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ABSTRACT

Fast Sparse Matrix Reordering on GPU for Cholesky Based Solvers

Cholesky-based linear solvers are widely employed to solve large sparse positive semi-definite

linear systems. Within the reordering, analyzing, factorizing, and solving pipeline, the reorder-

ing of sparse matrices is a critical step in reducing non-zero fill-ins, thereby decreasing runtime

and memory consumption. However, this stage remains the most time-consuming component

of the linear solving process. There is currently a lack of GPU implementations specifically

designed for matrix reordering in linear solving. This thesis proposes, to our knowledge, the

first GPU-based nested dissection reordering algorithm. Our approach aims to achieve signif-

icantly faster reordering times compared to traditional CPU-based methods while maintaining

comparable quality in terms of non-zero fill-ins. We have implemented the proposed algorithm

and conducted comprehensive performance comparisons with established CPU-based Nested

Dissection implementations on various triangle mesh inputs. Our results demonstrate that the

GPU-based reordering algorithm can achieve more than a 5 times speedup on average when

applied to triangle mesh inputs. However, we produce an average of 6 times more non-zero ele-

ments after Cholesky factorization compared to METIS, a widely-used graph partitioning soft-

ware, based on our tests. Future work focuses on refining our partitioning strategy to achieve

better fill-in reduction without sacrificing the significant speed advantages. Finally, we discuss

the insights gained from our current implementation and outline future directions for further

optimization and analysis.
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Chapter 1

Introduction

1.1 Overview
Cholesky-based solvers for solving symmetric positive semi-definite (SPD) systems across sci-

entific computing deciplines like physical simulation, finite element modeling and geometry

processing. These solvers are typically the computation bottleneck of the application, especially

when running on the CPU. For example, for many geometry processing applications, process-

ing high-resolution triangle meshes with millions of vertices poses significant challenges for

CPU-based solvers, while for such applications, GPU-based solvers have shown promising re-

sults in terms of running speed. As the complexity and scale of geometric data continue to

grow, traditional CPU-based linear solvers face limitations in terms of performance and mem-

ory efficiency [8, 17, 21]. We first looked at the state of the art GPU linear solving pipeline with

CUDA cuSolver [18] to identify the bottleneck for GPU solvers. The Cholesky linear solving

process on GPU, as implemented in cuSolver using CUDA, consists of five main stages: ma-

trix reordering, matrix analysis, memory allocation, Cholesky factorization, and solving. The

matrix reordering stage is for reducing the number of non-zero entries, also known as fill-in,

increased by the later Cholesky factorization stage. The matrix analysis stage is for analyzing

the matrix structure and computing the Video Random Access Memory (VRAM) required for

the Cholesky factorization stage and the solving stage. The memory allocation stage is for al-

locating the required memory for the Cholesky factorization stage and the solving stage. The

Cholesky factorization stage is for computing the Cholesky factorization of the input matrix,

1
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Figure 1.1: Runtime distribution of the four main stages (matrix reordering, matrix analysis,
Cholesky factorization, and solving) of the cuSolver linear solving process on GPU with various
input triangle mesh sizes. The running time is plotted in log scale.

generating the lower triangular matrix. The solving stage is for solving the linear system with a

given right hand side using the lower triangular factor matrix generated by the Cholesky factor-

ization stage. The cuSolver reordering stage is implemented by wrapping the METIS reordering

method [11, 18] on the CPU. The sparse matrix is permuted on the CPU side and then copied

to the GPU for the rest of the linear solving process. Through our analysis, we found that the

matrix reordering stage used the most time for GPU solvers with various input triangle mesh

sizes. We use vertex adjacency matrices from triangle meshes as input matrices for our analysis

and get the result in Figure 1.1. Two primary factors contribute to the matrix reordering stage

being the bottleneck:

• The reordering algorithm used in the matrix reordering stage is slow for using a CPU-

based implementation while the rest of the solving pipeline is implemented on GPU.

• There is currently no efficient GPU-based matrix reordering algorithm for Cholesky-

based solvers.
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The matrix reordering stage is crucial for two reasons. First, it mitigates memory constraints

by minimizing fill-in during the Cholesky factorization stage, which is critical given the limited

VRAM on GPUs. Second, it substantially reduces factorization time, which constitutes the

most computationally intensive phase of the linear solving process. Current state-of-the-art

reordering algorithms, such as METIS [11] and SCOTCH [19], are predominantly CPU-based

and exhibit suboptimal performance relative to other components of the GPU linear solver.

In addressing this challenge, we reviewed the current matrix reordering algorithms [22] and

identified Nested Dissection Reordering as a promising candidate for Cholesky-based solvers

and GPU acceleration. Both Nested Dissection and Approximate Minimum Degree [1] are

widely used for matrix reordering. However, Nested Dissection is more suitable for our imple-

mentation with GPU mesh data structures and yields better results in terms of fill-in reduction

and factorization time. Nested Dissection is a divide-and-conquer algorithm that recursively

partitions a graph into two subgraphs by removing a separator set of vertices and putting them

at the end of the two subgraphs in the reordering sequence. The algorithm continues to partition

the two subgraphs until the subgraphs are small enough. Although Nested Dissection and Ap-

proximate Minimum Degree use different strategies to generate reordering, the underlying idea

is the same: to eliminate the vertices with lowest degree first to reduce fill-in increase during

the Cholesky factorization stage.

1.2 Our Contributions
In this paper, we present a novel GPU-based Nested Dissection algorithm and its implemen-

tation that leverages the pre-partition strategy employed in RXMesh, a GPU-based geometry

processing library to utilize GPU parallelism. Our primary goals include:

1. The first GPU-based Nested Dissection algorithm for matrix reordering that reduces the

number of non-zero elements after Cholesky factorization up to 10 times compared with

not reordering the input matrix.

2. A fast, GPU-based matrix reordering implementation that is 10 times faster than METIS

while maintaining 2 to 12-times increase in the number of non-zero elements after Cholesky

factorization compared to METIS.
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3. Insights on the trade-off between fill-in reduction and runtime performance, highlighting

opportunity for future optimization improvements.

Our GPU-based Nested Dissection algorithm is implemented in CUDA and is designed to

be compatible with existing GPU-based linear solvers. We have evaluated our implementation

on a variety of input matrices generated from triangle meshes and compared it with METIS. Our

results show that our implementation outperforms METIS in terms of speed while maintaining

good fill-in reduction after Cholesky factorization, though currently our fill-in reduction perfor-

mance is still worse than METIS. Through tests and analysis of our implementation, we have

gained insights into potentional optimizations to further reduce the fill-in ratio and improve the

end-to-end application performance, which we would leave for future work. By addressing the

critical bottleneck of GPU Cholesky factorization, our work establishes a foundation for more

efficient and scalable GPU-based linear solver implementations. This advancement enables re-

searchers and practitioners to tackle increasingly complex problems with enhanced speed and

efficiency using GPU-based solvers.

1.3 Thesis Organization
The remainder of this thesis is organized as follows. In Chapter 2, we review the related work

on matrix reordering algorithms and GPU-based linear solvers. In Chapter 3, we present the

problem statement and the details of our GPU-based Nested Dissection algorithm. In Chapter

4, we evaluate our implementation and compare it with METIS. In Chapter 5, we discuss the

future work and conclude the thesis.
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Chapter 2

Related Work

Our work builds upon and extends several areas of research in GPU-based geometry processing,

matrix reordering algorithms, and GPU graph partitioning. This section provides an overview

of the key developments in these fields that inform our approach. We start with the background

on GPU-based geometry processing data structures, as we leverage these tools to implement

our GPU-based matrix reordering algorithm. We then discuss the common matrix reordering

approaches, algorithms and their implementations, and highlight the close relationship between

the matrix reordering and graph partitioning algorithms. Finally, we review the existing GPU

graph partitioning implementations that have inspired our work.

2.1 GPU Geometry Processing Data Structures
Recent advancements in GPU-based geometry processing have led to the development of ef-

ficient data structures that enable fast parallel computations on triangle meshes for geometry

processing tasks. These structures are relevant to our work as they provide efficient ways to

represent and manipulate mesh data on GPUs, which is crucial for our matrix reordering algo-

rithm. RXMesh [16] introduced a novel GPU-based mesh data structure that allows for effi-

cient parallel mesh traversal and computation. By employing a pre-computed partition strategy,

RXMesh enables fast parallel processing of mesh elements on GPU shared memory. With a

novel thread scheduling mechanism, RXMesh achieves high performance for a variety of ge-

ometry processing tasks such as mesh smoothing and remeshing. MeshTaichi [23] presented a

domain-specific language and compiler for geometry processing on GPUs. Similar to RXMesh,
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MeshTaichi first generates the mesh partitioning and generates efficient GPU code for mesh

operations. The MeshTaichi compiler automatically optimizes the generated GPU code for par-

allel execution, enabling researchers to implement complex geometry processing algorithms

with high performance.

2.2 Matrix Reordering Algorithms
Matrix reordering algorithms for solving large sparse linear systems with Cholesky based solvers

have been extensively studied in numerical linear algebra [10]. These algorithms aim to reduce

fill-in and improve the sparsity structure of the matrix, leading to faster and more memory-

efficient factorization. Fill-in reduction is crucial as it directly impacts the computational com-

plexity and memory requirements of the factorization process. We review several well-known

matrix reordering algorithms and their implementations.

2.2.1 Cuthill-McKee and Reverse Cuthill-McKee

The Cuthill-McKee (CM) algorithm [3] is a refinement of the simple Breadth-First Search (BFS)

ordering. Researchers have explored BFS based orderings as simple yet effective reordering

strategies, particularly for matrices arising from finite element problems. The basic idea is to

traverse the graph representation of the matrix using BFS and number the vertices in the order

they are visited. This approach tends to produce banded matrices, which can be beneficial for

certain sparse matrix operations. Specifically, the approach starts with a peripheral vertex (a

vertex of minimum degree) and uses BFS to number the vertices. At each step, the neighbors

of the current vertex are numbered in order of increasing degree. This strategy aims to reduce

the bandwidth of the reordered matrix. The Reverse Cuthill-McKee (RCM) algorithm [4] is a

variant of CM that simply reverses the ordering produced by CM. Interestingly, RCM often

produces better orderings than CM in terms of fill-in reduction during factorization. Liu and

Sherman [15] provided theoretical justification for this phenomenon, showing that RCM tends

to push vertices with a higher degree to the end of the ordering, which can reduce fill-in. Both

CM and RCM have been widely used due to their simplicity and effectiveness, especially for

matrices arising from finite element and finite difference discretizations. However, they may

not perform as well on more general sparse matrices.

6



2.2.2 Nested Dissection

Nested Dissection (ND) [11] is a recursive bi-partitioning algorithm that has been widely used

for sparse matrix reordering. The basic idea is to divide the graph into two subgraphs by remov-

ing a separator set of vertices. ND is then run recursively on each subgraph, and the vertices in

the separator are ordered last, which helps to reduce fill-in during factorization. The effective-

ness of ND depends critically on finding good separators. For planar graphs and graphs with

good separators, ND can provide asymptotically optimal orderings. However, finding optimal

separators for general graphs is NP-hard, meaning there is no known algorithm that can find

the optimal separator in polynomial time for all possible input graphs. This is due to the com-

binatorial nature of the problem, where the number of possible separators grows exponentially

with the size of the graph. As a result, heuristic methods are often used in practice. Several im-

provements to the basic ND algorithm have been proposed. For example, multiway ND extends

the idea to partitioning the graph into more than two subgraphs at each recursive step. This

can lead to better load balancing in parallel implementations. Currently, there is no GPU-based

implementation of ND for matrix reordering. Our work aims to fill this gap by developing a

GPU-based ND algorithm that leverages the parallel processing capabilities of GPUs.

2.2.3 Minimum Degree and Approximate Minimum Degree

The Minimum Degree (MD) algorithm [6] is a local heuristic method that selects vertices with

the lowest degree in the graph for elimination. The rationale is that eliminating low-degree

vertices tends to create less fill-in. The algorithm updates the degrees of the remaining vertices

after each elimination, which can be computationally expensive for large matrices. The Ap-

proximate Minimum Degree (AMD) [1] algorithm improves upon MD by using approximate

degrees instead of exact degrees. This significantly reduces the computational complexity while

maintaining good quality orderings. AMD has become one of the most widely used reorder-

ing algorithms due to its good balance between ordering quality and computational efficiency.

Several variants of MD and AMD have been proposed [14], including the Multiple Minimum

Degree (MMD) algorithm, which eliminates multiple vertices at each step, and the Constrained

AMD algorithm, which can incorporate additional constraints on the ordering.
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2.2.4 Hybrid and Multilevel Approaches

More recent work has explored hybrid approaches that combine different reordering strate-

gies, with a focus on multilevel methods. These approaches have led to the development of

powerful libraries such as METIS and SCOTCH, which are widely used in scientific comput-

ing. METIS [11] is a set of serial programs for partitioning graphs, partitioning finite element

meshes, and producing fill-reducing orderings for sparse matrices. It uses a multilevel approach

that consists of three phases:

• Coarsening: The graph is progressively coarsened by collapsing vertices and edges.

• Partitioning: A variant of Nested Dissection (ND) is applied to the coarsest graph.

• Uncoarsening: The partitioning is projected back to the original graph, with refinement

at each level.

This approach has been shown to produce high-quality orderings for a wide range of matrices,

often outperforming traditional single-level algorithms in both quality and speed. SCOTCH [19]

is another widely used library for graph and mesh partitioning, static mapping, and sparse matrix

ordering. Like METIS, SCOTCH uses a multilevel approach, but it incorporates a wider range

of algorithms and heuristics. For matrix reordering, SCOTCH offers several strategies:

• A multilevel implementation of Nested Dissection

• A hereditary multi-section ordering algorithm for irregular matrices

• A multilevel implementation of the Gibbs-Poole-Stockmeyer algorithm for reducing the

bandwidth of the sparse matrix.

SCOTCH also provides the ability to combine these strategies, allowing users to tailor the re-

ordering process to their specific needs. Both METIS and SCOTCH have had a significant

impact on the field of sparse matrix computations, providing robust, high-quality implementa-

tions of advanced reordering algorithms. They are widely used in many scientific computing

applications and serve as benchmarks for new reordering algorithms. Another hybrid approach

uses ND to obtain a global ordering and then applies Approximate Minimum Degree (AMD)

8



locally within the subgraphs [20]. This strategy combines the global perspective of ND with

the local optimization of AMD, often resulting in improved orderings. Multilevel methods have

also been applied more generally to matrix reordering. These methods coarsen the graph to re-

duce its size, apply a reordering algorithm on the coarsened graph, and then refine the ordering

back to the original graph. This approach can be particularly effective for very large matrices,

as it allows the application of expensive algorithms on a much smaller problem.

2.3 GPU Graph Partitioning Implementations
While matrix reordering algorithms have traditionally been implemented on CPUs, recent ef-

forts have focused on leveraging GPU capabilities for graph partitioning, which is closely re-

lated to matrix reordering. Graph partitioning and matrix reordering are intrinsically linked be-

cause the sparsity pattern of a matrix can be interpreted as the adjacent matrix of a graph, where

non-zero elements correspond to edges. Partitioning this graph effectively can lead to better

matrix orderings, reducing fill-in during factorization. We review several GPU-based graph

partitioning implementations that have inspired our work. Jet [7] is a GPU-based graph cluster-

ing framework that implements several partitioning algorithms, including a Label Propagation

and Louvain method. While not specifically designed for matrix reordering, its techniques for

efficient GPU graph processing are relevant to our work. G-kway [13] is a GPU-based graph

partitioning library that implements the multilevel k-way partitioning algorithm. It uses a com-

bination of CPU and GPU processing to achieve high-quality partitioning results. The library

is designed for large-scale graphs and can handle millions of vertices and edges efficiently. Our

work builds upon these foundations, specifically adapting the ND algorithm for efficient execu-

tion on GPUs and integrating it with modern GPU-based geometry processing frameworks.

In conclusion, this review of related work highlights the importance of efficient matrix re-

ordering algorithms and the potential for GPU acceleration in this domain. Our research aims to

bridge the gap between these established CPU-based methods and the emerging field of GPU-

based graph algorithms, with a specific focus on improving the performance of Cholesky-based

linear solvers for geometry processing applications.

9



Chapter 3

Problem

In this chapter, we define the problem of matrix reordering for Cholesky-based linear solvers,

with a focus on mesh partitioning as a means to achieve reordering. We begin by explaining

key mathematical terms and terminologies used throughout this work. Then we describe the

process of Cholesky-based linear solving and the importance of reordering in this process. We

then introduce the reordering process and the mesh partitioning problem for reordering. We

also discuss the challenges and goals of this work.

Terminology:

• Vertex-adjacency matrix: A sparse symmetric matrix A ∈ Rn×n, where n is the number

of vertices in the mesh. aij ̸= 0 if vertices i and j are connected by an edge in the mesh,

or i = j. A is symmetric positive semi-definite for our case.

• Number of non-zero elements (nnz): The count of non-zero entries in a sparse matrix.

For a sparse matrix A, nnz(A) =
∑

i,j 1(aij ̸= 0), where 1(·) is the indicator function.

• Cholesky factorization: Decomposition of a symmetric positive-definite matrix A into

the product of LLT , where L is a lower triangular matrix. The factorization process

often introduces new non-zero elements, increasing the nnz of L compared to the lower

triangular part of A.

• Permutation array: An array P = (p1, . . . , pn) where each pi ∈ {1, . . . , n} and P is

a permutation of (1, . . . , n), which can be transformed into a permutation matrix Pm by

10



permuting the rows of the Identity matrix aaccordint to P ; applying it to a matrix A results

in PmAP
T
m , reordering both rows and columns of A.

3.1 Reordering for Cholesky-based Solvers
The problem of reordering for Cholesky-based solvers can be stated as follows. Given a triangle

mesh, we want to generate a sparse vertex-adjacent matrix A and with a given right-hand side

vector b, we want to solve the linear system Ax = LLTx = b using Cholesky factorization.

The primary challenge studied in this thesis is to find a permutation array P that minimizes the

number of non-zero elements in the Cholesky factor L while maintaining the original structure

of the mesh. The quality of the reordering is reflected in the number of non-zero elements

in L, as fewer non-zero elements lead to reduced memory requirements and computational

complexity of the subsequent factorization and forward, backward substitution operation.

Input:

• A triangle mesh M = (V,E, F ), where V is the set of vertices, E is the set of edges, and

F is the set of faces.

• A right-hand side vector b ∈ Rn.

Output: A solution vector x ∈ Rn satisfying Ax = b, where A is the vertex-adjacent matrix

derived from M .

The process of linear solving using reordering involves the following steps:

1. Generate the vertex-adjacent matrix A ∈ Rn×n from the input triangle mesh M :

aij =

1 if (vi, vj) ∈ E or i = j

0 otherwise

2. Compute a permutation array P = (p1, . . . , pn), where each pi ∈ {1, . . . , n} and P is a

permutation of (1, . . . , n).

3. Apply the permutation P to A and b to obtain the reordered matrix AP and vector bP :

AP ij = api,pj , bP i = bpi

11



4. Perform Cholesky factorization on AP to obtain L such that AP = LLT .

5. Solve the linear system APxP = bP . This involves solving two triangular systems:

Ly = bP

LTxP = y

6. Reorder the solution xP back to the original ordering to obtain x:

xpi = xP i for i = 1, . . . , n

The resulting x satisfies the original system Ax = b.

3.2 Mesh Partitioning for Reordering
Mesh partitioning is an effective approach to generate reordering for sparse matrices. Both

METIS [11] and SCOTCH [19] took advantage of mesh partitioning to generate reordering for

sparse matrices. The quality of the partitioning is often measured by:

• The balance of the partitions: maxi |Pi| ≈ |V |/k, where k is the number of partitions, Pi

represents the i-th partition, and |V | is the total number of vertices.

• The size of the separator set: |S| ≪ |V |, where S is the set of vertices whose removal

will divide the graph into two subgraphs.

• The number of edges cut by the partitioning: |{(u, v) ∈ E : u ∈ Pi, v ∈ Pj, i ̸= j}|,

where E is the set of edges, u, v are the two end vertices of an edge.

We want to generate a partitioned mesh MP that is well-balanced, with a small separator set and

few edges cut. Previous work has shown partition with such properties can lead to high-quality

reorderings with reduced fill-in during the Cholesky factorization stage.

The problem can be stated as:

Input: A triangle mesh M = (V,E, F ).

Output: A permutation array P generated from the partitioned mesh MP = (V,E, F,P),

where P = {P1, . . . , Pk} is a partition of V .

The process of mesh partitioning for reordering involves:

12



1. Generate a partitioned mesh MP from the input triangle mesh M :

• Partition MP into subgraphs, identifying vertex separator set S that divides the

graph:

V = V1 ∪ V2 ∪ S, V1 ∩ V2 = V1 ∩ S = V2 ∩ S = ∅

where V1 and V2 are the two partitions and S is the separator set.

• Recursively partition V1 and V2 until the subgraphs are small enough.

2. Generate a permutation array P from the partitioned mesh MP :

• For each recursion level, assign consecutive indices to vertices in each partition Pi:

pv =
∑

j<i |Pj|+ local index(v) for v ∈ Pi. Assign higher indices to vertices in the

separator set: pv = |V \ S|+ separator index(v) for v ∈ S.

• Combine the permutation arrays from each recursion level to obtain the final per-

mutation array P .

3.3 Our Focus
In the following chapters, we present our GPU-based approach to partition triangle meshes and

generate high-quality reordering for Cholesky-based solvers. We focus on generating the mesh

partitioning efficiently with good quality and get the corresponding reordering array leading

to reduced fill-in during the Cholesky factorization stage. We aim to achieve a high-quality

reordering that reduces the number of non-zero elements in the Cholesky factor while leveraging

the parallelism of GPUs to improve performance by using a novel mesh partitioning algorithm

that is suitable for GPU acceleration. For our current implementation, we primarily focus on

triangle meshes as input. We choose to focus on triangle meshes because they are widely used

in geometry processing applications and have a well-defined structure for easier processing.

We use the vertex adjacency matrix derived from triangle meshes as input for our reordering

algorithm, as it is a common representation for mesh data and can be easily converted to a

positive semi-definite sparse matrix for Cholesky factorization. This representation allows us to

take advantage of the mesh structure while still working within the framework of sparse matrix

operations.
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Chapter 4

GPU-Accelerated Nested Dissection

In this chapter, we present the algorithm design and implementation details of our GPU-based

approach to matrix reordering for Cholesky-based solvers. We first introduce the algorithm

design, general workflow, data structures, and our two-stage reordering approach. We then

discuss the implementation details, including modifications to the RXMesh data structure, the

Matlab implementation for preliminary results, and the CUDA implementation.

4.1 Algorithm Design
The goal of our algorithm is to generate a nested dissection reordering quickly on the GPU. Due

to the recursive nature of the algorithm, it is challenging to simply parallelize the algorithm on

the GPU. Our solution uses a divide-and-conquer approach to compute the reordering in two

stages. The two-stage approach also allows us to leverage the RXMesh pre-partitioning and the

shared memory of the GPU for faster queries.

To utilize the GPU architecture effectively, meshes are usually pre-partitioned into patches

to fit into the shared memory of the GPU for faster queries. Our algorithm leverages the pre-

partitioned mesh provided by RXMesh to achieve efficient parallel processing on GPUs. The

pre-partition is calculated using the GPU based K-means algorithm clustering in RXMesh. Our

algorithm could work with any initial k-way partitioning of the mesh, but we use the RXMesh

implementation for our case.

We first take the input mesh and let RXMesh partition the mesh into patches using K-means.

Then we generate the reordering for the coarse graph of patches and the reordering for each
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patch. Finally, we combine the reordering results to get the final reordering array. It is worth

noting that the reordering for the coarse graph of patches is a global reordering, and the reorder-

ing for each patch is a local reordering. The global reordering is for the entire mesh, and the

local reordering is for each patch.

Before delving into the details, let’s define some additional notation and terminology:

• G = (V,E): The graph representation of the mesh, where V is the set of vertices and E

is the set of edges.

• P = P1, . . . , Pk: The set of patches from k-means partition result, where each Pi ∩ Pj =

∅,∀i ̸= j,
⋃

Pi
Pi ̸= G.

• Gc = (Vc, Ec): The coarse graph where each vertex represents a patch in G, and edges in-

dicated the patches are adjacent in G. The edge weight is the number of edges connecting

the two patches.

• T : The partition tree with nodes Pi resulting from recursive bisection.

• S ⊂ V : A vertex separator of G is a subset of vertices whose removal disconnects G into

two or more components. Formally, for a partition of V \ S into A and B, there are no

edges in E between A and B, i.e., (A×B) ∩ E = ∅.

• π: The final permutation array for reordering that combines the results from the two

stages, π1 and π2,i. While π1 is the permutation array for the coarse graph Gc and π2,i is

the permutation array for each patch Pi.

4.1.1 Initialization

We use the k-means partition to generate the patches for the input mesh. The pre-partitioning

process generates a set of patches P using a parallel K-means algorithm. Each patch Pi is a

subgraph including vertices edges and faces from the input mesh. Any two patches Pi and Pj

are disjoint, i.e., no vertices, edges, or faces are shared between them (RXMesh assign each

vertex, edge, and face to only one patch, but the edges and faces may be adjacent to vertices or

edges in other patches). The patches are then used to construct the coarse graph Gc where each
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Figure 4.1: A partition tree T for Gc using recursive bisecting k-means clustering.

node in Gc represents a patch and edges are added between nodes if there exists an edge in G

connecting vertices from these patches. The edge weight is the number of edges connecting the

two patches. The initialization stage is not counted as part of our algorithm, where the patches

are generated by the GPU mesh processing libraries like RXMesh for faster mesh processing.

We take advantage of this pre-partitioning result to generate the reordering for the entire mesh.

This process is not counted as part of our algorithm, hence the timing for the pre-partition is not

counted.

4.1.2 Stage 1: Reordering for the Coarse Graph of Patches

In this stage, we work with the coarse graph Gc, where each nodes represents a patch from the

k-means partition. We want to generate a multi-level bi-partitioning of Gc to obtain a global

reordering for the entire mesh similar to the original Nested Dissection algorithm [11]. For

a better explanation, we use partition tree T like Figure 4.1 to represent the multi-level bi-

partitioning of Gc. The union of nodes at the same level in the partition tree T forms Vc. The

root of the partition tree T represents the un-partitioned graph Gc, and the leaves represent the

partitions at the end of the multi-level bi-partitioning.

We explore two methods to achieve this:

1. Recursive Bisecting k-means: We build the partition tree T from root to leaves using
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Figure 4.2: A partition tree T for Gc with the Recursive Max-Matching approach.

bisecting k-means clustering, to form the partition tree like Figure 4.1. This method recursively

divides the graph into two clusters until we reach the desired number of partitions. Also for

each partition in Gc, we find the corresponding vertices in G that separate this partition; and we

add these vertices to the vertex separator; then we generate a reordering sequence for the paired

partitions in Gc.

2. Recursive Max-Matching approach: We build the partition tree T from leaves to root

using maximum matching. In the beginning, we treat every node as a partition. We try to

find adjacent pairs of partitions, which we call matched partitions, that could cover as many

partitions as possible in the graph. Or, in other words, we try to find the maximum independent

set of edges in the graph. When two partitions are matched, we merge them into one partition

in the higher level of the partition tree (the reverse of a partitioning process). For every pair of

matched partitions in Gc, we find the vertices in G that separate the matched partition in Gc,

and we add them to the vertex separator; then we generate a reordering sequence for the paired

partitions in Gc. We repeat this Max-Matching process until all the partitions are merged into
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one. Therefore, we could get a partition tree T like Figure 4.2. For each partition, we could get

a vertex separator S, and two partitions A and B, where we put the vertices in the separator at

the end of the two partitions in the reordering sequence.

The resulting partition tree T is then used to generate a permutation array π1 for the coarse

graph. For each bi-partition in the tree, we assign consecutive indices to vertices in each parti-

tion and higher indices to vertices in the separator set. We then combine the permutation arrays

from each recursion level to obtain the final permutation array π1.

We decide to use the recursive bisecting k-means approach to generate the reordering for

our CUDA implementation. The sequential max matching algorithm’s greedy nature makes

it ensure the maximal matching ratio, but it is hard to parallelize, the parallel max matching

algorithm is hard to achieve maximal matching on the GPU, requiring more iteration hence

more running time to build the partition tree. The recursive bisecting k-means approach is

more suitable for GPU parallel processing, is easy to implement and takes fewer iterations to

generate the partition tree. We discuss the implementation details in the further implementation

Section 4.2.

4.1.3 Stage 2: Reordering for Each Patch

In this stage, we focus on reordering the matrix within each patch. We explore two methods:

1. Nested Dissection (ND): We apply the original ND algorithm [11] to each patch inde-

pendently. The key advantage here is that each patch can fit into shared memory, allowing for

parallel processing of patches on the GPU. The algorithm is implemented on the shared mem-

ory of the GPU. We allocate the shared memory for each patch, where its size is calculated

based on the maximum number of vertices per patch among all patches. We then generate the

reordering for each patch independently in parallel.

2. Approximate Minimum Degree (AMD): As an alternative to ND, we could use AMD al-

gorithm [1] for within-patch reordering. AMD is a widely used algorithm for matrix reordering

that aims to reduce fill-in during the Cholesky factorization stage. We use a similar approach as

ND to generate the reordering for each patch independently in parallel on the shared memory

of the GPU.

This stage produces a set of local permutations {π2,i} for each patch Pi.
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We used the Nested Dissection Algorithm for our single patch reordering for now since it’s

more suitable for sparse matrices arising from geometric processing and finite element prob-

lems, and it’s easier to implement since we have already have a partition based reordering

working on coarse graph G′. We leave the Approximate Minimum Degree approach for future

optimization.

4.1.4 Stage 3: Combining Reordering Results

In the final stage, we combine the reordering results from stages 1 and 2 to obtain the final

reordering. This involves merging the coarse permutation π1 with the local permutations {π2,i}

to produce the final permutation array π. In Stage 1, π1 is used to reorder the patches in G,

it assigns all the vertices in a patch the same index in the reordering sequence excluding the

separator vertices. The separator vertices are assigned a special index based on the partition

tree T . Then in Stage 2, π2,i is used to reorder the vertices within each patch, it assigns the

vertices in a patch different indices in the reordering sequence π2,i for each patch Pi. For each

vertex, we simply add the index assigned to it from π1 and π2,i to get the final index in the

reordering sequence π.

The resulting π is used to reorder the entire original matrix, completing our two-stage re-

ordering process.

4.2 Implementation
Our implementation starts with modifying the RXMesh data structure to accommodate the lin-

ear solving process with cuSolver. Then, we prototype the algorithm in Matlab to verify its

correctness and quality. After getting a good fill-in reduction from our Matlab-implemented al-

gorithm compared with METIS, we then implemented the algorithm on the GPU using CUDA

and the RXMesh data structure.

4.2.1 Sparse Matrix and Dense Matrix Compatibility

We first modified the RXMesh data structure to generate the sparse matrix A from the pre-

partitioned mesh. We calculated the prefix sum of the patch sizes sorted by the patch ID to get

the unique index for each vertex in the sparse matrix A, then we filled the sparse matrix A in

the Compressed Sparse Row (CSR) format. We are able to construct the sparse matrix A as

19



the adjacency matrix of the input triangle mesh easily because RXMesh provides the adjacency

information of the mesh, which is the sparsity pattern of the matrix. We also added storage for

the dense matrix b and x for the linear solving process which are stored in the column-major

format. After implementing the sparse matrix construction, we verified the bottleneck of the

linear solving process with cuSolver and found the matrix reordering stage used the most time

for GPU solvers across various input triangle mesh sizes. Then we implemented the reordering

algorithm on the CPU using Matlab to verify the correctness and obtain initial results for a

number of non-zero elements (nnz) after Cholesky factorization. The initialization stage from

the algorithm is provided by RXMesh and we use the RXMesh data structure to implement

the following stages of the algorithm. RXMesh provides the pre-partitioned mesh with the K-

means algorithm. The mesh is partitioned into patches Pi. We take the patches as the input for

the reordering algorithm. We use the same notation as the algorithm design to describe the data

structure in the following sections.

4.2.2 Matlab Implementation

To make sure our algorithm is correct and the quality of the reordering is good, we implemented

our nested dissection approach with RXMesh pre-partitioning result on CPU using Matlab. We

began by implementing the Modified Generalized Nested Dissection Algorithm (MGND) [12],

which offers a straightforward implementation and provides valuable insights into the quality

of our reordering algorithm.

The core principle of MGND is to first obtain a k-way partitioning and then extract the ver-

tex separator. A vertex separator is a set of vertices whose removal disconnects the graph into

two or more components. These separator vertices are then placed at the end of the remaining

vertices, which are ordered by patches. As illustrated in Figure 4.3, our MGND implementation

demonstrates great fill-in reduction compared to the unordered case, by reducing the nnz by 2

to 5 times. The y-axis of the figure is plotted in log scale and the naive MGND reordering algo-

rithm label in the figure represents our naive implementation on Matlab. This is the foundation

of our GPU-based Nested Dissection algorithm because essentially, we are adding Stage 1 and

Stage 2 to the MGND algorithm to construct the final reordering.

Encouraged by these results, we proceeded to implement our full nested dissection algo-
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rithm in Matlab. We utilized the same RXMesh pre-partitioning result and employed a Recur-

sive Max-Matching approach for Stage 1, followed by Matlab’s built-in Nested Dissection im-

plementation (which uses METIS underneath) for Stage 2. We use the Recursive Max-Matching

approach because the greedy max-matching algorithm is easy to implement sequentially on

Matlab. And we use the Nested Dissection implementation because it’s one of Matlab’s built-in

methods.

For the Recursive Max-Matching in Stage 1, we adopted a greedy approach. Initially, we

sorted the edges in Gc based on the number of edges connecting two patches. We then iter-

atively selected the edge with the highest number of connections between unselected patches,

collapsing the selected edges into a single vertex. This process was repeated until all vertices

were merged into one. We then used the resulting partition tree to generate the permutation

array π1. For Stage 2, we directly get the permutation array π2,i for each patch Pi from METIS.

We then combine the results from both stages with prefix sum to assign the unique index for

each vertex to get the final permutation array π.

We implemented the reordering algorithm sequentially on the CPU to verify its correctness

and quality. As shown in Figure 4.3, our Matlab implementation achieves fill-in reduction

comparable to METIS. Our Matlab implementation produces 1.5 to 2 times more nnz compare

to METIS. This result validates the effectiveness of our approach.

4.2.3 CUDA Implementation

For the CUDA implementation of our reordering algorithm, we first directly work with the

meshes to generate the nested dissection reordering on the GPU and also get the reordering

array. Then we use the reordering array to reorder the sparse matrix A to make the following

linear solving process faster and more memory efficient. We use the RXMesh data structure to

implement the following stages of the algorithm.

4.2.3.1 Initialization

The initialization stage is provided by RXMesh, where the input mesh is pre-partitioned into

patches. The coarse graph Gc is constructed from the patches and stored in adjacency list format

on GPU global memory (VRAM). The sparse matrix A is generated from the mesh and stored

in CSR format. The dense matrices b and x are initialized for the linear solving process.
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4.2.3.2 Stage 1: Reordering for the Coarse Graph of Patches

We followed the same two-stage approach as in the Matlab implementation. We first imple-

mented the Recursive Max-Matching approach for Stage 1 on the GPU. To achieve this, we first

implemented the parallel algorithm to find the maximum independent set of edges to implement

the Max-Matching approach. We choose to concatenate the edge ID before the edge weight

using the bit shift operation to generate the hashing for the edges during the max-matching

algorithm. The details of parallel max matching are shown in Algorithm 1.

Algorithm 1 Parallel Max-Matching Algorithm
Input: Gc = (Vc, Ec): The coarse graph
Local: active e: The active edges array where active e[i] = 1 if the edge ei is active, and 0

otherwise
Output: matched e: The matching array of edges where matched e[i] = 1 if the edge ei is

matched, and 0 otherwise
1: Initialize∀ei ∈ Ec, active e[i] = 1
2: Initialize ∀ei ∈ Ec,matched e[i] = 0
3: while ∃ei ∈ Ec, active e[i] = 1 do
4: for doei ∈ Ec, activee[i] = 1 in parallel
5: For edge ei and all the edges ej adjacent to the two end vertices of ei, if hash(ei) is

greater than all the hash(ej), then matched e[i] = 1, active e[i] = 0
6: For all the ej , active e[j] = 0
7: end for
8: end while

After getting the matched edges, we generate the vertex separator S from the original graph

vertices in G that separates the matched partitions in Gc. We then generate the reordering

sequence for the paired partitions in Gc. Then we collapse the matched edges, which merge

the two partitions into one partition in the higher level of the partition tree. The parallel edge

collapsing process is shown as below in Algorithm 2. We repeat the matching and collapsing

process until all the partitions are merged into one. Therefore, we get a partition tree T like

Figure 4.2.
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Algorithm 2 Parallel Edge Collapsing Algorithm
Input: Gc = (Vc, Ec): The coarse graph
Input: matched e: The matching array of edges
Output: G′

c: The updated coarse graph after edge collapsing
1: Initialize G′

c = ∅
2: for ei ∈ Ec in parallel do
3: if matched e[i] = 1 then
4: Mark the partition with lower partition index of the two end partitions of ei as the

remaining partition. Mark the partition with higher partition index to be deleted.
5: end if
6: end for
7: — Global Synchronization —
8: for ei ∈ Ec in parallel do
9: if matched e[i] = 1 then

10: Mark edge ei to be deleted.
11: else
12: if the two end partitions of ei are to be deleted then
13: Mark edge ei to be deleted.
14: else if the two end partitions of ei are marked as the remaining partition then
15: Add edge ei to G′

c with atomic increment edge ID in G′
c.

16: else if One end partition of ei is marked as the remaining partition and the other end
partition is marked as to be deleted then

17: Mark edge ei to be deleted.
18: else if One end partition of ei is not marked and the other end partition is marked as

the remaining partition or not marked then
19: Add edge ei to G′

c with atomic increment edge ID in G′
c.

20: else if One end partition of ei is not marked and the other end partition is marked as to
be deleted then

21: Create a new edge in G′
c with the partition ID of the not-marked partition and the

partition ID of the remaining partition that the to-be deleted partition is going to be merged
into.

22: end if
23: end if
24: end for

As we tested the algorithm on the GPU, we found that the algorithm was not as efficient

as we expected. On the CPU running sequentially, the greedy algorithm guarantees the maxi-

mal matching in one iteration, the parallel matching algorithm on the GPU does not guarantee

maximal matching on one iteration. Therefore, we need to run high iteration in the matching

algorithm to get near-maximal matching. If we choose to proceed with sub-maximal matching,
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the partition tree would be deeper, causing more time consumption due to increased iteration or

increased recursion depth to build the partition tree. Other works suggest that a sophisticated

algorithm to select the edges to match is needed to get a maximal matching [5]. Since it takes

too many iterations to get a maximal matching, and too much effort to implement the edge

selection algorithm, we decided to use the Recursive Bisecting k-means approach for Stage 1.

For bisecting k-means, we recursively divide the graph into two clusters until we reach the

desired number of partitions or recursion depth. The partition tree T is constructed from root

to leaves like Figure 4.1. We then generate the permutation array π1 for the coarse graph Gc

using the partition tree T . For each partition step, identify the vertices from G that separate the

partitions in Gc and generate the reordering sequence. Each partition process generates a vertex

separator S from G and two partitions A and B from the coarse graph Gc. We put the vertices in

the separator at the end of the two partitions in the reordering sequence. Combining the results

from each recursion level, we obtain the final permutation array π1.

The detail of the bisecting k-means algorithm is shown in Algorithm 3. Although we run the

k-means algorithm with k seeds, the coundary of the existing partition is not changed. For each

existing partition, we only keep the two seeds for vertex assignment within the same partition.

In this way, we could run the bisecting k-means algorithm in parallel with only launching one

kernel on GPU.

For each bisecting k-means process, we generate the reordering sequence. Similar to the

max-matching approach, we generate the vertex separator S from G that separates the two par-

titions in Gc. We then generate the reordering sequence which puts the vertices in the separator

S at the end of the vertices in the two partitions in the reordering sequence. We repeat the bi-

secting k-means process until we reach the desired number of partitions or recursion depth. We

then combine the results from each recursion level to obtain the final permutation array π1. We

took this approach for the evaluation of the algorithm on the GPU in the end because it is more

efficient in constructing a partition tree T and generating the reordering sequence for the coarse

graph Gc.
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Algorithm 3 Bisecting k-means Algorithm
Input: Gc = (Vc, Ec): The coarse graph
Input: num partitions: The number of partitions
Input: patch partition: The partition array for the coarse graph Gc. patch partition[i]

indicates the partition index for vertex vi in Gc.
Input: num partitions′: The number of partitions after bisecting k-means
Output: patch partition′: The partition array for the coarse graph Gc after bisecting k-

means. Initialized as INV ALID for all vertices.
1: Initialize num seeds = 2× num partitions
2: Initialize seeds = ∅
3: Randomly select 2 seeds from each partition in Gc and add them to seeds.
4: Set seed partition index in patch partition′ for each seed in seeds.
5: Initialize kmeans iter = 10
6: for do i = 1 to kmeans iter
7: while ∃vi, patch partition′[i] = INV ALID do
8: for dovi ∈ Vc in parallel
9: Assign vi to the nearest seed in seeds. The distance is measured by the shortest

number of hops between vi and the seed.
10: patch partition′[i] = patch partition[seed index]
11: end for
12: end while
13: Set all vertices as active.
14: while do there are still more than num seeds vertices that is active
15: for dovi ∈ Vc in parallel
16: Deactivate the vertex vi if it is adjacent to the vertices that are assigned to differ-

ent seeds within the same partition or is adjacent to deactivated vertices within the same
partition.

17: The last two active vertices that are assigned to different seeds and in the same
partition are selected as new seeds.

18: end for
19: end while
20: end for
21: for vi ∈ Vc in parallel do
22: Assign vi to the nearest seed in seeds. The distance is measured by the shortest number

of hops between vi and the seed.
23: patch partition′[i] = patch partition[seed index]
24: end for
25: num partitions′ = num seeds.
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4.2.3.3 Stage 2: Reordering for Each Patch

For Stage 2, we implemented a simple Nested Dissection algorithm on the GPU as the original

Nested Dissection algorithm [11]. We implemented the algorithm for reordering each patch.

Because the patches are stored in the shared memory of the GPU, we also implemented the

nested dissection algorithm with cooperative groups working with the shared memory. The

vertices in the patch that are marked as the vertex separator S in Stage 1 are excluded from the

patch at this stage. The algorithm details are shown in Algorithm 4. The patch size of RXMesh

is set to less than or equal to 512 vertices so that the patch can fit into the shared memory of the

GPU. We generate the reordering sequence for each patch in parallel independently. The nested

dissection algorithm first generates a coarse graph with recursive coarsening for the patch, then

generates a multi-level bi-partitioning of the coarse graph, and finally projects the multi-level

bi-partitioning to G. At last, we generate the reordering sequence for the patch. Since a single

patch is already small, we recursively coarsen the graph 3 times until it is small enough for

the multi-level bi-partitioning. We set the multi-level bi-partitioning depth to 1, generating two

partitions for the patch. We will experiment more on the coarsening recursion depth and the

multi-level bi-partitioning depth in the future as we are working on some programming bugs

with the current implementation.

Algorithm 4 Shared Memory Nested Dissection Algorithm
Input: Pi: The patch Pi = (VPi

, EPi
) that already exists on the shared memory of the GPU

Output: π2,i: The permutation array for the patch Pi

1: Initialize coarse level = 3
2: Initialize partition level = 1
3: Initialize P 0

i = Pi

4: for do i = 1 to coarse level
5: Coarsen the graph P n−1

i with max matching algorithm to get the coarsen graph P n+1
i

6: end for
7: Partition the coarsened graph P coarse level

i with bisecting k-means algorithm for 1 level to
get two partitions. (Call algorithm 3 once)

8: for do i = coarse level to 0
9: Project the partition result of the coarsen graph P n

i to P n−1
i .

10: end for
11: Generate the reordering sequence π2,i for the patch Pi with the partition result on P 0

i .

We have not implemented the Approximate Minimum Degree (AMD) algorithm on the GPU
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yet. We will implement the AMD algorithm on the GPU in the future to compare the reordering

quality and execution time with the Nested Dissection algorithm.

4.2.3.4 Stage 3: Combine reordering results

In the final stage, we combine the reordering results from stages 1 and 2 to obtain the final

reordering. We first get the reordering array for the coarse graph Gc from Stage 1, which is the

patch reordering array. Based on the Stage 1 result, we get a reordering π1 to reorder patches

and vertex separators that separate the patches. The vertices that are not vertex separators are

the vertices in the patches that are not reordered yet, and they are assigned random consecutive

reordering indices within the patch at this stage. Then we get the reordering array π2,i for each

patch from Stage 2. This reordering array reorders the vertices in the patch that are not vertex

separators from Stage 1. We then combine the reordering array π1 and π2,i to get the final

reordering array π.

4.2.4 Summary of Implementation

We evaluate our implementation with the RXMesh data structure and the CUDA implementa-

tion in the stages listed above. The initialization stage is provided by RXMesh, so the timing

and quality of the pre-partitioning result are not counted in the evaluation. We use the recursive

bisecting k-means approach for Stage 1 and the shared memory nested dissection algorithm for

Stage 2 for our final set up for tests. We evaluate the quality of the reordering and the execution

time of the algorithm on the GPU for our implementation.
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Chapter 5

Evaluation

We evaluate our GPU-based Nested Dissection algorithm on a variety of input meshes and com-

pare it with METIS. METIS is a CPU-based widely used graph partitioning library that provides

reordering functionalities for linear solving tasks. We use RXMesh for the initialization of the

input triangle mesh including the pre-partitioning of the mesh. The time for initialization of the

input triangle mesh is not included in the evaluation. The CUDA cuSolver library is used for

the Cholesky factorization and solving tasks. We evaluate the quality of the reordering by mea-

suring the number of fill-in ratio and the time/memory usage of the Cholesky factorization from

cuSolver. We also evaluate the runtime performance of our algorithm compared to METIS. We

first present the experimental setup, followed by the evaluation results.

Before diving into the results, it is essential to discuss the fundamental tradeoff that our

GPU-based Nested Dissection algorithm introduces, as this is a key outcome of the work.

Specifically, the tradeoff lies between reordering time and the memory consumption required

for Cholesky factorization. Our algorithm is designed to reduce reordering time, offering a no-

table speedup over the CPU-based METIS implementation. However, this comes at the cost

of increasing the number of non-zero elements (nnz) during the Cholesky factorization, which

in turn increases memory usage and slows down the factorization process. This tradeoff is

particularly important because while the faster reordering is beneficial, the increased memory

consumption and longer factorization time limit the overall end-to-end performance gains. Un-

derstanding this balance is critical before examining the detailed performance metrics, as it

frames the limitations and potential optimizations for future work.
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5.1 Experimental Setup
We tested our GPU-based Nested Dissection algorithm on a variety of input meshes from Com-

mon 3D Test Models [9] and Thingi10K [24]. We compared our results with METIS [11]

to evaluate the quality of the reordering and the running time of the algorithm. It worth not-

ing that the METIS implementation that we are testing against is from the cuSolver wrapper

of METIS [18]. It uses 64-bit metis-5.1.0 and called the METIS NodeND function, which is

implemented on CPU side.

We run all experiments on a machine with an AMD EPYC 7402 24–Core Processor and

an NVIDIA Tesla V100–SXM2–32GB GPU. The machine runs Ubuntu 22.04.2 LTS, Slurm

22.05.8 and CUDA Version: 12.4.

We measure the runtime of METIS using the std::chrono library in C++. The timer is

wrapped around the cuSolver function cusolverSpXcsrmetisndHost calling METIS NodeND.

We measure the runtime of our GPU-based Nested Dissection algorithm using cudaEvent

from CUDA. The timer is wrapped around the main body of the algorithm excluding the initial

memory allocation and the final memory deallocation.

The sparse matrix is stored in the Compressed Sparse Row (CSR) format, and its sparsity

pattern is generated by adding the identity matrix to the adjacency matrix of the input triangle

mesh. The numerical values in the sparse matrix and the right-hand side vector are generated

with the Mean Curvature Flow (MCF) calculation [2]. The matrix analysis, memory allocation,

Cholesky factorization, and solving are done with the cuSolver library on GPU. The matrix

reordering is done with METIS on CPU and our GPU-based Nested Dissection algorithm on

GPU. With our GPU-based Nested Dissection, the whole linear solving process could be done

on GPU.

5.2 Evaluation Results
We first evaluate the runtime of our GPU-based Nested Dissection algorithm compared to CPU-

based METIS. Note that we are using a GPU based linear solving pipeline, hence the prepar-

tition time is not included in the evaluation and both our method and METIS are tested with

the prepartitioned mesh. From Figure 5.1, we could see that our reorder method is faster than
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Figure 5.1: The Speedup of our method compare to METIS for reordering stage. The original
running time of our method in milliseconds is also shown on the top of the bars. The speedup
indicates the ratio of the METIS running time to our method running time. The speedup is
greater than 1 if our method is faster than METIS. Our method is overall faster than METIS
with a geometric mean of 6.34x

METIS for all tested inputs by an average of 6.23 times. The largest speedup is 16.1 times for

the BrainMid.obj input. We expect the speedup to be larger for larger graphs as the reordering

time is more significant for larger graphs.

The we look at the quality of the reordering by measuring the fill-in ratio after Cholesky

factorization. The fill-in ratio is calculated as the number of non-zero elements in the lower

triangular matrix after Cholesky factorization divided by the number of non-zero elements in

the original matrix. Because the CUDA cuSolver library’s wrapper does not provide a direct

way to get the number of non-zero elements in the original matrix, we use the METIS NodeND
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function directly from including the METIS library to get the number of non-zero elements in

the original matrix and the matrix after factorization. Note that for consistency, we only use

METIS NodeND from METIS library for the fill-in ratio calculation. All other experiments are

done with the METIS wrapper from cuSolver.

The result is shown in Figure 5.2. Our algorithm generates more nnz than METIS by an

average of 5.14 times. The largest result is 7.96 times more nnz for the BrainMid.obj input. The

result indicates that our algorithm generates more fill-in ratio than METIS, which is expected as

our focus is to reduce the reordering time, while getting an increase in nnz. This also indicates

that the reordering quality is the current bottleneck of our algorithm. The main goal for our

future work is to reduce the fill-in ratio with a better partitioning strategy.

Since our algorithm generates more nnz than METIS, the factorization time and memory

usage are expected to be longer and larger for the Cholesky based linear solving process, re-

spectively. We evaluate the runtime performance of the sum of the matrix analysis, memory

allocation, Cholesky factorization, and solving stages after reordering and the total runtime

performance of our GPU-based Nested Dissection algorithm compared to METIS.

Figure 5.3, the run time of the matrix analysis, memory allocation, Cholesky factorization,

and solving stages with our reorder method is slower than METIS for all tested inputs by an

average of 0.22 times. The largest slowdown is 0.03 times for the BrainMid.obj input. The

result shows that our GPU-based Nested Dissection algorithm is slower than METIS in terms

of Cholesky factorization time. The gap is larger for larger graphs as the factorization time is

greatly influenced by the fill-in ratio. Our experiments have shown that we are trying to trade

off the reordering time with the fill-in ratio, which leads to a longer factorization time.

Then we look at the total runtime performance of our GPU-based Nested Dissection algo-

rithm compared to METIS to figure out whether the trade-off is worth it. The result is shown

in Figure 5.4. The total runtime is the sum of reordering time and Cholesky factorization time.

Our algorithm is slower than METIS for all tested inputs by an average of 0.61 times. The

largest slowdown is 0.10 times for the BrainMid.obj input. Although our method is faster in

terms of reordering time, it does not make up for the longer factorization time. The larger fill-in

ratio leads to longer factorization time and larger memory usage, which results in a longer total
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Figure 5.3: Speedup of our method compared to METIS for the factorization time. The fac-
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Cholesky factorization, and solving stages. The time for reorder is not counted in this figure.
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than 1 if our method is slower than METIS. Our method is slower than METIS for all tested
inputs by an average of 0.21 times.
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Figure 5.4: Speedup of our method compared to METIS for the total runtime including reorder
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Figure 5.5: Showing the memory usage for Cholesky factorization after using our method and
METIS. The memory usage is directly from cuSolver API and is measured during the memory
allocation stage. The memory usage is normalized by the memory usage of METIS. The actual
memory usage in megabytes with our method is shown on the top of the bars. The memory
usage of our method is larger than METIS for all tested inputs by an average of 4.99 times.

runtime and the trade-off is not worth it based on the current implementation.

We extract the memory usage of the Cholesky factorization during the memory allocation

stage to evaluate the memory consumption of our GPU-based Nested Dissection algorithm com-

pared to METIS. The result aligns with the fill-in ratio comparison. Our algorithm consumes

more memory than METIS for all tested inputs by an average of 5.17 times. The largest result is

12.24 times more memory usage for the BrainMid.obj input. The result is shown in Figure 5.5.

The larger fill-in ratio leads to larger memory usage, which results in a longer total runtime.

The trade-off between reordering time and memory consumption for our current implemen-
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Figure 5.6: Show the tradeoff between reordering time and the memory consumption for our
method and METIS for various input meshes. The memory consumption reflects the fill-in ratio.
Essentially this figure is showing the trade-off between reordering time and the fill-in ratio.

tation is shown in Figure 5.6. Our result generally sits on the lower right side of the METIS

result, which indicates that our algorithm is faster in terms of reordering time but consumes

more memory. The result shows that we are trying to trade off the reordering time with the

fill-in ratio, which leads to a longer factorization time and larger memory usage. The main goal

for our future work is to reduce the fill-in ratio with a better partitioning strategy.

To better evaluate our current implementation, we test the memory usage of the Cholesky

factorization with different Stage 1 partition levels for the BrainMid.obj input. The result is

shown in Figure 5.7. We see that as the partition level increases, the memory usage decreases,

while the reordering time increases. This happens because the as the partition level increases,

we have a finer partitioning, hence finer reordering, which leads to a smaller fill-in ratio. How-

ever, as the partition level increases, the reordering time increases due to more partitioning.

From the Figure 5.7, the decrease in memory usage slows down after the partition level reaches

4, while the increase in running time is consistent. This is because the partition from the current

implementation is not balanced, leading to more edge cuts for compare to a balanced partition
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Figure 5.7: Show the memory usage of the Cholesky factorization and reorder time with dif-
ferent Stage 1 partition level for the BrainMid.obj input. The memory usage is directly from
cuSolver API and is measured during the memory allocation stage.

for the same partition level in Stage 1, hence more nnz. This indicates that the main goal for our

future work is to develop a more balanced partitioning strategy.

Table 5.1 shows the runtime for different stages of the linear solving process with our re-

ordering and with METIS for various input meshes. The reorder time is either our GPU-based

Nested Dissection runtime (Our Reorder) or CPU METIS runtime (METIS). The memory copy

time (MC) is the time for copying the reordered matrix to the GPU. The analyze pattern time

(AP) is the time for analyzing the matrix pattern. The post analyze alloc time (PAA) is the time

for allocating memory for the Cholesky factorization on GPU. The factorize time (Factoriza-

tion) is the time for the Cholesky factorization on GPU. The total time (Total) is the sum of all

stages. The result is the raw data of the figures from Figure 5.1, Figure 5.3, and Figure 5.4.
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Table 5.1: Comparison of runtime for different stages of the linear solving process with our
reorder and with METIS for various input meshes. The runtime is in milliseconds.

Input #V Our Reorder METIS MC AP PAA Factorization Total

alligator 3208 4.70 / 0.12 10.16 0.74 4.74 20.46

/ 12.07 0.10 5.99 0.88 1.40 20.44

fandisk 6475 5.39 / 0.17 31.92 0.62 18.69 56.79

/ 30.14 0.16 15.13 0.71 3.93 50.07

dragon 10000 7.74 / 0.23 39.48 0.79 20.85 69.09

/ 50.24 0.22 14.81 0.74 3.57 69.58

beetle/alt 19887 9.18 / 0.41 74.31 0.93 43.11 127.94

/ 108.08 0.44 36.39 0.65 7.99 153.55

horse 48485 14.38 / 0.87 464.61 1.41 397.64 878.91

/ 268.50 0.92 96.98 2.16 21.26 389.82

happy 49251 15.31 / 0.90 361.21 1.19 352.37 730.98

/ 277.81 0.85 83.47 1.12 19.52 382.77

armadillo 49990 15.24 / 0.80 355.04 0.70 291.94 663.72

/ 308.38 0.94 88.71 0.98 15.79 414.80

max-planck 50077 14.90 / 0.89 417.07 0.90 463.68 897.44

/ 315.51 0.89 90.06 0.80 20.71 427.97

bimba 112455 20.40 / 1.82 992.43 1.48 1403.78 2419.91

/ 705.01 2.02 216.29 0.92 47.27 971.51

igea 134345 24.87 / 2.30 1525.19 1.38 2602.80 4156.54

/ 847.49 2.07 288.94 1.16 91.43 1231.09

BrainMid 396451 48.43 / 6.75 5773.32 1.50 25773.36 31603.36

/ 2794.41 6.77 955.83 1.81 411.78 4170.60
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Chapter 6

Conclusion

This thesis presented the first GPU-based Nested Dissection algorithm for matrix reordering

in Cholesky-based linear solvers, specifically for triangle mesh inputs. Our work addresses a

critical bottleneck in GPU-accelerated linear solving processes, namely the matrix reordering

stage, which has traditionally relied on CPU-based implementations. The key contributions of

our work include:

1. The first GPU-accelerated Nested Dissection algorithm that leverages the pre-partitioning

strategy of RXMesh to achieve high levels of parallelism.

2. A two-stage reordering approach that efficiently handles both coarse-grained (patch-level)

and fine-grained (within-patch) reordering.

3. An average of 6.23 times, and up to 16.1 times faster reordering time compared to state-

of-the-art CPU-based reordering methods like METIS.

4. Insights on the trade-off between reordering time and memory consumption, highlighting

the challenges and opportunities for further optimization.

While our current implementation shows promising results in terms of reordering speed,

there is significant room for improvement, particularly in reducing the fill-in ratio to more

closely match that of METIS. Our results indicate that our method produces nnz ratios that

are on average 5.14 times higher than METIS, leading to longer Cholesky factorization times
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and larger memory footprints. This increase in fill-in ratio results in our method being slower

than METIS by an average of 0.61 times in total runtime performance, despite the faster re-

ordering time. Future work will focus on refining our partitioning strategy to achieve better

fill-in reduction without sacrificing the significant speed advantages in reordering. This will

involve exploring hybrid approaches or developing new heuristics specifically tailored for GPU

execution.

6.1 Future Work
1. Fill-in Reduction Optimization: Given the current trade-off between reordering speed

and fill-in reduction, future work will primarily focus on refining our algorithm to achieve

better fill-in reduction without sacrificing the significant speed advantages in reordering.

After investigating the detailed parameters of our GPU implementation, we have identi-

fied that the large fill-in ratio compared to METIS is primarily due to the imbalance of the

recursive bisecting K-means partitioning strategy. We will explore the possibility of us-

ing a more balanced partitioning strategy to reduce the fill-in ratio without sacrificing the

speed advantage. The imbalance of the bisection increases the number of edges between

the two subgraphs, which leads to a larger fill-in ratio.

2. Partition Level Optimization: Our experiments with different partition levels for the

BrainMid.obj input showed that increasing the partition level can decrease memory usage

at the cost of increased reordering time. Future work will involve finding the optimal

partition level that balances memory usage and reordering time across various input sizes.

3. Efficiency Analysis: We will perform a detailed analysis of our implementation’s ef-

ficiency relative to the theoretical peak performance of GPU architectures. This will

include roof-line analysis and performance profiling. By understanding where our imple-

mentation stands in relation to the GPU’s theoretical capabilities, we can identify areas

for further optimization and potentially improve overall runtime performance.

By addressing these areas, we aim to develop a GPU-based reordering algorithm that not

only offers faster reordering times but also competes with METIS in terms of fill-in reduction
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and overall linear solving performance.
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