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   Normal tissue transcriptional 
signatures for tumor-type-agnostic 
phenotype prediction
Corey Weistuch1, Kevin A. Murgas2, Jiening Zhu3, Larry Norton4, Ken A. Dill5,  
Allen R. Tannenbaum3,6 & Joseph O. Deasy1

Cancer transcriptional patterns reflect both unique features and shared hallmarks across diverse 
cancer types, but whether differences in these patterns are sufficient to characterize the full breadth 
of tumor phenotype heterogeneity remains an open question. We hypothesized that these shared 
transcriptomic signatures reflect repurposed versions of functional tasks performed by normal tissues. 
Starting with normal tissue transcriptomic profiles, we use non-negative matrix factorization to derive 
six distinct transcriptomic phenotypes, called archetypes, which combine to describe both normal 
tissue patterns and variations across a broad spectrum of malignancies. We show that differential 
enrichment of these signatures correlates with key tumor characteristics, including overall patient 
survival and drug sensitivity, independent of clinically actionable DNA alterations. Additionally, we 
show that in HR+/HER2- breast cancers, metastatic tumors adopt transcriptomic signatures consistent 
with the invaded tissue. Broadly, our findings suggest that cancer often arrogates normal tissue 
transcriptomic characteristics as a component of both malignant progression and drug response. This 
quantitative framework provides a strategy for connecting the diversity of cancer phenotypes and 
could potentially help manage individual patients.

Keywords Molecular profiling, Metastatic breast cancer, Drug sensitivity prediction, Cancer ecology and 
evolution, Prognosis

Recent studies have identified conserved phenotype states that predict drug sensitivities and other critical cancer 
traits across various tumor types1–6. These advances have been driven by the adoption of novel mathematical 
methods in biological research, particularly for characterizing the geometry and clustering of high-dimensional 
data4,5,7–10. Distances from these clusters or “states” can then linked to specific drug sensitivities, metastatic 
potentials, and other key cancer traits2,10–13. Such approaches have shown promise in guiding therapy 
selection and personalized treatment planning across tumor types, particularly for rare and therapy-resistant 
malignancies10.

The immense phenotype diversity of cancer phenotypes poses a significant challenge, with no universally 
accepted standard for defining and measuring shared tumor states. Developing a standardized atlas of system-
level, multi-gene properties could be crucial for monitoring, predicting, and treating these conserved tumor 
states, thus enabling a more systematic approach to understanding cancer behaviors14–16. However, it remains 
unclear where these states come from and how broadly they can be applied. Therefore, two key needs must 
be addressed: 1) the identification of signatures with clear biological origins; and 2) a comprehensive study 
that evaluates how conserved tumor states correlate with drug sensitivities, metastatic patterns, and patient 
outcomes.

Unlike tumors, normal tissues typically have well-separated gene expression profiles and defined functional 
roles. Furthermore, many of the transcriptional differences observed across cancers mimic patterns of variability 
observed in normal tissues, making them an ideal system for contextualizing observed patterns of intertumor 
and intratumor heterogeneity16–18. Leveraging these links could therefore unveil new and general connections 
between the well-defined functional roles of normal tissues and recurring patterns of tumor heterogeneity.

Here, we use a statistical decomposition method to isolate and interpret transcriptomic motifs utilized both by 
normal tissues and tumors, referring to these signatures as normal tissue archetypes19. By restricting our analysis 
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to biological pathways utilized by all tissues, such as glycolysis and DNA repair, the derived archetypes are 
mapped to unique tasks performed by normal tissues as well as distinct cancer hallmarks2,9,15. This employment 
of a normal tissue reference has the potential to contextualize the origins of conserved transcriptional states 
across multiple cancer types20,21. Specifically, the approach calculates the mix of archetypes within a given 
cancer cell or bulk tumor in terms of fixed normal tissue archetype signatures, providing a new perspective 
and a flexible quantitative approach to classify the different possible types of tumor behavior, match them to 
their most effective treatments, and interpret how they evolve in response to various therapies and through the 
accumulation of genetic alterations.

In assessing the prognostic potential of normal tissue archetypes identified through our method, we employed 
a structured case-study approach, utilizing publicly available data from two pan-cancer datasets22–25 and three 
datasets focusing on therapy-induced and metastatic adaptation in specific malignancies26–28. Our primary aim 
was to gauge the predictive capability of inferred archetype mixtures in determining the responsiveness of cancer 
cell lines to distinct chemotherapies, agnostic to mutational status, copy number alterations, and cancer type. 
Given the recognized divergence in behavior between cancer cell lines and clinical samples, we also scrutinized 
their ability to predict overall patient survival, differentiate between prognostic cancer subtypes, and anticipate 
adaptive responses from bulk tumor transcriptomes.

In a broader context, this proof-of-concept study highlights the prognostic significance derived from 
understanding why tumors commonly adopt normal tissue transcriptional programs distinct from their lineages 
of origin. The ability to identify and link these programs to drug sensitivities, site-specific metastases, and DNA 
alterations may pave the way for more tumor-type agnostic personalized cancer therapies.

Methods
Ethical compliance
All analyses used publicly available, de-identified data.

Public datasets
GTEx
We utilized the normal tissue samples from the Genotype-Tissue Expression (GTEx) project to cover the 
breadth of gene expression space and to provide an enhanced signal for resolving transcriptomic archetypes of 
both normal and cancerous tissues29. GTEx (version 8) gene-level transcripts per million (TPM)-normalized 
expression data were downloaded from the GTEx Portal29. The dataset, consisting of 54 distinct tissues, is one 
of the most comprehensive resources for studying tissue-specific gene expression. GTEx was established to 
characterize the tissue-specific determinants of human traits and diseases and provides expression levels for 
about 44 thousand genes. We focus here on commonly enriched pathways in cancer by utilizing 780 genes from 
five key cancer-related pathways from the Molecular Signature Database (MSigDB): apoptosis, DNA repair, 
glycolysis, hypoxia, and oxidative phosphorylation30,31. To go beyond current classifications, we filtered out 
lineage-specific genes already used for cancer classifications, enabling comparisons across cancer types32. The 
above five gene sets (“pathways”) were chosen as a precaution against overfitting the 54 median-averaged bulk 
transcriptomes available in GTEx and because they play particularly frequent roles in cancer14). This ensures 
that our analysis is of relevance to multiple types of cancer. The remaining hallmark pathways, not encompassed 
by the previously mentioned patterns, included either specific signaling pathways or covered functions that are 
not ubiquitously expressed across tissues. Finally, to normalize the dataset, we divided the expression of each 
gene by its standard deviation across all tissues.

Cancer cell line encyclopedia, CCLE
Gene-level TPM-normalized expression from the CCLE (N = 1405) along with matched drug sensitivities 
(N = 469), mutations (N = 1250), and copy number alterations (N = 1387 were downloaded from the public 
Dependency Map (DepMap) portal (version 22Q2)22. To reduce false positives, only TCGA (The Cancer Genome 
Atlas) hotspot mutations present in at least five TCGA samples (as reported in CCLE) and ten CCLE samples 
were retained. Mutation types were not further stratified. Due to the lack of a similar reference for pan-cancer 
copy number analysis, all whole genome-level copy number alterations reported in CCLE, aside from those on 
the sex chromosomes, were used. The upper bound for gene-level copy number alterations was set to four in 
order to remove potential correlational biases from high copy number states. Spearman rank correlations were 
then computed between the copy number state of each gene and each computed normal archetype score. Finally, 
region-level correlations were computed by resegmenting the genome into 20000 bins with equal mappability, 
averaging gene-level correlations within each bin.

Gastrointestinal stromal tumor (GIST) therapy responses
Gene-level TPM-normalized expression data from imatinib-sensitive (N = 5) and imatinib-resistant (N = 5) 
GIST patients were downloaded from NCBI GEO accession code GSE15580026.

Longitudinal study of metastatic breast cancer
Gene-level TPM-normalized expression data from east Asian HR+/HER2- metastatic breast cancer patients 
before and after treatment with palbociclib plus endocrine therapy (N = 23 matched pairs) were downloaded 
from NCBI GEO accession code GSE18690127.
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The Cancer Genome Atlas, TCGA
Gene-level TPM-normalized expression data from the TCGA within the breast (BRCA, N = 1111), colon 
(COAD, N = 481), and pancreatic (PAAD, N = 178) cancer cohorts were downloaded via the TCGAbiolinks R 
package23–25,33. Samples were restricted to primary tumors.

Study of site-specific adaptation of metastatic breast cancer
Raw sequencing data from the basal (triple negative) metastatic breast cancer patients used in this study (N = 7
; N = 5 caucasian, N = 2 african) are available for controlled access from dbGaP (database of Genotypes and 
Phenotypes) accession code phs000676.v2.0128. Gene-level quantile and TPM-normalized expression data were 
downloaded from GitHub https:   //gith ub. com/FaribaRoshanz amir/Metas t ati c-TN BC/t ree/main/data and were 
additionally processed as documented in21. In summary, primary tumors from each patient were used alongside 
their matched distant metastases to brain (N = 7), lung (N = 6), liver (N = 5), lymph node (N = 2), adrenal 
gland (N = 2), and skin (N = 2). The samples were then batch-corrected against normal tissue samples from 
GTEx and primary tumor samples from TCGA corresponding to each metastasis destination. Median expression 
levels of each metastasis site, normal tissue, and primary tumor were then provided. Due to the lack a of matched 
normal tissue in GTEx, the sample derived from lymph node metastasis was excluded from our analysis.

N-NMF archetype analysis
Biological data often embody the amalgamation of interconnected constituent parts. Our goal is to isolate the 
parts mathematically, revealing key structures and hidden patterns. This is commonly accomplished through 
approximate low-rank matrix and tensor factorizations, including principal component analysis (PCA) and 
non-negative matrix factorization (NMF). Notably, NMF has played a significant role in recent biological 
studies, contributing to dimension reduction, discrimination, and clustering3,4,34. When the factor weights are 
normalized (N-NMF), they encode the relative contribution of each part in contributing to the whole35. Here we 
detail our implementation of this factor or “archetype” discovery procedure.

Choosing the optimal number of archetypes
Application of NMF requires predefining the number of archetypes. The optimal number of archetypes was 
chosen using the profile log-likelihood method36. This approach models the unknown number of archetypes as 
a latent variable that can be directly optimized over. This method was selected due to its simplicity and superior 
performance compared to alternatives37. When training the archetype model on normal tissue transcriptomic 
data (GTEx), the minimum number of factors was set to k = 2 (due to the normalization constraint), with the 
maximum set at k = 30. The optimal number of archetypes, determined by maximizing the resulting profile log-
likelihood, was determined to be k = 6 (cf. SI Fig. 1A).

Archetype discovery and sample projection
Normalized nonnegative matrix factorization (N-NMF) was employed to establish a low-dimensional 
representation of gene expression profile variability across normal tissues (GTEx). This general approach seeks 
to approximate an N ×M  data matrix V, representing N gene expression values of M samples, as the product 
of two low-rank matrices W and H: V ≈ WH , where W is an N × k matrix representing coefficients of each 
gene’s contribution to the k = 6 archetypes, and H is a k ×M  matrix representing the weights of each archetype 
needed to approximate each gene expression sample (cf. Fig. 1A). In our implementation, these matrices are 
found by minimizing the Frobenius norm distance (a matrix version of the Euclidean distance) between the 
data matrix V and its approximation35. The optimal solution is obtained through 1000 iterations of the classical 
Seung-Lee algorithm38 (see SI Fig. 1B for algorithm convergence curves). Prior to this, the W and H matrices 
are randomly initialized using a uniform distribution. To avoid degeneracy in the model fitting and ensure that 
the coefficients of each archetype score sum to 1, the H matrix is column-normalized after each iteration35. 
Subsequently, when calculating archetype scores for new samples, we follow the same procedure but fix the W 
matrix to its learned values.

Projection method for archetype visualization
To visualize relationships among archetypes, we projected the six-dimensional archetype space onto a regular 
hexagon. This is done by associating each archetype with one of the six vertices of the hexagon and adding the 
vectors pointing from the center of the hexagon outward to each vertex, weighted by the archetype scores of 
each sample. This method ensures that samples near a vertex are those dominated by that archetype, while those 
along the edges show trade-offs between adjacent archetypes. Furthermore, this method ensures an unbiased 
distortion of the archetype structure.

Statistical analysis
Statistical analyses were performed using MATLAB 2020b. Associations between archetype scores and all other 
variables were determined using paired or unpaired Spearman rank correlation t-tests unless otherwise indicated. 
The Benjamini-Hochberg procedure for multiple comparisons correction was applied when appropriate and as 
indicated39. Associations with p < 0.05 were considered significant unless otherwise indicated. Kaplan-Meier 
survival analyses were performed using MatSurv40.

Data and code availability
Figure 5C was generated using R version 4.3.341. All other figures were generated using MATLAB version 9.3.3 
(2020b)42. The source data and MATLAB code that support the findings of this study are available in GitHub 
with the identifier https://github.com/Corey651/Cancer_Archetypes .
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Results
Normal tissue diversity signatures mimic oncogenic transcriptional programs
Normalized Nonnegative Matrix Factorization or N-NMF (cf. Methods and Fig. 1A,35) was used to identify 
the most representative archetypes of the normal tissue transcriptomes in the Gene-Tissue Expression Project 
(GTEx, cf. Methods). The method determined that the data was best represented by six archetypes (cf. SI Fig. 
1, Methods), each associated with distinct normal tissue types (cf. Fig. 1B) and biological pathways (cf. Fig. 
1C,D). Importantly, each normal tissue was characterized by a mixture of archetypes, although one is typically 
dominant. Related tissues, such as the constituents of the cerebrum, were seen to have more similar archetype 
scores, in accordance with expectations. Crucially, the presence of single-tissue archetypes (e.g., testis and 
liver) and distinct clustering into interpretable tissue classes suggest that our analysis avoids bias towards 
overrepresented tissue classes.

Fig. 1. Normal tissue archetypes as a paradigm to interpret cellular behaviors. (A). Flowchart of the analysis 
pipeline (see Methods: N-NMF archetype analysis). (B). Projection of median-averaged normal tissue 
transcriptomes onto the six archetypes discovered in GTEx (N = 54 distinct tissues). The coordinates of each 
tissue correspond to their degree of similarity to each archetype (the vertices, cf. Methods). Tissue groups 
enriched for a single archetype are marked by ovals, whereas those achieving a balance of multiple archetypes 
are marked by squares. (C). Heatmap of the significant associations between individual archetypes and the six 
pathways on which they were trained (Spearman rank permutation test, Benjamini-Hochberg p < 0.05). (D). 
Heatmap of the Spearman correlations between individual archetypes and the average expression levels of each 
MSigDB Hallmark gene group.
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Although the initial analysis focused on select ubiquitously utilized pathways, Figure 1D illustrates notable 
Spearman rank correlations among numerous additional Hallmark gene pathways sourced from MSigDB and the 
individual archetype scores30,31. Archetype 1 exhibited enrichment for immune pathways, including interferons, 
TNFA/NFKB signaling, and apoptosis, suggestive of an anti-apoptotic, immune-evasive phenotype termed 
“Survival”43. Archetype 2 demonstrated enrichment for cell division pathways such as the G2/M checkpoint, 
MYC targets, and DNA repair, associated with “Proliferation”44. Archetype 3, sharing some immune-related 
pathways with Archetype 1, also displayed enrichment for vascularization (angiogenesis), cell adhesion (apical 
junction), and cell signaling pathways (NOTCH, TGFB), collectively associated with “Fibroblastic” activity45. 
Archetype 4 was enriched for catabolic or “Energy” metabolism pathways. Archetype 5 was enriched for 
hormonal (estrogen, cholesterol), drug metabolism, and glycolysis pathways, collectively reflecting known 
liver functions summarized as “Biomass”. Archetype 6 showed enrichment for heme metabolism, oxidative 
phosphorylation, and HEDGEHOG signaling reflective of a differentiated phenotype. Additionally, archetype 6 
exhibited broad negative associations with immune-related pathways, contrasting with archetype 1, reminiscent 
of “Senescent” cells46.

Of note, the scores recapitulate known functional trade-offs across normal tissues, such as the elevated 
oxidative requirements of the heart and cerebrum (“Energy” and “Senescence”), the requirement for glycogen 
production in the liver (“Biomass”), and the protection, regulation, and manipulation of genetic material in 
the testis (“Proliferation”). Notably, certain tissues encompass multiple archetypes, thereby striking a balance 
between various functions. For instance, the cerebellum, akin to the testis47,48, demonstrates resilience to 
aging and accumulated DNA damage, while also exhibiting oxygen-demanding characteristics similar to the 
cerebrum49. The kidneys, expressing approximately 70% of the genes in the human body50, assume intermediate 
archetype values, reflecting their versatile functional profile.

Crucially, the normal tissue archetype-association enrichment patterns also resemble groups of pathways 
commonly co-expressed in many different types of cancer2,9,14. Specifically, several of the archetypes closely 
correspond to those previously identified in tumors: Survival → Immune interaction, Proliferation → Cell 
division, and Fibroblastic → Invasion/tissue remodeling9. Energy and Biomass, on the other hand, were 
somewhat similar to combinations of these existing signatures, whereas Senescence bore no such resemblance. 
Of note, several chemotherapies induce a treatment-resistant, senescence-like states in tumors, characterized by 
immunogenic and metabolically-active features related to those of the Senescence archetype46.

Non-canonical tissue signatures are enriched in cancer cell lines
To determine how well normal tissue archetypes capture shared expression patterns across cancers compared to 
their respective lineages of origin, we analyzed their distribution across the Cancer Cell Line Encyclopedia or 
CCLE (N = 1405, Refs.22,51, cf. Methods). Consistent with typical tumor expression patterns, the cancer cell lines 
were predominantly enriched for the Proliferation and Senescence archetypes46 with minor variation across 
lineages (cf. Fig. 2A). However, while certain cancer types exhibited preferences for specific archetypes, these 
preferences (with the exception of the liver) did not mirror those of their respective normal tissue lineages (cf. 
Fig. 2B,C).

Normal tissue signature enrichment influences pan-cancer drug responses
We next investigated the ability of normal tissue archetypes to predict tumor drug sensitivities across a variety 
of cancers. As illustrated in Fig. 3, transcriptomic signatures derived from normal tissues correlated with drug 

Fig. 2. Variation in normal archetype enrichment across cancer cell line lineages. (A). Ranges of archetype 
values in CCLE, stratified by lineage. Archetype ranges were calculated using convex hull estimation. (B). 
Heatmap of the archetype patterns from normal tissues (GTEx) with corresponding cancer cell line lineages, 
displaying the first matched tissue type for each lineage. (C). Heatmap of the average archetype Z-scores 
across tumor lineages (CCLE), computed by averaging expression within each lineage and calculating Z-scores 
relative to the overall data. Z-scores were used to correct for the average archetype trend observed in cancer 
cell lines (A).
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sensitivities in both cancer cell lines and patients. Specifically, the drug sensitivities of cancer cell lines – measured 
by the area under the dose-response curve, referred to as activity area (as defined in22) – showed a significant 
association with at least one archetype for 21 out of 24 anti-cancer drugs profiled by the CCLE, following pooling 
across cancer types and multiple comparisons correction (cf. Fig. 3A). These associations clustered by drug 
and aligned with archetype-specific pathway dependencies (cf. Fig. 1D). For example, the Survival archetype, 
linked to apoptosis, was associated with sensitivity to the anti-apoptosis inhibitor LBW242. The Proliferation 
archetype, enriched for genes involved in the G2/M checkpoint, correlated with sensitivity to topoisomerase 
inhibitors (irinotecan, topotecan) and other drugs targeting dividing cells. Finally, the Biomass archetype, linked 
to estrogen synthesis, was associated with sensitivity to EGFR inhibitors (lapatinib and erlotinib).

Proliferation archetype scores were significantly lower in gastrointestinal stromal tumor (GIST) patients 
resistant to imatinib (cf. Fig. 3B). Furthermore, treatment with palbociclib, known to elicit therapy-induced 
tumor senescence as a resistance mechanism in various cancer types52, was associated with significant increases 
in Senescence archetype scores in HR+/HER2- metastatic breast cancer samples compared to their pre-treatment 
state (cf. Fig. 3C).

Next, we examined specific drug-archetype correlations for LBW242 (Survival), irinotecan (Proliferation), 
and lapatinib (Biomass) across cancer lineages (cf. Fig. 3D–F). Although the Survival correlated with LBW242 
sensitivity in our global analysis, it was infrequently expressed in the analyzed cancer cell lines (cf. Fig. 3D). 
In contrast, the Proliferation and Biomass archetypes were significantly associated with increased sensitivity 
to irinotecan and lapatinib within individual cancer lineages, respectively (cf. Fig. 3E,F). Lineage-specific R2 
values for the irinotecan linear regressions were 0.2199, 0.2152, and 0.1689 for breast, blood, and lung lineages, 
respectively. Accordingly, lineage-specific R2 values for the lapatinib linear regressions were 0.2558, 0.0465, 
and 0.0794 for breast, colorectal, and lung, respectively. Notably, a nonlinear threshold effect was observed for 
lapatinib, where sensitivity was seen only in colorectal and breast cancer cell lines with Biomass scores above 
0.15 (cf. Fig. 3F).

Finally, when averaging activity areas and archetype values across cell lines of the same lineage, we observed 
associations for LBW242 with the Survival archetype and irinotecan with the Proliferation archetype (cf. 
Fig. 3G,H). However, no clear trend was observed between lapatinib sensitivity and the Biomass archetype, 
suggesting that either the averaging procedure obscured the association or tumor-type-specific factors are 
required to compare lapatinib sensitivities across different malignancies (cf. Fig. 3I).

Normal tissue signature enrichment improves survival prediction and distinguishes site-
specific metastases in breast cancer
Recognizing the promising capacity of normal tissue archetypes in predicting and monitoring treatment responses, 
we sought to assess their broader applicability in interpreting existing treatment guidelines and overall clinical 
outcomes. This encompassed three specific tasks. Firstly, conducting a comparative analysis between established 
treatment guidelines and those proposed by our archetypes, thereby illustrating the translational implications of 
our earlier discoveries. Secondly, evaluating the potential of these signatures for identifying vulnerable patients 
more effectively than existing stratification schemes. Lastly, characterizing archetype enrichment changes and 
potential archetype-predicted vulnerabilities associated with metastasis. To accomplish these tasks, we chose 
breast cancer as a pertinent case study due to its well-established transcriptional subtypes53, diversity of potential 
metastatic sites21,28, and ample available data for study23,28.

To characterize subtype-specific archetype enrichment patterns, we used RNA-Seq data from breast cancer 
cell lines (CCLE, N = 63) and primary patient samples from The Cancer Genome Atlas (TCGA, N = 1111
,23). Both datasets encompassed standard breast cancer subtypes, with CCLE distinguishing two basal subtypes 
(A/B) and TCGA distinguishing two luminal subtypes (A/B) along with an additional normal subtype (cf. Fig. 
4A,B). Perhaps owing to differences in purity between cell lines and clinical samples, absolute archetype scales 
differed between CCLE and TCGA. Furthermore, the correlation between breast cancer subtype and individual 
archetypes was limited, as evidenced by their substantial subtype-intrinsic variance, especially in TCGA (cf. Fig. 
4B). Of note, however, both datasets revealed concordant archetype-enrichment trends consistent with existing 
subtype-specific breast cancer therapies. Basal tumors exhibited the highest median Proliferation scores, and 
HER2+ tumors showed the highest median Biomass scores across both datasets (cf. Fig. 4A,B). Consistent with 
these enrichment trends and our findings in Fig. 3A, basal tumors are typically treated with DNA damaging 
agents, while HER2+ tumors are treated with a combination of trastuzumab and EGFR inhibitors including 
lapatinib. Furthermore, basal A, despite being described as having luminal-like properties54, showed enrichment 
for Biomass, suggesting a closer resemblance to HER2+ and potential sensitivity to lapatinib and other EGFR 
inhibitors (cf. Fig. 4A). Luminal B (LumB), considered and intermediate phenotype between luminal A (LumA) 
and basal55, also exhibited an intermediate median Proliferation score in TCGA (cf. Fig. 4B).

To evaluate whether archetype enrichment patterns can be used to predict overall survival in breast cancer, 
we conducted parallel Kaplan-Meier analyses on subgroups of patients in TCGA stratified by their archetype 
values (cf. Fig. 4C) and according to their reported breast cancer subtype (cf. Fig. 4D). Normal and HER2+ 
samples were excluded due to their limited representation and distinct treatment standards, respectively. 
Following our previous findings, the remaining patients were stratified by their Proliferation archetypes scores. 
Notably, patients with intermediate Proliferation archetype scores exhibited a significantly poorer prognosis 
compared to their counterparts (log-rank test, p = 0.00536). Furthermore, although patients with luminal B 
breast cancer showed a similar trend towards worse survival, the results did not reach statistical significance. 
As additional proofs-of-principle for the use of archetypes to predict overall patient survival, we identified 
archetype-associated groups with poorer survival in two additional TCGA cohorts: Colon Adenocarcinoma 
(N = 481) and Pancreatic Adenocarcinoma (N = 178) (24,25, cf. SI Fig. 2).
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Fig. 3. Associations between normal archetype scores and chemotherapy sensitivities across a range of cancer 
types. (A). Heatmap of the significant associations between individual archetypes and the cancer cell line 
activity areas of each measured drug (Spearman rank permutation test, Benjamini-Hochberg p < 0.05). (B). 
Boxplots comparing the Proliferation archetype scores in imatinib-sensitive and resistant GIST patient samples 
(t-test, N = 10,26). (C). Boxplot of the change in Senescence archetype scores in HR+/HER2- metastatic breast 
cancer samples (MBC) before and after treatment with palbociclib (paired t-test, N = 23,27). (D). Scatterplots 
of the Survival score vs LBW242 activity area, (E). Proliferation score vs irinotecan activity area, and (F). 
Biomass score vs lapatinib activity area, stratified by cancer lineage. (G). Scatterplots of the Survival score vs 
LBW242 activity area, (H). Proliferation score vs irinotecan activity area, and (I). Biomass scores vs lapatinib 
activity area, averaged by cancer lineage. Cancer lineages shown in (D–F) were manually selected based on 
their total number of samples and average archetype expression levels. Cell lines with 0 activity area, indicating 
incomplete information, were excluded from analysis. To enhance visibility of all data points, regression lines 
were excluded.
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Fig. 4. Associations between normal archetype scores and distinct breast cancer behaviors. (A). Boxplots of 
the Proliferation (blue) and Biomass (red) archetype scores across breast cancer cell lines, stratified by subtype. 
(B). Boxplots of the Proliferation (blue) and Biomass (red) archetype scores across primary breast tumors in 
TCGA, stratified by subtype. (C). Kaplan-Meier survival analysis, stratified by Proliferation archetype score. 
(D). Kaplan-Meier survival analysis, stratified by reported breast cancer subtype. Survival analyses utilized 
overall survival and RNA-Seq data provided by TCGA. Tables below indicate the number of surviving patients 
at each time point. Significance was determined using a log-rank test. (E). Projection of median-averaged 
site-specific basal breast metastases (BBC, black) and matched normal tissues from GTEx (orange) projected 
onto the six normal tissue archetypes. (F). Heatmap of the median archetype patterns from breast metastases, 
normal tissues, and primary tumors associated with each site of metastasis.
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Finally, to characterize archetype enrichment patterns in a representative metastasis model, we examined 
an additional dataset comprising median gene expression profiles of basal breast cancer from primary tumors 
and five distinct metastatic sites: brain, lung, liver, adrenal gland, and skin (21,28, cf. Methods). Consistent 
with21, breast metastases exhibited archetype enrichment patterns resembling their destination organs more 
than their primary tumor site (cf. Fig. 4E). However, these distant metastases were less enriched for destination 
archetypes compared to primary tumors from the same location, indicating an intermediate behavior (cf. Fig. 
4F). Nevertheless, these findings, in conjunction with our previous results, could suggest that metastatic acquire 
treatment sensitivities associated with their destination archetypes.

DNA alterations guide, but do not predict, the onset of non-canonical tissue signatures
We next used CCLE to evaluate the association between tumor archetype scores, copy number alterations 
(CNA), and mutations (cf. Methods and Fig. 5). Our analysis revealed significant Spearman rank correlations 
(Benjamini-Hochberg p < 0.05) involving 18 out of 73 TCGA considered hotspot mutations and at least one 
normal tissue archetype (cf. Fig. 5A). Notably, TP53 mutation was one of the strongest correlates with the 
Proliferation archetype, aligning with the expected link between TP53 dysregulation and a shift towards the 
most commonly enriched tumor archetype across various cancer cell lines (cf. Fig. 2A). However, the effect size 
was relatively modest, with TP53 mutation leading to an average increase in the Proliferation archetype score of 
approximately 0.1 (cf. Fig. 5B).

Our investigation also identified several CNAs significantly associated with normal tissue archetype scores 
(cf. Fig. 5C). Each archetype was found to be associated with a distinct set of CNAs, similar to our findings 
regarding mutations. Moreover, multiple regions containing CNAs measured in MSK-IMPACT (a curated DNA 
sequencing panel of cancer driver genes,56 were among the top 1% of Spearman correlations (cf. Fig. 5C, inset). 
This suggests that whole-genome DNA alteration profiles may be able to predict details about tumor archetypes.

To test this hypothesis, we conducted linear regressions using previously identified features, including 
mutations alone (Fig. 5D), CNAs from MSK-IMPACT alone (Fig. 5E), and mutations combined with CNAs (Fig. 
5F). Despite incorporating all 73 hotspot mutations and the top 500 principal components of the CNA data, no 
regression yielded an R2 value exceeding 0.60. Consequently, our analyses suggest that normal tissue archetypes 
offer independent prognostic information about tumors beyond the predictive capacity of the considered genetic 
features.

Discussion
We introduced a strategy to standardize tumor phenotype quantification across diverse cancers and datasets 
by identifying conserved transcriptional signatures called archetypes. In doing so, our analysis identified six 
archetypes – Survival, Proliferation, Fibroblastic, Energy, Biomass, and Senescence – defining common modes 
of transcriptional variability in both normal tissues and multiple cancers. This universality allows the prediction 
of disease characteristics, such as drug sensitivities and overall patient survival, across multiple cancers using 
standardized signatures. Importantly, their association with normal tissue transcriptional modules suggests a 
connection between site-specific adaptive processes during metastasis and potential therapeutic vulnerabilities. 
These features, not predictable from mutations and copy number alterations alone, may enhance prognostic 
capabilities alongside established DNA-alteration-driven personalized frameworks in cancer medicine57,58.

Site-specific archetype adaptation may present a novel therapeutic vulnerability in metastatic cancers. 
Consistent with our findings, prior studies indicate that metastatic tumors express genes associated with their 
target tissues21,59. Thus, the dual role of archetypes as markers for such tissue-specific gene expression patterns 
and predictors of tumor drug sensitivities suggests that site-specific archetype enrichment patterns may highlight 
vulnerabilities in metastatic tumors to treatments associated with the archetypes of their destination tissues. For 
instance, breast metastases to the liver, regardless of primary HER2+ status, are anticipated to be responsive to 
EGFR inhibitors such as lapatinib, suggesting a potential untapped therapeutic vulnerability60. The question 
remains whether tumors adapt their archetypes post-metastasis or if cell populations enriched for destination-
specific archetypes migrate to those locations61. If the latter, interventions could potentially steer primary tumor 
archetypes, guiding eventual metastases to more manageable sites62.

Our findings suggest that DNA alterations and archetype enrichment offer distinct yet complementary 
information. Indeed, recent studies support the notion that DNA alterations alone do not reliably predict 
transcriptional behaviors or where a cancer will metastasize to63,64. Nevertheless, our alteration correlation map 
(cf. Fig. 5) may aid in interpreting the impact of specific mutations and copy number alterations on tumor 
phenotype. Conversely, DNA alterations may act, in part, as archetype regulatory elements, steering tumors into 
specific behaviors and consequently modulating their drug sensitivities. For instance, our analysis associates 
mutation in BRAF with a shift towards the treatment-resistant Senescence archetype, aligning with its role in 
treatment-resistant cancers22. A noteworthy implication is that such alterations might inadvertently sensitize 
tumors to therapies associated with their new archetype compositions, a phenomenon termed collateral drug 
sensitivity65.

The archetype mixture model was trained using normal tissues to maximize signal-to-noise and to compare 
them with known cellular trade-offs. Furthermore, while we restricted our gene set to five hallmark pathways 
of broad relevance to cancer, additional archetypes could be contained in the remaining genes. However, even 
with these restrictions, our archetypes are in broad agreement with known cancer hallmarks14. Furthermore, 
the utilization of N-NMF allows our framework to be easily augmented with additional archetypes and data 
constraints, allowing our foundation to be used as a starting point for additional development35.

There are important caveats and considerations for the current analyses. The N-NMF method requires 
nonnegative data, rendering it unsuitable for application to Z-scores or other transformations containing 
negative values. Data normalization can also introduce spurious anticorrelations. Thus, when generating 
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archetypes through N-NMF, it is advisable to compare them with clusters identified in unnormalized data or 
established biological labels, as we did by mapping the archetypes to distinct tissues. Bulk tumor archetype 
enrichment patterns may be confounded by stromal tissue infiltration, despite some evidence to the contrary21. 
Furthermore, the significant difference in scale between bulk tumor archetype scores and those from cancer cell 
lines suggests that current drug sensitivity models cannot be directly applied to bulk tumor samples. The analysis 
was also biased toward more common cancer types, which may affect the generalizability of the findings. Finally, 

Fig. 5. Associations between normal archetypes, copy number alterations (CNA), and mutations in cancer 
cell lines. (A). Heatmap of the significant associations between individual archetypes and recurrent TCGA 
hotspot mutations found in CCLE (Spearman rank permutation test, Benjamini-Hochberg p < 0.05). (B). 
Histograms of the Proliferation archetype score in cell lines with (orange) and without (blue) a TP53 mutation. 
(C). Heatmap of the significant genome-wide bin-averaged associations between individual archetypes and 
gene-level CNAs found in CCLE (Spearman rank permutation test, Benjamini-Hochberg p < 0.05). The inset 
above shows the maximum absolute correlation of each bin across the individual archetype scores. Genes 
labeled and marked in red on the inset were found in both in MSK-IMPACT and in the top 1% of correlations 
to one of the six archetypes. (D). Linear prediction of the Proliferation archetype scores from the 73 recurrent 
hotspot mutations retained in CCLE. (E). Linear prediction of the Proliferation archetype scores from the top 
500 principal components of the gene-level CNA data in CCLE. (F). Linear prediction of the Proliferation 
archetype scores from the combined features used in D and E. All regressions were performed using the 
MATLAB Regression Learner Application. CNA regression analysis was restricted to genes from MSK-
IMPACT.
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a substantial proportion of drug sensitivity cannot be fully explained by applying the same archetype regression 
models across all tumor types, highlighting the need to also include tumor-specific contextual features.

In summary, six transcriptional signatures identified in normal tissues characterized heterogeneity patterns 
across a diverse range of human cancers. These signatures predicted both drug sensitivities and prognosis, going 
beyond what could be anticipated from DNA alterations alone10,10,63,66. Notably, these signatures are specifically 
concentrated in certain sites of basal breast cancer metastases, suggesting a potential new approach for treating 
metastatic cancers. Ultimately, recognizing the clinical significance of shared transcriptomic behaviors across 
human cancers may lead to complementary therapies targeting standardized signatures rather than cancer-
specific features10,62.
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