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A Neural Model of Episodic and Semantic Spatiotemporal Memory 
 

Gerard J. Rinkus (rinkus@comcast.net) 
468 Waltham St. 

Newton, MA USA 
 
 

Abstract 

A neural network model is proposed that forms sparse 
spatiotemporal memory traces of spatiotemporal events 
given single occurrences of the events. The traces are 
distributed in that each individual cell and synapse 
participates in numerous traces. This sharing of 
representational substrate provides the basis for similarity-
based generalization and thus semantic memory.  
Simulation results are provided demonstrating that similar 
spatiotemporal patterns map to similar traces. The model 
achieves this property by measuring the degree of match, 
G, between the current input pattern on each time slice and 
the expected input given the preceding time slices (i.e., 
temporal context) and then adding an amount of noise, 
inversely proportional to G, to the process of choosing the 
internal representation for the current time slice. Thus, if G 
is small, indicating novelty, we add much noise and the 
resulting internal representation of the current input pattern 
has low overlap with any preexisting representations of 
time slices. If G is large, indicating a familiar event, we add 
very little noise resulting in reactivation of all or most of 
the preexisting representation of the input pattern. 

Introduction 
Any realistic cognitive model must exhibit both episodic 
and semantic memory. And, as emphasized by Ans, 
Rousset, French, & Musca (2002), it must demonstrate 
these properties for the spatiotemporal (or, sequential) 
pattern domain. Thus, the model must be able to recall, 
without significant interference, large numbers of 
spatiotemporal patterns, which we will call episodes, 
given only single presentations of those episodes. 
Furthermore, it must exhibit human-like similarity-based 
generalization and categorization properties that underlie 
many of those phenomena classed as semantic memory. 

We propose a sparse, distributed neural network model, 
TESMECOR (Temporal Episodic and Semantic Memory 
using Combinatorial Representations), that performs 
single-trial learning of episodes. The degree of overlap 
between its distributed memory traces increases with the 
similarity of the episodes that they represent. This latter 
property provides a basis for generalization and 
categorization and thus, semantic memory. The model 
achieves this property by computing, on each time slice, 
the similarity, G, between the expected and actual input 
patterns and then adding an amount of noise inversely 
proportional to G into the process of choosing an internal 
representation (IR) for that time slice. When expected and 
actual inputs match completely, no noise is added, 

allowing those IR cells having maximal input via 
previously modified weights to be reactivated (i.e., fully 
deterministic recall). When they completely mismatch, 
enough noise is added to completely drown out the 
learned, deterministic inputs, resulting in activation of an 
IR having little overlap with preexisting traces. 

The opposing purposes of episodic memory and pattern 
recognition (i.e., semantic memory)—i.e., remembering 
what is unique about individual instances vs. learning the 
similarities between instances—has led other researchers 
to propose that the brain uses two complementary 
systems. McClelland et al (1995) and O’Reilly & Rudy 
(1999) propose that the purpose of the hippocampus is to 
rapidly learn new specific information whereas the 
purpose of neocortex is to slowly integrate information 
across individual instances thus coming to reflect the 
higher-order statistics of the environment. The 
hippocampus then repeatedly presents its newly acquired 
memory traces to neocortex, acting as trainer facilitating 
the gradual transfer of information to neocortex during the 
period of memory consolidation. We point out that 
TESMECOR is not such a two-component model. Rather, 
it is a monolithic model, i.e., it has a single local circuit 
architecture and processing algorithm (envisioned as an 
analog of the cortical mini-column) that satisfies the 
opposing needs. 

Episodic Spatiotemporal Memory 
Rinkus (1995) introduced a neural network model, 
TEMECOR, of episodic memory for spatiotemporal 
patterns. As shown in Figure 1, the model’s. Layer 1 (L1) 
consists of binary feature detectors and its layer 2 (L2) 
consists of competitive modules (CMs). The L2 cells are 
nearly completely connected via a horizontal matrix 
(H-matrix) of binary weights. 

The model operates in the following way. On each time 
step, a pattern is presented to L1. On that same time step, 
one L2 cell is chosen at random to become active in each 
CM corresponding to an active L1 cell. In addition, the 
horizontal weights from the L2 cells active on the prior 
time slice to those that become active on the current time 
are increased to their maximal value of one. In this way, 
spatiotemporal memory traces are embedded in the 
H-matrix. Later on, if we reinstate a set of L2 cells that 
was coactive in the past while learning an episode, the 
remainder of that episode will be read out in time. That is, 
the model recalls spatiotemporal memories. 
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Figure 1: TEMECOR architecture showing how spatiotemporal memory traces are laid down amongst the horizontal 
connections of Layer 2. Features { b,c,d}  are active at t = 1, { e,f,h}  at t = 2, and { i,j,k}  at t = 3. Each L2 cell has horizontal 
connections to all other L2 cells except those in its own CM. Only the connections increased while processing this particular 
spatiotemporal pattern (episode) are shown. Note that although this figure shows each time slice of the episode being handled 
by a separate portion of the network, this is purely to keep the figure uncluttered. In fact, all L1 cells and all L2 CMs are 
eligible to become active on every time slice. 
 

TEMECOR exhibits high capacity, as shown in Figure 
2, as well as other essential properties of episodic 
memory, e.g., single-trial learning. The model’s beneficial 
properties derive principally from its use of a sparse 
distributed, or combinatorial, representational framework, 
a framework underlying many other models—Willshaw, 
Buneman & Longuet-Higgins, 1969; Lynch, 1986; Palm, 
1980; Moll & Miikkulainen, 1995; Coultrip & Granger, 
1994. The key to its high capacity is that by randomly 
choosing winners in the CMs, it minimizes the average 
overlap amongst the memory traces. 
 

Figure 2: Capacity Results 
 

Table 1 provides the data for the bold curve in the 
figure. It gives the maximal capacity, E, and other 
statistics for networks of increasing size, L. All episodes 
had T = 6 time slices and each time slice had S = 20 (out 

of M = 100) active features, chosen at random. The 
bottom row of the table shows that a network containing 
4000 L2 cells, i.e., 100 CMs having K = 40 cells each, 
can store 5693 such episodes. 
 

Table 1: Capacity Test Results 
 

E E/L F K L V Rset H 
237 0.30 285 8 800 36 96.3 52.3 
943 0.59 1132 16 1600 71 97.0 52.1 
2104 0.88 2524 24 2400 105 97.0 51.8 
3691 1.15 4430 32 3200 138 97.2 51.4 
5693 1.42 6831 40 4000 171 97.4 50.9 
 
Table 1 was generated as follows. For each K, the 

maximal number of episodes, E, which could be stored to 
criterion average recall accuracy, 96.3%, was determined. 
Recall accuracy, Re, for a given episode e, is defined as: 

)()( eeeee ICDCR +−=       (1) 

where Ce is the number of L2 cells correctly active during 
recall of eth episode, De is the number of deleted L2 cells, 
and Ie is the number of intruding L2 cells. The table 
reports Rset, the average of the Re values for a whole set of 
episodes. All episodes were presented only once. 

The other statistics in Table 1 are as follows.  E/L is the 
ratio of stored episodes to the number of cells in L2, 
which increases linearly. F is the average number of 
instances of each feature across the entire set of episodes. 
V is the average number of times each L2 cell in a given 
CM became active to represent the corresponding feature. 
H is the percentage of weights increased, which is nearly 
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constant, at just over 50%, across rows. As we allow the 
fraction of weights to increase beyond 50%, more 
episodes are stored, but with a lower average recall 
accuracy due to the increase in intrusion errors resulting 
from saturation of the weights. 

While TEMECOR exhibited the major properties of 
episodic memory it was not initially intended to model 
semantic memory and, due to its completely random 
method of choosing sparse internal representations at L2, 
it did not exhibit the generalization and categorization 
properties that underlie semantic memory. The successor 
version of the model, TESMECOR was developed to 
address this shortcoming (Rinkus, 1996). 

Semantic Spatiotemporal Memory 
TESMECOR is shown in Figure 3. It has some 

architectural differences with the original version 
(essentially, relaxations of some of the original’s 
structural constraints) and a greatly modified winner 
selection process. The H-matrix of L2 is as before but the 
vertical projection is generalized. There is no longer a 
1-to-1 correspondence between L1 cells and L2 CMs. 
Rather; each L1 cell connects to a fraction of all the L2 
cells chosen at random in simulations. In TESMECOR, 
all CMs are active on every time slice. In addition, the 
bottom-up, or forward, connections (F-weights) and the 
top-down, or reverse, connections (R-weights) are now 
modeled separately and are modifiable. 

 
Figure 3: TESMECOR architecture. 

 
The most significant change between TEMECOR and 

TESMECOR however is in the processing algorithm. 
Specifically, TESMECOR adds circuitry implementing 
spatiotemporal matching operations, both locally within 
each CM and globally over the entire L2. On each time 
slice, the global degree of match between the actual 
current input and the expected input, given the 
spatiotemporal context of the current input, modulates the 
amount of noise injected into the process of selecting 

which L2 cells will become active. The smaller the match, 
the more noise that is added and the greater the difference 
between the internal representation (IR) that would have 
become active purely on the basis of the deterministic 
inputs reflecting prior learning and the IR that actually 
does become active. The greater the match, the less noise 
added and the smaller the difference between the most 
highly implicated IR (on the basis of prior learning) and 
the actually chosen IR. 

Figure 4 illustrates the basic principles by which the 
model computes, on each time slice, the degree of match, 
G, between its expected input and the actual input and 
then uses G to determine how much noise to add to the 
internal representation selection scheme. Figure 4a shows 
a pattern, A, presenting at t = 1. The H-weights are 
increased (represented by the dotted lines) from the active 
L1 cells onto an internal representation, IRA, comprised of 
the three L2 cells that emerge as winners in their 
respective CMs. For purposes of this example, these three 
winners can be assumed to be chosen at random. 

Figure 4b shows another pattern, B, presenting at t = 2. 
As with IRA, IRB can be assumed to be chosen at random. 
Here, we see the both H- and F-weights being increased. 

Figure 4c shows another trial with pattern A presenting 
at t = 1. This time, IRA becomes active due to the 
deterministic effects of the previously increased weights 
(which are now shown as solid lines). The cells of IRA 
now send out signals via the H-matrix which will arrive at 
the other CMs at t = 2. 

At this point, it is convenient to portray the t = 2 time 
slice in two steps. Figures 4d and 4e show these two 
steps. Figure 4d shows the signals arriving via the 
H-matrix at the same time that that signals arrive via the 
F-matrix from currently active L1 cells. Thus, the L2 cells 
in the three CMs on the right simultaneously receive two 
vectors each carrying possibly different expectations 
about which IR should become active (or equivalently, 
different hypotheses about what the current state of the 
world is). It is these two vectors that TESMECOR 
compares. In this particular case, the three cells of IRB are 
receiving full support via the H-matrix. In other words, 
the temporal context says that IRB should become active. 
However, these cells are receiving only partial support 
(two out of four L1 cells) via the F-matrix. Indeed, this is 
a novel input, pattern C, which has presented. Thus, the 
current spatial context does not contain sufficient 
information (given this network’s history of inputs) to 
clearly determine what IR should become active. We 
represent this less-than-maximal support for IRB by the 
gray shading of its cells. Because of this mismatch, i.e., G 
< 1.0, we add some noise into the winner selection 
process. The final result is that a different L2 cell than the 
one most strongly implicated by the deterministic inputs 
ends up winning the competition in one of the three CMs 
(the bottom right-hand one) active at t = 2. Thus, Figure 
4e shows a new IR, IRC, representing the novel pattern, C. 

 

Global
Match

Noise
Generation

Global
Match

Noise
Generation
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Figure 4: Sketch of TESMECOR’s spatiotemporal pattern comparison and noise-modulated internal representation selection 
scheme. See text for explanation. As in Figure 2, the division of the L2 CMs into separate groups for different time slices is 
purely to avoid clutter. In the model’s actual operation, all CMs are active on every time slice. 
 

Figures, 4f, 4g, and 4h, show another possible scenario. 
This time, we will again present pattern B at t = 2. However 
a novel pattern, D, having only two features in common 
with A, presents at t = 1. As this is the first time slice of this 
new trial, there is no prior context vector active in the 
H-matrix. For concreteness, let’s assume that this degree of 
mismatch causes a new winner to be chosen in two of the 
three CMs active at t = 1, resulting in a new IR, IRD. When 
B presents at t = 2, the F-vector lends maximal support for 
IRB but the H-vector has great uncertainty; only 1/3 of the 
maximal possible horizontal input arrives at the cells of IRB. 
This seems like even a worse match than in Figure 4d 
(shown by an even lighter shading of the IRB cells than in 
Figure 4d). Consequently, more noise is added to the winner 
selection process. Let’s assume that this degree of mismatch 
leads to a new winner in two of the three CMs active at t = 
2, resulting in a new IR, IRB*, for pattern B.  

With this example of the desired behavior in mind, we 
now give TESMECOR’s processing algorithm, which is 
computed on each time slice for each L2 cell. 
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In step 1, each L2 cell, i, computes its total weighted 

input, ψi,t, from the set, Γt, of currently active L1 cells. In 
step 2, the ψ values are normalized within each CM. That is, 
we find the maximum ψ value, in each CM and divide all 
the individual values by the greater of that value and 

a) t=1 b) t=2

c) t=1 d) t=2a

f) t=1 g) t=2a h) t=2b

e) t=2b
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F-matrix threshold, FΘt. 
FΘt is needed to ensure that small 

feedforward signals are not amplified in subsequent 
normalization steps. FΘt is a parameter that can vary from 
one time slice to the next but we omit discussion of this 
detail in this paper due to space limitations. 

Steps 3 and 4 perform analogous operations for the 
horizontal inputs. In step 3, i, computes its total weighted 
input, φi,t, from the set, ∆t-1, of L2 cells active on the prior 
time slice. In step 4, the φ values are normalized within each 
CM. That is, we find the maximum φ value, in each CM and 
divide all the individual values by the greater of that value 
and an H-matrix threshold, HΘt. 

HΘt is needed to ensure that 
small H values are not amplified in subsequent 
normalization steps. HΘt also varies from one time slice to 
the next but again, space limitations force us to omit 
discussion of this detail. Note that steps 3 and 4 are only 
applicable on non-initial time slices (t > 0) of episodes. 

Step 5 works differently on the first time slices of 
episodes than on the rest. When t > 0, we multiply the two 
pieces of evidence, Ψi,t and Φi,t, that cell i should become 
active but we do this after passing them through separate 
exponential filters. Since Ψi,t and Φi,t, are both between 0 
and 1, the final χi,t values output from this step are also 
between 0 and 1. The exponential filters effect a 
generalization gradient: the higher the exponents, u and v, 
the sharper the gradient and the more sensitive the model is 
to differences between inputs (i.e., the finer the 
spatiotemporal categories it would form) and the less 
overlap between the internal representations chosen by the 
model. When t = 0, we do not have two vectors to compare. 
Instead, we simply pass the Ψ values through an exponential 
gradient-controlling filter. The three different exponent 
parameters, u, v, and w, simply let us fine-tune the model’s 
generalization gradients. For example, we might want the 
model’s sensitivity to featural similarity to be stricter at the 
beginning of episodes than on the successive time slices of 
episodes; thus we would set w higher than u. 

In step 6, we normalize the combined evidence vector, 
again subject to a threshold parameter, χΘt, that prevents 
small values from erroneously being amplified. In step 7, 
we simply determine the maximum value, πi,t, of the Χ i,t 
values in each CM. These π values constitute local, i.e., 
within each CM, comparisons between the model’s 
expected and actual inputs. In step 8, we compute the 
average of these local comparison results across the Q CMs 
of L2, resulting in the model’s global comparison, Gt, of its 
expected and actual inputs.  

In step 9, we convert the Χ i,t values back into a 
probability distribution whose shape depends on Gt. We 
want to achieve the following: if Gt is 1.0, indicating that 
the actual input has perfectly matched the model’s expected 
input, then, in each CM, we want to choose, with probability 
1.0, the cell belonging to the IR representing that expected 
input. That cell, in each CM, is the one having the highest Χ 
value. Since, in general, other cells in that cell’s CM could 
have non-zero or even high Χ values, we need to filter the 

values by an expansive nonlinearity, f, so that the cell with 
the maximal Χ value maps to a probability, pi,t, of 1.0 and 
the rest of the cells end up mapping to pi,t = 0.0. On the 
other hand, if Gt = 0, indicating that the actual input is 
completely unexpected in the current temporal context 
given all of the model’s past experience, then we want to 
make all the cells, in any given CM, be equally likely to be 
chosen winner. Thus, in this case, f should be a compressive 
nonlinearity that maps all cells in the CM to p= 1/K, where 
K is the number of cells in the CM. Without going into 
details, the function, f, is a sigmoid that meets the above 
goals. In the last stage of step 9, we simply choose the 
winner in each CM according to the resulting distribution. 

To summarize, on each time slice, every L2 cell compares 
two evidence vectors, the H-vector, reflecting the sequence 
of patterns leading up to the present time slice (temporal 
context), and the F-vector, reflecting the current spatial 
pattern (spatial context). These vectors are separately 
nonlinearly filtered and then multiplicatively combined. The 
combined evidence vector is then renormalized and 
nonlinearly filtered before being turned into a probability 
distribution that governs the final selection of L2 cells to 
become active. Note that this basic scheme can be extended 
to simultaneously compare other evidence vectors as well. 
This is one of our intended lines of future research: 
specifically, we will examine incorporating a hippocampal 
component to the model, which will provide a third 
evidence vector to the L2 cells. 

The concept of controlling the embedding of internal 
representations (IRs) based on comparing the expected and 
actual inputs is common to other cognitive models, e.g., 
Grossberg (1987). However, TESMECOR’s use of 
distributed IRs, rather than singleton IRs, requires a 
generalized comparison scheme. Specifically, with 
distributed IRs, there exists a range of possible degrees of 
overlap between IRs. We want to use that range to represent 
the spatiotemporal similarity structure of the environment to 
which the model has been exposed. Therefore, rather than 
having a single threshold for judging the similarity of the 
current input and expected inputs (e.g., ART's vigilance 
parameter), TESMECOR's continuous-valued similarity 
measure, G, is used to inject a variable amount of noise into 
the IR-selection process, which in turn allows for selecting 
IRs whose degrees of overlap are correlated with their 
spatiotemporal similarities. 

Simulation Results 
In this section, we provide the results of preliminary 
investigations of the model demonstrating that it performs 
similarity-based generalization and categorization in the 
spatiotemporal pattern domain. 

The four simulations described in Table 2 were performed 
as follows. In the learning phase, E episodes were presented, 
once each. Each episode consisted of 5 time slices, each 
having 20 (out of 100) randomly selected features present. 
Then, perturbed versions, differing by d = 2, 4, 6, or 8 (out 
of 20) features per time slice from the original episodes 
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were generated. The model was then tested by presenting 
the first Z time slices of the perturbed episodes as prompts.  
Following the prompt time slices, the model entered a free-
running mode (i.e. cutting off any further input) and 
processing continued from that point merely on the basis of 
signals propagating in the H-projection. 
 

Table 2: Generalization/Categorization Results 
 

Simulation E d Z Rset 

1 27 2 1 92.3% 
2 13 4 1 98.0% 
3 7 6 1 98.3% 
4 13 8 2 82.7% 

 
These results indicate that the model was extremely good 

at locking into the trace corresponding to the most-closely-
matching original episode. The accuracy measure, Rset (eq. 
1) measures how close the recall L2 trace is to the L2 trace 
of the most-closely-matching original episode. The accuracy 
for simulation 4 (82.7%) may seem low. However, if the 
accuracy measure is taken only for the final time slice of 
each episode then it is close to 100% for all four 
simulations. The view taken herein is that given that the 
pattern to be recalled are spatiotemporal, the most relevant 
measure of performance is the measure of accuracy on the 
last time slice of the test episode. If the model can “ lock 
into'' the correct memory trace by the end of the recalled  
trace, then that should be sufficient evidence that model has 
recognized the input as an instance of a familiar episode. 

 
Table 3: Per-Time-Slice L2 Accuracy for 
the Test Trials of Simulation 4 of Table 2  

 

Episode T=1 T=2 T=3 T=4 T=5 

1 0.9 0.9 1.0 1.0 1.0 
2 0.82 1.0 1.0 1.0 1.0 
3 0.67 1.0 1.0 1.0 1.0 
4 0.82 0.9 1.0 1.0 1.0 
5 0.67 0.82 1.0 1.0 1.0 
6 0.67 0.9 1.0 1.0 1.0 
7 0.9 1.0 1.0 1.0 1.0 
8 0.74 1.0 1.0 1.0 1.0 
9 0.74 1.0 1.0 1.0 1.0 
10 0.67 0.82 1.0 1.0 1.0 
11 0.54 0.67 0.22 0.0 0.0 
12 0.48 0.21 0.0 0.0 0.0 
13 0.82 0.9 1.0 1.0 1.0 

 
Table 3 shows the details of the simulation 4 in Table 2. 

Specifically, it shows the L2 accuracy on each time slice of 
each episode during the recall test. For each recall trial the 
model received a prompt consisting of degraded versions of 
the first two time slices of the original episode—

specifically, 4 out of 20 features were substituted on each 
time slice (for a total of 8 featural differences). In all but 
two cases, the model ‘ locks into’  the L2 trace corresponding 
to the most-closely-matching original episode (i.e., the 
episode from which the degraded prompt was created. 

These simulations provide preliminary evidence that 
TESMECOR exhibits generalization, and in fact 
categorization, in the spatiotemporal domain, while at the 
same time exhibiting episodic memory since the episodes 
are learned with single trials. 
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