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Physics of Laser-Driven Plasma-Based Accelerators

Eric Esarey and Carl B. Schroeder
Center for Beam Physics, Accelerator and Fusion Research Division,

Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720

(Dated: June 30, 2003)

The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes
the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield
accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear
plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting
and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain
are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion,
as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas
is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform
plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse
laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed.
Recent experimental results are summarized.

I. INTRODUCTION

Laser-driven plasma-based accelerators were originally
proposed by Tajima and Dawson in 1979 [1]. John Daw-
son, the father of plasma-based accelerators, who passed
away in 2001, was responsible for many of the key devel-
opments in this field, including the plasma beat wave ac-
celerator, the laser wakefield accelerator, and the photon
accelerator [1–3]. In addition, he was one of the early pio-
neers of particle-in-cell simulation of plasmas [4–6], which
is now an important tool in the study of plasma-based
accelerators. During his lifetime, the field of plasma-
based accelerators has grown into a world-wide research
effort with ongoing experimental programs in France,
Germany, Japan, the UK, and the United States, to name
a few [7]. Much of this growth is due to the rapid devel-
opment of chirp-pulse amplification (CPA) laser technol-
ogy, pioneered by G. Mourou and his colleagues [8–10],
making readily available compact sources of intense, high
power, ultrashort laser pulses.

Plasma-based accelerators are of great interest because
of their ability to sustain extremely large acceleration
gradients. The accelerating gradients in conventional
radio-frequency linear accelerators (linacs) are currently
limited to roughly 100MV/m, partly due to breakdown
that occurs on the walls of the structure. Ionized plas-
mas, however, can sustain electron plasma waves with
electric fields in excess of the nonrelativistic wavebreak-
ing field [11] E0 = cmeωp/e, or

E0(V/m) ≃ 96
√

n0(cm−3) , (1)

where ωp = (4πn0e
2/me)

1/2 is the electron plasma fre-
quency, n0 is the ambient electron number density, me

and e are the electron rest mass and charge, respec-
tively, and c is the speed of light in vacuum. For
example, a plasma density of n0 = 1018 cm−3 yields
E0 ≃ 100GV/m, which is approximately three orders
of magnitude greater than that obtained in conventional
linacs. Accelerating gradients on the order of 100GV/m

have been inferred in plasma-based accelerator experi-
ments [12, 13].

In addition to extremely large accelerating gradients,
plasma-based accelerators have the potential to produce
extremely short electron bunches. The length of the ac-
celerating wave in a plasma-based accelerator is approx-
imately the plasma wavelength λp = 2πc/ωp = 2π/kp,
or

λp(µm) ≃ 3.3 × 1010/
√

n0(cm−3) , (2)

e.g., λp ≃ 30 µm for n0 = 1018 cm−3. A high-quality
electron bunch produced by a plasma-based accelerator
would have a bunch duration τb < λp/c, i.e., a duration
τb < 100 fs for n0 = 1018 cm−3. Laser-driven, plasma-
based accelerators, which are typically driven by fem-
tosecond laser pulses, are intrinsically sources of fem-
tosecond electron bunches.

An important parameter in the discussion of intense
laser-plasma interactions is the laser strength parameter
a0, defined as the peak amplitude of the normalized vec-
tor potential of the laser field, a = eA/mec

2. The laser
strength parameter is related to the peak intensity I0 and
power P = πr20I0/2 by I0 = (πc/2)(mec

2a0/eλ)
2, which

yields

a2
0 ≃ 7.3 × 10−19[λ(µm)]2I0(W/cm

2
) , (3)

and P (GW) ≃ 21.5(a0r0/λ)
2, where a linearly polar-

ized laser field with a Gaussian radial profile is assumed,
e.g., a = a0 exp(−r2/r20) cos(kz−ωt)ex with r0 the laser
spot size at focus, λ = 2π/k the laser wavelength, and
ω = ck the laser frequency in vacuum. Furthermore,
the peak laser electric field amplitude is given by EL =
mecωa0/e, i.e., EL(TV/m) ≃ 3.21a0/λ(µm). Physically,
a = p⊥/mec is the normalized transverse “quiver” mo-
mentum of a plasma electron in the laser field, as in-
dicated by conservation of transverse canonical momen-
tum in the one-dimensional (1D) limit (r0 ≫ λ). When
a0 & 1, the electron quiver motion is highly relativis-
tic and the laser-plasma interaction is nonlinear. Highly



E. Esarey & C. B. Schroeder Physics of Laser-Driven Plasma-Based Accelerators

relativistic electron motion (a0 & 1) requires laser inten-
sities I & 1018 W/cm2 for wavelengths of λ ≃ 1 µm. Such
intensities are routinely produced by compact, solid-state
laser systems based on the technique of CPA.

The laser acceleration of electrons in vacuum and gases
is intrinsically limited by diffraction, electron slippage,
ionization, and the smallness of the laser wavelength [14,
15]. In vacuum, the motion of an electron in a laser field
is determined by the Lorentz force equation

du/dct = ∂a/∂ct− (u/γ) × (∇× a) , (4)

where u = p/mec is the normalized electron momen-
tum and γ = (1 + u2)1/2 is the relativistic Lorentz
factor. Roughly speaking, the first term on the right-
hand side of the above equation describes the linear
response of the electron to the electric field E of the
laser and is responsible for “direct” laser acceleration;
whereas the second term describes the nonlinear response
to the v×B force and is responsible for “ponderomotive”
laser acceleration. Typically, the axial (in the z-direction
of laser propagation) ponderomotive force is written as
Fpz ≃ −(mec

2/γ)(∂/∂z)a2/2, assuming u⊥ = a⊥, which
is exact in 1D.

When a laser field propagating along the z-axis is
focused in vacuum, the laser spot size and inten-
sity evolve via rs = r0(1 + z2/Z2

R)1/2 and I =
I0(r

2
0/r

2
s) exp(−2r2/r2s), respectively, where ZR = kr20/2

is the Rayleigh length, and a fundamental Gaussian mode
is assumed. The finite laser spot size implies the exis-
tence of an axial component of the electric field of the
laser via ∇ · E = 0, i.e., Ez ∼ (1/kr0)E⊥. The ampli-
tude of this axial field can be very large, which suggests
using the axial field directly for laser acceleration, with
an energy gain for an electron propagating along the axis
scaling as

∫

dz(vzEz). The phase velocity, however, of
the optical field along the axis is greater than c and is
approximately vp/c ≃ 1 + 1/(kZR) near the focus. Since
vp > c, electrons with vz . c will phase slip with respect
to the accelerating field and decelerate. This will occur
over a dephasing length Ld, which for highly relativistic
electrons is ∼ ZR, i.e., the dephasing length is on order
of the diffraction length.

This phase slippage argument forms the basis for
the so-called Lawson-Woodward (LW) theorem [16–18],
which states that under certain restrictive conditions no
net electron energy gain is possible using laser fields. The
LW theorem assumes (i) the region of interaction is infi-
nite, (ii) the laser fields are in vacuum with no walls or
boundaries present, (iii) the electron is highly relativis-
tic (vz ≃ c) along the acceleration path, (iv) no static
electric or magnetic fields are present, and (v) nonlinear
effects (e.g., ponderomotive, v × B, and radiation reac-
tion forces) are neglected.

One or more of the assumptions of LW theorem must
be violated in order to achieve a nonzero net energy
gain. For example, one can introduce optics to limit
the laser-electron interaction to approximately a region
of length 2ZR about the focus, such that minimal phase

slippage occurs [14, 19]. The maximum energy gain due
to direct acceleration by the Ez field is then given by
∆W (MeV) ≃ 31

√

P (TW), where a first-order Laguerre-
Gaussian mode has been assumed [14]. Although sub-
stantial energy gains are possible with high laser power,
this is problematic in practice, since this method requires
that optics be placed near the focus and are susceptible
to laser damage at high intensity. Furthermore, the elec-
tron beam must pass through a small aperture in the
optics, which can limit the amount of charge that can be
accelerated [15].

Alternatively, finite energy gains can be achieved by
introducing a background of gas into the interaction re-
gion, as in the inverse Cherenkov accelerator [20]. The
gas can reduce the phase velocity of the laser field to less
than c, reducing the slippage. Furthermore, in principle,
diffraction can be overcome by relying on optical guiding
(self-focusing) in the gas [21]. Nevertheless, ionization of
the gas, which occurs at a relatively low laser intensity
∼ 1014 W/cm2 and increases the phase velocity, remains
a fundamental limitation to the accelerating field in gas-
filled devices.

In addition to direct laser acceleration, finite energy
gains can also result from the nonlinear or ponderomo-
tive force. Since the ponderomotive force scales inversely
with electron energy and proportional to the laser inten-
sity, Fp ∼ (1/γ)∇a2, this mechanism is most efficient at
low electron energies and high laser intensities. Simula-
tions [22, 23] and experiments [24] have shown that by
focusing a high intensity laser pulse onto a low density
gas jet (essentially, a source of electrons at rest), pon-
deromotive acceleration can result in the production of a
electrons with energies in the range of a few MeV with
a large energy spread and a high degree of scattering.
Simulations [25] indicate that when a moderate energy
electron beam intersects with a very intense laser pulse
at a small angle, a signification fraction of the electrons
can be accelerated to energies in excess of 100MeV (for
a ∼ 10) through a combination of direct and pondero-
motive acceleration. Other ponderomotive acceleration
schemes include the vacuum beat wave accelerator [14],
which relies on the ponderomotive force of the beat wave
produced by two co-propagating laser pulses, and the in-
verse free-electron laser [26, 27], which relies on the beat
wave produced by a laser pulse propagating through a
magnetic wiggler field. Again, a major limitation to these
schemes is the 1/γ scaling of ponderomotive force.

A fundamental limitation to all concepts that rely on
electron acceleration through the direct interaction (lin-
ear or nonlinear) with the laser field is the smallness of
the laser wavelength, typically on the order of a micron.
For example, a first-order Laguerre-Gaussian mode has a
quarter wavelength phase region for which the laser field
is both accelerating and focusing. To accelerate an elec-
tron bunch while maintaining a small energy spread and
emittance, it is desirable that a high quality bunch be in-
jected into the proper phase region of the laser field with
a bunch length small compared to a λ/4 (corresponding
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to 0.8 fs for λ = 1 µm). Conventional accelerators typ-
ically produce electron bunches with durations & 1 ps.
On possibility may be to pre-bunch a conventional elec-
tron bunch at the laser wavelength using an inverse free-
electron laser, as has been experimentally demonstrated
[26], and use this as an injector into a second stage of a
laser accelerator [27].

Plasma-based accelerators can overcome many of the
fundamental limitations that restrict laser acceleration
in vacuum and gases. For example, ionization and
breakdown is not a limitation, since the plasma can be
fully pre-ionized. Diffraction can be overcome through
self-focusing and with preformed plasma channels. In
plasma-based accelerators, acceleration is the result of
the axial field of the plasma wave and not the laser field
directly. The phase velocity of the plasma wave is typ-
ically equal to the group velocity of the laser pulse and
is less than c. Although the plasma wave is excited by
the ponderomotive force of the laser field, the 1/γ scal-
ing of the ponderomotive force is not a limitation, since
for the plasma electrons γ ∼ 1. In effect, the plasma
acts as a transformer, converting the transverse laser field
into the axial electric field of the plasma wave. Further-
more, the accelerating wavelength is the plasma wave-
length λp, which is 10–1000 times the laser wavelength,
and in many cases equal to the laser pulse length. The
injection of ultrashort electron bunches into a single pe-
riod of a plasma wave maybe possible using laser in-
jection methods. Plasma-based methods are, however,
subject to their own intrinsic limitations, such as restric-
tions arising from electron dephasing, pump depletion,
and laser-plasma instabilities.

This report provides an overview of the physics and is-
sues relevant to laser-driven plasma-based accelerators,
including the plasma beat wave accelerator (PBWA)
[1, 2, 28–31], the laser wakefield accelerator (LWFA)
[1, 32–35], the self-modulated LWFA [12, 36–45], and
LWFAs driven by multiple laser pulses [46–50]. These
configurations are shown schematically in Fig. 1. The
remainder of this report is organized as follows. Sec-
tion II discusses the basic models used to describe plasma
wave generation in the cold fluid limit. Included is a dis-
cussion of nonlinear plasma waves, wavebreaking, and
plasma wave phase velocity, as well as the trapping and
acceleration of electrons by the plasma wave. Section III
describes the various laser-driven plasma-based accelera-
tion configurations, specifically, the LWFA, the PBWA,
the self-modulated LWFA, and wakefields driven by mul-
tiple pulses. Included is a brief discussion of diffrac-
tion, dephasing, and pump depletion, which can limit
the single-stage energy gain. The injection of ultrashort
electron bunches into plasma waves using laser triggered
injection or density gradients is discussed in Sect. IV.
Methods for optically guiding laser pulses in plasmas are
discussed in Sect. V, including relativistic self-focusing,
preformed density channels, ponderomotive self-channel,
and plasma wave effects. Section VI describes a few of the
more relevant laser-plasma instabilities, including back-

ward and forward Raman scattering, self-modulation,
and laser-hosing. Throughout this report recent experi-
mental results are mentioned. A summary is presented
in Sect. VII.

II. PLASMA WAVES AND ACCELERATION

Calculation of the plasma wakefields generated by
nonevolving drive laser beams is straightforward. Ana-
lytical solutions exist in the three-dimensional (3D) linear
regime and in the 1D nonlinear regime. In the 3D nonlin-
ear regime, the use of numerical codes is usually required.
The full problem, which includes the self-consistent evo-
lution of the drive laser beams, is sufficiently complicated
to require simulation. Various aspects of the propagation
and transport of the drive beams will be discussed in sub-
sequent sections. Before discussing specific laser-plasma-
based accelerator configurations (e.g., PBWA, LWFA,
self-modulated LWFA, and wakefields driven by multi-
ple pulses), the physical forces that drive wakefields (i.e.,
space charge and ponderomotive forces) and the mathe-
matical models used to describe wakefield generation will
be briefly discussed. In the following, it is convenient to
use the normalized electrostatic φ = eΦ/mec

2 and vector
a = eA/mec

2 potentials.

A. Ponderomotive Force

In laser-driven plasma-based accelerators, wakefields
are driven via the ponderomotive force. The ponderomo-
tive force [51] can be derived by considering the electron
momentum equation in the cold fluid limit,

dp/dt = −e[E + (v × B)/c] , (5)

where d/dt = ∂/∂t + (v · ∇). The electric and mag-
netic fields of the laser can be written as E = −∂A/∂ct
and B = ∇ × A, where the vector potential of the
laser is polarized predominately in the transverse direc-
tion, e.g., A = A0 cos(kz − ωt)e⊥. In the linear limit
|a| = e|A|/mec

2 ≪ 1, the leading order electron motion
is the quiver momentum pq = meca, as indicated by
∂pq/∂t = −eE. Letting p = pq + δp, the second order
motion is given by

dδp/dt = −[(pq/me) · ∇]pq − pq × (c∇× a)

= −mec
2∇(a2/2) .

(6)

Hence, Fp = −mec
2∇(a2/2) is the 3D ponderomotive

force in the linear limit (a2 ≪ 1). The ponderomotive
force can also be viewed as the radiation pressure (i.e.,
the gradient of the electromagnetic energy density).

In the 1D nonlinear regime, conservation of canonical
momentum implies u⊥ = a⊥, i.e., a⊥ is the normalized
quiver momentum. Hence, in 1D, the nonlinear pondero-
motive force is given by Fpz = −(mec

2/2γ)∂a2
⊥
/∂z. In
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(a)

(c) (d)

(b)

FIG. 1: Schematic of laser-driven plasma-based accelerators: (a) laser wakefield accelerator (LWFA), (b) plasma beat wave
accelerator (PBWA), (c) self-modulated laser wakefield accelerator (SM-LWFA), and (d) resonant laser pulse train. Shown are
the excited plasma wave potentials (solid lines) and right-moving laser intensity envelopes (dashed lines)

the 3D nonlinear regime, the leading order transverse mo-
tion of the electron is still the quiver motion, u⊥ ≃ a⊥,
provided that the laser pulse is propagating in an un-
derdense plasma and has a sufficiently broad spot size,
r0 & λp ≫ λ. Defining δu = u− a, the fluid momentum
equation can be written as [36, 52, 53]

∂δu/∂ct = ∇(φ − γ) , (7)

which is exact under the assumption that the quantity
∇×δu is initially (prior to the passage of the laser pulse)
zero. Here, ∇φ is the space-charge force and ∇γ rep-
resents the generalized nonlinear ponderomotive force,
FpN = −mec

2∇γ.

B. Linear Regime

In the linear, 3D regime, wakefield generation can be
examined using the cold fluid equations, i.e., the Poisson
equation, the continuity equation, and the fluid momen-
tum equation. For example, the plasma wave generated
in an initially uniform plasma is described by [32, 33, 54]

(

∂2/∂t2 + ω2
p

)

δn/n0 = c2∇2a2/2 , (8)

(∂2/∂t2 + ω2
p)φ = ω2

pa
2/2 , (9)

where δn/n0 is the normalized density perturbation asso-
ciated with the electrostatic wake φ in the limit a2 ≪ 1.
The solutions for the density perturbation (|δn/n0| ≪ 1)
and electric field of the wake are given by

δn/n0 = (c2/ωp)

∫ t

0

dt′ sinωp(t− t′)∇2a2(r, t′)/2 , (10)

E/E0 = −c
∫ t

0

dt′ sinωp(t− t′)∇a2(r, t′)/2 . (11)

Equations (10) and (11) describe plasma waves generated
at the frequency ωp and are valid far from wavebreaking,
E ≪ E0, where E0 = mecωp/e is the cold nonrelativistic
wavebreaking field (1). Solutions to (10) indicate that
wakefields will be generated most efficiently when the
envelope scale length, which characterizes the axial gra-
dient in the normalized laser intensity a2, is on the order
of the plasma wavelength λp = 2πc/ωp. The radial ex-
tent of the wake is on the order of the laser spot size
rs.

In addition to the axial wakefield Ez, transverse wake-
fields Er and Bθ will be generated. The transverse wake-
fields are related to the axial wakefield by the Panofsky-
Wenzel theorem [55, 56], ∂Ez/∂r = ∂(Er−Bθ)/∂(z−ct).
A relativistic particle with axial velocity vz ≃ c which
is being accelerated by a wakefield with phase velocity
vp ≃ c will experience a radial force proportional to
Er−Bθ. Notice that if Ez ∼ exp(−2r2/r2s) cos[kp(z−ct)],
then Er − Bθ ∼ (4r/kpr

2
s) exp(−2r2/r2s) sin[kp(z − ct)]

and the radial force is zero along the axis. Typically, for
an electron displaced from the axis, there is a phase re-
gion of the wake of width kp|∆(z − ct)| = π/4 for which
a relativistic electron will experience simultaneous axial
accelerating and radial focusing forces.

C. Nonlinear Regime

Wakefield generation in the nonlinear 1D regime can be
examined by assuming that the drive beam is nonevolv-
ing, i.e., the drive beam is a function of only the coordi-
nate ξ = z − vpt, where vp ≤ c is the phase velocity of
the plasma wave. For laser drivers, vp ≃ vg, where vg is
the laser pulse group velocity. The 1D limit applies to
broad drivers, kpr⊥ ≫ 1, where r⊥ is the characteristic
radial dimension of the drive beam. Using the fluid mo-
mentum and continuity equations, the Poisson equation
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∂2φ/∂ξ2 = k2
p(n/n0 − 1) can be written as [46, 57, 58]

k−2
p

∂2φ

∂ξ2
= γ2

p

{

βp

[

1 − (1 + a2)

γ2
p(1 + φ)2

]−1/2

− 1

}

, (12)

where γp = (1−β2
p)−1/2 and βp = vp/c. The axial electric

field of the wake is given by Ez = −E0∂φ/∂ξ. In the limit
γ2

p ≫ 1, (12) simplifies to [59–62]

k−2
p

∂2φ

∂ξ2
=

(1 + a2)

2(1 + φ)2
− 1

2
. (13)

Analytical solutions can be found for square laser pulse
profiles [59–62]. As the plasma wave amplitude becomes
nonlinear, (12) and (13) indicate that the plasma wave
steepens and its period lengthens, as is discussed in
Sect. II E.

In the two-dimensional (2D) and 3D nonlinear regimes,
simulations are usually required. One possible approach
is to use a nonlinear quasi-static fluid model [36, 52],
which is discussed in Sect. V. An alternative approach is
to use 2D and 3D particle simulations [63–66].

D. Wavebreaking

Plasmas are capable of supporting large amplitude,
electrostatic waves with phase velocities near the speed
of light. Such waves can be used to accelerate charged
particles. In the linear regime, the electric field of a
plasma wave in a plasma-based accelerator has the form
Ez = Emax sin[ωp(z/vp − t)], where vp ≃ c is the phase
velocity. The peak field amplitude Emax of the plasma
wave can be very high and can be estimated can from
the Poisson equation ∇ · E = 4πe(n0 − ne). A simple
estimate for the maximum field amplitude is given by as-
suming all of the plasma electrons are oscillating with a
wavenumber kp = ωp/c. This gives (ωp/c)Emax = 4πen0,
or Emax = E0, where E0 = cmeωp/e is the nonrelativistic
wavebreaking field [11].

It is possible for the maximum amplitude of a nonlinear
plasma wave to exceed the value E0. Using the nonlinear,
relativistic, cold fluid equations in 1D, it is possible to
show that the maximum amplitude of a plasma wave is
given by [67, 68]

EWB =
√

2(γp − 1)1/2E0 , (14)

which is referred to as the relativistic wavebreaking field,
where γp = (1 − v2

p/c
2)−1/2 is the relativistic Lorentz

factor associated with the phase velocity of the plasma
wave. As an example, consider a laser-driven accelerator
with a plasma density of n0 ≃ 1016 cm−3. The plasma
wave phase velocity is approximately the group velocity
of the laser, γp ≃ ω/ωp, where ω is the frequency of
the laser. For a laser wavelength of 1 µm, γp ≃ 300 and
EWB ≃ 25E0.

Fluid equations can be used to describe a coherent
plasma wave as long as the electron fluid velocity ve is less

than the phase velocity of the wave, ve < vp. In the 1D
cold fluid limit, the nonlinear plasma wave is described by
(12). As the wave amplitude increases, ve increases. The
wave is said to “break” when ve → vp, at which point the
plasma density becomes singular, n → ∞. Mathemati-
cally, wavebreaking occurs in a cold, 1D plasma when
Emax → EWB, where EWB is given by (14).

The above value for the wavebreaking field was based
on cold fluid theory. Thermal electron effects, however,
can lead to a reduction in the wavebreaking field. In
a warm plasma, the electron distribution has a thermal
spread about its mean fluid velocity ve. Roughly speak-
ing, a large fraction of the electron distribution will be-
come trapped in the plasma wave when |ve+vth,eff | → vp,
where vth,eff is an effective thermal velocity spread. This
leads to wavebreaking. Using warm, relativistic fluid the-
ories, expressions for the thermal wavebreaking field am-
plitude Eth have been derived [69, 70] of the form

Eth = (mec
2/3T )1/4fth(γp, T )E0 , (15)

where fth(γp, T ) is a slowly varying function of γp and
the electron temperature T with a typical magnitude
on the order of unity fth(γp, T ) ∼ 1. Katsouleas and

Mori [69] give f2
th = ln(2γ

1/2
p β

1/4
th ) for γpβ

1/2
th ≫ 1, where

βth = 3T/mec
2. Thermal effects will limit the wave am-

plitude if the warm wavebreaking field is less than the
cold wavebreaking field, Eth < EWB. As an example,
γp ≃ 300 and T=10eV give a thermal wavebreaking limit
of Eth ≃ 12E0, which is approximately one-half that of
the cold wavebreaking result EWB.

The above expressions for the wavebreaking field were
based on 1D theories. Wavebreaking in 3D has not been
thoroughly investigated and general expressions for the
maximum field amplitude are not known. Particle-in-cell
simulations [71, 72] in 2D have demonstrated the gener-
ation of plasma waves with amplitudes on the order of
E0. Simulations [73] based on nonlinear, 2D axisymmet-
ric fluid equations have shown wave amplitudes in excess
of E0. The transverse structure of the plasma wave and
curvature of the wake phase fronts can lead to 2D wave-
breaking [74], as discussed in Sect. II E.

E. Nonlinear Plasma Waves

In the linear regime, Emax ≪ E0, the plasma wave is
a simple sinusoidal oscillation with frequency ωp and an
arbitrary phase velocity vp (the phase velocity is deter-
mined by the driver), e.g., φ = φ0 cos[ωp(z/vp−t)]. When
Emax & E0, the plasma wave becomes highly nonlinear.
In the 1D cold fluid limit, the nonlinear plasma wave is
described by (12). In the region behind the drive beam,
a2 = 0, an analysis of (12) indicates that the electrostatic
potential oscillates between φmin ≤ φ ≤ φmax and the ax-
ial electric field oscillates between −Emax ≤ E ≤ Emax.
The values φmin and φmax, denoted by φm, are given by
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[68]

φm = Ê2
max/2 ± βp

[

(1 + Ê2
max/2)2 − 1

]1/2

, (16)

where Êmax = Emax/E0 and the ± give φmax and φmin,
respectively. Wavebreaking occurs when the density be-
comes singular. From (12), this occurs when (1 + φ) →
1/γp. At wavebreaking, φmin = 1/γp−1, and (16) implies

Emax =
√

2(γp − 1)1/2E0 ≡ EWB.
For Emax/E0 & 1, (12) indicates that the electric field

departs from a simple sinusoidal form [59–62, 67]. In
particular, the electric field exhibits the characteristic
“sawtooth” profile associated with wave steepening and
the density oscillations become highly peaked (as illus-
trated in Fig. 5 of Sect. III A). Furthermore, the period
of the nonlinear plasma wave increases as the amplitude
increases. The nonlinear plasma wavelength in the limit
γp ≫ 1 is given by [59–62]

λNp = λp

{

1 , Emax/E0 ≪ 1,

(2/π)Emax/E0 , Emax/E0 ≫ 1
(17)

where Emax is the peak electric field of the plasma wave
and λp = 2π/kp = 2πc/ωp.

The lengthening of the plasma wave period can be im-
portant in plasma-based accelerators. For example, in
the PBWA, the plasma wave is driven at a constant
beat frequency ∆ω = ω1 − ω2 ≃ ωp. As the wave
grows, however, the effective plasma frequency decreases,
ωp,eff = 2πc/λNp. Hence, the driver (i.e., the laser beat
wave) becomes out of phase with the nonlinear plasma
wave. This leads to saturation of the plasma wave ampli-
tude in the PBWA [75, 76]. Alternatively, if the plasma
wave is to be driven to large amplitudes by a series of in-
dividual laser pulses, the change in the nonlinear plasma
period can affect the optimal spacing between pulses as
well as the optimal duration of the pulses [48].

The increase in the plasma wavelength with increas-
ing wave amplitude has an additional effect on nonlin-
ear 2D plasma waves. Consider a plasma wave which
is driven more strongly on-axis than it is off-axis. This
would be the case in a laser driven accelerator, where the
laser intensity peaks on-axis and typically has a Gaus-
sian radial profile. On-axis, the plasma wave amplitude
is maximum and, in the nonlinear regime, the plasma
wavelength on-axis is larger than it is off-axis. Thus, the
plasma wavelength varies as a function of radius λNp(r).
This causes the wavefronts of the plasma wave to be-
come curved and take on a “horseshoe” shape. For a
plasma wave of fixed amplitude, the farther back within
the plasma wave train, the more curved the plasma wave
front, i.e., after ℓ periods, the phase front at large radii
is located at ℓλp, whereas on-axis, the phase front is lo-
cated at ℓλNp(r = 0). This effect has been observed in
2D nonlinear fluid simulations [36, 52, 73] and 2D particle
simulations [71, 72, 74].

The curvature effects of the plasma wave phase fronts
described above can lead to 2D wavebreaking. Specif-
ically, when the curvature radius of the phase front is

on the order of the electron fluid displacement, trapping
occurs and the regular structure of the plasma wave is
destroyed (i.e., 2D wavebreaking) [74]. For a fixed ampli-
tude nonlinear 2D wake (i.e., neglecting wake damping),
2D wavebreaking will always occur at a sufficiently long
distance behind the driver. The larger the wake ampli-
tude, the shorter the distance behind the driver is the
onset point of 2D wavebreaking. A similar effect can oc-
cur for linear (or nonlinear) plasma waves in a plasma
channel. In a plasma channel, the plasma density is min-
imum on axis, hence the plasma wavelength is longer
on-axis than off-axis. This leads to wake wavefront cur-
vature, and the curvature increases with distance behind
the driver until the point of 2D wavebreaking is reached,
as described above.

F. Electron Acceleration and Dephasing

An electron can be accelerated along the z-axis
by an electrostatic plasma wave of the form Ez =
Emax sinωp(z/vp − t). As the electron is accelerated, its
velocity will increase and approach the speed of light,
vz → c. If the phase velocity of the plasma wave is con-
stant with vp < c, the electrons will eventually outrun the
plasma wave and move into a phase region of the plasma
wave which is decelerating. This limits the energy gain
of the electron in the plasma wave and is commonly re-
ferred to as electron dephasing. The dephasing length Ld

is defined as the length the electron must travel before
it phase slips by one-half of a period with respect to the
plasma wave. For a highly relativistic electron, vz ≃ c,
the dephasing time td is given by ωp(c/vp−1)td = π, i.e.,
Ld = ctd ≃ γ2

pλp, assuming γp ≫ 1. The maximum en-
ergy gain after a dephasing length [1, 2] is given approx-
imately by Wmax ≃ eEmaxLd ≃ 2πγ2

p(Emax/E0)mec
2,

assuming E < E0.
In a 1D plasma wave, electron trapping, acceleration,

and dephasing can be studied by examining the electron
orbits in phase space (u, ψ), where u = p/mec is the
normalized momentum and ψ = kpξ = kp(z − vpt) is the
phase. In the linear regime, the plasma wave is described
by a sinusoidal electrostatic potential φ = φ0 cosψ, where
φ0 = Emax/E0 is the amplitude. The phase region
−π < ψ < 0 is accelerating. Consider an electron in-
jected into the plasma wave with vz < vp at ψ = 0. Ini-
tially, the electron is slipping backward with respect to
the plasma wave. If the initial electron velocity is too low,
the electron does not gain sufficient energy and vz < vp

at ψ = −π. Hence, the electron would be untrapped
and would continue to slip backward through the plasma
wave. If, however, the electron has a sufficiently high ini-
tial velocity such that vz > vp as the electron approaches
ψ → −π, the electron will be trapped and execute closed
orbits in the −π < ψ < π phase region. The separatrix,
which separates the region of trapped and untrapped or-
bits in phase space, is shown schematically in Fig. 2 for
a small amplitude plasma wave.
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FIG. 2: Single particle orbits in phase space (γ, ψ) for an
electron in a small amplitude, sinusoidal plasma wave with a
normalized potential given by φ = φ0 cosψ, with γp = 20 and
φ0 = 10−3. Solid curve is separatrix

The motion of a test electron in a 1D nonlinear plasma
wave is described by the Hamiltonian [68]

H(u, ψ) = γ − βpu− φ(ψ) , (18)

where H(u, ψ) = constant along a given electron orbit
and φ = φ(ψ) is the solution to (12), which oscillates
between φmin ≤ φ ≤ φmax and is related to Emax by
(16). In particular, the separatrix γs(ψ) characterizing
the test electron orbits in (γ, ψ) phase space is given by
H(γs, ψ) = H(γp, ψmin), where φ(ψmin) = φmin.

Figure 3 shows several separatrices for γp = 20 and for
different values of the plasma wave amplitude, character-
ized by the parameter ǫ, where φmax = (2γ2

p −1)ǫ/γp−1,
for ǫ = 0.03, 0.04, 0.1, 0.3 and 0.9 (ǫ = 1 corre-
sponds to wavebreaking). This corresponds to values of
the peak electric field Emax given by Emax/E0 = 0.18,
0.47, 1.5, 3.2, and 5.8, respectively (at wavebreaking,
EWB/E0 = 6.2). The value ǫ = 0.03 corresponds to
the innermost curve and ǫ = 0.9 corresponds to the out-
ermost curve. These curves were obtained [68] by plot-
ting H(γs, ψ) = H(γp, ψmin) after numerically solving
(12) for φ = φ(ψ) with the initial conditions ∂φ/∂ξ = 0
and φ = φmax at ψ = 0. The width of the separa-
trix ∆ψs corresponds to the nonlinear plasma wavelength,
λNp = ∆ψs/kp, given by (17). As the plasma wave am-
plitude increases, the nonlinear wavelength increases.

For small wave values, e.g., ǫ = 0.03, the separatrix is
nearly symmetric (as would be the case for a linear, sinu-
soidal plasma wave). Notice that for ǫ = 0.03, γmin > 1,
indicating that an electron injected with v = vmin > 0
at ψ = 0 would be trapped, where vmin = (1 − γ−2

min)1/2.
As the wave amplitude increases, γmin decreases to the
point γmin = 1, corresponding approximately to the curve
ǫ = 0.04 in Fig. 3. Hence, a test electron which is at rest
at ψ = 0 would be trapped. This does not mean that the
background plasma electrons will be trapped. The back-
ground electrons are undergoing the plasma wave fluid

FIG. 3: The separatrix γs(ψ) plotted for several values of
the plasma wave amplitude ǫ = 0.03, 0.04, 0.1, 0.3, and 0.9
(ǫ = 1 corresponds to wavebreaking), with γp = 20. The
value ǫ = 0.03 corresponds to the innermost curve and ǫ = 0.9
corresponds to the outermost curve

oscillation and are flowing backward (opposite to vp) at
the phase ψ = 0 with the maximum fluid velocity. In-
creasing ǫ further causes γmin (at ψ = 0) to increase. This
implies that a test electron at ψ = 0 with v = −|vmin|
would be trapped. Further increasing ǫ causes vmin to be-
come more negative. Wavebreaking occurs when ǫ = 1,
at which point γmin = γp, vmin = −vp, and, hence, all of
the plasma electrons become trapped in the wave.

The maximum energy γmax and minimum energy γmin,
denoted by γm, for an electron on the separatrix are given
by [68]

γm = γp(1 + γp∆φ) ± γpβp

[

(1 + γp∆φ)2 − 1
]1/2

, (19)

where ∆φ = φmax − φmin, i.e., ∆φ = 2βp[(1 + Ê2
max/2)2 −

1]1/2, as indicated by (16). In the limits γp∆φ ≫ 1 and
γ2

p ≫ 1, γmax ≃ 2γ2
p∆φ and γmin ≃ ∆φ/2 + 1/(2∆φ). In

particular, the maximum energy of a trapped electron is
given by [68]

γmax ≃ 2γ2
p

{

Ê2
max , for Ê2

max ≫ 2,

2Êmax , for 2 ≫ Ê2
max ≫ 1/4γ2

p,
(20)

where Êmax = Emax/E0. The limit Ê2
max ≪ 2 cor-

responds to the well-known limit for linear, sinusoidal
plasma waves [1, 2, 77]. When Ê2

max ≫ 2, however,

γmax ≃ 2γ2
pÊ

2
max, which implies that higher electron en-

ergies can be obtained for electrons trapped in nonlinear
plasma waves. The nonlinear regime where Êmax > 1 has
been observed in simulations of the self-modulated LWFA
[71–73] and laser wakefields driven by multiple pulses
[47, 48, 50]. At wavebreaking (ǫ = 1, Emax = EWB),
(19) indicates that [68] γmax = 4γ3

p − 3γp.
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A rough estimate for the dephasing length is given by
Wmax = mec

2γmax = eEmaxLd. This yields

Ld = γ2
pλNp

{

2/π , Êmax ≪ 1,

1/2 , Êmax ≫ 1,
(21)

where λNp is given by (17). The actual dephasing length
[78] requires the simultaneous solution of the equation of
motion and (12).

As an example, consider a LWFA with n0 = 2.8 ×
1018 cm−3 and λ = 1 µm, i.e., γg ≃ γp ≃ 20 and

E0 ≃ 160GV/m. In the limit Ê2
max ≫ 2, (20) yields

Wmax ≃ 400Ê2
max, where Wmax ≃ mec

2γmax. At wave-
breaking, EWB ≃ 6.2E0 and Wmax ≃ 16GeV. No-
tice that γmax ≃ 4γ3

pEmax/EWB, assuming γ2
p ≫ 1

and γp(Emax/EWB)2 ≫ 1. Hence, for a fixed value

of Emax/EWB, γmax ∝ n
−3/2
0 and substantially higher

single-stage energy gains can be achieved by operating
at lower densities.

It should be noted that the above results are obtained
from 1D theory and assume a constant amplitude plasma
wave. An evolving plasma wave amplitude and 2D ef-
fects could alter these results. For example, Mora [77]
has shown that the effects of laser diffraction can lead to
a more restrictive trapping condition for linear plasma
waves.

G. Plasma Wave Phase Velocity

The phase velocity of the plasma wave is important
for determining the minimum injection energy, the max-
imum energy gain, and the dephasing length. Neglecting
the evolution of the drive beam as it propagates, the
phase velocity of the plasma wave is equal to the group
velocity of the drive laser.

In the linear regime, the group velocity of a laser pulse
in a plasma can be determined from the 1D dispersion re-
lation, ω2 = c2k2 + ω2

p. This yields vg = c(1−ω2
p/ω

2)1/2

and γg = (1 − v2
g/c

2)−1/2 = ω/ωp. Nonlinear correc-
tions to the group velocity in 1D have been analyzed
by Decker and Mori [79]. In the long pulse, under-
dense ωp/ω ≪ 1 limit, the nonlinear group velocity is

(ω/ωp)[(γ⊥ + 1)/2]1/2, where γ⊥ = (1 + a2
0/2)1/2 is the

relativistic Lorentz factor associated with the quiver mo-
tion of the electrons in the laser field.

The group velocity of a laser pulse is also reduced by
3D effects. For example, consider a laser pulse in vac-
uum undergoing Rayleigh diffraction. The evolution of
the spot size (or radius) of a Gaussian laser beam evolves
according to rs = r0(1 + z2/Z2

R)1/2, where r0 is the min-
imum spot size at the focal point z = 0, and ZR = kr20/2
is the Rayleigh length. In effect, the photons are travel-
ing at approximately a diffraction angle θd = r0/ZR with
respect to the z-axis. Hence, the axial group velocity is
reduced by vg ≃ c cos θd ≃ c(1 − θ2d/2). A more detailed

calculation indicates that, in the linear regime, the 3D
group velocity is given by [80]

γg ≃ (ω2
p/ω

2 + 2c2/ω2r20)
−1/2 . (22)

In effect, the linear 3D dispersion relation is given by
ω2 − c2k2 = ω2

p + 2c2/r20 (for a matched laser pulse in a

plasma channel, ω2 − c2k2 = ω2
p + 4c2/r20). For tightly

focused laser pulses, this 3D correction can significantly
limit the group velocity. As an example, consider a laser
pulse, with a λ = 1 µm wavelength and r0 = 10 µm spot
size, propagating in a plasma of density n0 = 1016 cm−3.
In 1D, γg ≃ 330, however, the finite spot size reduces the
group velocity such that γg ≃ 44.

Distortions of the pulse driving the plasma wave can
also affect the plasma wave phase velocity. In the LWFA
in the 1D limit, it has been shown that the wake phase
velocity is approximately equal to the group velocity as-
sociated with the position of the peak of intensity pro-
file [79]. Furthermore, the plasma wave can lead to lo-
cally enhanced diffraction and focusing, which distorts
the pulse profile and reduces the plasma wave phase ve-
locity [81].

H. Photon Acceleration

In addition to accelerating electrons, a plasma wave
can be used to upshift the frequency of a properly phased,
low intensity, short laser pulse, as shown schematically in
Fig. 4 (often referred to as photon acceleration) [3, 82].
Consider a plasma wave with an electron density pertur-
bation of the form δn = −δn0 sin kpζ, where ζ = z − ct,
and a low intensity, “witness” laser pulse centered about
ζ = 0 with a pulse length L ≪ λp. The local den-
sity at the front of the pulse, n(ζ = L/2), will be less
than that at the back of the pulse, n(ζ = −L/2). Since
the local phase velocity of the laser pulse is given by
βp = vp/c ≃ 1 + ω2

p(ζ)/2ω2, where ω2
p(ζ) ∝ n(ζ), the

phase velocity at the pulse front is less than that at the
back of the pulse, i.e., vp(L/2) < vp(−L/2). Hence, the
phase peaks at the back move faster than those at the
front and the pulse wavelength decreases (the pulse fre-
quency increases). For small shifts, the laser wavelength
will evolve according to λ ≃ λ0 + z∆βp, where ∆βp =
λ0dβp/dζ < 0 is the difference in phase velocity between
adjacent phase peaks, z is the propagation distance, and
λ0 = 2πc/ω0 is the initial laser wavelength. Hence, the
frequency shift is given by ω/ω0 ≃ 1 − zdβp/dζ, where
dβp/dζ ≃ (ω2

p/2ω
2
0)d(δn/n0)/dζ. A more detailed cal-

culation indicates that the frequency will be upshifted
according to [82]

ω

ω0
≃
(

1 +
ω2

p

ω2
0

δn0

n0
kpz cos kpζ

)1/2

, (23)

where nonlinear effects and phase slippage between the
laser pulse and plasma wave (i.e., dephasing) have been
neglected.
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FIG. 4: Schematic of laser pulse frequency upshifting by a
plasma wave with vp ≃ vg ≃ c (pulse moving to the right).
Positive frequency shifts require the laser pulse to be centered
about regions of the wave with a decreasing density

Typically, the plasma wave induced frequency shifts
are small. For example, consider a laser with λ = 1 µm
and r0 = 30 µm, propagating in a plasma of density
n0 = 1018 cm−3 (λp = 30 µm). After propagating one
Rayleigh length z = ZR, ω/ω0 ≃ 1 + δn0/3n0. Small
frequency shifts, however, can be detected and this pro-
cess can be useful for diagnosing the wakefield [83, 84].
Large frequency shifts require long propagation distances
and large plasma wave amplitudes. For example, after
one electron dephasing length Ld = λpω

2/ω2
p, ω/ω0 =

(1 + 2πδn0/n0)
1/2.

III. LASER-PLASMA ACCELERATORS

A. Laser Wakefield Accelerator

In the laser wakefield accelerator (LWFA) [1, 32,
33], a single, short (. 1 ps), ultrahigh intensity (&
1018 W/cm2) laser pulse drives a plasma wave. The wake-
field is driven most efficiently when the laser pulse length
is approximately the plasma period L ∼ λp. The LWFA
was first proposed by Tajima and Dawson [1]. Prior
to 1988, the technology for generating ultra-intense, pi-
cosecond laser pulses did not exist and only the PBWA
concept appeared feasible (which relied on long pulses
of modest intensity). The LWFA was later re-invented
independently by Gorbunov and Kirsanov [32] and by
Sprangle et al. [33]. This roughly coincides to the time
when CPA was applied to compact solid-state lasers and
a table-top, terawatt laser system was first demonstrated
by Mourou and co-workers [8]. The nonlinear theory of
the LWFA in 1D was developed by Bulanov et al. [59],
Sprangle et al. [60, 61], and Berezhiani and Murusidze
[62]. The nonlinear theory of the LWFA in 2D, includ-
ing the self-consistent evolution of the laser pulse, was
analyzed by Sprangle et al. [36, 52].

As an intense laser pulse propagates through an un-
derdense plasma, λ2/λ2

p ≪ 1, the ponderomotive force

associated with the laser pulse envelope, Fp ∼ ∇a2, ex-
pels electrons from the region of the laser pulse. If the
length scale Lz of the axial gradient in the pulse profile is
approximately equal to the plasma wavelength, Lz ∼ λp,
the ponderomotive force excites large amplitude plasma
waves (wakefields) with phase velocities approximately
equal to the laser pulse group velocity [see Fig. 1(a)]. For
a typical axially symmetric laser pulse (e.g., a Gaussian
profile), the wakefield amplitude will be maximum when
L ≃ λp/2, where L = cτL is laser pulse length. The pre-
cise value of L which maximizes the wake amplitude will
depend on the shape of the axial pulse profile. Following
are some examples.

1. Linear regime, sine pulse.

Consider a LWFA driven by a circularly polar-
ized laser pulse with a normalized intensity a2 =
a2
0 exp(−2r2/r2s) sin2(πζ/L) for 0 < ζ < L, where ζ =
z − ct and a2

0 ≪ 1. Solutions to (11) indicate that
the wakefield amplitude is maximum for pulse lengths
L ≃ λp. Behind the pulse, ζ < 0, the axial electric field
and density perturbation of the wake are given by [54]

Ez

E0
=
π

4
a2
0 exp

(

−2r2

r2s

)

cos kpζ, (24)

δn
n0

=
π

4
a2
0

[

1 +
8

k2
pr

2
s

(

1 − 2r2

r2s

)]

exp

(

−2r2

r2s

)

sinkpζ,

(25)
for the case L = λp. For linear polarization, averag-
ing over the fast oscillation yields (24) and (25) with a2

0

replaced with a2
0/2. Notice that a tightly focused laser

pulse with k2
pr

2
s/8 < 1 will result in a larger density per-

turbation δn/n0 on-axis, whereas the axial electric field
Ez on-axis is unchanged in comparison to the 1D values.

2. Linear regime, Gaussian pulse.

For the case of a circularly polarized, Gaussian pulse
profile, a2 = a2

0 exp(−ζ2/L2), the wakefield amplitude
behind the pulse (ζ2 ≫ L2) is given by [32]

Emax/E0 = (
√
πa2

0/2)kpL exp(−k2
pL

2/4), (26)

assuming a2
0 ≪ 1. Equation (26) explicitly shows the

dependence of the wake amplitude on the pulse length L.
In particular, the wake amplitude achieves a maximum
value of Emax/E0 = a2

0(π/2e)1/2 ≃ 0.76a2
0 when L =

λp/π
√

2.

3. Nonlinear regime, square pulse.

Consider a circularly polarized laser pulse with a
square axial profile in the 1D limit r20 ≫ λ2

p. The wake-
field amplitude is maximum when L ≃ λNp/2, where λNp
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(a)

(b)

FIG. 5: Density variation δn/n0 (dashed curve) and the axial
electric field Ez (solid curve) in an LWFA driven by a laser
pulse located in the region −L ≤ ζ ≤ 0 (the pulse is moving
to the right), where L = λp = 0.03 cm, for (a) a0 = 0.5 and
(b) a0 = 2.0

is the nonlinear plasma wavelength (17), and is given by
[59–62]

Emax/E0 = a2
0(1 + a2

0)
−1/2 , (27)

where a2
0 = 3.6× 10−19λ2(µm)I0(W/cm

2
) (for linear po-

larization, replace a2
0 with a2

0/2). Notice that Emax ∝
λ−1

p ∼ L−1. Hence, the wakefield amplitude can be in-
creased by operating at high densities and shorter pulse
lengths. At high densities, however, the laser pulse group
velocity is reduced and electron dephasing can limit the
energy gain, as discussed in Sect. II F.

4. Nonlinear regime, sine pulse.

As an example of nonlinear plasma wave behaviour,
(12) has been solved numerically [60, 61] for a linearly
polarized laser of the form a2 = a2

0 sin2(πζ/L) cos2(kζ)
for −L < ζ < 0 (and zero otherwise), with L =
λp and λ = 1 µm. The ambient plasma density is
n0 = 1.2 × 1016 cm−3, which yields L = λp = 300 µm
(τL = L/c = 1 ps). A mildly relativistic case a0 = 0.5
(I0 = 3.5 × 1017 W/cm2) is shown in Fig. 5(a), and a

FIG. 6: Amplitude of axial electric field Ez plotted as a func-
tion of laser pulse length L for the LWFA examples shown in
Fig. 5. The laser pulse envelope is given by a = a0 sin(π|ζ|/L)
for −L ≤ ζ ≤ 0 with a0 = 0.5 (solid curve) and a0 = 2.0
(dashed curve). The plasma density is held constant at
n0 = 1.2 × 1016 cm−3 (λp = 0.03 cm)

highly relativistic case a0 = 2 (I0 = 5.6×1018 W/cm2) is
shown in Fig. 5(b). Figure 5 shows the density variation
δn/n0 = n/n0 − 1 and the axial electric field Ez , with
Emax ≃ 1GV/m in Fig. 5(a) and Emax ≃ 10GV/m in
Fig. 5(b). Note that the rapid oscillations in the plasma
density at one-half the laser wavelength are due to a fast
component of the ponderomotive force at twice the laser
frequency, i.e., a2 ∼ 1 + cos(2kζ). The nonlinear effects
of wave steepening and period lengthening are clearly ev-
ident in Fig. 5(b).

Because the plasma wave is driven by a single laser
pulse with L ≃ λp, the wakefield amplitude is relatively
insensitive to uncertainties in the pulse duration and the
plasma uniformity. This is shown in Fig. 6, where the
peak wakefield amplitude Emax is shown as a function
of the pulse length L, at a fixed density and intensity.
The parameters are identical to the sine profile laser
pulse examples shown in Figs. 5(a) and 5(b) (i.e., for
a0 = 0.5 and a0 = 2), only now the pulse length L is
varied. Plotted in Fig. 6 is the wakefield amplitude
normalized to EN = E0(a

2
0/2)(1 + a2

0/2)−1/2, which is
the maximum wakefield amplitude for a square pulse
profile. Notice that the electric field amplitude is
maximum for L ≃ 0.75λp and is fairly insensitive to
changes in the pulse length. Also, the curve for the
a0 = 2 case is broader because of an increase in the
nonlinear plasma wavelength.

To summarize the optimal pulse length conditions for
the square, sine, and Gaussian pulse profiles discussed
above, it is convenient to express the pulse length in
terms of the full-width-half-maximum (FWHM) length
LFWHM and the root-mean-square (RMS) length LRMS

of the pulse intensity profile. For the square pulse, the
wakefield is maximum Emax = a2

0E0 when LFWHM =
0.5λp (kpLRMS = 0.91). For the sine pulse, the wakefield
is maximum Emax = 0.82 a2

0E0 when LFWHM = 0.5λp
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(kpLRMS = 1.1). For the Gaussian pulse, the wakefield
is maximum Emax = 0.76 a2

0E0 when LFWHM = 0.37λp

(kpLRMS = 1). These results assume a2
0 ≪ 1 and circular

polarization.
Furthermore, since the laser pulse in the LWFA is of

short duration, L ≃ λp, various instabilities which can be
detrimental to the propagation of long pulses can be re-
duced. Schemes that use long laser pulses, L≫ λp, such
as the PBWA and the self-modulated LWFA, are subject
to various instabilities, some of which are discussed in
Sect. VI.

Perhaps the first experimental evidence for plasma
wave generation by the LWFA mechanism was obtained
by Hamster et al. [85]. In these experiments, the emis-
sion of terahertz radiation at the plasma frequency was
observed when the plasma was driven by a laser pulse
of length L ≃ λp. Specifically, ωp/2π = 4.6THz radi-
ation was observed for a 0.1 ps laser pulse propagating
in a plasma of density 2 × 1017 cm−3. This radiation is
emitted presumably by the 2D electron plasma currents
of the laser-induced wakefield. Direct measurement of
plasma wave generated in the LWFA has been reported
by researchers at Ecole Polytechnique [83] and at the Uni-
versity of Texas at Austin [84] by using probe pulses and
optical interferometry techniques. In the Ecole Polytech-
nique experiments [83], a 120 fs duration, 800nm wave-
length laser pulse with a maximum energy of 40mJ was
focused to a maximum intensity of 3 × 1017 W/cm2 in a
plasma of density 1017 cm−3. A pair of probe pulses, sep-
arated from each other by 1.5λp, were used to map out
the wakefield by adjusting the delay between the pump
and probe pulses. A plasma wave with a perturbed den-
sity of 30% to 100% was measured over several plasma pe-
riods behind the probe pulse. At the University of Texas
[84], three probe pulses were used to measure the density
perturbation at a fixed delay behind the pump pulse.
By varying the ambient plasma density, the plasma wave
amplitude was observed to vary in good agreement with
theory.

Dewa et al. [34] have reported on the observation of
electron acceleration in LFWA experiments, although
with some controversy [86], with energies of 100MeV
(17MeV injected from a linac) with a 2TW laser sys-
tem. Amiranoff et al. [35] have observed LWFA accel-
erated electrons with an energy gain of 1.6MeV (3 MeV
injected) using a 3.5TW laser system. The peak longi-
tudinal electric field was estimated to be 1.5GV/m.

B. Plasma Beat Wave Accelerator

In the plasma beat wave accelerator (PBWA) [1, 2,
28, 75, 87, 88], two long pulse laser beams of frequen-
cies ω1 and ω2 are used to resonantly excite a plasma
wave. This is done by appropriately adjusting the laser
frequencies and plasma density to satisfy the resonance
condition ∆ω ≡ ω1−ω2 ≃ ωp. When this is satisfied, large
amplitude plasma waves can be generated. The PBWA

was first proposed by Tajima and Dawson [1] as an alter-
native to the laser wakefield accelerator, since compact,
ultrashort pulse, ultrahigh power laser technology [9, 10]
was not available in 1979. The PBWA was subsequently
analyzed by the various researchers [2, 5, 76, 89–92].
(Resonant excitation of a plasma wave using two laser
beams had been previously analyzed by Rosenbluth and
Liu [75] for plasma heating applications.) To overcome
the problem of dephasing between the accelerated elec-
trons and the plasma wave, Katsouleas and Dawson [93]
proposed the use of a transverse magnetic field. Tang et
al. [76] described how the plasma wave amplitude could
be increased by operating at an optimal frequency mis-
match ∆ωopt, such that ω1 − ω2 = ωp + ∆ωopt. Since
this early work, various aspects of the PBWA have been
analyzed and simulated, such as the self-focusing of the
laser beams by relativistic, plasma wave, and cascading
effects [5, 91, 92, 94].

Consider two lasers beams with combined normal-
ized vector potentials given by a = a1 cos(k1z − ω1t) +
a2 cos(k2z − ω2t), where k1,2 are the laser wavenumbers.
The ponderomotive force ∇a2/2 will have a resonant beat
term (a2)res = a1a2 cos(∆kz − ∆ωt), where ∆k ≡ k1 − k2.
In the linear regime, plasma wave generation is described
by (∂2/∂t2 + ω2

p)φ = ω2
p(a

2/2)res, and the ponderomo-
tive beat term can resonantly drive a plasma wave when
∆ω ≃ ωp. When the resonance condition is exactly satis-
fied, ∆ω = ωp, secular growth of the plasma wave results,
φ = −φs sin(∆kz − ∆ωt), where φs = a1a2kp|ζ|/4 and
|ζ| = |z − ct| is the distance behind the front of the laser
beams. Hence, the amplitude of the plasma wave within
the laser pulse is [75]

Emax/E0 = a1a2kp|ζ|/4 . (28)

Furthermore, notice that the phase velocity of the
plasma, vp = ∆ω/∆k, is given by vp/c ≃ 1 − ω2

p/(2ω1ω2)

in the limit ω2
p/ω

2
1 ∼ ω2

p/ω
2
2 ≪ 1, i.e., the phase velocity

of the plasma wave is approximately equal to the group
velocity of the driving lasers.

In effect, the laser beat wave acts as a series of laser
pulses, each of amplitude a1a2 and of duration ∆τ =
2π/∆ω. Each of these pulses generates a wake of ampli-
tude Emax/E0 = πa1a2/2. The total plasma wave ampli-
tude generated by a laser beat wave of length L = Nλp

is Emax/E0 = Nπa1a2/2, where N is the number of laser
beat periods within the pulse.

The result given by (28) was based on linear plasma
theory, |φ| ≪ 1. Various nonlinear effects were ne-
glected. In particular, as discussed in Sect. II E, as the
plasma wave amplitude increases the plasma wave pe-
riod increases. Since the period of the beat wave is fixed,
whereas the period of the plasma wave is increasing, the
plasma wave will eventually become out of phase with the
laser beat wave. This resonant detuning of the plasma
wave from the beat wave will limit the amplitude of the
plasma wave [75].

The nonlinear dynamics of the beat wave generation
in 1D with ω2

p/ω
2 ≪ 1 can be examined using the
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nonlinear Poisson equation (13). Analysis of (13) indi-
cates that the nonlinear plasma wavelength is given by
λNp = (4/kp)(1+φs)

1/2E2(̺), where φs is the maximum
amplitude of the plasma wave, ̺ = 1−(1+φs)

−2, and E2

is the complete elliptic integral of the second kind. In the
limit φ2

s ≪ 1, λNp ≃ λp(1+3φ2
s/16), which indicates that

the nonlinear plasma wavelength increases as the plasma
wave amplitude increases. Hence, in the limit φ2

s ≪ 1,
the nonlinear plasma wave number is given by

kNp ≃ kp(1 − 3φ2
s/16). (29)

The detuning and saturation of the plasma wave can
be estimated as follows. The growth of the plasma wave
will stop when the phase difference between the laser beat
wave and the plasma wave is π/2, i.e.,

∫

dζ(kp − kNp) ≃
π/2. Using the linear result for the plasma wave am-
plitude, φs = a1a2kp|ζ|/4, yields a detuning distance

Lt = (2π/a2
1a

2
2)

1/34/kp. Hence, the plasma wave ampli-
tude will saturate after a distance Lt behind the front of
the laser beam, which gives a plasma wave amplitude of
φsat = (2πa1a2)

1/3 = Emax/E0. A more careful deriva-
tion [75] of resonant detuning yields a maximum value of
the electric field at saturation of

Emax/E0 = (16a1a2/3)1/3 , (30)

which assumes that the laser beat frequency is exactly
equal to the ambient plasma frequency ∆ω = ωp. Satu-
ration occurs because the plasma wave period increases
as the wave grows. Hence, to partly compensate for the
increasing nonlinear plasma period, the plasma wave can
be driven to higher amplitudes by using a laser beat pe-
riod which is slightly longer [76]. In other words, the beat
frequency is slightly detuned such that ∆ω < ωp. Tang et
al. [76] showed that the optimum detuning, which maxi-
mizes the plasma wave amplitude at saturation, is given
by

∆ωopt/ωp = 1 − (9a1a2)
2/3/8 . (31)

This gives a maximum saturation amplitude of

Emax/E0 = 4(a1a2/3)1/3 . (32)

The above results are valid in the limit of weak pump
amplitudes a1a2 ≪ 1 for which the plasma wave is driven
to saturation over a large number of beat periods. In the
highly nonlinear regime, a1a2 & 1, however, the same
general concepts apply to beat wave generation, i.e., the
beat wave amplitude is limited by the increasing nonlin-
ear plasma wavelength and the beat wave amplitude can
be optimized by increasing the beat wave period such
that ∆ω < ωp. To illustrate this, (13) is solved numer-
ically [95] for a laser beat wave consisting of four beat
periods, as shown in Fig. 7. The amplitudes of the lasers
are a1 = a2 = a0, with a0 = 1.2, and linear polarization is
assumed, such that (a1a1)s = a2

0/2, where the subscript s
refers to an averaging over the fast laser period. The am-
bient plasma density is n0 = 1016 cm−3 (λp = 330 µm).

(a)

(b)

FIG. 7: Examples of PBWA consisting of four beat pulses
with a0 = 1.2 in a plasma of density n0 = 1016 cm−3: (a)
without optimization ∆ω = ωp, showing the effects of detun-
ing, and (b) with optimization ∆ω < ωp. Normalized intensity
profile a2 (solid curve), wake potential φ (dotted curve), and
axial field Ez/E0 (dashed curve) versus t − z/c. Pulses are
linearly polarized (moving to the left)

The case ∆ω = ωp is shown in Fig. 7(a), and it is clear
that the plasma wave amplitude saturates (reaches max-
imum amplitude) after just the second beat pulse. The
effect of the third and fourth beat pulses is to drive the
plasma wave down to a low amplitude. In Fig. 7(b) the
beat period has been optimized numerically such that
the plasma wave amplitude after the fourth beat pulse
is maximized, i.e., the beat period is increased ∆ω < ωp

such that the length of the beat pulse is closer to the final
nonlinear plasma wavelength λNp. This results in a dra-
matic increase in the final amplitude of the plasma wave
electric field, Emax ≃ 1.4E0 = 13GV/m, in comparison
to the ∆ω = ωp case.

In addition to resonant detuning, the plasma wave am-
plitude in the PBWA can be limited by laser-plasma in-
stabilities. Experiments at Ecole Polytechnique observed
saturation of the beat-generated plasma wave by a para-
metric coupling to ion waves [96]. In general, since the
laser pulse lengths in the PBWA are long, L > λp, the
beams are subject to various laser-plasma instabilities,
which are discussed in Sect. VI.

The observation of plasma wave generation in the
PBWA via Thomson scattering was first demonstrated
by Clayton et al. [97] and later observed by several groups
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[28, 87, 96]. Acceleration of background plasma electrons
in the PBWA was first observed by Kitagawa et al. [28]
using two lines of a CO2 laser in a plasma of density
1017 cm−3. Plasma electrons were trapped and acceler-
ated to an energy in excess of 10MeV. A plasma wave
amplitude of δn/n0 = 0.05 was observed and an accelera-
tion gradient of 1.5 GV/m was estimated. Clayton et al.
[87] observed electron acceleration in a series of PBWA
experiments preformed at the University of California at
Los Angeles (UCLA) using two lines of a CO2 laser in a
plasma of density 9 × 1015 cm−3. A 28MeV energy gain
was observed using a 2MeV injected electron beam, cor-
responding to a gradient of 2.8GV/m and a plasma wave
amplitude of δn/n0 = 0.28. The UCLA experiments were
particularly well diagnosed and various laser-plasma in-
teraction phenomena and instabilities have been observed
[98–100]. In experiments at Ecole Polytechnique, Ami-
ranoff et al. [31] observed acceleration in a PBWA ex-
periment using two Nd laser lines in a plasma of density
1017 cm−3. The energy of a 3.4MeV injected electron
beam was observed to increase by 1.4MeV. A plasma
wave amplitude of 2% and a gradient of 0.6GV/m were
observed. Plasma wave saturation and parametric cou-
pling to ion waves were also observed in these experi-
ments [31].

C. Multiple Laser Pulses

In the previous section discussing the PBWA, it was
pointed out that (i) the laser beat wave acted in effect
as a series of short laser pulses, (ii) as the plasma wave
grew the plasma period increased which led to a loss of
resonance with respect to the laser beat pulses, and (iii)
the beat period, i.e., the width of the beat pulses, could
be adjusted and optimized to maximize the plasma wave
amplitude. These general principles can be extended to
describe plasma wave generation by a series of short laser
pulses [46–50]. For example, the resonant laser-plasma
accelerator [48] uses an optimized train of short laser
pulses to drive a plasma wave, in which the width of
each pulse and the spacing between pulses is indepen-
dently controlled. By optimizing the pulse widths and
interpulse spacings, resonance with the plasma wave can
be maintained and saturation of the plasma wave by reso-
nant detuning can be eliminated. A sequence of m pulses
is optimized when the pulse widths and spacings are cho-
sen to maximize the plasma wave amplitude.

For square pulses in the linear regime (a2 ≪ 1 and
Emax/E0 ≪ 1), the optimum pulse train consists of m
identical pulses, each of width L = λp/2 and separated
by a distance (2ℓ + 1)λp/2, where ℓ is an integer. The
plasma wave amplitude will be m times the single pulse
value, Emax/E0 = ma2

0. This result neglects nonlinear
effects. In particular, as the nonlinear plasma wavelength
increases, resonant detuning will eventually saturate the
plasma wave amplitude.

In the nonlinear regime, however, resonance can only

m=1

aT
2

FIG. 8: Maximum electric field amplitude Ez/E0 versus a2

T =
ma2

0, for m= 1, 3, 5, 10, and 100 optimized square laser pulses
with a0 = 1

be maintained by optimizing both the pulse widths and
spacings of each individual pulse. In the 1D limit with
ω2

p/ω
2 ≪ 1, this can be examined by solving (13). For

square pulse profiles, analytic solutions can be obtained.
It can be shown [49, 50] that the optimal width of the
mth pulse Lm, the nonlinear wavelength λNm of the wake
behind the mth pulse, and the electric field amplitude
Ezm of the wake behind the mth pulse are given by

Lm = (2/kp)x
1/2
m E2(ym) , (33)

λNm = (4/kp)x
1/2
m E2(ŷm) , (34)

Ezm/E0 = x1/2
m − x−1/2

m , (35)

where xm = γ2
⊥1γ

2
⊥2 · · · γ2

⊥m, γ2
⊥m = 1 + a2

m, am is the
amplitude of the mth pulse, E2 is the complete ellip-

tic integral of the second kind, y2
m = 1 − γ2

⊥mx
−1/2
m

and ŷ2
m = 1 − x

−1/2
m . The optimal spacing between the

end of the mth pulse and the beginning of the mth+1
pulse is given by (2ℓ+ 1)λNm/2 (ℓ =integer). The max-
imum normalized electric field of the wake Emax/E0, for
an optimized train of m square pulses of equal ampli-
tudes am = a0, is plotted in Fig. 8 versus the quan-
tity a2

T = ma2
0 [49, 50]. The curves show the results

for 1, 3, 4, 10, and 100 pulses. In the linear regime,
Ezm = mEz1 = ma2

0E0, i.e., these curves are just
straight lines. Figure 8, however, shows that in the non-
linear regime, m pulses are more efficient than the linear
result, i.e., Ezm > mEz1. In the highly nonlinear regime,
this enhancement can be quite dramatic. Furthermore,
Fig. 8 indicates that just a few optimized square pulses
are far more efficient than a single pulse.

For square pulse profiles, both the width of the pulse
and the spacing between pulses increases for subsequent
pulses in the train, since the nonlinear wavelength of
the plasma wave is increasing. For more realistic pulse
profiles, this is not necessarily the case. Consider the
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FIG. 9: Laser pulse train consisting of four optimized sine-
shaped laser pulses with a0 = 1.2 and n0 = 1016 cm−3. Nor-
malized intensity profile a2 (solid curve), wake potential φ
(dotted curve), and axial field Ez/E0 (dashed curve) are plot-
ted vs. the comoving variable t − z/c. Pulses are linearly
polarized (moving to the left)

case in which the electric field envelope of each pulse
is modeled by a half period of a sine function, e.g.,
a = a1 sin(πζ/L1), with 0 < ζ < L1, for the first pulse.
The result from a numerical optimization [49, 50] of (13)
for a train of four sine pulses is shown in Fig. 9. Here,
the plasma density is n0 = 1016 cm−3 and the pulses are
linearly polarized with equal amplitudes am = a0 = 1.2.
Notice that the pulse width is decreasing, i.e., the width
of the first pulse is 940 fs, whereas the width of the fourth
laser pulse is 200 fs. From Fig. 9, it can be seen that the
pulses are optimized when they reside in the region of
the plasma wave for which φ < 0 and dφ/dζ < 0, where
ζ = z − ct. This is the phase region of the plasma wave
for which the laser pulse drives the plasma wave most ef-
ficiently. As in the square wave case, λNm, and thus the
spacing between pulses, increases with each succeeding
pulse. For this example, the total laser fluence for the
pulse train is Iτtot = 2.2MJ/cm2 and the final accelerat-
ing field is Emax ≃ 1.9E0 = 18GV/m.

Several techniques may generate a train of short, in-
tense pulses using CPA laser systems [49, 50]. One pos-
sible method is to divide the amplified stretched pulse
by use of beam splitters, then send the separate pulses
to separate compressors with adjustable lengths and de-
lays. Alternatively, Fourier filtering can by used by plac-
ing a mask in the pulse stretcher to modify the phase
and/or amplitude of the frequency components of the
pulse in such a way that, when it is recompressed, a se-
ries of pulses with arbitrary spacings and widths will be
produced. Preliminary experiments on similar methods
have been reported [101].

D. Self-Modulated Laser Wakefield Accelerator

In the previous section it was described how a train
of laser pulses can be used to generate a large amplitude

wakefield. Under appropriate conditions, however, it is
possible for a single, long laser pulse to break up into a
train of short pulses, each of these short pulses having a
width on the order of λp. Associated with the break up
of the long pulse and the formation of the pulse train is a
large amplitude plasma wave. This process is referred to
as self-modulation [12, 36–45, 52, 102, 103] and was first
observed in fluid simulations [36–38] of relativistically
guided laser pulses. Physically, self-modulation occurs
from the plasma wave producing periodic regions of en-
hance focusing and diffraction [104]. The self-modulation
instability resembles a highly 2D version of a forward
Raman instability. Forward Raman scattering occurs si-
multaneously, adding to the modulation, and in the 1D
limit, pulse modulation can occur via forward Raman
scattering alone [105].

The process by which a plasma wave can modulate a
laser pulse by producing periodic regions of enhanced fo-
cusing and diffraction was first described and analyzed by
Esarey et al. [94]. The self-modulation of relativistically-
guided laser pulses was observed in the simulations of
Andreev et al. [38], Sprangle et al. [36], and Antonsen
and Mora [37, 106]. Krall et al. [73] simulated a self-
modulated LWFA, including the acceleration of an in-
jected electron beam, and showed that this configuration
can have certain advantages over the standard LWFA.
The self-modulation instability was subsequently ana-
lyzed by Esarey et al. [104] and Andreev et al. [107, 108]
and, in the 1D limit, RFS was analyzed by Mori et al.
[105]. Extensive particle-in-cell simulations of short, in-
tense pulses propagating in the high density regime have
been carried out by Decker et al. [71] and Bulanov et al.
[72].

To operate in the self-modulated regime [36, 37, 52,
73, 104, 106–108], it is desirable that (i) the pulse length
be long compared to the plasma wavelength, L > λp, and
(ii) the pulse power to be larger than the power required
to guide a long laser beam, P > Pc(1 − ∆n/∆nc). Here,
Pc = 17(ω/ωp)

2 GW is the critical power required for rel-
ativistic optical guiding, ∆n is the depth of a preformed
parabolic density channel (if present), ∆nc = 1/πrer

2
0 is

the critical channel depth, and re is the classical electron
radius. The optical guiding of laser pulses by relativistic
effects and density channels will be discussed more com-
pletely in the Sect. V. In the remainder of this section,
it will be assumed that the laser pulse is propagating in

an initially uniform plasma (∆n = 0). Since λp ∝ n
−1/2
0

and Pc ∝ n−1
0 , for fixed laser parameters, the conditions

L > λp and P > Pc can usually be satisfied by operating
at a sufficiently high plasma density.

Consider the possibility of generating wakefields with
a 300 fs (L = 90 µm) laser pulse of wavelength λ =
1 µm and power P = 10TW. To operate in the stan-
dard LWFA configuration, L ≃ λp implies a density of
n0 ≃ 1.4×1017 cm−3. At this density P ≪ Pc ≃ 140TW
and the effects of relativistic guiding are unimportant.
To operate in the self-modulated regime, it is desirable
that L > λp and P > Pc. Choosing a plasma density
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such that P = 1.5Pc implies n0 ≃ 2.8 × 1018 cm−3 and
L ≃ 4.5λp. Hence, for this laser pulse, the self-modulated
regime can be reached by increasing the plasma density
by a factor of 20 compared to the standard LWFA con-
figuration. Furthermore, the corresponding energy gain
can be enhanced by nearly a factor of 10 compared to the
standard LWFA configuration, as is indicated by simula-
tions discussed below.

The advantages of the self-modulated LWFA over the
standard LWFA are simplicity and enhanced accelera-
tion. Simplicity in that a matching condition of L ≃ λp,
a preformed density channel, or special pulse tailoring
are not required. Enhanced acceleration is achieved for
several reasons: (i) The self-modulated LWFA operates
at higher density, hence a larger wakefield will be gener-
ated, since Ez ∝ 1/

√
n0, as indicated by (11). (ii) Since

P > Pc, the laser pulse will tend to focus to a higher in-
tensity, thus increasing a0 and Ez . (iii) The wakefield is
resonantly excited, i.e., excited by a series of beamlets as
opposed to a single pulse as in the standard LWFA. (iv)
Relativistic optical guiding allows the modulated pulse
structure to propagate for several Rayleigh lengths, thus
extending the acceleration distance. The disadvantages
of the self-modulated LWFA are (i) at higher densities
the laser pulse group velocity (≃ the plasma wakefield
phase velocity) decreases and, hence, electron dephasing
from the plasma wakefield can limit the acceleration dis-
tance, and (ii) the modulated pulse structure eventually
diffracts.

The properties of the self-modulated LWFA are illus-
trated by the following simulations [73]. For fixed laser
pulse parameters, two cases will be considered: (1) a
standard LWFA in which L ≃ λp and P < Pc and (2)
a self-modulated LWFA, in which L > λp and P > Pc.
The laser parameters for both these cases are identical:
a Gaussian axial intensity profile with a pulse length
L = 90 µm (300 fs), λ = 1 µm, a0 = 0.7, r0 = 31 µm (in
vacuum, which corresponds to ZR = 3mm), P = 10TW,
and a pulse energy of 1.5 J. The simulation begins at t = 0
as the laser pulse enters the plasma, initially converging
such that in vacuum it would focus to a minimum spot
size of r0 = 31 µm at ct = 3ZR. The plasma density is ini-
tially increasing, reaching full density at ct = 2ZR. The
simulation continues until ct = 10ZR = 3cm. In both
cases, the acceleration and trapping of a continuous elec-
tron beam with initial energy of 3 MeV and normalized
emittance εn = 130mm-mrad is considered. The elec-
tron beam is initially converging such that in vacuum it
would focus to a minimum RMS radius rb = 200 µm at
ct = 3ZR. With such a large initial emittance, only a
small fraction (∼ 1%) of the particles will be trapped
and accelerated.

For the standard LWFA, Case (1), the requirement L =
λp = 90 µm implies a density of n0 = 1.4 × 1017 cm−3.
At this density, P ≪ Pc = 140TW, such that relativis-
tic guiding effects are unimportant. The presence of the
plasma has little effect on the evolution of the laser pulse,
which reaches a peak intensity of |a|2 = 0.56 at ct = 3ZR.

FIG. 10: Ambient plasma density np/n0 (solid curve) and
spot size rs/λp (dashed curve) versus normalized propaga-
tion distance cτ/ZR for a self-modulated LWFA with n0 =
2.8 × 1018 cm−3. Laser is initially converging such that the
minimum spot size in vacuum is reached at cτ = 3ZR

(a)

(b)

FIG. 11: (a) Peak accelerating field and (b) peak energy of
the injected particles versus propagation distance cτ for the
standard LWFA (dashed curve) with n0 = 1.4 × 1017 cm−3

and the self-modulated LWFA (solid curve) with n0 = 2.8 ×
1018 cm−3

The evolution of the spot size, Fig. 10, is very close to
vacuum diffraction. This is also evident in Fig. 11(a)
(dashed line), where the peak accelerating field, plotted
versus time, is symmetric about the focus, ct = 3ZR. Af-
ter ct = 10ZR = 3cm, a small fraction (∼ 0.1%) of the
test electron beam particles have been trapped and accel-
erated. At ct = 2 cm, the peak particle energy is 48MeV,
which implies an average acceleration of 2.4GeV/m, as
shown in Fig. 11(b) (dashed line).
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For the self-modulated LWFA, Case (2), the density is
increased such that P = 1.5Pc = 10TW, which implies
n0 = 2.8 × 1018 cm−3, which is 20 times higher than in
Case (1). At this density L > λp = 20 µm, i.e., the laser
pulse now extends over ≃ 4.5λp. Figure 12 shows the
laser intensity at (a) ct = 2ZR and (b) ct = 3.2ZR. The
axial electric field and the plasma density response on-
axis at ct = 3.2ZR are shown in Figs. 13(a) and 13(b), re-
spectively. The laser pulse has become modulated (three
peaks are observable, separated by λp) and the plasma
wave is highly nonlinear. In addition, relativistic op-
tical guiding effects have focused the laser to a much
higher intensity than was observed in Case (1). The evo-
lution of the laser spot size is shown in Fig. 10 indicating
that the pulse has focused to a smaller spot size and
remains guided over ≃ 5.5ZR. A plot of the peak ac-
celerating field versus time, Fig. 11(a) (solid line), shows
that the highly nonlinear fields persist as the laser pulse
is optically guided. A maximum accelerating field of
≃ 130GV/m was obtained. Because of the larger fields,
a greater fraction (2%) of the test electron beam par-
ticles were trapped and accelerated. The peak particle
energy of 430MeV is observed at ct = 6ZR = 1.8 cm.
At ct = 10ZR = 3cm, however, the peak particle energy
has dropped to 290MeV due to the reduced group veloc-
ity of the laser pulse, which causes the electrons to slip
out of phase with the wakefield and become decelerated.
Figure 11(b) (solid line) shows acceleration to 430MeV
over 1.8 cm which gives an average gradient of 24GeV/m.
This is an order of magnitude increase compared to the
standard LWFA of Case (1). In the above fluid simula-
tions, the excited plasma wave was below wavebreaking,
and an externally injected electron beam was used. How-
ever, in the experiments discussed below, it is possible
to drive the plasma wave in the self-modulated regime
to wavebreaking, resulting in copious amounts of self-
trapped electrons, albeit with large energy spread.

Evidence for plasma wave generation in the high-
density, self-modulated regime was first detected by
Coverdale et al. [40]. The presence of a plasma wave
leads to the generation of Stokes and anti-Stokes lines
in the frequency spectrum of the pump laser pulse. The
first two anti-Stokes lines were observed by Coverdale et
al., the appearance of which were correlated with pro-
duction of fast electrons, as discussed below. Subse-
quently, multiple anti-Stokes lines in the forward spec-
trum of the pump laser have been observed by several
other groups [41, 42, 109]. At the Naval Research Labora-
tory [109], plasma wave generation in the self-modulated
regime was measured via coherent Thomson scattering
with a frequency-doubled probe pulse. The evolution of
the plasma wave was observed by varying the time delay
between the pump and probe pulses.

Joshi et al. [39] detected fast electrons in an early
experiment via forward Raman scattering. A sin-
gle, long (700 ps), CO2 laser pulse of modest intensity
(1015 W/cm2) interacting with a thin Carbon foil was
observed to produce 1.4MeV electrons. Electron acceler-

(a)

(b)

FIG. 12: Normalized laser intensity |a|2 for the self-modulated
LWFA case at (a) cτ = 2ZR and (b) cτ = 3.2ZR. Laser pulse
is moving to the right

ation in the high-density, self-modulated regime has been
observed using ultrashort pulses (. 1 ps). Nakajima et al.
[102] observed electron acceleration to energies ≥ 18MeV
using a 3TW, 1 ps, 1017 W/cm2 laser pulse in a plasma
of density near 1019 cm−3. A laser-solid interaction was
used to produce a source of injected electrons with ener-
gies near 1MeV. Particle simulations in 1D suggest accel-
eration gradients on the order of 30GV/m. Coverdale et
al. [40] observed 2MeV electrons, which were trapped
and accelerated from the background plasma, when a
600 fs, 5 TW, 8 × 1017 W/cm2 laser pulse propagated
in a plasma of density 2 × 1019 cm−3. The generation
of electrons was also correlated with the occurrence of
anti-stoke lines in the laser pulse spectrum, which indi-
cates the presence of a plasma wave. Modena et al. [41]
demonstrated the acceleration of self-trapped electrons
to energies ≥ 44MeV (limit of the detector) using a 1 ps,
20TW, 5×1018 W/cm2 laser pulse in a plasma of density
1.5 × 1019 cm−3. A large flux of electrons was observed
(106 electrons/MeV at 44MeV) and the electron signal
was correlated to the appearance of up to 5 anti-Stokes
lines in the laser spectrum. Estimates based on the
electron dephasing length imply an acceleration gradient
> 100GV/m. Acceleration of self-trapped electrons has
also been observed by Wagner et al. [42]. The electrons
were emitted in a well-collimated beam in the forward
direction (a divergence angle ≃ 8◦) and the cross-section
of the beam resembled the shape of the cross-section of
the laser at focus. By varying the laser pulse energy,
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(a)

(b)

FIG. 13: (a) Axial electric field Ez and (b) normalized plasma
electron density n/n0 versus ζ at cτ = 3.2ZR for the self-
modulated LWFA case

a threshold for electron acceleration was observed near
P ≃ Pc. Subsequently, other research groups have mea-
sured energetic electron production in the self-modulated
regime [12, 43–45].

Experiments at Lawrence Berkeley National Labo-
ratory (LBNL) have shown the importance of pulse
shape on self-modulation and electron production [103].
These experiments compared electron production for
laser pulses with slow and fast rise times. For fast rise
times the ponderomotive force is larger, resulting in a
larger initial plasma wave, which acts as the seed for the
self-modulation instability [110]. Experiments and simu-
lations by Malka et al. [13] have discussed an intermediate
regime between the standard and self-modulated LWFA,
in which the laser pulse is only somewhat longer than the
plasma wavelength. In this regime, the pulse undergoes
significant self-steepening, resulting in enhanced plasma
wave generation.

Another process that can contribute to acceleration
in the self-modulated regime (λp < L and P > Pc) is
direct laser acceleration [111]. In this mechanism, it is
necessary that the accelerated electrons undergo trans-
verse betatron oscillations. When the betatron frequency
ωβ is near the laser frequency in the frame of the accel-
erated electrons, ω ∼ 2ωβγ

2/γ2
⊥
, energy can efficiently

exchange between the electrons and the transverse laser
field. This is the inverse process of the electromagnetic
instability responsible for the ion channel laser [112].
The transverse betatron oscillations are produced by a
transverse force that can result from a variety of mech-
anisms, e.g., the radial structure of the plasma wave

(φ = φ0 exp(−2r2/r20) cos[kp(z− ct)] for a Gaussian laser
in the linear regime), forces resulting from induced mag-
netic fields, or, in the blowout regime, from the formation
of an ion channel through the expulsion of background
plasma electrons by the radial ponderomotive force of the
laser. In the blowout regime (φ0 ∼ k2

pr
2
0/8), the electrons

oscillate with the betatron frequency ωβ ≃ ωp/(2γ)
1/2

[113]. Gahn et al. [114] have reported multi-MeV elec-
trons accelerated by a 1.2TW, 200 fs laser pulse chan-
neling in a high-density (1020 cm−3) plasma, and have
attributed the dominant acceleration process to direct
laser acceleration.

E. Limits on Laser-Driven Acceleration

Several mechanisms can limit the energy gain in a laser
driven accelerator: laser diffraction, electron dephasing,
pump depletion, and laser-plasma instabilities. In vac-
uum a laser pulse undergoes Rayleigh diffraction, i.e., the
laser spot size evolves according to rs = r0(1+z2/Z2

R)1/2,
where r0 is the minimum spot size at the focal point z = 0
and ZR = kr20/2 is the Rayleigh length. Without some
form of optical guiding, the laser-plasma interaction dis-
tance will be limited to a few ZR. Electron dephasing,
i.e., a highly relativistic electron outrunning the plasma
wave, can limit the energy gain to a dephasing length
Ld, as discussed in Sect. II F. As the laser driver excites
a plasma wave, it looses energy, i.e., it pump depletes
[89, 115–117]. The pump depletion length Lpd can be es-
timated by equating the laser pulse energy to the energy
left behind in the wakefield, E2

zLpd ≃ E2
LL, where EL is

the laser field.
As an illustration, consider a LWFA in the standard

configuration driven by a circularly polarized, square pro-
file laser pulse with L ≃ λNp/2. The dephasing and
pump depletion lengths are given by [115–117]

Ld ≃ (ω2/ω2
p)λp

{

1 , for a2
0 ≪ 1,

2a2
0/π , for a2

0 ≫ 1,
(36)

Lpd ≃ (ω2/ω2
p)λp

{

a−2
0 , for a2

0 ≪ 1 ,

a0/3π , for a2
0 ≫ 1 .

(37)

For the parameters a0 = 0.5, λ = 1 µm, and r0 = λp =
33 µm (P = 6TW and n0 = 1017 cm−3), the relevant
propagation lengths are ZR = 0.34 cm, Ld ≃ 3.6 cm, and
Lpd ≃ 14 cm, i.e., ZR ≪ Ld < Lpd. Furthermore, since

Ld, Lpd ∝ n
−3/2
0 , the dephasing length and pump deple-

tion lengths can be increased by operating at lower densi-
ties. Since L ∼ λp in the standard LWFA, lower densities
correspond to longer laser pulse durations L ∝ 1/

√
n0.

In principle, a static magnetic field can be introduced to
reduce dephasing [93]. Use of an active medium has also
been proposed as a method to reduce pump depletion
[118].
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The energy gain in the standard LWFA for a laser
pulse undergoing vacuum diffraction is given by ∆Wv ≃
eπZREz which, in the limit a2

0 ≪ 1, can be written as
[119]

∆Wv(MeV) ≃ 580(λ/λp)P (TW) . (38)

To increase the energy gain beyond this value in a sin-
gle stage, some form of optical guiding, such as the use
of a plasma density channel, is necessary in order to
prevent diffraction. Various methods for optical guid-
ing are discussed in Sect. V. If diffraction is overcome,
dephasing will limit the energy gain. In the standard
LWFA, the single-stage energy gain after a dephasing
length ∆Wd = eLdEz can be written in the limit a2

0 ≪ 1
as [120]

∆Wd(GeV) ≃ I0(W/cm2)/n0(cm
−3) . (39)

These estimates neglect pump depletion and assume that
laser-plasma instabilities do not significantly degrade the
laser pulse. The effects of various instabilities are dis-
cussed in Sect. VI.

In the linear regime (a2
0 ≪ 1), Ld ≪ Lpd and the

electron energy gain is limited by dephasing, not pump
depletion, assuming an axially uniform plasma. However,
by appropriately tapering the axial plasma density pro-
file, dephasing limitations can be overcome, resulting in a
larger single-stage energy gain [121]. By slowly increasing
the plasma density as a function of propagation distance,
the phase velocity of the wakefield can be increased, as
is described in Sect. IVC. In principle, an axial density
taper can be found for which vp = c at some point behind
the drive laser pulse. In this case, acceleration would be
limited by pump depletion, Lpd ∼ (λ3

p/λ
2)a−2

0 .

In the nonlinear regime (a2
0 & 1), Ld & Lpd and no den-

sity tapering is needed, since the electron energy gain is
limited by pump depletion, not dephasing. In particular,
the regime a2

0 ∼ 1, such that Ld ∼ Lpd, has advantages
over the linear regime. In addition to not requiring den-
sity tapering, a single channel-guided stage with a2

0 ∼ 1
results in higher accelerating gradients, shorter channel
lengths, efficient depletion of the laser pulse energy, while
yielding comparable energy gains.

F. Beam Loading

A relativistic, charged particle bunch moving through
a plasma can excite a wake in a manner similar to that of
an intense laser pulse. For a laser driver, the ponderomo-
tive force expels plasma electrons and initiates a wake.
For a relativistic electron bunch, the space charge force
of the bunch (with a relativistically large mass) displaces
plasma electrons (with a relativistically lighter mass) and
initiates a wake. The larger the charge in the bunch, the
larger the wake. In a plasma-based accelerator, the wake
from the accelerated bunch will be out of phase with, and
thus reduce, the wake generated by the drive beam. The

process by which the wake produced by the accelerated
bunch significantly modifies the fields of the accelerating
plasma wave is referred to as beam loading. Beam load-
ing can place severe limitations on the beam current that
can be accelerated, the quality of the accelerated particle
bunch, and the efficiency of the plasma-based accelerator.

The wakefield generated by a relativistic electron
bunch moving through a plasma can be calculated us-
ing linear perturbation theory of the cold fluid-Maxwell
equations [56, 122]. The normalized density perturbation
δn/n0 < 1 and normalized axial electric field Ez/E0 < 1
driven in an initially uniform plasma by a short electron
bunch (with number density nb) are given by

(

∂2

∂ζ2
+ k2

p

)

δn
n0

= −k2
p

nb

n0
, (40)

(

∇2
⊥ − k2

p

) Ez

E0
= −kp

∂

∂ζ

δn
n0

, (41)

using the quasi-static approximation and assuming a
highly relativistic beam, βb ≃ 1, where cβb is the electron
bunch velocity. Solving (40) yields

δn/n0 = kp

∫ ζ

0

dζ′ sin[kp(ζ − ζ′)]nb(ζ
′)/n0 , (42)

and, for a cylindrically-symmetric beam, solving (41)
yields

Ez/E0 = k3
p

∫ ζ

∞

dζ′
∫

∞

0

dr′r′ cos[kp(ζ − ζ′)]

× I0 (kpr<)K0 (kpr>)nb(r
′, ζ′)/n0 , (43)

where I0 and K0 are the zeroth-order modified Bessel
functions of the second kind, and r< (r>) denote the
smaller (larger) of r and r′, respectively. An electron
bunch will excite a plasma wave provided that the length
scale of the axial gradients in the bunch profile (e.g.,
the bunch length) is comparable to or shorter than the
plasma period, e.g., kpσz < 1, where σz is the bunch
length. For a uniform bunch profile of radius rb and
length σz , assuming kpσz ≪ 1, the amplitude of the per-
turbed plasma density is δn/n0 ≃ kpσz(nb/n0) and the
amplitude of the axial wakefield is

Ez/E0 ≃ kpσzFR(r)nb/n0 , (44)

where the radial profile function is

FR(r) =

{

1 − kprbK1(kprb)I0(kpr) , for r < rb
kprbI1(kprb)K0(kpr) , for r > rb

(45)

with I1 and K1 the first-order modified Bessel functions.
For a wide beam kprb ≫ 1, FR(0) ≃ 1. For a narrow
beam kprb ≪ 1, FR(0) ≃ k2

pr
2
b [0.577 + ln(kprb/2)].

The maximum number of bunch electrons that can be
loaded into a small (≪ λp) axial segment of a linear
wakefield for acceleration (i.e., the number of electrons
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required to produce a wakefield that will cancel the ac-
celerating field, which defines the beam loading limit) is
[122]

Nmax =
n0Ab

kp

Ez

E0
≃ 5 × 105

(

Ez

E0

)

Ab[cm
2]
√

n0[cm−3] ,

(46)
assuming Ez/E0 < 1, where Ab ≫ π/k2

p is the cross-
sectional area of the bunch. As the number of bunch
electrons N approaches Nmax, the energy spread scales
as N/Nmax and the efficiency of converting wake energy
to electron energy scales as (N/Nmax)(2 −N/Nmax).

IV. ELECTRON TRAPPING AND INJECTION

A. Trapping in the Self-Modulated LWFA

Perhaps the most basic and simplest form of a laser-
plasma injector is the self-modulated LWFA, in which
a single laser pulse results in self-trapping and genera-
tion of a sub-ps electron bunch, however, with a large
energy spread. Typically the self-trapped bunch is of
high charge (up to 10 nC), with an energy distribution
characterized by a Boltzmann distribution with a few
MeV temperature. One possible mechanism for self-
trapping is the direct wavebreaking of the plasma wake-
field [12, 41, 123]. Since the phase velocity of the wake-
field is very near the speed of light, it is difficult to trap
the background fluid electrons, which are undergoing the
fluid oscillation that sustains the wakefield. The wake
will trap the background electrons when the separatrix
of the wake overlaps the plasma fluid orbit, which is the
definition of wavebreaking, as discussed in Sect. II D.
Wavebreaking of a cold plasma wave in 1D occurs at
EWB = [2(γp−1)]1/2E0 ≫ E0. As discussed in Sect. II D
thermal and 2D effects can lower this value, but typi-
cally wavebreaking requires nonlinear plasma waves with
Ez > E0. The observed wakefield amplitude, however,
as measured in several experiments [109], appears to be
in the range Ez/E0 ∼10–30%, well below wavebreaking.
This suggests that additional laser-plasma instabilities
may play a role in lowering the effective wave breaking
amplitude.

Alternatively, self-trapping and acceleration can re-
sult from the coupling of Raman backscatter (RBS)
and Raman sidescatter (RSS) to the wakefield [124].
As the pump laser self-modulates, it also undergoes
RBS, which is the fastest growing laser-plasma instabil-
ity (cf. Sect. VI A). RBS is observed in intense short
pulse experiments, with reflectivities as high as 10–30%
[109, 125]. RBS generates red-shifted backward light of
frequency ω0 − ωp and wavenumber −k0, which beats
with the pump laser (ω0, k0) to drive a ponderomotive
wave (ωp, 2k0). As the instability grows, the Raman
backscatter beat wave, which has a slow phase velocity
vp ≃ ωp/2k0 ≪ c, can trap and heat background plasma
electrons [39, 126]. These electrons can gain sufficient

energy and be displaced in phase by the beat wave such
that they are trapped and accelerated to high energies in
the wakefield. Simulations [124] indicate that coupling to
RBS can lead to self-trapping at modest wakefield am-
plitudes, Ez/E0 ≃ 0.25, much lower than the cold 1D
threshold for direct wavebreaking.

In 2D, this process can be enhanced by coupling
to RSS. As the scattering angle decreases from 180◦

(backscatter), the Raman growth rate decreases and the
phase velocity of the Raman plasma wave increases. The
electrons that are initially trapped and heated by RBS
can be subsequently trapped by RSS modes propagating
at smaller angles, which will accelerate the electrons to
higher energies (owing to the higher phase velocity of the
RSS modes) [39, 124]. Eventually, these background elec-
trons can be trapped and accelerated to very high ener-
gies by the plasma wave associated with the forward Ra-
man instability or the self-modulation instability, which
has vp ≃ c.

When electrons become trapped in the fast wakefield,
they become accelerated to high energies as they circu-
late inside the separatrix of the wake. A large energy
spread for the trapped electrons results because (i) some
fraction of the background electrons are continually being
swept up and trapped in the wakefield as the laser pulse
propagates into fresh plasma, and (ii) typically the self-
guided propagation distance of the laser pulse is much
greater than the dephasing length for trapped electrons,
cf. Sect. II F. In the self-modulated regime the dephasing
length can be very short, e.g., Ld < 50 µm. This implies
that deeply trapped electrons will circulate many revo-
lutions within the separatrix, again resulting in a large
energy spread. The maximum energy of the trapped elec-
trons is given by the maximum of the separatrix, which

corresponds to an energy Wmax ≃ 4γ2
pγ

1/2
⊥

mec
2Ez/E0,

for Ez/E0 ≪ 1, where γp is the phase velocity of the
plasma wave.

For many applications, a small energy spread is de-
sired. One method for improving the self-modulated
bunch quality is by post-acceleration. For example,
the self-modulated bunch could be immediately injected
into a second-stage composed of a standard LWFA with
L ∼ λp in which the wakefield is produced in a con-
trolled manner at an amplitude below the wavebreaking
or self-trapping threshold. This could be achieved by us-
ing a plasma that transitions from a high plasma density
(λp ≪ L, self-modulated LWFA) to a low plasma density
(λp ∼ L, standard LWFA). Simulations [127] show that
in this two-stage acceleration scheme, about 40% of the
injected bunch charge can be trapped and accelerated in
the LWFA with a reduce energy spread.

B. Optical Injection Techniques

In principle, if a small energy spread electron bunch
of duration small compared to λp is injected into the
wakefield at the proper phase, then the bunch can be ac-
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celerated while maintaining a small energy spread. This
becomes problematic in the LWFA, since the wavelength
of the accelerating field is small, e.g., λp ≃ 30 µm for
n0 ≃ 1018 cm−3. Hence, a low energy spread requires an
ultrashort bunch duration τb < λp/c that is injected at
the optimal plasma wave phase with femtosecond timing
accuracy. These requirements are beyond the capabilities
of conventional electron beam injector technology (e.g.,
RF photo-injectors). On the other hand, the production
of ultrashort laser pulses and the femtosecond timing of
multiple pulses is routine with compact CPA technol-
ogy. As discussed below, ultrashort, high intensity laser
pulses can be used to inject electrons into a single bucket
(plasma wave period) of a standard LWFA [128–131].

1. Ponderomotive injection

Umstadter et al. [128] first proposed using an addi-
tional laser pulse to inject background plasma electrons
into the wake for acceleration to high energies. To gener-
ate ultrashort electron bunches with low energy spreads,
the original laser injection method of [128] uses two
laser pulses which propagate perpendicular to one an-
other. The first pulse (pump pulse) generates the wake-
field via the standard LWFA mechanism, and the second
pulse (injection pulse) intersects the wakefield some dis-
tance behind the pump pulse. The ponderomotive force
Fp ≃ −(mec

2/γ)∇a2/2 of the injection pulse can accel-
erate a fraction of the plasma electrons such that they
become trapped in the wakefield. Specifically, the axial
(direction of propagation of the pump pulse along the
z-axis) ponderomotive force of the injection pulse (prop-
agating along the x-axis) scales as

Fz = −(mec
2/γ)(∂/∂z)a2

1/2 ∼ (mec
2/γ)a2

1/r1 , (47)

where a2
1 and r1 are the normalized intensity and spot size

of the injection pulse, respectively. A simple estimate for
the change of momentum that an electron will experience
owing to the ponderomotive force of the injection pulse is
∆pz ≃ Fzτ1 ∼ (mec

2/γ)a2
1τ1/r1, where τ1 is the injection

pulse duration. It is possible for ∆pz to be sufficiently
large that electrons are injected into the separatrix of
the wakefield such that they become trapped and accel-
erated to high energies. To inject into a single plasma
wave bucket, it is necessary for both the injection pulse
spot size and pulse length to be small compared to the
plasma wavelength, i.e., r21 ≪ λ2

p and c2τ2
1 ≪ λ2

p. Simu-
lations [128], which were performed for ultrashort pulses
at high densities (λp/λ = 10 and Ez/E0 = 0.7), indi-
cated the production of a 10 fs, 21MeV electron bunch
with a 6% energy spread. However, high intensities
(I > 1018 W/cm2) are required in both the pump and
injection pulses (a0 ≃ a1 ≃ 2). In the work of Umstadter
et al. [128], the pump and injection pulses do not overlap
in space and time, and a laser beat wave is not generated,
as discussed below.

Simulations by Hemker et al. [130] point out that ad-
ditional electron injection into one or more wake buckets
can result through the influence of the wake associated
with the injection pulse, which can be significant because
of the high intensity of the injection pulse (a1 & 1).
Umstadter et al. [128] also discuss the possibility of in-
jection using an injection pulse that propagates paral-
lel, but some distance behind, the pump pulse. The
injection pulse would have a tighter focus (and hence
smaller Rayleigh length) than the pump pulse, and would
be phased appropriately such that it locally drives the
wakefield to an amplitude that exceeds wavebreaking,
thus resulting in local trapping and acceleration of elec-
trons. In addition, [128] discusses the possibility of the
injection pulse being focused to sufficiently high inten-
sity such that it produces locally additional ionization.
The ionized electrons, which are born dephased from the
background plasma electron in the wake, could become
trapped and accelerated by the wake. Injection by laser-
induced ionization and ponderomotive acceleration has
also been discussed by Moore et al. [132].

2. Colliding pulse injection

Beat wave injection using colliding laser pulses [129,
131, 133] differs intrinsically from the method of pon-
deromotive injection discussed above in that the source
and form of the ponderomotive force differs in these two
methods. In ponderomotive injection, injection is the re-
sult of the ponderomotive force associated with the enve-

lope (time-averaged intensity profile) of a single pulse. In
beat wave injection, injection is the result of the pondero-
motive force associated with the slow beat wave of two
intersecting pulses. Beat wave injection was first pro-
posed and analyzed by Esarey et al. [129] in a concept
referred to as colliding pulse injection.

Colliding pulse injection [129, 131, 133] uses three
short laser pulses: an intense (a2

0 ≃ 1) pump pulse (de-
noted by subscript 0) for plasma wave generation, a for-
ward going injection pulse (subscript 1), and a back-
ward going injection pulse (subscript 2), as shown in
Fig. 14. The frequency, wavenumber, and normalized
intensity are denoted by ωi, ki, and ai (i = 0, 1, 2).
Furthermore, it is assumed that k1 ≃ k0, k2 ≃ −k0,
and ω1 − ω2 = ∆ω ≫ ωp. The pump pulse generates
a plasma wave with phase velocity near the speed of
light (vp0 ≃ c). The forward injection pulse travels at
a fixed distance behind the pump pulse, which deter-
mines the position (i.e., phase) of the injected electrons.
The injection pulses are orthogonally polarized to the
pump laser pulse, such that the pump pulse and back-
ward going injection pulse do not beat. When the injec-
tion pulses collide some distance behind the pump, they
generate a slow ponderomotive beat wave of the form
a1a2 cos(∆kz − ∆ωt) (here ∆k = k1 − k2 ≃ 2k0) with
a phase velocity vpb ≃ |∆ω|/2k0 ≪ c. The axial force
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FIG. 14: Profiles of the pump laser pulse a0, the wake φ, and
the forward a1 injection pulse, all of which are stationary in
the ψ = kp(z − vpt) frame, and the backward injection pulse
a2, which moves to the left at ≃ 2c

associated with this beat wave scales as

Fz = −(mec
2/γ)(∂/∂z)a1a2 cos(2k0z − ∆ωt)

∼ (mec
2/γ)2k0a1a2 .

(48)

During the time in which the two injection pulses overlap,
a two-stage acceleration process can occur, i.e., the slow
beat wave traps and heats background plasma electrons
which, as a result of shifts in their momentum and phase,
can be injected into the fast wakefield for acceleration to
high energies.

The ratio of the axial force of the beat wave to that of a
single pulse in the ponderomotive injection scheme (ow-
ing to the gradient in the envelope of the laser intensity)
scales as

Fz,beat

Fz,env
∼ 2k0a1a2

a2
p/rp

, (49)

where the subscript p refers to the single ponderomotive
injection pulse and the contribution of the relativistic
Lorentz factor γ (which is different for the two cases)
is neglected. For comparable injection pulse intensities
(a1 ≃ a2 ≃ ap), the ratio scales as 4πrp/λ0 ≫ 1, i.e.,
the axial force of the beat wave is much greater than
the ponderomotive force from the intensity envelope of
a single pulse. Consequently, colliding pulses can result
in electron injection at relatively low intensities (a1 ∼
a2 ∼ 0.2), as well as at relatively low densities (λp/λ ∼
100), thus allowing for high single-stage energy gains.
Furthermore, the colliding pulse concept offers detailed
control of the injection process: the injection phase can
be controlled via the position of the forward injection
pulse, the beat phase velocity via ∆ω, the injection energy
via the pulse amplitudes, and the injection time (number
of trapped electrons) via the backward pulse duration.

To help understand the injection mechanism, it is in-
sightful to consider the electron motion in the wake-
field and in the colliding laser fields individually. In
the absence of the injection pulses, electron motion in

a 1D wakefield is described by the Hamiltonian Hw =
γ−βp(γ

2−1)1/2−φ(ψ), cf. Sect. II F, where φ = φ0 cosψ,
vp = cβp is the phase velocity of the plasma wave,

γp = (1−β2
p)−1/2, and ψ = kp(z− vpt). The electron or-

bits in phase space (uz, ψ) are given by Hw(uz, ψ) = H0,
where H0 is a constant, γ2 = 1+u2

z, and uz = γβz is the
normalized axial momentum, which is given by

uz = βpγ
2
p [H0 + φ(ψ)] ± γp

{

γ2
p [H0 + φ(ψ)]

2 − 1
}1/2

.

(50)
The 1D separatrix (the boundary between trapped and
untrapped orbits) is given by Hw(βz, ψ) = Hw(βp, π),
i.e., H0 = H1D = 1/γp − φ(π). The maximum and
minimum electron momentum on the 1D separatrix oc-
cur at ψ = 0 and are (in the limits 2φ0γp ≫ 1 and
γp ≫ 1) uw,max ≃ 4γ2

pφ0 and uw,min ≃ (4φ0)
−1 − φ0.

The 1D theory neglects the effects of transverse focus-
ing. Associated with a 3D wake is a periodic radial field
which is π/2 out of phase with the accelerating field,
i.e., there exists a phase region of λp/4 for which the
wake is both accelerating and focusing (as opposed to
the λp/2 accelerating region in 1D). If an electron is to
remain in this phase region, it must lie within the “3D
separatrix” defined by Hw(βz , ψ) = Hw(βp, π/2), i.e.,
(50) with H0 = H3D = 1/γp − φ(π/2). The extremum
on the 3D separatrix are given by uw,max ≃ 2γ2

pφ0 and

uw,min ≃ (φ−1
0 − φ0)/2. This value of uw,max ≃ 2γ2

pφ0

gives the usual maximum energy gain due to linear de-
phasing in a 3D wake.

The background plasma electrons lie on an untrapped
orbit (below the separatrix) uzf given byHw(uzf , ψ) = 1,
i.e., (50) with H0 = 1. At wavebreaking, the bottom of
the separatrix uw,min coalesces with the plasma fluid or-
bit, uzf = uw,min. This occurs at the well-known wave-

breaking field of EWB/E0 = [2(γp − 1)]
1/2

.
Consider the motion of electrons in the colliding laser

fields in the absence of the wakefield. The beat wave
leads to formation of phase space buckets (separatrices)
of width 2π/∆k ≃ λ0/2, which are much shorter than
those of the wakefield (λp). In the colliding laser fields,
the electron motion is described by the Hamiltonian [129]

Hb = γ − βb

[

γ2 − γ2
⊥

(ψb)
]1/2

, where the space charge
potential is neglected. Circular polarization is assumed
such that γ2

⊥
= 1 + a2

0 + a2
1 + 2a0a1 cosψb, where ψb =

(k1−k2)(z−vbt) and vb = cβb = ∆ω/(k1−k2) ≃ ∆ω/2k0

is the beat phase velocity, assuming ω2
p/ω

2
0 ≪ 1. The

beat separatrix is given by Hb(βz, ψb) = Hb(βb, 0) with a
maximum and minimum axial momenta of

ub,m = γbβb

[

1 + (a0 + a1)
2
]1/2 ± 2γb(a0a1)

1/2 . (51)

An estimate for the threshold for injection into the
wakefield can be obtained by a simple phase-space is-
land overlap criteria. This is done by considering the ef-
fects of the wakefield and the beat wave individually, as
done above, and by requiring that the beat wave separa-
trix overlap both the wakefield separatrix and the plasma
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FIG. 15: Longitudinal phase space showing beat wave separa-
trices, an untrapped plasma wave orbit (solid line), a trapped
plasma wave orbit (dotted line), and a trapped and focused
plasma wave orbit (dashed line)

fluid oscillation (illustrated in Fig. 15): (i) the maximum
momentum of the beat wave separatrix ub,max exceed the
minimum momentum of the wakefield separatrix uw,min,
i.e., ub,max ≥ uw,min, and (ii) the minimum momentum of
the beat wave separatrix ub,min be less than the plasma
electron fluid momentum uzf , i.e., ub,min ≤ uzf . Condi-
tions (i) and (ii) imply a beat wave threshold [129, 131]

(a1a2)
1/2
th =

(1 −H0)

4γb(βp − βb)
, (52)

and an optimal wake phase for injection (location of the
forward injection pulse)

cosψopt = φ−1
0 [(1 − βbβp)γbγ⊥(0) − (1 +H0)/2] , (53)

where H0 = H1D = 1/γp + φ0 for the 1D wake sep-
aratrix and H0 = H3D = 1/γp for the 3D wake sep-
aratrix (trapped and focused). In the limits γ2

p ≫ 1,

β2
b ≪ 1, and a2

i ≪ 1, (52) and (53) become 4(a1a2)
1/2
th ≃

(1 −H0)(1 + βb) and 2φ0 cosψopt ≃ 1 − H0 − 2βb with
H1D ≃ φ0 and H3D ≃ 0. As an example, φ0 = 0.7, βb =

−0.02, and γp = 50 imply a threshold of (a1a2)
1/2
th ≃ 0.25

and an optimal injection phase of ψopt ≃ 0 for injection
onto a trapped and focused orbit.

To further evaluate the colliding laser injection
method, the motion of test particles in the combined
wake and laser fields was simulated in 3D [131]. In the
numerical studies, the laser pulse axial profiles were half-
period sine waves (linearly polarized with Gaussian ra-
dial profiles) with peak amplitude ai and length Li. The
wakefield is assumed to be nonzero for ψ ≤ 3π/4 (see
Fig. 14) and the test particles are loaded uniformly with
ψ > 3π/4 (initially at rest).

An example of the injection process is given in Fig. 16,
which shows the evolution in longitudinal phase space
(uz, ψ) of the test electron distribution (a) before the
collision of the injection laser pulses (in the untrapped
fluid orbit of the wake) at ωpt = 36, (b) during the colli-
sion (crossing the wake separatrix) at ωpt = 39, (c) after

the collision at ωpt = 50, and (d) the resulting energetic
electron bunch at ωpt = 150. Also shown in Fig. 16 is the
1D wake separatrix. The parameters are a1 = a2 = 0.32,
L0 = 4L1 = 4L2 = λp = 40 µm, φ0 = 0.7, λ0 = λ2 =
0.8 µm, λ1 = 0.83 µm, and r0 = r1 = r2 = 15 µm, with
the position of the forward injection pulse centered at
ψinj = −12.6. After z ≃ 0.7mm of propagation follow-
ing the collision, Fig. 16(d), the bunch length is 1 fs with
a mean energy of 38MeV, a fractional energy spread of
0.2%, and a normalized transverse emittance of 0.9mm-
mrad. The trapping fraction ftrap is 3%, correspond-
ing to 2.6 × 106 bunch electrons. Here, ftrap is defined
as the fraction of electrons trapped that were initially
loaded in a region of length λp/4 with r ≤ 2 µm (simu-
lations indicate that electrons loaded outside this region
are not trapped). Note that the bunch number can be in-
creased by increasing the laser spot sizes (i.e., laser pow-
ers). For example, when the laser spot sizes are doubled,
ri = 30 µm in the simulation of Fig. 16 (all other pa-
rameters as in Fig. 16), the number of trapped electrons
increases to 1.5×107 and the normalized transverse emit-
tance increases to 3.9mm-mrad. Estimates indicate that
space charge effects can be neglected while the bunch
remains inside the plasma [131].

Experiments on laser injection methods are being pur-
sued at several laboratories world-wide. For example, at
LBNL, experiments are underway on the colliding pulse
method [134]. The initial set of experiments uses only
two pulses: a pump pulse for wakefield generation and a
single near-backward propagating injection pulse. Here
the pump and injection pulses have the same polarization
such that injection results from the slow ponderomotive
beat wave that is produced when the injection pulse col-
lides with the tail of the pump pulse.

C. Density Transitions

Bulanov et al. [135] describe how a downward transi-
tion in the plasma density with a scale length Ltr long
compared to λp could be used to induce local wavebreak-
ing of the plasma wave. Consider the position of a phase
peak on a plasma wave of the form φ = φ0 cos kpζ (where
−ζ = ct − z is the distance behind the drive beam) lo-
cated N periods behind the drive beam. Before the den-
sity transition, the phase peak is located at |ζ1| = Nλp1,
and after the transition, the phase peak is located at
|ζ2| = Nλp2, where λp1 (n1) and λp2 (n2) are the plasma
wavelengths (densities) before and after the transition
with λp1 < λp2 (n1 > n2). The density transition
changes the location of the phase peak by the relative
amount ∆|ζp| = N(λp1 − λp2). If this transition occurs
over a length Ltr, then the change in the phase veloc-
ity is ∆vp/c ≃ N(λp1 − λp2)/Ltr. This effect increases
proportional to the distance behind the driver (increas-
ing N), as well as the magnitude of the density gradient,
(λp1 − λp2)/Ltr ≃ dλp/dz = −(λp/2n)dn/dz.

More rigorously, the phase velocity of the wake during
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FIG. 16: Electron distribution in longitudinal (uz, ψ) phase space (a) before injection pulse collision (ωp∆t = 0), (b) during
collision (ωp∆t = 3), (c) just after collision (ωp∆t = 14), and (d) at ωp∆t = 114 (38MeV electron bunch with 1 fs duration,
0.2% energy spread, and 0.9 mm-mrad normalized transverse emittance). The separatrix between trapped and untrapped wake
orbits (solid line) is shown

a density transition can be calculated by considering the
local phase of the wake, which is given to leading order by
ψ = kp(z)(z − ct), where vg ≃ c has been assumed since
changes to the group velocity due to a slow variation in
density are small in an underdense plasma ω2

p/ω
2 ≪ 1.

Using the definitions of the effective frequency ωp,eff =
−∂ψ/∂t and wavenumber kp,eff = ∂ψ/∂z of the plasma
wave, the local phase velocity of the wake is given by
vp = ωp,eff/kp,eff , i.e.,

vp/c = [1 + (ζ/kp)dkp/dz]
−1 . (54)

For a small variation, vp/c − 1 ≃ −(ζ/kp)dkp/dz =
−(ζ/2n)dn/dz. Since ζ < 0 behind the drive pulse, the
wake phase velocity will decrease for decreasing density
dn/dz < 0.

Local wave breaking of the wake will occur at the point
at which the local phase velocity equals the fluid veloc-
ity of the plasma electrons. To leading order, the size of
the fluid oscillation depends on the intensity of the drive
pulse, the pulse length, and the local plasma density.
Since the “resonance” for exciting a large amplitude wake
is rather broad, L ∼ λp (weakly dependent on density), a
large wake can be excited on the density ramp with a fluid
velocity given approximately by ve/c ≃ Ez/E0, where
Ez/E0 ≪ 1 is the normalized electric field amplitude of
the wake. According to fluid theory, wavebreaking of a
wake will always occur on a density down ramp at a suf-
ficiently large distance behind the drive pulse (assuming
the wake is not damped by some other mechanism), since
(54) indicates that the wake phase velocity will continue

to decrease as a function of time for a fixed point on the
density down ramp. Using (54), wavebreaking (vp = ve)
will occur at a distance behind the drive pulse given by
ζ = 2(c/ve − 1)n/(dn/dz). For example, if ve/c = 1/3
and Ltr = n|dn/dz|−1 = 3λp, then wavebreaking occurs
at |ζ| = 12λp.

Bulanov et al. [135] performed 1D particle-in-cell sim-
ulations of a laser pulse with a0 = 2 and L = 12λ prop-
agating in a plasma with λp1 = 23.4λ, λp2 = 25λ, and
Ltr = 24λ. These simulations found that the plasma
wave breaks on the ramp and injects a significant num-
ber of electrons into the wake, in apparently the second
bucket behind the laser pulse, which are accelerated to
high energy but with a large energy spread.

Suk et al. [136] consider the limit of a step function
downward plasma density transition (n1 = 5×1013 cm−3

and n2 = 3.5 × 1013 cm−3) and a wake generated by
an electron beam driver of energy 16MeV, bunch length
0.16λp2, bunch radius 0.089λp2, and peak density nb =
2.4n1 = 3.4n2. Using 2D particle-in-cell simulations, the
trapped electron bunch, after propagating a few plasma
wavelengths past the transition, had a total charge near
0.5 nC, a bunch length near 0.09λp2, and electron ener-
gies in the range 5–15MeV.

V. PULSE PROPAGATION AND GUIDING

To describe laser pulse propagation in a fully-ionized
plasma, it is convenient to represent the electric E and
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magnetic fields B by the scaler Φ and vector A poten-
tials, E = −∇Φ − ∂A/∂ct and B = ∇× A, and to use
Coulomb gauge, ∇ · A = 0. In terms of the normalized
potentials φ = eΦ/mec

2 and a = eA/mec
2, the wave

equation and the Poisson equation are given by, respec-
tively,

(

∇2 − 1

c2
∂2

∂t2

)

a = k2
p

n

n0

u

γ
+

1

c

∂

∂t
∇φ , (55)

∇2φ = k2
p (n− ni) /n0 , (56)

where u = γv/c = p/mec is the normalized electron
fluid momentum, γ = (1 − β2)1/2 = (1 + u2)1/2 is the
relativistic Lorentz factor, n is the plasma electron den-
sity, ni is the initial density profile (prior to the passage
of the laser pulse), n0 = ni(r = 0) with r = 0 corre-
sponding to the direction of propagation (the z-axis), and
ωp0 = ckp = (4πn0e

2/me)
1/2. Here and in the following,

it is assumed that the ions remain stationary, which is
typically the case for short pulse lasers (. 1 ps) prop-
agating in underdense plasma (ω2

p0/ω
2 ≪ 1). Further-

more, collisions and thermal effects are neglected, since
the collision time is typically much greater than the laser
pulse length and the thermal velocity is typically much
less than the quiver velocity of an electron in the laser
field.

The first term on the right-hand side of (55) is the
contribution due to the plasma current J . In the cold
fluid limit, J = −enu/γ, where the plasma density n
and momentum u satisfy the continuity and momentum
equations, which are given by, respectively,

∂n/∂ct+ ∇ · (nu/γ) = 0 , (57)

[∂/∂ct+ (u/γ) · ∇] u = ∇φ+∂a/∂ct− (u/γ)× (∇×a) .
(58)

It is also convenient to introduce the independent vari-
ables ζ = z − ct and τ = t, where ζ is an approximate
measure of the distance back from the head of the pulse
(which is moving with a group velocity vg ≃ c). Initially,
the front of the laser pulse is assumed to be at ζ = 0 and
the pulse body extends into the region ζ ≤ 0 (the plasma
is unperturbed in the region ζ > 0). In terms of the ζ, τ
coordinates, the wave equation is given by [52]

(

∇2
⊥ +

2

c

∂2

∂ζ∂τ
− 1

c2
∂2

∂τ2

)

a ≃ k2
p

n

n0γ
u . (59)

On the right-hand side of (59), the term ∇∂φ/∂ct has
been neglected, since the fast part of the electrostatic
potential, φ ∼ exp(ikζ), is typically small compared to
relevant terms contributing to the fast part of the plasma
current. Typically, the third term on the left-hand side of
(59) can be neglected. As discussed in Sect. II, the lead-
ing order transverse motion is the quiver motion. Hence,
for a wide variety of phenomena, it is sufficient to ap-
proximate u = a on the right-hand side of (59).

The wave equation can be further simplified by the
slowly varying envelope approximation. Assuming a lin-
early polarized laser field with a transverse component
of the form af = âs(r, ζ, τ) exp(ikζ)/2 + c.c., the wave
equation describing the evolution of the slowly varying
amplitude âs is given by

(

∇2
⊥

+ 2iω
∂

∂τ
+

2

c

∂2

∂ζ∂τ

)

âs = k2
pρsâs , (60)

where ρs = (n/n0)/γ, u⊥f ≃ af , ω = ck is the laser fre-
quency, and the subscripts f and s denote the fast and
slow components, respectively. The small term ∂2/∂τ2

has been neglected in the wave operator, however, the
∂2/∂ζ∂τ term is retained so as to correctly describe vari-
ations in the laser pulse group velocity. The paraxial ap-
proximation is the result of neglecting the term ∂2/∂ζ∂τ .
Throughout the following, the subscripts s and f will be
dropped for convenience.

A useful approximation in the study of short pulse in-
teractions with plasmas is the quasi-static approximation
(QSA), which was first applied to nonlinear laser-plasma
interactions by Sprangle et al. [60, 61]. In the QSA, the
plasma fluid equations are written in terms of the inde-
pendent variables ζ and τ , as above. The QSA assumes
that in the time it takes the laser pulse to transit a plasma
electron, the laser pulse does not significantly evolve. In
other words, τL ≪ τE , where τL = L/c is the laser pulse
duration and τE is the laser pulse evolution time, which is
typically one the order of a Rayleigh (diffraction) length.
Thus, the plasma electrons experience a static (indepen-
dent of τ) laser field. In the QSA, the ∂/∂τ derivatives
are neglected in the plasma fluid equations which deter-
mine the plasma response to the laser pulse. The ∂/∂τ
derivatives, however, are retained in the wave equation
which describes the evolution of the laser pulse. The QSA
allows the laser-plasma interaction to be calculated in an
iterative fashion. For a fixed τ , the plasma response to
the laser field is determined as a function of ζ by solving
the QSA fluid equations [e.g., (12) in the 1D limit]. Us-
ing this fluid response, the wave equation is then solved
to update the laser pulse in τ .

The fluid quantity ρ = n/γn0 in (60) can determined
from the quasi-static fluid equations. For example, in the
1D limit, it can be shown [57] that ρ ≃ (1 + φ)−1, where
φ satisfies (12). In 2D and assuming vg ≃ c, it can be
shown [137] that

ρ ≃ (1 + Ψ)−1(ρ0 + k−2
p ∇2

⊥
Ψ) , (61)

where ρ0 is the initial value of ρ (prior to the laser pulse)
and the quantity Ψ = φ− az satisfies

∂2Ψ

∂ζ2
=
(

k2
pρ−∇2

⊥

)

uz +
∂

∂ζ
∇⊥ · u⊥ , (62)

with u⊥ = (k2
pρ)

−1∂ζ(∇⊥Ψ) and uz = [u2
⊥

+ a2 − Ψ(2 +
Ψ)]/[2(1 + Ψ)]. The wake potential Ψ is related to the

axial electric field Ez induced in the plasma by kpÊz =
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−∂Ψ/∂ζ, where Êz = Ez/E0 and E0 = mecωp0/e is the
cold, nonrelativistic wavebreaking field.

A useful quantity in discussing phenomena such as
optical guiding is the index of refraction ηr. The ef-
fective index of refraction ηr is defined by setting the
right-hand side of (60) equal to k2(1−η2

r )a, which yields
ηr ≃ 1 − k2

pρ/2k
2.

A. Optical Guiding in Plasmas

The optical guiding mechanisms discussed below are
based on the principle of refractive guiding. Refractive
guiding becomes possible when the radial profile of the
index of refraction, ηr(r), exhibits a maximum on-axis,
i.e., ∂ηr/∂r < 0. Since ηr ≃ ckz/ω, ∂ηr/∂r < 0 implies
that the phase velocity along the propagation axis is less
than it is off-axis. This causes the laser phase fronts to
curve such that the beam focuses towards the axis.

The index of refraction for a small amplitude elec-
tromagnetic wave propagating in a plasma of uniform
density n = n0, in the 1D limit, is given by ηr =
(1−ω2

p/ω
2)1/2. For large amplitude waves, however, vari-

ations in the electron density and mass will occur, i.e.,
ω2

p → (ω2
p0/γ)n/n0. Hence, the general expression for the

index of refraction for a large amplitude electromagnetic
wave in a plasma is given by [36, 60]

ηr(r) ≃ 1 −
ω2

p0

2ω2

n(r)

n0γ(r)
, (63)

assuming ω2
p0/ω

2 ≪ 1. The index of refraction profile
ηr(r) can be modified by the relativistic factor γ(r) or
the radial density profile n(r). The leading order mo-
tion of the electrons in the laser field is the quiver mo-
tion p⊥ = meca and, hence, γ ≃ γ⊥ = (1 + a2)1/2. A
laser intensity profile peaked on-axis ∂a2/∂r < 0 leads to
∂ηr/∂r < 0 and the possibility of guiding (i.e., relativistic
self-focusing). The density profile can have contributions
from a preformed density channel ∆np ∼ ∆nr2/r20 or a
plasma wave δn ∼ δn̂(r) cos kpζ, where n = n0+∆np+δn.
A radial density profile which has a minimum on-axis
(i.e., a channel) implies ∂ηr/∂r < 0 and the possibility
of guiding. In the limits a2 ≪ 1, |∆np/n0| ≪ 1 and
|δn/n0| ≪ 1, the refractive index is [120]

ηr ≃ 1 −
ω2

p0

2ω2

(

1 − a2

2
+

∆np

n0
+

δn
n0

)

. (64)

In the above expression, the a2/2 term is responsible for
relativistic optical guiding [138–141], the ∆np/n0 term
is responsible for preformed density channel guiding [36,
119, 142–147], and the δn/n0 term is responsible for self-
channeling [36, 52, 140, 148], plasma wave guiding [61,
94, 115], and self-modulation of long laser pulses [36–
38, 104].

B. Relativistic Optical Guiding

The self-focusing of laser beams by relativistic effects
was first considered by Litvak [138] and Max et al. [139].
In the standard theory of relativistic optical guiding
[141], only the effects of the transverse quiver motion
of the electrons are included in the expression for ηr,
i.e., n = n0 and γ = γ⊥(r), where γ2

⊥
= 1 + a2(r)

and circular polarization is assumed. Inclusion of the
self-consistent density response, however, indicates that
relativistic self-focusing is ineffective in preventing the
diffraction of short (L . λp) laser pulses [36, 61].

In the weakly-relativistic limit (a2 ≪ 1), the refractive
index is given by

ηr ≃ 1 − (ω2
p0/2ω

2)(1 − a2/2) , (65)

where the density response has been neglected (n = n0).
Refractive guiding requires ∂ηr/∂r < 0, which is the case
for a laser intensity profile peaked on-axis, ∂a2/∂r < 0.
The paraxial wave equation with a refractive index given
by (65) has the form of a Schrödinger equation with a
third order nonlinearity, as is the case in nonlinear optics
where ηr = η0+η2I. Hence, self-focusing will occur when
the laser power P exceeds a critical power Pc [141].

An equation for the laser spot size rs(ζ, z) can be
derived by applying a method such as the source de-
pendent expansion (SDE) method [149] to the parax-
ial wave equation [(60) neglecting the term ∂2/∂ζ∂τ ].
In effect, the SDE method assumes that the radial
intensity profile is approximately Gaussian, |a|2 =
(a0r0/rs)

2 exp(−2r2/r2s), and finds a best fit for the spot
size rs(ζ, z) locally in space and time. Using the index
of refraction given by (65), the laser spot size evolves
according to [141]

d2R

dz2
=

1

Z2
RR

3

(

1 − P

Pc

)

, (66)

where R = rs/r0 is the normalized spot size, r0 is the
minimum spot size in vacuum, and ZR = kr20/2 is the
vacuum Rayleigh length. The first term on the right-
hand side of (66) represents vacuum diffraction, whereas
the second term term represents relativistic self-focusing.
Here, P/Pc = k2

pa
2
0r

2
0/16 for circular polarization (for

linear polarization, a2
0 → a2

0/2). The critical power for
relativistic self-focusing is Pc = 2c(e/re)

2(ω/ωp0)
2, where

re = e2/mec
2, or in practical units,

Pc(GW) ≃ 17.4 (ω/ωp0)
2 . (67)

The solution to (66) with drs/dz = 0 at z = 0 is

r2s/r
2
0 = 1 + (1 − P/Pc)z

2/Z2
R , (68)

which indicates that the spot size diffracts for P < Pc, re-
mains guided or “matched” (rs = r0) for P = Pc, and fo-
cuses for P > Pc. Equation (66) predicts “catastrophic”
focusing for P > Pc. This results from the approximation
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(1+a2)−1/2 ≃ 1−a2/2 in the a2 ≪ 1 limit. Higher-order
nonlinearities will prevent the laser from focusing indefi-
nitely [141].

The above discussion of relativistic guiding neglected
the electron density response δn in the expression for the
index of refraction. The effectiveness of relativistic guid-
ing can be strongly influenced by the plasma response.
In particular, it can be shown that relativistic optical
guiding is ineffective in preventing the diffraction of suf-
ficiently short pulses, L . λp/γ⊥ [36, 61]. This is be-
cause the index of refraction becomes modified by the
laser pulse on the plasma frequency time scale, not the
laser frequency time scale. Typically, relativistic guiding
only effects the body of long pulses, L > λp.

In the 1D (r2sk
2
p ≫ 1) and weakly-relativistic (a2 ≪

1) limits, nonlinear quasi-static theory [61] indicates
that the self-consistent electron density response satis-
fies δn/n0 − a2/2 ≃ −δφ, hence,

ηr ≃ 1 − (ω2
p0/2ω

2)(1 − δφ) , (69)

where δφ is the normalized electrostatic potential which
satisfies

(

∂2/∂ζ2 + k2
p

)

δφ = k2
pa

2/2 . (70)

For long laser pulses with sufficiently smooth envelopes,
|∂a2/∂ζ| ≪ |kpa

2|, ∂2φ/∂ζ2 can be neglected in (70)
(which neglects the generation of plasma waves) and
δφ ≃ a2/2. Hence, in the long pulse limit L ≫ λp, the
index of refraction has the form given by (64) and the
standard theory of relativistic focusing discussed above
can be applied to the body of long pulses. Although long
pulses can be guided by relativistic effects, they can also
be unstable to self-modulation [36–38] and laser-hose in-
stabilities [150, 151], which are discussed in more detail
in the Sect. VI B.

The fact that short pulses L . λp diffract even when
P & Pc can be most easily shown as follows. For very
short pulses L < λp, the k2

p term can be neglected on the
left-hand side of (70). For example, a short pulse with
a constant intensity profile (a2 = a2

0) induces a space
charge potential given by φ ≃ k2

pa
2
0ζ

2/4, and the refrac-
tive index becomes

ηr ≃ 1 − (ω2
p0/2ω

2)(1 − k2
pa

2
0ζ

2/4) , (71)

as opposed to (65). This indicates that the effective crit-
ical power for a short pulse [61] is Pc,sp ≃ 2Pc/(k

2
pζ

2) ≫
Pc, since k2

pζ
2/2 ≪ 1 for a short pulse. In particular,

Pc,sp becomes infinite at the leading edge of the pulse
ζ → 0. Hence, the leading portion L < λp of a laser
pulse will diffractively erode even when P ≃ Pc.

Simulations [36], based on a 2D-axisymmetric quasi-
static fluid model, confirm the inability of relativistic
guiding to prevent the diffraction of short laser pulses.
The results are shown in Fig. 17 for the parameters λp =
0.03 cm (n0 = 1.2×1016 cm−3), r0 = λp (Gaussian radial
profile), λ = 1 µm (ZR = 28 cm), and P = Pc. The ini-
tial axial laser profile is given by |â(ζ)| = a0 sin(−πζ/L)

r s
/λ

p

FIG. 17: Laser spot size rs versus normalized propagation
distance cτ/ZR for (a) vacuum diffraction, (b) L = λp/4,
and (c) L = λp, with parameters P = Pc, a0 = 0.9, and
λp = 0.03 cm. (d) Guiding of L = λp pulse in a preformed
parabolic plasma density channel with ∆n = 1/(πrer

2

s)

for 0 < −ζ < L = cτL, where a0 = 0.9 for the above pa-
rameters. Simulations are performed for two laser pulse
lengths, L = λp (τL = 1 ps) and L = λp/4 (τL = 0.25 ps).
The spot size at the pulse center versus normalized prop-
agation distance cτ/ZR is shown in Fig. 17 for (a) the vac-
uum diffraction case, (b) the L = λp/4 pulse, and (c) the
L = λp pulse. The L = λp/4 pulse diffracts almost as if in
vacuum. The L = λp pulse experiences a small amount of
initial guiding before diffracting. A preformed parabolic
plasma density channel, however, is effective in guiding
the L = λp pulse, as shown in Fig. 17(d), where the chan-
nel depth is given by ∆n = 1/πrer

2
0 = 1.3 × 1015 cm−3

and the density on-axis is n0 = 1.2 × 1016 cm−3.

C. Preformed Plasma Density Channels

The concept of using a plasma density channel to guide
a laser beam dates back to early studies of laser fusion
[142, 143]. Density channels in plasmas have been cre-
ated by a number of methods. An intense laser pulse
propagating in a plasma can create a channel through a
combination of ponderomotive and thermal effects. The
creation of a density channel through the hydrodynamic
expansion of the radial plasma profile was observed in the
early 1970’s in long-pulse (150 ns) CO2 laser experiments
[143]. The length of such a channel, however, is limited
to the propagation distance of the laser pulse which cre-
ates the channel, and the utility of using such a channel
to guide a laser pulse many Rayleigh lengths is limited.
For high power, short laser pulses, the propagation length
and, hence, the channel length can be increased by rela-
tivistic self-guiding, as has been observed in pump-probe
experiments [152]. Alternatively, a long focal region can
be created with an axicon or cylindrical lens, and this
method has been used successfully to create extended
plasma channels in which laser pulses have been guided
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for many Rayleigh lengths [144–147]. Non-laser-based
methods for creating plasma channels include capillary
discharges [153–157], in which laser guiding over many
Rayleigh lengths has been achieved [153, 154, 156, 157].
Other methods for plasma channel guiding have been ex-
plored, such as laser-ablation of a capillary [158].

A preformed plasma density channel can guide short,
intense laser pulses [36, 119, 142–147, 155, 156]. Consider
a parabolic density channel of the form n = n0+∆nr2/r20,
where ∆n = n(r0)−n(0) is the channel depth. For a low
power P ≪ Pc, low intensity a2 ≪ 1 laser pulse, the
index of refraction is given approximately by

ηr = 1 −
ω2

p0

2ω2

(

1 +
∆n
n0

r2

r20

)

. (72)

Analysis of the paraxial wave equation with an index of
refraction of this form indicates that the spot size rs of a
Gaussian laser beam with a2 = (a0r0/rs)

2 exp(−2r2/r2s)
evolves according to [104]

d2R

dz2
=

1

Z2
RR

3

(

1 − ∆n
∆nc

R4

)

. (73)

The first term on the right-hand side represents the ef-
fects of vacuum diffraction and the second term repre-
sents the focusing effects of the channel. This indicates
that a Gaussian beam will be guided at the matched
beam spot size rs = r0 provided that the channel depth
∆n is equal to the critical channel depth given by [36, 119]

∆nc = (πrer
2
0)

−1 , (74)

or ∆nc(cm
−3) = 1.13 × 1020/r20(µm), where re =

e2/(mec
2) is the classical electron radius.

The general solution to (73) for the initial (z = 0)
conditions drs/dz = 0 and rs = ri is [104]

2
r2s
r2i

= 1 +
∆ncr

4
0

∆nr4i
+

(

1 − ∆ncr
4
0

∆nr4i

)

cos (kosz) , (75)

where kos = (2/ZR)(∆n/∆nc)
1/2 and ri is the injected

spot size. A matched beam requires ∆nr4i = ∆ncr
4
0 , e.g.,

ri = r0 and ∆n = ∆nc. If the beam is not matched
within the channel, the spot size oscillates between r2s =
r2i and r2s = ∆ncr

4
0/∆nr2i with an average value

〈

r2s
〉

=

(r2i /2)(1+∆ncr
4
0/∆nr4i ). The oscillation period within the

channel is λos = 2π/kos = πZR(∆nc/∆n)1/2. The laser
beam will remain confined within the channel provided
that the maximum radius of the channel rch is sufficiently
large, i.e., rch > rs.

To illustrate the effectiveness of optical guiding using
preformed density channels, the results of three simula-
tions are presented, all based on the 2D-axisymmetric
fluid model discussed in Sect. V. The first simulation
[52] is of a channel-guided LWFA with an ultrashort
(L ≃ λp), high-intensity (a0 ∼ 1) laser pulse, the re-
sults of which are shown in Figs. 18, 19, and 20. In
this example, the initial axial laser profile is given by

r s
/λ

p

FIG. 18: Laser spot size rs versus propagation distance cτ for
(a) a channel-guided LWFA, (b) a tailored-pulse LWFA, (c)
vacuum diffraction, and (d) the self-modulated LWFA shown
in Figs. 11–13

|â(ζ)| = a0 sin(−πζ/L) for 0 < −ζ < L, with a0 = 0.72
and L = 120 µm (400 fs). Also, λ = 1 µm and r0 = 60 µm
(Gaussian radial profile), which implies ZR = 1.1 cm and
P = 40TW. The density on-axis is chosen such that
L = λp (n0 = 7.8 × 1016 cm−3) and a parabolic profile is
assumed with ∆n = (πrer

2
0)

−1 = 3.2 × 1016 cm−3.

Figure 18(a) shows the evolution of the laser spot size
versus normalized propagation distance cτ/ZR. The laser
pulse remains guided by the density channel, the laser
spot size exhibiting small oscillations about its initial
value over the full 20ZR = 23 cm simulation length. After
cτ = 20ZR, the pulse profile shows very little distortion
from its initial profile. A surface plot of the electron den-
sity profile at cτ = 20ZR is shown in Fig. 19. The initial,
unperturbed parabolic profile can be seen at ζ = 0, and
the distortion of the channel by the laser pulse, includ-
ing the excitation of a large amplitude wakefield along the
axis, is evident in the region ζ < 0. In this example nearly
all the electrons have been expelled from the vicinity of
the laser pulse. The radial variation in the channel den-
sity causes a radial variation in the plasma wavelength
and curvature of the plasma wavefronts. A slight axial
damping of the plasma wave also occurs, as evident in
Fig. 20, where the axial electric field Ez is plotted versus
ζ along the axis at cτ = 20ZR. The effects of the wake-
fields on a continuous 2MeV electron beam with an ini-
tial normalized transverse emittance εn = 1.0mm-mrad
and RMS radius rb = 10 µm was also simulated. After
cτ = 20 cm, approximately 70% of the beam electrons
were trapped and accelerated. The peak electron energy
increases nearly linearly with propagation distance with
an average acceleration gradient of 5.25GeV/m (1 GeV
in 20 cm).

The second simulation [120] is of a channel-guided
LWFA in the self-modulated regime with L > λp, the re-
sults of which are shown in Figs. 21–24. Here, the initial
laser parameters are τL = 100 fs (L = 30 µm = 2.5λp),
P = 0.3TW (30mJ), λ = 1 µm, r0 = 10 µm (ZR =
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FIG. 19: Plasma electron density n/n0 at cτ = 20ZR for a
channel-guided LWFA. Initial density profile is parabolic with
a depth ∆n = ∆nc = 1/(πrer

2

0)

FIG. 20: Axial electric field Ez on axis at cτ = 20ZR for the
channel-guided LWFA shown in Fig. 19

0.3mm), and I0 = 2×1017 W/cm2 (a0 = 0.38); the chan-
nel parameters are n0 = 8 × 1018 cm−3 (λp = 12 µm),
∆np(rch) = 2n0, and rch = 40 µm. Also, the on-axis
density is slightly tapered such that it rises to 2n0 over
a length of 1 cm. The pulse remains guided after cτ =
0.75 cm (24ZR) of propagation, but a large modulation
(in ζ with period ∼ λp) in intensity (Fig. 21) and power
(Fig. 22) has developed through self-modulation and for-
ward Raman instabilities (discussed in Sect. VI). The
density profile at cτ = 0.75 (Fig. 23), along with the cor-
responding on-axis electric field (Fig. 24), clearly shows
a well-defined wakefield of amplitude Ez = 50GV/m.

The third simulation [159] is an example of mis-
matched laser propagation in a channel, which extends
from 0.5 cm < z < 1.5 cm with n0 = 5 × 1018 cm−3,
∆np(rch) = 4n0/5, and rch = 150 µm (parameters near
those of the experiment in [159]). Here, a λ = 0.8 µm,
100 fs, 30GW (3 mJ), 1.6 times-diffraction-limited laser
pulse is focused on the channel entrance with spot size
rs = 15 µm. Owing to the low laser power, the pulse
does not become self-modulated. Figure 25 shows that
the laser spot size oscillates about its matched value of
r0 = 28 µm, emerging from the 1 cm long channel with

FIG. 21: Normalized laser intensity |a|2 after propagating
cτ = 24ZR for a channel-guided self-modulated LWFA

FIG. 22: Laser power versus ζ at cτ = 24ZR for a channel-
guided self-modulated LWFA

a radius of 45 µm and a divergence angle of 14mrad, in
approximate agreement with the experiment of [159].

The above discussion concerned parabolic channel pro-
files. Other channel profiles, however, may offer different
advantages. Durfee et al. [145] discuss the formation of
“leaky” channels, in which the channel is approximately
parabolic out to some radius, after which the density
falls off to zero. Such a profile occurs naturally in the
creation of plasma channels by hydrodynamic expansion
of a hot plasma core in a gas. Higher order transverse
modes may not be guided by such a channel, and An-
tonsen and Mora [160] have described how leaky chan-
nels can stabilize certain instabilities, such as small an-
gle forward Raman scattering [105, 106], self-modulation
[36, 38, 104], and laser-hosing [150, 151]. Hollow channels
(e.g., a square channel with density zero on-axis out to
the channel radius) may have beneficial properties with
regard to particle acceleration [161, 162]. Within the
hollow channel, where the plasma density is essentially
zero, the transverse profile of the axial wakefield is uni-
form, thus providing uniform acceleration of an injected
beam. The wakefield in such a channel, however, may
be damped through resonant absorption in the channel
walls [163].
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FIG. 23: Electron plasma density n/n0 at cτ = 24ZR for a
channel-guided self-modulated LWFA

FIG. 24: Axial electric field Ez of the plasma wave at cτ =
24ZR for a channel-guided self-modulated LWFA

D. Ponderomotive Self-Channeling

The radial ponderomotive force of a long laser pulse
(L > λp) propagating in an initially uniform plasma
can expel electrons from the axis thus creating a den-
sity channel (i.e., self-channeling or electron cavitation)
[36, 52, 119, 140, 148]. This can enhance the effects of rel-
ativistic self-focusing. Consider a long (L ≫ λp) axially
uniform laser pulse propagating in an initially uniform
plasma. The steady-state radial force balance indicates
that the space charge force is equal to the ponderomotive
force, i.e., ∇⊥φ = ∇⊥γ⊥, where γ⊥ = (1 + a2)1/2 (with
circular polarization). This implies a density perturba-
tion via the Poisson equation ∇2

⊥
φ = k2

pδn/n0 given by
[36, 140, 148]

δn/n0 = k−2
p ∇2

⊥
(1 + a2)1/2 , (76)

assuming |δn/n0| ≤ 1. The corresponding index of re-
fraction is given by

ηr ≃ 1 −
ω2

p0

2ω2

[

1 + k−2
p ∇2

⊥
(1 + a2)1/2

(1 + a2)1/2

]

. (77)

r s

rs

FIG. 25: Laser spot size versus propagation distance z = cτ in
vacuum (dashed curve) and in a plasma channel (solid curve)
located at 0.5 cm < z < 1.5 cm for a low-power P ≪ Pc

mismatched pulse

This can also be derived from 2D nonlinear plasma the-
ory via (61). In the long pulse limit L≫ λp, |∂Ψ/∂ζ| ≪
|kpΨ| and (1 + Ψ) ≃ (1 + a2)1/2, which yields (77). Ne-
glected in (77) is the generation of plasma waves, which
can lead to the self-modulation of long pulses.

In the limit a2 ≪ 1, a Gaussian laser profile
a2 = a2

0 exp(−2r2/r20) creates a density profile δn =
−δn(0)(1 − 2r2/r20) exp(−2r2/r20). Along the axis, the
depth of the ponderomotive channel is given by δn(0) =
a2
0∆nc, where ∆nc is given by (74). Analysis of the parax-

ial wave equation with a density perturbation given by
δn/n0 = k−2

p ∇2
⊥
a2/2 indicates that the normalized spot

size of a Gaussian laser pulse evolves according to [164]

d2R

dz2
=

1

Z2
RR

3

(

1 − P

Pc
− δn(0)

2∆nc
R−2

)

. (78)

where δn(0) = a2
0∆nc and a2 ≪ 1 is assumed. Hence, in

the limit P/Pc ≪ 1, the ponderomotive channel depth
required to guide a laser pulse is δn(0) ≥ 2∆nc. Clearly,
when a0 < 1, the ponderomotive self-channel alone will
not guide the laser pulse. Furthermore, |δn/n0| < 1
implies a2

0 < 2(P/Pc)
1/2 and δn(0) < 2(P/Pc)

1/2∆nc.
Hence, P/Pc ≤ 1 implies δn(0) < 2∆nc, which again indi-
cates that the ponderomotive channel alone will not guide
the laser pulse. For laser powers approaching the critical
power P → Pc, guiding is achieved predominantly by rel-
ativistic self-focusing. Ponderomotive self-channeling can
enhance this effect, but does not dramatically alter the
power threshold for guiding. More detailed studies [140],
which include the effects of relativistic self-focusing and
ponderomotive self-channeling, conclude that the thresh-
old power for guiding is P (GW) ≥ 16.2(ω2/ω2

p0).

E. Plasma Wave Guiding

An ultrashort (L < λp) laser pulse can be guided by
a plasma wave, provided that the laser pulse is properly
phased within the wakefield and the wakefield amplitude
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FIG. 26: Schematic of focusing effects of an externally gener-
ated plasma wave on an initially uniform low-intensity laser
pulse

is sufficiently large [61, 94, 115]. The effective index of
refraction for a low power (P/Pc ≪ 1), low intensity
(a2 ≪ 1) laser pulse propagating in a plasma wave is
given by

ηr ≃ 1 − (ω2
p0/2ω

2)(1 + δn/n0) , (79)

where δn is the density oscillation of the plasma wave,
which is assumed to be unaffected by the low inten-
sity laser pulse. Consider a plasma wave of the form
δn = δn̂(r) sin(kpζ), where δn̂ > 0 and dδn̂/dr < 0. In
regions where sin(kpζ) < 0, the plasma wave acts as a lo-
cal density channel and enhances focusing, and in regions
where sin(kpζ) > 0, the plasma wave enhances diffrac-
tion. Notice that a test laser pulse experiences maximum
focusing at the minimum of δn (i.e., ζ = −π/2). As dis-
cussed in Sect. II H, it can be shown that a short laser
pulse can be frequency upshifted by a plasma wave wake-
field provided that it resides in the phase region where
∂δn/∂ζ < 0. In particular, maximum frequency upshift-
ing occurs at the maximum of −∂δn/∂ζ (i.e., ζ = −π for
the above example). In general, for a sinusoidal plasma
wave, a test laser pulse will experience both enhanced
focusing and frequency upshifting over a |kp∆ζ| = π/4
phase region of the plasma wave. Furthermore, (79) de-
scribes how a plasma wave can lead to the modulation of
a long (L > λp) laser pulse [94], as illustrated schemati-
cally in Fig. 26.

In addition to a plasma wave acting as a local den-
sity channel and providing periodic regions of enhanced
focusing and diffraction as described above, a plasma
wave can enhance the self-focusing of long (L ≫ λp)
laser pulses by several other methods. For example, the
electric field profile Epw of the plasma wave can pro-
vide an additional radial ponderomotive force via ∇E2

pw

[165]. In addition, the oscillatory motion of the plasma
electrons in the plasma wave can contribute to the rel-
ativistic Lorentz factor [5]. Furthermore, the plasma

wave can lead to the generation of higher-order Stokes
and anti-Stokes light waves (i.e., energy cascading) which
can affect self-focusing [92]. These effects have been ob-
served in experiments [165] and simulations [5, 92] of two-
frequency laser-plasma interactions, in which the plasma
wave is resonantly driven by the laser beat wave.

VI. LASER-PLASMA INSTABILITIES

Laser plasma instabilities can limit the laser prop-
agation distance and degrade the performance of a
laser-driven accelerator. This section will provide a
brief overview of a few instabilities that are relevant
to short-pulse laser-driven accelerators: stimulated for-
ward and backward Raman scattering [51, 166–168], self-
modulation [36–38, 104, 106], and laser-hose instabilities
[150, 151]. In particular, this section will consider insta-
bilities relevant to laser pulses short compared to the ion
response time. Other instabilities present in long-pulse
laser-plasma interactions, such as parametric coupling to
ion modes, which have been observed in PBWA experi-
ments [96], will not be discussed.

A. Stimulated Raman Scattering

Stimulated Raman scattering involves the interaction
of a light wave with an electron plasma wave [51]. In
its most basic form, it consists of the decay of the pump
laser field, of frequency and wavenumber (ω0,k0), into
an electron plasma wave (ω,k) and two daughter light
waves, namely a Stokes wave (ω0 − ω,k0 − k) and an
anti-Stokes wave (ω0 +ω,k0 +k). Typically, ω ≃ ωp +iΓ
where the growth rate Γ is obtained through a standard
linear instability analysis. In such an analysis, the pump
laser field is assumed to be a 1D plane wave of the form
a ∼ a0 exp(ik0 · r − iω0t). Perturbations are introduced
δa ∼ exp[i(k0 ± k) · r − i(ω0 ± ω)t] and the linearized
equations are then solved to determined the behavior of
the instability. Since the pump laser is assumed to be
a 1D plane wave, the 3D evolution of the pump laser is
not taken into consideration. In particular, the effects
of diffraction and self-focusing are neglected. Strictly
speaking, the resulting analysis is only valid for times
short compared to the characteristic evolution time τE
of the pump laser, e.g., t < τE ∼ ZR/c. In practice, how-
ever, the growth rates obtained from such an analysis can
be adequate estimates provided that the mode frequency
and growth rate are large compared to τ−1

E .
For an infinite, 1D plane wave pump field, the purely

temporal Raman growth rates, i.e., δa ∼ exp(Γt) with
growth rate Γ independent of t, can be obtained in a
straightforward manner. The basic treatment of for-
ward and backward Raman scattering is presented in the
monograph by Kruer [51]. Temporal growth rates for the
various Raman modes in various regimes has been sum-
marized by Antonsen and Mora [106]. For short laser
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pulses, however, the growth and propagation of the in-
stability with respect to the laser pulse front must be
correctly taken into consideration. Antonsen and Mora
[37, 106] first applied convective instability analysis, or a
spatiotemporal analysis, to Raman instabilities in order
to account for the short-pulse character of the instability.

1. Backward Raman scattering

In Raman backscattering (RBS), the pump wave
(ω0, k0) decays into a plasma wave (ω, k) and a back-
ward going scattered wave (ω0−ω, k0−k), where ω ≃ ωp

and k ≃ 2k0. The standard temporal growth rate [51], in
the limits a2

0 ≪ 1 and ωp ≪ ω0, i.e., the weakly-coupled

regime, is Γ = (a0/2)(ωpω0)
1/2. In general, the scattered

mode can propagate at some angle θ with respect to the
pump wave, i.e., sidescatter, and the growth rate is given
by sin(θ/2) times the RBS result. The spatiotemporal
analysis indicates that the number of e-folds Ne of the
instability, δa ∼ exp(Ne), is given by [106]

Ne ≃ (a2
0kpk0/8)1/2|ζ| . (80)

In effect, since the scattered wave is moving opposite to
the pump, the temporal growth is modified by ct→ |ζ|/2,
where ζ = z − ct is a measure of the distance back from
the front of the laser pulse.

Typically, RBS is the fastest growing of the Raman
scattering instabilities. In laser-plasma accelerators,
RBS is significant for a number of reasons. At low pump
laser intensities, the spectrum of the backscattered ra-
diation can be used to determine ω − ωp, and hence
the plasma density can be determined experimentally.
For high pump intensities, however, it has been observed
that the backscattered spectrum broadens [169, 170] and,
in some cases, becomes extremely broad, such that the
ω − ωp peak can no longer be distinguished. Raman
sidescatter and backscatter can erode the back of a long
pulse, L > λp, since energy is being transported out of
the pulse. This has been observed in fluid [106, 108] and
particle simulations [72, 171].

As the RBS mode grows to large amplitude, it can
trap the background plasma electrons, thus heating the
plasma and creating a fast tail on the electron distri-
bution. The phase velocity of the RBS plasma wave
is vp = ω/k = ωp/2k0 ≪ c. Since vp/c ≪ 1, the
plasma wave can trap the background thermal electrons.
The resulting fast electrons can be subsequently trapped
by Raman scattered modes propagating at smaller an-
gles θ, which will accelerate the electrons to higher
energies [39, 124, 126]. Eventually, these background
electrons can be trapped and accelerated to very high
energies by the plasma wave associated with the for-
ward Raman instability or the self-modulation instabil-
ity, which has vp ≃ c. This mechanism may explain
how background plasma electrons can be trapped and
accelerated to high energies, as is observed in experi-
ments [12, 40, 42, 44, 45, 102, 114, 172] and simulations

[72, 171] in the self-modulated or forward Raman scatter-
ing regimes. Direct wavebreaking of a relativistic plasma
wave can also result in the acceleration of background
plasma electrons [41].

For high pump intensities, theory predicts that
stimulated backscattering occurs in the strongly cou-
pled or Compton regime [106, 173], for which ω ∼
Γ ≫ ωp and the number of e-folds is Ne =

(
√

3/2)(ω2
pω0a

2
0/4)1/3|ζ|/γ⊥. In addition, 1D nonlinear

theory predicts that for a linearly polarized pump laser
field, stimulated backscattered harmonic radiation can
be generated [166] at frequencies given approximately by
(2ℓ + 1)ω0 (ℓ = integer), i.e., odd harmonics. Although
the growth rate for the higher harmonics can be signifi-
cant when a2

0 ≫ 1, thermal effects, i.e., trapping of the
background plasma electrons, can severely limit the gen-
eration of higher harmonics [166].

2. Forward Raman scattering

In Raman forward scattering (RFS) [51], the scattered
waves propagate parallel (or nearly parallel) to the pump
wave, and the associated plasma wave has a phase veloc-
ity vp ≃ c. Hence, the plasma wave can be used to accel-
erate electrons to high energies. The RFS instability can
serve as the basis for a LWFA [1, 39, 105, 120], in which
a single long (L > λp) laser pulse becomes modulated
via RFS and drives a large amplitude plasma wave. A
LWFA based on RFS can be viewed as the 1D analogue
to the self-modulated LWFA.

The physical mechanism of RFS can be understood
by the following 1D description [174]. Consider a long
uniform laser pulse propagating in the presence of an
initially small amplitude plasma wave of the form δn =
δn0 sinkpζ with δn0 > 0. Since the local group velocity
vg is given by vg/c ≃ 1 − ω2

p(ζ)/2ω2
0 , the local group

velocity decreases in regions where δn > 0 and increases
in regions where δn < 0. This tends to modulate the laser
pulse such that the intensity modulations are π/2 out of
phase with the density wave, i.e., a ≃ a0 + δa, where
δa = δa0 cos kpζ and δa0 > 0. This intensity modulation
feeds back via (∂2/∂ζ2 + k2

p)δn/n0 = (∂2/∂ζ2)a2/2 and
drives the plasma wave to larger amplitudes, resulting in
the RFS instability.

Several regimes of the RFS can be identified [106,
167, 173, 175], such as a 4-wave regime, in which both
ω0 ± ωp modes are resonant, and a 3-wave regime, in
which only ω0 − ωp is resonant with the pump laser and
the plasma wave. The temporal growth rate in the 4-
wave resonant regime is Γ4 = ω2

pa0/2
√

2ω0, the tem-
poral growth rate in the 4-wave nonresonant regime is
Γ4nr =

√
3ωp(a0ω

2
p/4ω

2
0)

2/3/2, and the temporal growth

rate in the 3-wave regime is Γ3 = ωpa0(ωp/ω0)
1/2/4. The

spatiotemporal analysis [106, 173, 175] indicates, how-
ever, that as the RFS instability grows, it passes through
these various regimes, depending on the relative value of
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|ζ|/cτ , where ζ = z−ct and τ = t are the independent co-
ordinates. The number of e-foldings for these three RFS
modes and the corresponding spatiotemporal regimes are
roughly given by [106, 173, 175]

Ne ≃ 2Γ4(|ζ|τ/c)1/2 , for a2
0

|ζ|
cτ

≫ 2
ω2

p

ω2
0

, (81)

Ne ≃ 3

2
Γ4nr(2|ζ|τ2/c)1/3 , for 8

ω5
p

ω5
0

≪ a2
0

2

|ζ|
cτ

≪
ω2

p

ω2
0

,

(82)

Ne ≃ 2Γ3(|ζ|τ/c)1/2 , for a2
0

|ζ|
cτ

≪ 16
ω5

p

ω5
0

, (83)

where a2
0 ≪ 1 and ω2

p/ω
2
0 ≪ 1 are assumed. Decker et

al. [175] describe that for a fixed ζ within the pulse, the
RFS instability transitions through the various regimes
as a function of time. A similar analysis has been ap-
plied by Antonsen and Mora [106] to describe small angle
RFS, the resulting growth rate is proportional to Γ3, sim-
ilar to (83). As a side note, the paraxial approximation
to the wave operator (∇2

⊥
+ 2ik0∂/∂cτ) is not sufficient

to describe direct (θ = 0) RFS; retention of the term
2∂2/∂ζ∂cτ is necessary to describe on-axis RFS. This
was done in the fluid simulation of the self-modulated
LWFA presented in Sect. III D, i.e., the effects of both
the RFS and self-modulation instabilities are included.
A nonparaxial theory [176], describing the nonlinear cou-
pling of RFS and self-modulation instabilities, has found
that the self-modulation instability often dominates in
regimes of interest to the self-modulated LWFA.

In addition, it is also possible for a RFS mode to un-
dergo multiple scattering, sometimes referred to as cas-
cading [39, 92], resulting in multiple waves with frequen-
cies ω0 ± ℓωp (ℓ = integer). It is possible to interpret
this as photon acceleration, or phase-modulation by the
plasma wave, of the scattered light wave [105]. Numer-
ous high-order Stokes and anti-Stokes lines have been ob-
served in simulations of RFS [71]. Multiple [40, 42, 43]
(up to the fifth [41]) anti-Stokes lines have been observed
in RFS or self-modulated LWFA experiments.

B. Self-Modulation and Laser-Hose Instabilities

A formalism has been developed [104, 150, 176] to de-
scribe the 3D evolution of laser pulses in plasmas, in-
cluding the effects of diffraction, relativistic and chan-
nel guiding, finite pulse duration, and coupling to the
self-consistent plasma wave generated by the pulse struc-
ture. This formalism has been used to describe a
class of “whole-beam” instabilities, which includes self-
modulation [104, 150] and laser-hose [150] instabilities.
In this formalism, equations are derived to describe the
evolution of the local laser pulse spot size xs(ζ, t) and the
local laser pulse centroid xc(ζ, t), where the transverse
profile of the laser field is assumed to be a Gaussian of the
form a ∼ exp

[

−(x− xc)
2/x2

s

]

(the y profile can be simi-
larly defined). The self-modulation instability consists of

xs

FIG. 27: Schematic of the hose-modulation instability show-
ing the laser pulse centroid xc and spot size xs

a periodic “sausaging” of the laser spot size xs and the
laser-hose consists of a periodic “kinking” of the laser cen-
troid xc, as show schematically in Fig. 27. In their most
basic forms, the self-modulation and laser-hose instabili-
ties are described by spot size and centroid perturbations
of the forms δxs,c ∼ exp(Γs,ct+ikpζ), i.e., having a period
equal to the plasma wavelength λp = 2π/kp and a spa-
tiotemporal growth rate Γs,c = Γs,c(ζ, t). Intrinsically,
these instabilities involve a coupling to a plasma wave,
and the dynamics of the instabilities are determined by
the enhanced diffraction and focusing of the laser pulse
owing to the presence of the plasma wave.

The physical mechanism underlying self-modulation
has been described previously in Sect. III D. The physical
mechanism for laser hosing [150, 151] is somewhat simi-
lar. Consider a long, L > λp, guided laser pulse P/Pc =
1−∆n/∆nc, with a centroid which is initially perturbed at
the plasma wavelength xc ≃ xc0 sin(kpζ). This periodic
centroid displacement will drive an asymmetric plasma
wave. Notice that for x2

c/x
2
s ≪ 1, the intensity profile

is approximately a2 ≃ a2
0(1 + 4xxc/x

2
s) exp(−2x2/x2

s).
At a fixed x position above the axis, x = x0, the
laser intensity modulation has the form a2(x0)/a

2
0 ∼

1+4(x0xc0/x
2
s) sin(kpζ), which drives a plasma wave. At

a fixed x position below the axis, x = −x0, the laser in-
tensity is similarly modulated, but π out of phase with re-
spect to the x = x0 modulation. Hence, the plasma wave
driven below the axis is π out of phase with respect to
the plasma wave driven above the axis, i.e., an asymmet-
ric (with respect to x) plasma wave. Roughly speaking,
the plasma wave has the form δn ∼ −(x/xs) cos(kpζ).
The laser pulse will tend to focus into the regions of re-
duced plasma density. For the asymmetric plasma wave,
the laser pulse evolves in such a way as to enhance the
initial centroid perturbation and the process proceeds in
an unstable manner.

Equations describing the behavior of the spot size
xs(ζ, τ) and centroid xc(ζ, τ) can be derived by analyzing
the paraxial wave equation including the effects of a per-
formed parabolic density channel and the self-consistent
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plasma response given by

δn
n0

=

∫ ζ

0

dζ′ cos[kp(ζ − ζ′)]
∂

∂ζ′
a2(ζ′)

2
. (84)

In the limits a2 ≪ 1 and k2
pr

2
0 ≫ 1, xs and xc obey

equations of the form [150]

(

∂2

∂τ̂2
+

∆n
∆nc

)

x̂c = −4kp

∫ ζ

0

dζ′ sin[kp(ζ
′ − ζ)] [xc(ζ

′) − xc(ζ)]Fc(ζ
′, ζ)

P (ζ′)

Pc
, (85)

and

∂2x̂s

∂τ̂2
−
(

1 − x̂sP

ŷsPc
− ∆n

∆nc
x̂4

s

)

x̂−3
s = 4x̂s

∫ ζ

0

dζ′ cos[kp(ζ
′ − ζ)]

∂

∂ζ′

[

Fs(ζ
′, ζ)

P (ζ′)

Pc

]

. (86)

Also, ŷc and ŷs obey equations similar to (85) and (86),
respectively. In the above, x̂c = xc/r0, ŷc = yc/r0,
x̂s = xs/r0, ŷs = ys/r0, τ̂ = cτ/ZR, ZR = kr20/2 is the
Rayleigh length, ∆nc = (πrer

2
0)

−1 is the critical channel
depth, P (ζ)/Pc = a2xsysk

2
p/16 is the laser power nor-

malized to the critical power, and Fs,c(ζ
′, ζ) are functions

which depend on xs, ys, xc, and yc and couple the spot
size dynamics to the centroid dynamics [150].

The right-hand side of (85) indicates that if xc(ζ) =
xc(ζ

′) initially (i.e., a uniform centroid), xc(ζ) will
not increase. Hence, the laser-hose instability requires
a non-uniform head-to-tail centroid displacement [150]
∂xc/∂ζ 6= 0. The right-hand side of (86) indicates that
axial gradients in the laser power ∂P/∂ζ 6= 0 will lead
to modulations in the laser envelopes (xs, ys), which can
grow in an unstable manner as discussed in Sect. III D.
Both the self-modulation and laser-hose instabilities can
occur in either a uniform plasma (∆n = 0) or in a pre-
formed density channel.

In the absence of a centroid perturbation, i.e., xc = 0
(no hosing), self-modulation is described by (86). For
an axisymmetric pulse (xs = ys = rs), Fs,c = [R2(ζ) +
R2(ζ′)]−2 with R = rs/r0 [104]. The second, third, and
fourth terms on the left-hand side of (86) represent the
effects of vacuum diffraction, relativistic focusing, and
channel focusing, respectively, whereas the term on the
right-hand side represents the nonlinear coupling of the
laser envelope to the plasma wave. Equation (86) de-
scribes well-known laser pulse evolution, such as the in-
ability of relativistic guiding to prevent the diffraction of
short pulses L < λp [36, 60, 61, 115].

The evolution of a long, axially uniform laser beam can
be examined in the limit where the effect of the plasma
wave is neglected, i.e., the nonlinear coupling term on the
right-hand side of (86) is set equal to zero. Neglecting the
coupling term, the solution to (86) for the initial (z = 0)

conditions drs/dz = 0 and rs = ri is [104]

r2s
r2i

=
∆ncr

4
0

2∆nr4i

[

1 − P

Pc
+

∆nr4i
∆ncr40

−
(

1 − P

Pc
− ∆nr4i

∆ncr40

)

cos (kosz)

]

, (87)

where kos = (2/ZR)(∆n/∆nc)
1/2 and ri is the injected

spot size. For P ≤ Pc, the spot size oscillates between
r2s = r2i and r2s = (1−P/Pc)∆ncr

4
0/(∆nr2i ) with an oscilla-

tion period λos = 2π/kos = πZR(∆nc/∆n)1/2. A matched
beam with rs = ri = r0 requires P = PM , where [104]

PM = Pc(1 − ∆n/∆nc) , (88)

i.e., the effective critical power PM for guiding is reduced
by a finite density channel (assuming ∆n ≤ ∆nc). Notice
that for ri = r0 and (kosz)

2 ≪ 1, (87) reduces to r2s/r
2
0 =

1 + (1 − P/Pc − ∆n/∆nc)(z/ZR)2. This indicates that
beam will initially focus for P > PM or diffract for P <
PM with an effective Rayleigh length of ZR(1 − P/Pc −
∆n/∆nc)

−1/2.
The effect of the plasma wave on the spot size evolution

is described by the right-hand side of (86). The initial
effect of the plasma wave can be estimated by approx-
imating R(ζ′) = R(ζ) within the integral in (86), i.e.,
initially the spot size is uniform throughout the pulse.
In this limit the right-hand side of (86) can be written
as (−δn/∆nc)/(2R

3), where δn is the initial density per-
turbation given by (84). The rise associated with the
front of the pulse gives a nonzero value of ∂a2/∂ζ that
generates a finite amplitude density wake. Throughout
the body of a long, flat-top pulse, this density wake has
the form δn = δn̂ cos(kpζ). In particular, for a flat-top
pulse with a fast rise, k2

pL
2
rise ≪ 1, (84) yields δn/n0 =

−(a2
0/2) cos(kpζ) and the right-hand side of (86) can

be written as (−δn/2∆nc)R
−3 = R−3(P/Pc) cos(kpζ).

Hence, at the phase regions where cos(kpζ) = −1, focus-
ing requires P ≥ PM/2 (for k2

pL
2
rise ≫ 1, the initial wake

δn vanishes and focusing requires P ≥ PM ). Clearly,
the effect of the initial density wake δn(ζ) is to produce
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ζ-periodic regions of enhanced focusing and diffraction.
This causes the laser intensity to become modulated at
λp, which subsequently enhances the density wake at
later times. This is the basis of the self-modulation in-
stability.

For sufficiently small perturbations, xs/r0 ≪ 1 and
xc/r0 ≪ 1, (85) and (86) decouple and self-modulation
and the laser-hose instability can be analyzed indepen-
dently. The growth of the instabilities for a long (L ≫
λp), optically-guided (P = PM ) laser pulse can be ana-
lyzed by perturbing (86) about the matched-beam equi-
librium. Asymptotic growth rates can be obtained in
various regimes using standard methods. The number of
e-folds Ne = Γc,sτ in the various regimes are given by
[104, 150]:
Long pulse regime: kp|ζ|ZR/z ≫ 4α1Pc/P

Ne =
3
√

3

4

(

α2
P

Pc
kp|ζ|

z2

Z2
R

)1/3

, (89)

Intermediate regime: (α3/4)(P/Pc) ≪ kp|ζ|ZR/z ≪
4α1Pc/P

Ne =

(

α3
P

Pc
kp|ζ|

z

ZR

)1/2

, (90)

Short pulse regime: kp|ζ|ZR/z ≪ (α3/4)(P/Pc)

Ne =
3
√

3

4

(

α3
P

Pc
k2

p|ζ|2
z

ZR

)1/3

. (91)

For the laser-hose instability, α1 = α2 = α3 = 1. For self-
modulation, α1 =

√
2(2−P/Pc)

3/2 (
√

2 ≤ α1 ≤ 4), α2 =

2, and α3 =
√

2(2 − P/Pc)
−1/2 (1 ≤ α3 ≤

√
2). Hence,

the number of e-folds is a function of the dimensionless
parameters P/Pc, kp|ζ|, and z/ZR.

Some insight can be gained by comparing Ne for self-
modulation in the long-pulse regime to that of RFS in
the 4-wave nonresonant regime (discussed in Sect. VI A).
Equations (82) and (89) indicate the self-modulation is
dominant provided k2

pr
2
0 ≪ k2

0/k
2
p. This supports the as-

sertion that self-modulation dominates in the 2D limit,
whereas RFS dominates in the 1D limit, roughly speak-
ing, when kpr0 ≫ k0/kp. These two growth rates, how-
ever, occur in different spatiotemporal regimes, hence,
comparison of the growth of self-modulation and RFS is
more complicated [176].

To illustrate the behavior of the coupled self-
modulation and laser-hose instabilities, (85) and (86) are
solved numerically [150]. Consider an initially uniform
plasma with a 16TW, 1 ps laser pulse with wavelength
λ = 1 µm and initial spot size r0 = 60 µm (ZR = 1.1 cm)
in a plasma of density n0 = 1.2×1018 cm−3 (λp = 30 µm).
For these parameters, P (ζ) = Pc at the center of the
pulse. Initially, x̂s = ŷs = 1 and the centroid has a 1%
random perturbation such that |∂ lnxc/∂ζ| ≪ 1/λ0.

As the laser propagates, the high intensity center of
the pulse remains guided (x̂s ≃ 1). However, the front

FIG. 28: Normalized laser intensity |a|2 versus ζ/λp at cτ = 0
(dashed curve) and cτ = 3.2ZR (solid curve) for the parame-
ters λp = r0/2 = 30 µm. Laser is moving to the right

s

s

FIG. 29: Laser envelope xs (upper curve) and centroid xc

(lower curve) versus ζ/λp at cτ = 3.2ZR for an initial pertur-
bation of 1% in xc. Perturbations grow at λp = r0/2 = 30 µm

and back portions of the pulse, with P < Pc, diffract,
and the coupled hose and modulation instabilities grow
within the guided portion of the pulse as illustrated in
Figs. 28 and 29. Figure 28 shows the normalized laser in-
tensity on-axis |â|2 = 16P (ζ)/(Pcx̂sŷsk

2
pr

2
0) at τ̂ = 0 and

at τ̂ = 3.2. Figure 29 plots x̂s(ζ) and x̂c(ζ) at τ̂ = 3.2
and shows a significant level of hosing, with |x̂c| as large
as 0.5. In addition to the modulation of the envelope at
λp, the second harmonic at λp/2 is present, indicating
the coupling between the hose and self-modulation in-
stabilities. The spatial modulation of the laser envelope
at λp/2 is due to the dependence of the driving terms
on the centroid motion. The second harmonic is not
observed when the initial centroid perturbation is suf-
ficiently small, 0.1% for the present parameters.

The presence of the laser-hose instability can strongly
modify the structure of the wakefield generated by the
laser pulse. To illustrate this point, consider the case
when the initial centroid perturbation is 10% [150]. Here,
the centroid motion dominates both the development of
the wakefield and the evolution of the envelope. The
spot size modulations are dominated by the second har-
monic component. Figure 30 shows the transverse pro-
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FIG. 30: Transverse profiles of the axial wakefield Ez/E0

(solid curve) and the transverse wakefield Ex/E0 (dashed
curve) at cτ = 1.8ZR and ζ = −18λp for a hose-dominated
case

files of both the longitudinal and transverse wakefields,
at τ̂ = 1.8, near the back of the pulse. The transverse
field Ex is nearly symmetric and peaked on-axis while the
longitudinal field Ez is nearly antisymmetric and van-
ishes on-axis. This wakefield symmetry is opposite to
that which occurs without hosing, i.e., in the absence of
the hose instability, Ex is antisymmetric and vanishes
on-axis, while Ez is symmetric and peaked on-axis.

Although the modulation instability can enhance the
wakefield amplitude and acceleration in the LWFA, the
laser-hose instability should generally be avoided. To
avoid significant levels of hosing, the initial laser cen-
troid must be sufficiently smooth. Equations (89)–(91)
indicate that the growth of the hose instability can be
reduced by decreasing the pulse length (kp|ζ|), the laser
power (P/Pc), or the interaction distance (cτ/ZR). Fur-
ther simulations [150] indicate that by appropriately
varying (i.e., detuning) either the plasma density and/or
the depth of the preformed plasma channel as a func-
tion of ζ in the laboratory frame, the laser-hose and self-
modulation instability can be substantially reduced.

VII. SUMMARY AND PROSPECTS

Perhaps the three most fundamental physics issues
concerning plasma-based accelerators are (i) can an ul-
trahigh accelerating field be generated, (ii) can this accel-
erating field be sustained over a sufficiently long propa-
gation distance so as to provide a substantial single-stage
electron energy gain, and (iii) can an ultrashort elec-
tron bunch be injected and accelerated while maintaining
high bunch quality? Theory and simulation indicate that
these requirements can be met. Experimental progress is
proceeding at a rapid pace, and the generation of ul-
trahigh accelerating fields, the production of relativistic
electrons, and the optical guiding of laser pulse over many
diffraction (Rayleigh) lengths have been demonstrated.
Much of the experimental success can be attributed to
the development of chirped-pulse amplification [8–10],

which has revolutionized laser technology by providing
compact sources of multi-TW, sub-ps laser pulses. Nev-
ertheless, numerous accelerator applications will benefit
from high-average power sources of intense laser pulses,
which requires further technological advances.

The problem of generating a large amplitude plasma
wave by an intense laser pulse, for the most part, is well-
understood. Theoretically, wakefield generation can be
examined by assuming a non-evolving drive laser pulse
and by calculating the plasma response to the pondero-
motive force. This ponderomotive force can be associ-
ated with the envelope of a a single laser pulse (e.g.,
standard LWFA), a laser pulse train, envelope variations
on an unstable laser pulse (e.g., self-modulated LWFA),
or the beat wave produced by two co-propagating laser
pulses of different frequencies (e.g., PBWA). Wakefield
generation is optimized when the laser envelope spatial
gradients are on the order of the plasma wavelength λp.
Analytical solutions or simple numerical models exist in
the 3D linear regime (a2

0 ≪ 1) and in the 1D nonlinear
(a2 & 1) regime. In the 2D and 3D nonlinear regime,
wakefield generation can be examined with a variety of
quasi-static fluid and particle-in-cell codes. Unresolved
theoretical issues pertaining to wakefield generation in-
clude the detailed study of wavebreaking, especially in 2D
and 3D, wakefield decay in nonuniform plasmas, thermal
effects, and self-trapping.

The problem of sustaining a large accelerating field
over a sufficiently long distance requires that a suitable
plasma be generated over this distance and that the laser
pulse intensity be sustained as it propagates through this
plasma. Generating suitable long plasmas requires fur-
ther technological advancements, such as the develop-
ment of elongated gas jets, gas jet arrays, or capillar-
ies. Detailed control of the plasma density profile is
also required, and tailoring of the plasma density may
be achieved using laser ionization or heating methods.

Laser pulse propagation in fully-ionized, underdense
(λ/λp ≪ 1) plasma is affected by a variety of phenom-
ena, including relativistic self-focusing, ponderomotive
self-channeling, plasma wave generation, preformed den-
sity channels, and instabilities, as discussed in Secs. V
and VI. Relativistic self-guiding, which occurs when
P ≥ Pc ≃ 17λ2

p/λ
2 GW, only affects the body of a long

(L > λp) laser pulse. The leading portion of the pulse
(. λp), however, will diffractively erode due to the self-
consistent response of the plasma density to the laser
field. The self-focusing of a long pulse can be enhanced
by the ponderomotive blowout of the plasma electrons
from the axis, i.e., electron cavitation. In addition, the
body of long, relativistically-guided pulse is subject to in-
stabilities (Raman scattering, self-modulation, and laser
hosing). In the self-modulated LWFA regime, these in-
stabilities play a dramatic effect, and are responsible for
the axial modulation of the pulse profile at λp, wakefield
excitation, as well as electron self-trapping and acceler-
ation. Preformed plasma density channels are effective
in the guiding of short (L < λp) laser pulses when ∆n ≥
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TABLE I: Parameters and results for laser-driven plasma-based accelerator experiments. The laser power P (TW), laser intensity
I0(W/cm2), laser pulse duration τL(ps), laser wavelength λ(µm), plasma density n0(cm

−3), energy gain of the accelerated
particles ∆W (MeV), and accelerating gradient Ez(GV/m) are listed for each experiment

P I0 τL λ n0 ∆W Ez

(TW) (W/cm2) (ps) (µm) (cm3) (MeV) (GV/m)

PBWA:

ILE (Japan) [28] 0.3 1013 1000 9.6, 10.6 1017 10 1.5

UCLA (USA) [29] 0.2, 0.05 1014 300 10.3, 10.6 1016 28 2.8

CRL (Canada) [30] 0.1 1014 500 10.3, 10.6 1016 17 1.7

LULI (France) [31] 0.1, 0.02 1017 90 1.05, 1.06 1017 1.4 0.6

LWFA:

KEK (Japan) [34] 2 1017 0.09 0.8 1017 >100 -

LULI (France) [35] 3.5 4 × 1017 0.4 1.05 2 × 1016 1.6 1.5

SM-LWFA:

LANL (USA) [39] 0.4 1015 700 1.6 - 1.4 -

LLNL (USA) [40] 5 1018 0.6 1.05 1019 2 -

KEK (Japan) [102] 3 1017 1.0 1.05 1019 17 30

CUOS (USA) [42] 5 4 × 1018 0.4 1.05 4 × 1019 20 -

NRL (USA) [43] 2.5 1019 0.4 1.05 1019 30 50

RAL (UK) [12] 20 6 × 1019 1 1.05 1019 94 240

MPI (Germany)a [114] 1.2 4 × 1018 0.2 0.8 1019–1020 >12.5 -

LBNL (USA) [44] 10 1019 0.05 0.8 1019 >25 -

LOA (France) [45] 17 2 × 1019 0.035 0.8 1018 70 58

LOL (France)b [13] 30 3 × 1018 0.03 0.8 4 × 1019 200 100

a Acceleration mechanism attributed to direct laser acceleration.
b Acceleration mechanism attributed to forced laser wakefield acceleration.

∆nc = 1/(πrer
2
0). For long pulses (L > λp), relativistic

effects can reduce this criterion, i.e., ∆n/∆nc ≥ 1−P/Pc.
In addition, if the pulse is sufficiently short (L . λp),
the detrimental effects of various instabilities may be re-
duced, owing to the reduced growth of the mode within
the pulse. Analytic studies of laser pulse evolution, for
the most part, are limited to the linear regime in which,
for example, analytic expressions for instability growth
rates are readily obtained. The self-consistent problem of
plasma wave generation by an evolving drive laser pulse is
typically of sufficient complexity as to require numerical
simulation. Self-consistent simulations of plasma-based
accelerators have been performed in the 2D and 3D non-
linear regime using both fluid and particle-in-cell codes.

To generate a high-quality electron bunch, it is highly
desirable that a bunch be injected with a length short
compared to λp. Due to the shortness of λp (.
100 µm), this is not yet achievable using conventional
photo-injectors, in which the production of femtosec-
ond bunches is problematic. Alternatively, several novel
methods for injecting electrons into a plasma wave using
density transitions or additional laser pulses have been
proposed. In particular, using ultrashort (short com-
pared to λp) laser pulses shows great promise, since the
injection process can be controlled in detail by adjust-

ing the timing of the injection pulses with respect to the
plasma wave phase, as well as by adjusting the injec-
tion pulse amplitude and duration. Once injected, it is
important that the electron bunch be accelerated while
maintaining high quality, e.g., maintaining a small en-
ergy spread and emittance. The issue of bunch quality
has not been addressed in detail in this report, but this
problem is being studied within the plasma-based accel-
erator community, primarily via simulations [177, 178].

Experimentally, several groups have measured ultra-
high accelerating fields and accelerated electrons, as
is summarized in Table I. Large accelerating fields
have been measured directly from optical probing tech-
niques or inferred from the measurement of accel-
erated electrons. To date, the largest accelerating
fields (>200GV/m [12]) and highest energy electrons
(200MeV [13]) have been produced in the self-modulated
LWFA regime, in which the high plasma densities yield
large wavebreaking fields. Except for the relativistic
self-focusing and ponderomotive self-channeling effects
present in the self-modulated regime, none of these ac-
celerator experiments have used an external method for
laser guiding. At lower intensities (< 1018 W/cm2), laser
pulses have been guided over many Rayleigh lengths (up
to 45ZR [145]) in preformed plasma channels, produced
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either by capillary discharges or laser ionization and heat-
ing methods. The generation of large amplitude plasma
waves and the subsequent acceleration of electrons within
a preformed plasma channel have yet to be demonstrated.
If a plasma channel is used in conjunction with an ultra-
high intensity laser pulse in the standard LWFA config-
uration, then linear theory predicts a maximum single-
stage energy gain of ∆W (GeV) ≃ I0(W/cm2)/n0(cm

−3).
Hence, a picosecond laser pulse with an intensity of
1018 W/cm2 in a plasma of density 1016 cm−3 may pro-
vide a single-stage energy gain as high as 100GeV.
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bard, A. Ting, C. I. Moore, D. F. Gordon, A. Zigler,
D. Kaganovich, and T. M. Antonsen, Jr., Phys. Rev. E
63, 056405 (2001).

[122] T. Katsouleas, S. Wilks, P. Chen, J. M. Dawson, and
J. J. Su, Part. Accel. 22, 81 (1987).

[123] K.-C. Tzeng, W. B. Mori, and T. Katsouleas, Phys. Rev.
Lett. 79, 5258 (1997).

[124] E. Esarey, B. Hafizi, R. Hubbard, and A. Ting, Phys.
Rev. Lett. 80, 5552 (1998).

[125] C. Rousseaux, G. Malka, J. L. Miquel, F. Amiranoff,
S. D. Baton, and P. Mounaix, Phys. Rev. Lett. 74, 4655

(1995).
[126] P. Bertrand, A. Ghizzo, S. J. Karttunen, T. J. H. Pat-

tikangas, R. R. E. Salomaa, and M. Shoucri, Phys. Plas-
mas 2, 3115 (1995).

[127] A. J. W. Reitsma, W. P. Leemans, E. Esarey, C. B.
Schroeder, L. P. J. Kamp, and T. J. Schep, Phys. Rev.
ST Accel. Beams 5, 051301 (2002).

[128] D. Umstadter, J. K. Kim, and E. Dodd, Phys. Rev.
Lett. 76, 2073 (1996).

[129] E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, and
P. Sprangle, Phys. Rev. Lett. 79, 2682 (1997).

[130] R. G. Hemker, K.-C. Tzeng, W. B. Mori, C. E. Clayton,
and T. Katsouleas, Phys. Rev. E 57, 5920 (1998).

[131] C. B. Schroeder, P. B. Lee, J. S. Wurtele, E. Esarey,
and W. P. Leemans, Phys. Rev. E 59, 6037 (1999).

[132] C. I. Moore, A. Ting, S. J. McNaught, J. Qiu, H. R. Bur-
ris, and P. Sprangle, Phys. Rev. Lett. 82, 1688 (1999).

[133] E. Esarey, C. B. Schroeder, W. P. Leemans, and
B. Hafizi, Phys. Plasmas 6, 2262 (1999).

[134] W. P. Leemans, P. Volfbeyn, K. Z. Guo, S. Chattopad-
hyay, C. B. Schroeder, B. A. Shadwick, P. B. Lee, J. S.
Wurtele, and E. Esarey, Phys. Plasmas 5, 1615 (1998).

[135] S. Bulanov, N. Naumova, F. Pegoraro, and J. Sakai,
Phys. Rev. E 58, R5257 (1998).

[136] H. Suk, N. Barov, J. B. Rosenzweig, and E. Esarey,
Phys. Rev. Lett. 86, 1011 (2001).

[137] J. Krall, E. Esarey, P. Sprangle, and G. Joyce, Phys.
Plasmas 1, 1738 (1994).

[138] A. G. Litvak, Zh. Eksp. Teor. Fiz. 57, 629 (1969).
[139] C. Max, J. Arons, and A. B. Langdon, Phys. Rev. Lett.

33, 209 (1974).
[140] G. Z. Sun, E. Ott, Y. C. Lee, and P. Guzdar, Phys.

Fluids 30, 526 (1987).
[141] P. Sprangle, C. M. Tang, and E. Esarey, IEEE Trans.

Plasma Sci. PS-15, 145 (1987).
[142] L. C. Steinhauer and H. G. Ahlstrom, Phys. Fluids 14,

1109 (1971).
[143] L. C. Johnson and T. K. Chu, Phys. Rev. Lett. 32, 517

(1974).
[144] C. G. Durfee III and H. M. Milchberg, Phys. Rev. Lett.

71, 2409 (1993).
[145] C. G. Durfee III, J. Lynch, and H. M. Milchberg, Phys.

Rev. E 51, 2368 (1995).
[146] P. Volfbeyn, E. Esarey, and W. Leemans, Phys. Plasmas

6, 2269 (1999).
[147] E. W. Gaul, S. P. Le Blanc, A. R. Rundquist,

R. Zgadzaj, H. Langhoff, and M. C. Downer, Appl.
Phys. Lett. 77, 4112 (2000).

[148] T. KurkiSuonio, P. J. Morrison, and T. Tajima, Phys.
Rev. A 40, 3230 (1989).

[149] P. Sprangle, A. Ting, and C. M. Tang, Phys. Rev. A
36, 2773 (1987).

[150] P. Sprangle, J. Krall, and E. Esarey, Phys. Rev. Lett.
73, 3544 (1994).

[151] G. Shvets and J. S. Wurtele, Phys. Rev. Lett. 73, 3540
(1994).

[152] K. Krushelnick, A. Ting, C. I. Moore, H. R. Burris,
E. Esarey, P. Sprangle, and M. Baine, Phys. Rev. Lett.
78, 4047 (1997).

[153] A. Zigler, Y. Ehrlich, C. Cohen, J. Krall, and P. Spran-
gle, J. Opt. Soc. Am. B. 13, 68 (1996).

[154] Y. Ehrlich, C. Cohen, D. Kaganovich, A. Zigler, R. F.
Hubbard, P. Sprangle, and E. Esarey, J. Opt. Soc. Am.
B 15, 2416 (1998).

LBNL Report, LBNL-53510 39 June 30, 2003



E. Esarey & C. B. Schroeder Physics of Laser-Driven Plasma-Based Accelerators

[155] S. M. Hooker, D. J. Spence, and R. A. Smith, J. Opt.
Soc. Am. B 17, 90 (2000).

[156] T. Hosokai, M. Kando, H. Dewa, H. Kotaki, S. Kondo,
N. Hasegawa, K. Nakajima, and K. Horioka, Opt. Lett.
25, 10 (2000).

[157] A. Butler, D. J. Spence, and S. M. Hooker, Phys. Rev.
Lett. 89, 185003 (2002).

[158] F. Dorchies, J. R. Marquès, B. Cros, G. Matthieussent,
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