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Abstract

A previous experiment tested subjects’ new/old judgments
of previously-studied faces, distractors, and morphs between
pairs of studied parents. We examine the extent to which mod-
els based on principal component analysis (eigenfaces) can
predict human recognition of studied faces and false alarms to
the distractors and morphs. We also compare eigenface models
to the predictions of previous models based on the positions of
faces in a multidimensional “face space” derived from a mul-
tidimensional scaling (MDS) of human similarity ratings. We
find that the error in reconstructing a test face from its posi-
tion in an “eigenface space” provides a good overall prediction
of human familiarity ratings. However, the model has diffi-
culty accounting for the fact that humans false alarm to morphs
with similar parents more frequently than they false alarm to
morphs with dissimilar parents. We ascribe this to the limita-
tions of the simple reconstruction error-based model. We then
outline preliminary work to improve the fine-grained fit within
the eigenface-based modeling framework, and discuss the re-
sults” implications for exemplar- and face space-based models
of face processing.

Introduction

The errors that subjects make during face recognition tasks
may hold the key to improving our understanding of the rep-
resentations and mechanisms underlying face processing and
visual perception. One effective way of evoking such errors
is testing subjects’ recognition of studied faces that have been
combined in some way (e.g. Solso and McCarthy, 1981;
Reinitz, Lammers, and Cochran 1992). In a recent series
of behavioral and modeling experiments, Busey and Tunni-
cliff (submitted) have examined the effects of facial blending
and distinctiveness on subjects’ tendencies to make recogni-
tion errors.

Their experiments used facial images of bald males and
morphs between pairs of these images (see Figure 1) as stim-
uli. In an earlier study, Busey (in press) had subjects rate the
similarity of all pairs in a large set of faces and morphs, then
performed a multidimensional scaling (MDS) of these simi-
larity ratings to create a 6-dimensional “face space” (Valen-
tine and Endo, 1992). Busey interpreted the resulting dimen-
sions as representing 1) age, 2) race, 3) facial adiposity, 4) ex-
tent of facial hair, 5) head aspect ratio, and 6) hair color (shad-
ing). He also found that in general, a carefully-created morph
lies near the average of its two “parents” in MDS space, with
a systematic bias toward youth (dimension 1) and adiposity
(dimension 3).
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In “Experiment 3" (Busey and Tunnicliff, submitted), 179
subjects studied 36 target faces, 8 similar pairs of parent faces
(16 images), and 8 dissimilar pairs of parent faces (16 im-
ages), for a total of 68 studied images.! All facial images
were of bald men, and none of the parents used for morphing
had facial hair. The subjects were asked to study the images
and remember them for a recognition test. In the test phase
of the experiment, the 16 morphs between parent pairs and 20
new distractors were added to the pool of stimuli. At test time,
each subject was presented with 8 of the morphs, one parent
of each of the unseen morphs (8 parents), the 36 targets, and
the 20 distractors. They were asked to make old/new judg-
ments of each of the test stimuli. The results of this exper-
iment were extremely interesting. For many of the morphs,
subjects responded *“‘old” to the unstudied morph more often
than to its studied parents. On a finer scale, subjects were
more likely to respond “old” to the similar morphs than to
those morphs’ parents, and less likely to respond “old” to the
dissimilar morphs than to those morphs’ parents (see “Exper-
iment 3 Data” in Table 1). One theoretical explanation is that
the similar parents are so similar to their *‘child” morph that
memories of both contribute toward an “old” (false alarm) re-
sponse to the morph.

Busey and Tunnicliff (submitted) used the 6-dimensional
MDS scores for each of the stimuli in a series of models tuned
to predict the probability of the humans responding “old” to
each image (hereafter referred to as P(old)). They applied
two alternative versions of GCM, the Generalized Context
Model (Nosofsky, 1986), and “SimSample,” a model based
on the assumption that a test face results in sampling a simi-
lar face from memory and a response of “old” if the similar-
ity between the probe and sample are above some threshold.
The best-fitting GCM models are surprisingly poor predic-
tors of the data, but the SimSample models perform much
better. To achieve a strong quantitative fit to the mean human
responses for each of the six stimulus categories (targets, dis-
tractors, similar parents, similar morphs, dissimilar parents,
and dissimilar morphs), however, Busey and Tunnicliff had to
introduce a prototype mechanism into the SimSample frame-
work. The prototypes, situated at the locations of the morphs
in MDS space and weighted by the similarity of their parents,
are assumed to be the result of a similarity-dependent blend-

"The similarity of each parent pair was determined by human
subjects in a pilot study.
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Figure 1: Three normalized morphs from the database.

ing or abstraction mechanism.

In this paper, we apply an alternative flavor of model to the
Experiment 3 data, based on the quality with which a test im-
age can be reconstructed after it is “compressed” by project-
ing it onto a subset of the principal component eigenvectors
(eigenfaces) of the studied face set. Eigenfaces, which are the
orthogonal axes along which the study data vary the most, can
be computed with a simple procedure, principal components
analysis (PCA). Models of this type assume that rather than
storing the studied exemplars explicitly, subjects construct a
low-dimensional manifold containing (with some error) the
representations of the studied stimuli. The probability a sub-
ject responds *‘new” to a test stimulus, then, is a monotonic
function of the model’s reconstruction error (distance to the
manifold). In this view, reconstruction error models the “nov-
elty” of a test stimulus with respect to the study set, and its
inverse, reconstruction quality, models the “familiarity” of a
test stimulus with respect to the study set (Kohonen et al.,
1977; O’Toole, Millward, and Anderson, 1988). Metcalfe,
Cottrell, and Mencl (1992) have shown that a nearly identical
mechanism (reconstruction error in the autoencoding back-
propagation network, which essentially performs PCA on the
study set) is a good candidate model for the explicit memory
task of cued word recall. Past successes like these motivated
us to determine the PCA reconstruction error model’s abil-
ity to account for the subjects’ new/old judgments in Experi-
ment 3.2

An eigenface-based familiarity model is an appealing al-
ternative to a model based on facial positions in MDS face
space for several reasons:

e “Unsupervised” representations: Eigenface-based repre-
sentations are not dependent on human judgments. For
MDS face space approaches, all the stimuli must be si-
multaneously subjected to an experiment with human ob-
servers to determine where the new faces lie in face space.
Adding new faces to the study set in a PCA model simply
requires a new PC analysis; adding new faces to the test set
requires no effort.

Underlying mechanisms: MDS face space exemplar tech-
niques only model the mechanisms underlying face recog-
nition indirectly. But PCA models are processing models;

2Since the term “‘recognition” is overloaded with easily confused
meanings, we will use the term “familiarity” (with respect to the
study set) to refer to the probability a subject responds “old” to a test
stimulus. We do not make any assumptions as to whether a subject
“recognizes” or “identifies” individuals at test time.
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they actually implement the process of obtaining a famil-
iarity rating directly from the stimulus. First, several neural
network architectures using Hebbian learning are capable
of learning the principal components of a training set (Dia-
mantaras and Kung, 1996). Second, many of the cells in
monkey temporal cortex are sensitive to various aspects of
face stimuli (Perrett et al., 1992). Thus the PCA model is
a biologically plausible candidate abstraction of the mech-
anisms involved in familiarity judgments.

Free parameters: PCA models have few free parameters,
and these parameters can often be set in a principled man-
ner independent of the specific effects being sought. For
instance, we can fit the range of eigenfaces used for pro-
Jection to the human responses for the studied stimuli only,
and examine how the model generalizes to the novel test
data (a one-parameter fit).

We found that a simple model based on PCA reconstruc-
tion error provides a fairly good fit to the overall P(old) rat-
ings from Experiment 3, effectively separating targets from
distractors. The model often exhibits a “morph familiarity in-
version effect,” in which a morph is judged as more familiar
than one or both of its parents. However, it cannot account
for the fine structure of the human familiarity ratings; in par-
ticular, it predicts more frequent false alarms to the morphs
with dissimilar parents than to the morphs with similar par-
ents, just the opposite of the pattern in the human data. In
the discussion section, we outline the simple reconstruction
error model’s fundamental limitations in accounting for the
similar/dissimilar parent effect and outline our preliminary
attempts to improve on our models’ fit within the eigenface
modeling framework. We then discuss our results’ implica-
tions for face space- and exemplar-based models of face pro-
cessing.

Experimental Methods

This section details the methods we applied to modeling the
human data from Busey and Tunnicliff (submitted) Experi-
ment 3, We normalized the face images from the experiment
to make them amenable to computational analysis and then
performed a principal components analysis on the set of im-
ages the subjects studied. We then interpreted the ability of
the model to reconstruct a studied or novel image as a mea-
sure of the image’s familiarity.



Figure 2: First five eigenfaces of the studied image set.

Face Data

Figure 1 shows three of the morphs between “parent” pairs
in the database (the original images are copyrighted and can-
not be published). The original images were 104 digitized
560x662 grayscale images of bald men, with consistent light-
ing and background, and fairly consistent position. The sub-
jects varied in race and facial hair.

Normalization

We used eye templates to automatically locate the left and
right eyes of each face image and then translated, rotated,
scaled, and cropped all images so that the individuals’ eye
positions were in the same location. We did not, however,
normalize the position of the mouth in each image. Since the
ratio of a head’s width to its height was a significant factor
in rating the similarity between two of these stimuli (Busey,
in press), we instead scaled the images by the same amount
in both the horizontal and vertical directions. The images
were scaled to 115x143 pixels to make the principal compo-
nent analysis tractable on a workstation. The morph images
in Figure 1 are examples of the result of this process.

Principal Components Analysis

Principal components analysis (PCA) is a technique that ex-
tracts the orthogonal axes along which a data set varies the
most by computing the eigenvectors and eigenvalues of the
data’s covariance matrix. When applied to facial images,
these eigenvectors are often called “eigenfaces.” Using Turk
and Pentland’s (1991) efficient technique, we computed the
eigenvectors of the covariance matrix of the 68 images used
for study in Busey and Tunnicliff’s Experiment 3. Figure 2
shows the five most significant eigenfaces for this dataset.

PCA Reconstruction Error as Novelty

To model the old/new judgments in the testing phase of Ex-
periment 3, we projected the 68 studied images, the 18 dis-
tractors, and the 16 morphs between studied faces from image
space onto the subspace defined by the first k eigenfaces of
the study image set:

p; = Ax; (D
where x; is the i¢-th input image represented as a 16,445-
element column vector and A is a matrix formed from the
k unit-length row eigenvectors with the highest eigenvalues.
We then computed each image’s reconstruction by projecting
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pi back to image space:
X = ATP:‘
and then computed its reconstruction error:
err; = ||x, — %]

We treated k as a free parameter, and for each of its possi-
ble values from 1 to 68, we computed the err; measure for all
104 test images used in Experiment 3. As k approaches 68,
the reconstruction error for the studied images approaches 0.
But with intermediate values of k, we can interpret the re-
construction error err; as a measure of novelty, the inverse
of familiarity (Kohonen et al., 1977; Metcalfe et al., 1992,
Pomerleau, 1993).

Generally speaking, an unstudied image x; that is not sim-
ilar to the studied images will have a large err;. On the other
hand, an unstudied image that is similar to study images will
have a lower reconstruction error. Thus we expect the recon-
struction quality to provide a good model of the probability
a subject will respond “old” to a previously-studied face or
false alarm to an unstudied face that is similar to some of the
studied faces. By the same token, however, the reconstruction
error model may not account as well for high hit rates for the
most distinctive studied faces. The next section shows how
well this simple k-PC model can account for the Experiment
3 data.

Results

Reconstruction error

As expected, average reconstruction error for the test images
decreases with the number of eigenfaces used in the projec-
tion. For the studied images, reconstruction error decreases
to 0 when 68 eigenfaces are used. For the unstudied images,
the average reconstruction error decreases much more slowly:
with 68 eigenfaces, it is approximately 60% of the error ob-
tained using one eigenface.

We chose the value of free parameter k, the number of
eigenvectors for projection, as the value for which the PCA
model’s rankings of the familiarity of the studied images (as
measured by the ranking induced by negative err;) best fit
the human subjects’ ranking of the familiarity of the studied
images. Figure 3 illustrates how well the reconstruction error
ranking correlates with the human subjects’ familiarity rank-
ing of the studied images, using Kendall's 7 (a) (Kendall and
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Figure 3: Study set rank correlation between model’s pre-
dicted familiarity rankings and the human familiarity rank-
ings, as a function of the number of eigenfaces used for pro-
jection.

Gibbons, 1990) as the rank correlation measure. The best
correlation, with 7 (a) = 0.177, occurred at k = 23.

We then determined how well reconstruction error in the
23 PC model predicts the probability of a human subject re-
sponding “old” to a test face in Busey and Tunnicliff’s Ex-
periment 3. The results for the individual test images are
presented in Figure 4. We transformed the reconstruction er-
ror into a prediction of the human subjects’ probability of re-
sponding “old” using a function of the form

pred; = ¢ (€™ ™ — ¢3),

with parameters c;, ¢z, and c3 fit to minimize the root mean
squared error (RMSE) over all of the test images. (This func-
tion simply provided a better mapping from reconstruction
error to familiarity than did a linear function.) The resulting
RMSE was 0.169 and r? = 0.315. This fit is a large improve-
ment over Busey and Tunnicliff’s fit of the Generalized Con-
text Model (GCM), which had a RMSE of 0.271. However,
the reconstruction error model does not outperform either of
their SimSample models, which had RMSE 0.148 and 0.141.
At the same time, though, it is a surprisingly good fit consid-
ering the low number of free parameters and the fact that it
is based directly on the image pixel data, without relying on
human similarity ratings.

Although we did find that the model often predicted a
higher P(old) for a morph than one or both of its parents, un-
fortunately, it does not capture the most interesting aspect of
the human familiarity ratings: that human subjects tend to
false alarm to morphs with similar parents, but not to morphs
with dissimilar parents. In fact, on average, the model pre-
dicts the opposite. Table 1 compares the 23-PC model with
the human ratings and Busey and Tunnicliff’s SimSample fits.
The next few subsections describe our attempts to build better
models based on PCA techniques.
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Higher dimensional reconstruction error

We have made several preliminary attempts to improve the
reconstruction-based model’s fit, with limited success. We
found that projection and reconstruction using an interme-
diate range of principal components (e.g. projection and re-
construction using PCs 3-23) can improve the model’s fit to
the morph and parent data. One might expect this based on
O'Toole, Deffenbacher, Valentin, and Abdi’s (1994) obser-
vation that the most significant eigenfaces typically encode
intergroup differences such as race and gender rather than
subtle within-group differences that make faces distinctive or
typical. However, at these parameter settings, the model still
predicts the most false alarms to the morphs with dissimilar
parents, rather than those with similar parents.

Nonlinear autoencoder networks

We have also attempted to improve our model fitting by ex-
perimenting with nonlinear autoencoding neural networks.
It is well-known that in an autoencoding backpropagation
network with a k-node linear “bottleneck” hidden layer, the
trained network’s hidden unit weight vectors will span the
k-dimensional principal component subspace corresponding
to the covariance matrix of its training set, effectively imple-
menting PCA (Baldi and Hornik, 1989; Cottrell and Munro,
1988). However, as Japkowicz, Hanson, and Gluck (submit-
ted) have observed, autoencoders with nonlinear hidden lay-
ers tend to fit more complicated nonlinear reconstruction er-
ror surfaces to their training data. Thus reconstruction qual-
ity in such networks can sometimes provide better models of
novelty and familiarity, depending on the application domain.
In principle, then, a nonlinear autoencoder could possibly ac-
count for the low false alarm rate for the dissimilar-parent
morphs and the high false alarm rate for the similar-parent
morphs due to a larger reconstruction error for the dissimilar-
parent morphs. To test this hypothesis, we built several non-
linear autoencoder reconstruction error models on the study
face set. Although their fit to the overall human familiar-
ity data can compare favorably with the PCA models (e.g.
Kendall's 7 (a) of 0.28 for a 20-hidden node network, com-
pared to 0.31 for the 23-PC model), their familiarity rankings
for the morphs and parents are typically uncorrelated or even
negatively correlated with the humans. Thus the nonlinear au-
toencoders do not merit further consideration in this domain.

A PCA projection exemplar model

In another attempt to account for the high false alarm rate for
morphs with similar parents, we fit a simple exemplar model
to the data using projections of test images onto the space
formed by a range of principal component eigenvectors. The
model is identical to the Generalized Context Model (Nosof-
sky, 1986), except we do not incorporate variable attentional
weights. It assumes that the study faces’ projections (the p;
in Equation 1) are placed in memory, and that the familiarity
of a test face is the sum of the similarity of that face to each
of the stored exemplars. That is, familiarity is defined as:

fi= ), i
jEstudyset

where 7; ; is the similarity of face 7 to face j:

i = e %0
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Figure 4: Fit of the 23-PC reconstruction error model to human subjects’ probability of responding *“old” to a test face.

and d; ; is the Euclidean distance from image i’s projection
to image j’s projection. By hand-tuning this model, we found
parameter settings that roughly fit the humans' high false
alarm rate to the morphs with similar parents and low false
alarm rate to the morphs with dissimilar parents, but the rank
order of the response averages was incorrect, and it failed to
fit the overall familiarity ratings as well as the reconstruction
error model. This model has an RMSE of 0.193 and an r? of
0.110. For comparison with the other models, the results are
reported in the last column of Table 1.

Discussion

The apparent failure of PCA reconstruction error to predict
the high false alarm rate to similar-parent morphs and the low
false alarm rate to dissimilar-parent morphs is simple to inter-
pret in retrospect. When a morph is projected into PC space,
its projection will be near the average of the projections of its
parents. When its parents are dissimilar, the morph’s projec-
tion will very likely be closer to the “center” of the PC space
(more typical) than either parent (on average 37% closer for
this data set), so the dissimilar-parent morphs will often be
better reconstructed than their parents. When the morph’s
parents are similar, however, the morph is not much more
typical than either parent (only 19% closer to the origin), and
since the parents were in the study set, the model will most
likely reconstruct the parents better than the morph.

Despite this limitation of the PCA reconstruction error
model, our results show that it can provide a fairly good fit to
the overall human familiarity ratings. In particular, it outper-
forms Nosofsky’s GCM applied to the MDS face space by a
large margin (though it does not outperform the Identification
variant of the GCM). This is surprising considering that the
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MDS representation was derived directly from human simi-
larity ratings, presumably exploiting the higher-level percep-
tual mechanisms of the humans making the similarity judg-
ments. It is also surprising that the PCA exemplar-similarity
model, which is equivalent to the GCM without variable at-
tentional weights, performed no worse than the MDS GCM
model. Taken together, these two results indicate that the po-
sition of a face in MDS space may not be the best represen-
tation for modeling familiarity judgments in new/old experi-
ments. A possible explanation is that the human subjects in
the similarity experiments “post process” low-level represen-
tations of the stimuli to the point that the similarity ratings no
longer adequately reflect the underlying data they were de-
rived from. Of course, it is difficult to make this claim given
that Busey and Tunnicliff’s SimSample models make better
familiarity predictions than either of the PCA models. We
will examine the issue more closely in future work.

Future Work

The modeling results we have obtained thus far point in two
main directions for further research. First, since it has a his-
tory of success in modeling old/new judgments of faces, we
cannot reject PCA reconstruction error as a predictor of nov-
elty prematurely. One potential problem in the current model
is that the eigenface decomposition was only performed on
the studied faces. This is certainly a common approach in
modeling memory tasks, but it ignores possible biases due
to the subjects’ prior experience. Perhaps the true effect of
studying a set of novel faces is to somehow bias a preex-
isting set of memories toward the new faces rather than to
store them in isolation. We can potentially model this process
within the PCA reconstruction error framework by perform-



Condition Experiment SimSample SimSample + Prop. | 23-PC Recon. Error | PC Projection
3 Data Predicted P(old) | Prot. Predicted P(old) Predicted P(old) Similarity
Dissimilar Parents 0.665 0.628 0.625 0.581 0.539
Similar Morphs 0.619 0.521 0.632 0.553 0.552
Targets 0.611 0.623 0.604 0.589 0.568
Similar Parents 0.578 0.604 0.585 0.580 0.543
Dissimilar Morphs 0.462 0413 0.470 0.601 0.529
Distractors 0.280 0.323 0.303 0.348 0.486
RMSE 0.148 0.141 0.169 0.193

Table 1: Model fits to human data for each of the six stimulus types used in Busey and Tunnicliff’s Experiment 3. Their best
MDS exemplar-based model, SimSample, fits the overall human P(old) fairly well, but cannot account for high false alarm rate
to morphs with similar parents. Their best model, “SimSample + Proportional Prototypes,” fits the category means and overall
human P(old) quite well, but requires the addition of prototypes at the morphs’ positions in MDS space, weighted by their

parents’ similarity.

ing the eigenface decomposition on a larger set of faces that
includes faces not used in Experiment 3 as well as the studied
faces.

The other main thrust of our current and future research is
to develop improved exemplar models and representations for
comparison with the reconstruction error model and Busey
and Tunnicliff's (submitted) exemplar models. We have con-
structed an exemplar-based model in MDS space that pro-
vides a much improved fit to the human data by modulat-
ing the exemplar similarity function’s width and height by
a face’s distinctiveness. We are currently experimenting with
image-based representations in the context of this new model.
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