
UCLA
UCLA Previously Published Works

Title
Geometric Applications of the Split Bregman Method: Segmentation and
Surface Reconstruction

Permalink
https://escholarship.org/uc/item/3s0734x1

Journal
Journal of Scientific Computing, 45(1)

ISSN
1573-7691

Authors
Goldstein, Tom
Bresson, Xavier
Osher, Stanley

Publication Date
2010-10-01

DOI
10.1007/s10915-009-9331-z

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3s0734x1
https://escholarship.org
http://www.cdlib.org/

J Sci Comput (2010) 45: 272–293
DOI 10.1007/s10915-009-9331-z

Geometric Applications of the Split Bregman Method:
Segmentation and Surface Reconstruction

Tom Goldstein · Xavier Bresson · Stanley Osher

Received: 7 October 2009 / Revised: 7 October 2009 / Accepted: 9 October 2009 /
Published online: 5 November 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Variational models for image segmentation have many applications, but can be
slow to compute. Recently, globally convex segmentation models have been introduced
which are very reliable, but contain TV-regularizers, making them difficult to compute. The
previously introduced Split Bregman method is a technique for fast minimization of L1
regularized functionals, and has been applied to denoising and compressed sensing prob-
lems. By applying the Split Bregman concept to image segmentation problems, we build fast
solvers which can out-perform more conventional schemes, such as duality based methods
and graph-cuts. The convex segmentation schemes also substantially outperform conven-
tional level set methods, such as the Chan-Vese level set-based segmentation algorithm. We
also consider the related problem of surface reconstruction from unorganized data points,
which is used for constructing level set representations in 3 dimensions. The primary pur-
pose of this paper is to examine the effectiveness of “Split Bregman” techniques for solving
these problems, and to compare this scheme with more conventional methods.

Keywords Image segmentation · Split Bregman · Bregman iteration · Total variation

1 Introduction and Motivation

Segmentation and object extraction is one of most important tasks in image processing and
computer vision. Many of the most general and effective segmentation methods can be writ-
ten as variational/PDE based models. This category of variational models has been shown
to be very effective in many applications, especially in the processing and analysis of med-
ical images [29, 33, 46]. While there are many disparate approaches to image segmentation,
this paper will focus on recently proposed methods which can be cast in the form of to-
tally convex optimization problems. This convexity property allows segmentations to be
computed using fast elliptic solvers. For other state-of-the-art approaches that do not fall

Dedicated to the memory of David Gottlieb.

T. Goldstein (�) · X. Bresson · S. Osher
Department of Mathematics, UCLA, Box 951555, Los Angeles, CA 90095-1555, USA
e-mail: tomgold2@gmail.com

mailto:tomgold2@gmail.com

J Sci Comput (2010) 45: 272–293 273

into this framework, see [13, 24, 44]. Several different variational frameworks for image
segmentation have been proposed, most of which fall into one of two categories.

The first such category we will discuss is the geodesic active contour (GAC)/snakes
model. Originally proposed in [30], snakes based segmentation identifies objects using an
edge detector function, which takes on small values near boundaries (e.g. where the image
gradient is large) and large values (typically near unity) where the image is smooth. Fol-
lowing the GAC method of Caselles, Kimmel, and Sapiro [14], this is accomplished using a
curve evolution procedure by solving

min
C

∫
C

g(∇f)ds, (1)

where C represents the closed boundary curve, ∇f is the image gradient. The function g is
the non-negative edge detector function. Models of this type have been studied in the context
of segmentation and feature extraction by Kichenassamy et al. [46]. One common choice for
the edge detector is

g(ξ) = 1

1 + β|ξ |2 , (2)

where β is a parameter that determines the detail level of the segmentation. It has been
found that, by identifying a curve lying along edges in an image, model (1) extracts relevant
semantic features from an image [14].

The calculus of variations then allows us to find the Euler-Lagrange equation for (1) and
the minimization is carried out using the following curvature-minimizing gradient flow:

Ct = (gκ − 〈∇g,N〉)N, (3)

where κ represents the curvature and N is the unit normal to the curve C [14].
Various numerical schemes have been proposed for computing this gradient flow. One

of the most simple and versatile schemes is the level set method of Osher and Sethian
[36, 37, 41]. In this method, the curve C is represented using an implicit level set func-
tion, φ. The curve evolution is then solved using the flow

φt =
(

g∇ · ∇φ

|∇φ| − 〈∇g,∇φ〉
)

|∇φ|. (4)

Models of the form (1) have also been used for the related problem of reconstructing a
surface from unorganized data, where g is replaced by the distance to the unorganized data
set. Given a set of points {xi} lying on some smooth surface, we wish to reconstruct an ap-
proximation of that surface. This problem is very difficult because it is, in general, ill-posed.
Also, any solution to this problem must be able to handle a wide range of topological and
geometric surface configurations. Explicit representation methods such as NURBS [39] rely
on a parametrization of the surface, which requires a significant amount of a priori knowl-
edge of the surface topology. Methods relying on triangularizations and Voronoi diagrams
are limited to reconstructing piecewise linear surface, and become impractical if dynamic
surface evolution is required [3, 4, 7]. A very nice approach that does not suffer from these
difficulties is to use an implicit level-set representation [28, 35, 51, 52]. This can be accom-
plished by defining g to be the distance function of the set {xi}, and then minimizing the
corresponding energy (1). As a result, this modified GAC model computes a surface that lies
along the minimal contours of this distance function (i.e. a surface that passes close to the
points {xi}). This model has been applied to 3 dimensional data in [51, 52].

274 J Sci Comput (2010) 45: 272–293

The second approach to segmentation that we shall consider is a technique based on
the Mumford Shah model [34]. In this model, an image is segmented by finding the best
approximation of the image as a piecewise smooth function. One of the simplest and most
successful formulations of this model is the “active contours without edges” (ACWE) model
proposed by Chan and Vese [18]. The ACWE model seeks to approximate an image by a
function taking on two values via the following optimization problem

min
�,c1,c2

Per(�) + μ

∫
�

(c1 − f)2 + μ

∫
�c

(c2 − f)2, (5)

where � is the extracted subset of the image, and c1, c2 ∈ R represent the mean intensity
inside and outside of the segmented region, respectively [18]. The length term Per(�) serves
as a regularizer, which ensures that the curve C = ∂� has a well behaved boundary. By
varying the parameter μ, the user can control the strength of the regularization, and thus
the level of detail that is to be segmented. To compute the optimal region, �, Chan and
Vese chose a level set representation. The energy (5) is then minimized using an alternating
scheme in which the optimal curve C is computed, after which the mean intensities are
updated. Using a level set function, u, and a regularized Heaviside function, Hε , the optimal
curve can be computed using the gradient flow [18]

∂tu = H ′
ε(u)

(
∇ · ∇u

|∇u| − μ
(
(c1 − f)2 − (c2 − f)2

))
, (6)

for fixed c1, and c2.

Unfortunately, both the snakes and ACWE approach to segmentation suffer from sub-
stantial difficulties because neither model is convex. If one examines the snakes model (1),
one will observe that the global minimum of this energy occurs when the curve C collapses
into a single point (in this case the energy is zero). Therefore, any meaningful solution to
this problem will only be a local minima. The ACWE model performs a minimization over
all two-valued functions, which do not form a convex collection. As a result, the minimiza-
tion problem (5) is non-convex and may have local minima. Indeed, it has been observed
that the results of both of these models depend in a crucial way on the initial guess that is
used. Furthermore, the level set evolution methods can sometimes get “stuck” at undesirable
local minima. Note that, unlike the GAC/snakes approach, the ACWE model does have a
meaningful global minimizer, although we have no efficient method for finding it in general.

To resolve the problems associated with non-convex models, several convex models for
image segmentation have been proposed. The first of these models was originally inspired
by Chan Esedoglu and Nikolova [20], and hybridizes the piecewise constant Mumford Shah
model [34] with the globally convex ROF denoising model [40]. The second model we
consider is a hybrid between the GAC model [14, 30] and the ROF model [40], which
allows for fast implicit surface evolution.

In this manuscript, we consider fast numerical methods for computing the minimizers of
these global models. We begin by introducing two convex image segmentation models, both
based on total variation regularized energies. We then introduce the class of Split Bregman
methods for L1 regularized problems, and explain how this methodology can be applied
to segmentation problems. Finally, we present numerical examples showing the efficiency
of the Split Bregman method for these problems, and comparisons with other numerical
schemes.

J Sci Comput (2010) 45: 272–293 275

1.1 Notation

When discussing discretized problems, we shall frequently use vector norms to avoid cum-
bersome summation. Consider a grid function, fα , defined for all α in some index set
 (for
an M × N image, we take
 = {(i, j) ∈ Z × Z : 0 ≤ i ≤ M,0 ≤ i ≤ N}). We shall use the
following norm and inner product notations:

|f |1 =
∑
α∈�

|fα|, ‖f ‖ =
(∑

α∈�

|fα|2
) 1

2

, 〈f,g〉 =
∑
α∈�

fα · gα.

We will also use “∇” in the discrete context to denote the first order discrete gradient oper-
ator and BV norms as follows:

(∇f)i,j = (fi+1,j − fi,j , fi,j+1 − fi,j), |∇f |1 =
∑

(i,j)∈�

‖(∇f)i,j‖.

In some circumstances, we wish to consider grid functions that are vector-valued at each
pixel. For the sake of clarity, we shall use the “arrow” superscript to denote such vector-
valued quantities. For example, we may write 	d = ∇u to emphasize that the value of 	d at
each grid location is an ordered pair.

When working with L1 minimization problems, we will make frequent use of the
“shrink” operator. This operator has been used frequently in the wavelet literature [22], and
was first adapted for use in L1 optimization in [45]. The shrink operator is defined at each
point α ∈
 as follows

shrink(z,λ)α = max{‖	zα‖ − λ,0} 	zα

‖	zα‖ .

We also use the “weighted” shrink operator associated with the function g:

shrinkg(z,λ)α = max{‖	zα‖ − λ/gα,0} 	zα

‖	zα‖ .

Finally, the notation AT will be used to denote the adjoint of the linear operator A.

2 Convex Methods for Image Segmentation

In [20], Chan et al. eliminate difficulties associated with these non-convex models by
proposing an approach to segmentation that is based on convex energies. This globally con-
vex segmentation (GCS) method is both easier to handle numerically, and is more reliable
because it does not get “stuck” at local minima. The GCS formulation is based on the obser-
vation that the steady state solution of the gradient flow (6) coincides with the steady state
of the simplified flow

∂tu =
(

∇ · ∇u

|∇u| − μ
(
(c1 − f)2 − (c2 − f)2

))
.

This simplified flow represents the gradient descent for minimizing the energy

E(u) = |∇u|1 + μ〈u, r〉 (7)

276 J Sci Comput (2010) 45: 272–293

where r = (c1 − f)2 − (c2 − f)2.

Because the energy (7) is only homogeneous of degree 1, it has no unique global mini-
mizer (this should be expected, as curves do not have unique level set representations). To
make the global minima well defined, we must constrain the solution to lie e.g. in the interval
[0,1]. This results in the optimization problem

min
0≤u≤1

|∇u|1 + μ〈u, r〉. (8)

Once this optimization problem is solved, the segmented region is found by thresholding the
level set function to get

� = {x : u(x) > α}, (9)

for some α ∈ (0,1).

In [20], the uniqueness of solutions to (8) is examined. There, it is found that, with
probability 1, the indicator function, χ�, obtained through this thresholding procedure is
a global minimizer of the energy (7). Note that, if we take u = χ�, then the energies (5) and
(8) are equivalent, and so the region obtained through this procedure is a global minimizer
of (5) as well. Furthermore, in the continuous case, the results of this thresholding procedure
are independent of the value of α, up to a set of measure zero. For a more precise statement
of these results, we refer the reader to [20]. More theoretical results on this class of scheme
for global minimization are presented by Burger [12].

As we have described it thus far, the GCS segmentation procedure is merely a convexi-
fication of the ACWE approach. In [11] Bresson et al. modify the energy (7) to incorporate
information from an edge detector, and get results that are very similar to those obtained
through the classical snakes/GAC model. This is accomplished using the weighted TV norm

TVg(u) =
∫

g|∇u| = |∇u|g.

By replacing the standard TV norm with this weighted version, we make the model more
likely to favor segmentation along curves where the edge detector function is minimal. In
this sense, the GCS model is an elegant hybridization of the GAC/snakes model with the
ACWE model.

In summary, the GCS approach to segmentation proceeds as follows

1: while “not converged” do
2: Define rk = (ck

1 − f)2 − (ck
2 − f)2

3: Solve uk = min0≤u≤1 |∇u|g + μ〈u, rk〉
4: Find �k = {x : uk(x) > α}
5: Update ck+1

1 = ∫
�k f dx, and ck+1

2 = ∫
(�k)c

f dx

6: end while
The numerical bottleneck of this segmentation algorithm is computation of the minimizer

(8), i.e. step 3 of the above algorithm. In [20], the authors propose to enforce the inequality
constraint using an exact penalty function. They solve the unconstrained problem

min
u

|∇u|g + μ〈u, r〉 + αν(u), (10)

where ν(u) = max{0,2|u−0.5|−1}. The authors of [20] show that, for sufficiently large α,

this penalty function will exactly enforce the constraint. The main drawback of the formula-
tion (10) is that the penalty function being used is non-differentiable. To handle this problem,

J Sci Comput (2010) 45: 272–293 277

the authors of [20] propose to regularize the penalty function, rather than to exactly enforce
the inequality constraint.

In [11] the authors use a splitting/regularization approach to minimize (8). They mini-
mize

min
u,0≤v≤1

|∇u|g + μ〈u, r〉 + 1

2θ
‖u − v‖2,

where the right-most term enforces u ≈ v for sufficiently small θ. Minimization with re-
spect to u corresponds to solving the ROF model, which is done using a gradient projection
method [5, 15, 19], and the minimization for v can be solved using an explicit formula.
However, this scheme slows down as the accuracy increases (i.e. as θ → 0). Also, the ap-
proximate enforcement of the constraint u ≈ v has the effect of regularizing the model.

The disadvantage of these regularized schemes is that they “smear” the values of u near
the boundaries of objects. This makes the results more dependent on the value of the cutoff
parameter, α, and can eliminate fine segmentation details (see Fig. 5 for an example of this).

In the next section, we show how the GAC energy can be minimized using a Split Breg-
man approach. In addition to being able to minimize this energy without the use of regu-
larization, the proposed method has the advantage of being a much more efficient solver
for (8).

3 A Convex Formulation of Snakes/GAC

In this section, we show how the snakes/GAC model can be well approximated using the
ROF functional. Conventional techniques for evolving the GAC contour rely on explicit dis-
cretizations of the gradient flow (4). Because of the vanishing denominator in (4), explicit
methods require regularization, and suffer from stiff time step restrictions [35, 37]. An ef-
ficient alternative is to minimize this energy using a non-regularized implicit scheme, as
introduced by Almgren, Taylor and Wang [2]. This scheme evolves the GAC contour by
solving a non-convex variational problem at each time step. In [16], Chambolle introduced
an implicit scheme that evolves the contour using a sequence of convex variational problems
involving the ROF functional. The derivation presented here follows the approach presented
in [10], which adapts Chambolle’s mean curvature motion to the GAC energy.

Given some initial curve, C, let dC be its representation as a signed distance function.
Consider the convex minimization problem

u∗ = min
u

|∇u|g + 1

2h
‖u − dC‖2. (11)

Now, consider the new curve C ′ = ∂{x : u∗(x) < 0}. In words, u∗ is the level set representa-
tion of C ′.

We will show that this process of obtaining C ′ from C is equivalent to applying a dis-
cretized version of (3) to the initial curve C. The Euler-Lagrange equation for (11) is

−g∇ · ∇u

|∇u| −
〈
∇g,

∇u

|∇u|
〉
+ 1

h
(u − dC) = 0.

If we choose x ∈ C ′, then u∗(x) = 0 and

dC(x) = −h

[
g∇ · ∇u

|∇u| +
〈
∇g,

∇u

|∇u|
〉]

(12)

= −h
[
gκ + 〈∇g,N〉] (x) (13)

278 J Sci Comput (2010) 45: 272–293

where we have used κ and N to denote the curvature and normal to C ′, respectively. We now
denote by x0 the projection of x onto the curve C. We now have

x = x0 − h
[
gκ + 〈∇g,N〉]N(x0),

which is the equivalent to one implicit time step in the evolution of (3). This result suggests
Algorithm 1 for the evolution of the snakes/GAC model.

Algorithm 1 ROF based snakes/GAC

1: while ‖uk − uk−1‖ > ε do
2: Define uk+1 = minu |∇u|g + 1

2h
‖u − dk‖2

3: dk+1 = SDF(uk+1)

4: end while

Here, we use SDF(u) to denotes the signed distance function obtained by re-initializing
u [1, 35, 43] . For a more detailed discussion of this approach, and some theoretical results,
see [10, 16].

The advantages of this formulation are two fold: First, the ROF-based formulation of
the snakes model allows one to use much larger time steps than the standard explicit dis-
cretizations, and does not suffer from the strict time step restrictions of regularized methods.
Second, this method can be easily and efficiently implemented using a fast ROF solver. Be-
low, we will discuss the implementation of this snakes model using a fast Split Bregman
ROF solver.

4 The Split Bregman Method: A General l1 Minimization Technique

The Split Bregman method is a technique for solving general L1-regularized problems of
the form

arg min
u

|�u|1 + μ

2
‖Au − f ‖2, (14)

where � and A are (possibly singular) linear operators. For example, choosing � = ∇ and
A = I yields the ROF model [40]. There is a large literature on techniques for solving (14).
Many techniques approach the problem by either solving a regularized form of (14) directly,
or by attacking the differentiable “dual formulation” of the problem, which requires the
enforcement of linear inequality constraints.

In [26], the Split Bregman method was introduced for solving (14). This method has
the advantage that it does not require regularization, continuation, or the enforcement of
inequality constraints. Furthermore, the technique has been shown to be an extremely effi-
cient solver for L1 regularized denoising problems, as well as a large class of problems from
compressed sensing.

The Split Bregman method works by “de-coupling” the L1 and L2 terms in (14), using
a splitting originally introduced in [50]. Rather than solve (14) directly, we introduce the
auxiliary variable 	d ← �u. The problem (14) then becomes

arg min
u

| 	d|1 + μ‖Au − f ‖2 such that 	d = �u. (15)

J Sci Comput (2010) 45: 272–293 279

To solve this constrained problem, we convert it to an unconstrained problem by introducing
a quadratic penalty function:

arg min
u, 	d

| 	d|1 + μ‖Au − f ‖2 + λ

2
‖ 	d − �u‖2. (16)

This formulation of the problem is very advantageous because the unconstrained problem
(16) can be solved using a simple alternating minimization scheme. The first step of this
alternating scheme is to minimize with respect to u. This is a differentiable optimization
problem and the solution is obtained by solving

(μAT A − λ�)u∗ = μAT f + λ� 	d. (17)

We next minimize (16) with respect to 	d . This optimization problem is element-wise decou-
pled. In the work [45], it is shown that the solution can be written explicitly as

	d∗ = shrink(�u,1/λ).

Note that the quadratic penalty function in (16) only approximately enforces the con-
straint 	d = �u. We wish to enforce this constraint exactly. A standard approach to this
problem is to use a continuation scheme: solve (16) with an increasing sequence of penalty
parameters, λ1 < λ2 < · · · < λn. This continuation approach was introduced and applied to
deconvolution problems in [50].

This continuation scheme suffers from two deficiencies. First, as λ → ∞, so does the
condition number of the system (17). This causes most iterative solvers for the system (17)
to stall. Also, it has been shown in [50] that for large enough λ, the convergence rate of the
alternating minimization scheme becomes arbitrarily slow.

To avoid these difficulties, the Split Bregman approach uses a fixed value for λ, and
enforces the constraint 	d = �u using a Bregman iteration technique [9, 26]. The details of
Bregman iteration will not be discussed here. Rather we refer the reader to the works [27,
38, 49]. Alternately, Bregman iteration techniques can also be viewed as a special case of
the method of multipliers, which is discussed in detail in [6]. An in-depth description of the
application of this technique to the Split Bregman method can be found in [26].

To apply Bregman iteration to problem (16), we add a vector, 	bk , inside of the quadratic
penalty function. We then solve a sequence of unconstrained problems defined by

(uk, 	dk) = arg min
u, 	d

| 	d|1 + μ‖Au − f ‖2 + λ‖ 	d − �u − 	bk‖2, (18)

	bk+1 = 	bk + �uk − 	dk. (19)

After the alternating minimization scheme approximately solves each unconstrained prob-
lem, the Bregman vector is updated using the rule (19). This rule is the analog of the “adding
back the noise” technique, which has been used to enhance image denoising [38].

In [26, 38], it is shown that (under sufficient assumptions) this algorithm converges in the
sense that, as k → ∞, we have ‖ 	d − �u‖ → 0 and ‖uk − u∗‖ → 0 where u∗ is some solu-
tion to (14). Furthermore, in [42] Setzer demonstrates the equivalence between split Breg-
man schemes and an alternating-direction-implicit scheme on the dual form of the problem
(14), proving convergence in the case where optimizations sub-problems are solved exactly.
Similar results are proved using the classical augmented Lagrangian framework in [23].

We have observed that, in general, an exact solution to the unconstrained problem (18)
is not necessary. Rather, an approximate solution can be used. Usually, this approximation

280 J Sci Comput (2010) 45: 272–293

is obtained using only one iteration of the alternating minimization procedure and/or an
inexact solution to the system (17). For this reason, the iterates (uk, 	dk) can be obtained
very fast for most applications. This observation is in agreement with the previous literature
on multiplier methods for differentiable problems. The use of inexact solvers in the context
of differentiable problems is discussed in detail in [6], where conditions are presented under
which multiplier methods can be guaranteed to converge. A discussion of inexact solvers in
the context of Bregman methods for L1 regularized problems can be found in [47].

5 Split Bregman Methods for ROF

One of the simplest applications of the Split Bregman method is for ROF denoising
[26, 38]. We give a brief overview of this technique here, and refer the reader to [26] for
more detail. In this image restoration model, the goal is to recover a denoised image, u,

from a noisy image, f. The ROF model accomplishes this by solving an optimization prob-
lem of the form:

u∗ = arg min
u

‖u‖BV + μ

2
‖u − f ‖2 = arg min

u
|∇u|1 + μ

2
‖u − f ‖2. (20)

Note that this problem is of the form (14), when the operator A is taken to be the identity.
To apply the Split Bregman approach to this optimization problem, we make the substitu-

tions 	d ← ∇u. Because this problem is defined on a two dimensional domain, 	d = (dx, dy)

is vector valued at each pixel [26]. To approximately enforce these equality constraints, we
add quadratic penalty functions. This results in the unconstrained problem

(u∗, 	d∗) = arg min
u, 	d

| 	d|1 + μ

2
‖u − f ‖2 + λ

2
‖ 	d − ∇u‖2. (21)

We now wish to exactly enforce the equality constraints 	d = ∇u. For this purpose, we
apply Bregman iteration to the unconstrained problem (21). This results in the following
sequence of optimization problems:

1: while not converged do
2: (uk, 	d) = arg minu, 	d | 	d|1 + μ

2 ‖u − f ‖2 + λ
2 ‖ 	d − ∇u − 	bk‖2

3: 	bk+1 = 	bk + ∇u − 	dk

4: end while
As described above, it is not necessary to solve the minimization problem in step 2 of the

above scheme exactly. Rather, we generate an approximate solution using the alternating
minimization scheme. For this purpose, we first minimize with respect to u. The optimal
value of u can be obtained by solving the system

(μI − λ�)u = μf + λ∇ · (b − 	d). (22)

To approximately solve this system, we choose a fast, iterative solve. Because the system
is strictly diagonally dominant, the most natural choice is a Gauss-Seidel solver. The next
step in the alternating minimization scheme is to minimize with respect to 	d. This can be
done explicitly using the vector-valued shrinkage operator

	dk+1 = shrink(∇u + 	b,λ). (23)

J Sci Comput (2010) 45: 272–293 281

When we put all of these pieces together, we get the following very simple, yet efficient
algorithm.

Algorithm 2 Split Bregman ROF

1: while ‖uk+1 − uk‖ > ε do
2: uk+1 = GSROF(f, 	dk, 	bk)

3: 	dk+1 = shrink(∇uk + 	bk, λ)

4: 	bk+1 = 	bk + ∇uk+1 − 	dk+1

5: end while

We have used GSROF(f, 	d, 	b) to denote one iteration of the Gauss-Seidel method applied
to the system (22). An explicit formula for the iteration, as well as more implementation
details of this method, is given in [26]. In the results section of the paper, time trials are also
presented, and the efficiency of this approach is discussed.

6 The Split Bregman Method Applied to Globally Convex Segmentation

In this section, we discuss the application of the Split Bregman method to the GCS problem,
and prove some elementary convergence results. As described in Algorithm 2, the convexi-
fied segmentation can be reduced to a sequence of problems of the form

min
0≤u≤1

|∇u|g + μ〈u, r〉, (24)

where r = (f − c1)
2 − (f − c2)

2.

We wish to solve this problem efficiently without the use of regularization [11, 20]. To
this end, we will apply the Split Bregman method. Just as was done for the ROF model,
we introduce the auxiliary variable, 	d ← ∇u. To weakly enforce the resulting equality con-
straint, we add a quadratic penalty function. We get the following unconstrained problem

(u∗, 	d∗) = arg min
0≤u≤1, 	d

| 	d|g + μ〈u, r〉 + λ

2
‖ 	d − ∇u‖2. (25)

In order to strictly enforce the constraint 	d = ∇u, we apply Bregman iteration to the
problem, just as was done for ROF. The resulting sequence of optimization problems is

(uk+1, 	dk+1) = arg min
0≤u≤1, 	d

| 	d|g + μ〈u, r〉 + λ

2
‖ 	d − ∇u − 	bk‖2, (26)

	bk+1 = 	bk + ∇uk − 	dk. (27)

As described above, we will solve the problem (26) using the alternating minimization
scheme. We begin by considering the minimization of (26) with respect to u. As was ob-
served for the ROF problem, the algorithm converges very quickly even when an approxi-
mate solution is used. We will obtain an approximate solution using a Gauss-Seidel method.
This observation is in agreement with the previous literature on multiplier methods for dif-
ferentiable problems. The use of inexact solvers in the context of differentiable problems is
discussed in detail in [6], where conditions are presented under which multiplier methods
can be guaranteed to converge. A discussion of inexact solvers in the context of Bregman
methods for L1 regularized problems can be found in [47].

282 J Sci Comput (2010) 45: 272–293

To derive a closed-form expression for the element-wise minimizer, we begin with the
Euler-Lagrange equation of (25). The optimal value of u must satisfy this Euler-Lagrange
equation at every point where the constraint is not active:

�u = μ

λ
r + ∇ · (d − 	b), whenever 0 < u < 1. (28)

Next, consider the problem of minimizing (25) with respect to ui,j while all other elements
of u remain constant. Ignoring the constraints, this energy is quadratic in ui,j , and the min-
imum of this quadratic function is found by solving (28) for ui,j . If the solution to this
equation lies in the interval [0,1] then this global minimizer coincides with the minimizer
of the constrained problem. If the solution lies outside of this interval, then the energy is
strictly monotonic inside [0,1], (because the energy is quadratic) and the minimizer lies at
the endpoint closest to the unconstrained minimizer. We have now arrived at the following
element-wise minimization formula:

αi,j = dx
i−1,j − dx

i,j − bx
i−1,j + bx

i,j + d
y

i,j−1 − d
y

i,j − b
y

i,j−1 + b
y

i,j , (29)

βi,j = 1

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − μ

λ
r + αi,j), (30)

ui,j = max{min{βi,j ,1},0}. (31)

Minimization with respect to 	d is performed using the following formula:

	dk+1 = shrinkg(bk + ∇uk+1, λ).

When this Split Bregman minimization scheme is placed into Algorithm 2, we get the
following scheme for segmentation.

Algorithm 3 Split Bregman for GCS

1: while ‖uk+1 − uk‖ > ε do
2: Define rk = (ck

1 − f)2 − (ck
2 − f)2

3: uk+1 = GSGCS(r
k, 	dk, 	bk)

4: 	dk+1 = shrinkg(∇uk+1 + 	bk, λ)

5: 	bk+1 = 	bk + ∇uk+1 − 	dk+1

6: Find �k = {x : uk(x) > μ}
7: Update ck+1

1 = ∫
�k f dx, and ck+1

2 = ∫
(�k)c

f dx

8: end while

Here, we have used GSGCS(r
k, 	dk, 	bk) to denote one sweep of the Gauss-Seidel for-

mula (29).

7 Numerical Results

In the following discussion, we will explore the efficacy of the Split Bregman method for
the applications discussed above by applying the techniques to several sample problems.
All Split Bregman algorithms were implemented in C, and compiled/called through Matlab
using a “mex” interface and the GCC compiler. All time trails were done on a 3 GHz, Intel

J Sci Comput (2010) 45: 272–293 283

Core 2 Duo processor. All codes used to generate these results are available for download
from the authors’ websites.

7.1 Region-Based Segmentation

To demonstrate the efficiency of the Split-Bregman algorithm for GCS, the algorithm was
applied to a variety of test problems. We begin by comparing the GCS algorithm to ACWE
using a standard brain segmentation problem (Fig. 1). This comparison was done using
a Matlab implementation of ACWE. The ACWE energy was minimized using a gradient
descent method, with time steps adaptively chosen using a backtracking line search. For
all the test problems presented here, the GCS model was minimized using the above Split
Bregman formulation, with λ = 0.5.

Our first example demonstrates the advantages of a convex segmentation model, such
as GCS. Because the ACWE algorithm relies on a non-convex energy (5), gradient descent
methods for this problem converge to local minima, resulting in segmentations that depend
strongly on initialization. Two different initialization states, and the resulting segmentations,
are presented in (Fig. 1). The GCS method, in contrast, produces a segmentation with very

Fig. 1 Comparison of GCS to Chan-Vese. (Top) The results of GCS are independent of initialization. (Cen-
ter/Bottom) Results of ACWE segmentation with 2 different initializations. Image size is 256 × 256

284 J Sci Comput (2010) 45: 272–293

Fig. 2 Segmentation of a multi-scale test image using the GCS method. Note how the fidelity parameter, μ,

allows the user to control the scale of the segmentation. Image size is 256 × 256

smooth contours, and does not depend on initialization. Note also the Split Bregman algo-
rithm allows us to compute the GCS minimizer in only 0.16 seconds. The ACWE minimizer
was much slower, taking over 20 seconds for some initializations. The image size is 256
by 256.

Our second test problem demonstrates how parameters allows the user to control the scale
of the segmentation. Figure 2 shows segmentation results for a 256 by 256 image at 3 differ-
ent levels of coarseness. At the finest level, each circle in the image is recognized as its own
feature. As the GCS parameter decreases, the segmentation becomes coarser—first group-
ing image features together into clusters, and finally recognizing all circles as one feature.
Finally, note how the Split Bregman method slows down considerably as the segmentation
becomes more coarse. This is largely due the fact that the Gauss-Seidel iteration converges
more slowly for small values of the fidelity parameter. However, even for the most coarse
segmentation, computation took only 0.44 seconds, which is quite reasonable for such a dif-
ficult segmentation problem. Note that the GCS model inherits this level of control from the
ACWE model [18] which also contains a scale parameter.

We now examine how the incorporation of an edge detector enhances segmentation detail
using examples from medical imaging. We first consider a brain segmentation problem,
Fig. 3. Unlike Fig. 1, this brain image has many fine scale, narrow details. Without the
use of the edge detector, the regularization prevents the algorithm from recognizing these
details. The use of the edge detector results in much more detailed segmentation while still
maintaining smooth contours, and heavy regularization away from the edges.

The edge detector can also be used to avoid problems caused by non-constant regions,
as demonstrated in Fig. 4. In this test problem, the standard GCS model breaks the main
image feature into two sections because of the heavy intensity gradient in this image. The
edge detector causes the segmentation to break along feature edges. Other approaches to
confront this problem have been proposed using, Laplacian-based edge detectors [31], but
this approach has the advantage of convexity.

Finally, we evaluate the Split Bregman scheme by direct comparison to another method:
the gradient projection method originally proposed in [11]. This method works by splitting
the functional (24) into two parts, one of which looks like the standard ROF energy, which
can subsequently be minimized using a dual gradient projection method [5, 15, 19] . Note
that this method does not solve the original minimization (24) exactly, but rather a regular-
ized version of the problem. In Fig. 5, we display the level set function, u, computed by
each algorithm as a minimizer of 24. A segmentation is produced by thresholding this LSF,
as in equation (9). In addition to the LSF’s, the histogram of each segmentation is displayed
in Fig. 5. Note that, because of the regularization, the results computed by the gradient pro-
jection show many small scale features that were not entirely removed by the segmentation.

J Sci Comput (2010) 45: 272–293 285

Fig. 3 The results of GCS are enhanced by using an edge detector function. (Left) Segmentation with no edge
detector. (Right) Results using an edge detector, and a weighted TV regularizer. The edge detector allows the
segmentation to recognize more fine-scale feature without changing the regularization parameter. Image size
is 218 × 218

Also, as can be seen in the histograms, a much higher fraction of the pixels in the SDF are
either 0, or 1 when the results are computed using the Split Bregman method. Because of
this, the Split Bregman results are much less dependent of the choice of the threshold, α.

7.2 GAC/Snakes

We will examine several application of the GAC model. We first consider a standard seg-
mentation problem using an edge detector (Fig. 6). The edge detector function was gradient
based, and of the form (2), with β = 1. The time step parameter μ was chosen so that the
time required to compute each weighted ROF minimization and SDF re-initialization was
approximately equal. Because the implicit method allows such long time steps, we were able
to compute this segmentation using only 15 time steps.

Another application of the GAC model (1) is the reconstruction of a surface from un-
organized data points [51]. Given a set of points {xi} lying on some surface, we wish to
reconstruct an approximation of that surface. This can be accomplished using time steps of
the form (11) where the weight function g is defined to be the distance function of the set
{xi}. As a result, this modified GAC model computes a surface that lies along the minimal
contours of this distance function.

We begin our examination of this algorithm using 2D model problems. While these
model problems are unrealistically simple, they demonstrate the effect of surface geome-
try on convergence speed. We apply the algorithm to two data sets in Fig. 7. Note that for

286 J Sci Comput (2010) 45: 272–293

Fig. 4 Segmentation applied to a non-piecewise constant image. (Left) Segmentation of an MR image with-
out edge detector. (Right) Edge detector enhanced segmentation. Image size is 371 × 392

the convex shape in Fig. 7, the surface reconstruction took only 3 time steps, whereas 9
time steps were required to segment the “star” shape. The reason for this is that the curve
evolution tends to slow down when it reaches non-convex portions of the surface because
evolution into these regions increases the perimeter of the curve, and thus this gradient of
the energy (1) is not as steep here. Note that a similar effect occurs in Fig. 6, where the
evolution slows down as the curve approaches the wings of the plane.

We now consider the more realistic case of 3d data. We apply the surface reconstruction
method to three well known 3d data sets: the “Buddha,” “cow” and “bunny.” The unorga-
nized data points are shown in Fig. 8. To build an implicit representation for these surfaces,
an initial guess was first chosen using the initialization method of [51]. The surface was
evolved using a 3d implementation of Algorithm 2 for weighted ROF. Re-initialization was
performed using a fast-marching method [1, 35, 43].

Running times and number of iterations required for convergence are shown in Table 1.
All times are reported in seconds. The reconstructed surfaces are shown in Fig. 9. Note
that, much like in the 2d case, more iterations are required to resolve shapes with deeper
convexities, such as the “Buddha” data set. However, even for this difficult test problem, only
17 iterations were required for convergence. Even thought the ROF energy was minimized
over a 3-dimensional space, the computing times for these data sets are quite manageable
(under 4 minutes for “Buddha” and under 30 seconds for the “bunny”). It should be noted

J Sci Comput (2010) 45: 272–293 287

Fig. 5 Level set representations of the GCS minimizer. (Left) Minimization using the regularized dual pro-
jection algorithm [11]. (Right) The non-regularized solution obtained via Split Bregman. Note that the use
of regularization results in artifacts around small features that make results more dependent on the threshold
parameter

that these results could be further accelerated by limiting the ROF computation to a narrow
band around the surface.

As a final example, we compare the Split Bregman scheme to the well known graph-
cut algorithm for motion by mean curvature [17, 21]. In this approach, motion by mean
curvature is accomplished using time steps of the form (11), where the weighted ROF en-
ergy is minimized using graph cuts, as computed using a preflow-push based Algorithm
[25, 48]. Note that graph cuts cannot compute the isotropic energy minimizer [8, 32], and
thus this technique computes a motion by “anisotropic curvature” [17]. Results are depicted
in Fig. 10, where contours represent the evolution after 0, 3, 6, and 9 time steps. Note that
the Split Bregman is slightly more efficient than the graph-cuts based solver. Also, the Split
Bregman method gives us the option of computing the isotropic curvature motion; some-
thing that the anisotropic graph cuts solver does not.

288 J Sci Comput (2010) 45: 272–293

Fig. 6 Segmentation of a test image using GAC/snakes. Results are shown at 4 different stages of the seg-
mentation

Fig. 7 GAC/snakes segmentation of two different test images. Note that more time steps are needed to
segment the non-convex regions on the “star” shape

J Sci Comput (2010) 45: 272–293 289

Fig. 8 Three sets of unorganized points. These data sets are the inputs for the surface reconstruction algo-
rithm in 3 dimensions

Table 1 Results for 3d surface reconstruction

Data set Buddha Bunny Cow

Num. iterations 17 13 15

Num. data points 16285 13995 2872

Dimensions 93 × 205 × 84 76 × 76 × 66 53 × 119 × 81

Time for ROF 11.6 2 2.9

Time for redistance 2.2 0.2 0.4

8 Conclusions

Variational Segmentation models have an important place in computer vision, and have been
applied extensively in medical image, tracking, and robotics applications. Because the GCS
and implicit GAC models only require the solution of convex problems, segmentations can

290 J Sci Comput (2010) 45: 272–293

Fig. 9 Implicit surfaces generated by the 3d reconstruction algorithm

be computed reliably with minimal user input. In the case of the GCS method, results are
completely independent of initialization, making this technique very attractive for applica-
tions which require full automation.

However, for many applications, particularly when images must be processed in “real
time,” the most important consideration when choosing a segmentation algorithm is speed.
Because most PDE-based segmentation models require the solution of a non-linear, non-
differentiable elliptic problem, this class of methods can be very slow to compute if con-
ventional numerical schemes (especially those involving regularization) are used. A very
important result of the convexity of the GCS and implicit GAC models is that it opens the
door for fast minimization methods.

J Sci Comput (2010) 45: 272–293 291

Fig. 10 Evolution of shapes by Mean-Curvature motion (MCM). Contours represent the results after 0, 3, 6,
and 9 time steps. (Left) MCM computed via graph cuts. Graph-cuts techniques evolve curves by “anisotropic
curvature,” resulting in sharp angles and cusps. (Right) MCM computed via Split Bregman. This curve evo-
lution is isotropic

In this paper, we first gave a brief introduction to image segmentation using convex ener-
gies. We then gave an introduction to the category of Split Bregman methods for minimizing
L1 regularized energies. Because the segmentation models considered here rely on TV reg-
ularized energies, they are easily minimized using a Split Bregman approach. Finally, we
presented numerical examples demonstrating the quality of segmentations produced using
convex models, as well as the efficiency of these methods when computed using a Split
Bregman scheme.

For the mean curvature motion problem considered here, the Split Bregman approach
was found to be more efficient than other proposed methods, including techniques based
on graph-cuts. In addition to its speed, the Split Bregman approach has the advantage that
it can solve isotropic segmentation problems (rather than the anisotropic approximations
employed by graph-cut strategies), and does not require regularization.

Future research will focus on accelerating the Split Bregman scheme in the case of small
fidelity parameters, allowing for faster coarse segmentation of large images, and faster evo-
lution of the GAC contour. Also, adaptive time stepping for GAC will allow for faster seg-
mentation of non-convex regions.

Acknowledgements We thank the anonymous reviewers for their constructive comments on this paper.
The work of Tom Goldstein was supported by the Graduate Research Fellowship Program of the NSF. Xavier
Bresson was supported by ONR N00014-03-1-0071, ONR MURI subcontract from Stanford University. Stan-
ley Osher is supported by ONR N00014-07-10-810, ONR N00014-08-1-119 and NSF DMS-07-14087 as well
as NIH grant G54RR021813.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Adalsteinsson, D., Sethian, J.: A fast level set method for propagating interfaces. J. Comput. Phys. 118,
269–277 (1995)

2. Almgren, F., Taylor, J.E., Wang, L.: Curvature-driven flows: a variational approach. SIAM J. Control
Optim. 31(2), 387–438 (1993)

292 J Sci Comput (2010) 45: 272–293

3. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. In: SCG’98: Proceedings of the Four-
teenth Annual Symposium on Computational Geometry, pp. 39–48. ACM, New York (1998)

4. Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In:
SIGGRAPH’98: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques, pp. 415–421. ACM, New York (1998)

5. Aujol, J.-F., Chambolle, A.: Dual norms and image decomposition models. Int. J. Comput. Vision 63(1),
85–104 (2005)

6. Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, San Diego
(1996)

7. Boissonnat, J.-D.: Geometric structures for three-dimensional shape representation. ACM Trans. Graph.
3(4), 266–286 (1984)

8. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans.
Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

9. Bregman, L.: The relaxation method of finding the common points of convex sets and its application to
the solution of problems in convex optimization. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

10. Bresson, X., Chan, T.: Active contours based on chambolle’s mean curvature motion. In: IEEE Interna-
tional Conference on Image Processing, pp. 33–36 (2007)

11. Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J.-P., Osher, S.: Fast global minimization of the
active contour/snake model. J. Math. Imaging Vis. 28, 151–167 (2007)

12. Burger, M., Hintermuller, M.: Projected gradient flows for bv/level set relaxation. UCLA CAM technical
report, 05-40 (2005)

13. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image segmentation using expectation-
maximization and its application to image querying. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1026–
1038 (1999)

14. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: IEEE International Conference on
Computer Vision, p. 694 (1995)

15. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis.
20(1–2), 89–97 (2004)

16. Chambolle, A.: An algorithm for mean curvature motion. Interfaces Free Bound. 6(2), 195–218 (2004)
17. Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric max-

imum flows. UCLA CAM report 08-19 (2008)
18. Chan, T.F., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)
19. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image

restoration. SIAM J. Sci. Comput. 20, 1964–1977 (1999)
20. Chan, T.F., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation

and denoising models. SIAM J. Appl. Math. 66, 1932–1648 (2006)
21. Darbon, J., Sigelle, M.: A fast and exact algorithm for total variation minimization. IbPRIA 2005

3522(1), 351–359 (2005)
22. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage J. Am. Stat.

Assoc. 90(432), 1200–1224 (1995)
23. Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Breg-

man. UCLA CAM technical report, 09-31 (2009)
24. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis.

59(2), 167–181 (2004)
25. Goldfarb, D., Yin, W.: Parametric maximum flow algorithms for fast total variation minimization.

CAAM technical report, TR07-09 (2008)
26. Goldstein, T., Osher, S.: The split Bregman method for l1 regularized problems. UCLA CAM report

08-29 (2008)
27. He, L., Chang, T.-C., Osher, S.: Mr image reconstruction from sparse radial samples by using iterative

refinement procedures. In: Proceedings of the 13th Annual Meeting of ISMRM, p. 696 (2006)
28. Hoppe, H., Derose, T., Duchamp, T., Mcdonald, J., Stuetzle, W.: Surface reconstruction from unorga-

nized points. Comput. Graph. 26(2), 71–78 (1992)
29. Jonasson, L., Bresson, X., Hagmann, P., Cuisenaire, O., Meuli, R., Thiran, J.-P.: White matter fiber tract

segmentation in dt-mri using geometric flows. Med. Image Anal. 9(9), 223–236 (2005)
30. Kass, W., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 312–331

(2004)
31. Kimmel, R., Bruckstein, A.M.: Regularized Laplacian zero crossings as optimal edge integrators. Int. J.

Comput. Vis. 53, 225–243 (2001)
32. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern

Anal. Mach. Intell., pp. 147–159 (2004)

J Sci Comput (2010) 45: 272–293 293

33. Malladi, R., Kimmel, R., Adalsteinsson, D., Sapiro, G., Caselles, V., Sethian, J.A.: A geometric approach
to segmentation and analysis of 3d medical images. In: MMBIA’96: Proceedings of the 1996 Workshop
on Mathematical Methods in Biomedical Image Analysis (MMBIA’96), Washington, DC, USA, p. 244.
IEEE Comput. Soc., Los Alamitos (1996)

34. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational
problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

35. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003)
36. Osher, S., Fedkiw, R.P.: Level set methods. Technical report, in Imaging, Vision and Graphics (2003)
37. Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on

Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)
38. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-

based image restoration. MMS 4, 460–489 (2005)
39. Rogers, D.F.: An Introduction to NURBS: With Historical Perspective. Morgan Kaufmann, San Mateo

(2001)
40. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60,

259–268 (1992)
41. Sethian, J.A.: Level set methods and fast marching methods: Evolving. In: Interfaces in Computational

Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press,
Cambridge (1999)

42. Setzer, S.: Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage. In: Proceedings
of the Second International Conference on Scale Space Methods and Variational Methods in Computer
Vision (2009)

43. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible
two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

44. Tschirren, J., Hoffman, E.A., McLennan, G., Sonka, M.: Intrathoracic airway trees: segmentation and
airway morphology analysis from low-dose ct scans. IEEE Trans. Med. Imag. 24, 1529–1539 (2005)

45. Wang, Y., Yin, W., Zhang, Y.: A fast algorithm for image deblurring with total variation regularization.
CAAM technical reports (2007)

46. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for seg-
mentation of medical imagery. IEEE Trans. Med. Imag. 16(2), 199–209 (1997)

47. Yin, W.: Analysis and generalizations of the linearized Bregman method. UCLA CAM technical report,
09-42 (2009)

48. Yin, W.: Pgc: A preflow-push based graph-cut solver. Version 2.32
49. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization with

applications to compressed sensing. SIAM J. Imag. Sci. 1, 142–168 (2008)
50. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation

image reconstruction. SIAM J. Imag. Sci. 1(3), 248–272 (2008)
51. Zhao, H.-K., Osher, S., Merriman, B., Kang, M.: Implicit and nonparametric shape reconstruction from

unorganized data using a variational level set method. Comput. Vis. Image Underst. 80(3), 295–314
(2000)

52. Zhao, H.-K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: VLSM’01:
Proceedings of the IEEE Workshop on Variational and Level Set Methods (VLSM’01), Washington, DC,
USA, p. 194. IEEE Comput. Soc., Los Alamitos (2001)

	Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction
	Abstract
	Introduction and Motivation
	Notation

	Convex Methods for Image Segmentation
	A Convex Formulation of Snakes/GAC
	The Split Bregman Method: A General l1 Minimization Technique
	Split Bregman Methods for ROF
	The Split Bregman Method Applied to Globally Convex Segmentation
	Numerical Results
	Region-Based Segmentation
	GAC/Snakes

	Conclusions
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

