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Abstract 

In Wason’s selection task, participants select whichever of 
four cards could provide evidence about the truth or falsity of 
a conditional rule. As our meta-analysis of hundreds of ex-
periments corroborates, participants tend to overlook one of 
the cards that could falsify the rule. 15 distinct theories aim 
to explain this phenomenon and others, but many of them 
presuppose that cards are selected independently of one an-
other. We show that this assumption is false: Shannon’s en-
tropy for selections is reliably redundant in comparison with 
those of 10,000 simulated experiments using the same four 
individual probabilities for each real experiment. This result 
rules out those theories presupposing independent selections. 
Of the remaining theories, only two predict the frequencies 
of selections, one (due to Johnson-Laird & Wason, 1970a) 
provides a better fit to the experimental data than the other 
(due to Klauer et al., 2007). We discuss the implications of 
these results.  

Keywords: Conditional reasoning; Entropy; Falsity, Selec-
tion task; Mental models. 

Introduction 
Human beings are able to evaluate whether assertions are 

true, and to select evidence relevant to such evaluations. 
The late Peter Wason (1968) carried out a paradigmatic 
study to test whether naive individuals grasped the rele-
vance of falsification. In his original “selection” task, the 
experimenter explains to the participants that there is a pack 
of cards in which each card has a letter on one side and a 
number on the other side. Four cards are taken at random 
from the pack, and placed in front of the participant (see 
Fig. 1). The experimenter then presents the rule: 

If there is a D on one side of a card, then there is a 3 on  
the other side. 

The participants’ task is to select just those cards that, if 
turned over, would show whether or not the rule is true or 
false of the four cards. The task is a demonstration, not an 
experiment, because it has no independent variable. 
 Participants tend to select the D card alone, or the D and 
3 cards, but rarely the D and 7 cards. Yet, if the 7 has D on 
its other side, the rule would be false. This failure to falsify 
was shocking. Perhaps as a consequence more than 300 
experiments investigating the task have been published 
over the last 50 years. 
  In order to try to understand performance, psychologists 
developed various versions of the task. They explored rules 
of  different  sorts,  such  as  disjunctions  and  rules framed  

Figure 1. The four cards in Wason’s selection task. Each 
has a number on one side and a letter on the other side. The 
participants’ task is to select just those cards that, if turned 

over, would show whether or not the rule shown above 
holds for the four cards. The letters p, q, etc. are added for 
illustrative purposes as the rule is of the sort, if p then q. 

 
with “every” in place of “if” (Wason & Johnson-Laird, 
1969; Wason & Shapiro, 1971), cards with all the infor-
mation on one side but partly masked, choices of just two 
cards (e.g., Johnson-Laird & Wason, 1970b), or choices of 
multiple cards, with repetitions of one or more cards (e.g., 
Oaksford & Chater, 1994). But, two main versions elicited 
better performance than abstract rules, such as the one in 
Fig. 1. One version used everyday rules, such as one about 
destinations and modes of transport (Wason & Shapiro, 
1971). The other version switched the task around so that 
participants had to select those cards representing individu-
als who might be violating a deontic rule (e.g., Griggs & 
Cox, 1982), such as:  

If a person is drinking beer, then the person must be 
over 19 years of age. 

The efficacy of some deontic rules, such as one about the 
amount of postage on letters (Johnson-Laird, Legrenzi, & 
Legrenzi, 1972), depended on the participants’ familiarity 
with them, but not all do so. 

As the number of experimental studies grew, so too did 
the number of theories. By our reckoning, there are at least 
15 distinct theories of the selection task including ones 
based on the meaning of conditionals, on formal rules of 
inference for them, on heuristics such as “matching” in 
which participants merely select those cards referred to in 
the rule (Evans, 1977), on content-specific rules of infer-
ence, and on the probabilities with which the various items 
on the cards occur in reality (Oaksford & Chater, 1994). 
Given that the selection task has been under investigation 
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for half a century, the existence of 15 theories about it is 
embarrassing for cognitive science. Our aim in what fol-
lows is therefore to describe meta-analyses of the experi-
ments that aimed to eliminate as many theories as possible.  
 

Meta-analyses 
The reliability of the results 

We searched the literature for experiments on the selec-
tion task with the proviso that they used a conditional rule 
of the sort: if p then q, and that they reported at least the 
frequencies of the four canonical selections of p, pq, 
pqq, and pq, which the early studies had reported. Hence-
forth, we abbreviate selections in the preceding way, stating 
which of the 4 cards they included, e.g., pq denotes a selec-
tion of the p and q cards (see Fig. 1). We divided the result-
ing experiments into three categories according to the na-
ture of the rule they used: abstract, everyday, or deontic. 
We also classified them according to whether they reported 
the frequencies of only the 4 canonical selections and a 
category of “other” selections, or the frequencies of all 16 
possible selections. The studies can be found at 
http://www.cc.uni-freiburg.de/data. 

Because the first studies were carried out half century 
ago and subsequent ones in many countries, their results 
might be too heterogeneous for an informative test of the 
theories. We assessed the overall homogeneity of the re-
sults for the three categories of task from the reliability of 
the rank orders of the frequencies of their canonical selec-
tions. Table 1 reports Kendall’s coefficient of concordance, 
W, which ranges from 0 for no consensus to 1 for perfect 
consensus, for the three categories of task. The results show 
a reasonable and robust consensus over the experiments. 
Table 2 presents the overall percentages of each of the four 
canonical selections for the three sorts of selection task. It 
shows why the deontic task yielded a greater concordance, 
W: the majority of participants selected cards denoting po-
tential violations of the rule.  
 

Table 1. The concordance across different experiments 
examining the three main sorts of selection tasks as as-

sessed with Kendall’s coefficient of concordance, W, and 
stating its χ2 and p values. 

 
Three sorts of 
selection task 

Number of 
experiments 

Kendall’s  χ2  and p value 

Abstract  104 W = .34 107, p < .001 
Everyday   44 W = .25   33, p < .001 
Deontic  80 W= .54   29, p < .001 

 
The redundancy of the selections 

Many studies of the selection task report only the four 
separate probabilities with which participants selected each 
of the cards (e.g., Evans, 1977). These results, however, 
make sense only if the selection of each card is independent 
of the others. Some investigations have reported this inde-
pendence (e.g., Evans, 1977). But, others have refuted it by 
establishing correlations  between  the  selections (Pollard,  

1985; Oaksford & Chater, 1994). Correlations, however, 
are only among pairs of cards in selections. A better as-
sessment would take into account each selection as a whole 

 
Table 2. The percentages of each of the four canonical se-

lections for the three sorts of selection task 
 

  The canonical selections 
p pq pqq pq 

Abstract 36 39 5 19 
Everyday  23 37 11 29 
Deontic 13 19 4 64 

 
and all the selections made in an experiment. We therefore 
introduced a new procedure that combines Shannon’s 
measure of entropy (or informativeness) with the computer 
simulation of thousands of experiments. The underlying 
intuition is straightforward. Suppose the selections in an 
experiment are more redundant – more predictable – than a 
prediction made solely from the frequencies of selecting 
each of the four individual cards in the experiment. It fol-
lows that the cards in selections are, not independent of one 
another, but interdependent. And some aspect in the pro-
cess of selecting cards yields the redundancy. 

 The first step in our procedure is to compute the amount 
of information in the selections in an experiment, i.e., the 
difficulty of predicting them. We use Shannon’s measure of 
entropy: 

H = - Σ Pi log2Pi 
for the set of selections, where Pi denotes the probability of 
the i-th selection, and log2 denotes a logarithm to the base 
2. In general, the greater the number of different selections, 
and the more evenly distributed the frequencies over them, 
so the value of H increases, and it is harder to predict the 
selections. If participants chose each card independently of 
the others, the value of H for the experiment would not 
differ reliably from its value for selections derived from 
sampling according to the four probabilities for selecting 
each card. But, if the value of H for the selections in the 
experiment is reliably smaller than this theoretical value, 
then we can reject the null hypothesis of independent selec-
tions. In other words, the redundancy reflected in a smaller 
value of H reflects interdependence in the selections. 

 As an illustrative example, consider the selections in 
Experiment 2 of Stahl et al. (2008), which we choose be-
cause of its large number of participants: 351. Here are the 
frequencies of the selections, in which 6 participants select-
ed none of the cards:  

p 92, pq 99, pqq 2, pq 20, ppqq 19, pq 6, ppq 2,  
pqq 2, q 18, pq 22, pp 7, qq 6, p 7, q 43, none 6. 

They show that the probabilities of selecting each of the 
four cards were as follows:  

 p 0.69, q 0.49, q 0.26, p 0.19. 
The value of H for the selections in the experiment is 2.8 
bits. Could this value have occurred by chance? We used a 
resampling procedure to find out its chance probability 
(see, e.g., Good, 2001). We ran a computer program to car-
ry out 10,000 simulated experiments based both on the 
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number of participants in the original study and on its prob-
abilities above of selecting the four individual cards. The 
resulting mean value of H was 3.13, which shows that the 
observed selections in the experiment have a redundancy of 
0.33. More important, however, is that not one of the simu-
lated experiments yielded an entropy as low as 2.8 bits, and 
so the difference is statistically significant (p < .0001). The 
redundancy in the original experiment did not occur by 
chance. In summary, a statistically significant degree of 
redundancy in selections in an experiment is evidence for 
their interdependence.  

We programmed an algorithm based on the same idea. Its 
key difference from our analysis of Stahl’s data above is 
that it concerns only the four canonical selections. This 
constraint is necessary because so many experimental re-
ports state the results only for them. Four selections have a 
maximum entropy of 2 bits if they are each equiprobable. 
The mean over the 228 experiments (in Table 1) is 1.27 bits 
(with a standard deviation of 0.48). The input to the pro-
gram states the number of participants and the frequencies 
of the four selections for each experiment in the set. Its 
main steps are as follows. For each experiment: 

 
1. Compute N, the number of participants, and the 

probabilities with which each of the 4 cards oc-
curred in the experiment’s selections.	

2. Compute Shannon’s entropy H for the experiment.	
3. Carry out 10,000 simulated experiments based on  

the probabilities of selecting each card, assigning a 
selection to each of the N participants.	

4. Return the number of simulated experiments with a 
higher entropy than the actual experiment and the 
number of them with the same or a lower entropy.	

 
Table 3. The mean entropies (in bits) of 228 experiments 

on three sorts of selection task, the mean entropies of sets 
of 10,000 simulations of each experiment, and Wilcoxon’s 
tests (W, and its p-value) of the difference between them. 

 
The three 
sorts of selec-
tion task 

Mean entropy  
of experiments  

Mean entropy 
of sets of 
simulations 

Wilcoxon’s 
W and p-value 

Abstract 1.32 1.42 W = 469, p < .001 
Everyday   1.51 1.66 W =  28, p < .001 
Deontic 1.06 1.21 W =  68, p < .001 

 
Table 3 presents the mean entropies of the 228 experi-

ments investigating the three sorts of selection task, the 
mean entropies of each of their 10,000 simulations, and the 
results of Wilcoxon’s W test and its p-value comparing the 
pairs of means. These results allow us to reject the null hy-
pothesis of independent selections. The redundancy shown 
in the smaller entropies of real experiments over simulated 
ones shows that the cards in selections are not selected in-
dependently of one another. They are selected in an inter-
dependent way. This result eliminates any theory that pre-
dicts that selections are independent.  

 
 

Theories of the selection task 
Some theories of the selection task are informal and 

make only qualitative predictions about selections (e.g., 
Wason, 1968). Some predict only whether the correlations 
between selecting the possible pairs of cards are positive or 
negative (Oaksford & Chater, 1994). Some predict only the 
probabilities of selecting each of the four cards (Evans, 
1977; Hattori, 2002; Oaksford & Wakefield, 2003). We 
discount all of these theories as insufficiently powerful to 
make quantitative predictions about the frequencies of the 
canonical selections, let alone all 16 possible selections. 
There remain just two theories, which we now outline. 
 
The insight model  

The first algorithms to model the mental processes under-
lying the selection task were due to Johnson-Laird and Wa-
son (1970a). Their principal algorithm posits three levels of 
insight into the importance of falsification: no insight, 
which implies that reasoners select only cards referred to in 
the rule – an anticipation of “matching” bias (Evans, 1972); 
partial insight, which implies that reasoners consider all the 
cards, adding any further cards that verify the rule, or, fail-
ing that, that falsify the rule; and complete insight, which 
implies that reasoners select only cards that can falsify the 
rule. The algorithm was published as a flow chart, but not 
implemented, because of a lack of access to a main-frame 
computer. We recently programmed it, replacing its use of 
truth tables with mental models and fully explicit models, 
simplifying its processes, but keeping its original function-
ality so the program makes the identical predictions to the 
original version. 
  Given a rule of the sort if p then q, the program begins by 
compiling a list of cards to select, and its first step is to 
scan its mental model of the conditional, and as a result to 
put p on this list. If the program also scans the model in the 
opposite direction, it adds q to the list. With no insight into 
the task, these selections verify the rule. However, the pro-
gram implements two interrelated levels of insight. Partial 
insight is to assess all the cards, and to add any further card 
that verifies the rule, or, if none does, to add any that falsi-
fies the rule. So, if q is already in the list, partial insight 
adds q, because it can falsify the rule, yielding the selection 
pqq. Complete insight is to select only cards that can falsify 
the rule, and yields the selection pq. Complete insight oc-
curs only if all the cards are examined. An explicit bicondi-
tional as an input yields a selection of all four cards in cer-
tain cases, e.g., when it scans its model in both directions 
with partial insight.  
 Fig. 2 presents, not the algorithm, but a tree diagram 
summarizing its parameters and its predictions for condi-
tionals and biconditionals. As it illustrates, the algorithm 
produces the same selections as a result of different pro-
cesses, and it is not deterministic, i.e., nothing in the algo-
rithm determines the level of insight (pace Evans, 1977, 
who took the algorithm to be deterministic). The predic-
tions in Fig. 2 explain why selections should be interde-
pendent, e.g., verifying cards include q only if they include 
p and falsifying cards include q if and only if they include 
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p. The only exceptions to the algorithm’s outputs should be 
the result of guessing or haphazard errors.  In fact, these 
exceptions occur at a rate less than chance in the 288 exper-
iments. 

 
Figure 2. The predictions of the insight model (Johnson-

Laird & Wason, 1970a) as a binary decision tree. Each de-
cision is controlled in its recent implementation by a pa-

rameter (see text). Participants with no insight select only 
cards referred to in the rule. Those with partial insight con-
sider all cards, selecting any further card that can verify the 

rule, or, failing that, that can falsify it. Participants with 
complete insight select only cards that can falsify the rule. 

 
 Our implementation of the algorithm contains three 
probabilistic parameters in the unit interval from 0 to 1. The 
first parameter, c, is the probability of scanning the model 
in both directions as opposed to scanning in only one direc-
tion. The second parameter, e, is the probability of examin-
ing all four cards, and if the result fails to add any card that 
verifies the rule, adding any card that falsifies it. This cor-
responds to partial insight. The third parameter, f, is the 
probability of complete insight, which makes only a falsify-
ing selection.  
 
The inference-guessing model 

 Klauer et al. (2007) proposed a set of related theories, 
including one with a heuristic component allowing for 
guessing, and an inferential component. There is no algo-
rithm the implements the theory’s underlying processes, but 
its predictions were modeled in a binary tree.  This model 
has 10 parameters, which are each the probability that one 
sort of process occurs rather than another, and so each is in 
the unit interval from 0 to 1. The model’s first parameter is 
the probability that the inference governs the selection as 
opposed to guessing. The guessing component makes inde-
pendent selections of each of the four cards according to 
four parameters that are the respective probabilities of se-
lecting each of them independently as a result of guessing 
or any heuristic factor such as “matching” (Evans, 1977). 
The theory assumes that selections are governed, not by the 
meaning of the rule, but by inferences from the rule. The 
particular inferences depends on five parameters:   

1. The probability that the rule, if p then q, is interpreted 
as a conditional as opposed to a biconditional. 

2. The probability that the inference is forwards from the 
if-clause: modus ponens (MP) or denial of the antecedent 
(DA), as opposed to backwards from the then-clause: mo-
dus tollens (MT) or affirmation of the consequent (AC).  

3. Given the biconditional interpretation, the probability 
that the interpretation is bidirectional, if p then q & if q then 
p, as opposed to a case distinction, if p then q & if not-p 
then not-q. With the bidirectional interpretation, the distinc-
tion between forwards and backwards inferences does not 
apply – both are made, but with a case distinction interpre-
tation, the distinction still applies. 

4. The probability that an inference from a conditional or 
a bidirectional biconditional is a sufficient one as opposed 
to a necessary one. Normally, p is judged sufficient to infer 
q from if p then q, but sometimes p is judged necessary to 
infer q, as when the conditional is interpreted as stating an 
enabling condition akin to only if p then q. A forward suffi-
cient inference is MP, whereas a forward necessary infer-
ence is DA; and a backward sufficient inference is AC, 
whereas a backward necessary inference is MT.  

5. The probability that inferences are made only about 
the visible sides of cards as opposed to the invisible sides of 
cards too, i.e., individuals can envisage items on them.  

The model contains 10 parameters but the data are the 
frequencies of the four canonical selections. Hence, to en-
sure that the process of fitting model to data converges and 
does not overfit the data, we  implemented a restricted in-
ference-guessing model that makes the four canonical se-
lections. Fig. 3 summarizes the predictions of this restricted 
inference-guessing model. The reasoning component in the 
original model makes no more than two inferences on a 
trial, and so it cannot make the canonical selection of three 
cards: pqq.  We therefore changed the original guessing 
component to make this selection. 

 
Figure 3. A restricted version of the binary decision tree of 
the inference-guessing model (Klauer et al., 2007) for the 4 
canonical selections. Each decision is controlled by a pa-

rameter (see text). 
 

The two models are based on the only theories that we 
could find in the literature that can be programmed with 
parameters that fit data about the frequencies of selections.  
 

An evaluation of the two models 
We evaluated the insight model with 3 parameters (John-

son-Laird & Wason, 1970a) and the restricted inference-
guessing model with 4 parameters (cf. Klauer et al., 2007).  
Their respective predictions can be represented as trees of 
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binary decisions (see Fig. 2 and Fig. 3). Both models in-
voke alternative sequences of processes depending either 
on three decisions in the insight model or four decisions in 
the inference-guessing model. Because each model’s pre-
dictions correspond to a tree of decisions, we evaluated 
each of them as a multinomial processing tree (MPT) in 
which the probability of a particular cognitive state is esti-
mated from the observed frequencies of selections (Riefer 
& Batchelder, 1988). A program fitted each of the two 
models to the frequencies of the canonical selections of the 
three sorts of selection task: 104 experiments with the ab-
stract task, 44 experiments with everyday task, and 80 ex-
periments with deontic task (see Tables 1-3 above). We 
used the maximum-likelihood method from the R-package 
for multinomial processing trees (the MPTinR of Singmann 
& Kellen, 2012). We calculated three measures to compare 
the goodness of fits of the two theories:- 
 
• The root mean square errors (RMSEs) of the fits. 
 
• The Bayesian information criterion (BIC), which indicates 
how much information is lost when a model represents the 
process that generates the data, taking into account both its 
goodness of fit and its number of parameters. It penalizes 
models according to the number of their parameters, and 
the smaller its value, the better the fit between a model and 
the data. 
 
• The Bayes factor (BF; Schwarz, 1978), which is a Bayesi-
an method to compare different models. It uses an approx-
imation of the difference between the BIC value of model 1 
and BIC value of model 2 as computed by MPTinR. The 
higher its value between 30 and 100, the stronger the sup-
port for model 1 over model 2 (Wagenmakers et al., 2011). 
 

Table 4 presents the three measures for each of the two 
models. As it shows, the insight model with three parame-
ters has a closer fits, and lower BIC values, than the re-
stricted inference-guessing model. The Bayesian factor 
likewise shows stronger evidence for the insight model than 
for the restricted inference-guessing model. The insight 
model has the advantage of fewer parameters.  As a theory, 
it is simpler because it relies on the meaning of the rule 
rather than inferences from it, and because it has no ma-
chinery to account for selections that occur at a rate less 
than chance. But, it is not a paragon, and we explain why 
below.  
 

General Discussion 
Half a century of research and over 300 articles should 

have led to a single unique theory of a cognitive task rather 
than to 15 different theories. That was the situation for Wa-
son’s selection task. The present research, however, has 
eliminated all but one theory. And it did so using the fol-
lowing strategy. It established a large but representative set 
of experiments investigating rules of the sort if p then q that 
had a reliable  concordance  in  their  results (Table 1). 
These results established the rarity of falsifying selections, 

pq, except when they violate a deontic rule Table 2). The 
four canonical selections (p, pq, pqq, and pq) are reliably 
redundant in most experiments in comparisons of each ex-
periment’s entropy (informativeness) with the entropy of its 

 
Table 4. The insight model’s and the restricted inference-

guessing model’s goodness of fit with the individual canon-
ical selections for 288 experiments overall and for the three 
sorts of selection task: the root mean square errors (RMSE) 

for their predictions, their Bayesian information criteria 
(BIC), and the Bayes factors for the better-fitting model. 

 
10,000 simulations based on its four probabilities of select-
ing each card (Table 3). Not all experiments yield redun-
dant selections, but the vast majority do. This result ruled 
out theories that imply that selections of cards are inde-
pendent of one another. Above all, theories therefore need 
to predict the frequencies of the canonical selections. Per-
haps surprisingly, this criterion rules out nearly all the re-
maining theories.  Klauer et al. (2007) had programmed an 
MPT of their inference-guessing model using 10 parame-
ters to make predictions for the frequencies of all 16 possi-
ble selections – most of which do not occur more often than 
chance. More than twice as many experiments reported the 
frequencies only of the four canonical selections than re-
ported them for all 16 selections. Hence, we produced an 
MPT for a restricted version of the model that used four 
parameters to predict the frequencies of the canonical selec-
tions. To do so, we reduced the original parameters for 
guessing to one, which made a selection of three cards, 
otherwise impossible for the model to select. For the insight 
model, we programmed an algorithm that carried out its 
processes (Johnson-Laird & Wason, 1970a), and we used it 
to construct an MPT model with three parameters.  The 
insight model yielded a better fit with fewer parameters 
(Table 4).  
 The story of the selection task does not end here. But, the 
success of the insight theory tells us that we have returned 
to how it was conceived after only a handful of studies. 
Naive individuals focus on those cards mentioned in the 
rule, and select them if they can verify the rule. With a little 
bit of insight, they consider all the cards, and may select 
additional cards. With complete insight, they select only 
cards that can falsify the rule (Johnson-Laird & Wason, 

The 3 sorts 
of the sele-
ction task 

Cognitive  
model RMSE 

Bayesian 
 Information 

Criterion (BIC) 

Bayes 
factor 

Overall Insight 2.69 27.7 
99.5 Inference-  

guessing 
19.35 37.0 

Abstract Insight 1.97 25.7 
73.7 Inference-

guessing 
3.28 34.3 

Everyday 
   

Insight 1.7 23.2 
47 Inference-

guessing 
2.18 30.9 

Deontic Insight 0.8 23.5 
49.4 Inference-

guessing 
1.05 31.4 
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1970a). We now know that various factors – the compe-
tence of participants, the contents of the rule, and the fram-
ing of the task – can all enhance insight. An account along 
these lines seems to be correct, except perhaps when exper-
iments implicate probabilities in their contents or framing 
(e.g., Oaksford & Chater, 1994).  

The excellent fit of the insight model must be viewed 
with caution. The number of parameters in a model is a 
measure of our ignorance. Those for guessing seem to be 
dispensable. Indeed, some selections are very odd, as we 
saw earlier in our analysis of the results from Stahl et al. 
(2008). They are so odd that they must count as irrational 
on any criterion: the participants erred or guessed. Introduc-
ing parameters to model guessing has no theoretical value 
other than to index the difficulty of a task. The insight theo-
ry has three essential parameters, and the original infer-
ence-guessing model has five. The difference reflects an 
crucial distinction: whether people determine the truth val-
ue of an assertion based on its meaning (the insight model) 
or based on inferences from it (the inference-guessing 
model). Therein may lie the advantage of the insight model. 
But, we are bound to ask what mechanisms might replace 
its parameters. We now know that the insight to make falsi-
fying selections depends on various factors, including intel-
lectual ability (e.g., Stanovich & West, 1998). Hence, it 
may be feasible to replace the parameter for the probability 
of complete insight with a measure of ability. It is even 
conceivable that the parameter of partial insight might re-
flect a lesser but above average intellect. The parameter for 
scanning a model of the conditional in both directions is 
more problematic. It may depend on the processing capaci-
ty of working memory. These speculations in no way rule 
out the possibility of some quite different theory of the se-
lection task outperforming the insight model. 

If our research has any general moral, it is an old one: 
cognitive theories should be effective procedures (Johnson-
Laird, 1983, p. 6). They should be programmable. 
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