
UC Irvine
UC Irvine Previously Published Works

Title
Sequential cryogen spraying for heat flux control at the skin surface

Permalink
https://escholarship.org/uc/item/3rs309k1

Authors
Majaron, Boris
Aguilar, Guillermo
Basinger, Brooke
et al.

Publication Date
2001-05-21

DOI
10.1117/12.427777

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rs309k1
https://escholarship.org/uc/item/3rs309k1#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


BiOS 2001, San Jose, CA, January 2001;  
to appear in: Proc. SPIE, vol. 4244 (2001) 

Sequential cryogen spraying for heat flux control at the skin surface 
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ABSTRACT 

Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination 
with laser therapy of shallow subsurface skin lesions, such as port -wine stain birthmarks. With some cryogen spray devices, 
a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin 
surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as 
compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle 
geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and 
temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate 
mass flux control thro ugh variation of spray duty cycle, while minimally affecting other spray characteristics. The observed 
increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of “isolating” 
liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological 
applications. 

Keywords: convective heat transfer, cooling selectivity, dynamic cooling, evaporative cooling, hypervascular lesions, laser 
dermatologic surgery, port wine stain.  

1. INTRODUCTION 

In dermatologic and cosmetic laser treatments, non-specific absorption in epidermal melanin often poses a risk of 
dyspigmentation, blistering, or scarring, which limits the maximal radiant exposure that can be safely used in a clinical 
situation. For many indications, such as port wine stain birthmarks (PWS), such limitation adversely affects the success of 
laser therapy. Pre-cooling of epidermis with cryogenic spray cooling (CSC) allows safe application of laser pulses with 
higher energy, enabling improved blanching of PWS.1,2  

Despite the relatively wide clinical use of CSC in recent years, however, quantitative understanding of the involved 
processes remains incomplete. It is therefore not certain whether existing cryogen spray devices have been optimized for the 
intended applications. In particular, laser therapy of PWS calls for extremely high spatial selectivity of cooling,3,4 which 
requires use of short cryogen spurts (tens to hundreds of milliseconds) and highest possible heat transfer rate across the 
skin -coolant interface.  

––––––––––––––––––––––––––––  
*Correspondence to:  Dr. Boris Majaron, Jo èf Stefan Institute, Jamova 39, SI -1000 Ljubljana, Slovenia;  fax: +386-1-423-5400, -9385;  
e-mail:  boris.majaron@ijs.si, majaron@laser.bli.uci.edu.  
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In theory, most efficient cooling occurs when the mass flux of sprayed cryogen matches the evaporation rate at the skin 
surface. Clearly, the heat extraction is impaired if too little cryogen is sprayed. On the other hand, if the spray mass flux 
exceeds the evaporation rate, a layer of liquid cryogen may build up on the skin surface, acting as a thermal barrier between 
the very cold spray droplets and the target surface.5 However, such considerations do not fully take into account the 
dynamics of spray droplet impact, which may also affect the cooling efficiency.  

Verkruysse et al.6 recently measured cooling rates with straight-tube nozzles of different inside diameters. Narrow nozzles 
had an insid e diameters of 0.69 mm, similar to that of a commercial CSC device for PWS treatment (DCD for ScleroPlus, 
Candela, Wayland, MA), and wide ones had a diameter of 1.37 mm. Fast-flashlamp photography revealed that with either 
nozzle, a layer of liquid cryogen accumulated on the target surface (epoxy tissue model), even at spurt duration as short as 
20 ms. It was therefore very surprising that higher cooling rate was observed with wide nozzles, which undoubtedly featured 
higher mass flux (and, incidentally, als o a smaller spray cone).  

Based on fast-flashlamp photographs, presented in the same article, the authors hypothesized that higher momentum of 
larger and faster droplets, as produced by the wide nozzle, partly or completely removes the liquid cryogen layer, which in 
turn enhances heat extraction from the substrate.6 Recent direct measurements in our group have shown that the wide  
(1.37-mm inner diameter) straight-tube nozzles indeed produce significantly larger and faster droplets.7,8 Further, the fact that 
spraying with the wide nozzle yields a higher heat transfer coefficient was confirmed with independent steady-state 
measurements using a metal-rod technique,9 described earlier by Verkruysse et al .6 Most recently, Svaasand et al. 
introduced a metal-disk technique, and determined average heat transfer coefficient in a 100-ms CSC spurt to be 
10,800 W/m2K and 7,200 W/m2K for the wide and narrow  nozzle, respectively10 - in good agreement with earlier results from 
our grup.6,9  

In view of the above, heat transfer coefficient of the commercial CSC devices could likely be increased by modifying the 
atomizing nozzle geometry, which is currently similar to our narrow  nozzle. Another possibility would be to adjust the 
distance between the nozzle and skin surface for optimal heat transfer coefficient at the cryogen-skin interface.11 However, 
both these variations strongly affect other spray characteristics, such as spray temperature, covered area, etc, which makes 
seeking for optimal configuration a rather complicated task.7,8,11 Preliminary tests revealed, for example, that wide nozzle 
sprays caused a significant amount of patient discomfort, hardly acceptable for routine clinical use.6  

Therefore, we propose and investigate below an alternative approach to control the cryogen spray deposition with possibly 
much less effect on other spray characteristics. Using the narrow nozzle design, which - apart from depositing too much 
cryogen - seems to work well in clinical practice, we try to maximize the cooling rate and efficiency by sequential spraying, 
i.e., application of a series of very short spurts with varying delays between them. The hypothesis is that, if the presence of 
liquid layer is indeed limiting heat transfer across the skin surface, an appropriate reduction of cryogen flux should result in 
increased cooling rate and efficiency. 

Finally, quantitative assessment of heat transfer coefficient during CSC has lately been rather controversial, with values 
determined using various techniques ranging from around 2,000 W/m2K 12,13 up to 40,000 W/m2K,14,15 admittedly obtained 
with somewhat different atomizers and spraying conditions. In the present study, we use the metal-disk technique,10 which 
is relatively simple, fast, and accurate.  

2. INSTRUMENTATION AND METHOD 

2.1. Cryogen spray device and settings 

All measurements were performed with 1,1,1,2 tetrafluoroethane (C2H2F4, also known as R134a), the same cryogen as used in 
clinical instruments and in other similar studies. It has a boiling temperature of –26 °C and is kept in a steel canister at the 
saturation pressure (6.6 bar at 25 °C). A high-pressure hose connects the canister with the electronically controlled solenoid 
valve (i.e., automobile fuel injector). Attached to the valve body is the atomizing nozzle, which consists of a stainless steel 
tube with inner diameter of 0.69 mm (length: 32 mm), similar to that of a commercial CSC device intended for PWS therapy 
(DCD for ScleroPlus, Candela, Wayland, MA). The spraying distance was fixed at 60 mm.  
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Figure 1:  Schematic representation of spraying 
sequences used in this study. Six to nine 10-ms 
cryogen spurts were applied in a time interval 
of 100–110 ms, yielding duty cycles from 50.0 
to 90.9% (marked next to each sequence). A 
single 100-ms spurt is used as a reference.  

Spraying sequences used in this study are illustrated in Figure 1. For sequential spraying, individual spurt durations are 
constant at ts = 10 ms, while the delays between consecutive spurts, td, are varied from 1 to 10 ms. This way, the duty cycle 
of the sequence, defined as r = ts/(ts + td), is varied from 91% down to 50%. The number of spurts is adjusted to keep the 
duration of the whole sequence between 100 and 110 ms, in order to ease comparison with the reference 100-ms non-
sequential spurt.  

2.2. Measurement of heat flux across the sprayed surface 

A custom device was built to measure the heat transfer across the sprayed surface, as described in Svaasand et al.10 In 
short, the device consists of a small disk made of pure, highly conducting metal, embedded in a block of thermal insulator. 
The upper surface of the disk, roughened with sand paper to approximate skin surface, is sprayed with cryogen, and disk 
temperature is measured by a thermocouple attached to its lower surface. Heat flux across the sprayed surface of the disk, jq, 
can then be expressed as: 

dt
dT

dc
dt
dT

A
Vc

jq ?
?

?? , (1) 

where ? , c, V and A represent the density, specific heat, volume, and exposed surface area of the metallic disk, respectively, 
T marks its temperature, and d is its thickness. Equation (1) assumes that temperature T is uniform over the whole metal disk. 
This assumption is justified if the diffusion time across the disk thickness, td ? d2/?  (where ?  stands for thermal diffusivity of 
the metal), is much smaller than the disk’s relaxation time ?, given by10?

h
dc?

? ? . (2) 

Here, h marks the heat transfer coefficient, as defined by convective (“Robin”) boundary condition at the cooled surface:16  

)( cq TThj ?? . (3) 

We used high-purity copper (Cu-110: ? ???8,920?kg/m3, c = 390 J/kg K, ?  = 1.14 ? 10-4 m2/s) to make a disk with a 7-mm diameter 
and thickness of d = 0.42 mm. This yields an appropriately short diffusion time td ? 1.5 ms, and relaxation time equal to 
? = 150–300 ms for the h values in the range of 5,000–10,000 W/m2 K. Since measurement errors of 10% or more can result 
from heat conduction across the back surface of the metallic disk, when fully embedded in an epoxy block,10 we cast only a 
thin epoxy plate around the disk (of the same thickness as the disk itself), and supported everything by a block of 
polyurethane foam with very low thermal conductivity (see Fig. 2). This approach reduces heat-loss error for our detector to 
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<1%. In order to ensure optimal thermal contact, the thermocouple (type K, 300-? m bead) was soldered to the back surface 
of the copper disk. Temperature data were acquired using an A/D converter board and dedicated software (instruNet, 
Omega Engineering, Stamford, CT) at a sampling rate of 1000 Hz. 

 

 
 
 
 
 

Figure 2:  Scheme of the detection device, consisting of a 
copper disk embedded in a thin epoxy plate and supported 
by a polyurethane foam. The thermocouple bead is soldered 
to the back side of the copper disk, while its front surface is 
exposed to cryogen spraying.. 

By equating Eqs. (1) and (3), heat transfer coefficient can be calculated from acquired temperature scans as: 

 ?
?
?

?
?
?

?
?

dt
dT

TT
dc

h
c )(

?
. (4) 

The described technique in principle enables assessment of heat transfer dynamics, expressed as h(t), with temporal 
resolution limited by the heat diffusion time td.  

3. RESULTS 

Figure 3a presents temperature data as acquired during and after cryogen spray cooling of the copper disk with a 
continuous 100-ms spurt (r = 1.000; thicker line), and two sequential sprays with duty cycles of r = 0.833 and r = 0.714 (see 
the legend). All spraying sequences start at time t = 0 and last for 100–110 ms, as depicted in Fig. 1. It suffices to consider 
disk temperatures at time t = 100 ms in order to realize that, under conditions used in this experiment, lowering the duty cycle 
(r) increases CSC rate and efficiency. As illustrated in Figure 3b, which presents minimal temperatures of each scan as a 
function of the corresponding duty cycle, such a trend holds systematically from r = 1.0 to r ? 0.7, but is reversed at lower 
duty cycles. 
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Figure 3:  (a) Temperature of the copper disk as measured during CSC with a continuous 100-ms spurt and two sequential sprays 
with select duty cycles r (see the legend). All spraying sequences start at time t = 0 (as depicted in Fig. 1).  (b) Minimal 
temperatures obtained with such sequential sprays plotted as a function of the (decreasing) duty cycle.  

Figure 4 presents the dynamics of heat flux across the cooled surface, jq(t), as calculated using Eq. (1) from temperature 
scans acquired during and after three CSC spurts with varying duty cycle r (same events as in Fig. 3a). With the continuous 
spurt (r = 1.000; thicker line), the heat flux stalls at jq = 48 W/cm2 after ?  40 ms of spraying. With sequential spraying, 
exhibiting a lower average cryogen mass flux , it stalls at a higher value of 50 W/cm2 (at r = 0.833). At an even lower duty 
cycle of r = 0.714, it increases for another 30 ms to reach a peak value of jq = 56 W/cm2.  
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Figure 4:  Dynamics of heat flux across the cooled 
surface, jq(t), as calculated using Eq. (1) from copper 
disk temperature scans in Fig. 3a.  

Finally, heat transfer coefficient, h, closely related to physical mechanisms involved in heat transfer across the cooled 
surface, can be calculated from acquired copper-disk temperature scans using Eq. (4). Figure 5 presents the result for one 
continuous and two sequential CSC spurts (same as analyzed in Figs. 3a and 4). In this calculation, the cryogen temperature 
was set to Tc = –57 ?C, as measured at the target distance in a stationary spray (using a bare thermocouple in dry 
atmosphere).8,10,11 To our knowledge, the same assumption of constant Tc throughout the CSC event was made in all recently 
published analysis on the same problem.  
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The presented results show that the heat transfer coefficient (h) varies  markedly during CSC with either a continuous or 
sequential spraying. Further, they show that h values reached with decreasing duty cycles of sequential sprays are 
increasingly higher than those obtained with a continuous 100-ms spurt – a trend, which is reversed at r ?  0.7. The maximal 
value reached is h ?  9,200 W/m2 K (at r = 0.714), 12% higher than that obtained with the non-sequential spurt (8,200 W/m2 K). 
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Figure 5:  Heat transfer coefficient at the cooled surface, 
h, as calculated from the copper-disk temperature scans 
in Fig. 3a using Eq. (4).  

4. DISCUSSION 

In the presented experiments, the metallic-disk detection technique proved to provide reliable measurements of heat flux (jq) 
and heat transfer coefficient values (h) at the surface dynamically cooled with CSC, in good quantitative agreement with 
earlier results obtained in our group using other experimental approaches.6,9 While the metal-disk approach is certainly prone 
to specific systematic errors (such as the heat-loss error, discussed in Sect. 2.2), its high repeatability makes it sensitive 
enough to reliably detect small variations in cooling dynamics, induced by rather small modifications of CSC conditions - 
such as sequential spray’s duty cycle in this study.  

Compared to the earlier used technique with thermocouple-embedded epoxy block, the strength of the metal-disk approach 
arises primarily from avoidance of the inverse analysis of the heat diffusion dynamics. In presence of experimental noise, the 
ill-posedness of such analysis imposes a sizeable uncertainty onto the best-fit result (in terms of average h), even without 
taking into account its dependence on numerous inaccurately known experimental parameters, such as individual 
thermocouple depths and thermal properties of the epoxy substrate. (The latter are not only difficult to determine accurately 
for a specific epoxy sample, but can change dynamically when cooled - much more than for a pure metal).6 In addition to 
substantially reducing or altogether eliminating some further sources of measurement errors (related to the size of 
thermocouple bead vs. strong thermal gradients in epoxy substrate, heat flux along the thermocouple wires vs. heat transfer 
through the epoxy, etc.), the metallic-disk approach enables dynamical determination of surface heat flux, jq(t), and heat 
transfer coefficient h(t). The temporal resolution of such analysis is  in principle limited only by the heat diffusion time td, 
which can be brought down to ?1 ms. 

It is critical, however, to ensure optimal thermal contact between the thermocouple bead and the metal disk. As illustrated by 
the following example, an insufficient - albeit still rather good - thermal contact can induce time delays that significantly 
affect the results. Figure 6a presents two metal-disk temperature scans, acquired simultaneously with two thermocouples 
during a 100-ms CSC spurt. One thermocouple was soldered to the back side of the disk, while the other was dipped into 
thermal paste, pressed into a tiny bore on the back surface of the disk, and fixed with a drop of epoxy glue. Figure  6a 
demonstrates how the time -lag in the “glued thermocouple” scan converts to severely underestimated heat transfer 
coefficient. Without the direct comparison, it would be very difficult to recognize the error in “glued thermocouple” data. (In 
this example, a 99.9% pure silver disk with thickness of 0.7 mm was used, yielding td ? 3 ms and ? ?  260 ms at 
h = 5,000 W/m2 K.)  
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Figure 6:  (a) Temperature scans during a continuous 100-ms CSC spurt acquired simultaneously with two thermocouples, one 
soldered and the other one glued to the back side of the metallic disk (see text for details).  (b) Heat transfer coefficient, h, as 
calculated from the temperature scans in Fig. 6a using Eq. (4). 

The results of this study demonstrate that sequential CSC with appropriate duty cycle (r) can increase cooling rate and 
efficiency as compared to continuous spraying of same duration. Under conditions of this study, such a trend holds 
systematically from r = 1.0 to r ? 0.7, but is reversed at lower duty cycles (see Fig. 3). This is in perfect agreement with spray 
cooling theory in general,5 and our hypothesis of “isolating” liquid cryogen layer on the cooled surface, in particular.6  

Heat flux across the cooled surface (jq) varies substantially during both continuous and sequential CSC (Fig. 4). The curves 
obtained with various duty cycles start to differ approximately 20 ms into the cryogen spurt – most likely indicating the 
buildup of liquid cryogen layer. Regardless of the duty cycle, heat flux starts decreasing at time t ? 80 ms – more than 20 ms 
before the end of the cryogen spurt! Since this time corresponds to the time when the disk temperature crosses 0 ?C (see 
Fig. 3a), we can attribute this effect to deposition of frost from ambient water vapor, which is associated with substantial 
deposition of latent heat to the detector disk.17  

The presented formal analysis of heat transfer coefficient dynamics - using Eq. (4) and the assumption of constant cryogen 
temperature Tc - shows that h varies markedly during CSC in both continuous and sequential mode (Fig. 5). Further, it 
confirms that the h values reached with sequential sprays can be significantly higher than with the continuous 100-ms spurt. 
This result is even more interesting if we consider that the mass of sprayed cryogen is decreasing (roughly proportionally) 
with the duty cycle (r). By using appropriate sequential CSC, the cooling efficiency can be thus improved even more than 
the cooling rate itself.  

We are not aware of any plausible physical explanation for the relatively slow increase of h(t) during first 70–80 ms of CSC, 
as evidenced by Fig. 5. Therefore, we believe that this is an artefact of the assumption of constant cryogen tempertaure, Tc. 
We hypothesize that the similarly slow increase in jq(t) during first 40 ms (Fig. 4) in fact results from gradually decreasing 
spray temperature, rather than slowly increasing h(t). This would correspond well to our measurements of spray 
development time on the order of 30 ms.7,8 We have recently undertaken a more rigorous analysis of heat transfer coefficient 
dynamics, using Eq. (4) in combination with dynamic measurements of spray temperature, Tc(t). Preliminary results indicate 
that heat transfer coefficient values exceed 20,000 W/m2 K during first 10–20 ms of the spurt, but are quickly brought down 
to the 8,000–12,000 W/m2 K range, presumably due to buildup of the liquid layer and deposition of latent heat due to water 
condensation and freezing on the metallic disk.17 

Finally, maximizing the heat transfer rate may not be the ultimate goal in CSC used with laser tratment of deeper subsurface 
targets (e.g., hair removal). For such targets, it may be beneficial to use a prolonged, but less aggressive heat extraction, 
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which would provide sufficient epidermal protection while minimizing the risk of epidermal cryo-injury.3,17 Sequential 
spraying with suitably low duty cycles may offer an attractive way to adapting CSC for such appications. 

5. CONCLUSIONS 

With some CSC devices, sequential spraying can be used to increase the cooling rate, as compared to continuous spraying 
of the same duration. Under our experimental conditions, duty cycles around r = 0.7 yielded a >10% increase in heat flux 
across the cooled surface – while presumably utilizing ? 30% less cryogen mass. All observations support the hypothesis of 
“isolating” liquid cryogen layer when using a 0.7-mm straight nozzle at a 60-mm working distance. In addition, the results 
demonstrate a paramount influence of ambient water condensation on heat flux balance at the sprayed surface, even during 
100-ms cryogen spurts. In summary, sequential CSC offers a novel and practical approach to optimization of cryogen spray 
devices for individual laser dermatological applications.  
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