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Abstract 

What processes and mechanisms underlie analogical 
reasoning? In recent years, several computational models of 
analogy have been implemented to explore this question. 
One feature of many of these models is the assumption that 
humans possess dedicated analogy-specific cognitive 
machinery – for instance, a mapping or binding engine. In 
this paper, we question whether it is necessary to assume the 
existence of such machinery. We find that at least for some 
types of analogy, it is not. Instead, some forms of analogical 
processing emerge naturally and spontaneously from 
relatively simple, low-level learning mechanisms. We argue 
that this perspective is consistent with empirical findings 
from the developmental literature and with recent advances 
in cognitive neuroscience. 

Keywords: Analogy; metaphor; relational reasoning; 
development; connectionism; computational model. 

Introduction 
In the past three decades, there has been a growing 
appreciation for the possibility that analogy lies at the core 
of human cognition (Gentner, 1983; Hofstadter, 2001; 
Holyoak, Gentner, & Kokinov, 2001; Penn, Holyoak, & 
Povinelli, 2008).  On this view, it is our ability to 
understand, produce, and reason with analogies that allows 
us to create the wonderfully rich and sophisticated 
intellectual and cultural worlds we inhabit.  

In an attempt to illuminate the cognitive mechanisms that 
underlie analogical processing, several detailed 
computational models have been developed that capture 
key components of the analogical reasoning process (see 
French, 2002 for a review). Among the most influential of 
these models are the Structure Mapping Engine (SME: 
Falkenhainer, Forbus, & Gentner, 1989), and Learning and 
Inference with Schemas and Analogies (LISA: Hummel & 
Holyoak, 1997). These models vary drastically in many 
ways; however, they share a fundamental commitment to 
explicitly structured symbolic or hybrid representations 
(e.g. of objects and relations), together with the existence of 
a dedicated analogical mapping or binding mechanism that 
operates over these representations. Indeed, proponents of 
these approaches argue that analogical inference is beyond 
the reach of models that lack these properties, including 
fully distributed connectionist models (e.g. Gentner & 
Markman, 1993; Holyoak & Hummel, 2000). 

While the structured approach has successfully captured 
adult behavior in numerous analogical reasoning tasks (e.g. 

Markman & Gentner, 1997; Hummel & Holyoak, 1997), it 
is unclear how this analogy-specific machinery comes to 
exist in the brain over the course of development. Even 
developmentally-oriented models such as DORA (Doumas, 
Hummel, & Sandhofer, 2008), which attempts to learn the 
structure used by LISA, assume a great deal of analogy-
specific cognitive machinery without specifying how this 
machinery comes to exist in the first place.   

Here, we address this issue by proposing that some forms 
of analogical processing may emerge gradually over the 
course of development through the operation of low-level 
domain general learning mechanisms (Flusberg, Thibodeau, 
Sternberg, & Glick, 2010; Leech, Mareschal, & Cooper, 
2008). In support of this view we describe a set of 
simulations carried out using the Rumelhart network 
(Rumelhart, 1990), a neurally inspired model that has 
succeeded in capturing many results from the literature on 
semantic development in children (e.g. Rogers & 
McClelland, 2004) and whose variants have been used to 
understand the deterioration of conceptual knowledge in 
semantic dementia (e.g. Dilkina, McClelland, & Plaut, 
2008).  

Simulations 
Our learning task is inspired by Hinton’s (1986) family tree 
model, one of the first attempts to address relational 
learning in a connectionist network.  The task of the model 
is to learn “statements” that are true about the various 
members of a family, including identity information, 
perceptual features, and relations between family members.  

Input to the model consists of activating a Subject unit, 
corresponding to a particular family member, and a 
Relation unit.  The Relation units correspond to the 
different kinds of relationships that can hold between 
subjects and objects (e.g. “is_named”, “parent_of”).  The 
network is wired up in a strictly feed-forward fashion, as 
shown in Figure 1, such that the input propagates forward 
through the internal layers, resulting in a set of predictions 
over the Object layer.   

Over the course of training, the network’s weights 
change (via backpropagation of the cross-entropy error on 
the output units) in order to better predict which Object 
outputs correspond to each combination of Subject and 
Relation inputs.  As the model also contains intervening 
layers of units between the input and output layers, it is 
forced to re-represent the inputs as a distributed pattern of 
activation over these internal layers. 
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The underlying model parameters were identical in all of 
the simulations that we present. In all cases, the learning 
rate was .005 and the network was trained for 10,000 
epochs.  Results were averaged over 10 runs of each 
network in order to provide statistical tests.  The hidden 
layers were identical in each case: 6 Subject Representation 
units and 16 Integration units.  In all presented simulations, 
error on the training patterns was very low by the end of 
training (average cross-entropy error < .35). 

 

 
Figure 1: The network architecture. 

The Basic Model 
In the first simulation, the network learns about the Stripes 
and the Solids – two families with isomorphic relational 
structure (detailed in Table 1 and pictured in Figure 2) – 
with a single fact omitted about the Solid family. While the 
network knows that the daughter of the Solids owns their 
dog, it receives no information about who walks their dog. 
This network does a good job of learning the facts on which 
it is trained, but the question of interest is whether it can 
extend its knowledge to answer a question on which it 
received no training: who walks the Solids’ dog? 

 

 
Table 1: A subset of the information that the  
network learns about each family member.   

 

 
Figure 2: An illustration of the Stripe and Solid families, 

which served as the source and target domain. 
 

We can contrast two major predictions.  Naively, one 
might think that the network runs on raw association.  As 
the Solids’ dog is most similar to the Stripes’ dog, the 
network would therefore conclude that the Stripes’ 
daughter walks the Solids’ dog!  Alternatively, we might 
expect that the network will encode the relational structure 
between the two families, and so will correctly conclude 
that the person in the appropriate position within the Solid 
family -- namely, the daughter -- will be the one who walks 
their dog.  In fact, the latter is the case: the network decides 
that within the Solid family, the daughter walks the dog.  A 
paired t-test contrasting the activation levels of the Stripes’ 
daughter with the Solids’ daughter was highly significant, 
t[9] = 7.75, p < .001 (see Figure 3). 

To ensure that the network used the relational similarity 
between the two families in making this inference, we ran a 
second simulation, in which the model was trained only on 
the Solid family, with no information about the Stripe 
family.  In this network, the model does not conclude that 
the daughter walks the dog.  Instead, the network decides 
that the dog walks itself!  A paired t-test contrasting the 
activation levels of the Solids’ dog with the Solids’ 
daughter was highly significant, t[9] = 5.61, p < .001 (see 
Figure 3).   

Simulations 1 and 2 do not, however, distinguish another 
set of predictions.  It is possible that the network has 
learned to align the two families, either with respect to their 
relational structure or shared perceptual features, but only 
in an exact way.  On this account, the model may have 
placed both mothers, both daughters, and both dogs in 
correspondence. 

On the other hand, perhaps the network has learned the 
details of the family relations within each family as well as 
across families.  In this case, it could learn a regularity like 
“whoever owns the dog, walks the dog,” which is driven 
neither by perfect, global structural alignment nor by 
associations between surface features.  This kind of 
relational binding is closely related to those tasks that 
previous researchers have argued can only be done using a 
distinct mapping mechanism operating over explicit 
symbols (e.g. Gentner & Markman, 1993; Holyoak & 
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Hummel, 2000). Therefore, it would be a surprising and 
exciting finding if this network were able to succeed in 
such an abstract relational mapping task. 

In order to distinguish between these hypotheses, we ran 
a third simulation, very similar to the first, except that in 
the Stripe family, the son, not the daughter, both owns and 
walks the dog.   In this case, the network can only succeed 
in inferring that the Solids’ daughter walks the dog if it 
learns the details of the relational structure, and in 
particular the regularity between owning a dog and walking 
it. This is precisely what occurs.  Separate tests contrasting 
the activation level of the Solids’ daughter with the 
activation level of the Stripes’ son, t[9] = 2.58, p < .05, the 
Solids’ son, t[9] = 2.95, p < .05, and the dog, t[18] = 3.35, p 
< .01, are all significant (see Figure 3).  

This demonstrates that raw co-occurrence, or other 
simple associative processes which are often believed to 
underlie the performance of error-driven learning models 
(e.g., Hummel, 2010 in reply to Ramscar, Yarlett, Dye, 
Denny, & Thorpe, 2010), is not the key to learning in this 
model.  It is, however, interesting to notice that the Stripes’ 
son is the model’s choice early in training, suggesting that 
the network first tends to make judgments predominately 
based on surface similarity, but over time shifts towards 
judgments based on relational similarity. This “relational 
shift” has been widely observed in the literature on the 
development of analogical reasoning abilities (e.g. 
Goswami, 1992). Intriguingly, this pattern is observed 
throughout the various simulations presented in this paper. 

Extending The Model 
We have shown a basic set of simulations that succeed in 
performing analogical inference from a family that is fully 
described to one that is less fully described.  In the 
simulations below, we will extend the basic model in 
several directions, addressing possible objections to our 
claim that it is in fact succeeding at analogical inference. 
Each of these models will extend the third simulation, in 

which the son of one family owns and walks the dog, and 
the task of the model is to infer that the daughter of the 
other family, who owns the dog, also walks it. 

Inexact Match – Can the model align non-isomorphic 
structures? We can investigate the extent to which the 
network relies on perfectly overlaying the two families by 
making the family structures only approximately match.  In 
the fourth simulation, the Stripes have three children, two 
sons and a daughter, and one of the sons again owns (and 
walks) their dog.  The Solid family still has two children, 
one son and one daughter, and their daughter owns the dog. 
Despite these changes, the model continues to make the 
inference that she probably walks the dog as well.  A paired 
t-test contrasting the activation levels of the Solids’ 
daughter with the Stripes’ son was highly significant, t[9] = 
4.28, p < .01. This demonstrates that the network can learn 
to draw inferences over structures, like many of those in 
previous work (such as Falkenhainer et al., 1989), which 
are only partially alignable. 

Distributed Inputs – Does the model rely on 
implementing symbols? We have claimed that the success 
of this network depends on its development of distributed, 
subsymbolic representations, with which it can integrate the 
perceptual and the relational information about the family 
members within a high-dimensional representational space. 
Others might argue instead that the network is simply 
implementing symbols, and succeeds by performing some 
syntax-like transformation on those symbols. Such an 
argument may point to the localist input units representing 
the family members.  We argue that the localist inputs are a 
useful simplification, but that focusing on them is a 
distraction, as the network can never directly exploit these 
localist units.  Instead, it is required to re-represent each 
item as a pattern of activation over a hidden layer, as 
described above. 

To make this point more clearly, we ran a fifth 
simulation that used distributed input representations for 
the family members.  Following a model by Rogers and 
McClelland (2004), these were simply chosen to be each 

Figure 3: Activation levels for the target units in the first three simulations. 
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family member’s corresponding perceptual features. This 
should not assist the network in acquiring the relational 
structure; if anything, it should bias the network towards 
the surface-level perceptual features for generalization. 
Nevertheless, the network still infers that the owner of the 
dog walks it, transferring from the Stripes’ son to the 
Solids’ daughter.  A paired t-test contrasting the activation 
levels of the Solids’ daughter with the Stripes’ son was 
highly significant, t[9] = 6.05, p < .001. 

Non-overlapping Outputs – Does the model require 
perceptual overlap? On the other hand, one might argue 
that the architecture is biased in the opposite direction: the 
more direct overlap between the two families at the feature 
level (that is, at the Output layer), the less work the model 
needs to do to align their structures.  What if only the 
relational similarity is available, as might be the case when 
constructing analogical mappings across very different 
domains of knowledge?  This kind of analogy may be 
critical for explaining how analogy can subserve cognition 
and reasoning more generally. 

To test this, we constructed a sixth simulation that had 
completely non-overlapping output units. The network 
essentially had two copies of each output property, so that 
each family’s target representations were totally distinct. 
To succeed in generalizing the relation between the two 
families, the network would need to align the structures 
even in the absence of any surface-level similarity between 
the two families.  And this is precisely what it did.  Again, 
when the network is told that, in the Stripe family, the son 
owns and walks the dog, it concludes that for the Solids, the 
owner of the dog -- the daughter -- must also walk it.  A 
paired t-test contrasting the activation levels of the Solids’ 
daughter with the Stripes’ son was significant, t[9] = 3.58, 
p < .01. 

Scaling up – Can the model make inferences when 
given more than two families? Finally, it remains to be 
shown that the ability of the model to make analogies does 
not depend on it living in a world with only two different 
structures.  Is it able to extend its learning to multiple 
families?   

In this final simulation, the network learned about four 
rather than two distinct families (adding the Dash family 
and the Dot family).  In this training set, a different person 
walks the dog in each family.  Additionally, two of the 
families have slightly different structures: one has only a 
son, another has two sons and a daughter.  Despite this 
added complexity, the network infers that in the target 
family, the daughter must also walk the dog.  A within-
subjects ANOVA using a planned contrast comparing the 
activation values of the Solids’ daughter with the Stripes’ 
son, the Dashes’ mother, and the Dots’ father (each a dog 
walker in their respective family) was significant, F[1,36] = 
42.40, p < 0.01. Paired t-tests contrasting the activation 
levels of the Solids’ daughter with the dog walkers in each 
of the other families including the Solids’ son (t [9]=7.39, p 
< .001), the Dashes’ mother (t[9]=7.37, p < .01), and the 
Dots’ father (t[9]=7.31, p < .001) were also significant. 

Discussion 
To summarize the results of the above simulations, we have 
demonstrated that analogical reasoning can emerge from a 
general, neurally inspired connectionist model of semantic 
learning and reasoning. Critically, this analogical inference: 
(1) is driven by generalization from a source domain to a 
target domain; (2) relies on abstract relational structure, not 
surface-level similarities or direct featural associations or 
co-occurrences; (3) parallels important features of the 
development of analogy in children; (4) can operate over 
structures which only approximately match, or which are 
only partially alignable; (5) exploits structural similarity 
even in the absence of explicit overlap, allowing the 
possibility of cross-domain analogical inference in guiding 
learning; and (6) scales up to more complex training sets. 

How is it that a connectionist model can succeed at this 
kind of analogical inference task? As we have 
demonstrated in several variations of the model, it is not 
due to any direct co-occurrence of feature, nor is it due to 
any kind of surface-level similarity between the items. 
Instead, we argue that part of the answer involves the 
progressive differentiation of its representations over the 
course of development.  Initially, all the weights are set to 
very small random values, so the network essentially treats 
every family member, and every relation, as being the 
same.  Over the course of training, the model learns to “pull 
apart” those representations that must be differentiated in 
order to produce the right answers.  However, it only does 
so in response to erroneous predictions.  This biases the 
network to reuse as much representational structure as it 
can get away with. 

In this particular network, the families share a great deal 
of structure.  As a result, the network’s representations of 
the families become aligned over the course of training – 
since this allows the network to learn more efficiently (i.e., 
to reduce error more quickly).  The side effect of this 
representational overlap is that when the network learns a 
fact about one family (e.g. one dog’s owner walks it), the 
representations of the members of the other family (e.g. 
between that dog and its owner) get to come along for the 
ride. This is not to say that the model is stuck with its first 
guess about the structure of the world.  As we indicated in 
the description of Simulation 3, and as is visible in other 
simulations, the model undergoes a developmental shift 
from predominantly perceptual to predominantly relational 
inference, when the environment warrants such a shift. 

We can observe the process of progressive differentiation 
in this network by looking at a clustering diagram of 
activation patterns along the Subject Representation layer at 
different points in time for simulation 3 (see Figure 4).  
Early in training, the network groups items essentially at 
random, since the weights were initialized to very small 
values.  Later in training, the network’s representations 
capture both the surface similarities and the relational 
similarities between items.  Progressive differentiation in 
semantic networks has been explored more extensively in 
previous work (Flusberg et al., 2010; Rogers & 
McClelland, 2004). 
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Figure 4: The hierarchical clusters above illustrate the 

similarity structure of the learned Subject representations in 
Simulation 3.  Early in training (the upper panel), the 

network does not group individuals by family or relation. 
 Later in training, at 1,300 epochs (the lower panel), the 

network has aligned the families according to their 
relational similarity.   

 
It is also important to clarify what aspects of the 

environment we believe are encoded in our training 
patterns.  Many of these patterns, such as those representing 
the visual features of the family members, might be thought 
of as arising from perception.  However, others, particularly 
those representing familial relations such as “mother_of” 
and “owner_of”, are much more likely to be encoded 
linguistically than visually.  That is, part of our story is that 
learners hear language describing the people and things 
around them at the same time as they experience them 
directly, and these different sources of information are 
integrated whenever (as we think is almost always the case) 
there is some coherent covariation of information between 
the several sources (Rogers & McClelland, 2004).  This is 
consistent with a great deal of empirical work 
demonstrating that relational language facilitates analogical 
inference and drives the relational shift in analogical 

development (Gentner, Simms, & Flusberg, 2009; 
Loewenstein & Gentner, 2005). Therefore, this approach 
views relational labels as another set of environmental 
regularities, serving the function of augmenting the 
statistical structure of the environment in ways that 
facilitate learning analogical representations (rather than as 
explicitly symbolic representations in the brain).   

In one sense, then, our model supports the view that 
analogy is a special component of cognition, because it 
allows us to draw inferences about things we haven’t 
directly experienced. In another sense, however, analogy is 
not special, in that we do not posit a separate set of 
cognitive machinery in order to accomplish analogical 
inference.  Instead, these inferences emerge as a byproduct 
of learning to predict outcomes in an environment that 
contains relevant relational structure.   

Previous work has highlighted the difficulties of pursuing 
subsymbolic accounts of analogy (e.g. Gentner & 
Markman, 1993; Holyoak & Hummel, 2000). In part 
because of the lack of progress in this direction, some 
researchers have gone so far as to claim that analogical 
reasoning requires at least some explicitly symbolic 
representations, or even that a subsymbolic account is 
impossible in principle.  Our model is, of course, not the 
first to counter these claims (see, e.g., Leech et al. 2008). 
On the other hand, it may be the first to demonstrate that a 
model equipped with subsymbolic representations can 
make novel analogical inferences.  Leech and colleagues 
(2008) pointed to a possible reframing similar to our own 
(and to the principle of coherent covariation described in 
Rogers & McClelland, 2004), suggesting that, “analogical 
inferences might best be understood as novel 
generalizations governed by the distributional information 
about which input features and relations co-vary across the 
base and target domains” (p. 403).  

This is not to say that this kind of semantic network can 
account for all of human cognition.  Far from it!  We do not 
believe that these models can even explain all of human 
analogy.  Many of the analogy tasks used in previous work, 
which models like SME and LISA can capture so well, rely 
on cognitive processes which we do not even attempt to 
model (e.g. Markman & Gentner, 1997; Morrison et al., 
2004). In particular, we would agree that some of these 
tasks may rely on strong working memory and cognitive 
control processes, one-shot learning and episodic memory, 
and much richer linguistic abilities than we implement in 
this model.  In our model, we treat relational language as a 
simple environmental cue, encoding a certain kind of 
statistical structure that is then used to shape semantic 
representations.  While this is one important role of 
language in analogical reasoning, it is not the only one; the 
ability to verbally re-describe a situation to oneself, for 
example, is an important tool in many higher-level 
reasoning tasks (Williams & Lombrozo, 2010). 

Therefore, we would like to suggest that one major 
unsolved problem is the integration of the kind of slow-
learning semantic cognition model described in this paper 
with the online, structurally explicit models already in 
place. The extensive and valuable work on models such as 
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SME and LISA over the past twenty years, no less than the 
connectionist models we have implemented, must be used 
to guide future research into analogical processing across 
development, in behavior, and in the brain. 
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