefSeq genes, and then observed interactions 
emanating from the LV super-enhancer (highlighted in translucent orange). Interactions detected by pcHi-C 
are colored in purple, with the darkness of the purple corresponding to the strength of the interactions. 
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Figure 4.2. Long-range promoter-distal cRE interactions are enriched for functional relationships.  

(A) Illustrative Locus zoom plot of eQTLs for VLDLR (top) and significant pcHi-C interactions emanating 
from the VLDLR promoter region in Aorta tissue (bottom). Dots along the locus zoom plot represent SNPs, 
and their significance effect on VLDLR gene expression levels is plotted along the left y-axis. Dots are also 
color-coded based on their Linkage Disequilibrium (LD) scores with a tag SNP. The blue line traveling 
across the scatterplot indicates the recombination rate, as plotted along the right y-axis. (B) Barplots 
showing the number of matched eQTLs with significant P-O pcHi-C interactions and the number of 
matched randomly selected eQTLs with significant P-O pcHi-C interactions for sigmoid colon (SG), 
esophagus (EG), and ovary (OV). Fisher-exact test was performed for statistical significant (*** < p value 
10e-3). (C) Illustrative example of dynamic gene expression showing positive correlation with changes in 
long-range promoter-cRE interaction frequency. The top interaction shows the significant interaction 
between the POU3F3 promoter and a distal cRE ~350kb upstream in hippocampus tissue (HC). The bar 
plot below and left shows the normalized pcHi-C interaction frequencies between POU3F3 promoter and 
the distal cRE and the right shows the gene expression levels of POU3F3, highlighted in blue. 
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Figure 4.3. Widespread promoter-promoter interactions in distal gene regulation.  

(A) Browser snapshot of the TMED4 locus, showing promoter-promoter interactions that correspond to 
correlated H3K27ac signals at promoters. Shown and the top are RefSeq genes, and below are H3K27ac 
histone modification signals as measured by ChIP-seq. Highlighted by blue boxes are promoters who are 
linked both by highly correlated H3K27ac signal and by significant pcHi-C interactions. A highlighted by 
gray box is an adjacent promoter of TMED4. Below, are PCC values and links based on H3K27ac signal 
and links based on pcHi-C. (B) Density plots showing the PCC distributions of H3K27ac (blue), H3K4me1 
(orange), and H3K4me3 (green) signals for promoter-promoter pairs exhibiting significant DNA looping 
interactions detected by pcHi-C. A density plot showing the PCC distributions of H3K27ac signals for 
randomly selected promoter-promoter pairs (gray). X-axis indicates PCC of histone modification signals 
between promoter-promoter pairs across 27 cell/tissue types. (C) Box plot showing the PCC distributions 
of gene FPKM signals for randomly selected promoter-promoter pairs (dark blue) compared to promoter-
promoter pairs exhibiting significant pcHi-C interactions (blue), promoter-promoter pairs defined by ChIA-
PET (green), and adjacent promoter-promoter pairs within 20kb (yellow). KS-test was performed for 
statistical significance (*** < p value 0.005). (D) Illustrative LocusZoom plot of eQTLs for BLCAP gene 
expression in Aorta. Both BLACP gene promoter region and GHRH promoter that contain significant 
eQTLs are highlighted in translucent orange, Dots along the LocusZoom plot represent SNPs, and their 
significance of association with BLCAP gene expression is plotted along the left y-axis. Dots are also color-
coded based on their LD score with a tag SNP (rs55705839). The blue line traveling across the LocusZoom 
plot indicates the estimated recombination rate, as plotted along the right y-axis. Gene expression levels 
detected by RNA-seq and RefSeq genes position are plotted below the LocusZoom plot. (E) Bar plots 
showing the eQTL association of genes with the SNP rs55705839, with the most significant association 
with the distal gene, BLCAP. Y-axis indicates –log10 eQTL p values. (F) Bar plots showing the absolute 
number of eQTLs that are matched with promoter-promoter interactions identified from pcHi-C data 
(darkblue) and randomly selected promoter-promoter pairs (blue). Error bar indicates standard deviation 
from 1,000 random data sets. Fisher-exact test was performed for statistical significance (*** p value < 
2.2e-16). (G) Illustrative example of concordant allelically-biased H3K27ac signals at promoters which are 
linked through a significant pcHi-C interactions in SG tissue. RefSeq genes are shown at the top, followed 
by allelically mapped H2K27ac signal (P1 and P2). Highlighted in orange boxes are the promoters for 
VSTM1 and OSCAR, which show allelically biased H3K27ac signals towards the P1 allele (red). 
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Figure 4.4. Putative target genes of GWAS SNPs linked by promoter-centered long-range chromatin 
interactions.  

(A) Browser snapshot of the FTO/IRX3/IRX5 locus in mesenchymal stem cells (MSC). Highlighted in 
orange boxes is the intronic enhancer in FTO bearing the genetic determinant for human obesity, 
rs1421085, as well as the promoters for IRX3 and IRX5. The top tracks show histone modification signals 
obtained from ChIP-seq analysis. Below are RefSeq genes, follow by all significant long-range interactions 
originating from the promoters of IRX3 or IRX5.  (B) Shown are K-means clustering (n = 29) results of 
disease-disease associations using putative GWAS-SNP target gene similarities. Each dot indicates PCC of 
the target gene similarities between GWAS sub-categories. Clusters are shown along the arbitrary order of 
K-means clusters from cluster 1 to cluster 29 as from top to bottom and from left to right. Representative 
diseases or traits are shown together for several clusters. (C) Gene ontology analysis of putative target 
genes in cluster1 using DAVID. GO terms are presented according to p-values (green dots). UP_TISSUE is 
for up-regulated tissue type, GO_BP is for GO biological process. P values of corresponding GO terms 
using nearest gene information are shown as gray dots.  (D) Hierarchical clustering of GO biological 
processes (each column, n=109) across the K-means clusters (each row, n=29). Each entry indicate –
log10(p) value of GO biological processes in the corresponding cluster. Several representative biological 
processes are described together. 
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Figure S4.1. Capture Hi-C design, probe synthesis, and target enrichment workflow. 

(A) Schematic of probe design for promoter Capture-HiC experiments. For each promoter (black 
rectangle), two flanking HindIII cut sites were identified. A 15bp buffer was then added to each side of the 
HindIII cut site, and then 3 120-mer capture probes were allocated to each side of the HindIII cut site, with 
a 30bp shift between adjacent probes. In total, 12 capture probes were assigned to each promoter, and all 
probes were targeted towards the Watson Strand cut site. (B) Schematic workflow of custom RNA probe 
synthesis. From top to bottom, ssDNA probe synthesis by CustomArray, Inc, PCR amplification with SP6 
recognition sequence completion and purification, BsrDI digest and purification, in vitro transcription in 
the presence of biotinylated UTP and purification, and pooling of probe batches using equal mass ratios. 
(C) Schematic workflow of target enrichment of Hi-C libraries (Promoter Capture-Hi-C). From top to 
bottom, preparation of library mix, hybridization buffer, and probe mix, following by combining the mixes 
and overnight incubation to bind probes to Hi-C template. Then, preparation of streptavidin beads and wash 
buffers. Then, binding RNA:DNA duplexes to streptavidin beads and rigorous washing to remove off-
target binding. And lastly, PCR amplification of the resulting Promoter Capture-Hi-C library. 
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Figure S4.2. Overview of samples and datasets and capture probe quality control.  

(A) Schematic overview of the cell and tissue types analyzed by Promoter Capture-Hi-C, and note of other 
datasets available for these samples. Embryonic or embryonic-derived cell types are on the left, and tissues 
are tabled on the right according to their developmental origin. (B) Snapshot of Promoter Capture-Hi-C 
probe density from RNA-seq analysis of the capture probes. Two replicates of probe synthesis and 
subsequent RNA-seq are shown, followed by Gencode gene annotations. (C) Zoomed-in snapshot of 
Promoter Capture-Hi-C probe density from RNA-seq analysis of the capture probes. Below the replicate 
RNA-seq datasets are the HindIII cut sites and Gencode gene annotations, illustrating that the vast majority 
of probe density is only found around HindIII cut sites flanking promoters. (D) Scatter plot showing the 
reproducibility of probe density from RNA-seq data across two probe synthesis experiments. Each dot on 
the scatter plot represents a single promoter, and the value is the aggregate probe density from all probes 
assigned to that given promoter. (E) Venn diagram showing the number of targeted regions that contain 
detectable probe density based on RNA-sequencing of the capture probes from each replicate of probe 
synthesis. (F-G) Histogram of the probe densities measured by RNA-seq (x-axis) in each promoter from 
replicate 1 (F) and replicate 2 (G) of probe synthesis. 
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Figure S4.3. Identification of significant Promoter Capture-Hi-C interactions.  

(A) 3-step procedure for identifying significant interactions in Promoter Capture-Hi-C data.  
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Figure S4.4. General characterization of promoter-centered long-range interactions.  

(A) Snapshot of a locus showing promoter-centered long-range interactions from Promoter Capture-Hi-C 
data in H1 cells (bottom, purple loops) in the context of TADs (blue rectangles) detected from Hi-C data 
(top, red) in H1 cells. RefSeq genes are shown at the bottom. (B) Histogram showing the distribution of 
genomic distances of promoter-centered long-range interactions. The cumulative fraction of promoter-
centered long-range interactions is plotted as a red line, and corresponds to values plotted along the right y-
axis. (C) Pie chart showing the classification of all unique significant pcHi-C interactions obtained from all 
tissues and cell types. P-P corresponds to promoter-promoter interactions; P-O corresponds to promoter 
interactions with non-promoters. P-O class of interactions has been sub-divided to P-O with cRE and rest of 
P-O. (D-E) Pie chart showing the classification of all unique significant pcHi-C interactions from Promoter 
Capture-Hi-C in LCL (D) and H1 (E). The rest of P-O class of interactions has been sub-divided again to 
show P-O interactions that are also TF binding sites. 
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Figure S4.5. Validation of Promoter Capture-Hi-C. 

(A) Browser snapshot of the CCL gene cluster, highlighting the similarity of promoter-centered interactions 
from Promoter Capture-Hi-C and high resolution Hi-C data in IMR90 cells. The top two tracks show 
histone modification signals for H3K4me3 and H3K27ac, obtained from ChIP-seq data, and RefSeq genes. 
Below, are promoter-centered DNA looping interactions obtained from Promoter Capture-Hi-C in IMR90 
cells (blue loops), and promoter-centered DNA looping interactions from high-resolution Hi-C data in 
IMR90 (purple loops). (B) Overlapping histograms, showing the PCC of promoter centered interaction 
profiles between Promoter Capture-Hi-C and high resolution Hi-C data in IMR90 cells. Each data point in 
orange color represent the PCC of the interaction profile of a single promoter between the two datasets. In 
gray, each data point represents the PCC of interaction profiles of randomly selected promoter-pairs 
between the two datasets. (C) Histogram showing distribution of PCC p values of interaction profiles of a 
single promoter between the two datasets. (D-F) ROC plots showing the prediction performance of 
Promoter Capture Hi-C result compared to 4C-seq (D), in situ Hi-C loops anchored at promoters 
lymphoblast cells (E), and in situ Hi-C loops anchored at promoters in IMR90 (F). 
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Figure S4.6. Characterization of interaction hotspots (iHS).  

(A) Histogram showing the distribution of number of interacting promoters for each DNA fragment in H1. 
(B-C) Bar plots showing the number of P-O iHS in lymphoblast cells (LCL) (B) or H1 (C) overlapping 
with TF clusters compared to random expectation. Fisher-exact test was performed for statistical 
significance (*** p value < 2.2e-16). (D-E) Bar plots showing the number of P-P iHS in lymphoblast cells 
(LCL) (D) or H1 (E) overlapping with TF clusters compared to random expectation. Fisher-exact test was 
performed for statistical significance (*** p value < 2.2e-16). (F) Heatmap showing cell/tissue-type 
specific P-P iHS. Each column represents a distinct cell or tissue type, and each row is a putative P-P iHS. 
The color bar ranges from low statistical significance, to high significance of P-P iHS p-value. The above 
dendrogram is clustered using the hierarchal clustering based on PCC of P-P iHS similarity between 
samples. (G) Heatmap showing PCC of P-O iHS similarities. The above dendrogram is clustered using the 
hierarchal clustering based on the PCC between samples. (H) An array of bar plots showing the number of 
P-O iHS overlapping with super-enhancers (left, purple), compared to random expectation (right, blue). 
Each bar plots represents an analysis of a different cell or tissue, depending on which cells/tissues have 
super-enhancer annotations. (I) Box plots showing the overlapping score between super-enhancers and P-O 
iHS when the super-enhancer annotation set and iHS set are from the same tissue (‘matched’, orange), or 
from different tissues (‘different’, gray). KS-test was performed for statistical significance (** p value < 
0.01). 
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Figure S4.7. Enrichment of eQTL relationships in significant P-cRE interactions.  

(A) Density plots showing the distribution of PCC for H3K27ac signals at true P-cRE pairs identified from 
Promoter Capture-Hi-C (blue), compared to expected distributions of PCC values (gray). (B) Venn diagram 
illustrating the amount of overlapping of P-cRE pairs identified from Promoter Capture-Hi-C data (orange) 
and P-cRE pairs identified using correlation-based approaches (blue). (C-E)  Illustrative locus zoom plots 
of eQTLs for CHML (C), MIOS (D), and STARD10 (E) gene expression in lung, liver, and spleen, 
respectively. RefSeq genes position is plotted below the locus zoom plot. Significant Promoter Capture Hi-
C are shown as purple in the bottom. (F) Array of bar plots showing number of matched eQTL 
relationships between significant P-O pcHi-C interactions compared to random expectation across 10 
matched tissue/cell types from GTEx database. Significant P-O pcHi-C interactions highly enriched by 
eQTL relationships compared to random expectation in all 10 matched tissue/cell types based on Fisher-
exact test p-values (<0.001). 
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Figure S4.8. Dynamic long-range promoter-cRE interactions. 

(A) Bar plots showing fraction of matched eQTL relationships in uniquely identified significant Promoter 
Capture Hi-C interactions after aggregate all 27 cell/tissue types, uniquely identified by correlation-based 
method, and random expectation. Standard deviation of error bars is shown for random expectation 
(n=100). Fisher-exact test was performed for statistical significance (*** p value < 2.2e-16). (B) Illustrative 
dynamic long-range promoter-centered interactions for MYC promoter across multiple cell and tissue types. 
Orange boxes highlighted tissue type specific, tissue type invariant, and known MYC enhancer 
interactions. MYC promoter region is highlighted as black. (C) A 3D-scatter plot between numbers of 
Promoter Capture Hi-C read coverage of promoters between GM12878 rep1, rep2, and PCC of normalized 
interaction frequencies between two replicates for each promoter. Each dot indicates individual promoter. 
The hyperplane is shown for regression result. (D) Bar plots showing median PCC of promoter and other 
normalized interaction frequencies between two biological replicates GM12878 in terms of minimum 
coverage of Promoter Capture Hi-C reads at promoters. (E) Pie chart showing the percentage of genes 
whose gene expression levels are correlated by dynamic promoter-other interactions, positively, negatively, 
or both. 
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Figure S4.9. Functional promoter-promoter interactions.  

(A) A scatter plot showing of gene expression FPKM values of significant pcHi-C P-P pairs in H1. Each 
dot indicates each gene. (B) Illustrative locus zoom plot of eQTLs for PVR gene expression in right 
ventricle. Both PVR gene promoter region and PVRL2 promoter that contain significant eQTLs are 
highlighted in translucent orange. Dots along the locus zoom plot represent SNPs, and their significance of 
association with PVR gene expression is plotted along the left y-axis. Dots are also color-coded based on 
their LD score with a tag SNP. The blue line traveling across the scatterplot indicates the estimated 
recombination rate, as plotted along the right y-axis. RefSeq genes position is plotted below the locus zoom 
plot. Significant Promoter Capture Hi-C interactions in RV were shown as purple in the bottom. (C) Bar 
plots showing the fraction of significant pcHi-C P-P pairs that concordantly biased in the same allele (left, 
purple), compared to random expectation (right, teal). Standard deviation of error bars was calculated from 
1000 times random expectation values. 
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Figure S4.10. Promoter located GWAS-SNPs and their putative distal target genes.  

(A) Barplot showing the enrichment of disease-associated genes (y-axis) in top 20 high confident putative 
target genes of GWAS-SNPs identified by pcHi-C maps across cell and tissue types (x-axis). Black line 
indicates no enrichment of disease-associated genes compared to other genes. (B) Line plot showing the 
fraction of disease associated genes in GWAS-SNP putative target genes identified by DLPFC Promoter 
Capture Hi-C data. The genes are ranked (x-axis) in terms of frequency targeted by GWAS-SNPs. (C-E) 
Illustrative several examples showing putative target genes of GWAS-SNPs that resided in promoter 
proximal regions and target distal genes by both eQTL relationships and Promoter Capture Hi-C result. 
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Table S4.1. List of cell/tissue types analyzed in this study 
Samples Tissue/cell type 
AD_STL002 Adrenal Gland 
AO_STL002 Aorta 
AO_STL003 Aorta 
BL_STL001 Bladder 
DLPFC Dorsolateral Prefrontal Cortex 
EG_STL002 Esophagus 
FT_STL002 Fat 
IMR90 Fibroblasts 
GA_STL002 Gastric 
GA_STL003 Gastric 
HC Hippocampus 
H1 Human ES cells 
LV_STL001 Left Ventricle 
LV_STL003 Left Ventricle 
LI_STL011 Liver 
LG_STL001 Lung 
LG_STL002 Lung 
GM12878.rep1 Lymphoblasts 
GM12878.rep2 Lymphoblasts 
GM19240 Lymphoblasts 
MSC.rep1 Mesenchymal Stem Cell 
MSC.rep2 Mesenchymal Stem Cell 
ME Mesendoderm 
NPC Neural Progenitor Cell 
OV_STL002 Ovary 
PA_STL002 Pancreas 
PA_STL003 Pancreas 
PO_STL001 Psoas 
PO_STL003 Psoas 
RA_STL003 Right Artrium 
RV_STL001 Right Ventricle 
RV_STL003 Right Ventricle 
SG_STL001 Sigmoid Colon 
SB_STL002 Small Bowel 
SB_STL001 Small Bowel 
SX_STL001 Spleen 
SX_STL003 Spleen 
TH_STL001 Thymus 
TB Trophoblast 
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Table S4.2. Number of processed reads 
Tissue Trans_target Cis_target Self_target Total_read 

AD 21189399 16562245 15701347 258605662 

AO 21377741 18073853 19497645 258079376 

BL 19127398 16708591 20757180 293419345 

DLPFC 14693048 15456589 11210022 190395167 

EG 3979711 2548027 3846385 57973772 

FT 3418500 3155609 4042855 63282029 

GA 33563029 17767829 31333830 283205529 

LCL 52538294 61292977 33491869 424713922 

H1 16280869 18490970 16652197 207432338 

HC 19096377 18868512 16072830 164780406 

IMR90 16534785 22902355 16810314 168302264 

LG 37427610 17759143 26821237 389985523 

LI 16169255 13920351 20183454 253040895 

LV 43954536 20527913 26589758 350765301 

ME 10351330 16852133 15223522 96531837 

MSC 8477823 31160058 16619223 144584470 

NPC 27684792 8439809 15900447 128845471 

OV 27058343 12047340 17769330 241662445 

PA 22450998 13975650 18959814 244227059 

PO 9000450 5916505 6930829 87699425 

RA 3601248 2012229 3486904 52853723 

RV 34167423 17182471 20265717 281406073 

SB 35145481 20051901 28740253 323151259 

SG 2016586 1740077 2486683 46896920 

SX 18189701 10225803 16381391 192495180 

TB 9259870 9422392 6745688 68223281 

TH 35147513 14994797 21521930 246537737 
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Table S4.3. Number of significant long-range promoter-centered interactions from pcHi-C  
Tissue/cell-type Number of interactions 
AD 22964 
AO 28876 
BL 29856 
DLPFC 26285 
EG 991 
FT 1705 
GA 11564 
LCL 37344 
H1 45397 
HC 17346 
IMR90 49332 
LG 12708 
LI 27346 
LV 20141 
ME 45480 
MSC 73242 
NPC 8669 
OV 5749 
PA 8446 
PO 6026 
RA 923 
RV 16172 
SB 10891 
SG 567 
SX 11777 
TB 26046 
TH 15731 
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Table S4.4. Total number of interaction hotspots (Poisson P value < 0.01) 
Tissue/cell type Number of interaction hotspots 

AD 743 

AO 952 

BL 952 

DLPFC 743 

GA 475 

GM 1200 

H1 1319 

HC 676 

IMR90 1420 

LG 475 

LI 952 

LV 587 

ME 1420 

PA 377 

RV 587 

SB 402 

SX 439 

TB 952 

TH 512 

MSC 1319 

NPC 402 
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Table S4.5. List of TF ChIP-seq data to define GM12878 TF clusters 
 

TF Number of peaks SRA accession ID 
ATF2 25922 SRX190236 
BATF 56935 SRX100583 
BCL3 27935 SRX100387 
BCLAF1 12138 SRX100554 
BHLHE40 30235 SRX150509 
CHD2 20388 SRX150458 
CREB1 32576 SRX190216 
CTCF 34460 SRX150690 
EBF1 30572 SRX150455 
EGR1 19053 SRX190186 
ELF1 34951 SRX100541 
EP300 18036 SRX150641 
MAX 14357 SRX150597 
MAZ 18017 SRX150363 
MEF2A 25785 SRX100556 
MTA3 17290 SRX190185 
MXI1 16048 SRX150510 
NFATC1 22246 SRX190235 
NFYB 15000 SRX150586 
PAX5 48119 SRX100436 
PBX3 31282 SRX100577 
PML 14882 SRX190227 
RAD21 48659 SRX150412 
RUNX3 90498 SRX190349 
SIN3A 10673 SRX150411 
SMC3 24493 SRX150456 
SP1 49101 SRX100408 
SPI1 64814 SRX100576 
SRF 12766 SRX100395 
STAT5A 10225 SRX190177 
TBL1XR1 11263 SRX150732 
TBP 16668 SRX150732 
TCF12 49332 SRX100434 
ZNF143 34116 SRX150692 
ZNF384 10930 SRX186607 
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Table S4.6. List of TF ChIP-seq data to define H1-hESC TF clusters 
 

TF Number of peaks SRA accession ID 
ATF2 23883 SRX190198 
BACH1 15407 SRX150659 
CEBPB 24803 SRX150375 
CHD1 7427 SRX186640 
CHD2 12886 SRX150377 
CREB1 36040 SRX190352 
CTBP2 20048 SRX150542 
CTCF 58646 SRX067423 
E2F6 46692 SRX190355 
EGR1 8405 SRX100475 
EP300 14776 SRX100587 
GABPA 20837 SRX100469 
HDAC2 18928 SRX186668 
JUND 19605 SRX100574 
KDM4A 29948 SRX186675 
MAFK 13639 SRX150372 
MAX 82405 SRX190354 
MXI1 8604 SRX150373 
NANOG 18796 SRX100482 
PHF8 20069 SRX100482 
RAD21 68538 SRX150459 
RBBP5 18346 SRX186780 
REST 20314 SRX100410 
SAP30 22515 SRX186768 
SIN3A 37272 SRX150369 
SP1 29549 SRX100422 
SP4 16194 SRX190199 
TAF1 31733 SRX100495 
TAF7 9255 SRX100546 
TBP 26635 SRX150383 
TCF12 26383 SRX100472 
TEAD4 53037 SRX190301 
USF1 43955 SRX100471 
YY1 46580 SRX100558 
ZNF143 39522 SRX150593 
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Chapter 5 

 

Conclusion 

 

Summary 

 We have conducted several studies to either develop new technologies for mapping 3D genome 

architecture, or to investigate genome architecture across human tissues using genome-wide chromatin 

architecture mapping technologies. First, we have developed the Capture-HiC technique, which we show 

can be used to obtain ultra-high resolution maps of interaction profiles for user-defined loci throughout the 

genome1. When combined with the HaploSeq algorithm2, we also show the capability of Capture-HiC 

(termed Targeted HaploSeq) to obtain high-resolution, accurate, and complete haplotype phasing 

information for the MHC and KIR loci. In ongoing work from our lab and in collaboration with Jerry 

Morris (UCSD), we are extending this work into patient samples in a proof-of-concept study to determine if 

targeted HaploSeq can match donor and recipients in transplant clinics by way of improved MHC locus 

phasing. Second, we have performed Hi-C analysis in twenty-one human cell lines and primary tissues, and 

have discovered a novel 3D structure that we have termed frequently interacting regions (FIREs). FIREs 

are the most highly locally interactive sequences in the genome, and through integration with other 

epigenomic datasets3, 4, we find that FIREs are sample-specific, positioned near cell identity genes and 

towards the center of TADs, mediated by Cohesin, and enriched for active enhancers and disease-

associated genetic variation. FIREs are also promiscuously interactive loci with several significant local 

interaction partners, of which many are also other FIREs. 

This analysis has highlighted several important points about the interaction landscape of enhancer-

bearing loci in human tissues. First, although it is known that enhancers impart their function through long-

range chromatin interactions, it is surprising that the most highly locally interactive sequences in the 

genome are enriched for enhancers, rather than other regulatory sequences such as promoters. Second, it 

reinforces a model whereby enhancers are highly interactive with their local neighborhood, which may 

include additional enhancer(s) as well as promoter(s). This brings to light an important distinction, which is 
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that enhancers may only impart a gene-regulatory function on a single gene, but this function is mediated 

by a more complex local interaction network potentially involving simultaneous enhancer-enhancer and 

enhancer-promoter looping. An alternative hypothesis is that enhancers are highly interactive regions 

“searching” for their correct interaction partner. This searching may be somewhat stochastic, until a correct 

protein-protein interaction is established between the enhancer and its suitable regulatory target. In this 

way, enhancers interact highly with its neighboring loci, but only impart a function on a single interaction 

target. In the context of these two models, it is intriguing to think of how deleterious genetic variants 

abrogate the function of enhancers, but in order to more finely address these questions, one must analyze 

interaction profiles at the resolution of individual cis-regulatory elements. 

 To better understand the gene-regulatory function of DNA looping between cis-regulatory 

elements, as well as the potential impact of disease-associated variants, we have implemented promoter 

Capture-HiC5 to map the interaction profiles of nearly 20,000 well-annotated gene promoters across twenty 

seven human cell lines and primary adult tissue types. We have analyzed this invaluable resource of 

interaction maps to identify tissue-specific promoter-enhancer interactions and interactions hotspots that 

may be involved in complex gene regulation networks. We also suggest a widespread role for promoters to 

regulate distal gene expression through interaction with other promoters, an event termed enhancer-like 

promoter elements (EPLs). Lastly, we utilize rich annotations of disease-associated variants from GWAS 

studies6 to systematically pinpoint the target genes of thousands of genetic variant loci. Notably, this study 

provides a wealth of critical information linking disease-associated risk loci to target genes in the disease-

relevant tissue types, a significant advance in the post-GWAS era, and ultimately helps link 3D DNA 

looping, to both gene regulation mechanisms and candidates for disease pathogenesis.  

 

 

Technical Challenges, Implications and Future Perspectives 

 

 In recent years, the applications of chromosome conformation capture data have broadened 

beyond 3D genome architecture mapping, to now include haplotype phasing1, 7, 8, genome assembly9, 10 and 
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deconvoluting mixtures of microorganisms11, 12. With respect to my work developing targeted HaploSeq, 

certain technical challenges remain to realize the ultimate goal of bringing this technology to prospective 

clinical use.  

In terms of assay performance, an ideal targeted HaploSeq platform would be able to call SNPs de 

novo from the Hi-C data with high accuracy and sensitivity, and then accurately and completely phase 

those same SNPs. In order to call SNPs de novo with high sensitivity, one must be have adequate sequence 

coverage across the entire locus (for targeted HaploSeq) or genome (for HaploSeq). In Hi-C, this is 

problematic since sequence coverage has been conventionally limited by the choice of restriction enzyme 

(RE) used to prepare the Hi-C library. For example, when preparing libraries with HindIII, a theoretical 

maximum of 23% of the genome can be covered due to the relative paucity of HindIII cut sites throughout 

the genome13, which has limited the amount of SNPs covered by sequence reads to 22-27%1, 8. Hi-C has 

also been performed using more frequently cutting RE in flies14, and recently methodological 

advancements in the Hi-C protocol have brought 4-cutters to use in human samples15. However, even a 

single 4-cutter only has an 83% theoretical genome coverage maximum, indicating that nearly 20% of the 

genome will be “blind” to de novo SNP detection from Hi-C data alone. Going forward, I envision SNP 

detection from Hi-C will be greatly aided by the use of multiple buffer-compatible RE, such as 

combinations of 4-cutter and 6-cutter RE. At a glance, combining a single 4-cutter and 6-cutter increases 

the genome coverage to 90%, and additional enzymes could theoretically be added. Alternatively, other 

methods for chromatin fragmentation during Hi-C have the potential to improve genome coverage. For 

example, DNase has been used to prepare Hi-C libraries, and has been shown to yield 62% genome 

coverage with shallow sequencing (40M reads)13. If this were increased to a typical 30-35X genome, or 

used in targeted HaploSeq, one may achieve nearly complete genome coverage, though the upper bounds 

are currently unknown. Another option is chromatin fragmentation using miccrococcal nuclease, which has 

been shown to prepare Hi-C libraries in yeast cells16. Theoretically, this assay would obtain sequence 

coverage where any nucleosomes are positioned in a given cell, and since nucleosome positioning may be 

relatively dynamic in a cell population, Hi-C from MNase fragmentation could be the superior enzymatic 

approach. Lastly, non-enzymatic approaches, such as mechanical shearing, have used to fragment 
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chromatin for 4C (http://www.nature.com/protocolexchange/protocols/1979) and suggested to work well 

for Hi-C, though no published data exists to examine genome coverage13. Finally, one can partially 

circumvent the problem of reads mapping adjacent to cut sites by performing Hi-C, but instead preparing 

such libraries for long-read sequencing platforms such as PacBio or Oxford Nanopore. Though 

experimentally possible, the high cost and relatively low coverage from the current PacBio instrument 

precludes use on large genomes, such as humans.    

In addition to the sequence coverage limitation, the Hi-C assay itself, and therefore Haploseq, is 

too laborious and expensive for clinical adoption. The most rapid Hi-C protocol published to date still takes 

3-4 hands-on working days, while industry-standard NGS workflows are typically single-day automated 

procedures. Additionally, a single Hi-C experiment in its current form can cost >$300 in reagents alone, 

which also precludes clinical adoption. The combination of speed, automation-compatibility, and cost 

efficiency must be dramatically improved to enable use of Haploseq or targeted Haploseq in clinical 

settings.  

Despite the robustness and efficiency of the most improved Hi-C protocol15, several shortcomings 

persist that prevent further study of chromatin organization in important biological contexts. First, Hi-C has 

traditionally been used to study genome organization from cell populations, requiring >2M cells for a 

single experiment. Recent modifications to the Hi-C protocol have enabled Hi-C analysis of single-cells17, 

18, but close examination of these methods still reveal significant shortcomings, such as the low number of 

single-cells analyzed in a single experiment (throughput), or the low number of detectable interactions per 

cell (sensitivity), respectively. I suspect that implementation of microfluidics technology, such as the 10X 

Genomics instruments, will facilitate drastically increased throughput and sensitivity for single-cell 

chromosome conformation capture analysis.  

 Hi-C has been invaluable for mapping pairwise interactions genome-wide in many contexts, such 

as in response to exogenous stimuli19, 20, manipulation of architectural proteins21-23, or for charting 3D 

genomes across several cell types15, 24, 25, such as the work described in this dissertation. However, the 

technical limitations of Hi-C to detect more complex multi-way interactions arise from at least two flaws; 

1) Hi-C depends on chromatin digestion and re-ligation, so only spatially proximal DNA that can 
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efficiently undergo these molecular biology steps are detectable by Hi-C. This means that many spatially 

proximal sequences are likely to go undetected, due to natural inefficiencies in the Hi-C molecular biology 

steps. 2) Hi-C libraries are currently only prepared for short-read sequencing (SRS) on Illumina 

instruments. Illumina SRS can only sequence 500bp DNA fragments, and therefore are likely to only detect 

pairwise ligation events on a single sequenced DNA fragment. Recent analysis of Hi-C libraries  prepared 

using 4-cutters estimates that only 0.05% of sequenced fragments actually contain more than 2 Hi-C 

restriction fragments (i.e. a multi-way interaction), thereby precluding the analysis of multi-way 

interactions from Hi-C data26. To circumvent this problem, Darrow and colleagues have proposed the use 

of a modified 3C protocol using a pseudo-2-cutter RE, which fragments the genome into much smaller 

fragments compared to 4-cutters and increases the likelihood of a multi-way interaction to be present in an 

Illumina SRS sequenced DNA fragment. This has been shown to increase the frequency of muti-way 

interactions from 0.05% to 0.6% (13-fold increase), however this is still too infrequent for high resolution 

multi-way interaction mapping in large human genomes, but potentially suitable for smaller genomes such 

as fly or yeast. Going forward, one promising unpublished technology, namely Genome Architecture 

Mapping (GAM) from the Pombo Lab, may be able to gain deeper insights into the complex multi-way 

interaction hubs occurring in nuclei as seen in microscopy studies. GAM is a promising technique whereby 

nuclei are fixed and sectioned onto a microscopy slide, and then individual nuclei “slices” are laser-

captured and DNA from each nuclei slice is prepared for NGS. Given that each cell has a unique planar 

slice through its nuclei, the spatial proximity of any set of DNA sequences can be inferred from how 

frequently they are detected in the same planar slice. Though this method does not depend on the numerous 

sequential molecular biology steps in Hi-C, it does depend on efficient library preparation from the scarce 

about of DNA collected from individual nuclei slices and the resolution is somewhat limited to the 

thickness of the planar slice. 

 One final technical hurdle towards better understanding chromatin organization through 3C 

technologies is mapping chromatin dynamics over time. Currently, the obvious brute force approach is to 

crosslink cells at many points across a time interval and perform high-resolution comparative Hi-C, 

however, this is unlikely to give much insight into chromatin dynamics since Hi-C is a cell population 
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assay, meaning too much noise from random chromatin motion will be present in the data to draw clear 

conclusions. Instead, I believe advances in high-resolution microscopy techniques and sophisticated 

computational algorithms will be better suited to detect chromatin motion and looping in individual cells 

across the dimension of time. 

 In addition to technical obstacles related to mapping 3D genomes, significant technical challenges 

also remain with respect to the faithful analysis of 3D genomes. First, as high-resolution Hi-C data is 

becoming more readily available15, 20, so are the number of approaches for identifying a statistically 

significant DNA looping interaction. Thus far, the field is divided in how to computationally identify a 

“significant interaction”. Two lines of thought divide the 3D genomics field on this matter, depending on 

one’s belief of which background model should be used to identify a significant pairwise interaction. 

Choice of a global background model has resulted in the calling of ~1,000,000 significant pairwise 

contacts20, while a local background model has resulted in identifying only 10,000 significant contacts15. 

Going forward, I believe that the determination of which model is more “accurate” will be greatly aided by 

the fields continuing ability to decipher between a statistically significant interaction compared to a 

functional interaction. In other words, a complete set of significant interactions and functional interactions 

may indeed be overlapping, however, not entirely synonymous. For example, if loci A-B are significant 

interacting, but loss of the A-B interaction (via genetic manipulation) has no detectable quantitative effects 

(via chromatin state, expression, etc), then it’s likely that the interaction has no direct and discernable 

function. Therefore, the highest performing computational algorithm for functional 3D genomics will have 

the highest sensitivity and specificity to detect functional interactions, even if they are not statistically 

significant. In order to train these algorithms to detect functional interactions, significant work remains to 

identify and characterize a reference set of functional interactions. Currently, projects in our lab as part of 

the 4D Nucleome Project are working to characterize the interactions of 100 enhancers using CRISPR-

Cas9 technology, in order to identify and describe the biochemical and DNA looping characteristics of 

functional and non-functional interactions. Additional work from our lab, and others, are developing high-

throughput functional screening tools for a similar purpose. At the end of the day, the best algorithms will 
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likely incorporate several data types (ChIP-seq, Hi-C, RNA-seq, etc) to predict function DNA looping 

interactions.  

 In practice, identifying significant changes in DNA looping in response to experimental 

manipulation or disease context is also of critical importance. For example, many studies to date have 

challenged the 3D genome “system” by adding a stimulus or by genetically manipulating the cell line19-23, 

26. Here, a key question simply is how does a given experimental manipulation change the 3D genome, and 

naturally, what changes are significant? One potential approach may be to identify functional interactions 

in each condition independently, and then compare between conditions, while another approach would be 

to identifying the statistically significant differential interactions between conditions, analogous to 

identifying differentially expressed genes in RNA-seq data. Thus far, the recent diffHiC analysis package27 

has made significant advances towards this goal, but ultimately it is the differential functional interactions 

that have biological consequences. In other words, detecting a significantly differential interaction 

frequency is a computational task, while detecting differential functional interactions requires deeper 

insight into the function of a given interaction.  

 Lastly, as the 3D genomics field moves forward, there is dire need to unify on best practices for 

data generation and analysis, as well as terminology use to describe 3D genome structural features. For 

example, several labs around the world each have their own adaptation to Hi-C and Hi-C analysis pipelines. 

When experimental and computational methods differ, it makes the interpretation of results across studies 

very difficult, and may lead to the discovery of new structural features that may simply be a result of 

inconsistent experimental or computational methods. Further, terminologies in the field have become 

infiltrated with a plethora of new terms to define essential the same structural features. For example, there 

seems to be increasing confusion about the terminologies ‘TADs’, ‘sub-TADs’, ‘contact domains’, ‘loop 

domains’, and ‘insulated neighborhoods’15, 24, 28, 29. The trouble with the latter 4 terminologies is they refer 

to highly overlapping regions of the genome and essentially annotate the same sequences. Although they 

were defined using different 3C-derived technologies (5C, Hi-C, and ChIA-PET), they all essentially 

describe chromatin interaction domains, mediated by a single outer-most loop structure. It seems clear that 

genome folding is organized hierarchically30, 31, but much concerted efforts going forward needs to be spent 
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reviewing the 3D structures proposed in the literature, and unifying a set of distinct chromatin architectural 

features. Hi-C has now been around for seven years, and with lower sequencing costs and improved Hi-C 

protocols, Hi-C data is becoming increasing more common. Going forward, I envision a unified effort to 

bring the 3D genomics community to a common ground in terms of protocols, computational methods, and 

structural feature definitions. I also envision the next few years to include the continued generation of Hi-C 

maps across >100 cell and tissue types (analogous to ChIP-seq and ENCODE), as well as the explosion of 

high-throughout functional screening and the 3D genomics community focusing on functional interaction 

mapping and detection. Lastly I imagine a steady increase in the number of studies linking alternations in 

the 3D genome to disease pathogenesis, which has already been demonstrated in a number of seminal 

studies32, 33. 

 In summary, I feel the work presented in this dissertation has made considerable contribution to 

the 3D genomics field through development of chromatin architecture mapping technologies and through 

analysis of chromatin organization across dozens of human tissues and cell types. I hope that many of the 

core insights gained through these studies will have a broader impact on clinical haplotyping, gene 

regulation, and interpreting the function of disease-associated genetic variation.  
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