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Abstract

Background: Perioperative neurocognitive disorders (PND) result in long-term morbidity and mortality with no effective

interventions available. Because interleukin-6 (IL-6), a pro-inflammatory cytokine, is consistently up-regulated by

trauma, including after surgery, we determined whether IL-6 is a putative therapeutic target for PND in a mouse model.

Methods: Following institutional approval, adult (12e14 weeks) male C57/Bl6 mice were pretreated with the IL-6 receptor

(IL6R) blocking antibody tocilizumab prior to open tibia fracture with internal fixation under isoflurane anaesthesia.

Inflammatory and behavioural responses in a trace fear conditioning (TFC) paradigm were assessed postoperatively.

Separately, the effects of IL-6 administration or of depletion of bone marrow-derived monocytes (BM-DMs) with clodrolip

on the inflammatory and behavioural responses were assessed. Blood brain barrier disruption, hippocampal microglial

activation, and infiltration of BM-DMs were each assessed following IL-6 administration.

Results: The surgery-induced decrement in freezing time in the TFC assay, indicative of cognitive decline, was attenu-

ated by tocilizumab (P<0.01). The surgery-induced increase in pro-inflammatory mediators was significantly reduced by

tocilizumab. Exogenously administered IL-6 significantly impaired freezing behaviour (P<0.05) and up-regulated pro-

inflammatory cytokines; both responses were prevented by depletion of BM-DMs. IL-6 disrupted the blood brain barrier,

and increased hippocampal activation of microglia and infiltration of BM-DMs.

Conclusions: IL-6 is both necessary and sufficient to produce cognitive decline. Following further preclinical testing of its

perioperative safety, the IL6R blocker tocilizumab is a candidate for prevention and/or treatment of PND.
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Editor’s key points

� A mouse model of postoperative surgical trauma (tibial

fracture) was used to determine the role of interleukin-

6 (IL-6) in postoperative cognitive dysfunction.

� Tocilizumab, an approved IL-6 receptor blocking anti-

body, prevented surgical traumaeinduced behavioural

deficits and increases in inflammatory mediators.

� Exogenous IL-6 reproduced the behavioural and in-

flammatory effects of tibial fracture.

� Therapeutic interruption of the IL-6 pathway provides a

potential strategy for prevention and treatment of

postoperative cognitive disorders.

Perioperative neurocognitive disorders (PND), encompassing

both postoperative delirium and postoperative cognitive

dysfunction, complicate postoperative recovery with serious

consequences.1,2 The pathophysiologic processes of PND, and

hence possible targets for therapeutic intervention, need to be

determined. A growing body of evidence, mainly from animal

models of PND, suggests that the innate immune system is

engaged through trauma-provoked release of damage associ-

ated molecular patterns (DAMPS) that initiate a peripheral

inflammatory response.3 Circulating pro-inflammatory cyto-

kines are sensed by the central nervous system (CNS) through

neural mechanisms,4 resulting in complementary neuro-

inflammation through a disrupted blood brain barrier,5 and
Fig 1. Experimental protocol. (A) Four groups of randomly-assigned m

jection of tocilizumab, an antibody directed against the interleukin-6 (

later. Thirty min prior to tibia fracture/sham, the training session for tr

undertaken 72 h later. (B) Four groups of mice were prepared as for A.

were harvested. (C) Mice were randomly assigned into four groups an

liposome emulsion only 1 h before TFC training session. This was follo

session and thereafter context testing was performed 72 h later. (D) Fou

killed and blood and brain were harvested.
producing microglial activation6 with elaboration and release

of pro-inflammatory cytokines and chemokines that are

capable of disrupting long-term potentiation (LTP),7 a biologic

correlate of learning and memory.8 Recent clinical studies

reveal that neuroinflammation also occurs in the immediate

postoperative period following peripheral surgery.9e11

The pro-inflammatory cytokine, interleukin-6 (IL-6), is up-

regulated in both the periphery and CNS following experi-

mental trauma in preclinical models,12 and in surgical pa-

tients.9 Circulating IL-6 levels positively correlate with

deficits in cognition in humans.13,14 An observational study

suggested that up-regulated postoperative IL-6 levels are

associated with subsequent development of short- and

medium-term impairment of cognitive function after sur-

gery.15 Administration of IL-6 diminished LTP in a hippo-

campal slice preparation16 and lipopolysaccharide-induced

decline in cognitive behaviour was attenuated in IL-6 defi-

cient mice.17 Interestingly, IL-6 neutralizing antibodies can

improve postoperative cognitive impairment in aged mice.18

These findings suggest that IL-6 might be an important fac-

tor that both facilitates immune-to-brain communication

and hippocampal inflammatory mechanisms that negatively

affect cognitive processing. We investigated whether IL-6 is

both necessary and sufficient to produce cognitive decline in

amousemodel of PND. If so, IL-6 could be an important target

for therapeutic intervention to prevent or attenuate the

development of PND.
ice were treated with either saline or an intraperitoneal (i.p.) in-

IL-6) receptor (IL6R) followed by tibial fracture or sham surgery 2 h

ace fear conditioning (TFC) was performed and context testing was

Six h after surgery or sham, mice were killed and blood and brain

d treated with i.p. injection of clodrolip in a liposome emulsion or

wed by an i.p injection of IL-6 (IL6A) or saline control after training

r groups of mice were prepared as for C. Six h after IL6A, mice were
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Methods

Animals

The Institutional Animal Care and Use Committee of the

University of California, San Francisco, USA approved all

experimental procedures involving animals in accordance

with the National Institutes of Health (Bethesda, MD, USA)

Guidelines (approval number 167062-01A). Adult (12e14

weeks) male C57Bl/6J mice (Jackson Laboratory, Bar Harbor,

ME, USA) and Ccr2RFP/þ Cx3cr1GFP/þ mice (acquired from Dr.

Israel Charo, J. David Gladstone Institute, San Francisco, CA,

USA) were used. Standard rodent food and water ad libitum

were provided to all animals, which were housed (five per

cage) in cages lined with sawdust. A 12-h light/dark schedule

was followed in an air-conditioned environment. Before any

procedure or treatment, animals were randomly tagged and

divided into groups. Group assignments were revealed after

the analysis phase to ensure blinding to group allocation. Mice

were euthanized according to institutional guidelines.
Surgical trauma

Mice were subjected to open left tibia fracture with intra-

medullary fixation under aseptic conditions during general

anaesthesia with isoflurane 2% as described.3,5,6,12 Buprenor-

phine 0.1 mg kg�1 was administered s.c. for analgesia imme-

diately after anaesthetic induction and prior to surgery.

Surgical anaesthesia was established by loss of pedal reflex.

During surgery, body temperature was maintained at 37.0�C
[Standard deviation (SD) 0.5 �C] by a heating lamp andwarming

pad. Sham mice for bone fracture (controls) received the same

anaesthesia and analgesia as for tibia fracture. The full pro-

cedure from induction of anaesthesia to end of surgery lasted

no longer than 15 min.
Fig 2. Pre-emptive blockade of interleukin-6 (IL-6) receptor (IL6R)

prevents postoperative decrement in freezing behaviour. Four
Trace-fear conditioning

Trace-fear conditioning (TFC) was used to assess learning and

memory as previously described.3,5,6,12 Briefly, animals were

trained to associate a conditional stimulus (tone) with an

aversive, unconditional stimulus (foot-shock). Aversive

memory is associated with freezing behaviour when the

mouse is re-exposed to the same context. The behavioural

study was conducted using a conditioning chamber (Med As-

sociates Inc., St. Albans, VT, USA) and an unconditional

stimulus (two periods of 2-s foot-shock of 0.75 mA). Behaviour

was captured with an infrared video camera (Video Freeze;

Med Associates Inc.). After a particular intervention, animals

underwent a training session and were then returned to their

cage. Mice underwent a context test 72 h after training, during

which no tones or foot-shocks were delivered. Lack of move-

ment, indicating freezing behaviour, of video-recordings was

analysed. Memory impairment is indicated by a decrease in

freezing time.
groups of randomly-assigned mice (n¼10) were treated with

either saline or an intraperitoneal injection of tocilizumab, an

antibody directed against the IL-6 receptor (IL6R) followed by

tibia fracture or sham surgery 2 h later. Thirty min prior to tibia

fracture/sham, the training session for TFC was performed and

context testing for freezing behaviour was undertaken 72 h

later. Data are expressed as means (SEM) and compared by one-

way analysis of variance and Student-Newman-Keuls test.

*P<0.01.
Systemic inflammatory response

Blood was collected transcardially 6 h after aseptic surgical

traumavia thoracotomyunder terminal isofluraneanaesthesia.

Blood was collected into heparin-coated syringes and samples

were centrifuged at 1200� g for 10 min; plasma was collected

and stored at �80�C until assayed. Commercially available

enzyme-linked immunosorbent assay (ELISA) kits were used to

measure plasma IL-6, IL-1b, and monocyte chemoattractant
protein-1 (MCP-1) according to manufacturer’s instructions

(R&D Systems, Minneapolis, Minnesota, USA).
Neuroinflammatory response

Mice were perfused3,5,6,12 with phosphate buffered saline and

the hippocampus harvested 6 h after surgery. Samples were

rapidly extracted and stored at�80�C until assayed. IL-6, IL-1b,
and MCP-1 levels in the hippocampus were measured with

ELISA assays and total protein concentration was assessed

using the Pierce BCA Protein Assay Kit (Thermo Scientific,

Rockford, IL, USA).
Permeability of the blood brain barrier

The brain was homogenized with RIPA Lysis Buffer (Cell

Signaling Technology, Danvers, Massachusetts, USA) plus

protease inhibitor (Halt Protease Inhibitor Single-Use Cocktail,

Thermo Fisher Scientific, Waltham, Massachusetts, USA) and

phenylmethanesulfonyl fluoride (Cell Signaling Technology)

and sonicated. For immunoblotting, sample buffer was pre-

pared by adding 950 ml of 2� Laemmli Sample Buffer to 50 ml of
2-mercaptoethanol (Bio-Rad, Hercules, California, USA), and

mixed in a 1:1 ratio with samples. After boiling for 5 min, 20 mg
of protein was subjected to 12% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis, and then transferred onto

nitrocellulose transfer membranes. After the membranes were

incubated with blocking buffer (LICOR®, BD Biosciences, San

Jose California, USA) for 1 h at room temperature, these were

incubated with rabbit antibody directed against murine albu-

min (ab207327, Abcam, Burlingame, California, USA) at 1:1000

dilution overnight at 4�C. For loading control, rabbit
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monoclonal antibody against murine Glyceraldehyde 3-phos-

phate dehydrogenase (GAPDH) (ab181602, Abcam) was used.

After washing four times with Tris buffered saline (TBS) con-

taining 0.1% Tween 20 (TBST), membraneswere incubatedwith

1:10 000 IRDye 680RD or 800RD labelled goat anti-rabbit anti-

body (LICOR®) for 1 h at room temperature. Membranes were

washed three times with TBST and once with TBS, and images

were captured and quantified using a LI-COR Imager (LICOR®,

Biosciences).
Hippocampal infiltration of CCR2þ cells and activation
of microglia

Ccr2RFP/þ Cx3cr1GFP/þ mice were administered IL-6 50 mg/kg

and 6 h later were sacrificed and perfused with saline followed

by 4% paraformaldehyde in 100 mM phosphate buffer to

assess infiltration of CCR2-expressing cells and activation of

microglia as described.6
Interventions

The experimental protocol is depicted in Fig. 1.
Depletion of bone marrow-derived monocytes

Clodrolip is a liposomal formulation of encapsulated clodro-

nate (dichloromethylene bisphosphonic acid) that is ingested

and digested by phagocytes, followed by intracellular release
Fig 3. IL-6 Receptor blocker reduces inflammatory response after surge

either saline or an intraperitoneal (i.p.) injection of tocilizumab, an an

lowed by tibia fracture or sham surgery 2 h later. Six h after surgery, m

circulating IL-6 (A), circulating MCP-1 (B), hippocampal IL-6 (C), and hi

were analysed by one-way analysis of variance and Student-Newman
and accumulation of clodronate. Clodronate induces

apoptosis of the phagocytes that includes bone marrow-

derived monocytes (BM-DMs). Some 280 ml of clodrolip,

5 mg ml�1, (Liposoma BV, Amsterdam, the Netherlands) was

injected intraperitoneally (i.p.) 60min before administration of

IL-6 50 mg/kg. Control animals received 280 ml of liposomal

solution without the encapsulated clodronate.
Administration of IL-6 receptor blocker

Two h before surgery, the IL-6 receptor (IL6R) blocker tocili-

zumab (a gift from Genentech, South San Francisco CA, USA)

4 mg was administered i.p. Animals receiving the same vol-

ume of vehicle (saline) served as controls.

Administration of IL-6

IL6 50 mg kg�1 (Peprotech, Rocky Hill, New Jersey, USA) was

administered i.p. Animals receiving the same volume of the

vehicle (saline) served as controls.
Statistical analysis

GraphPad Prism version 5.01 (GraphPad Software, San Diego,

CA, USA) statistical package and Stata 11.2 software (Stata-

Corp, College Station, TX, USA) were used for statistical anal-

ysis. Results are expressed as mean (SD). Data were compared

using analysis of variance whenever there was a possibility of
ry. Four groups of randomly-assigned mice (n¼8) were treated with

tibody directed against the interleukin-6 (IL-6) receptor (IL6R) fol-

ice were killed and blood and brain were harvested and assayed for

ppocampal monocyte chemoattractant protein-1 (MCP-1) (D). Data

-Keuls test. *P<0.05; **P<0.01.
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interaction between independent treatment variables, and

prior to performing individual pairwise comparisons by

Newman-Keuls post hoc test wherever appropriate. In each

case, P<0.05 was considered significant.
Results

IL6R blocker can abolish cognitive decline induced by
surgery

Cognitive decline was induced by surgery as evidenced by a

significant reduction in freezing time [25 (12)% vs 56 (15)%,

P<0.01; Fig. 2). Pre-emptive exposure to tocilizumab (IL6R

antibody) attenuated surgery-induced freezing behaviour [51

(14)% vs 25 (12)%, P<0.01; Fig. 2), and the response to tocilizu-

mab alone was not significantly different from that of the

sham control group [62 (9)% vs 56 (15)%; Fig. 2).
IL6R blocker reduces systemic and
neuroinflammatory response to surgery

After surgery, there was a significant (P<0.01) increase of both

plasma IL-6 (Fig. 3A) and MCP-1 (Fig. 3B) at 6 h. While IL6R

blockade with tocilizumab prevented the surgery-induced in-

crease in plasma MCP-1 (Fig. 3B), there was a further increase

in circulating IL-6 (Fig. 3A). Surgery significantly (P<0.01)
increased hippocampal IL-6 (Fig. 3C) and MCP-1 (Fig. 3D); both

responses were prevented by IL6R blockade.
IL-6 causes cognitive decline through involvement of
BM-DMs

At 3 days after IL-6 50 mg kg�1 there was a decrement in

freezing behaviour [59 (13)% vs 39 (12)%; P<0.01) that was
Fig 4. Depletion of bone marrow-derived monocytes prevents

interleukin-6 (IL-6) induced decrement in freezing behaviour.

Four groups each of randomly-assigned mice (n¼15) were

treated with either saline, IL-6 (IL6A), liposomes containing

clodronate (clodrolip)þIL6A, or liposomesþIL6A. One h later the

training session for trace fear conditioning (TFC) was performed

and context testing for freezing behaviour was undertaken 72 h

later. Data are expressed as means (SEM) and compared by one-

way analysis of variance and Student-Newman-Keuls test.

*P<0.01.
prevented by prior depletion of BM-DMs by clodrolip pre-

treatment; control liposomes alone had no reversal effect

(Fig. 4).
IL-6 produces systemic and hippocampal
inflammation through involvement of BM-DMs

At 6 h after administration of 50 mg kg�1 IL-6, circulating IL-6

(Fig. 5A), circulating IL-1b (Fig. 5B), hippocampal IL-6 (Fig. 5C),

and hippocampal IL-1b (Fig. 5C) were each significantly

increased. In each case the IL-6-induced incremental change

was precluded by depletion of BM-DMs with clodrolip. Inter-

estingly, although both circulating (Fig. 5E) and hippocampal

(Fig. 5F) MCP-1 were each increased by IL-6, the incremental

change was not attenuated by clodrolip.
IL-6 disrupts the blood brain barrier

At 6 h after administration of 50 mg kg�1 IL-6, the amount of

albumin that penetrated into the brain was significantly

greater than in control mice (Fig. 6).
IL-6 promotes hippocampal infiltration of CCR2-
expressing monocytes and activation of microglia

At 6 h after administration of 50 mg kg�1 IL-6, there was an

increase in the number of CCR2-expressing BM-DMs with no

change in the number of CX3CR1-expressing microglia (Fig. 7A

and B). The number of large (Fig. 7C) and high intensity

(Fig. 7D) Iba1-stained microglia, indicative of transition to an

activated pro-inflammatory state, increased following IL-6

administration.
Discussion

IL-6 is both necessary and sufficient to produce
postoperative neurologic dysfunction

As DAMPs, cytokines, and chemokines are up-regulated by the

aseptic trauma of surgery,3,5,6,9,12 we have addressed which

are necessary and sufficient to produce the co-ordinated

response that results in postoperative neurologic dysfunc-

tion (PND). We now report a requirement for the cytokine IL-6,

because interruption of its signalling pathway through a

neutralizing antibody to the IL6R (tocilizumab) prevents PND.

Furthermore, since administration of IL-6 alone produces PND,

this cytokine is sufficient to produce the post-surgical

phenotype of cognitive decline. These data do not rule out

that other molecules up-regulated following trauma might

also be necessary and sufficient. In fact, we have demon-

strated that the same is true for the DAMP high molecular

group box protein 1 (HMGB1).3 Why are different molecules

performing the same function? It is possible that the timing at

which these are released (HMGB1 within 1 h and IL-6 from 6

h)3,5,12 results in a more concerted response. Furthermore,

because the inflammatory response to surgery is so crucial,

some redundancy might be required to ensure that these

processes are always activated.
IL6R antibody decreases inflammatory response
without changing circulating IL-6 expression

Because systemic and hippocampal inflammation are

required for the development of PND and because tocilizu-

mab prevents the development of PND, it was anticipated that



Fig 5. Depletion of bone marrow-derived monocytes prevents interleukin-6 (IL-6) induced inflammatory response. Two groups of

randomly-assigned mice (n¼8) were treated with either saline or an intraperitoneal (i.p.) injection of IL-6 (IL6A). Two groups of randomly-

assigned mice (n¼8) were pre-treated with liposomes containing clodronate (clodrolip) or liposomes without clodronate followed by in-

jection of IL-6 (IL6A) 1 h later. Six h after treatment, mice were killed and blood and brain were harvested and assayed for circulating IL-6

(A), circulating IL-1b (B), hippocampal IL-6 (C), and hippocampal IL-1b (D), circulating MCP-1 (E), and hippocampal monocyte chemo-

attractant protein-1 (MCP-1) (F). Data were analysed by one way analysis of variance followed by Student-Newman-Keuls test. *P<0.05;
**P<0.01.
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IL6R blockade would dampen the inflammatory response to

surgery. However, surgery-induced upregulation of circu-

lating IL-6 levels was further enhanced by tocilizumab. A

possible explanation is that an intervention that interferes

with IL-6 signalling induces a feed-forward response to

overcome the blockade. Another possibility is the cytokine

release syndrome that has been observed clinically when

certain types of immunotherapy are administered.19 Howev-

er, there is preliminary evidence that tocilizumab may be

used to ameliorate cytokine release syndrome induced by

other biologics.20
Depletion of BM-DMs can prevent IL-6 induced PND
and inflammation

We have reported a role for circulating BM-DMs in the develop-

ment of trauma-induced21 and HMGB1-induced PND.3 It is rele-

vant that elimination of these cells prevents IL-6 induced PND

and inflammatorymarkers in the circulation and hippocampus.

Yet MCP-1, the crucial chemokine that attracts BM-DMs into

brain topropagateneuroinflammation,wasnot down-regulated

by a perturbation that prevents hippocampal inflammation.

This observation is consistent with our previous report that the

up-regulated MCP-1 levels that are evident after surgery9 are



Fig 6. Peripheral injection of interleukin-6 (IL-6) induces

disruption of the blood brain barrier. Two groups of randomly-

assigned mice (n¼7) were treated with vehicle (control) or

50 mg kg�1 IL-6. Six h after treatment, mice were sacrificed and

the brains were harvested for immunoblotting of albumin

expression. Data are expressed as mean (SD) relative to control

and were analysed by two way t-test. *P<0.05.

Fig 7. Peripheral injection of interleukin-6 (IL-6) induces hippocampal

Representative immunofluorescence images taken from CX3CR1-GFP

50 mg kg�1 IL-6, showing the matching of anatomical locations using n

infiltration of CCR2-expressing cells (red), and increased Iba1 expressio

(scale bars¼50 mm). Iba1þ cells also exhibit a transition from a quiescen

increased size and fluorescence intensity (inset). (B) Quantification of

(CeD) Quantification of size (C), and fluorescence intensity (D) of Iba1

from the same groups of mice represented in A (n¼5). *P<0.05 vs vehic
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unaltered by depletion of BM-DMs in an HMGB1-induced surgi-

cal phenotype.3 Therefore, these data provide further evidence

that MCP-1 does not originate from BM-DMs. Our recent

description of the interaction between BM-DMs and microglia

raises the possibility that MCP-1 originates from microglia,

although the signal that initiates this remains elusive.6

IL-6 promotes hippocampal activation of microglia
and infiltration of CCR2þ BM-DMs

Previously, we reported that peripheral surgery disrupts the

blood brain barrier and promotes infiltration of CCR2-

expressing BM-DMs5 and activation of microglia.6 Now we

demonstrate that these crucial steps necessary for PND can be

mediated by exogenously administered IL-6.

Limitations

Tocilizumab is a humanized anti-IL6R monoclonal antibody

with cross-reactivity against the murine IL6R with no unto-

ward effects reported. IL-6 is an animal-free recombinant

protein produced in Escherichia coli. Notwithstanding their

longstanding use, these reagents could have hitherto un-

known off-target effects giving rise to spurious findings.
microglia activation and recruitment of CCR2-expressing cells. (A)

/þ: CCR2-RFP/þ mice 6 h following intraperitoneal injection of

uclear counterstaining with 4-6-diamidino-2-phenylindole (DAPI),

n (grey) among hippocampal microglia in response to IL-6 injection

t morphology to one indicative of inflammatory activation showing

data from (A) showing CX3CR1þ, CCR2þ, and Iba1þ cell number.

- expressing cells in anatomically matched hippocampal sections

le.
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IL-6 signalling pathways

Transmembrane signal transduction of IL-6 can be propagated

by at least two discrete pathways. In classic signalling, IL-6

stimulates a limited number of target cells22 including hepato-

cytes, neutrophils, and CD4þ T-cells23,24 that express

membrane-boundIL6R (mIL6R),which, following ligandbinding,

dimerizes with the signalling receptor protein gp130 leading to

regenerativeandprotectiveeffects.Most cells express gp130and

not mIL6R, and are therefore unresponsive to IL-6 alone. Circu-

lating soluble IL6R (sIL6R) constitutes an alternative binding

target for IL-6. The resulting IL-6/sIL6Rcomplexbinds togp130 to

initiate the ‘trans-signalling’ pathway resulting in pro-

inflammatory effects.25,26 Neurones and astrocytes respond to

the IL-6/sIL6R complex but not to IL-6 alone, suggesting that

trans-signalling is crucial for mediating the pro-inflammatory

effects of IL-6 on these cells.27e29 In contrast, microglia respond

well to IL-6 alone via classic signaling.30 As tocilizumab blocks

the effects of bothmIL6R and sIL6R31we can only speculate that

it is blockade of sIL6R, and hence the trans-signalling pathway,

that results in the ameliorative effects of tocilizumab on PND.
Future studies

Tocilizumab is clinically available and has been used in a va-

riety of inflammation-related diseases, yet its possible future

application in the perioperative setting to prevent PND needs

to await further preclinical investigations. Firstly, it will be

important to establish whether tocilizumab is effective when

administered after the initiation of the injury. If not, then its

pre-emptive utility will be limited to surgical patients whose

high risk for PND is established by their underlying immuno-

logical phenotype. Secondly, like all biologics, it needs to be

established whether perioperative use of tocilizumab in-

creases the risk for acquiring and responding appropriately to

infections. Finally, inflammation is a sine qua non for healing.

Therefore, the effects of tocilizumab on surgical wound heal-

ing will need to be investigated.
Conclusions

IL-6 is necessary and sufficient to produce postoperative

neurological dysfunction in mice. Even though tocilizumab is

licensed for indications such as rheumatoid arthritis and giant

cell arteritis, the clinical application of strategies designed to

disable IL6R signalling must await further preclinical efficacy

and safety testing.
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