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Can neural networks acquire a structural bias from raw linguistic data?
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Department of Linguistics, New York University
New York, NY 10003 USA

Samuel R. Bowman (bowman@nyu.edu)
Department of Linguistics & Center for Data Science & Department of Computer Science, New York University

New York, NY 10003 USA

Abstract

We evaluate whether BERT, a widely used neural network for
sentence processing, acquires an inductive bias towards form-
ing structural generalizations through pretraining on raw data.
We conduct four experiments testing its preference for struc-
tural vs. linear generalizations in different structure-dependent
phenomena. We find that BERT makes a structural general-
ization in 3 out of 4 empirical domains—subject-auxiliary in-
version, reflexive binding, and verb tense detection in embed-
ded clauses—but makes a linear generalization when tested on
NPI licensing. We argue that these results are the strongest ev-
idence so far from artificial learners supporting the proposition
that a structural bias can be acquired from raw data. If this con-
clusion is correct, it is tentative evidence that some linguistic
universals can be acquired by learners without innate biases.
However, the precise implications for human language acqui-
sition are unclear, as humans learn language from significantly
less data than BERT.

Keywords: inductive bias; structure dependence; BERT;
learnability of grammar; poverty of the stimulus; neural net-
work; self-supervised learning

Introduction
Humans appear to use structural biases to guide language ac-
quisition. A classic example is the rule for subject-auxiliary
inversion: Native English speakers uniformly acquire a rule
like the structural generalization in Figure 1 that makes refer-
ence to hierarchical syntactic structures, despite the fact that
the raw linguistic input often supports linear generalizations
which are intuitively just as simple (Chomsky, 1965). Hu-
mans are not alone in possessing this inductive bias: Prior
investigations have identified some artificial learners with a
structural bias by virtue of having a significantly restricted the
hypothesis space (Perfors, Tenenbaum, & Regier, 2011) or
a hierarchically structured architecture that learns from pre-
parsed data (McCoy, Frank, & Linzen, 2020).

However, these results cannot tell us whether a learner
starting with very weak biases can acquire a structural bias
merely from exposure to raw linguistic data. While inductive
biases are often understood to be unchangeable properties of
a learner, this need not be the case. For instance, in one domi-
nant paradigm in natural language processing, pretraining on
raw data is used to create a general purpose sentence process-
ing model like BERT (Bidirectional Encoder Representations
from Transformers; Devlin, Chang, Lee, & Toutanova, 2019),
which can subsequently be fine-tuned to perform a down-
stream task. The model’s inductive biases with respect to the

Training
Has the man who gone has seen the cat?Has the man who has gone seen the cat?

Has the man seen the cat who has gone?

Has the man has seen the cat who gone?

Has the man seen the cat who has gone?

Has the man has seen the cat who gone?

has the man who has gone has seen the cat?

Test behavior: Structural bias observed Test behavior: Linear bias observed

Linear Generalization: Move the 
linearly last auxiliary to the front.

Structural Generalization: Move the 
structurally highest auxiliary to the front.

Hypothesis Space ?

Figure 1: Illustration of the poverty of the stimulus design ex-
periment for subject-auxiliary inversion. Colors correspond
to the binary classes for sentences.

downstream task may be substantially influenced by the prior
knowledge acquired during pretraining.

In this work, we present new experimental evidence that
BERT may acquire an inductive bias towards structural gen-
eralizations from exposure to raw data alone. We conduct
four experiments inspired by McCoy, Frank, and Linzen
(2018, 2020) to evaluate whether BERT has a structural or
linear bias when generalizing about structure-dependent En-
glish phenomena. We follow the poverty of the stimulus de-
sign (Wilson, 2006), outlined in Figure 1. First, we fine-
tune BERT to perform a classification task using data inten-
tionally ambiguous between structural and linear generaliza-
tions. Then, we probe the inductive biases of the learner
by observing the behavior of the learner on held-out exam-
ples that disambiguate between the generalizations. The ex-
perimental datasets illustrate three structure dependent rules
of English grammar regarding subject-auxiliary inversion,
reflexive-antecedent agreement, and negative polarity item
(NPI) licensing. A fourth dataset classifies sentences based
on an arbitrary rule: whether a verb in an embedded clause is
in the past tense. The data is generated from templates using
the generation tools and lexicon created by Warstadt, Cao, et
al. (2019) and Warstadt, Parrish, et al. (2019).
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The results of these experiments suggest that BERT likely
acquires a inductive bias towards structural rules from self-
supervised pretraining. BERT generalizes in a way consistent
with a structural bias in 3 out of 4 experiments: those involv-
ing subject-auxiliary inversion, reflexive binding, and embed-
ded verb tense detection. While these experiments leave open
several alternative explanations for this generalization behav-
ior, they add to mounting evidence that significant syntac-
tic knowledge, including a structural biases, can be acquired
from self-supervised learning on raw data.

Background & Related Work
Self-supervised Learning and BERT
Recent advances in machine learning for natural language
processing give new reason to believe that low-bias learn-
ers can acquire significant grammatical knowledge from raw
data. The Transformer neural network architecture (Vaswani
et al., 2017) used in models like BERT has very weak bi-
ases: It is a universal approximator of the class of sequence
transduction functions (Yun, Bhojanapalli, Rawat, Reddi, &
Kumar, 2019), and it has been applied effectively in non-
linguistic domains such computer vision (Parmar et al., 2018)
and protein sequence modeling (Rives et al., 2019). However,
rather than training a low bias model from scratch to perform
a particular linguistic task, recent results show that it is far
more more effective to pretrain a general purpose model on
raw data and subsequently fine-tune it on a downstream task
(e.g. Howard & Ruder, 2018). The implication is that they
acquire helpful biases from pretraining.

Crucially, these models are usually pretrained with only
raw data using the technique of self-supervised learning,
which circumvents the need for labeled data by using the
data itself as the labels. The most common self-supervised
tasks for pretraining are the language modeling task, where
the objective is predict the next word in a string (e.g. Peters
et al., 2018; Radford et al., 2019), and, in the case of BERT,
the cloze task where the objective is predict the identity of a
masked token anywhere in a string.

Despite containing no explicit information about grammat-
ical concepts, self-supervised tasks appear to teach neural
models significant knowledge of grammar and hierarchical
syntax. These models can perform human-like acceptabil-
ity judgments, which are understood in linguistics as a probe
on linguistics competence (Schütze, 1996). When fine-tuned
to perform acceptability judgments, BERT approaches hu-
man performance on the Corpus of Linguistic Acceptabil-
ity (CoLA; Warstadt, Singh, & Bowman, 2019), a dataset
of over 10k example sentences from linguistics publications
with Boolean acceptability judgments. Language models
can also correctly discriminate minimal pairs for subject-
verb agreement (Gulordava, Bojanowski, Grave, Linzen, &
Baroni, 2019), wh-dependencies (Wilcox, Levy, Morita, &
Futrell, 2018), and numerous other linguistic phenomena in
English (Warstadt, Parrish, et al., 2019) without any super-
vised training on acceptability. BERT’s internal representa-

tions appear to attend to linguistic features such as syntac-
tic category (Clark, Khandelwal, Levy, & Manning, 2019)
and contain sufficient information from which to recover a
dependency parse for an inputted sentence (Hewitt & Man-
ning, 2019). However, it is not known whether BERT is
biased towards forming generalizations based on structural
features when fine-tuned on structure-dependent phenomena.
Indeed, it is possible that BERT could acquire knowledge of
hierarchical syntax but still preferentially use surface features
to generalize. Our experiments are designed to address this
question.

Structure Dependence & the Innateness Hypothesis
The learnability of structural bias has played a large role in
debates about human language acquisition. Chomsky (1965,
1971) proposes that humans have an innate bias towards
learning structural grammatical rules. For example, children
must learn a general rule for subject-auxiliary inversion pri-
marily from input like (1). With this input, a learner could
form a structural generalization (front the highest auxiliary in
the corresponding declarative) or a linear one (e.g. front the
first or last auxiliary), but human learners always choose the
former. That is, no human learner of English acquires a lin-
ear rule that produces the form in (2a) over (2b). From such
examples, Chomsky (1971) concludes that humans have an
innate preference for structure-dependent rules. Otherwise it
would be difficult to explain how we so consistently avoid
deeply un-language-like hypotheses in lieu of significant dis-
confirming evidence.

(1) a. The cat has gone.
b. Has the cat gone?

(2) a. *Is the man has seen the cat who going?
b. Has the man seen the cat who is going?

These examples play a key role in Chomsky’s influential
argument from the poverty of the stimulus in support of this
hypothesis. A version of the argument is given below:1

Premise 1 Humans form grammatical hypotheses about their na-
tive language using either innate biases or data-driven learning.

Premise 2 Human language learners preferentially form struc-
tural hypotheses over equally simple linear hypotheses.

Premise 3 The raw linguistic input during language acquisition
favors neither the structural nor the linear hypothesis.

Conclusion Humans’ preference for structural generalization is
not learned from the raw linguistic input (or any other part of the
learner’s environment), i.e., it is innate.

This conclusion has spurred much fruitful research into the
nature of linguistic universals (see e.g., Chomsky, 1981) and
the argument has been fleshed out with evidence child lan-
guage acquisition (Crain & Nakayama, 1987; Yang, 2000).
Nonetheless the argument’s validity has been at times been
questioned (Pullum & Scholz, 2002; Reali & Christiansen,

1See Laurence and Margolis (2001) and Pullum and Scholz
(2002) for a more detailed exposition of this argument.
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2005; Perfors et al., 2011). If the premises are granted, the
reasoning to the conclusion is sound. Premise 1 is a tautology
given a suitable definition of data-driven learning. Premise 2
is an robust empirical result of generative linguistics.

Therefore, those arguing against this result have generally
taken issue with Premise 3 of the argument, which I refer
to henceforth as the impoverishment assumption. For in-
stance, Pullum and Scholz (2002) conduct a corpus search to
show that such sentences that would provide evidence for the
structural rule such as (2b) are attested in naturalistic speech.
However, Legate and Yang (2002) counter that such examples
are insufficiently frequent to meaningfully impact learning.
More importantly, whether or not crucial evidence is lack-
ing for the acquisition of subject-auxiliary inversion, there
are certainly numerous other structural rules which have been
proposed for natural languages for which crucial examples
are vanishingly rare.

Reali and Christiansen (2005) articulate a broader criticism
of the impoverishment assumption. It is not only sentences of
the form in (2b) that count as evidence for the structural hy-
pothesis. Rather, data from all domains of language provide
indirect evidence that militates in favor of a structural under-
standing of grammar. Statistical regularities in language, they
suggest, may be sufficient for “bootstrapping syntax”. In-
deed, Perfors et al. (2011) find that Bayesian grammar induc-
tion system given a choice between several grammar types
will preferentially hypothesize phrase-structural rules for En-
glish over a flat grammar when presented with child directed
speech. This result suggests that the raw data seen be chil-
dren does favor the acquisition of structural rules in general,
counter to the impoverishment assumption, at least if the hy-
pothesis space is strictly limited. However, their models are
not low-bias learners, nor do they discover syntactic represen-
tations on their own. Rather, they are presented with several
hand-crafted candidate grammars of various types including
a generally adequate phrase-structure grammar, as well as the
syntactic categories of the input data.

Testing the Biases of Neural Networks
There have been several prior efforts to test neural networks
for a structural bias in the domain of subject-auxiliary inver-
sion (Lewis & Elman, 2001; Frank & Mathis, 2007; McCoy
et al., 2018, 2020). These studies all adopt some form of the
poverty of the stimulus design (Wilson, 2006), an experimen-
tal paradigm that probes the inductive biases of learners by
training them on data that is ambiguous between several hy-
potheses, and evaluating them on examples that disambiguate
between these hypotheses. For instance, in a series of papers
McCoy et al. (2018, 2020) train neural networks to generate
a polar question from the corresponding declarative, using
training and test data similar to our subject-auxiliary inver-
sion paradigm shown in Table 1. They find that, while tree-
structured models trained using parsed data make a structural
generalization, low-bias models never do so consistently.

However, there is good reason to revisit this question with
BERT. McCoy et al. do not evaluate BERT, but rather LSTMs

that are pretrained on an auto-encoding task in which the
model must reproduce the input sentence verbatim. Further-
more, the pretraining data is not naturally occurring, but gen-
erated from a restricted lexicon and small context-free gram-
mar. Conneau, Kruszewski, Lample, Barrault, and Baroni
(2018) have already been shown that auto-encoders are much
weaker at learning syntactic features than surface features
even with naturalistic training data. Thus, there is little reason
to expect that BERT would perform similarly at this task.

Materials & Methods
We apply the poverty of the stimulus design to test whether
unsupervised pretraining gives BERT a structural bias. We
conduct four experiments using semi-automatically generated
data illustrating different structural generalizations, includ-
ing the subject-auxiliary inversion paradigm investigated by
McCoy et al. (2018, 2020). Each experiment consists of a
training phase in which BERT is fine-tuned to classify sen-
tences from an impoverished paradigm consistent with both a
structural hypothesis and a linear hypothesis. Then, the clas-
sifier is evaluated on the full paradigm which disambiguates
between the two hypotheses. If the classifier makes the struc-
tural generalization, this is evidence that BERT has learned a
structural bias from pretraining on raw data.

Data and Tasks
Examples from the four experimental datasets are shown in
Table 1. Each dataset is associated with a binary classification
task. In the subject-auxiliary inversion, reflexive, and NPI
datasets, the classes correspond to grammatical acceptability
of the sentence. In the tense dataset, the classes correspond to
whether or not the embedded verb appears in the past tense.

The tense detection task enables us to draw additional con-
clusions not possible with the acceptability task alone. Since
BERT appears to acquire some knowledge of acceptability
from pretraining, it might converge on the structural general-
ization on the acceptability task not by forming a new struc-
tural generalization from ambiguous training data, but by ac-
cessing an implicit structural rule acquired during pretraining.
In the tense detection task there is no reason to expect BERT
has acquired the structural generalization during pretraining,
and the structural and linear hypotheses are equally arbitrary.
Thus, this paradigm tests whether BERT has a structural bias
when forming completely novel generalizations.

Subject-Auxiliary Inversion In the subject-auxiliary in-
version dataset, the structural and linear hypotheses are de-
fined in terms of where the auxiliary at the front of the sen-
tence has moved from. Each sentence contains two clauses—
a main clause and an embedded relative clause—each with an
auxiliary verb. In the training examples the embedded auxil-
iary precedes the main auxiliary because the relative clause
modifies the subject. In the test examples the embedded aux-
iliary follows the main auxiliary because the relative clause
modifies the object. Therefore, a linear generalization which
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Experiment Set Acceptability Unacceptable

S-Aux-Inv Training Has the man who is going seen the cat? Is the man who going has seen the cat?
Test Has the man seen the cat who is going? Is the man has seen the cat who going?

Reflexive Training The boy that loves himself talks to ladies. The boy that loves themselves talks to ladies?
Test The boy that loves ladies talks to himself. The boy that loves ladies talks to themselves.

NPI Training Kids who saw the cats won’t get any dogs. Kids who saw any cats won’t get the dogs.
Test Kids who won’t see any cats get the dogs. Kids who won’t see the cats get any dogs.

Embedded Past Embedded Present

Tense Training The critic who sang arias praised a lady. The critic who sings arias praised a lady.
Test The critic praised a lady who sang arias. The critic praised a lady who sings arias.

Table 1: Data from the subject-auxiliary inversion experiment. According to the relevant linear generalizations, sentences
shaded in gray will belong to the positive class, and sentences in white belong to the negative class.

targets the last auxiliary will give the same result for the train-
ing as a structural generalization that targets the main auxil-
iary, but the two generalizations diverge for the test examples.

Reflexive Binding In the reflexive dataset, adapted from
Marvin and Linzen (2018), the structural and linear hypothe-
ses depend on the relation between the reflexive pronoun
(e.g. himself ) and a binder noun phrase that agrees with it
in person and number (e.g. the boy). To a first approxima-
tion, the structural c-command relation must hold between
the binder and reflexive in order for the sentence to be accept-
able (Chomsky, 1981). However, in each training examples,
the binder also precedes the reflexive only in the acceptable
sentences. These generalizations diverge in the test examples,
in which there is an unacceptable sentence where the binder
precedes, but does not c-command, the reflexive.

NPI Licensing In the NPI dataset, also adapted from
Marvin and Linzen (2018), the structural and linear hypothe-
ses depend on the relation between a negative polarity item
(NPI; e.g., any) and negation. Loosely speaking, negation
must c-command the NPI in order for the sentence to be ac-
ceptable. The hypotheses are the same (mutatis mutandis) as
those for the reflexive dataset.

Tense In the tense dataset, each sentence has a main verb
and an embedded verb, and the classes correspond to whether
the embedded verb has past tense inflection. A related ob-
jective is used to evaluate structural knowledge in pretrained
models by Shi, Padhi, and Knight (2016) and Conneau et al.
(2018). As with the subject-auxiliary inversion dataset, the
embedded verb precedes the main verb in the training exam-
ples, and follows it in the test examples. Therefore, struc-
tural and linear generalizations about the position of the verb
learned from the training data will diverge for the test data.

Data Generation The data for the experiments are auto-
matically generated using a method similar to that adopted by

Ettinger, Elgohary, and Resnik (2016) and Marvin and Linzen
(2018). Sentences are generated from templates describable
by a simple context-free grammar. Lexical items are sampled
from a hand-crafted vocabulary of over 1000 items labeled
with over 30 features required for morphological, syntactic,
and semantic well-formedness. Each generated dataset con-
sists of training, development, and test sets each with 10k ex-
amples. Examples with similar lexical content are generated
in sets of 4, as in Table 1. Within a set of 4, the training items
form a minimal pair, as do the test items.

Methods
In each experiment, we train 20 random restarts of classifiers
on top of BERT using the labeled training items. Follow-
ing Devlin et al. (2019), we fine-tune BERT itself in addi-
tion to the classifier layer during training. We use Hugging-
face’s (Wolf et al., 2019) implementation of BERT-Large in
PyTorch (Paszke et al., 2017), and carry out fine-tuning in
jiant (Wang et al., 2019). All 20 random restarts for each
experiment use identical hyperparameters. The only differ-
ence between them is the random seed used to initialize the
classifier weights. The models use a learning rate of 2e-5,
a dropout rate of 0.2, and a batch size of 16. Training is
carried out for 4 epochs, or until 5 evaluations occur with-
out any improvement in development accuracy. During train-
ing, the model is evaluated on the development set after 10
batches. These hyperparameters are selected based on an ex-
ploratory grid search using the recommended hyperparamer
ranges suggested by (Devlin et al., 2019). The hyperparam-
eters selected for the experiments consistently led to the best
or near-best development accuracy for each of the datasets.

Results
The results for the experiments in Figure 2 show that BERT
has an overwhelming tendency to generalize in a way con-
sistent with structural generalization in the subject-auxiliary
inversion, reflexive, and tense settings, but not in the NPI set-
ting. This plot shows the proportion of test minimal pairs
classified correctly, rather than the proportion of test items
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Figure 2: Test results for 20 random restarts of the 4 experi-
ments. “% Test Pairs Correct” is the percentage of minimal
pairs from the test templates correctly classified. Individual
runs are plotted as x’s with random horizontal jitter.

classified correctly. Because there are four ways to classify
a pair of items, a totally random classifier would have an ex-
pected accuracy of 25% on this metric. In each experiment,
minimal pair accuracy on held-out examples from the train-
ing templates is over 90%, indicating that the models robustly
learned a generalization consistent with the training data.

On the subject-auxiliary inversion task, BERT classifiers
appear to make structural generalization with very high con-
sistency and accuracy. The median minimal pair accuracy is
over 99%, and the minimum is over 95%.

The reflexive classifiers also appear to make the structural
generalization in most cases, but are less consistent. The me-
dian minimal pair accuracy is over 92% and the maximum
exceeds 99%. However, there is a portion of classifiers that
classify the test minimal pairs correctly only about half the
time, despite achieving high performance on the training ex-
amples. The other half of the time, they tend to classify the
test examples in a way consistent with the linear hypothesis.
However none of these classifiers systematically makes pre-
dictions consistent with the linear generalization.

The tense classifiers make a structural generalization very
consistently, with a median minimal pair accuracy over 99%.
There are two outliers where accuracy is between 75%-90%.

Finally, the results from the NPI experiment are the ex-
ceptional case where we do not observe behavior consistent
with a structural generalization. The median minimal pair ac-
curacy is effectively 0%, and the maximum is barely above
chance at 32%. While every model classifier is able to clas-
sify the training pairs perfectly, only 6/20 consistently clas-
sify the test pairs in the same way. All of these classifiers
learn a generalization that is different from the hypothesized
linear generalization shown in Table 1. We find that their per-
formance is consistent with grouping together all and only

sentences with an NPI towards the end of the sentence.

Discussion
These results suggest that it is likely that BERT does acquire
some form of a structural inductive bias from self-supervised
pretraining, at least outside of the NPI domain. They point
more strongly in this direction than earlier results by McCoy
et al. (2018, 2020). If this interpretation is correct, it would
cast some doubt on the impoverishment assumption from
Chomsky’s (1965) argument from the poverty of the stimu-
lus by showing that raw data does contain overwhelming ev-
idence that language is hierarchical. If some learner does not
require innate bias to discover the utility of preferring struc-
tural rules over linear ones, it stands to reason humans may
not either. On the other hand, our results are consistent with
other interpretations, and so we caution against leaping to this
strong conclusion, at least without further evidence.

The NPI Results First, in the NPI domain, BERT does not
show a structural bias. However, it does not immediately
follow that BERT does not have a structural bias at all. By
virtue of the paradigm’s design, the classes that the model
converged on are consistent with both a linear and a struc-
tural position. As mentioned above, 6/20 classifiers classified
the test items systematically, though not in the way predicted
in Table 1. Instead, they grouped the top left and bottom right
sentences in one class, and the top right and bottom left sen-
tences in the other. The sentences in the first class might be
characterized as all sentences with an NPI at the end of the
sentence (a linear generalization), or all sentences with an
NPI in the main clause (a structural generalization). Addi-
tional experiments are needed to determine which of these
outcomes has occurred.

Furthermore, humans do not necessarily show a structural
bias in processing similar examples. The unacceptable test
items in the NPI paradigm, where the negation precedes the
NPI, are known as NPI illusions, because they can spuriously
appear to be acceptable to humans, and pattern with gram-
matical sentences in self-paced reading and ERP experiments
(Xiang, Dillon, & Phillips, 2009). Thus, NPIs may in retro-
spect not be the clearest example of humans’ structural bias.

Limitations of the Poverty of the Stimulus Design Some
doubts remain even in the domains where BERT appears to
show a structural generalization. Some surface features could
accidentally give the same predictions as the structural gen-
eralization on the test data. For instance, in the subject-
auxiliary inversion data in Table 1, a classifier could coinci-
dentally identify the acceptable examples by learning to iden-
tify a string with a relativizer adjacent to an auxiliary (e.g.
who is). In fact, we control for this particular confound by
generating acceptable examples where a finite verb follows
the relativizer (e.g. Has the man who went seen the cat?).

However, there are likely other surface generalizations that
are consistent with the results. This problem can be addressed
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by training and evaluating on data that contradict these gen-
eralizations, but alternative convergent hypotheses cannot be
eliminated entirely. This is a fundamental limitation of the
poverty of the stimulus design: It is not possible to determine
that BERT is adopting any particular generalization.

That said, if we continue to find convergent from multi-
ple unrelated domains, Occam’s Razor tells us that we should
conclude BERT has a structural bias. Given the large num-
ber of conceivable surface generalizations, let us assume that
an arbitrary generalization is equally likely to support any of
the four classification behaviors for the test minimal pair. It
follows that if the classifier does make some surface gener-
alization, there is a 1 in 4 chance for each experiment that
it would accidentally align with the structural generalization.
Then the probability that this chance alignment would occur
in at least 3 out of 4 domains is about 5%.

This worry could be alleviated further if it could be shown
that baseline models without unsupervised pretraining tend to
make the linear generalization on these datasets. These exper-
iments will have to be included in future work. However, at
present, the results of McCoy et al.’s (2018) experiments can
be used as a proxy. As described in Section (2), these experi-
ments test the ability of sentence encoders without substantial
unsupervised pretraining to generalize from a paradigm re-
sembling the polar question data in my experiments. In 5 out
of 6 of the model architectures they tested, the linear gener-
alization was preferred. While the task in their experiment is
different the acceptability judgment task in the present work,
based on this finding it seems that sequence models without
substantial unsupervised pretraining are likely to prefer the
linear generalization in the polar question domain.

Conclusion This work presents new evidence that high-
lights the possibility that language learners could acquire a
structural inductive bias from statistical regularities in raw
linguistic data. In particular, we find the most comprehen-
sive evidence to date (to our knowledge) of a low-bias learner
demonstrating a structural bias acquired through unsuper-
vised learning on raw data. However, evidence from other
empirical domains is needed to fully evaluate this conclusion.

Future work should draw more direct connections between
neural networks and human language learners. BERT is
trained on data from domains far outside the input to human
learners, and in much greater quantities. Indeed, the quantity
and quality of data are two other pillars of Chomsky’s (1965)
argument from the poverty of the stimulus. Therefore, it is
essential to replicate these experiments with models trained
on less data, which bears greater resemblance to the input to
a child. Furthermore, (Chomsky, 1965) observes that human
languages generally lack linear rules. If neural networks can
acquire human-like biases, they should also struggle to form
certain kinds linear generalizations. As techniques for ma-
chine language learning and self-supervised pretraining con-
tinue to advance, we expect to learn more about which lin-
guistic universals are and are not learnable from data.
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