
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Vision-Based Eco-Oriented Driving Strategies for Freeway Scenarios Using Deep
Reinforcement Learning

Permalink
https://escholarship.org/uc/item/3rt0n1tn

Author
Jiang, Yu

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rt0n1tn
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Vision-Based Eco-Oriented Driving Strategies for Freeway Scenarios Using Deep

Reinforcement Learning

A Thesis submitted in partial satisfaction

of the requirements for the degree of

Master of Science

in

Electrical Engineering

by

Yu Jiang

December 2020

Thesis Committee:

Dr. Guoyuan Wu, Co-Chairperson

Dr. Matthew Barth, Co-Chairperson

Dr. Jun Sheng

Copyright by

Yu Jiang

2020

The Thesis of Yu Jiang is approved:

 Committee Co-Chairperson

 Committee Co-Chairperson

University of California, Riverside

iv

Copyright Acknowledgements

The text and figures of this thesis in Chapter 2-4, in part, are a reprint of the material

as it appears in the published work: Wei, Z., Jiang, Y., Liao, X., Qi, X., Wang, Z., Wu, G.,

Hao, P., and Barth, M. (2020). End-to-End Vision-Based Adaptive Cruise Control (ACC)

Using Deep Reinforcement Learning. arXiv preprint arXiv:2001.09181. Presented in

Transportation Research Board (TRB) 2020.

v

Acknowledgements

First of all, I would like to express my appreciation to my parents for their continuous

support during the years of my study. I would also like to express my gratitude to my

faculty advisors, Prof. Guoyuan Wu and Prof. Matthew J. Barth. They provided me with

encouragement and patience throughout this work. The thesis would not be possibly

completed without their continuous guide and instruction. Besides, I would like to extend

my sincere thanks to all TSR group members for their assistance and collaboration. Finally,

special thanks to former TSR group member Xuewei Qi for the original idea of this work.

vi

ABSTRACT OF THE THESIS

Vision-Based Eco-Oriented Driving Strategies for Freeway Scenarios Using Deep

Reinforcement Learning

by

Yu Jiang

Master of Science, Graduate Program in Electrical Engineering

University of California, Riverside, December 2020

Dr. Guoyuan Wu, Co-Chairperson

Dr. Matthew Barth, Co-Chairperson

 The rapid development of sensor technologies and machine learning algorithms has

prompted the automotive industry to take big steps towards autonomous driving. However,

complex driving scenarios make the task extremely challenging. The current technologies

are sensors-hungry, and the systems are comprehensive to achieve robust behavior in the

real world, which causes an autonomous driving system to be unwillingly expensive.

Leveraging the computer vision techniques, the camera as a relatively cheaper sensing

option is becoming crucial in the system. Using the emerging game engine-based

simulation platform, the development of vision-based autonomous driving achieved by

deep reinforcement learning becomes practical and more efficient. Besides, energy

consumption and greenhouse gas emissions have been a major concern in recent years due

vii

to the increased travel demand. Environmental sustainability of our transportation system

has become a significant topic for researchers and engineers. Motivated by all these, this

thesis presented an end-to-end solution for advanced driving assistance strategies for

freeway scenarios using vision-based deep reinforcement learning technique. The system

is designed and tested in an advanced driving simulation platform based on game engine

and can learn optimal control actions directly from raw input images captured by the front

on-board cameras. The trained vehicle has robust and safe driving behavior following a

preceding vehicle or cruising on the straight freeway. The system can be well adaptive to

different speed trajectories of the preceding vehicle and run in real-time. Novel adaptive

gap-based and energy model-based reward functions are designed for eco-oriented driving.

The method achieved 7.2 – 21.7% energy savings compared with other methods led by

strict gap-based reward or force-based reward in the car following strategy.

viii

Table of Contents
Chapter 1: Introduction ... 1

1.1 Motivation ... 3

1.1.1 Environmental Impacts by Transportation.. 3

1.1.2 Advances in On-board Sensors ... 5

1.1.3 Development of Machine Learning based End-to-end Systems 6

1.2 Contributions... 8

1.3 Thesis Organization .. 8

Chapter 2: Background and Literature Review .. 10

2.1 Radar/LiDAR-based Advanced Driving Assistance System 10

2.1.1 Adaptive Cruise Control (ACC) ... 10

2.1.2 Cooperative Adaptive Cruise Control (CACC) .. 11

2.1.3 LiDAR Point cloud 3D Object Detection ... 12

2.2 Vision-based Advanced Driving Assistance System .. 13

2.2.1 Vision-based Perception ... 13

2.2.2 Vision-based Decision Making ... 14

2.3 Reinforcement Learning (RL) ... 15

2.3.1 The classic model of RL ... 15

2.3.2 Popular RL Methods ... 16

2.4 Microscopic Energy Consumption Models .. 23

2.4.1 Comprehensive Modal Emissions Model (CMEM) 24

2.4.2 Hybrid Energy Consumption Rate Estimation for EVs. 24

2.5 The Simulation Platform for Autonomous Driving .. 25

2.5.1 TORCS .. 25

2.5.2 Unity ... 26

2.5.3 CARLA ... 27

Chapter 3: The Proposed System Architecture ... 29

3.1 The System Workflow .. 29

3.2 The Neural Network Architectures ... 30

3.3 The Simulation Environment Setup .. 33

3.4 Data Acquisition ... 35

Chapter 4: End-to-end Vision-Based Eco-Oriented Strategies for Freeway Scenarios 38

ix

4.1 Introduction ... 38

4.2 Eco Car-Following Strategy ... 39

4.2.1 The DDQN Application to ICE Vehicles ... 40

4.2.2 The DDQN Application to EVs .. 42

4.2.3 The DDPG Application to EVs... 47

4.2.4 Summary and Discussion .. 51

4.3 Eco-Cruising Strategy ... 53

4.3.1 The DDPG Application to ICE Vehicles .. 53

4.3.2 Summary and Discussion .. 56

Chapter 5: Conclusions and Future Work ... 58

5.1 Conclusions ... 58

5.2 Future Research Directions ... 59

5.2.1 Urban Scenario.. 59

5.2.2 From the Simulation to the Real World .. 60

x

List of Figures

Figure 1.1. Total U.S. Greenhouse Gas Emissions by Economic Sector in 2018. [6] 4

Figure 1.2. Greenhouse Gas Emissions from Transportation, 1990-2018. [6] 5
Figure 1.3. The organization of this thesis. ... 8
Figure 2.1. The classic model of reinforcement learning [40]. ... 15
Figure 2.2. The architecture of DDPG [20]. ... 20
Figure 2.3. The screenshots of TORCS. ... 26

Figure 2.4. (a) A sample image of Udacity behavioral cloning project; (b) Windridge City

environment in AirSim. .. 27

Figure 2.5. A third person view in four weather conditions in CARLA. 28
Figure 3.1. System workflow for training. The dashed lines are optional choices

depending on the desired tasks. .. 29
Figure 3.2. System workflow for testing. ... 29

Figure 3.3. The RL network for DDQN. .. 31
Figure 3.4. The RL network for DDPG. ... 32
Figure 3.5. Two Sample Images of the Simulation Environment. 34

Figure 3.6. Communication procedure. .. 35
Figure 3.7. The real trajectories used for preceding vehicle. .. 36
Figure 4.1. A sample image of the freeway scenario. ... 38

Figure 4.2. The gap reward (left) and force reward (right). .. 40

Figure 4.3. Training and Testing Result for ICE Vehicles. .. 41
Figure 4.4. Training and Testing Result for EVs. ... 43
Figure 4.5. The gap reward (left) and energy reward (right) for EM-based DDQN. 45

Figure 4.6. The average reward per 1000 time-steps during the training (left); A segment

of velocity profile during the testing (right). .. 45

Figure 4.7. The force distribution during testing. The preceding vehicle (left); The agent

(right). ... 46
Figure 4.8. The adaptive gap reward function (safe_gap = 3m). 48

Figure 4.9. The training result of DDPG method. .. 49
Figure 4.10. The velocity profile of each method during a period of testing. 49
Figure 4.11. The gap profile of each method during an episode in testing. 50

Figure 4.12. The acceleration distribution of different system in testing. 51
Figure 4.13. The reward functions for eco-cruising strategy. ... 54

Figure 4.14. The training result for car cruising strategy. .. 56

xi

List of Tables
Table 1-1. Comparison between LiDAR and camera. .. 6
Table 3-1. Parameters of OU noise. .. 33

Table 3-2. Trajectory Parameters for ICE Vehicles and EVs in the Simulation. 37
Table 4-1. The simplified strategy for car following. ... 39
Table 4-2. The simplified strategy for car cruising. .. 39
Table 4-3. Energy Consumption and Pollutant Emission for Combustion Engine Vehicles

between different methods. ... 42

Table 4-4. Energy consumption for EVs between different methods. 44

Table 4-5. Energy Consumption for EVs using EM-based DDQN. 46

Table 4-6. Energy Consumption for EVs using different DDPG methods. 51

1

Chapter 1: Introduction

As a significant component in Intelligent Transportation Systems (ITS), autonomous

vehicles (also known as self-driving cars or automated vehicles) are vehicles that are able

to sense their environment and take over the partial or even entire dynamic driving task

under various complex conditions. It is honored with promises to revolutionize our life.

The degree of automotive automation can range from fully manual operation to fully

automated operation. According to the SAE J3016 standard [1], a ranking from 0 to 5 is

defined to describe the degree. In this standard, Level 0 means the driver must continuously

monitor all aspects of the dynamic driving task. Level 1 means the system can take over

either steering or acceleration/deceleration. The driver must continuously carry out the

other tasks and be ready to resume full control. At Level 2, the driver still needs to be ready

to resume control anytime, but the system is able to take over both steering and

acceleration/deceleration in a defined use case. At Level 3, the system not only has control

ability but is also capable of recognizing its limits and notifying the driver. The driver is

free from continually monitoring. A vehicle with Level 4 automation can take care of the

entire driving task in a defined use case. Within the case, the driver is no longer needed. If

the vehicle can take over all driving tasks in any use case, it is at Level 5, the top level of

autonomous driving.

For years, automotive and technology companies have been discussing autonomous

driving strategies. Now, more and more autonomous functions go on the market every year.

Some of the companies have made significant progress. For example, in 2015, Google

provided the world’s first fully driverless ride on public roads. The car had no steering

2

wheel or floor pedals with Level 4 automation [2]. In December 2016, the project became

a stand-alone subsidiary of Alphabet Inc. called Waymo. Soon in October 2017, Waymo

began testing autonomous minivans at Level 4 automation without a safety driver on public

roads in Chandler, Arizona [3]. Tesla, an American electric vehicle and clean energy

company, started their advanced driver assistance system (named Autopilot) from 2013. In

September 2020, they released the enhanced version, which provides full autonomy on

highways, parking and summons. Eight external cameras, a radar, and twelve ultrasonic

sensors and a powerful onboard computer provide a successful vision-based solution for

autonomous driver-assist system [4]. Besides, traditional automotive companies have not

fallen behind. The BMW Personal CoPilot provided various driving assistance system at

Level 3, such as adaptive cruise control, parking assistant, and lane keeping assistant [5].

The achievements in the past few years inspired not only customers but also investors.

More and more customers want driving assistance on their cars to reduce long-way

commuting pressure. Besides, investors also expect the potential profits and invest a

significant amount of money in the development or research of higher-level vehicle

automation. However, the final step is always the hardest. Perception and decision planning

are two significant challenges in the high-level automation. Perception is the detection,

recognition, identification, and interpretation of traffic information in the environment.

Based on the acquired surrounding information, driving behaviors are designed and

controlled by the decision planning logic. Many tasks may be easy for human drivers but

not the same for machines. For instance, the traffic sign recognition as a standard

perception task could be challenging in complicated scenarios such as narrow urban streets

3

surrounded by hundreds of shinning billboards. Then the decision planning is also a tricky

task when multiple sensors give various and possibly conflicting traffic information. There

are still some other technologies to potentially conquer these challenges, such as vehicle-

to-everything (V2X) technology enabled by dedicated short-range communications

(DSRC) or even 5th generation mobile networks (5G). It is far beyond just a driving

problem, but a very complex one combining communication network, urban planning,

human factors, and policy making.

Rather than looking forward to a higher-level automation, optimizing the traditional

driving assistance system is still a promising research direction. This thesis work focuses

on eco-oriented driving assistance strategies for freeway scenarios. The detailed

motivations are introduced in the following section.

1.1 Motivation

1.1.1 Environmental Impacts by Transportation

As for either human driving or autonomous driving, energy consumption has been

always an issue. In recent years, the fossil fuel consumption and greenhouse gas emissions

caused by the traditional internal combustion engine (ICE) vehicles have aroused more and

more public attention. According to the statistics provided by the U.S. Environmental

Protection Agency [6], transportation-related activities accounted for 28.2% of nationwide

greenhouse gas (GHG) emissions in the United States in 2018. As shown in Figure 1.1, the

transportation sector generates the largest share of greenhouse gas emissions. The share

has been increasing in recent years due, in large part, to the increased demand for travel

4

and goods movement. Figure 1.2 shows the overall trend of GHG emissions from 1990 to

2018.

Figure 1.1. Total U.S. Greenhouse Gas Emissions by Economic Sector in 2018. [6]

The development of electric vehicles (EVs) is aimed to be an excellent solution to this

problem. EVs transform the electric energy into kinetic energy electrochemically without

combustion and therefore have zero emissions of tailpipe carbon dioxide (CO2) or

pollutants such as oxides of nitrogen (NOx), non-methane hydrocarbons (NMHC), carbon

monoxide (CO), and particulate matter (PM) [7]. However, the sources to generate

electricity may not be that eco-friendly. According to the U.S. Energy Information

Administration [8], about 62.7% of electricity generation was from fossil fuels, while only

17.5% was from renewable green sources like wind turbines or solar panels. For this new

type of vehicle, it is still necessary to optimize energy efficiency to improve the mileage

between recharging, reduce battery heat, and reduce the consumption of the non-renewable

sources. Therefore, this work focus on eco driving for both ICE vehicles and EVs.

5

Figure 1.2. Greenhouse Gas Emissions from Transportation, 1990-2018. [6]

1.1.2 Advances in On-board Sensors

For intelligent driving assistance systems, a variety of techniques are used to detect the

environment such as radar, LiDAR (Light Detection And Ranging), GPS and computer

vision, etc. The robust and reliable sensors become critical hardware. As a fundamental

requirement for autonomous driving, the 3D object detection and depth estimation tasks

majorly rely on LiDAR, since it can provide accurate 3D point clouds of the detected

region. However, high accuracy also means expensive (at the cost of both information

storage and computational load). According to the automotive LiDAR market report [9], a

64-beam and 20 Hz model can cost around $75,000, not to mention the 60 W power

consumption. Therefore, the alternatives to LiDAR is desirable for avoiding a hefty

premium for autonomous driving hardware [10]. As human drivers using eyes to estimate

distance, using the stereo or monocular camera is a natural option. A group of stereo

cameras within $200-1000 could handle similar functions as the expensive LiDAR system.

6

The potential of cameras in autonomous driving has been explored in many recent works,

such as [10][11][12]. Especially in [10][11], the camera's accuracy and efficiency as

pseudo-LiDAR have been revealed. The detailed pros and cons of LiDAR and camera are

compared in Table 1-1. Based on the pros of the camera, we believe the potential of the

vision-based system is worth exploring, and vision-based architecture is adopted in this

work.

Table 1-1. Comparison between LiDAR and camera.

Sensor LiDAR Camera

Pros
and

Cons

√ Accurate depth information
× Less accurate depth information
√ Richer semantic information

√ Works all day and night
× Inaccurate under terrible weather
or smog environment

× Better at daytime
× Sensitive to weather and lighting
conditions

× Expensive (more than $10k)
× High energy consumption (10-
60W)

√ Cheap ($200-$3000)
√ Low energy consumption (2-
10W)

1.1.3 Development of Machine Learning based End-to-end Systems

In the deep learning field, “end-to-end” means all parameters are trained jointly rather

than in a “step-by-step” manner across the entire pipeline. There are no intermediate

variables between the input and the desired output. For example, to implement an

emergency brake function with some input observation data, the step-by-step method

intuitively gets the distance from the obstacles firstly, and then performs some control

strategy based on the distance. In comparison, the end-to-end system is more

straightforward. It takes those input data and outputs the control policy directly. As a result,

there is no need to specify and tune the parameters of each component individually. This

7

is attractive, since each part of the parameters will be optimal with respect to the desired

end task [13]. The reduced parameters also simplify the cost functions in most works and

avoid error propagation or error accumulation as well as over-complexity. The

accumulated errors sometimes may cause fatal accidents. In the tragic Tesla accident in

2016 [14], an error in the perception module in the form of a misclassification of a white

trailer as sky, propagated down the pipeline until failure [15]. The effectiveness of the end-

to-end system has been proved in many studies, such as [16][17][18].

Not only the end-to-end training has been proved to be effective, but various deep

machine learning (DL) methods have also been widely used in the research of driving

strategies. Cai et al. proposed a CNN+LSTM network architecture to map visual perception

and state information into future trajectories with the help of high-level turning command

[16]. Some deep reinforcement learning (DRL) architectures, such as Deep Q Network

(DQN) and Deep Deterministic Policy Gradient (DDPG), also achieved promising results.

Okuyama et al. used a DQN to train their autonomous agent, which can learn to drive and

avoid obstacles in a simulation based on the input images captured by the on-board

monocular camera [12]. Sallab et al. proposed a framework of an end-to-end DRL for

autonomous driving and tested the system in a simulated scenario of complex road

curvatures [19]. Lillicrap et al. proposed DDPG by adapting the ideas of Deep Q-Learning

to the continuous action domain and tested a car driving scenario for learning the end-to-

end policies from raw pixel inputs [20]. Despite the various DRL applications, there was

not an eco-oriented vision-based driving assistance system using DRL. Therefore, DRL

8

algorithms are applied in this work to seek an eco-oriented vision-based end-to-end

solution.

1.2 Contributions

This thesis provides end-to-end solutions for advanced driving assistance strategies in

the freeway scenarios using vision-based deep reinforcement learning architectures. The

contributions of the thesis are listed below:

• A novel end-to-end deep reinforcement learning based advanced driving assistance

system is designed and tested in a realistic simulation platform.

• The proposed system can be applied to ICE vehicles and EVs. The system is capable

of learning different driving strategies. The system architecture is simple (using only

sensor input from the front on-board cameras) and can work in real-time.

• Novel adaptive gap-based and energy model-based reward functions are designed

to guide eco-oriented driving.

1.3 Thesis Organization

The organization of this thesis is shown in Figure 1.3. The structure of this paper is

mainly divided into five parts.

Figure 1.3. The organization of this thesis.

9

The first chapter introduces the three major motivations of this work, and the

contribution as well as roadmap of this work in the field of Intelligent Transportation

Systems.

The second chapter summarizes the related work and presents the background

information from the following three aspects: advanced driving assistance techniques,

energy consumption models, and simulation platforms. Advanced driving assistance

techniques are divided by radar/LiDAR-based and vision-based techniques. Several major

objectives in this area are discussed, followed by the introduction and comparison among

classic deep reinforcement learning (DRL) methods. Besides, the energy consumption

models are presented to serve as the foundation for eco-oriented driving. Three prevalent

simulation platforms for training are finally illustrated.

The third chapter provides the proposed system architecture of this work, including the

system workflow, the network architectures, the simulation environment setup, and data

acquisition for reinforcement learning.

Chapter 4 applies two DRL algorithms to the proposed system. The system is used for

an eco-oriented car following strategy and an eco-oriented cruising strategy. The details of

multiple case studies and results for each strategy are introduced separately in section 4.2

and section 4.3. In addition, the result analysis and possible solutions are illustrated at the

end of each section.

Chapter 5 concludes the proposed advanced driving assistance system and its

effectiveness for two eco-oriented driving strategies. Two possible future research

directions are presented at the end.

10

Chapter 2: Background and Literature Review

2.1 Radar/LiDAR-based Advanced Driving Assistance System

2.1.1 Adaptive Cruise Control (ACC)

Cruise Control is a driver-assistance system that takes over the throttle of the vehicle to

maintain the speed set by the driver automatically. When there is a preceding vehicle

slowing down, the driver needs to take back the control of the throttle. Leveraging various

on-board sensors, the adaptive cruise control (ACC) technique can free the driver's feet by

automatically adjusting the longitudinal vehicle speed to maintain a safe distance from the

preceding vehicle. Once the ACC system is implemented in various cars' models on the

market, it has been widely acclaimed, especially by the drivers who spend one or more

hours commuting.

An ACC system has three major components: perception, planning, and actuation.

Perception provides necessary external information, such as the distance to the preceding

vehicle. Radar and LiDAR are the most commonly used sensors in an ACC system to detect

the depth of the environment. The planning phase indicates the longitudinal control

algorithms. It usually calculates a reference acceleration profile according to the perception

data. Finally, the low-level controller actuates the driving actions by converting the

reference acceleration into throttle and brake [21]. Many longitudinal control algorithms

have been proposed and optimized by researchers and engineers. Kesting et al. presented

an ACC system adapting an active jam-avoidance strategy that driving style automatically

changed w.r.t. different traffic situations [22]. Luo proposed a human-like ACC algorithm

using model predictive control (MPC), where safety, comfort, and time-optimality were

11

considered [23]. Shi and Wu designed a target recognition algorithm and a switching logic

for their ACC system on the curve [24].

In [25], the authors proposed a distributed consensus algorithm for their ACC system,

which provided the reference acceleration based on the speed difference and inter-vehicle

gap. The reference acceleration is given by:

𝑎𝑟𝑒𝑓 = 𝛽 ∙ (𝑑𝑔𝑎𝑝 − 𝑑𝑟𝑒𝑓) + 𝛾 ∙ (𝑣𝑝𝑟𝑒 − 𝑣ℎ𝑜𝑠𝑡)

where 𝛽 and 𝛾 are damping gains; 𝑣𝑝𝑟𝑒 and 𝑣ℎ𝑜𝑠𝑡 are the velocities of the preceding

vehicle and the host vehicle, respectively; 𝑑𝑔𝑎𝑝 is the inter-vehicle gap; 𝑑𝑟𝑒𝑓 is the

desired inter-vehicle gap, which is defined by the product of desired time gap and the

current velocity of the host vehicle, i.e., 𝑑𝑔𝑎𝑝 = 𝑣ℎ𝑜𝑠𝑡 ∙ 𝑡𝑔𝑎𝑝. It basically measures the

time that the host vehicle takes to reach the current position of the preceding vehicle.

𝑑𝑟𝑒𝑓 is also bounded by a minimum value of 𝑑𝑠𝑎𝑓𝑒 to avoid unreasonable small desired

inter-vehicle gap when 𝑣ℎ𝑜𝑠𝑡 approaches to 0. In the simulation testing, this algorithm

presented robust and smooth car following behavior. We used this algorithm as a

comparison when analyzing the energy efficiency of our methods in Chapter 4.

2.1.2 Cooperative Adaptive Cruise Control (CACC)

CACC, as an extension of the ACC concept, takes advantage of the vehicle-to-vehicle

(V2V) technology to allow connected and automated vehicles (CAVs) to form a platoon

and cruise at harmonized speeds [21]. Compared with the manually driven string or the

traditional ACC-enabled string, the CACC platoon achieves many benefits. Firstly, driving

safety is improved since the downstream traffic information can be broadcast to the

following vehicles in a timelier manner. Secondly, the time/distance headways between

12

vehicles are significantly reduced which considerably improves the roadway

capacity/utilization. Thirdly, the more advanced information shared via communication

can achieve better control performance, thus mitigating the unnecessary velocity

variations. Therefore, the CACC platoon not only improves the string stability thus

avoiding the phantom traffic jams [26], but also saves energy consumption as well as

reduces pollutant emissions.

2.1.3 LiDAR Point cloud 3D Object Detection

Point cloud means a set of data points describing the boundaries of objects in space.

Utilizing the accurate depth information from laser scanners, detected point cloud might

contain the location, orientation, and category information about the objects. Therefore, the

existing 3D object detection algorithms focus on extracting that information from the point

cloud. Some of the algorithms use support vector machine (SVM) on 3D meshes encoded

with geometry features to classify the objects, such as [27][28]. The point cloud analysis

and processing are often expensive in computation due to the high dimensionality of the

input 3D data. PIXOR decoder [29] only takes the bird’s eye view representation as input

and uses a novel decoding loss to train the network, improving the efficiency in

computation and accuracy in detection. Another drawback of point cloud data is that less

semantic information is preserved in it. Sensory-fusion frameworks are used in [30][31] to

exploit both LiDAR point cloud and RGB images captured from cameras. A considerable

improvement on Average Precision (AP) of 3D localization and detection is obtained in

these studies.

13

2.2 Vision-based Advanced Driving Assistance System

2.2.1 Vision-based Perception

With the rapid development of computer vision techniques, image processing and

understanding have become a significant role in autonomous driving. With these

techniques, data collected by camera sensors can be well analyzed. For example, Aly et al.

introduced a lane detection method. They firstly used Inverse Perspective Mapping (IPM)

to transform the camera image into a bird-eye view. Then they implemented a RANSAC

spline fitting to fit the lines selected by the Hough transform method [33].

The image segmentation method can improve efficiency of object detection. For

instance, Chen et al. improved the performance of image segmentation by introducing the

Atrous Convolution [34]. Pan et al. developed Spatial CNN (SCNN) in order to explore

the capacity to capture spatial relationships of pixels across rows and columns. The model

could be easily incorporated into deep neural networks and trained end-to-end. They

evaluated the lane detection performance on the TuSimple benchmark. By introducing

SCNN into the LargeFOV model, their 20-layer network outperformed ResNet, MRF, and

the very deep ResNet-101 in lane detection. They also showed visual semantic

segmentation improvements on the Cityscapes validation set. The total results proved that

SCNN could effectively preserve the continuity of long thin structure, while in semantic

segmentation, its diffusion effects were also proved to be beneficial for large objects [35].

The methods mentioned above are the applications of computer vision techniques in

specific tasks. In the real-world, driving is a comprehensive skill, and a robust autonomous

vehicle should be able to handle comprehensive tasks and be aware of its surroundings. For

14

example, human drivers can change their driving decisions based on various information,

such as traffic signs, traffic signals, weather, road surface, etc. Therefore, an architecture

combining different perception techniques may be needed, and the computational time is

essential for running in the real world. Teichmann et al. presented an approach to joint

classification, detection, and semantic segmentation via a unified architecture where the

encoder is shared amongst the three tasks [36].

2.2.2 Vision-based Decision Making

According to [39], most vision-based autonomous driving systems can be categorized

into two major paradigms: mediated perception approaches and behavior reflex

approaches. The former approaches involve total scene understanding, such as lanes,

signals, obstacles, pedestrians, weather, and etc. The driving decision is generated by

leveraging the assistance methods mentioned in the previous sub-sections. The later

constructs a direct mapping from the sensory input to driving actions. The authors of [37]

proposed a vision-based obstacle avoidance system for off-road driving robot DAVE. It

was trained by end-to-end learning methods that learned a mapping from images to steering

angles. Hadsell, Raia, et al. presented a self-supervised learning process for an off-road

driving robot as well. The system accurately classified complex terrains at distances up to

the horizon using a multi-layer convolutional network [38].

NVIDIA trained a CNN (PilotNet) in 2016 to map raw pixels from a single front-facing

camera directly to steering commands. This end-to-end approach proved surprisingly

powerful in the self-driving problem. Compared to the explicit decomposition of the

problem, such as lane marking detection, path planning, and control, their end-to-end

15

system optimized all processing steps simultaneously [17]. With minimum training data

from humans, the system learned to drive on local roads and highways with or without lane

markings. It also operated in areas with unclear visual guidance, such as parking lots and

unpaved roads. However, behavior reflex approaches can only be realized by supervised

learning. Whether the learned policies can perform well in an unfamiliar environment

remains unknown.

2.3 Reinforcement Learning (RL)

2.3.1 The classic model of RL

Inspired by behavioral psychology, reinforcement learning (RL) proposes a formal

framework to handle sequential decision-making [40]. Within this framework, the agent

learns a behavior offline from its historical experience. The experience is acquired by

interacting with the environment and collecting state changes and reward feedbacks.

Figure 2.1. The classic model of reinforcement learning [40].

A classic model of reinforcement learning is shown in Figure 2.1. The essential elements

are:

1. Agent: The agent is the subject of a task. It takes actions to achieve some goals

using some policies.

16

2. Actions: The actions are all possible movements that the agent can take. For

example, the actions for a vehicle could be throttle, steering angle, etc.

3. Environment: The world where the agent is. The agent can observe states and

get rewards from the environment.

4. State: The observations from the environment. In the transportation system, it

could be the data from sensors, for example, the distance to obstacles (LiDAR

info), the location (GPS info), or the images (camera info).

5. Reward: The reward is the feedback provided by the environment. It is used to

measure the performance of the agent’s action under a given state at a time step.

6. Action-value: The value of an action. To measure the actual value of an action,

not only the instant feedback (reward) but also the long-term potential of this

action would be needed. Therefore, the action-value is usually defined by the

discounted accumulative rewards.

7. Policy: The policy is the strategy for the agent to achieve a given goal. It usually

maps states to actions, and the best policy is the one that can maximize the

rewards during the whole process.

The following sections will introduce several specific RL methods, based on which the

algorithms in this work are developed.

2.3.2 Popular RL Methods

2.3.2.1 Q-learning

Q-learning, one of the most popular RL algorithms, was introduced by Chris Watkins

in 1989 [41]. A convergence proof was presented by Watkins and Dayan in 1992 [42].

17

At a time 𝑡, the agent observes a state 𝑠𝑡. Then based on the observation, the agent

implements an action 𝑎𝑡 and observes the next state 𝑠𝑡+1. After that the agent gets its

reward 𝑟𝑡. This process lasts until the agent achieves a terminal state at time 𝑇. The goal

is to maximize the total rewards 𝑅𝑡 = ∑ 𝛾𝑖−𝑡𝑇
𝑖=𝑡 𝑟𝑖 where the discounted factor 𝛾 can

balance the immediate reward and the later rewards.

The policy 𝜋 describes the probability distribution of the action at a given state 𝑠, i.e.

𝜋(𝑎|𝑠) = 𝑃(𝑎|𝑠) . A lookup table 𝑄(𝑠, 𝑎) is used to store the action-value, where each

entry represents the value of a possible action under a given state. The Q-value is defined

by the expectation of 𝑅𝑡 i.e.

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾
2𝑟𝑡+2 +⋯ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] (2.3. 1)

This function can be rewrite with Bellman equation as below,

𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋] (2.3. 2)

Then the optimal policy * is the policy that can maximize the achievable expectation of

total rewards i.e.

𝑄∗(𝑠, 𝑎) = 𝔼 [𝑟𝑡 + 𝛾max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝜋 =∗] (2.3. 3)

2.3.2.2 Deep Q Network (DQN)

As mentioned above, Q-learning stores data in the Q-table. The approach suffers the

curse of dimensionality with increasing dimensions of state space and action space. One

solution is to combine Q-learning with deep learning techniques. We can use a function

approximator, usually an artificial neural network, to approximate the mapping from

states/actions to values.

18

In this method, a neural network 𝑄(𝑠, 𝑎; 𝜃) with some parameters 𝜃 is used to

approximate the optimal value function 𝑄∗(𝑠, 𝑎). Then similarly as Q-learning, the target

Q values is

𝑌𝑄 = 𝑟𝑡 + 𝛾max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1; 𝜃) (2.3. 4)

The parameters 𝜃 can be updated by applying the gradient descent to the loss function,

which is defined by the Mean Square Error (MSE) between the target 𝑄 values and the

current 𝑄 values, i.e.

𝐿(𝜃) = [𝑌𝑄 − 𝑄(𝑠, 𝑎; 𝜃)]2 (2.3. 5)

Then the parameters 𝜃 at time step t are updated by

𝜃𝑡+1 = 𝜃𝑡 + 𝛼(𝑌
𝑄 − 𝑄(𝑠, 𝑎; 𝜃𝑡))∇𝜃𝑄(𝑠, 𝑎; 𝜃𝑡) (2.3. 6)

where 𝛼 is the learning rate.

Inspired by this idea, the Deep Q Network (DQN) introduced by Mnih et al. has become

a hotspot in the past few years because of the following two heuristics [43]:

1. For t-th iteration, the target Q network is replaced by 𝑄(𝑠𝑡+1, 𝑎𝑡+1; 𝜃𝑡
−) i.e.

𝑌𝑡
𝐷𝑄𝑁 = 𝑟𝑡 + 𝛾max

𝑎𝑡+1
𝑄(𝑠𝑡+1, 𝑎𝑡+1; 𝜃𝑡

−) (2.3. 7)

where the parameters 𝜃− are updated every 𝜏 iterations. This prevents the

instabilities to propagate quickly and reduces the risk of divergence [40];

2. A replay buffer is used for offline training. The replay buffer stores a set of tuples

(𝑠𝑡, 𝑎, 𝑟, 𝑠𝑡+1) collected from the last N time steps in the online training. Then

the offline training can leverage the mini-batch technique, evolving less variance

and improving the stability.

19

By the replay buffer technique, the Deep RL method is more like human learning. It can

not only learn from the reward and evaluate the action values, but also learn the knowledge

collected in history. It mimics the empiricism part of the human thinking process.

Now we can see the significant advantages using the Deep RL method in the

Autonomous Driving field in the simulation environment. In the virtual world, we can

collect experience easily. For example, we can penalize the agent when a collision happens

and do not need to worry about the safety issue. Besides, we can get as much data as we

want into the replay buffer and do not worry about the oil consumption and environmental

issues. We can even well craft some corner cases to evaluate the system performance.

2.3.2.3 Double Deep Q Network (DDQN)

Since the Q-learning uses the same network to select an action and evaluate its value, it

suffers the overestimation due to the non-uniformed noises in the network. Therefore,

enrolling in another network to uncouple the selection and evaluation can handle this

problem. Van Hasselt et al. [44] introduced the Double Deep Q Network (DDQN)

structure, the target value becomes:

𝑌𝑡
𝐷𝐷𝑄𝑁 = 𝑟𝑡 + 𝛾𝑄

− (𝑠𝑡+1, argmax
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1, 𝜃𝑡) , 𝜃𝑡
−) (2.3. 8)

The greedy action is chosen by the Q network, but the evaluation of this action is done

by the target network 𝑄−. The parameters 𝜃− of this network are usually copied from 𝜃

after every whole episode of training.

This method is used in the first work in this thesis. During the training, the system will

take a random action (randomly chosen in the action space) with a probability of epsilon

20

to ensure the exploration. The epsilon will decrease to zero after a certain number of time

steps.

2.3.2.4 Deep Deterministic Policy Gradient (DDPG)

Figure 2.2. The architecture of DDPG [20].

The output dimension of the Q network equals the dimension of the action space.

Therefore, the action space is limited and discretized. While in the driving scenario, the

actions we need are all represented by continuous variables, such as throttle, braking, and

steering angles. Hence, we must discretize the actions to utilize the deep Q learning method

for driving tasks. Another option is to use a different RL architecture which can handle

continuous action space. The DDPG is an excellent solution introduced below.

We can assume the optimal action is deterministic, so that we do not need the probability

distribution 𝜋(𝑎|𝑠) = 𝑃(𝑎|𝑠) to describe the actions. Recall in the Q-learning, 𝜇(𝑠) =

argmax
𝑎

𝑄(𝑠, 𝑎). While in deterministic policy gradient method, we can use a function 𝑎 =

21

𝜇(𝑠; 𝜃𝜇) to get the desired actions from observations. Similarly, we can utilize the neural

network again to approximate this function.

The Figure 2.2 shows the architecture of DDPG. The critic network is updated in the

same way as the DQN. The difference here is we get the action from 𝜇 network instead of

Q network. Thus, the target value becomes:

𝑌𝑡
𝑐𝑟𝑖𝑡𝑖𝑐 = 𝑟𝑡 + 𝛾𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1); 𝜃

𝑄) (2.3. 9)

The actor is updated by applying the chain rule to the target value with respect to the

actor parameters:

∇𝜃𝜇≈ 𝔼𝜇′[∇𝜃𝜇𝑄(𝑠, 𝑎; 𝜃
𝑄)]

= 𝔼𝜇′[∇𝑎𝑄(𝑠, 𝑎; 𝜃
𝑄)∇𝜃𝜇𝜇(𝑠; 𝜃

𝜇)] (2.3. 10)

In practical, for i-th time step under state 𝑠𝑖, the actor is updated by sampled gradients:

∇𝜃𝜇𝜇|𝑠𝑖 =
1

N
∑∇𝑎𝑄(𝑠, 𝑎; 𝜃

𝑄)|𝑠=𝑠𝑖,𝑎=𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠; 𝜃
𝜇)|𝑠=𝑠𝑖

𝑖

(2.3. 11)

Algorithm 1 shows detailed procedure of DDPG [20]. Ornstein–Uhlenbeck (OU)

process 𝑥𝑡 is often used for action exploration.

𝑑𝑥𝑡 = −𝜃(𝑥𝑡 − 𝜇)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (2.3.12)

where the 𝑊𝑡 denotes the Wiener process, i.e. 𝑑𝑊𝑡 = 𝑊(𝑡) −𝑊(𝑡 − 𝑑𝑡) ~ 𝒩(0, 𝜎2𝑑𝑡).

For the independent random noise, if we want to ensure enough exploration in a small

scale of time discretization, we need large enough variance. As a result, vast distances

appear between actions in each time step, and it is inappropriate for a real physical body.

The motion of real physical body usually is stochastically dependent. Wawrzynski gave

well explained mathematical derivation in [32]. Therefore, the OU process is necessary.

For example, we use DDPG as the reinforcement learning algorithm to train our

22

autonomous vehicle. We want the vehicle to maintain a safe distance with the preceding

vehicle while the output control action is throttle. The throttle directly corresponds to

acceleration, and of course, we do not want upheaval changes on acceleration.

Algorithm 2.1. The DDPG algorithm [20].

2.3.2.5 Multi-tasks Reinforcement Learning Method

As mentioned above, the neural network as a function approximator is useful especially

for finding a non-trivial function or policy. In the multi-tasks learning, one approximator

can hardly complete the tasks due to catastrophic interference, i.e., the tendency of an

artificial neural network to completely and abruptly forget previously learned information

23

upon learning new information [45]. The following two studies show that how to use

multiple approximator for multi-tasks reinforcement learning.

Codevilla et al. proposed an end-to-end imitation learning architecture for multi-tasks

of driving based on the input command [46]. By adding a command as input, the system

could learn different policies under different commands. They proposed two kinds of

architecture. The first one is to treat command c as a state variable and concatenate it with

other states. The other is to treat command c as a switch, which controls the activation of

different neural networks to learn different policies.

Tessler et al. proposed a Hierarchical Deep RL Network (H-DRLN) for multi-tasks

learning [47]. They firstly defined several skills that the agent needs to learn. Each skill

represented an optimal policy of a certain task. Then added those skills as a set of new

actions into the RL network. If the whole network decided to use a skill rather than the

primitive actions, the corresponding pre-trained Deep Skill Network (DSN) would take in

charge of a time period until the sub-goal had achieved. Therefore, the experience replay

buffer for H-DRLN stores (𝑠𝑡, 𝑎, 𝑟̃, 𝑠𝑡+𝑘), where 𝑎 includes primitive actions and the skills.

The 𝑘 = 1 when 𝑎 is a primitive action, and 𝑘 ≥ 1 when 𝑎 is a skill.

2.4 Microscopic Energy Consumption Models

With eco-driving becoming a significant role in the transportation system, various

energy consumption models have been developed to measure environmental performance

for different types of vehicles. For example, the U.S. EPA’s Motor Vehicle Emission

Simulator (MOVES) provides greater capability than the MOBILE emission models for

estimating the impacts of traffic operational changes [48]. Shibata and Nakagawa

24

constructed a mathematical model which calculates the EV power consumption for both

traveling and air-conditioning [49]. In this work, we applied the Comprehensive Modal

Emissions Model (CMEM) developed by the researchers from University of California at

Riverside to modeling the emissions of internal combustion engine (ICE) vehicles, and a

hybrid energy consumption rate model [50] for EVs, respectively. These two models are

briefly introduced in the following sections.

2.4.1 Comprehensive Modal Emissions Model (CMEM)

CMEM is designed to estimate the individual ICE vehicle’s fuel consumption and

emissions [51].

dFuel

d𝑡
≈ 𝜆 (𝑘 ∙ 𝑁 ∙ 𝐷 +

𝑃𝑒𝑛𝑔𝑖𝑛𝑒

𝜂𝑒𝑛𝑔𝑖𝑛𝑒
) (2.4.1)

Based on the fuel consumption and engine power, the emissions can be computed as:

Emission =
dFuel

d𝑡
∙
𝑔𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝑔𝑓𝑢𝑒𝑙

∙ 𝐶𝑃𝐹 (2.4.2)

where
𝑔𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝑔𝑓𝑢𝑒𝑙
 is ratio of engine-out emission index and fuel consumption. CPF is the

catalyst pass fraction, which is defined as the ratio of tailpipe to engine-out emissions [64].

2.4.2 Hybrid Energy Consumption Rate Estimation for EVs.

In this work, we implement an EV energy consumption rate estimation model (Type II)

adapted from [50] for evaluation. The model is also used to design the eco-oriented reward

function in the proposed RL architectures for EVs.

𝑃𝑒𝑠𝑡 = 𝑙0 + 𝑙1𝑣 + 𝑙2𝑣
3 + 𝑙3𝑣𝑎 + 𝑙4𝑣

2 + 𝑙5𝑣
4 + 𝑙6𝑣

2𝑎 + 𝑙7𝑣
3𝑎 + 𝑙8𝑣𝑎

2 (2.4.3)

25

where 𝑣 is the speed; 𝑎 is the acceleration; and 𝑙i’s is the associated coefficient of the i-th

term. Please refer to Table 4 in [50] for the values of associated coefficients.

2.5 The Simulation Platform for Autonomous Driving

Testing new autonomous driving algorithms in the real world could be dangerous. To

avoid unnecessary accidents, the algorithm should be tested in a virtual world. Leveraging

the development of the game engine, many researchers find it useful for autonomous

vehicle’s training and simulation. Specifically, the simulation platform can provide

complex environment and scenarios depending on the researchers’ needs. The following

simulation platforms have been widely used in a plenty of research work.

2.5.1 TORCS

TORCS is a highly portable open-source 3D car racing simulation. It is written in C++

and is licensed under the GNU GPL. It runs on multiple computer platform including

Linux, MacOS and Windows, etc. As shown in the screenshots in Figure 2.3, TORCS

features various types of vehicles and road conditions. The virtual vehicles can be driven

with the mouse or the keyboard. Graphic features lighting, smoke, skid marks and glowing

brake disks. Many realistic preferences can be set in the simulation such as simple damage

model, collisions, tire and wheel properties, etc. [52]. Since 2008, TORCS has also played

an important role in various research. For instance, Xiong et al. evaluated their autonomous

driving strategy in the TORCS [53]. Compared with other platforms, TORCS is less

realistic and cannot present the complexity of other scenarios except for racing.

26

Figure 2.3. The screenshots of TORCS.

2.5.2 Unity

Unity is a real-time 3D development platform developed by Unity Technologies. Paired

with Visual Studio, Unity has been widely used by engineering teams to create games

efficiently. It has a friendly and easy-to-use editor, online assets store, and a well-

established community for developers and researchers. As of 2018, the engine had been

extended to support more than 25 platforms. Recently, more and more researchers have

developed simulations for autonomous driving. For example, a simple scenario (see Figure

2.4 (a)) is used in the Udacity Behavioral Cloning project. The complex and realistic

scenario could also be present in Unity, such as AirSim (see Figure 2.4 (b)) created by the

team at Microsoft AI & Research [54]. Unity also provides an open-source project called

The Unity Machine Learning Agents Toolkit (ML-Agents) that enables games and

simulations to serve as environment for training intelligent agents [55]. Besides,

Automotive companies such as Toyota and Audi are using Unity to improve efficiency for

development and innovation.

The Unity standard assets provide car models and controller scripts. Users can easily

use them to control a vehicle in a realistic manner. For example, users can set various

parameters such as torque over wheels, reverse torque, brake, downforce, top speed, slip

limitation, and etc. The traction control script can reduce the power to the wheel if the car

27

is wheel spinning too much. The move function drives a vehicle through the input force.

The gear changing, wheel spin checking, and traction control are handled automatically.

We used these built-in functions for our project (see Chapter 4).

Figure 2.4. (a) A sample image of Udacity behavioral cloning project; (b) Windridge City

environment in AirSim.

2.5.3 CARLA

An open-source simulator for autonomous driving research called CARLA has been

developed from the ground up to support the development, training, and validation of

autonomous urban driving systems. The simulation platform supports the flexible

specification of sensor suites and environmental conditions. Leveraging the state-of-the-art

rendering quality provided by Unreal Engine 4 (UE4), CARLA has been built for flexibility

and realism. A third-person view in four weather conditions is shown in Figure 2.5 [56].

Most impressively, it provides several pre-built urban towns, and all the assets are free for

non-commercial use. To support the interface between the world and the agent, CARLA is

designed as a server-client system, and the socket API in Python is used for implementing

the client. Many autonomous driving related research work [46][57][58][59][60] made use

of the CARLA simulator and even built their own benchmarks on it.

28

In this work, we did not consider using CARLA because the community support for the

Windows platform has not matured yet in 2019 and building a freeway scenario from the

beginning could be a massive work. As introduced in Chapter 5, we may consider CARLA

as the simulation platform for future work in the urban scenario.

Figure 2.5. A third person view in four weather conditions in CARLA.

29

Chapter 3: The Proposed System Architecture

3.1 The System Workflow

Figure 3.1. System workflow for training. The dashed lines are optional choices depending on the

desired tasks.

Figure 3.2. System workflow for testing.

As shown in Figure 3.1 and Figure 3.2, the proposed system consists of two stages,

training and testing. During the training, the agent vehicle can access different kinds of

observations from the simulation environment, depending on the type of tasks and

scenarios. Some of them are used as the input of the RL network, such as image sequence,

and others may be used for reward calculation. The model of reinforcement learning

network should change in order to handle different tasks. The detailed model will be

30

introduced in the following chapters. The simulation environment is frozen when waiting

for the output from the reinforcement learning algorithm.

During the testing, at each time step, the agent utilizes only the front camera image

sequences and other network-needed variables and sends them to the pre-trained network

model to get the optimal control commands. After testing, we can analyze historical data

from different aspects. For the safety aspect, the host vehicle should pass all test episodes

without collision. For the energy aspect, the energy consumption of the host vehicle is

calculated using the energy model mentioned in section 2.4. For the car following strategy

we also evaluate the following ability by the root mean square error (RMSE) of inter-

vehicle gap.

3.2 The Neural Network Architectures

As shown in Figure 3.1 and Figure 3.2, the core part is the reinforcement learning

network. This part handles state value estimation and policy generation. We use the neural

network as the function approximator, which mainly has two components. The first one is

an image encoder (CNN) that reduces the visual input dimensions and extracts the features

of the image sequence. Then the learned visual features and other observed variables are

concatenated together as the whole states of the environment. The second component is the

fully connected neural network, predicting the state value or the actions we need. We

implemented DDQN and DDPG as the reinforcement learning algorithms in our system.

The details of network architecture change slightly depending on different algorithms and

will be introduced in the following.

31

Figure 3.3. The RL network for DDQN.

The RL network for DDQN is shown in Figure 3.3. The image is processed by a

convolutional neural network. In the car following scenario, we want the ego vehicle to

learn the desired following distance from the image sequence. According to [61], CNN

uses the vertical position of objects in the image to estimate their depth. In the freeway

scenario, a simple CNN structure should be enough to get the depth feature from the input

image sequence. In the network, the image input is a time-series sequence of 4 images with

size 105 by 150 in grayscale, and the speed input is a time-series sequence of 4-speed

values of the host vehicle. Conv represents the convolutional layer, and fc represents the

fully connected layer. The 21 output values indicate the 21 Q-values of the discretized

brake/throttle forces to the vehicle at the given state. We use smaller image input in a later

32

stage to reduce the computational time and a smaller image encoder (see the encoder in

Figure 3.4) is used correspondingly. The smaller encoder shows similar capability of

feature extracting, and therefore it is used in DDPG algorithm as well.

Figure 3.4. The RL network for DDPG.

The RL network for DDPG is shown in Figure 3.4.The same image encoder (Conv

layers) is used in this algorithm. In the network, the camera inputs a time series sequence

of 4 images with size 80-by-80 in grayscale. If two cameras are used in the system, the

image sequences are concatenated along the third dimension and the total size of visual

input will be 80 × 80 × 8. The velocity state is also a time series of 4 velocity values of

the ego vehicle. For actor and critic networks, [62] experimented with neural networks

deeper than one hidden layer, but found out that they were unnecessary for small input

33

variables. In this work, we only use a hidden layer containing 64 neurons and find it works

well. All the convolutional layers and fully connected layers are followed by a rectified

linear unit (ReLU) activation function. The final output layer of the actor network uses a

tanh activation function to bound the output actions within the range of -1 to 1. Positive

action indicates the force on the throttle while the negative indicates the force on the brake.

As mentioned in section 2.3.2.4, we use OU noise to ensure action exploration in the

DDPG architecture since it ensures efficient exploration in physical environment. The

parameters used in function (2.4.12) is shown in the Table 3-1.

Table 3-1. Parameters of OU noise.

Parameters Value

𝜽 0.15
𝝁 0
𝒅𝒕 0.5

𝝈 0.125

3.3 The Simulation Environment Setup

In order to train and test our algorithms, we use the well-developed game engine Unity

for the simulation environment. To be more realistic, we built a freeway scene with trees,

buildings, and traffic flows, as shown in Figure 3.5. Shadows of all the objects in the

environment can be changed with the global light. There are three lanes in each direction

along the two-way freeway segment. The preceding vehicle and host vehicle are on the

middle lane, while faster traffic flow is on the left lane, and slower traffic flow is on the

right lane. The host vehicle is designed to always follow the same preceding vehicle, while

the lane change maneuver is not allowed. All the objects can be controlled by Unity’s C#

scripting Application Programming Interface (API) to reach the desired states.

34

Figure 3.5. Two Sample Images of the Simulation Environment.

Specifically, the simulation we customized mainly provides the following five

functions:

1. Information Communication: The information, such as velocity, following

distance, and images, is transmitted to the reinforcement learning (RL) network

by a socket API using the User Datagram Protocol (UDP). The suggested

throttle/brake force is calculated and transmitted back to the simulation

environment using the same API. The communication procedure is shown in

Figure 3.6.

2. Host Vehicle Control: The host vehicle can be controlled by the suggested

throttle/brake force from the RL network. It also can be controlled by other

methods, such as the traditional ACC algorithm or the human-in-the-loop

simulation.

3. Preceding Vehicle Control: The velocity data of the preceding vehicle is

generated from a large pool of trajectories. Both virtual trajectories and real-

world data are used during training and testing.

4. Traffic Flow Control: A higher constant speed is set to traffic flow on the left

lane, and a lower constant speed is set to traffic flow on the right lane.

35

5. Simulation Environment Reset: When a collision occurs or the vehicles reach

some preset terminal state, the current episode is terminated, and the simulation

environment is reset with all the object settings to be new initial states for the

next episode. This function will be executed also when the time step reaches the

maximum episode length, since the length of freeway is finite. In this situation,

however, the next state for the agent is not the terminal state.

Figure 3.6. Communication procedure.

3.4 Data Acquisition

The offline training data in this system are mainly acquired during exploration in the

simulation. The only data that must be preset before simulation is the driving trajectories

of the preceding vehicle. For the research on ICE vehicles, we design virtually generated

36

trajectories, which are created by an accumulation of 10 sinusoidal functions, shown as

below:

𝑣𝑙𝑒𝑎𝑑 = 30 + 0.3∑ 𝐴𝑖 sin(2𝜔𝑖𝑡)
10

𝑖=1
 (3.4.1)

where 𝐴𝑖(𝑖 = 1,2, … ,10) are random integer values of 1 or -1, 𝜔𝑖 (𝑖 = 1,2, … ,10) are

random numbers between 0 and 1, and 𝑡 is the elapsed time in the simulation environment

with a resolution of 0.02 sec. During the training, the group of random 10 𝐴𝑖′s and 10 𝜔𝑖′s

will be updated when a new episode begins to make sure that the trajectories are different

for each episode. During the testing, a preset 4 groups of 𝐴𝑖′s and 𝜔𝑖′s are used to generate

the trajectories for comparison.

Figure 3.7. The real trajectories used for preceding vehicle.

37

For the simulation of EVs, the research team [7] collected more than 100 hours of

electric vehicle driving data under real-world conditions using a 2012 Nissan Leaf. We

make use of the data from a freeway segment (SR-91 in Riverside, California, USA) in the

simulation. The original velocity data are segmented and regrouped to match our training

and testing episode length. A sample of 20-minute real trajectories is shown in Figure 3.7.

Depending on the different scenarios for ICE vehicles or EVs in the simulation, the

parameters of preceding vehicle (PV) and host vehicle (HV) are shown in the following

table.

Table 3-2. Trajectory Parameters for ICE Vehicles and EVs in the Simulation.

Parameters ICE Vehicles EVs

PV velocity range (m/s) [27, 33] [0, 30]

PV acceleration range (m/s2) [-3.5, 3.5] [-5.5, 3.5]

Initial PV velocity range (m/s) [27, 33] [11.2, 15.6]

Initial HV velocity range (m/s) [25, 30] [11, 16]

Initial following distance range (m) [25, 35] [25, 35]

38

Chapter 4: End-to-end Vision-Based Eco-Oriented Strategies for

Freeway Scenarios

4.1 Introduction

In this chapter, end-to-end vision-based eco-driving assistance systems were

implemented using DDQN and DDPG algorithms, respectively. We constructed the

simulation environment in the Unity game engine. We trained and tested the proposed

system for both internal combustion engine (ICE) vehicles and electric vehicles (EVs) to

prove the effectiveness. The system only takes image input from one or two on-board front

cameras and outputs throttle/brake to control the acceleration. The agent vehicle in our

system is assumed to have lane keeping ability so that the throttle/brake is the only control

signal (the output actions). Figure 4.1 shows an image captured by an on-board front

camera in the freeway scenario.

Figure 4.1. A sample image of the freeway scenario.

39

We designed different reward functions to achieve two driving strategies. The first car-

following strategy requires the agent vehicle to maintain a safe distance with a leading

vehicle. We compared the energy efficiency of our system with the traditional ACC system

and the human-in-the-loop driving system. The case study and results are illustrated in

section 4.2. The other car-cruising strategy requires the agent vehicle to maintain a safe

distance with the preceding vehicle and resume the preset speed when the distance is large

enough or no predecessor is detected. The case study and results are introduced in section

4.3. An intuitive comparison between the two strategies is shown in Table 4-1 and Table

4-2.

Table 4-1. The simplified strategy for car following.

Gap Policy

Close Slow down

Far Speed up

According to the state, choose brutal force or gentle force.

Table 4-2. The simplified strategy for car cruising.

Gap Relative motion Velocity of agent Policy

Close
Approaching

-
Slow down

Receding Speed up

Far -
Higher than 𝑣𝑑 Slow down

Lower than 𝑣𝑑 Speed up

According to the state, choose brutal force or gentle force.
𝒗𝒅 is the preset desired speed.

4.2 Eco Car-Following Strategy

In this section, we implemented DDQN and DDPG algorithms in the proposed system

to achieve an eco car-following strategy. We applied the system for both ICE vehicles and

the EVs. The detailed case study and results are presented in the following subsections.

40

4.2.1 The DDQN Application to ICE Vehicles

Safety is our first concern. Therefore, we designed the gap reward to encourage the gap

between 30 to 80m, and the desired gap of 55m gains the highest reward, shown in Figure

4.2 (left). We use this reward function to train our agent vehicle to learn the car following

strategy. The trained model is named the gap-based DDQN model. During the training, the

average reward is gradually increasing to 1, shown in Figure 4.3.a. It proves our model has

the learning ability and learns a good (in terms of gap maintaining) following strategy.

Figure 4.2. The gap reward (left) and force reward (right).

Beyond this safety rule, we designed the force reward to encourage the forces from -0.3

to 0.3, shown in Figure 4.2 (right). Intuitively, the less aggressive driving policy is expected

to save more energy. We use the normalized sum of the force reward and gap reward to

train our agent vehicle to learn the eco-oriented car following strategy. The trained model

is named the force-based DDQN model. During the training, the average reward is

gradually increasing to 0.9, shown in Figure 4.3.b. The training takes longer to converge

due to more complex factors in the reward functions than the gap-based model.

In the testing, four trajectories with 4 minutes each are generated to evaluate our model.

Besides, the traditional ACC and human-in-the-loop models are tested for comparison.

Figure 4.3.c shows the gap profile of each model and Figure 4.3.d shows the velocity

41

profile. The result shows that the gap-based DDQN model follows the desired gap most

precisely. The strict driving policy makes the host vehicle more sensitive to speed

fluctuation of the predecessor. On the other hand, the force-based model learns not to

follow that precisely in order to fulfill the force saving objective. In addition, it learns a

pulse and glide (PnG) driving pattern, which is considered as an eco-driving strategy for

ICE vehicles [63].

Figure 4.3. Training and Testing Result for ICE Vehicles.

 The energy consumption, pollutant emissions, and gap root mean square error (RMSE)

of all methods are shown in Table 4-3. As expected, The gap-based DDQN model results

in the best gap regulation among all the methods. The force-based DDQN achieves the best

42

fuel rate but has a similar performance as the traditional ACC method regarding both

energy consumption and pollutant emissions.

Table 4-3. Energy Consumption and Pollutant Emission for Combustion Engine Vehicles

between different methods.

Method Leading

Vehicle

Gap-based

DDQN

Force-

based

DDQN

Traditional

ACC

Human

Driving

Fuel Rate
(g/mi)

195.393 169.275 143.754 143.805 198.586

CO2 (g/mi) 346.352 339.069 330.681 337.124 368.524

CO (g/mi) 143.214 99.003 58.119 55.433 143.391

HC (g/mi) 13.613 12.913 9.843 9.443 10.673

NOx (g/mi) 4.656 3.159 1.841 1.743 4.500

Gap
RMSE (m)

N/A 3.423 7.686 6.667 6.591

4.2.2 The DDQN Application to EVs

In this case, the real trajectories are adopted for the preceding vehicle. We use the same

reward function designed for ICE vehicles; therefore, a gap-based DDQN model and a

force-based DDQN model for EV are trained. Figure 4.4.a and b show the average training

reward of each model, respectively. Again, we test and compare our trained model with

traditional ACC and human-in-the-loop models. Figure 4.4.c and d show the gap profile

and velocity profile of each method in testing. We use function (2.5.1) to measure energy

consumption. The energy rate is the total energy normalized by the travel distance. The

energy consumption and gap RMSE of all methods are shown in Table 4-4. The leading

vehicle is the baseline in percentage energy rate comparison.

43

Figure 4.4. Training and Testing Result for EVs.

The same trend of training convergence in the ICE model can be observed in the EVs

model. The training takes longer to converge since the real trajectories of the preceding

vehicle complicated the experience in the memory buffer. Due to the more abrupt and

frequent speed fluctuations, such a strict gap regulation strategy results in the highest EVs

energy consumption among all the methods (much higher than others). Unlike the

application in ICE vehicles, the force-based DDQN model does not result in better energy

consumption for EVs compared to the performance of human-in-the-loop simulation or

traditional ACC, although the PnG-like behavior is conducted (see Figure 4.4.d). As

expected, the gap is quite loosely regulated by the force-based DDQN model.

44

Table 4-4. Energy consumption for EVs between different methods.

Method Leading

Vehicle

Gap-

based

DDQN

Force-

based

DDQN

Traditional

ACC

Human

Driving

Energy Rate
(KJ/mile)

1.135e3 4.914e3 2.056e3 1.128e3 1.500e3

Percentage
Energy Rate

100% 433% 181.1% 99.4% 132.2%

Gap RMSE
(m)

N/A 5.083 10.98 17.440 5.439

Therefore, a new reward function is designed to explore the environmental performance

for EVs model. The new reward is based on a looser safety gap reward 𝑅𝑔𝑎𝑝, shown in

Figure 4.5 (left). Rather than setting a fixed desired gap, 𝑅𝑔𝑎𝑝 gives the highest reward

when the host vehicle maintains the gap between 40m to 60m and encourages gap between

30m to 100m. In the meantime, the energy-efficient policy is taught by the energy model

(EM) reward 𝑅𝑒𝑛𝑒𝑟𝑔𝑦, shown in Figure 4.5 (right). It is derived directly from the EVs’

energy model. Also, the agent will get zero reward when the velocity is higher than 30m/s.

When collision happens, or a large gap appears, the training episode will end, and the

environment will reset to a random initial state. Finally, the reward in each time step is

calculated by the following function:

𝑅𝑡 = {

−1, 𝑖𝑓 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 ℎ𝑎𝑝𝑝𝑒𝑛𝑠 𝑜𝑟 𝑎 𝑙𝑎𝑟𝑔𝑒 𝑔𝑎𝑝 𝑎𝑝𝑝𝑒𝑎𝑟𝑠.
 0, 𝑖𝑓 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑠 ℎ𝑖𝑔ℎ𝑒𝑟 𝑡ℎ𝑎𝑛 30𝑚/𝑠.

𝑅𝑒𝑛𝑒𝑟𝑔𝑦𝑅𝑔𝑎𝑝, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

The average reward with respect to time steps in the training process is shown in Figure

4.6. The reward is gradually increasing and converging to 0.9, which means that the host

vehicle is learning the desired strategy. After the agent successfully learnt the eco-

following strategy in the training, we tested the trained model. During a 150,000 time-steps

45

of testing under the leading of a preceding vehicle with a different velocity profile, no

collision happened. The ego vehicle can maintain the gap within the desired safe interval

(40-60m) in 99.39% of the entire testing time. Result also proved the CNN in the network

can extract useful gap information and ignore the motions of buildings, trees and other

irrelevant vehicles in the camera view. The mask used in the previous work [64] is

redundant.

Figure 4.5. The gap reward (left) and energy reward (right) for EM-based DDQN.

Figure 4.6. The average reward per 1000 time-steps during the training (left); A segment of

velocity profile during the testing (right).

The energy consumption rate is shown in Table 4-5. The EM-based DDQN has about

40% improvement compared with the force-based DDQN. However, it still cannot beat the

46

leading vehicle or the traditional ACC. From the velocity profile in Figure 4.6, the learnt

policy only used brutal force to accelerate or decelerate the agent vehicle. The hypothesis

is that this policy could correct the vehicle position immediately. The figure only shows a

period. The whole picture of learnt policy can be represented by the force distribution (see

Figure 4.7). We compared the force distribution of leading vehicle and EM-based DDQN.

Although the agent vehicle learned to keep force to zero to earn a good energy reward, it

still needs extreme forces to keep the safety gap. Those extreme forces enforced would

explain why the agent vehicle did not have better energy consumption than the leading

vehicle.

Table 4-5. Energy Consumption for EVs using EM-based DDQN.

Method Leading Vehicle EM-based DDQN

Energy Rate (KJ/mile) 1.243e3 1.793e3
Percentage Energy Rate 100% 144.2%

Figure 4.7. The force distribution during testing. The preceding vehicle (left); The agent (right).

47

4.2.3 The DDPG Application to EVs

To make sure the energy efficient potential of our end-to-end system is not limited by

the discretized action space, an Actor-Critic architecture DDPG was implemented.

In the past training, we expected the agent to learn the gap information from visual input.

Within a single camera view, the leading vehicle becomes smaller when gap is increasing.

Especially when the gap is larger than 50m, the gap changing presents few differences in

the image. In a result, when the vehicle is exploring within a large gap range, the memory

buffer in the reinforcement learning system may be full of image sequences without any

information. This complicated the training and even made the training failure. Although

we can adjust the focal length of the single onboard camera, a fixed focal length cannot

handle both the close-up view and the far view. We could also track the leading vehicle

object and adjust the focal length intelligently. However, the motion of camera view will

easily conflict with the relative motion information of two vehicles in the image. Therefore,

we use dual-camera setup in the system. We add a telephoto lens on the ego vehicle.

The ego vehicle is driven by the force via the built-in function in Unity mentioned in

section 2.5.2. We tested the function and the range of acceleration is [−10, 5]𝑚/𝑠2. Other

simulation environment setup is the same as our previous method. Only real trajectories

are used for leading vehicle.

Based on the previous experience, the goal that always maintains a strict safety gap is

conflicting with the goal to save energy. Therefore, inspired by the CACC system on the

market, we designed a new 𝑅𝑔𝑎𝑝 related to both gap and ego velocity:

48

𝑅𝑔𝑎𝑝 = {
1 𝑖𝑓 𝑣 + 𝑠𝑎𝑓𝑒_𝑔𝑎𝑝 < 𝑔𝑎𝑝 < 3𝑣 + 2𝑠𝑎𝑓𝑒_𝑔𝑎𝑝

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

We call it adaptive-gap reward, shown in Figure 4.8. The old 𝑅𝑔𝑎𝑝 is called strict gap

reward. Then combining these two kinds of 𝑅𝑔𝑎𝑝 with the energy model (EM) reward

𝑅𝑒𝑛𝑒𝑟𝑔𝑦, we have four different methods. We use the following names to represent each

method, (1) Strict gap; (2) Strict gap + EM; (3) Adaptive gap; (4) Adaptive gap + EM.

Note, the reward function of Strict gap + EM method is exactly the same as that of EM-

based DDQN.

Figure 4.8. The adaptive gap reward function (safe_gap = 3m).

The training result is shown in Figure 4.9. We can see that the dual-camera system

learned the desired policy before 40,000 time-steps. It is quite faster than the single camera

system, which learnt the policy after around 100,000 time-steps.

The testing has 25 episodes and 600 time steps in each episode, which means 2.08 hours

driving on the freeway. The agent vehicle passed all episodes without collision. From the

velocity profile shown in Figure 4.10, the traditional ACC and the adaptive gap + EM

49

curves looks smoother than the other two curves. The adaptive gap method failed to learn

a smooth velocity curve since the force is not regulated by the EM reward. Although the

strict gap + EM method has the EM reward, the agent did not learn a smooth velocity curve

since the gap reward is too strict. From the gap profile shown in Figure 4.11, the strict gap

+ EM achieves the best gap maintaining ability.

Figure 4.9. The training result of DDPG method.

Figure 4.10. The velocity profile of each method during a period of testing.

50

Figure 4.11. The gap profile of each method during an episode in testing.

Again, we use the EVs energy model to calculate the energy consumption normalized

by the travel distance. The result is shown in Table 4-6. The adaptive gap + EM method

achieves the best energy rate among four DDPG methods. All new methods have lower

consumption than the DDQN methods. When we use the same reward function (Strict gap

+ EM) for DDQN and DDPG system, the later has a 14.5% improvement on the percentage

energy rate. However, none of them can beat the traditional ACC system. The acceleration

distributions are shown in Figure 4.12. Since the action is continuous and the range of

acceleration is within [-10, 5], the bins of histogram are set to 150. The distributions quite

match those of energy consumption. Comparing c with e or d with f, the EM reward reduces

some of the extreme force. Comparing e with f, the adaptive gap reward narrows the

acceleration distributions since the strict gap is more difficult to maintain. While from all

figures, the traditional ACC has the most similar pattern as the leading vehicle and even

has a bit narrower shape. Few extreme forces are shown in the pattern. Combining these

51

results with the gap profiles in Figure 4.11, relatively flexible gap maintaining seems to be

the way for eco-driving. Thus, we did not compare the gap RSME here.

Table 4-6. Energy Consumption for EVs using different DDPG methods.

Method
Leading

Vehicle

Strict gap

+ EM

Adaptive

gap

Adaptive

gap + EM

Traditional

ACC

Energy Rate
(KJ/mile)

1.243e3 1.596e3 1.671e3 1.508e3 1.228e3

Percentage
Energy Rate

100% 128.4% 134.4% 121.3% 98.7%

Figure 4.12. The acceleration distribution of different system in testing.

4.2.4 Summary and Discussion

We implemented an end-to-end vision-based car-following system using different

reinforcement learning methods. We constructed a simulation environment in the game

engine Unity and used socket connection to communicate with our reinforcement learning

system. The inference time of 3.58 ms indicates the real-time working ability of the

proposed methods.

52

We implemented DDQN algorithm in the proposed system. We designed gap-based and

force-based reward functions for training ICE vehicles and EVs. Training and testing

results over virtually generated and real-world driving trajectories show the effectiveness

and robustness of the following ability. For the ICE model, the force-based following

system only achieves a better energy-saving performance tested on virtually generated

trajectories. However, the system failed to save energy for EVs. We designed an energy

model-based reward function to constrain the large force output. The method achieved

some improvement in energy consumption due to the strict gap constrain.

We implemented DDPG algorithm in the proposed system to further explore the energy

efficient potential for EVs. Compared with the previous application, the system improves

the smoothness of the velocity due to continuous action space and has a 14.5%

improvement in energy rate. We then weakened the gap restriction by involving a new

reward function called adaptive gap reward. The model trained by the adaptive gap reward

and energy model-based reward has another 7.1% improvement in energy rate. However,

the performance is still worse than the traditional ACC system due to more brutal forces.

Future efforts on the proposed vision-based end-to-end system are needed to further

squeeze the energy efficiency.

The visual input and ego velocity during the past 1~4 seconds may be enough to safely

drive the vehicle. However, we expect the system can optimize the energy consumption

over long-term historical information. In other words, we hope the system can learn how

to optimize the total energy consumption in a whole episode rather than only depending on

53

the instant state. Therefore, we consider using recurrent neural network (RNN) structures,

such as Long short-term memory (LSTM).

4.3 Eco-Cruising Strategy

Due to the better result of DDPG algorithm in the previous research work, we

implemented it in the proposed system to achieve an eco-cruising strategy. We applied the

system for ICE vehicles. Only the real trajectories are used for the preceding vehicle.

The desired cruising speed is set to 17.88 m/s (40 mph) according to the automobile fuel

consumption and emission rate curves w.r.t. to the average speeds [65]. The curve indicated

the minimum rate at moderate speeds of around 40 to 50 mph. A similar result was also

found by Natural Resources Canada. Most cars, vans, pickup trucks, and SUVs are most

fuel-efficient when they’re traveling between 30 to 50 mph. Increasing highway cruising

speed from 55mph to 75mph can raise fuel consumption by more than 20% [66]. In

addition, with the preceding vehicle driving under the real trajectories and the agent vehicle

cruising at 17.88 m/s in the simulation, the stop-and-go and cruising situations are

balanced. It makes the training set informative enough.

The detailed case study and results are presented in the following section.

4.3.1 The DDPG Application to ICE Vehicles

The first reward is quite straightforward, calculated by the following function:

𝑅𝑡 = {
1 𝑖𝑓 𝑣𝑑 − 0.5 < 𝑣 < 𝑣𝑑 + 0.5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑣𝑑 is the desired velocity.

54

The reward simply encourages the agent vehicle to maintain its velocity to the desired

value we set. We expected the agent can learn to avoid collision by the termination and

reset in the simulation. However, the agent did not learn the desired strategy and sometimes

still collided the leading vehicle. We thought it was because the policy confliction. When

the ego vehicle is approaching the leading vehicle, maintaining the desired speed is conflict

with avoiding the collision.

Figure 4.13. The reward functions for eco-cruising strategy.

Therefore, we designed the second reward function:

𝑅𝑡 = {
1 𝑖𝑓 𝑣𝑑 − 0.5 < 𝑣 < 𝑣𝑑 + 0.5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑟 𝑔𝑎𝑝 < 𝑣 + 𝑠𝑎𝑓𝑒_𝑔𝑎𝑝

55

where 𝑔𝑎𝑝 is the distance between leading vehicle and ego vehicle; 𝑠𝑎𝑓𝑒_𝑔𝑎𝑝 is the

minimum allowed gap, which is 3m in the experiment. Inspired by the adaptive gap reward

used in Chapter 4, this reward function enables the agent vehicle to ignore the desired speed

when gap is too small. This method failed again due to its sparsity. At the beginning

exploration stage of training, the vehicle merely got full reward. As a result, the valuable

states were too sparse in the memory making the learning impossible.

To solve the sparse reward problem, we designed the following reward function:

𝑅𝑡 =

{

1 𝑖𝑓 𝑣𝑑 − 0.5 < 𝑣 < 𝑣𝑑 + 0.5

0.5 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑣𝑑 − 2 < 𝑣 < 𝑣𝑑 + 2

0.1 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑣𝑑 − 7 < 𝑣 < 𝑣𝑑 + 7

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑟 𝑔𝑎𝑝 < 𝑣 + 𝑠𝑎𝑓𝑒_𝑔𝑎𝑝

Figure 4.13 visualizes the three reward functions and the sparsity comparison is obvious.

As shown in Figure 4.14, the results indicate that the agent vehicle successfully learned the

desired driving policy on the training dataset. The driving pattern shown in the velocity

profile lasts more than a hundred episodes (around 8 hours driving in real-time) in training.

After that, the policy crashed due to catastrophic forgetting. The model is overfitted on the

sampled dataset in the memory buffer.

56

Figure 4.14. The training result for car cruising strategy.

4.3.2 Summary and Discussion

The DDPG algorithm was applied to the proposed system to realize an eco-oriented car

cruising strategy. The details are mainly focused on the design of reward functions. The

case study shows a robust car cruising behavior on the training set. The validation work

and the application to EVs needs some future work.

There are better ways to solve the sparse reward problem besides directly modifying the

reward function. Savinov et al. involved the Episodic Curiosity module into the reward

57

calculation, and the new reward was proven to be dense [67]. Andrychowicz et al. proposed

the Hindsight experience replay (HER) algorithm, which involved intermediate goals in

the experiences so that the agent would learn through the failure as well rather than only

from the sparse successful case [68]. Moreover, the priority memory buffer was proposed

in [69] to ensure efficient learning. Rather than randomly sampling training data from the

replay buffer, it sampled the memory with larger loss value firstly. This solution could

ensure the agent to learn the most informative experience.

The proposed system can only achieve cruising strategy at a fixed preset speed.

Although we can train multiple models for different speeds, the command-conditional

learning architecture [46] may be considered as a better and comprehensive solution. The

desired speed is input as a user-defined command (as currently ACC does) into the system,

and the agent can learn to change policies depending on that command speed.

58

Chapter 5: Conclusions and Future Work

5.1 Conclusions

This thesis provides end-to-end solutions for advanced eco-oriented driving assistance

strategy on the freeway scenario using vision-based reinforcement learning architectures.

From the end-to-end system aspect, the proposed system learns desired driving

strategies from image input directly to the low-level control of throttle/brake actions. We

designed workflows for training and testing in the Unity simulation environment and

provided complete communication procedures to ensure interactions between the

environment and the RL agent. The proposed architecture is compatible with different RL

networks and reward functions requiring data from multiple sensors. The memory buffer

supports different types and lengths of data for offline training. To improve the training

efficiency, offline training and online data collection are running in the meantime. The

inference time of 3.58 ms indicates the real-time applicability of the proposed system.

From the advanced driving assistance aspect, the proposed eco-oriented car following

strategy and cruising strategy were trained successfully on our system. For the car

following strategy, the results show the effectiveness and robustness of the proposed

system. We improved the eco-performance of the proposed system after several

optimizations on the reward function. The achievement is still less comparable to the

traditional ACC system with radar. The possible reasons and solutions are discussed in

section 4.2.4. Further research work is needed to explore the environmental potential of the

proposed system. For the cruising strategy, the results show the learning ability of the

proposed system. Further work is needed to validate the trained model.

59

From the vision-based aspect, we used one or two front onboard cameras as the major

sensor for the environment perception, which is much cheaper than the RADAR/LiDAR

system. The necessary gap and relative motion information can be learned from the raw

image of the preceding vehicle with the road, sky, trees, buildings, and surrounding

vehicles.

From the RL architectures aspect, we implemented DDQN and DDPG algorithms for

our system to learn from the experiences offline. The classic RL algorithms are modified

to be capable of the vision-based driving system. The performance of two algorithms for

the same task is compared in Chapter 4 and DDPG has better performance in our cases due

to the continuous action space.

5.2 Future Research Directions

5.2.1 Urban Scenario

The advanced driving assistance system can not only improve the driving experience on

the freeway but also in the urban scenario. The urban scenario is much more complicated

than the freeway scenario due to the narrower street, denser traffic, interruption of

pedestrian, and other unpredictable events. Human drivers pay more attention to urban

areas and require more driving assistance to improve their safety and travel efficiency.

Besides, the urban miles per gallon (mpg) for an ICE vehicle is usually higher than the

freeway mpg due to the frequent stop and go behavior. Consequently, the eco demand in

urban is much higher, especially for the city's public transportation system. Therefore, to

build an urban scenario in the simulation and to verify the effectiveness of the proposed

60

architecture for comprehensive tasks should be one of the future research directions. The

multi-tasks learning architectures mention in section 2.3.2.5 may be considered.

There are some related works for reference. For example, taking advantage of V2X and

the signal phase and timing (SPaT) information, Hao et al. proposed an eco-approach and

departure (EAD) application for signalized intersections with real-world traffic. The EAD

system can save 6% energy for the trip segments when activated within DSRC ranges and

2% energy for entire trips. It can also reduce 7% of CO, 18% of HC, and 13% of NOx for

all trips [70]. Bai et al. presented a hybrid reinforcement learning (HRL) framework for

connected eco-driving at signalized intersections [71]. The method achieved 1 – 7% travel

time saving and 12 – 47% energy consumption saving compared with the intelligent driver

model (IDM).

5.2.2 From the Simulation to the Real World

Simulation can be the perfect tool for training and testing the machine learning

algorithm for the real-world driving problem. The method succeeded in the simulation,

however, still needs the further validation in the real world. If the proposed system cannot

work for real-world testing directly, transfer learning may be considered for migration.

This future research direction also has related works, such as [72][73].

As aforementioned in Chapter 1, the perception and decision making in the

comprehensive scenarios challenge the commercial-grade autonomous driving. Achieving

Level 5 automation based on only the host vehicle is nearly impossible. Researchers and

engineers are pinning their hope on CAVs using V2V or V2X techniques. Before going to

implement the CAVs and the V2X infrastructure, building a mini-city with mobile robots

61

can be a surrogate "real-world simulation platform". The Duckietown project was

conceived in 2016 at MIT. The goal was to build a small-scale platform and preserve the

real scientific challenges inherent in a full-scale real autonomous robot platform [74].

Similarly, the TSR lab in CE-CERT is going to establish a mini-city starting from the

AutoTrac Challenge [75]. Training and validating our system on the mini-city using robots

is considered as another future research direction.

62

Reference

[1] SAE On-Road Automated Vehicle Standards Committee. "Taxonomy and definitions

for terms related to on-road motor vehicle automated driving systems." SAE Standard

J 3016 (2014): 1-16.

[2] Google self-driving car project, 2015:

https://medium.com/waymo/scenes-from-the-street-5bb77046d7ce#.tq11yyoqw

[3] Waymo to start driverless ride sharing in Phoenix area, 2017:

https://www.azcentral.com/story/money/business/tech/2018/01/30/waymo-start-

driverless-ride-sharing-phoenix-area-year/1078466001/

[4] Tesla Autopilot: https://www.tesla.com/support/autopilot

[5] BMW Personal CoPilot:

https://www.bmw.com.mt/en/topics/fascination-bmw/bmw-autonomous-driving.html

[6] U.S. EPA: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions

[7] Wu, Guoyuan, Kanok Boriboonsomsin, and Matthew J. Barth. "Eco-routing navigation

system for electric vehicles." Center for Environmental Research and Technology,

University of California, Riverside, 1084 Columbia Ave., Riverside, CA 92507 (2014).

[8] U.S. EIA: https://www.eia.gov/tools/faqs/faq.php?id=427&t=3

[9] The Automotive LiDAR Market:
http://www.woodsidecap.com/wp-content/uploads/2018/04/Yole_WCP-LiDAR-

Report_April-2018-FINAL.pdf

[10] Wang, Yan, et al. "Pseudo-lidar from visual depth estimation: Bridging the gap in

3d object detection for autonomous driving." Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2019.

[11] You, Yurong, et al. "Pseudo-lidar++: Accurate depth for 3d object detection in

autonomous driving." arXiv preprint arXiv:1906.06310 (2019)

[12] Okuyama, Takafumi, Tad Gonsalves, and Jaychand Upadhay. "Autonomous

driving system based on deep Q learnig." 2018 International Conference on Intelligent

Autonomous Systems (ICoIAS). IEEE, 2018.

[13] McAllister, Rowan, et al. "Concrete problems for autonomous vehicle safety:

Advantages of bayesian deep learning." International Joint Conferences on Artificial

Intelligence, Inc., 2017.

https://medium.com/waymo/scenes-from-the-street-5bb77046d7ce#.tq11yyoqw
https://www.azcentral.com/story/money/business/tech/2018/01/30/waymo-start-driverless-ride-sharing-phoenix-area-year/1078466001/
https://www.azcentral.com/story/money/business/tech/2018/01/30/waymo-start-driverless-ride-sharing-phoenix-area-year/1078466001/
https://www.tesla.com/support/autopilot
https://www.bmw.com.mt/en/topics/fascination-bmw/bmw-autonomous-driving.html
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
http://www.woodsidecap.com/wp-content/uploads/2018/04/Yole_WCP-LiDAR-Report_April-2018-FINAL.pdf
http://www.woodsidecap.com/wp-content/uploads/2018/04/Yole_WCP-LiDAR-Report_April-2018-FINAL.pdf

63

[14] Tesla Accident 2016: A Tragic Loss. https://www.tesla.com/blog/tragic-loss

[15] Yurtsever, Ekim, et al. "A survey of autonomous driving: Common practices and

emerging technologies." IEEE Access 8 (2020): 58443-58469.

[16] Cai, Peide, et al. "Vision-based trajectory planning via imitation learning for

autonomous vehicles." 2019 IEEE Intelligent Transportation Systems Conference

(ITSC). IEEE, 2019.

[17] Bojarski, Mariusz, et al. "Explaining how a deep neural network trained with end-

to-end learning steers a car." arXiv preprint arXiv:1704.07911 (2017).

[18] Bojarski, Mariusz, et al. "End to end learning for self-driving cars." arXiv preprint

arXiv:1604.07316 (2016).

[19] Sallab, Ahmad EL, et al. "Deep reinforcement learning framework for autonomous

driving." Electronic Imaging 2017.19 (2017): 70-76.

[20] Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning."

arXiv preprint arXiv:1509.02971 (2015).

[21] Wang, Ziran, Guoyuan Wu, and Matthew J. Barth. "A review on cooperative

adaptive cruise control (CACC) systems: Architectures, controls, and applications."

2018 21st International Conference on Intelligent Transportation Systems (ITSC).

IEEE, 2018.

[22] Kesting, et al. "Adaptive cruise control design for active congestion avoidance."

Transportation Research Part C: Emerging Technologies 16.6 (2008): 668-683.

[23] Luo, Lihua. "Adaptive cruise control design with consideration of humans' driving

psychology." Proceeding of the 11th World Congress on Intelligent Control and

Automation. IEEE, 2014.

[24] Shi, Jiangchao, and Jian Wu. "Research on Adaptive Cruise Control based on curve

radius prediction." 2017 2nd International Conference on Image, Vision and

Computing (ICIVC). IEEE, 2017.

[25] Wang, Ziran, Guoyuan Wu, and Matthew J. Barth. "Developing a distributed

consensus-based cooperative adaptive cruise control system for heterogeneous vehicles

with predecessor following topology." Journal of Advanced Transportation 2017

(2017).

[26] Sheikholeslam, Shahab, and Charles A. Desoer. "Longitudinal control of a platoon

of vehicles." 1990 American control conference. IEEE, 1990.

https://www.tesla.com/blog/tragic-loss

64

[27] Song, Shuran, and Jianxiong Xiao. "Sliding shapes for 3d object detection in depth

images." European conference on computer vision. Springer, Cham, 2014.

[28] Wang, Dominic Zeng, and Ingmar Posner. "Voting for voting in online point cloud

object detection." Robotics: Science and Systems. Vol. 1. No. 3. 2015.

[29] Yang, Bin, Wenjie Luo, and Raquel Urtasun. "Pixor: Real-time 3d object detection

from point clouds." Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition. 2018.

[30] Chen, Xiaozhi, et al. "Multi-view 3d object detection network for autonomous

driving." Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2017.

[31] Liang, Ming, et al. "Deep continuous fusion for multi-sensor 3d object detection."

Proceedings of the European Conference on Computer Vision (ECCV). 2018.

[32] Wawrzynski, Pawel. "Control policy with autocorrelated noise in reinforcement

learning for robotics." International Journal of Machine Learning and Computing 5.2

(2015): 91.

[33] Aly, Mohamed. "Real time detection of lane markers in urban streets." 2008 IEEE

Intelligent Vehicles Symposium. IEEE, 2008.

[34] Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep

convolutional nets, atrous convolution, and fully connected crfs." IEEE transactions

on pattern analysis and machine intelligence 40.4 (2017): 834-848.

[35] Pan, Xingang, et al. "Spatial as deep: Spatial cnn for traffic scene understanding."

Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[36] Teichmann, Marvin, et al. "Multinet: Real-time joint semantic reasoning for

autonomous driving." 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018.

[37] Muller, Urs, et al. "Off-road obstacle avoidance through end-to-end learning."

Advances in neural information processing systems. 2006.

[38] Hadsell, Raia, et al. "Learning long‐range vision for autonomous off‐road driving."

Journal of Field Robotics 26.2 (2009): 120-144.

[39] Chen, Chenyi, et al. "Deepdriving: Learning affordance for direct perception in

autonomous driving." Proceedings of the IEEE International Conference on Computer

Vision. 2015.

65

[40] François-Lavet, Vincent, et al. "An introduction to deep reinforcement learning."

arXiv preprint arXiv:1811.12560 (2018).

[41] Watkins, Christopher John Cornish Hellaby. "Learning from delayed rewards."

(1989).

[42] Watkins, C. J. and P. Dayan. 1992. “Q-learning”. Machine learning. 8(3-4): 279–

292.

[43] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement

learning." Nature 518.7540 (2015): 529-533.

[44] Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep reinforcement learning

with double q-learning." Thirtieth AAAI conference on artificial intelligence. 2016.

[45] McCloskey, Michael, and Neal J. Cohen. "Catastrophic interference in

connectionist networks: The sequential learning problem." Psychology of learning and

motivation. Vol. 24. Academic Press, 1989. 109-165.

[46] Codevilla, Felipe, et al. "End-to-end driving via conditional imitation learning."

2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018.

[47] Tessler, Chen, et al. "A deep hierarchical approach to lifelong learning in

minecraft." arXiv preprint arXiv:1604.07255 (2016).

[48] Chamberlin, Robert, et al. Analysis of MOVES and CMEM for evaluating the

emissions impact of an intersection control change. No. 11-0673. 2011.

[49] Shibata, Seishiro, and Tsuguhiko Nakagawa. "Mathematical model of electric

vehicle power consumption for traveling and air-conditioning." Journal of Energy and

Power Engineering 9.6 (2015): 269-275.

[50] Ye, Fei, et al. "A hybrid approach to estimating electric vehicle energy consumption

for ecodriving applications." 2016 IEEE 19th International Conference on Intelligent

Transportation Systems (ITSC). IEEE, 2016.

[51] Scora, George, et al. "Real-time roadway emissions estimation using visual traffic

measurements." 2011 IEEE Forum on Integrated and Sustainable Transportation

Systems. IEEE, 2011.

[52] B. Wymann, E. Espi é, C. Guionneau, C. Dimitrakakis, R. Coulom, and A. Sumner.

TORCS, The Open Racing Car Simulator. http://www.torcs.org.

http://www.torcs.org/

66

[53] Xiong, Xi, et al. "Combining deep reinforcement learning and safety based control

for autonomous driving." arXiv preprint arXiv:1612.00147 (2016).

[54] Shah, Shital, et al. "Airsim: High-fidelity visual and physical simulation for

autonomous vehicles." Field and service robotics. Springer, Cham, 2018.

[55] Juliani, Arthur, et al. "Unity: A general platform for intelligent agents." arXiv

preprint arXiv:1809.02627 (2018).

[56] Dosovitskiy, Alexey, et al. "CARLA: An open urban driving simulator." arXiv

preprint arXiv:1711.03938 (2017).

[57] Mohammed, Eslam, et al. "End-to-End Deep Path Planning and Automatic

Emergency Braking Camera Cocoon-based Solution." Neural Information Processing

Systems (NeurIPS 2019). 2019.

[58] Sauer, Axel, Nikolay Savinov, and Andreas Geiger. "Conditional affordance

learning for driving in urban environments." arXiv preprint arXiv:1806.06498 (2018).

[59] Zhang, Enwei, et al. "Learning How to Avoiding Obstacles for End-to-End Driving

with Conditional Imitation Learning." Proceedings of the 2019 2nd International

Conference on Signal Processing and Machine Learning. 2019.

[60] Cai, Peide, et al. "VTGNet: A vision-based trajectory generation network for

autonomous vehicles in urban environments." arXiv preprint arXiv:2004.12591

(2020).

[61] van Dijk, Tom, and Guido CHE de Croon. "How do neural networks see depth in

single images?." arXiv preprint arXiv:1905.07005 (2019).

[62] Zhu, Meixin, Xuesong Wang, and Yinhai Wang. "Human-like autonomous car-

following model with deep reinforcement learning." Transportation research part C:

emerging technologies 97 (2018): 348-368.

[63] Li, Shengbo Eben, et al. "Minimum fuel control strategy in automated car-

following scenarios." IEEE Transactions on Vehicular Technology 61.3 (2012): 998-

1007.

[64] Wei, Zhensong, et al. "End-to-End Vision-Based Adaptive Cruise Control (ACC)

Using Deep Reinforcement Learning." arXiv preprint arXiv:2001.09181 (2020).

[65] BARTH, MATTHEW J. "Energy and Environmental Impacts of Personal

Mobility." Frontiers of Engineering: Reports on Leading-Edge Engineering from the

2006 Symposium. National Academies Press, 2007.

67

[66] Fuel efficient driving techniques by Natural Resources Canada:

https://www.nrcan.gc.ca/energy-efficiency/energy-efficiency-transportation/personal-

vehicles/fuel-efficient-driving-techniques/21038

[67] Savinov, Nikolay, et al. "Episodic Curiosity through Reachability." International

Conference on Learning Representations. 2018.

[68] Andrychowicz, Marcin, et al. "Hindsight experience replay." Advances in neural

information processing systems. 2017.

[69] Schaul, Tom, et al. "Prioritized experience replay." arXiv preprint

arXiv:1511.05952 (2015).

[70] Hao, Peng, et al. "Eco-approach and departure (EAD) application for actuated

signals in real-world traffic." IEEE Transactions on Intelligent Transportation Systems

20.1 (2018): 30-40.

[71] Bai, Zhengwei, et al. “PengHybrid Reinforcement Learning for Multi-Sensor-

Based Connected Eco-Driving Signalized Intersections” (2019).

[72] Bewley, Alex, et al. "Learning to drive from simulation without real world labels."

2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

[73] Kendall, Alex, et al. "Learning to drive in a day." 2019 International Conference

on Robotics and Automation (ICRA). IEEE, 2019.

[74] Duckietown. https://www.duckietown.org/

[75] AUTOTRAC. https://ec.europa.eu/jrc/en/event/other-event/jrc-autotrac-2020-

how-future-road-transport-will-look

https://www.nrcan.gc.ca/energy-efficiency/energy-efficiency-transportation/personal-vehicles/fuel-efficient-driving-techniques/21038
https://www.nrcan.gc.ca/energy-efficiency/energy-efficiency-transportation/personal-vehicles/fuel-efficient-driving-techniques/21038
https://www.duckietown.org/

