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Assessing characteristics of RNA
amplification methods for single
cell RNA sequencing

Hannah R. Dueck1, Rizi Ai2, Adrian Camarena3, Bo Ding2, Reymundo Dominguez4, Oleg V. Evgrafov3,
Jian-Bing Fan5, Stephen A. Fisher6, Jennifer S. Herstein3, Tae Kyung Kim7,8, Jae Mun (Hugo) Kim3, Ming-Yi Lin4,
Rui Liu9, William J. Mack10, Sean McGroty6, Joseph D. Nguyen3, Neeraj Salathia5, Jamie Shallcross6, Tade Souaiaia3,
Jennifer M. Spaethling7, Christopher P. Walker3, Jinhui Wang7, Kai Wang3, Wei Wang2, Andre Wildberg2,
Lina Zheng2, Robert H. Chow4, James Eberwine7, James A. Knowles3, Kun Zhang9 and Junhyong Kim6*
Abstract

Background: Recently, measurement of RNA at single cell resolution has yielded surprising insights. Methods for
single-cell RNA sequencing (scRNA-seq) have received considerable attention, but the broad reliability of single cell
methods and the factors governing their performance are still poorly known.

Results: Here, we conducted a large-scale control experiment to assess the transfer function of three scRNA-seq
methods and factors modulating the function. All three methods detected greater than 70% of the expected
number of genes and had a 50% probability of detecting genes with abundance greater than 2 to 4 molecules.
Despite the small number of molecules, sequencing depth significantly affected gene detection. While biases in
detection and quantification were qualitatively similar across methods, the degree of bias differed, consistent with
differences in molecular protocol. Measurement reliability increased with expression level for all methods and we
conservatively estimate measurements to be quantitative at an expression level greater than ~5–10 molecules.

Conclusions: Based on these extensive control studies, we propose that RNA-seq of single cells has come of age,
yielding quantitative biological information.

Keywords: Single-cell RNA-sequencing, Biotechnology, Bioinformatics, Genomics
Background
Single-cell RNA sequencing (scRNA-seq) allows unpre-
cedented resolution for studies of gene expression. Since
its introduction in 2009 [1], this approach has been used
to identify and classify cell types, characterize rare cells,
and study expression variation across cell populations
[2–10]. In this method, the RNA content of a single cell
is captured, reverse transcribed to generate cDNA,
amplified and sequenced, providing measurements of
the transcriptomes of single cells with nucleotide-level
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resolution. Compared with methods to sequence bulk
RNA, scRNA-seq requires substantial molecular amplifi-
cation and consequently, additional handling and en-
zymatic reactions. This has the potential to introduce
additional experimental errors and molecular biases,
such that analytic methods designed for bulk RNA
sequencing may not be appropriate for single-cell mea-
surements. Despite substantial experimental methods
development [11–16], the effects of RNA amplification
methods remain complex and poorly characterized.
Though measurement characteristics likely depend on
the specific experimental protocol used, there has been
limited dissection of factors that affect input–output
relationship across methods. (Although see notable ex-
ceptions [17–20], considered further in Discussion.)
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Here, we first describe our model-based approach to
dissect the factors that affect the amplification step of
scRNA-seq and then we characterize expression measure-
ments generated by three scRNA-seq methods in terms of
sensitivity, precision and accuracy. We find that all
methods perform comparably overall, but that individual
methods demonstrate unique strengths and biases.

Results
Method overview
Our approach was to dilute bulk total RNA (from a sin-
gle source) to levels bracketing single-cell levels of total
RNA (10 pg and 100 pg) in replicates and amplifying the
RNA to levels sufficient for RNA sequencing. Here, we
analyzed the performance of scRNA-seq methods in
terms of sensitivity (number of unique gene models
detected), precision (replicate variation), and accuracy
(deviation from bulk). We note that expected replicate
precision depends on the exact sequence of dilutions
that lead to the final set of replicates. For example, if a
single “master” dilution mix is made from which n repli-
cate final dilutions are created, the expected number of
molecules for each replicate will be based on the master
dilution, not the original bulk. Each replicate value in
relation to the bulk will be comprised of two terms, the
variance term due to the final dilutions and a bias term,
which is the deviation of the master dilution from the
bulk. Different experimental protocols (e.g., using
Fluidigm C1 to generate replicates) require attention to
the expected variation. We employed a general linear
model framework to dissect the factors governing meas-
urement performance. In particular, we observed that
certain genes, or even control ERCC probes, have a
tendency for large deviations from expectations and we
created a list of problematic gene models for future
reference. We add the caveat that our results are not re-
liable outside the range of experimental values from
which we fitted the models and the inferences should be
interpreted with care.

RNA-sequencing datasets
We performed replicate transcriptome amplifications of
Universal Human Reference RNA (UHR) and Human
Brain Reference RNA (HBR) that were diluted to single-
cell and ten-cell abundances (10 and 100 picograms (pg.)
total RNA or ~200,000 and 2 million mRNA molecules, re-
spectively) and were amplified using three single-cell RNA
amplification methods (Fig. 1a–b). Methods included the
antisense RNA IVT protocol (aRNA), a custom C1 SMAR-
Ter protocol (SmartSeq Plus) performed on a Fluidigm C1
96-well chip, and a modified NuGen Ovation RNA sequen-
cing protocol (NuGen, Fig. 1b-c, Additional file 1). Bulk
ribo-depleted UHR and HBR RNA were sequenced and
served as a reference. The general experimental scheme
was consistent for all dilution replicates; however, there
were differences across experimental groups in the spe-
cifics of experimental protocols, necessitated by particular
methodologies (Fig. 1a, see Methods and Additional file 1
for full details). Because of these experimental differences,
head-to-head comparison of methods is not appropriate
and our goal is to provide quantitative analyses of factors
affecting individual methods. Current results should be
used in experimental planning, data analysis, and method
optimization rather than as a performance test of any
particular method.

Data processing
Briefly, all samples were aligned to the human reference
genome (hg19) using STAR aligner [21] and splice-site
annotations from GENCODE18. Uniquely aligned reads
were assigned to GENCODE18 gene annotations using
HTSeq and htseq-counts [22] and then were depth
normalized [23]. Ribosomal genes and genes with short
isoforms (<300 nucleotides) were excluded because of dif-
ferences in sequencing protocols across groups (Fig. 1a),
leaving 42,855 genes for analysis. (We use “gene” to match
GENCODE18 gene ids, a set that includes both coding
and non-coding RNA). To avoid artifacts caused by align-
ment or quantification ambiguities, we generated a strin-
gently filtered gene list containing 10,039 genes to
which reads can be uniquely assigned and referred to these
genes as “computationally unambiguous” throughout
(Additional file 2). Reference RNA were aligned and quan-
tified with RSEM (RNA-seq by Expectation-Maximization)
[24]. Estimated abundances were concordant with publicly
available PrimePCR measurements and with poly-A RNA
sequencing measurements (Additional file 3, SEQC/
MAQC-III Consortium, 2014, GEO accession numbers:
GPL18522, GSM1362002-GSM1362029, GSM1361974-
GSM1362001 [25]).
For each gene, we calculated the expected number of

input molecules in a diluted replicate. We did this in
three steps (detailed in Methods). Briefly, first we esti-
mated the mass of targeted input RNA in diluted repli-
cates as in Brennecke et al. [2]. Second, we estimated
the total number of molecules in a diluted replicate
using the mass of targeted input RNA and the average
transcript mass for each HBR and UHR transcriptome
(calculated based on the average transcript length
weighted by expression level). Third, we found the ex-
pected number of molecules for each gene in a diluted
replicate by multiplying the relative frequencies of gene
expression and the total number of molecules in a di-
luted replicate. For each HBR and UHR, transcript
lengths and relative expression levels were estimated by
RSEM using bulk sequencing data. This approach relies
predominantly on bulk sequencing data for estimation,
with the exception of estimating the mass of targeted
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(See figure on previous page.)
Fig. 1 Experimental design and RNA sequencing statistics by experimental group. a Dilution experiment summary. See Methods for detailed information.
b Single cell amplification methods used. Protocols involve two key steps: conversion of RNA (blue) to cDNA (green), and amplification of cDNA. aRNA
targeted poly-adenylated mRNA by using an oligo-dT T7 primer for initial cDNA synthesis. After generating double-stranded cDNA, molecules were
amplified using in vitro transcription with T7 polymerase. This amplification procedure was designed to minimize exponential expansion of errors. cDNA
generation and amplification were repeated two additional times before library preparation. SmartSeq Plus targeted total RNA using a mixture of poly-T
and randomized primers for initial cDNA synthesis. Full-length transcripts were captured through the template-switching capacity of reverse transcriptase.
Double stranded cDNA molecules were amplified using 18 rounds of PCR. All cDNA and amplification reactions were performed on a 96-well Fluidigm C1
chip, intended to reduce experimental variation by performing reactions in small volume. NuGen targeted total RNA through use of proprietary primers for
initial cDNA synthesis. Second strand cDNA synthesis was generated using an RNA primer, which was subsequently degraded from the second strand
cDNA copy, resulting in linear amplification by DNA replication. This method was designed to minimize exponential amplification of error. c Sample sizes
and RNA sequencing statistics by experimental group. Includes color key used in all figures. For analysis based on combined HBR and UHR dilution
replicates, solid colors were used. Abbreviations: Human Brain Reference (HBR), Universal Human Reference (UHR), University of Pennsylvania (Penn),
University of California San Diego (UCSD), University of Southern California (USC), picogram (pg.), base pair (bp.), contamination (contamin.), average (Ave.),
standard deviation (Sd.), amplification (amp.)

Dueck et al. BMC Genomics  (2016) 17:966 Page 4 of 22
RNA in a dilution replicate. Because of this, we expect
these estimates to be relatively robust to unknown biases
in scRNA-seq measurements. In particular, these
estimates do not depend on the choice of length
normalization method for scRNA-seq data. aRNA select-
ively targeted poly-adenylated (poly-A) mRNA (Fig. 1a).
We calculated the expected number of input poly-A
molecules using publicly available bulk HBR sequencing
measurements.
On average, replicates were sequenced at a depth of

22.0 ± 9.6 million reads (± standard deviation or Sd.).
1.5 ± 5.3% of reads were discarded due to primer con-
tamination. 89.3 ± 10.6% of retained reads aligned to the
genome, 77.6 ± 11.2% uniquely (Fig. 1c). To examine the
coverage distribution of each method, we quantified the
frequency of mapped reads over several genomic regions
of interest (Table 1). This distribution differed for the
three single-cell amplification methods. The majority of
aligned reads for aRNA dilution replicates originated
Table 1 Coverage selectivity by method

Source Protocol Genome coverage

% exons (excluding
rRNA & mitochondria)

% intron

Ave. Sd. Ave.

HBR aRNA 59.07 5.70 23.29

SmartSeq Plus 41.00 0.86 39.56

NuGen 29.27 4.97 45.09

Bulk (Poly-A) 80.13 - 8.52

Bulk (rRNA-depleted) 61.44 0.54 37.89

UHR aRNA 71.57 2.34 23.02

SmartSeq Plus 35.89 0.89 52.84

NuGen 33.00 4.02 39.33

Bulk (Poly-A) 86.99 - 7.11

Bulk (rRNA-depleted) 58.17 0.34 41.28

Average percent of aligned reads assigned to genomic regions for each method. N
definitions of genomic regions
from non-mitochondrial exons (excluding rRNA), a sub-
stantially larger proportion than that recovered by
SmartSeq Plus or NuGen. rRNA genes, pseudogenes and
repeats encoded by the nuclear genome comprised a
small fraction of reads in all amplified libraries (average
± SD: 0.67 ± 0.65%). rRNA and mRNA encoded by the
mitochondrial genome (2 genes and 13 genes, respect-
ively) constituted a substantial percentage of reads (aver-
age ± SD: 16.5 ± 8.4%). Mitochondrial recovery differed
substantially across methods. This difference may trans-
late into a method-specific effect on depth normalization
and for this reason mitochondrial genes have been ex-
cluded from the subsequent analyses. The distribution of
reads across genomic features also differed substantially
across replicates for aRNA and NuGen (Table 1).

Gene detection sensitivity
We calculated the number of detected genes as a meas-
ure of detection sensitivity (Fig. 2a) and compared this
ic % rRNA
(nuclear)

% rRNA
(mitochondrial)

% mitochondrial
(non-rRNA)

Sd. Ave. Sd. Ave. Sd. Ave. Sd.

4.68 0.03 0.02 4.82 1.62 12.29 2.79

0.85 1.28 0.07 10.02 0.43 7.77 0.26

5.88 1.33 0.40 20.38 5.19 3.65 0.59

- 0.08 - 1.96 - 9.01 -

0.45 0.03 0.01 0.10 0.04 0.25 0.04

2.60 0.06 0.05 1.61 0.19 3.38 0.59

0.94 0.31 0.02 6.20 0.26 3.85 0.12

8.99 1.25 0.57 23.47 7.31 2.59 0.62

- 0.11 - 0.47 - 5.09 -

0.29 0.02 0.01 0.03 0.01 0.18 0.02

uclear rRNA includes rRNA genes, pseudogenes and repeats. See Methods for
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(See figure on previous page.)
Fig. 2 Single-cell RNA sequencing sensitivity. a Number of detected genes. Each point represents a single sample. Horizontal black lines indicate
group mean. Boxes indicate ± 2 Sd.. Gray horizontal lines indicate 95% CI for the expected number of genes in a diluted replicate, assuming total
(dark gray) or poly-A (light gray) RNA. See Methods. b Probability of gene detection as a function of the expected number of input molecules
estimated using logistic model (see main text and Methods). Horizontal lines indicate 50% and 90% probability. Vertical lines indicate 1 and at
4.605 molecules (99% probability of≥ 1 molecule present in diluted replicate). Bands indicate 95% CI. Black line indicates probability of≥ 1
molecule present in a diluted replicate. c Odds ratio for gene detection as a function of sequencing depth (+500,000 reads). Horizontal line
indicates an odds ratio of one (no gain in detection sensitivity). Band indicates 95% CI. d Odds ratios for differences in biophysical trait values.
Error bars indicate a 95% CI. “*” indicates significant difference across pairs of methods (Bonferonni corrected p < 0.05). The odds ratio for length
and secondary structure are shown for the increase from 25%ile length (structure) in the HBR and UHR transcriptomes to 75%ile length (structure).
e Odds ratio for an increase of 0.01 in GC content. Bands indicate 95% CI. f Boxplot of gene mappability, or the fraction of the gene body that
can be aligned to uniquely (see Methods) for computationally ambiguous gene detection outliers (wide boxes) and background genes (narrow
boxes). Both undetected (Undet.) and detected (Det.) outliers are shown. “*” indicates significant difference (Wilcoxon rank-sum two-way test
p < 0.05). g As in F, but for the fraction of the gene body that overlaps in genomic position with a separate gene annotation. h Nucleotide
coverage. Observed over expected coverage normalized for expression level as a function of absolute 3' to 5' position. See Methods. i Comparison
of nucleotide coverage with uniform distribution. Empirical CDF is of normalized per nucleotide coverage. Black diagonal line indicates uniformity.
Kolmogorov-Smirnov (KS) statistic for difference from the uniform distribution is in the bottom right, with larger values indicating greater
difference between the distributions. j Coverage for genes with different expression levels. Relative 5' to 3' coverage, calculated over 100 equally
spaced bins for four expression level categories (rows). See Methods. Abbreviations: confidence interval (CI); Cumulative distribution function (CDF)
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statistic to the number of genes expected to be present
initially in a diluted replicate (horizontal lines in Fig. 2a).
While ~30,000 genes were expressed in each bulk HBR
and UHR sample (TPM> 0), a diluted replicate should
contain many fewer genes because of the sampling that
occurs during dilution. For this reason, detection sensi-
tivity should be assessed with respect to the number of
genes expected to be present in the diluted replicate, ra-
ther than the number of genes observed in the bulk (as
is common practice). Briefly, to calculate the expected
number of genes in a diluted replicate, we assumed that
the number of molecules in a tube for a given gene is
Poisson distributed with mean equal to the expected
number of molecules for that gene in a diluted replicate,
and that genes are sampled independently during dilu-
tion. The presence or absence of a given gene in a
diluted replicate follows a Bernoulli distribution, with
the probability of success equal to the probability that at
least one molecule for the gene is in the diluted
replicate. The number of genes in a diluted replicate is
then drawn from a Poisson-Binomial distribution. See
Methods for further details.
All methods demonstrate comparable high gene detec-

tion, detecting greater than 70% of the number of genes
expected to be present in a diluted replicate. SmartSeq
Plus demonstrated the highest detection (Byar’s 95% C.I.,
Obs./Exp.: aRNA (0.722, 0.726); SmartSeq Plus (0.877,
0.882); NuGen (0.735, 0.740)). With respect to poly-A
RNA, aRNA detected (0.840, 0.844) of expectation.
Variation across samples within each method was sub-
stantially larger than expected due to dilution suggesting
additional loss during cDNA and amplification (Fig. 2a).
To see whether gene detection sensitivity depended on
sequencing depth, we generated random low-depth in
silico samples by randomly sampling 500,000 genic read
counts for each dilution replicate. This represents ap-
proximately a 20-fold lower sequencing depth and a
comparable depth to many recent studies. Significantly
fewer genes were detected at this lower sequencing depth
(Additional file 4; aRNA (0.457, 0.460); SmartSeq Plus
(0.642, 0.646); NuGen (0.517, 0.520)). We note that this
lower sensitivity is due to a difference in sequencing depth
only, not the single-cell RNA amplification methods.
Detection of a given gene may depend on parameters

such as the input number of molecules, GC-content,
presence of internal adenosine monophosphate (A) hex-
amers, length, strength of molecular secondary structure,
and sequencing depth. To estimate the contribution of
these factors to gene detection, we fit a logistic regres-
sion model to the 10 pg. gene detection data with gene
detection as the dependent variable, considering only
computationally unambiguous genes to focus on experi-
mental sensitivity. (See Methods and Additional files 5
and 6 for details.) All methods had a 50% probability of
gene detection at ~2–4 expected input molecules, con-
trolling for the remaining covariates (Fig. 2b, Additional
file 7). We calculated a molecular recovery rate as the
predicted probability that a gene with 1 expected input
molecule will be detected, scaled by the probability that
at least one molecule of such a gene will be in a diluted
replicate. Molecular recovery rates were greater than
0.25 for all methods (95% prediction interval: aRNA
(0.262, 0.279), SmartSeq Plus (0.534, 0.558), NuGen
(0.315, 0.339)). With respect to poly-A RNA, aRNA re-
covery rate was (0.320, 0.349).
Despite the small number of total (targeted) RNA mol-

ecules in a single 10 pg. dilution replicate (estimated
here to be ~300,000 molecules), sequencing depth had a
highly significant effect on gene detection (Additional
file 5). Fig. 2c shows the odds ratio of increasing
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sequencing depth by 500,000 reads. An odds ratio sig-
nificantly greater than 1 indicates an increase in the
odds of gene detection with increasing depth. The odds
of gene detection increased substantially with sequen-
cing depth until a depth of ~15–20 million reads or ~50
reads per input molecule. As sequencing depth in-
creases, the odds ratio approaches one, indicating pro-
gression towards saturation in gene detection with
increasing depth. Here, increasing sequencing depth
from 10 to 15 million reads translated into an expected
gain of 25.02% in detected genes. The influence of
remaining covariates on gene detection differed across
methods (Fig. 2d–e). The odds of gene detection in-
creased with gene length for all methods (Fig. 2d). The
odds of detecting a gene with a length of 2.40 kilobases
(75%ile length across reference transcriptomes) were at
least 1.8 times greater than the odds of detecting a 0.681
kilobase gene (25%ile length) for all methods. NuGen
demonstrated a significantly stronger length effect than
aRNA or SmartSeq Plus (Fig. 2d). For NuGen, the odds
of detecting a gene with 75%ile length were 2.33 times
greater than the odds of detecting a gene with 25%ile
length. The presence of an internal A-hexamer positively
influenced the probability of gene detection for all
methods, with strongest effect for aRNA. For aRNA, the
odds of detecting a gene containing an internal A-
hexamer was 1.45 times greater than the odds of detect-
ing a gene without one. Decreased strength of secondary
structure increased the odds of detection for all
methods, with significantly smaller effect for aRNA than
for SmartSeq Plus or NuGen. For aRNA, the odds of de-
tecting a gene with a secondary structure strength of
−20.8 kcal/mole (75%ile strength) was 1.67 times greater
than the odds of detecting a gene with a strength of
−29.1 kcal/mole (25%ile strength). For NuGen and
SmartSeq Plus, the odds of detecting a gene with 75%ile
strength was at least 2.6 times the odds of detecting a
gene with 25%ile strength. While GC content influenced
detection probability in a complex manner, SmartSeq
Plus demonstrated the strongest GC effect (Fig. 2e).
A small fraction of computationally unambiguous

genes had poor fit by the logistic model (0.30 ± 0.14%;
see Additional file 8 for a list of outliers and Methods for
details). Each outlier was categorized as “detected” if the
gene was unexpectedly observed and “undetected” if it
was unexpectedly missing. Nearly all identified outliers
(16/17) were method-specific. A larger proportion of
computationally ambiguous genes were poorly fit by the
model (3.21 ± 0.23%, Additional file 8) with a sizable
fraction (19.81 ± 2.90%) that fit poorly for all methods.
These outlier genes had significantly lower fraction of
the gene body that could be aligned uniquely than back-
ground genes (Fig. 2f; Wilcoxon rank sum two-way test,
p < 0.05). This was the case for both detected and
undetected outliers, indicating that alignment ambiguities
likely generate both false positives and false negatives.
Outliers also significantly differed from background in the
fraction of the gene body that overlaps with another gene
annotation, with lower overlap among detected outliers
and greater overlap among undetected outliers (Fig. 2g).
To characterize read coverage at the scale of individual

base positions, we calculated the observed/expected nu-
cleotide coverage as a function of absolute 3′ to 5′ base-
pair position within a gene (Fig. 2h). Briefly, to examine
the effect of absolute position on coverage, genes were
aligned from the 3′ end. For each gene, per nucleotide
coverage was normalized such that a uniform distribu-
tion of reads along a gene would be assigned a value of
one at all positions (see Methods). Figure 2h–i are plot-
ted from 3′ to 5′ to reflect the alignment of transcripts
by their 3′ end due to common 3′ anchoring in ampli-
fied mRNA. Coverage for all methods was significantly
different from uniform (Fig. 2i; Kolmogorov-Smirnov
test p < 10−10 for all groups); however, NuGen demon-
strated the greatest uniformity (Fig. 2h–i) with similar
positional coverage distribution for 10 pg. and 100 pg.
dilution replicates. aRNA preferentially covered the 3′
terminal and demonstrated greater 3′ bias for 10 pg.
dilution data. SmartSeq Plus showed an intermediate
degree of bias. Segregated by expression levels, we found
preferential recovery of the 5′ and the 3′ gene ends for
low abundance genes and preferential 3′ coverage for
high abundance genes (Fig. 2j).

Precision
We next consider the similarity of measurements across
dilution replicates, within methods and across methods.
The correlation measurements indicate the degree of lin-
ear relationship (Pearson coefficient) or consistent order-
ing (Kendall’s coefficient) over replicate pairs. Though we
avoid direct comparison across methods (see Fig. 1a), the
results will be applicable to experimental design and ana-
lysis for each method. For example, these values may serve
as benchmarks for methods optimization, or they may
serve as a reference point for new adopters of these proto-
cols to ensure the protocol is being performed adequately.
The average within experimental group pairwise correl-
ation coefficient (± Sd.) was 0.37 ± 0.07 (Kendall) and 0.51
± 0.09 (Pearson, log10 counts) for 10 pg. replicates and
0.64 ± 0.06 (Kendall) and 0.79 ± 0.06 (Pearson, log10
counts) for 100 pg. replicates (Fig. 3a; zeros treated as
missing values).
To describe the dependence of precision on expression

level, we performed least-squares regression of the em-
pirical standard deviation on the empirical mean (both
variables log-transformed because of their approximate
multiplicative scale) for 10 pg. experimental groups with
sample size >5. The mean was an excellent predictor of
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 Single-cell RNA-sequencing precision. a Pairwise correlations for all samples. Upper triangle: Pearson correlation. Lower triangle: Kendall
correlation. Zeros treated as missing values. Each row and column is an individual sample. Experimental group is indicated by color bars at edge
of plot. b Relationship between standard deviation (st. dev.) and mean characterized by least squares regression (see Methods). All estimated
coefficients were highly significant (coefficient t-test p < 10−16). c–f Enrichment of biophysical traits in experimentally precise (low) and variable
(high) genes with respect to background genes (see Methods). Error bars indicate 95% CI. “*” indicates significant difference (p < 0.05). Numbers at
bottom indicate sample size (number of genes). (C) Median difference in gene length estimated by Hodges-Lehman statistic. Significance:
Wilcoxon rank sum two-way test. (D) Relative risk of containing an internal A-hexamer. Significance: Fisher’s exact test. (E) As C for % GC content.
(F) As C for strength of local secondary structure. g–j PCA projection of dilution data on PC 1 and 2. Plots were centered so that bulk UHR or HBR
was positioned at the origin. Points represent individual dilution replicates. Colored ovals represent bivariate normal 95% confidence ellipses. %
Sd. explained by a PC is indicated in axis label. See Methods. (G) HBR 10 pg. (H) UHR 10 pg. (I) HBR 100 pg. (J) UHR 100 pg. k–n As G–J, but using
only abundantly expressed genes (see main text). Axis scales differ from G–J, with axes in equivalent to the purple-boxed region in G–J. (K) HBR
10 pg. (L) UHR 10 pg. (M) HBR 100 pg. (N) UHR 100 pg. Abbreviations: Standard error (SE); confidence interval (CI); kilobases (kb); kilocalories (kcal);
mole (mol); principal components analysis (PCA); principal component (PC); standard deviation (sd)
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standard deviation (Fig. 3b, adjusted R2 > 0.85 and slope
coefficient t-test p <10−16 in all cases). To test whether
there was systematic bias in variability, we classified a
subset of genes to be less precise than expected (top 5%
residual values) and another subset to be more precise
than expected (bottom 5% residual values). Genes that
were less precise than expected differed little from back-
ground in their biophysical characteristics (Fig. 3c–f ),
suggesting limited systematic bias in experimental
variability. Biophysical characteristics enriched among
unexpectedly precise genes with respect to background
differed in a method-specific manner (Fig. 3c–f ). For
aRNA and SmartSeq Plus, enriched biophysical charac-
teristics were concordant with reduced probability of
gene detection (compare Fig. 2d-e), suggesting technical
dropouts might play a strong role in replicate precision.
NuGen demonstrated the opposite trend suggesting that
amplification bias might play a stronger role. Genes with
highly atypical precision (top or bottom 1% residual
values) are listed in Additional file 9. We recommend
that the expression values of these gene models should
be interpreted with caution.
Separate principal components analysis (PCA) of each

HBR and UHR for 10 pg. dilution data demonstrated
that average displacement between single cell and bulk
measurements predominate over differences between
single cell methods (Fig. 3g–h); however, there were
clear differences across methods in the multivariate co-
variance structure of experimental variation. Differences
across methods were also apparent for 100 pg. dilution
replicates (Fig. 3i–j), and, though these measurements
were more similar to bulk measurements, differences
between dilution replicates and bulk measurements
persisted. We note that average displacement between
single cell and bulk measurements represent both a bias
component from utilizing a master dilution mix (see
above) and technical bias. We repeated PCA on a subset
of genes with greater than 18.5 expected input molecules
(expected probability of detection for “typical” gene > 0.9
for all methods). On highly abundant genes, dilution
replicates were substantially more similar to bulk mea-
surements (Fig. 3k–n) and differences across methods
were substantially smaller. However, in all cases, the
within method pattern of covariation (direction of ellip-
ses) and the bias dispersal around the bulk expected
value (position of the centroid of the ellipses) differed
for both source RNA and individual methods. (We note
that bivariate normal 95% confidence ellipse for NuGen
100 pg. replicates is substantially larger than the others
(brown oval in Fig. 3m). These samples demonstrate
larger spread than matched samples in other experimen-
tal groups; however, because the number of replicates is
small (n = 4) some of this difference may be attributed to
sampling noise.)

Accuracy
We calculated pairwise correlation coefficients of dilu-
tion replicates with bulk as a metric of overall accuracy
(Fig. 4a). For this and the below, only non-zero gene
counts were considered in order to focus on quantita-
tion rather than sensitivity. 10 pg. dilution replicates
demonstrated an average pairwise correlation with refer-
ence of 0.42 ± 0.01 (Kendall) and 0.55 ± 0.01 (Pearson,
log10 counts). 100 pg. replicates showed greater similar-
ity with reference (0.57 ± 0.01 (Kendall) and 0.72 ± 0.01
(Pearson, log10 counts). Methods demonstrated similar
overall accuracy for 100 pg. dilution replicates. For
10 pg. dilution replicates, SmartSeq Plus demonstrated
slightly higher correlation with the bulk than the other
methods by both correlation metrics. Correlation with
reference had a modest association with percent unique
alignment (Fig. 4b–c).
To assess the accuracy of individual gene estimates, we

calculated the fold deviation of normalized read counts
with respect to bulk HBR or UHR measurements
(Fig. 4d–f, Methods). For all methods and input amounts,
the median fold deviation was less than 1 but a subset of
genes was extensively overestimated. Overestimated genes
(top 5% fold-deviation) were substantially longer than
remaining genes and more frequently contained an
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Fig. 4 Single-cell RNA sequencing accuracy. a Average pairwise correlation of diluted replicates with bulk HBR or UHR. Zeros treated as missing
values. Error bars indicate ± 2 s.e.m. b–c Relationship between % unique alignment and similarity with bulk HBR or UHR. “r” indicates Pearson
correlation of x and y. (B) 10 pg. (C) 100 pg. d–f Distribution of fold deviation across genes. Wide boxes represent measurements in individual
replicates. Narrow boxes represent average measurements across replicates. Y-axis was truncated for visualization and 99%ile values for wide
boxes are in panel descriptions below, ordered to match plot. “*” indicates significant difference between individual and average measurements
(Wilcoxon rank sum test of greater fold deviation in average measurements, p < 0.05). (D) aRNA. 99%ile values: 2066; 1442; 514; 718. (E) SmartSeq
Plus. 99%ile values: 877; 770; 553; 598. (F) NuGen. 99%ile values: 2332; 1766; 784; 937. g–j Enrichment of biophysical traits among underestimated
(low) and overestimated (high) genes with respect to remaining genes. See Methods. Plot notation and statistics are as in Fig. 3c–f. (G) Median
difference in gene length. (H) Relative risk of containing an internal A-hexamer. (I) As G, for % GC content. (F) As G, for strength of local secondary
structure. k–m Density scatter plots of normalized read counts in individual 10 pg. replicates vs. expected number of input molecules. See
Methods. Red indicates high density. Solid line indicates expected read count and hashed lines indicate ± 2 fold. (K) aRNA. (L) SmartSeq Plus. (M)
NuGen. n–p Density scatter plots of average normalized read counts vs. number of input molecules. (N) aRNA. (O) SmartSeq Plus. (P) NuGen. Gene
filtering: D–F and K–P considered computationally unambiguous genes and excluded gene detection outliers. D–J considered genes with greater
than 95% probability of presence in a diluted replicate. Abbreviations: confidence interval (CI); kilobases (kb); kilocalorie (kcal); mole (mol)
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internal A-hexamer (Fig. 4g–j). For NuGen and SmartSeq
Plus, these genes also had lower GC content and weaker
local secondary structure than remaining genes. Underes-
timated genes (bottom 5% fold-deviation) demonstrated
the opposite tendencies: compared to background genes,
they were shorter, less frequently contained internal
A-hexamers, had higher GC content and stronger sec-
ondary structure than background, as might be ex-
pected (Fig. 4g–j). Overall, aRNA demonstrated less
systematic bias than NuGen or SmartSeq Plus. Highly
inaccurate genes (top or bottom 1% fold-deviation)
are catalogued in Additional file 10.
Smoothed density scatter plots demonstrated method-

specific transfer functions between the expected number
of input molecules and the number of read counts in an
individual replicate (Fig. 4k–m). This relationship was
quantitative at expression levels greater than ~5–10
expected input molecules up to at least ~600 input mol-
ecules, the highest expression level examined for 10 pg.
replicates, giving a quantitative dynamic range of at least
100-fold. This relationship was qualitatively similar for
low-depth in silico samples (Additional file 11). At this
range of expression levels, the relationship between the
average number of read counts and the expected
number of input molecules is roughly linear (Fig. 4n–p).
At low to mid expression levels measurements were
frequently underestimated expanding the apparent range
of measured abundances, particularly for aRNA and
NuGen (Fig. 4n–p).

Protocol variations
We evaluated the effects of several protocol variations
on measurement quality (Table 2). The aRNA protocol
used for the primary analysis includes cDNA purification
before initial amplification, and 3 rounds of IVT amplifi-
cation followed by dilution of amplified cDNA before li-
brary preparation (Fig. 1b). Elimination of initial cDNA
purification significantly improved sensitivity and accur-
acy, as did reduction to two rounds of IVT amplification
and elimination of dilution prior to library generation
(Table 2). An optimized protocol incorporating both
changes, demonstrated substantial improvements in the
number of detected genes and pairwise correlation with
the bulk (Table 2).
The addition of ERCC spike-in transcripts provides an

internal control [26], but it raises the concern that
addition of synthetic RNA to a sample may decrease bio-
logical sensitivity. We found no significant difference in
sensitivity, precision or accuracy across matched dilution
replicates with and without the addition of ERCCs
(Table 2) up to the spike-in level of 2.7% of reads. Indi-
vidual ERCC transcripts were found to be problematic,
consistently inaccurate, for SmartSeq Plus and aRNA in
a method specific manner (Additional file 12).
Strand-specific RNA sequencing may improve detection

sensitivity and reduce false positive detection. Stranded
quantification of aRNA replicates detected slightly fewer
genes than non-stranded quantification; however, it also
detected significantly fewer genes that were not observed
in the bulk, and genes that were detected only by stranded
quantification were supported by significantly more reads
than genes detected only by non-stranded quantification
(Table 2).

Discussion
Several other publications have reported on similar dilu-
tion experiments to assess scRNA-seq methods, where
bulk RNA was diluted to small input amounts and amp-
lified in replicate, and the sequencing results of ampli-
fied replicates were compared to sequencing results of
the bulk material [17, 18, 20]. In comparison to these
earlier studies, our study uses a smaller amount of input
RNA (compare 10 pg. with 50–500 pg. input total RNA)
and a larger number of technical replicates (compare 12
10 pg. UHR replicates with 1 to 3 technical replicates
previously) as well as a set of parametric models to
dissect the factors affecting statistical characteristics of
amplified RNA measurements. Despite these differences,



Table 2 Evaluation of protocol variations

Variation Category Trait Modified group Control group Median difference
(Modified: Control)

Test

Sample
size

Median Sample
size

Median Statistic 95% C.I. Paired/
Unpaired

Statistic p-value

No initial cDNA
purification

Sensitivity # genes detected 6 11072 6 10249 782.5 293.0 1678.0 Unpaired 36 0.002

Precision Pairwise
correlation across
samples

15 0.344 15 0.306 0.039 0.028 0.051 Unpaired 215 1.79E-06

Accuracy Pairwise
correlation with
reference

6 0.400 6 0.383 0.019 0.008 0.049 Unpaired 36 0.002

Reduce rounds
of cDNA amp.

Sensitivity # genes detected 5 11936 3 11062 1051.0 33.0 4122.0 Unpaired 15 0.036

Precision Pairwise
correlation across
samples

10 0.329 3 0.333 −0.006 −0.034 0.018 Unpaired 12 0.692

Accuracy Pairwise
correlation with
reference

5 0.430 3 0.401 0.029 0.009 0.066 Unpaired 15 0.036

Optimized
aRNA

Sensitivity # genes detected 5 11936 18 10286 1810.0 942.0 3354.0 Unpaired 84 0.002

Precision Pairwise
correlation across
samples

10 0.329 153 0.306 0.019 0.002 0.035 Unpaired 1084 0.028

Accuracy Pairwise
correlation with
reference

5 0.430 18 0.377 0.055 0.028 0.083 Unpaired 79 0.009

Add ERCCs Sensitivity # genes detected 5 10154 4 10101 138.5 −397.0 798.0 Unpaired 13 0.556

Precision Pairwise
correlation across
samples

10 0.287 6 0.282 0.002 −0.012 0.013 Unpaired 34 0.713

Accuracy Pairwise
correlation with
reference

5 0.364 4 0.369 −0.003 −0.016 0.019 Unpaired 9 0.905

Perform
strand-specific
sequencing

Sensitivity # genes detected 17 10006 17 10325 −267.0 −331.5 −218.5 Paired 0 1.53E-05

Sensitivity Depth of unique
genes

17 6.397 17 0.848 5.46 3.68 6.75 Paired 153 1.53E-05

Sensitivity # genes not in
bulk

17 534 17 610 −62.0 −76.0 −49.5 Paired 0 1.53E-05

Accuracy Pairwise correlation
with reference

17 0.362 17 0.376 −0.013 −0.017 −0.009 Paired 2 4.58E-05

Comparison of dilution replicates generated using modified protocols with control dilution replicates. Sample information can be found in Additional file 1 and
protocol information in Methods. # genes detected only considers genes observed in bulk HBR or UHR. Kendall correlation was calculated excluding zeros in either
sample. Unpaired comparisons were made using Wilcoxon two-way rank sum test for difference in medians. Paired comparisons were made using Wilcoxon two-
way rank sign test for difference in medians. The null hypothesis of no difference was rejected at p < 0.05. Median difference between groups, with 95% CI, was
calculated using the Hodges-Lehman statistic
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some results presented here are consistent with earlier
findings. Of particular interest, both Adiconis et al. [17]
and Shanker at al. [20] reported large differences
between NuGen and Smart-Seq measurements in the
proportion of reads aligning to rRNA, with a large pro-
portion of NuGen reads aligning to mitochondrial
rRNA. Because of the larger number of replicates used
here, we were able to further observe large variation
across replicates generated by the same method in the
proportion of reads assigned to mitochondrial rRNA
(Table 1).
In contrast with previous studies, we evaluated method
performance in terms of the number of input molecules
and considered the variance introduced by dilution. When
these factors are ignored, it may appear that methods per-
form more poorly for lower input amounts but this is not
necessarily the case. For example, fewer genes were
detected in 10 pg. dilution replicates compared to 100 pg.
replicates (Fig. 2a). Ignoring the effect of dilution, one
may conclude that detection sensitivity is lower for
smaller input amounts of RNA; however, because of dilu-
tion, fewer genes are expected to be present in 10 pg.
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dilution replicates than 100 pg. replicates. With this in
mind, we cannot conclude that detection sensitivity is lower
for smaller input amounts of RNA. More generally, meas-
urement sensitivity (and to some extent precision and
accuracy) depends critically on the method’s efficiency of
capturing individual molecules (Fig. 2b), which requires
careful calibration to match different input level treatments.
Our study, like those described in [17, 18, 20], pro-

vides an assessment of scRNA-seq methods with respect
to the RNA amplification component of the protocol
(including reverse transcription efficiency under ideal
conditions). Additional experimental factors will be
present in biological applications that are expected to
affect the performance of these methods, such as vari-
ability across biological samples in the efficiency of cell
lysis or an effect of cell debris on cDNA capture, ampli-
fication or sequencing. Biological characteristics, such as
the amount of lipid contained in a cell, may also affect
the efficiency of molecular reactions and introduce
further technical variability in resulting measurements.
Further study using carefully controlled populations of
cells of a variety of cell types as input would extend the
analysis performed here.
In light of the results presented here, we briefly discuss

a few topics related to experimental planning, method
optimization and data analysis.
Though the goal of this study and our experimental

design is not meant to select “the best method,” some
results may be helpful in selecting an appropriate
method for a particular project. The enriched coverage
of exons in aRNA may be beneficial for studies of
mRNA, and the retention of transcript strand informa-
tion is unique to aRNA at this point. SmartSeq Plus and
C1 microfluidic device generate reproducible replicates
and high detection sensitivity, presumably due to more
uniform liquid handling and retention of material due to
lack of vessel transfer. The uniformity of coverage pro-
vided by NuGen (Fig. 2h–i) may be beneficial for studies
of isoform use and splicing. We note that, in our hands,
NuGen reactions were inconsistent and we had repeated
amplification failures, or amplification of non-template
directed products with this method, especially at the
10 pg level where the method appears to be reaching the
limits of its sensitivity.
In selecting sequencing depth, there is a trade-off be-

tween gene detection sensitivity and cost. Typically, a
small number of genes comprise the bulk of RNA mole-
cules in a transcriptome. Sequencing at low depths
should be sufficient to reproducibly detect and quantify
these abundant genes; however, the majority of genes in
a typical transcriptome are at low abundance. Because of
this, the number of genes detected in the mixtures of
RNAs used here depends heavily on sequencing depth
(Fig. 2c and Additional file 4). The dynamic range limit
due to sequencing depth is a function of the relative fre-
quency distribution, which will vary for an actual single
cell. Our results suggest that increasing the number of
reads per cell may produce richer transcriptome mea-
surements and should be considered carefully in the
context of a specific experimental plan.
Missing values due to lack of sensitivity and the pres-

ence of large valued outliers may cause complications
for depth normalization methods. Large variation across
samples and substantial differences across methods in
the fraction of reads assigned to mitochondrial RNA
(Table 1) will propagate to sample and method differ-
ences in relative read counts. More generally, we ob-
served large variation in the distribution of reads across
broad genome annotation classes (Table 1). Because each
genomic annotation class accounted for a substantial
number of reads and input molecules, the observed dif-
ferences across methods, and within methods, cannot be
simply explained by sampling error. Similarly, variation
across samples in the number of detected genes cannot
be easily explained by dilution (Fig. 2a). This behavior
might be explained by global differences in reaction effi-
ciencies across samples, as suggested previously [27];
however, the experimental sources of such differences in
a controlled experiment are unclear. We found certain
subsets of genes to be problematic for gene detection,
accuracy, and precision, in a method-specific manner
(Additional files 8, 9 and 10). We recommend that genes
on these lists be treated with caution, filtered before ana-
lysis, or interpreted with care. We similarly found several
ERCC spike-in transcripts to be problematic (Additional
file 12), and recommend selecting a subset of reliable
ERCC transcripts for use as reference measurements.
Some scRNA-seq quantification challenges might be

reduced through further experimental optimizations, for
example by increasing detection sensitivity and reducing
amplification biases. Eliminating the initial cDNA purifi-
cation, reducing the extent of amplification required,
and limiting sample dilution may be productive avenues,
as suggested by our data. Methods to experimentally
deplete highly abundant and variably recovered mito-
chondrial RNA, if not of experimental interest, may also
be of use.

Conclusions
Single cell RNA measurement methods have become
increasingly robust and automated systems have made
the technique broadly more accessible and efficient. All
methods examined here demonstrated good gene detec-
tion and a quantitative relationship between input mo-
lecular abundances and measured expression levels at
mid- to high-expression levels or greater than ~5–10
input molecules. This corresponds to ~4,000–8,000 reli-
ably measured genes for the reference transcriptomes
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examined here. We propose that single cell RNA mea-
surements have come of age and this level of resolution
for gene expression measurements has and will continue
to facilitate biological discovery.

Methods
Experimental design
Each collaborating center obtained reference RNA with
the same lot number for Universal Human Reference
(UHR) RNA (Agilent 740000, Lot 0006141415) and
Human Brain Reference (HBR) (Ambion AM6050, Lot-
105P055201A) and performed replicate amplification
using a single amplification method, detailed below.

SmartSeq Plus
Reference RNA was diluted to an intermediate stock
solution by serial dilution. A final 1000-fold dilution
occurred on the C1 chip, such that individual wells in a
given batch contained 9.99 pg. sampled from a common
intermediate dilution. ERCC spike-in RNA mix 1
(Ambion 4456740) was also added for a final mass of ap-
proximately 7 femtograms (fg.) per sample, a 4,000,000×
dilution from stock. Samples for each source RNA were
prepared in single batches. After amplification, cDNA
from the entire C1 96-well plate was quantified using
picogreen. C1 chips with an average yield of less than 3
nanograms were discarded. The top 15 reactor wells by
cDNA concentration were selected as representative
10 pg. samples for sequencing library preparation. An-
other 50 wells were selected by the same criteria. These
were pooled in sets of 10, generating 5 100 pg. samples
for each HBR and UHR. All samples for a given source
were prepared in a single sequencing library preparation
batch using Nextera XT C1 protocol.

NuGen
HBR samples were prepared in a single batch using
amplification protocol 1, generating 4 10 pg. and 4
100 pg. amplified replicates. UHR samples were pre-
pared in two batches, using either amplification protocol
1 or 2, generating 15 10 pg. and 11 100 pg. samples (see
Additional file 1). A single sequencing library prepar-
ation was performed for each batch of samples using
either Lucigen NxSeq or NuGen Ovation Rapid protocol
(see Additional file 1).

aRNA
Amplification was performed as previously described
[28]. HBR samples were prepared in 4 batches from
separate dilutions of reference RNA, generating 19
10 pg. and 3 100 pg. amplified replicates. ERCC spike-
ins were added to 5 of the 10 pg. replicates before ampli-
fication at a dilution of 4,000,000× from stock. UHR
samples were diluted and amplified in 2 batches from
separate dilutions of reference RNA, generating 12 10 pg.
and 7 100 pg. amplified replicates. (Additional file 1). A
single sequencing library preparation was performed using
Illumina TruSeq Stranded mRNA protocol modified to
begin with amplified aRNA. A small numbers of reads
were assigned to ERCC transcripts in replicates from the
batch where ERCCs had been added that did not have
spike-ins added (average of 0.5% of the number of reads
assigned in spiked samples). 18 additional HBR 10 pg.
replicates were amplified using aRNA for protocol
optimization experiments (see Additional file 13). These
samples were treated separately and were excluded from
primary analysis.

Bulk UHR and HBR
For each reference RNA, three sequencing libraries were
generated from bulk material at the same laboratory as
the SmartSeq Plus replicates. Cytoplasmic and mito-
chondrial ribosomal RNA (rRNA) were depleted using
Ribo-Zero Gold as part of Illumina TruSeq Stranded
Total RNA protocol. Samples were sequenced on Illu-
mina HiSeq 2000. We also accessed publicly available
bulk sequencing of HBR and UHR generated using poly-A
selected RNA generated using standard Illumina mRNA-
Seq protocol and sequenced on Illumina HiSeq 2000 using
100 bp. paired-end reads. (SEQC/MAQC-III Consortium,
2014, GEO accession numbers: GSM1362002-GSM136
2029 (HBR), GSM1361974-GSM1362001 (UHR), down-
loaded in May 2015 [25].) These samples were generated as
part of a larger experiment to evaluate bulk RNA sequen-
cing where poly-A sequencing was performed at seven
sites. For each HBR and UHR, four replicate libraries gener-
ated at the NYG site were used. Sequenced read data for
each source were pooled. We additionally used publicly
available PrimePCR measurements generated by the
SEQC/MAQC-III Consortium using UHR and HBR RNA
(SEQC/MAQC-III Consortium, 2014, GEO accession num-
ber: GPL18522, downloaded in Feb. 2015 [25]) to evaluate
our reference gene abundance estimates.
Because of differences in experimental design, direct

comparison across methods of precision and the effect
of input RNA abundance is difficult. For example, input
RNA amount as a factor have different meanings for the
different amplification methods: for SmartSeq Plus, be-
cause 100 pg samples were constructed by pooling
10 pg. samples after cDNA amplification, any resulting
effects involve library construction, while for aRNA and
NuGen resulting effects reflect both cDNA amplification
steps and library steps.

Alignment and quantification
Low confidence nucleotides (with Phred score less than
20) were treated as unknown and replaced with Ns.
Unknown nucleotides (Ns) at the ends of reads were
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trimmed. Poly-A and method-specific adapter sequences
were trimmed from the 3′ end of reads using in-house
software [29]. Reads were aligned to the human reference
genome, build hg19, and to ERCC spike-in transcript se-
quences using STAR (Spliced Transcripts Alignment to a
Reference) aligner [21]. The STAR aligner was developed
to map the spliced reads expected from RNA-seq to non-
contiguous regions of the reference genome. In brief,
STAR uses a two-stepped approach to align a spliced read
to the genome. First, STAR performs a “seed” search, in
which it searches for the longest substring of the read that
exactly matches to the reference genome. This search is
repeated for the unmapped portion of the read. Second,
STAR stitches together seeds identified in the first step in
a manner that allows for mismatches and that considers
the genomic proximity of alignments and, optionally,
splice-site annotations. We provided STAR with GEN-
CODE18 annotations to generate a splice-junction loci
database for use in alignment. We retained reads that
aligned to at least 40% (paired-end) or 60% (single-end) of
trimmed length or 30 bp, whichever was greater. In
addition, we discarded reads with greater than 30% mis-
matched positions in trimmed length. Uniquely aligned
reads were assigned to GENCODE18 gene annotations
and to ERCC transcripts using HTSeq and htseq-counts.
Reads overlapping multiple annotations were assigned to
a single gene or discarded using the intersection non-
empty method [22]. We normalized raw read counts for
differences in sequencing depth using size-factors esti-
mated by the method proposed by Anders and Huber and
implemented in DESeq [23] after filtering genes as de-
scribed in Excluded and ambiguous genes, below. aRNA
sequenced data retained RNA strand information, but we
did not use this information in quantification so that that
all methods were analyzed consistently. For protocol
optimization analysis (Table 2), aRNA samples were re-
quantified using strand information where applicable.
Each method demonstrated different dependence of read
counts on gene length (Fig. 2h), so no single length
normalization procedure was appropriate, hence the ana-
lyses were completed without length normalization.
To estimate input RNA abundances, raw sequencing

data from all three ribosome-depleted bulk HBR or UHR
replicates were pooled resulting in a single sample for each
HBR and UHR with sequencing depth of ~400 million
reads. Sequencing characteristics of bulk RNA sequencing
are relatively well known and we used a model theoretic
method to estimate reference gene expression, as imple-
mented in RSEM (RNA-seq by Expectation-Maximization,
version 1.2.18, using Bowtie version 1.1.1) strand-specific
quantification [24, 30]. Poly-A tails were not added to
transcripts. RSEM gene abundances were normalized to
transcripts per million (TPM). 50.4% and 51.1% of reads
aligned to genes for HBR and UHR, respectively.
We validated the robustness of the RSEM abundance
estimates by comparing them to estimates generated
using two additional algorithms. First, we used HTSeq
and htseq-counts [22] in the intersection non-empty
mode as described above. This method makes few as-
sumptions about the distribution of sequencing reads
along transcripts. Second, we used a modified version of
Maxcounts [31], a method designed to be robust to
differences in sequencing protocol and each gene was
assigned the 95%ile depth of coverage value across cov-
ered exons. For both HTSeq and Maxcounts, quantifica-
tion was strand-specific and estimates were normalized
to reads per million (RPM). Counts were also compared
to PrimePCR measurements (see Experimental design).
To compute gene abundance estimates using PrimePCR,
we removed undetectable genes (CT > 35, based on a CT

of 35 for one DNA molecule [25]) and then subtracted
35 from each gene’s CT value to generate log2 number of
molecules, which were then converted to log10 units.
Genes with multiple reported CT measurements were
removed, leaving 11,788 (UHR) and 11,572 (HBR) gene
measurements for analysis. Pairwise scatter plots and
correlations can be found in Additional file 3. All quanti-
fication algorithms provide similar estimates. We used
RSEM quantification throughout because this method
provides isoform expression level estimates, which allow
more fine-tuned estimates of gene characteristics (such
as GC content and length).
Ribosomal and mitochondrial RNA were depleted from

bulk HBR and UHR samples (see Experimental Design).
We compared estimated RNA abundances based on these
samples to abundance based on samples generated using
poly-A RNA to determine whether the method of RNA
selection substantively affected abundance estimates.
Expression estimates were similar across library prepar-
ation methods and the library generated with ribosomal
and mitochondrial depletion demonstrated the greatest
similarity with qPCR measurements (Additional file 3,
panel B). RSEM expression level estimates based on ribo-
somal and mitochondrial RNA depleted samples were
used as “truth” throughout.

Excluded and unambiguous genes
We excluded ribosomal genes, genes with short iso-
forms, and genes on the mitochondrial chromosome, as
described in the main text. Inferences made by bioinfor-
matics methods may affect sensitivity, precision, and
quantification accuracy for any individual gene. We
identified a stringent set of genes to which reads could
be uniquely aligned, in order to focus on sensitivity, pre-
cision and accuracy of the molecular measurements.
Identified genes did not overlap in genomic positions
with exons from any other annotated gene on either
strand and could be aligned to uniquely across the entire
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gene. As a measure of mappability we used the GEN-
CODE CRG Alignability track for reference genome
hg19, generated by the ENCODE project and down-
loaded as a bigwig file from the UCSC Genome Browser
on Sept. 23 2014 [32]. This track contains sliding win-
dows of k-mers and a record of how many locations in
the genome each k-mer aligns using the GEM aligner
allowing up to two mismatches. We used k equal to 50
nucleotides because the minimum read length in this
study was 50 base pairs. Genes where all sliding win-
dows align to only one location were considered
uniquely alignable.

Expected number of molecules in diluted replicate
See Results for an overview of the approach.
To estimate the mass of RNA targeted for cDNA syn-

thesis, we followed a previously described method [2].
For each SmartSeq Plus dilution replicate, we calculated
the percent of reads assigned to ERCC transcripts, with
respect to the total number of reads assigned to genes
that were retained after filtering. (SmartSeq Plus samples
were used because all replicates included ERCC spike-
ins.) We divided the known ERCC mass (7.12 or 71.2
femtograms) by the average percentage of reads assigned
to ERCC transcripts to get the total mass of targeted
transcripts and ERCC molecules and therefore the mass
of targeted transcripts. By this method, we estimated the
following masses for targeted molecules: 0.24 pg. (HBR
10 pg. replicates), 2.4 pg. (HBR 100 pg. replicates),
0.26 pg. (UHR 10 pg. replicates) and 2.6 pg. (UHR
100 pg. replicates).
To find the expected number of molecules in a diluted

replicate, we first found the weighted average transcript
length for each HBR and UHR. To do this, we took the
average of transcript lengths weighted by transcript rela-
tive expression levels, across all transcripts. (Both
transcript lengths and relative expression levels were es-
timated by RSEM on bulk HBR and UHR.) We then
found the expected number of molecules in a diluted
replicate by dividing the mass of targeted cDNA in a
replicate (found in step 1) by the mass of the average
transcript. The average transcript length for HBR, based
on RSEM relative gene expression level estimates, was
1,535.56 nucleotides (average transcript mass of 8.175 ×
10−7 pg. and 288,600 molecules in 10 pg. replicate); for
UHR, it was 1,348.39 nucleotides (average mass of 7.179
× 10−7 pg. and 364,762 molecules in a 10 pg. replicate).
Finally, to find the expected number of molecules for

each gene in a diluted replicate, we multiplied the rela-
tive frequencies of gene expression (estimated by RSEM
for each bulk HBR and UHR) and the expected number
of molecules in a diluted replicate (found in step 2).
We repeated this analysis using five aRNA HBR 10 pg.

samples that contained ERCC spike-ins to estimate the
mass of targeted mRNA in a diluted HBR replicate. The
mass of targeted mRNA was estimated to be 0.15 pg.
(HBR 10 pg. replicates). We used RSEM relative gene ex-
pression level estimates for poly-A selected bulk HBR sam-
ples to estimate the number of targeted mRNA molecules.
The average mRNA transcript length in HBR was esti-
mated to be 1,968.73 nucleotides (average mass of 1.048 ×
10−6 pg. and 143,631 molecules in a 10 pg. replicate).
For ERCC molecules, the expected number was calcu-

lated directly from the known mass of spiked-in mate-
rials and the known molarity of each spike-in transcript.

Genomic distribution of sequenced reads
Genomic regions were assigned to eight categories hier-
archically so that each region was assigned to only one
category and so that each read was greedily categorized
in the following order: rRNA exon, rRNA repeat, exon
(excluding rRNA), intron, flank, intergeneic. Regions
were defined based on the following annotations. Exons
and introns were assigned based on GENCODE18 anno-
tations. Flanks were assigned to 5 kilobases up- and
down-stream from gene terminals. rRNA refers to GEN-
CODE18 annotations with “rRNA” as the gene_type,
which includes 5S pseudogenes. rRNA repeat refers to
RepeatMasker annotations for the rRNA class of repeat.
RepeatMasker annotations for reference genome hg19
were downloaded from UCSC table browser as a gtf file
from the UCSC genome browser on June 23, 2015.
Remaining regions were classified as intergenic. Primary
alignments for all reads, including multimapping reads,
were assigned to these regions using htseq-counts [33].
The STAR aligner assigns a single primary alignment to
each read, with multi-mapping reads assigned the align-
ment with the best alignment score, if only one such
alignment exists, or a randomly selected alignment from
the set of best alignments. (Multi-mapping reads were
included for this analysis because many rRNA regions
demonstrate substantial similarity such that it was diffi-
cult to uniquely align reads to these regions.) Haplotype
and random chromosomes were excluded.

Number of detected genes
Genes not observed in the bulk (TPM= 0) were ignored,
so that 28,980 genes were included in analysis for HBR
replicates, and 31,263 for UHR replicates. We used the
R package poibin to find a 95% CI for the expected
number of genes in a diluted replicate. We performed
simulations of the dilution experiment to check robust-
ness of the result to violation of the independence
assumption. Simulation results matched theoretical
results (data not shown). We performed this analysis
both assuming that total RNA was targeted for capture
and assuming mRNA was targeted for capture (see Ex-
pected number of molecules in diluted replicates, above).
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Because UHR aRNA dilution replicates did not contain
ERCC spike-ins, we could only estimate mRNA expect-
ation for HBR. Low-depth in silico samples were gener-
ated for each dilution replicate by randomly subsampling
500,000 reads from the collection of all reads that were
uniquely assigned to genes. (Note that this corresponds to
a total read depth of roughly 106 per sample).

Gene traits
We compiled a set of gene characteristics for use in bias
exploration. Traits calculated include GC content and
length, both known sources of bias for bulk RNA se-
quencing [34]. Poly-T priming was used by aRNA and
SmartSeq Plus and may introduce a bias for genes with
internal stretches of adenosines, and so we also com-
puted the presence or absence of an internal A-hexamer
(6 or more sequential As). RNA secondary structure
may hinder biochemical reactions and we assigned a
score for the average strength of local secondary struc-
ture. To do this, we calculated the minimum free energy
predicted by Vienna RNAFold (version 1.7.2) [35] for
100 nucleotide-sliding windows along the length of each
isoform (step size of 1 nucleotide) and reported the aver-
age across all windows. All traits are calculated based on
GENCODE18 annotated isoforms. Genes were assigned
the average of isoform traits, weighted by the relative ex-
pression level of isoforms estimated by RSEM quantifi-
cation of bulk HBR or UHR. We also calculated two
metrics of bioinformatics complexity for each gene. As a
measure of alignment complexity, we calculated the frac-
tion of 50 base pair windows that were reported to be
uniquely alignable in the GENCODE CRG Alignability
track [36] (see Excluded and unambiguous genes, above).
As a measure of quantification complexity, we calculated
the fraction of the gene body that overlaps with another
annotation on either strand. Both of these metrics were
calculated over the union of exons for each gene.

Detection logistic regression
For model fitting, we used computationally unambigu-
ous genes (see Excluded and unambiguous genes, above)
that were observed in bulk HBR or UHR. Genes within
the upper or lower 2.5%ile value for any biophysical trait
were excluded so that covariate ranges were well sam-
pled. After filtering, 5,645 genes were included in ana-
lysis. The analysis was performed on 10 pg. dilution
replicates. 100 pg. dilution replicates were not included
because of the small sample size of these groups and
because of differences between groups in how these dilu-
tion replicates were generated (see Fig. 1a and Experi-
mental design). A single model was fit containing both
HBR and UHR dilution replicates, in order to increase
sample size and simplify analysis. A random 90% of the
data were used in model development and fitting, with
the remaining 10% used to assess model fit. Final sample
size for model development was 323,194 observations
and for validation it was 45,486 observations.
To determine the best parametric form for each inde-

pendent variable we followed the multivariate fractional
polynomial method. In brief, this method (developed by
Royston & Altman, 1994) searches a small range of pos-
sible polynomial functions of each independent variable
to identify the transform that results in the best model,
defined as having the largest log-likelihood. Both one-
and two-term transforms can be tested. Before selection
of a “best” transform, fit models using transformed vari-
ables are compared to the linear case (and to each other,
if both a one- and two-term transformation are consid-
ered) using a likelihood ratio test (here the null hypoth-
esis of no difference in fit was rejected at p < 0.001). See
Hosmer et al. [37] for more details. In a multivariate
case, transformations are tested on individual covariates
iteratively in the context of the multivariate model in
order of decreasing significance, retaining selected trans-
formations for previously tested covariates. Once all var-
iables have been tested the process repeats, beginning
with the previously identified best transforms, until no
additional changes are significant. We used a closed test
procedure for determining significance (see Hosmer
et al.), permitting two-term transformations for the
number of molecules and GC content. Single-term
transforms were permitted for gene length, strength of
local secondary structure and sequencing depth for the
sake of model simplicity and interpretability. We used
the R mfp package for this analysis [38]. For selecting
parametric form, all samples were treated together,
ignoring amplification method. By this method, the
selected model is:

Logit E YjM;L;G;S;A;Dð Þð Þ
¼ β0 þ β1√M

� � þ β2log Mð Þ√M� � þ β3log Lð Þð Þ
þ β4G

‐2� � þ β5log Gð Þ G‐2� �

þ β6 S þ 39:1ð Þ=10ð Þ þ β7Að Þ
þ β8 D=10ð Þ‐2� �

where M represents the expected number of input mole-
cules in a diluted replicate, L represents the gene length
(in kilobases), G represents the gene GC content, S rep-
resents the gene strength of local secondary structure
(kcal/mol, shifted and scaled for stability), A indicates
the presence of an A-hexamer within the gene body, and
D represents the sequencing depth (per million reads,
scaled for stability).
In the final model, amplification method was encoded

as dummy variables so that method -specific coefficients
were found for all independent covariates, with the ex-
ception of sequencing depth. We fit a single coefficient
for depth across all methods to increase the covariate
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range. The final model was fit excluding 17 large influ-
ence genes (having Cook’s Distance >0.001 for at least
two observations in each of at least two methods) using
R built-in glm function with family (error model) set to
binomial [39]. The final model can be found in
Additional file 5. Model fit was assessed using normal-
ized Chi-Square (proposed by Osius and Rojek) and
normalized Sum-of-Squares goodness-of-fit statistics,
evaluated on a random 10% of the data excluded from
model development (Additional file 6, and see Hosmer
et al. for details). To assess the benefit of including
biophysical and sample covariates, in addition to the ex-
pected number of input molecules, we calculated the
area under the receiver operating characteristic curve
(AUC) for classification using the model, and separately
for classification based on the expected number of input
molecules alone. AUC provides a measure of the prob-
ability that the classifier will assign a higher score to a
randomly selected detected gene than a randomly se-
lected undetected gene. AUC average and standard devi-
ations were calculated over 10,000 bootstrap replicates.
To determine whether the model was sensitive to read
length or paired end status, we calculated fit statistics
for data truncated in silico to 50 base pair single-end
reads (Additional file 6). We additionally tested extension
of model to ERCC spike-in molecules (using SmartSeq
Plus and aRNA 10 pg. dilution replicates containing spike-
ins) and to dilution samples beginning with 100 pg. input
RNA (Additional file 6). For these additional validations, a
random 5,000 observations were used to calculate fit sta-
tistics. For tests of extension to 100 pg. data, SmartSeq
Plus samples were excluded because these samples were
not generated using 100 pg. input RNA for cDNA gener-
ation and amplification, but by pooling ten 10 pg. diluted
replicates before sequencing library preparation, and so
were not appropriate for the modeled process. In all cases,
validation statistics were calculated based on predictions
for genes within covariate ranges used in model fitting
and excluding 17 identified large influence genes. For
ERCC samples, this meant that four transcripts shorter
than 300 nt. were excluded. Also, because the ERCC
molecules span a 106 range while transcriptomes at a
single-cell level span ~103 range, 2.5%ile trimming based
on input molecules means that only 50 out 92 transcripts
were used. While the expected number of input molecules
is a very good predictor of gene detection, addition of the
remaining independent variables improved prediction
(Additional file 6). All additional independent covariates
also contributed significantly to the model. The model
was not sensitive to read-length or paired-end status: it fit
data truncated in silico to 50 base-pair single-end reads
well (Additional file 6). The model did not fit ERCC or
100 pg. dilution replicates well (Normalized Chi-square
goodness-of-fit test p < 0.05); however, it still improved
prediction accuracy in these cases compared to using
the number of input molecules alone for prediction
(Additional file 6).
When examining the effect of the number of input

molecules on the probability of gene detection, the
remaining covariates were set to median values (gene
length of 1.05 kilobases, GC content of 0.49, average
strength of local secondary structure of −24.7 kcal/mol,
no internal A-hexamer, sequencing depth of 17.1 million
reads). To calculate the effect of increasing sequencing
depth on percent genes detected, gene detection prob-
abilities were calculated for all genes included in regres-
sion analysis (using gene-specific covariate values) at
each examined depth. The expected number of genes
detected is the sum of detection probabilities over all
genes. To calculate a molecular detection rate for aRNA
with respect to poly-adenylated mRNA molecules, we fit
a logistic model with the same functional form using ex-
pected number of input molecules calculated from bulk
poly-A HBR samples, gene detection data from aRNA
HBR 10 pg. dilution replicates, and fixing the depth co-
efficient to the value estimated in the above analysis.

Sensitivity outliers
We calculated the squared deviance residual for each
observation as a measure of fit, using the logistic model
described above. The sum of squared deviance residuals
is equivalent to the likelihood ratio test statistic compar-
ing the saturated model with respect to the fitted model,
and the sum of squared deviance for a subset of observa-
tions can be considered the contribution of this set of ob-
servations to overall model fit. To find method-specific
problematic genes, we calculated the average squared de-
viance residual for each gene over all samples for each
method separately. For each method, we classified genes
with average squared deviance residual larger than 4 as
outliers. We repeated outlier identification for computa-
tionally ambiguous genes within the range of covariates
used in model fitting (n = 28,270).

Coverage
Nucleotide-level coverage was calculated for each gene
in the R programming environment [39] and using
Bioconductor libraries GenomicRanges and Rsamtools
[40–42]. Coverage was calculated based on uniquely
aligned reads only. Only computationally unambiguous
genes were used. Additionally, only genes with a single
annotated isoform were used in this analysis.
We calculated the observed per nucleotide coverage

scaled by the expected coverage as a function of absolute
3′ to 5′ position within a gene. (We chose this orienta-
tion because Smart-Seq and aRNA use poly-T priming,
so that at least some cDNA priming occurs at the 3′
end of genes). HBR and UHR dilution replicates were
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treated together. Replicates were grouped by method
and by input amount. Each gene in each sample was
considered an independent replicate observation of gene
coverage. Genes were filtered to include only those ob-
servations with an average of at least 2× coverage per
nucleotide. Genes were aligned from the 3′ end, so that
the per nucleotide sample size decreased from 3′ to 5′,
resulting in increased variance in estimates from 3′ to
5′. Nucleotide positions were filtered to include only
those with at least 25 replicate observations, which
means that for some genes 5′ data was excluded. For
each gene, per nucleotide coverage was normalized so
that the expected coverage at each position was 1×. For
each nucleotide position, the expected value is equal
to the number of observations at that position and
the observed value is the sum of normalized observed
values at that position across observations. Using this
this scheme, each gene of at least length i contributes
equally to the observed coverage at position i, regard-
less of expression level. The result is positional ob-
served/expected coverage values.
To examine patterns of gene coverage as a function of

expression level, genes were grouped genes by average
per nucleotide coverage. We calculated the average per
nucleotide coverage for each of 100 equally sized bins
from 5′ to 3′, rather than coverage as a function of ab-
solute nucleotide position as above, in order to observe
qualitative coverage patterns occurring at the same rela-
tive position along gene bodies. For each gene, bin
values were normalized to sum to one so that within an
expression level category all genes contribute equally.
For an experimental group, positional bins were assigned
the average normalized coverage across all genes, ob-
served in any sample within the experimental group,
that fell within a given expression level category.

Precision
We calculated Pearson pairwise correlation coefficient
and Kendall tau pairwise rank correlation coefficient
across dilution replicates as a measure of similarity across
replicates. The Pearson correlation coefficient is sensitive
to large-valued outliers, while the Kendall correlation
coefficient is robust. In brief, Kendall correlation is
calculated as follows. For each pair of genes the pair is
categorized as concordant if the relative ranks of the
gene pair are the same for both samples and discordant
otherwise. The coefficient reports the fraction of all
pairs that are concordant less the fraction that are dis-
cordant. For both correlation coefficients, zeros were
treated as missing values, such that only genes observed
in both members of a pair were included in the calcula-
tion. Correlations were calculated on depth-normalized
read counts (as described in Alignment and quantifica-
tion, above).
To characterize measurement precision, we performed
least-squares regression of the empirical standard devi-
ation on the empirical mean. We used computationally
unambiguous genes to fit these models. Additionally, we
included only genes with >95% probability of presence
in a diluted replicate, excluded gene detection outliers
and trimmed the upper and lower 2.5%ile by mean value
for model fitting. Both the average and standard devi-
ation were log-transformed for normality of residuals.
After all filtering, at least 1,100 genes were used to fit
the model: log10(standard deviation) = a + b * log10(-
mean). Sample sizes ranged from 1,149 to 1,269 genes.
A separate model was fit for each experimental group.
Because 100 pg. experimental groups have small sample
sizes (for most, n < =5) and so provide unstable estimates
of variance due to missing values, we performed this
analysis on 10 pg. groups only. The NuGen HBR 10 pg.
sample size is also quite small (n = 4) and was excluded.
To characterize biases in experimental variation we

selected a subset of genes where empirical standard
deviation was not well predicted by the mean. Genes
with residuals in the upper or lower 5%ile were
categorized as having high or low experimental vari-
ability, respectively. Remaining genes were used as
background for enrichment tests for biophysical
characteristics. For enrichment tests of GC-content,
length, and secondary structure, we calculated the
Hodges-Lehmann estimate of difference in location
to provide an estimate of the magnitude of in loca-
tion between test and background gene. This metric
estimates the median difference between the two
groups.
For each method, genes with residuals within the

upper or lower 1%ile were classified as outlier genes with
unexpectedly high or low experimental variability. Out-
liers were identified for each experimental group, and
then merged across input amounts for each RNA source
by taking the union of identified outliers. We considered
both computationally unambiguous genes and also com-
putationally ambiguous genes, excluding those computa-
tionally ambiguous genes with mean expression outside
the range used in model fitting.
Principal components analysis was performed on

sample covariance matrix calculated using zero-
corrected log-transformed read counts for computa-
tionally unambiguous genes with non-zero counts in at
least on sample and using the R prcomp function. Each
PCA included the appropriate bulk HBR or UHR.
RSEM-estimated relative frequencies were normalized
to the same scale as the diluted replicates using the
DESeq method for estimating size factors, as described
above. Bivariate normal 95% confidence ellipses were
calculated for each experimental group using the R
dataEllipse function from the car package [43].



Dueck et al. BMC Genomics  (2016) 17:966 Page 20 of 22
Accuracy
Sample sizes (number of genes) for analysis in Fig. 4d-n,
given filtering described in plot legend, were the following:
HBR: n = 1,339 (10 pg.) and 2,797 (100 pg.); UHR: n = 1,243
(10 pg.) and 2,614 (100 pg.) As stated, in evaluation of gene
measurements in individual dilution measurements genes
with zero read counts were excluded. For evaluation of
average gene measurements, zero values in individual repli-
cates were retained. RSEM-estimated relative frequencies
were treated as true relative expression values for each
gene. These were normalized to the same scale as the
diluted replicates using the DESeq method for estimat-
ing size factors, as described above. Wide boxes in box-
plots of fold deviation in Fig. 4d–f include values for all
samples in an experimental group.
To identify method-specific biases in accuracy, we cal-

culated the median fold deviation for each gene across di-
lution replicates within each experimental group. Genes
with fewer than three observations were removed. Of the
remaining genes, those with median fold deviation in the
upper or lower 5%ile were categorized as overestimated
and underestimated, respectively. Remaining genes were
used as background for enrichment tests for enrichment.
For each method, genes within the upper or lower 1%ile
were classified as outlier genes with poor accuracy. Out-
liers were identified for each experimental group, and then
merged across input amounts for each RNA source by
taking the union of identified outliers. We repeated outlier
identification using computationally ambiguous genes,
following the same filtering criteria described above.
To generate density scatter plots of gene read counts

in individual dilution replicates, measurements from all
10 pg. dilution replicates for a given method were
pooled. The density scatter plots were generated using
the R densCols and KernSmooth::bkde2D functions.
These functions estimate local density using a binned
approximation to a 2 dimensional kernel density with a
bivariate Gaussian kernel. log10 read counts were used.
Low-depth in silico samples used in Additional file 11
were generated as described above (“Number of detected
genes”). For density scatter plots of average read counts,
averages were taken separately for HBR and UHR 10 pg.
dilution replicates. Averages for HBR and UHR were
pooled before density calculation.

Protocol variations
To evaluate the effect of removing purification of initial
cDNA, 12 additional HBR 10 pg. dilution replicates were
generated. 6 were generated using the same cDNA
protocol as the primary aRNA samples, in which initial
cDNA is purified using a MinElute column. 6 were gen-
erated without this purification step, with adjusted
molarity for aRNA amplification to accommodate the
change in reaction volume. Each set of 6 included 3
replicates generated using 13 rounds of PCR amplifi-
cation during sequencing library preparation and 3
using 15. In this analysis, differences in PCR treat-
ment were ignored.
To evaluate the effect of reducing rounds of cDNA

amplification, 5 additional HBR 10 pg. dilution replicates
were generated using 2 rounds of IVT amplification
(rather than 3). All amplified material was used as input
for sequencing library preparation. Additionally, these
samples were generated without initial cDNA purifica-
tion and using 15 rounds of PCR during sequencing li-
brary preparation (rather than 13). These data were
compared to 3 replicates generated using 3 rounds of
aRNA amplification, and otherwise following the same
protocol. To evaluate an optimized aRNA protocol, ex-
cluding initial cDNA purification and reducing rounds
of amplification, the same 5 HBR 10 pg. dilution repli-
cates used to examine the effect of reducing rounds of
IVT amplification were compared to the primary HBR
10 pg. aRNA data.
To examine the effect of ERCC addition, 10 replicates

beginning with 10 pg. HBR total RNA were amplified
using aRNA. In 5, ERCC spike-in controls were added
with reference RNA at a final dilution of 1:4,000,000.
Samples generated in ERCC optimization showed evi-
dence of cross-contamination, with counts assigned to
ERCC transcripts (total ERCC counts: 892–1,457) at
appropriate relative abundances for samples generated
without addition of ERCC controls.
The effect of strand-specific sequencing was evaluated

by re-quantifying aRNA HBR 10 pg. samples using
strand information.
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Additional file 1: Control dataset sample identification, protocol
information, and RNA sequencing stats. Experimental group, protocol
information and RNA sequencing statistics for each sample used in
primary analyses. Alignment statistics were based on STAR alignment to
hg19 and were with respect to reads retained after trimming for primer
or poly-A sequences [21]. (XLS 62 kb)

Additional file 2: Computationally unambiguous genes. Genes to which
reads can be uniquely assigned. See the Excluded and unambiguous
genes section in Methods for details on classification. (PDF 516 kb)

Additional file 3: Accuracy and robustness of estimated reference HBR
and UHR RNA expression levels. A. Consistency of abundance estimates
by three quantification algorithms relative to publicly available PrimePCR
measurements (see Methods). Scatters show log10 reads per million
(HTSeq [22] and Maxcounts [31]), log10 transcripts per million (RSEM), or
log10 molecules (PrimePCR). Upper quadrants indicate Pearson correlation
(R) of log-transformed estimates. Pairwise zeros were treated as missing
values. Estimates were based on combined raw reads from 3 bulk
reference samples generated using ribosomal depletion for each HBR
and UHR. RSEM estimates were used as reference throughout. B. Accuracy
and robustness of expression estimates across library preparation
methods: ribosomal-depletion (combined n = 3 samples per HBR and
UHR) and poly-A RNA selection (combined n = 4 samples per source). See
Methods for sample information. Scatters as in A using RSEM expression
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level estimates for each library preparation method. Ribosomal-depletion
samples were used as reference throughout. Abbreviations: Human Brain
Reference (HBR), Universal Human Reference RNA (UHR). (PDF 469 kb)

Additional file 4: Number of detected genes for low-depth in silico
samples. As Fig. 2a, except that each dilution replicate has been
subsampled to a depth of 500,000 unique genic reads. (XLS 74 kb)

Additional file 5: Gene detection logistic regression model. See model
details in Methods. Abbreviations: M expected number of input molecules;
L gene length (kilobases); G gene GC content; S strength of gene local
secondary structure (kilocalories per mole); hasA presence of A-hexamer
internal to gene body; D Depth (per 10,000,000 reads); S.E. standard error;
Wald Z Wald test statistic; Pr(>|Z|) Wald test p-value. (XLS 40 kb)

Additional file 6: Gene detection logistic regression fit and validation.
Model was fit using randomly selected 90% of 10 pg. data, excluding 17
large influence genes. Fit was evaluated on the remaining 10% of the
data. Fit was also evaluated on sequence data that was in silico truncated
to 50 base pair single end (“Truncated”), ERCC read counts (“ERCC”), and
100 pg. dilution replicates (“100 pg.”). AUC (area under receiver operating
characteristic curve) reported as mean values ± 2 Sd. calculated over 10,000
bootstrap samples. AUC (molecules) predicts detection based on number of
input molecules alone. See Methods for further details. (XLS 29 kb)

Additional file 7: Probability of gene detection. Based on model described
in Methods. Remaining covariates set to median value. (PDF 34 kb)

Additional file 8: Gene detection outliers. Genes that are problematic
for detection. See Methods for classification of outliers. “Gene set”
indicates whether gene is classified as computationally unambiguous (1)
or not (2). “Detected/undetected” indicates whether the gene is
unexpectedly observed (D) or unexpectedly unobserved (U). (PDF 181 kb)

Additional file 9: Precision outliers. Genes with residuals within the
upper or lower 1%ile with respect to regression of standard deviation on
the mean (see Methods). “Gene set” indicates whether gene is classified
as computationally unambiguous (1) or not (2). Only genes whose mean
is within the range of fitted model were included. Column values
indicate whether indicate whether the gene standard deviation is
unexpectedly low (L) or high (H), given mean. (XLS 114 kb)

Additional file 10: Accuracy outliers. Genes were identified as accuracy
outliers if its median fold deviation, taken across dilution replicates, was
contained in the upper or lower 1%ile of all considered genes (see
Methods). Columns labeled by single-cell protocol contain an “H” if a gene
was identified as an overestimated outlier, and an “L” if a gene was
identified as an underestimated outlier. “Gene set” indicates whether gene
is classified as computationally unambiguous (1) or not (2). (XLS 218 kb)

Additional file 11: Measurement reliability at low sequencing depth. As
Fig. 4k–m, but using low-depth in silico samples in place of individual
10 pg. replicates. (A) aRNA. (B) SmartSeq Plus. (C) NuGen. (XLS 329 kb)

Additional file 12: Normalized read counts and expectation for ERCC
transcripts. A–B. ERCC transcripts are found along the x-axis, ordered by
expected number of input molecules. Axis labels are in the format of
“ERCC spike-in ID, expected number of input molecules”. Points indicate
the normalized read count for one transcript in one sample. Horizontal
gray lines and background gray boxes indicate the expected normalized
read count and a 95% CI under a Poisson model of dilution. Wide red
horizontal lines indicate mean normalized read counts across all ERCC
transcripts with a common expected number of input molecule, and red
boxes indicate mean ± 2 × s.e.m. (A) aRNA. (B) SmartSeq Plus. (XLS 964 kb)

Additional file 13: Optimization dataset sample identification, protocol
information, and RNA sequencing stats. As Additional file 1 for samples
used in protocol optimization analyses. (XLS 37 kb)
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