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Ahbstract

Reliability-Based Design Optimization of Series Structural Systems

by

Johannes O. Rovset, Armen Der Kiureghian and Elijah Polak

Algorithms for solving three classes of reliabilitv-based optimal structural design
problems are developed. The first class of problems is to minimize the cost of the
design, subject to failure probability and structural constraints. The second class
18 to minimize the failure probability of the design, subject to cost and structural
constraints. The third clags of problems is to minimize the initial cost plus the
expected cost of failure, subject to failure probability and structural constraints.
The failure probabilities can describe component failures or series structural system
failures. The third clags of problems is further extended to the optimal design of a
portfolio of structures.

Based on a first-order approximation to the failure probability, we construct ap-
proximating problems that can be solved repeatedly to obtain approximations to the
solutions of the original design problems. The approximating problems are made de-
pendent on a set of parameters that can be adjusted to improve the accuracy of the
first-order approximations. The adijustment of the parameters is based on separate
evaluations of the failure probability. In special cases, we show that the approximating
problems are identical to the original ones. We develap a set of parameter-adjustment
rules that, together with subroutines for solving the approximating problems, com-
poses the collection of new algorithms for solving reliability-based optimal structural
design problems. BEffectively, the new algorithms solve a sequence of first-order ap-
proximating problems that are constructed as the computations progress. It is ob-

served in a set of numerical design examples that the parameter-adjustment rules are



efficient tools for improving the accuracy of the first-order approximations.

The reliability-based optimal structural design algorithms developed in this study
present significant departures from the state-of-the-art. In particular, careful atten-
tion is given to the underlying assumptions and approximations to ensure a rigorous
mathematical foundation for the algorithms. This, together with the fact that first-,
or second-order reliability methods, Monte Carlo Simulation, or any other computa-
tional reliability method can be emploved, makes the algorithms efficient, robust and

versatile tools for solving reliability-based optimal structural design problems.
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Conventions and Symbols

= denctes “equal by definition.”

IR" denotes the n-dimensional Euclidean space.
-4 .
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Superscript T denctes the transpose of a matrix.
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A
a; = max{0,a} for any « € R.
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Chapter 1

Introduction

In the design of structures, a systematic exploration of a broad range of alterna-
tives is necessary to identify the “best” design. The large number of design alterna-
tives dictate the use of an automatic, computer-based procedure for examining these
alternatives. Optimization theory is the mathematical framework for deriving such
procedures. A similar situation arises in the design of inspection and maintenance
plans for infrastructure systems, such as highway bridges.

The process of finding the “best” design is complicated by the presence of un-
certainties in the structure and its enviromment. Usncertainties can be caused by
random variations in properties of materials, insufficient information about the aging
and degradation rates of a structure, the random occurrence of events such as earth-
quakes or explosions, and the inaccurate representation of the real-world structure
and its surrounding environment by idealized mathematical models. These uncer-
tainties can be significant factors in determining the present and future performance
of a structure, and must be accounted for to ensure safe and reliable structures, see,
e.g.. Ang and Tang (1934}, Madsen ef ol {1986). and Ditlevsen and Madsen (1996).
By using the theory of structural reliability (see, e.g., Ditlevsen and Madsen (1996)
and Chapter 2}, the uncertainty can be quantified, and the failure probability or its
compliment, the reliability, of the structure can be determined.

Reliability-based optimal design of a structure is the process of finding the “best”
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design, while including the effect of uncertainty as expressed by the failure probability
or reliability of the structure. This design philosophy can potentially lead to signifi-
cant social benefits in the form of more economical, efficient and reliable structures.
However, the application of reliability-based optimal design in practical structural de-
sign is severely hampered due the difficulty in solving most reliability-based optimal
design problems. For example, typical problems are not compatible with standard
nonlinear optimization algorithms such as NLPQL (Schittkowski 1985), DOT (Van-
derplaats 1992), LANCELOT (Conn et al. 1992), CFSQP (Lawrence et al. 1997),
NPSOL (Gill ef el 1998), SNOPT (Gill et al 1998}, and MINOS (Murtagh and
Saunders 1998). The reason for this is two-fold: (i) Standard nonlinear optimization

igorithms require that all the functions involved in the problem are continuousky dif-
ferentiable, which is not known to be the case for the failure probability as a function
of design variables (see Polak et al. (2000})). (ii) Standard nonlinear optimization al-
gorithms also require that all the functions involved can be evaluated exactly in finite
computational time. This is not the case for the failure probability of a structure,

which is usually defined in terms of a high-dimensional integral (see Chapter 2).

1.1  Objective and Scope

The reliability-based design, inspection, or maintenance optimization of a struc-
tural system consists of three steps. First, the analyst needs to identify an objective
(i.e., the quantity that should be optimized). the design variables, and an allowable
range of the design variables and other guantities (i.e., the constraint set}. If the
analyst has more than one objective in mind, the procedure will also need to include
the selection of a method to aggregate the different objectives. Second, the analyst
needs to build models to describe the structural response to loads and to compute
the failure probability of the structure. The cobjective and the constraint set are
typically defined in terms of these quantities. Third, the analyst has to develop, or
find in the literature, an appropriate {optimization) method for finding the values

of the design variables that optimize the objective. This report deals with the third



step. Specifically, we construct algorithms for solving the following reliability-based

optimal structural design problems:

P, Minimize the cost of the design, subject to failure probability and structural

constraints.

Py Minimize the failure probability of the design, subject to cost and structural

CONSTralings.

Py Minimize the initial cost plus the expected cost of failure, subject to failure

probability and structural constraints.

The algorithms for the sclution of problems in the form Py, Py, and Ps are con-
structed under the assumption that the design variables are real-valued (ie., not
integer-valued). the failure probability is defined for a series structural system {as
defined in Chapter 2}, and the structural response to loads can be computed in fi-
nite time. The latter is the case when the structural response is defined in terms of
the solution of a finite element model. Hence, effectively, we have assumed that the

structural model is discretized in time and space.

1.2 Review of the State-of-the-Art

There is a large body of literature on reliability-based optimal design, inspection.
and maintenance of structures, with contributors from the aerospace, automotive,
and civil engineering community. In this section, we give an overview of the most
significant contributions o the field.

Since our scope is the design of structures, i.e., the load carrving parts of buildings,
bridges, offshore platforms, aercspace siructures, and vehicles, we do not cover the
literature on reliability-based optimal design of other engineering svstems, e.g., the

svstem of electrical components in an airplane or the cooling system of a nuclear



power plant. For such perspectives, see, e.g., Kuo et al (2001), Valdez-Flores and

Feldman (1989), and Chiang and Yuan (2001).

1.2.1 Overview of Studies Prior to 1990

This subsection presents the most significant contributions in the field of reliability-
based optimal structural design prior to 1990. Another review of this period can be
found in Frangopol and Moses (1994). For a review of the few contributions prior to
1990 on reliability-based inspection and maintenance optimization of structures, see
Sommer (1993) and Sherif and Smith {1981) for steel structures, and Frangopol et al.
{2001) for bridges. The following presentation is influenced by the review chapters in
the doctoral dissertations by Leheta (1988) and Enevoldsen (1991} |

The field of reliability-based optimal structural design grew out of the aerospace
industry with its increasing demand for safe and economical design of novel airtrans-
port structures. The first major effort to combine reliability and optimization consid-
erations in the design process was made by Hilton and Feigen (1960). They assumed
that applied stresses were normally distributed random variables, which resulted in a
random safety margin. In a technical note, Kalaha {1962) suggested to use dynamic
programming technigues to solve Hilton and Feigen's optimization problem. Moses
and Kinser {1967} modeled the structural reliability in ferms of series and parallel
systems of statistically dependent components. Other early contributions were made
by Switzky (1964) and Murthy and Subramanian (1968).

Following advances in the theory of structural reliability, attempts were made to
incorporate the new reliability formulations into the reliability-based optimal design
problem. Moses (1969) and Moses and Stevenson {1970) used Cornell’s reliability in-
dex (see Ditlevsen and Madsen (1996)} as a measure of the structural safety. Murotsu
et al. (1976}, {1978} included model uncertainty by using a second-moment approxi-
mation of structural reliability,

Rosenblueth and Mendozea (1971} departed from the typical “minimum-weight”

objective function. They considered the objective function as consisting of several



parts representing the benefit derived from the survival of the structure, the initial
cost, and the expected cost of failure. In their defense related applications, Bracken
and McGill (1973) considered problems with constraints given by max-functions or
max-min-functions, i.e., constraints defined in terms of optimization sub-problems.
They recognized that such constraint functions are not differentiable everywhere,
and hence standard nonlinear optimization algorithms may jam. However, in their
numerical example, they still resorted to standard nonlinear algorithms. Kwak and
Haug Jr. (19762} and Kwalk and Hang Jr. (1976h) developed special algorithms for
the solution of optimal design problems with meax-Tunction constraints. By taking
advantage of the special structure of their design problem and by assuming that the
max-function has a finite number of maximizers, they could use variational analysis
to replace the max-function constraint by a linearized subproblem {Iwak and Haug
Jr. 1976a), or by explicit, equivalent expressions {Kwalk and Haug Jr. 1976b). The
resulting reformulated problem was solved by the gradient projection method. Other
contributions in the 1970s were Vanmarcke (1871}, Moses (1977), and Davidson et al.
(1977).

The 1930s brought improved standard nonlinear algorithms, such as the sequen-
tial unconstrained minimization technigue (see Fiacco and McCormick {1990}), which
was employved by Davidson ef al. {1980) and Surahman and Rojiani (1981) to solve
reliabilitv-based opthunal structural design problem.  Around the same time, Rao
{1980) solved chance constrained design problens by stochastic programming tech-
niques.

Murotsu et al. (1979) and Feng and Moses {1986a} presented an approximation
of the failure probability of series structural systems, The original problem, contain-
ing a constraint on the series systein failure probability, was replaced by sequences of
approximating problems with only component failure probability constraints. The ap-
proximating preblems were solved and the component failure probability constrainis
were modifjed until the series system constraint was satisfied. This heuristic scheme
wag reported to work satisfactorily,

The first effort in reliability-based shape optimization, in contrast to earlier stud-



ies considering size optimization, is by Furuta (1980). Rac (19S81) presented the
first major effort to optimize structures subject to random vibrations. Frangopol
(1984) conducted the first study focusing on the interactive aspects of the design
process. Moreover, Frangopol (1985) was the first to consider multiple objectives in
the reliability-based optimal structural design problem.

Application papers in structural engineering frequently considered frame struc-
tures (e.g., Carmichael (1981), Cheng and Chang (1985), and Surahman and Ro-
jiani (1981}}, and plastic design of structures (see Frangopol {1083)). Gross and
Sobieszezanski-Sobieski {19807 is one of many applications in aircraft design. See
also Thoft-Christensen (1991} for an overview of application papers from different
fields.

The 1980s ended with attempts to use improved system reliability methods
(Sorensen (1987), (1988). and Sorensen and Thoft-Christensen (1989)). Sensitivity
techniques and approximating gradient calculations were developed and emploved in
optimal structural design problems by Sorensen (1987), (1988), Lee and Kwalk (1987),
and Kwak and Lee (1987). More realistic structural response models, e.g., finite el-
ement models, were introduced to the field of reliability-based optimal structural

design by Feng and Moses (1986b) and Sorensen (1937), (1988},

1.2.2 Recent Studies

The majority of studies after 1990 attempt to use standard nonlinear optimiza-
tion algorithms to solve the reliability-based optimal structural design problem. These
efforts include Murotsu and Shao (1990) and Kim and Kwak (1998) in shape onti-
mization; Mahadevan (1992), Liv and Moses (1992), and Lin and Frangopo!l (1996) in
design of frames, trusses, and reinforced concrete structures, respectively; Mori and
Etlingwood {1994) and Frangopol et al. {1997) in maintenance planning of deteriorat-
ing structures: Kim and Wen (1990) and Weiji and Li {2001) in design under multiple
hazards, and Pedersen and Thoft-Christensen (1996} with special emphasis on the in-

teractive aspect of the design process. All these studies involve the failure probability



as a constraint, or in the abjective function. No attempts were made in these works to
show that the resulting design problems satisfy the necessary requirements for the use
of standard nonlinear optimization algorithms, which were employed. As mentioned
in the introduction, these requirements are that all the functions in the problem are
continuously differentiable and can be evaluated exactly in finite computational time.
Additionally, it is usually required that the constraint set satisfies a constraint quali-
fication. More thecretical studies, such as that by Enevoldsen (1991} and Enevoldsen
and Sorensen {1994), also neglect these requirements, while reporting problems with
convergence in certain cases. While one cannot prove that the exact failure probabil-
ity s differentiable with respect to the design variables (see Polak ef al. {2000)), one
can easily show that approximations of the failure probability as obtained by first-
or second-order reliability methods (FORM and SORM) or Monte Carlo simulation
{see Chapter 2), which were used in most of the ahove studies, are not differentiable.
Hence, under such conditions, standard nonlinear optimization algorithms may jam
and not converge to a solution of the problem at hand.

I the literature, there are also attempts to apply gradient-free algorithms to
solve optimal design problems under uncertainty. Leheta (1988) used a simple pat-
tern search method: Ttol and Liu (1999), Nakamura et ol (2000), Cheng and Ang
(1999), and Thampan and Krishnamoorthy (2001) used genetic algorithms, and Beck
et al. (1999) and Tsompanakis and Papadrakakis (2000} used hvbrid algorithms that
combine deterministic and stochastic search methods. These algorithms are applica-
ble to most reliability-based optimal design problems. including those that contain
nou-differensiable functions. However, thev are known to have slow convergence, and
the compusational effort required to achieve a solution can be extremely high.

I the FORM, an approximation of the failure probability is itself given by an
optimization problem (see Chapter 2}, Madsen and Irils Hansen (1992} and later
Kuschel and Rackwitz (2000b), (2000a) and Rackwitz (2000a),(2000b) replaced this
“nner” optimization problem by its first-order necessary optimality conditions and
solved the resulting reliability-based optimal design problerm in an auginented space by

a standard nonlinear algorithm. The approach is appealing because of the elimination



of the “inner” problem. However, according to Luo ef al. (1996), this transcription
may result in an optimization problem with a constraint set that does not satisfv
typical constraint gualifications. There exist special, more complicated, algorithms,
described by Luo et ol {1996), for solving this trauscribed problem. In any case,
the transcribed problem requires second-order derivatives even for the solution of the
first-order reliability approximating problem, which may be costly to compute.

Other researchers, such as Ng and Moses (1999) and Smilowitsz and Madanat
(2000} have used Markov models to describe the evolution of system performance in
time, leading to design problems that are linear programs. Augusti et al. (1998) con-
sidered a prohabilistic model for a highway network, which led to a discrete nonlinear
optimization problem solvable by dynamic programming techniques. These formula-
tions, though convenient from a computational standpeint, impose severe resfrictions
on the probabilistic models that can be used to describe structural hehavior.

On the boundary between stochastic and deterministic optimization, we have
a nontrivial literature on robust or worst-case scenario design. see, e.g., Gu et al.
(2000}, {2002)) and Ti et ol {2001). However, no probabilistic characterization of
uncertainties are employed in these approaches.

Kirjiner-Neto et al. {1998) showed the equivalence hetween a special case of P,
mvelving multiple component failure probabilities defined by affine limit-state func-
tions (see Chapter 2) and a semi-infinite optimization problem (see Chapter 3). The
presented outer approximations algorithim converges to stationary points {(see Chap-
ter 3) of the problem at hand. Der Kiureghian and Polak (1998) and Polak et al
(2000) proved a similar equivalence for Py, To account for non-affine limis-state func-
tions, Der Kiureghian and Polak (1998) parameterized the semi-infinite optimization
problem and solved a sequence of such semi-infinite problems for a range of parameter
values. The parameter values were determined by separate calculations of the failure
probability. A first attempt to deal with series structural system in the spirit of Der
Kiureghian and Polak (1998) was presented in Royset ef al. (2001a), (2001b). Royset
et @l (2001b) also contains an initial study on solution technigues for Py based on a

first-order reliability approximation.



Gasser and Schueller (1998) and Liaw and DeVries {2001} used the Response Sur-
face Method to approximate the failure probability by a smooth function defined in
the space of design variables. A standard nonlinear algorithm was then applied to
the resulting approximate problem. This approach is numerically robust since the
response surface is smooth and the difficulty related to nown-differentiability of the
failure probability is avolded. However, the overall efficiency of the method strongly
depends on the accuracy of the response surface and the computational cost of es-
tablishing it, which tends to be high for problems with many design variables. In an
earlier work, Marti {1997) used the Response Surface Method to solve optimization

problems under uncertainty using stochastic approximation methods,

Approximations and decomposition strategies for large-scale optimal structural de-
sign problems in a muiti-disciplinary environment have been considered by
Sobleszezanski-Bobieski (1982), Jensen (1993}, Sobieszczanski-Sobieski and Haftka
(1997), Grandhi and Wang (1998), Oakley et ol (1998), Xiao et ol (1999}, and Pad-
manabhan and Batill (2002). The multi-disciplinary environment is characterized by
several teams, possibly geographically separated, working on different aspects of the
structural shape, loading and response with conflicting design objectives in mind.
Both hierarchical and nonhierarchical decomposition techniques, as well as response
surface approximations have been proposed to address the organizational and compu-
tational challenges in the evaluation of the failure probability and other performance

Ineasiures.

Other studies on approximation techniques for optimal design under uncertainsy
include Thanedar and Chamis (1990}, Chen et ol {1997), and Abumeri ef al {2000),
which congidered applications to aerospace structures, and Reddy et al. (1994), Weiji
and Li (1994), Li and Wang (1994). and Lee and Kwak (1995}, whick employ ex-
pansion techniques. As with most of the previously cited works, these studies do not

address the issue of convergence of the algorithms used to solve the problem.
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1.3 Proposed New Approach

In non-trivial cases, the failure probability of a structure cannot be evaluated
exactly, and the failure probability, together with its approximations. is not known
to be continuously differentiable with respect to the design variables. Hence, the only
viable approach for solving reliability-based optimal structural design problems is to
establish approximations to P1, Ps. and Py, which can be solved by existing or newly
developed optimization algorithms.

We present a comprehensive treatment of the approach put forth in Rovset ef al
(2001a},(2001b) for solving Py and Py in the case of series structural system failure
probabilities in the objective function or the constraint description. We construct ap-
proximations to Py and Py that are semi-infinite optimization problems solvable by
discretization-type, or other semi-infinite optimization algorithins. The approximat-
ing problems use first-order approximations to the failure probability, and hence are
first-order approximations to the original problem. Based on the convergence results
for semi-infinite optimization algorithms, we are guaranteed to compute a station-
ary point of the first-order approximating problem. Such points are reasonably good
approximations to the optimal design.

In a heuristic manner, we can improve on the first-order approximation by con-
structing a sequence of approximating problems. The first-order approximating prol-
lem is made to depend on a parameter related to the accuracy of the approximation.
By adjusting the parameter based on separate, approximate calculations of the fail-
ure probability, we can solve a sequence of gradually more accurate approximasing
semi-infinite optimization problems. Hence, approximate solutions of Py and Ps
can be obtained by solving the sequence of approvimating semi-infinite optimization
problems.

In Pj, the failure probability of the structural system and its components appear in
both the objective function and the constraint set definition. There is no transparent
approximating semi-infinite optimization problem available, as was the case for P

and Py Through a series of steps involving transcription and approximations, we
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construct parameterized approximating problems that are solvable by either existing
or new optimization algorithms. The approximating problems are parameterized and
a procedure similar to the one described for Py and Py is adopted. Approximate
solutions of Py can be obtained by solving the approximating optimization problems
for different values of the parameters. The parameters are adiusted based on separate

calculations of the failure probahbility.

1.4 Organization of Report

Following this introductory chapter, we describe the fundamentals of structural
reliability (Chapter 2) and optimization theory (Chapter 3). Chapter 2 gives a brief
overview of the first-order reliability method (FORM), the second-order reliability
method (SORM)}, and different versions of simulation methods. A discussion of time-
variant reliability models is also included. Chapter 3 presents the well-known op-
timality conditions for nonlinear and semi-infinite opsimization. We describa the
Polak-He algorithm for constrained optimization involving finite max-functions, and
1ts specialization for solving the optimization problem arising in the FORM. Chapter
3 ends with a section on algorithms for solving semi-infinite optimization problems.

Chapter 4 contains a collection of new algorithms for solving reliability-based op-
timal structural design problems. First, we consider the case with failure probabilities
in either the objective function or the constraint set definition, t.e.. P; and P;. We
derive first-order approximating problems in the form of semi-infinite optimization
problems. In special cases. the approximating problems are identical to the original
ones. We present several algorithms for the solution of the original design problems.
Second, we consider the case with failure probabilities in both the objective and the
constraint set definition, i.e., P5. The beginning part of this section addresses the
special situation with only one failure mode. Transcription and approximations are
performed to reach a first-order approximating problem that can be solved by existing
algorithins or by the algorithm derived in Chapter 5. We describe aleorithms that are

based on a sequential solution of such approximating problems. The last part of the
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section presents transcription and approximations that are applicable to the general
problem with series structural svstem failure probabilities in both the ohjective and
the constraint functions. We present two algorithms for the solution of the general

problem, which are based on the sequential solution of the approximating problems.

In Chapter 5, we develop an lmplementable algorithm for the solution of a class
of generalized semi-infinite min-max problems. Problems of this form arise in the
solution of reliability-based optimal design problems, as formulated in Chapter 4, as
well as in other applications. First we use exact penalties to convert a generalized
semi-infinite min-max problem into a finite family of semi-infinite min-max-min prob-
lems. Second, the inner min-function is smoothed and the semi-infinite max part is
approximated, using discretization, to obtain a three-parameter family of finite min-
max problems. Under a calmness assumption, we show that when the penalty is
sufficiently large the semi-infinite min-max-min problems have the same solutiocns as
the original problem, and that when the smoothing and discretization parameters go
to infinity the solutions of the finite min-max problems converge to solutions of the
original problem, provided the penalty parameter is sufliciently large. Our algorithm
combines tests for adjusting the penalty, the smoothing and discretization parame-
ters, and makes use of a min-max algorithm as a subroutine. In effect, the min-max
algorithm is applied 1o a sequence of gradually better-approximating min-max prob-
lems, with the penalty parameter eventually stopping to increase, but the smoothing
and discretization parameters driven to infinity.

Chapter 6 presents a collection of numerical design examples from the field of
structural engineering. The first example considers the design of a short colunn
subject to axial forces and hending moments. Three cases are computad: Minimize
the weight of the column subject to a constraint on the failure probability; mini-
mize the failure probability subject to constraints on the weizht of the column; and
minimize the initial cost plus the expected cost of failure with a constraint on the
failure probability. The zecoud example considers the design of an offshore jacket
platform for oil production subject to wave, wind, and service loads. The platform is

esigned for mintmum failure probability subject to consiraints on the total weight of
designad failure bility subject t £ the total weight of
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the structure. The first two examples consider one failure mode. The third example
congiders the design of a structural frame with three failure modes. We compute both
the minbnum weight with a system failure probability constraint and the minimum
initial cost plas expect cost of failure with a svstem failure probability constraint.
The fourth example considers a reinforced concrete girder in a highway bridge. We
take four failure modes into account. First, we minimize the cost of the design sub-
ject to a system failure probability constraint. Second, we minimize the initial cost
plus the expected cost of failure, with a constraint on the system failure probability.
Third, we also include the effect of deterioration of the girder caused by corrosion. We
minimize the initial cost plus the expected cogt of failure based on the time-variant
failure probability. Fourth, we find the initial design and the maintenance effort for
the deteriorating girder that minimizes the life-cycle cost.

Chapter 7 summarizes the major findings in this report and points to future work,
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Chapter 2

Theory of Structural Reliability

Structures are characterized by their high reliability and their great variety of
types. Hence, there is an extremely limited amount of empirical data available about
failures of specific types of structures. Consequently, the probabilistic model of a
structure must be based on the physics of the situation using the framework of the
theory of structural reliability, rather than empirical data.

This chapter presents the parts of the theory of structural reliability that are essen-
tial for the derivations of algorithms for reliability-hased optimal design of structures.
The overview is, to a large extent, based on Madsen ef al (1986) and Ditlevsen and

Madsen (1996).

2.1 Time-invariant Reliability

Suppose that a time-invariant probabilistic mode! of a structure and its environ-
ment is defined in terms of an m-dimensional vector of random variabies V., with
joint probability density function fv (-, x), where x i3 an n-dimensional vector of de-
terministic design variables. Failure of the structure is usually defined in terms of
one or more limit-state functions Gp : BR” x R™ — R, bk € K= {1.2, ... K}. As
a function of x and realizations v of the random vector V., the limit-state functions

Gr(-.-} describe the performance of the structure with respect to specific require-



o
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ments. By convention, a limit-state function is non-positive whenever the associated
performance requirement is viclated. Note that some design variables may denote
parameters in the distributions of the random variables V|, e.g., mean values of V,
and other design variables may denote parameters in the description of the structure,
e.g., sizes of structural members.

As will be seen below, several computational reliability methods require a bijective
transformation of realizations v of the random vector V into realizations u of a
standard normal randomn vector U. Such transformations can be defined under weak
assumptions. For a given design vector x, let Ty + IR™ — IR™ be this transformation.
Replacing v by 7.7 (u), gives the equivalent limit-state functions g, - R" x R™ — IR,
ke K, defined by gi(x, u) = Giui{x, T (u).

A limit-state function gi(-, ), together with the rule that gi(x, u) < 0 is defined as
failure and gg(x, u) > 0 is defined as safe, is referred to as a component. A component
may or may not be associated with a physical component or a particular failure mode
of the structure,

As a function of the design variables x, we define the A-th component failure
probability by

I

pelx) = / olua) du, ke K, (2.1.1)
Ry {x)
vhere oo(-) is the m-dimensional standard normal probability density function and
where (-} is the m-dimensional standard normal probability density function an

Qr(x) = {u

N

R™ | grlx,u) <0} (

S8}
-
[BN]
S

Hence, Q0 (x) is the k-th component failure domain for the structure. ie., the domain
in the outcome space of U where the performance reguirement associated with the
k-th limit-state function is viclated. A vealization u is a failure event for the k-th
component whenever u € {,(x).

We define the eritical failure component for the design x to be the component
with highest failure probability, ie., the &'-th component, £ € K, is a critical failure
compenent if and ounly if pp(X) > pe(x) forall bk € K, b # &

The collection of components, together with a rule saying what combinations of

component failures constitute a systern failure, is referred to as a structural system.



16

The system failure probability of the structure is defined by
N . . :
plx) = / plu) du, {2.1.3)
Ofx)

where Q(x) € R™ is the failure domain for the structure, ie., the domain in the
outcome space of U where performance requirements constituting structural system
failure are viclated. Hence the realization u is a failure event for the structure when-
ever u € {(x). We say the probabilistic model of the structure is a series structural

system, whenever the failure domain is given hy

e

Q(x) = U{u <R gelx,u) < 0}, (2.1.4)

keI
This report deals exclusively with series structural systems. If the righi-hand side of

{2.1.4) is replaced by

—
(R}
i
[y}

~—

ﬂ {ueR™ | gi{x,u) <0},
kEK

then we say the probabilistic model of the structure is a parallel structural system.
The probabilistic mode! of a structure is a general structural system, if the definition

of the failure domain involves both union an intersection operations.

2.1.1  First-Order and Second-Order Reliability Methods

A first-order approximation to pi(x), & € K, is obtained by linearizing the limit-
state function gu(x, ) at the point in the set {u € R™ ! gu(x.u) = 0} closest to
origin. Let ui{x) be such a closest point, ie.

: I .
up(x) €argming ~fjull” | glxou) <0, {(2.1.6)
T / i, 2 dEY ¢

Such closest points are referred to as design points. Note that in (2.1.6) we have
assumed gp{x, 0) > 0 for all relevant design vectors x. Effectively, this assumes that
the faillure probability pp(x) i3 smaller than about 0.5, Given the high reliability
expected of structural components, this assumption does not impose a restriction on

any practical problem.
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The optimization problem in (2.1.6) is well-defined as long as g,(3, ) is contin-
uvous. However, (2.1.6) can only be solved efficiently when g.{x, ) is continuously
differentiabie. Under this condition, in addition to the Polak-He algorithm described
in Chapter 3, {2.1.6) can be solved by standard nonlinear optimization algorithms
such as NLPQL {Sehittkowski 1935), DOT {Vanderplaats 1992), LANCELOT (Conn
et al. 2), CFSQP (Lawrence ef al. 1997}, NPSOL (Gill et ol 1998), SNOPT (Gill
et al 1998), and MINOS {Murtagh and Saunders 1998). The optimization problem
in {2.1.6) has also been attempted solved by the iHLRF-algorithm Zhang and Der
Kiureghian (1997).

It can be shown that the first-order approximation of the component failure prob-

ability takes the form

prix) s (= p ()], (2.1.7)
where
Brslx) = fu (o) (218)

is the first-order reliability index and ®(.) is the standard normal cumulative distri-
bution function. Equality holds in (2.1.7) when gp(x, } is affine in u.

Similarly, a first-order approximation can be defined for p{x) in the case of series
and parallel structural gystems. For brevity, we will only give the expression for series

structural systems, ie., the case when (2.1.4) holds, Then,
p(x) =1 — $p(B:(x), Rix)), {2.1.9)

where @ () is the K-dimensional standard normal comulative distribution function,
Bi(x) = (51:0x), ... 51, x(x)) is a K-dimensional vector, and Rix}is a K x K corre-

lation matrix with elements
Ry = (uplxg/lag (g, wiix)/luf{x])] ), kA lc K (2.1.10)

Here, {-,-} denotes the inner product. Bounding formulas for structural system re-
liability are also available (see Ditlevsen and Madsen ({1996} and Song and Der Ki-

ureghian (2002)).



A second-order approximation to the component failure probability pe(x) k€
K. can be obtained by constructing a quadratic surface through the point ui(x)
defined in (2.1.6). The simplest formula based on such quadratic surfaces vields the

approximation (Breitung 1984)

m—1
o) % DAY [T (1 + o))~ (2.1.11)
=1
where #;(x). 7 = 1,...,m — 1, are the main curvatures of the limit-state surface

{uc R™ | gu{x,u) = 0} at uj(x). Other second-order approximations can be found
in Hohenbichler et al (1987}, Tvedt (1983, Tvedt (1990), Der Iiureghian et al

{1987}, and Der Kiureghian and De Stefano (1991},

2.1.2 Monte Carlo Simulation

The integrals defining py(x) and p(x) in (2.1.1) and {2.1.3), respectively. can he
evaluated approximately by means of Monte Carlo Simulation. Let uy, ..., ux be a

family of simulated realizations of a collection of statistically independent standard

notmal random vectors Uq, ..., Uy, An approximation of p(x) is given by
1 &
plx) = > Tnea (), (2.1.12)
T el

where Ingy(wy) = 1 whenever w; € Q(x), and Topg(u;) = O otherwise. The coeffi-

. : L i : o N I AT I ;
cient of variation of the estimator p(x) = 3.0, Tne (U,) /N is found to be equal to

VAL = plx))/(Np(x)). Thus. alarge number of simulations is necessary to accurately
estimate small p(x). A similar approximation of p{x) can be obtained by replacing
%) by Qu(x) in (2.1.12).

1 the confributions to the integrals in (2.1.1) and (2.1.3) come from a known
region in R™. the computational efficiency of the crude Monte Carlo Simulation can
be improved by use of Importance Sampling. Let 2(w) be an m-dimensional joint
probability density function, which is nonzero on O(x). Now, let wy, ... wy be a

family of simulated realizations of a collection of statistically independent random
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vectors W, ., Wy with probability density A{w). An approximation of p(x) is

given by

() me,{j W) olw; ), (2.1.13)

h(w

where (.} is the m-dimensional standard normal probability density function. If the
main contribution to the integral (2.1.3) comes from a region in R™ where many
realizations of the random vector with density h(:) occur, then it can be shown that
fewer simulations are required compared to crude Monte Clarlo Simulation. A similar
approximation of pg{x) can be obtained by replacing (x) by Qx(x) in (2.1.13).
In practice, filw) = usually selected as a multi-variate normal pr babﬂit}-' density
centered ab the design point defined in (2.1.6}. In case of multiple design points,
a composite density formulated as a weighted sum of multi-variate normal densities

centered at multiple design points can be used (Melchers 1989).

2.2  Time-variant Reliability

Most real-life structures experience changing material properties and load environ-
ment over time. It i beyond the scope of this report to discuss how such conditions
can be modeled. However, we briefly describe a mode! used in the numerical examples
in Chapter 6.

Suppose that a probabilistic model of a structure is defined in terms of an m-
dimensional stochastic vector process V(#). Similar to Section 2.1, we can define the
failure of the structure in terms of point-in-time limit-state functions Gy, R™ x IR™ x
R — R, & € K. Note that Gi(-,-.+} has three arguments: the design variables x,
realizations v{t) of the stochastic vector process V(#). and the time 1. The point-in-
time limit-state functions describe the performance of the structure with respect to
specific requirements at a specific time.

As seen sbove, several computational reliability methods require a fixed time,
bijective transformation of realizations v{t) of the stochastic vector process V(t}

into realizations u(f) of the stochastic vector process U(t), which for each point in
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time is standard normal. For a given design vector x and time ¢, let Te:t R™ —
R™ be this transformation. Replacing v(¢) by T, '{u{#)), gives the equivalent
point-in-tine limit-state function g, : B” x R™ x R — R, k £ K. defined by
grix ult, 1) = Gelx, T~ Hult), ).

As a function of the design variables x and time ¢, we define the k-th point-in-time

component failure probability by
& .
Prx, t) = / wiu) du, k€ K, {2.2.1)
(i {x.t)
where (-} is the m-dimensional standard normal probability density function and
D o .
(x,t)={ueR™ | gu{x,u ) <0} (2.2.2)

Hence, Qp{x.t) is the k-th point-in-fime component failure domain for the structure
at time t. ie., the domain in the outcome space of U(t}, where the performance
requirement associated with the k-th limit-state function is violated at time t. A
realization u(t) is a failure event at ¢ for the k-th component whenever ult} € Q,.(x,1).
Similarly, the point-in-time system failure probahility of the structure is defined

by
(X, ) = / wiu) du, (2.2.3)

0

Q1)
where (x.¢) C IR™ is the failure domain for the structure at time ¢, i.e., the domain
in the outcome space of U(t), where performance requirements constituting structural
system failure are violated at time #. Hence the realization u(t) is a failure event at ¢
for the structure whenever u(t}) € Q(x,t). For series styuctural system, the point-in-
time failure domain is given by

fl

Q(x. 1)

]
o
s
e

= U{u S R™ | grx,w, t) <0} (:

kK

For fixed time, the point-in-time failure probabilities become “time-invariant.”
and hence can be computed using any of the methods described in Section 2.1

In many applications, the failure probability in a time-interval, T = t, ) C IR,

say, i3 of more interest than the point-in-time failure probabilities p{x, #) and pe(x. 7).
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Let the fime-interval component and series structural system failure probabilities be

defined by

Pux, T) 2 Prob{{min go(x, Ult).1) < 0}], k € K, (2.2.5)
and
P(x, T) = Prob U {1}1%19?;{(}(:1?{??),2&} < 0}, (2.2.6)
BEK

11

respectively, where ProblA] denotes the probability of event A.

The time-interval failure probability is difficalt to compute, but it can be es-
timated by various techniques, see, e.g., Breitung (1988), Li and Der Kiureghian
{1995), Lutes and Sarkani {1997}, Rackwitz {1998), and Der Kiureghian {2000).
The time-interval component failure probability can be estimated by means of the
outcrossing rate for the structure, where outcrossing is defined as the event that
gr{,U(t). £} > 0 at time ¢ and gyl U{ + dt).t + df) < 0 at time £+ df, with df
being an infinitesimal time increment. Hence, the mean outcrossing rate 1, (1) for the

k-th component is given by

LA Prob| Ut + A#), 1+ A <U] : \
vt & g” 9 rob{{gp(x, U(t), 1) > 0} ﬂ{i;%(x ), j < 0} (2.2.7)

By use of a Poisson model of outcrossing events, we obfain the approximation
5
Poix,T)=1—exp ( / I.fk{i)dt) (2.2.8)
SN

and the upper bound

Pix.T) < / v (£t
1

A lower bound on the time-interval component failure probability can also be obtain

)
o
S

by considering a series structural system of point-in-time evenis. The time-interval
series structural system failure probability can be approximated by use of similar
expressions to the ones in {2.2.8) and (2.2.9).

In some time-variant reliability problems, it is known that the limit-state function
monctonically decreases with time. This may occur if the limit-state function is in

terms of a damage measure that monotonicallv increases with time, e.g., crack size
g 3 g



in fatigue analysis. It may also occur if the linit-state function describes the perfor-
mance of a decaying structure, e.g.. a concrete structure in a corrosive environment.
In such cases,

min g, (1), £) = gy (x, ulta). o), (2.2.10)

and the time-variant reliability problem converts to a time-invariant one, i.e.,
Py(x. T} = puix, ). Similarly, the time-interval series structural systam failure
probability is in such cases given by a point-in-time structural series system failure
probability, ie.,

P, T) = p(x, ty). (2.2.11)



Chapter 3

Optimization Theory and
Algorithms

This chapter defines the essential concepts in optimization theory, presents one al-
gorithm for solving constrained optimization problems involving finite max-functions,
and describes three algorithms for the solution of semi-infinite optimization problerus.
The presentation is based primarily on Polak (1997).

This chapter is self-contained, i.e., it does not use notation defined in other chap-
ters. Any notation established in this chapter does not carry over to other chapters.

We first define some basic terms from mathematical analysis: (i} A set A < R”

m

s open if and only if for every point x* € A there exists a p > 0 such that {x
R® tllx —x7|| < p} < AL (i) A set A C IR® is closed if and only if A® is open,
where © denotes the compliment. (Hi} A set A € R” iz bounded if and only if there
exists a p > 0 such that A C {x & R" | Ix] < p}. (ivi A set A ¢ R™ is compact
if and only if it is bounded and closed, {v} The interior of a set A < IR" is equal
to the union of all open sets contained i AL {vi) A set A C IR" has an interior if
and only if the interior of A is non-empty. {vii) A set A C IR" i3 convex if and only
if for any x', %" € A and A £ 0,1}, (Ax" + {1 — Ax") € A, (viii} Consider the set
A < IR" We say that conv A is the convex hull of A if it is the smallest convex

set contalning A. If A 15 given in terms of a coliection of points v(x},x € X, ie.,
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A={weR"|w=v{x),x X}, with X some set, then we simplify the notation
by setting conviw € R™ | w = v(x),x € X} = conv ,ex v{x). (xi) If a subsequence
of a sequence converges to a point, then we say that that point is an accumulation
point of the sequence. (x} A function is continuously differentiable if it has continuous
derivatives, (xi) A function £ : R™ — R™ is Lipschitz continnous on the set X ¢ IRP
if and only if there exists an L < oo such that [[f(x') — £(x)|| < Ljjx' — x" |l for all

x'x" e A

3.1  Optimality Conditions

Generally, optimization algorithms can only be shown to converge to stationary
points, l.e., points satisfying an optimality condition, which, hopefully, will be local or
global minimizers for the given problem. Standard first-order optimality conditions
for inequality constrained and semi-infinite optimization are presented in Theorems
3.1.1 and 3.1.2 helow. We refer to a point satisfying the constraints of an optimization
problem as feasible with respect to that problem.

The inequality constrained problem has the form

ICP rain { folx) | f(x) < 0}, (3.1.1)

where fu : IR”" — IR and f: IR" —+ R are defined by
[ K p

Folx) = max op(x), (3.1.2)
kep
F(x) = max F:(x), (3.1.3)
nax X, .
with p={1,2,..,p} and q = 11,2,.., q}. The standard first-order necessary optimal-

ity conditions for ICP, also called Karush-Kulm-Tucker conditions, are given in the

next theorem.

Theorem 3.1.1. Consider the problem ICP. Suppose that the functions f R —

IR,7 £ q. and the functions ¢, : R™ — R, k € p, are continuously differentiable. If



x* is a local solution of YCP, then there exist muliiplier vectors u = (fo, [, s Ho)-
with py > 0, 7 € {0.1...,¢}, and 32y, = 1, and v = (vi, ..., 1), with 1y 2 0,
k<p, and ) h_, vy =1 such that

;’ o N g ‘
o %Z r/ch;x(x*)J + Z;LJ-V_)"_,-(X"} ={ (3.1.4)
L1 j=1
and
7 g
po | D wilen(x) = folx W+ D pufilx) =0 (3.1.5)
fe=1 4 e
O
The semi-infinite optimization problem has the form
SIP min {volx) | {x) < 0}, (3.1.6
x<R™ ’
where ¢ . R™ — IR is defined by
i{x) = mac ¥y (X)), {3.1.7)
799
and ¢, R™ — IR, 7 = {0,1,..q9}, are given by
(%) & max a;(x, v, (3.1.8)

Y

where ¢y ' IR" xIR™ — IR and Y; < R™ are sets that may have interiors. The reason
such problems are called semi-infinite is that the design vector x is fintte-dimensional.
but there is an infinite number of functions ¢;(-,y). determined by all the y € Y.
First-order necessary optimality conditions for SIP is given in Theorem 3.1.2 below.
As seen from this theorem, a stationary point of SIP is a peint x° that makes the

zero-vector to be contained in a specific convex hnll (G{x”}}.

Theorem 3.1.2. Consider the problem SIP. Suppose that the functions ¢;  IR" x
R™ — R,j € {0,1,...,q}, are continuously differentiable, and that the subsets Y

are compact. If x* is a local solution of SIP, then



0 Gx") {3.1.9)
where G(x™) < IR™™! is defined by
Gix*) 2 conv G(x", (3.1.10)
’ 740,103 )
with
S Uo{x") = olx", ¥ ) + yib{x')+
Golx™) & cony t : (3.1.11)
vEYe Ly Vaox7, )
v = 0 an arbitrary parameter, ¢(x*), = max{0, ¥{x"}}, and for j € q.
. O)e - 55 y) |
G (x") = conv ) o . (3.1.12}
yeEY; fo% (X*, }’)
)

3.2 Polak-He Algorithm

In the following, we describe a Phase T - Phase IT method of centers for solving

ICP. We need the notation_
P(x',x") = max{ folx") — fo(x') = 7 f(x" 1, F(x)— FO T (3.2.1)

where 7 > 0 is a parameter and f(x}, = max{0, f{x)}, and

7
j=0
T ={v = (14, k) ERPYY [y > 00k < p. v = 1} (3.2.3)



Polak-He Algorithm 3.2.1. (Solves ICP)

Parameters. o € (0,1}, 3

m

(0,1), d,v > 0.
Data. %, ¢ BR™.
Step 0. Set = (.

Step 1. Compute

[}
-]

il
o = 6(x;) Ea min i Z vl folxy) — cn(x) + vF{x )]
pEER, vET, P
q 1 P q
+ D )y - fil)] + 5l D ouVer(x) + > VI
i=1 k=1 F=1
{3.2.4)
and
1 P ¢
h; = -3 e Zzzzvck{xi) + Z N fi(xs) (3.2.5)
k=1 i=1
where (p*, 1"} is any solution of (3.2.4).
sStep 2. Compute the Armijo step-size
A= max{ 87 | P(x,x + 87hy ) < o370} (3.2.6)
SN
Step 3. Set x;. 1 = x; + Ah; replace 4 by 14+ 1, and go to Step 1. O

Note that ¢; in (3.2.4) is a quadratic program in the variables (g, ) with linear

constraints, and hence can be solved in a finite number of iterations.

Due to the nature of ICP, Polak-He Algorithm 3.2.1 may require, like any other

optimization algorithm, an infinite number of iterations before it converges to a sta-

tionary points. Hence, in practical problem solving we need a stopping rule for fermi-

nating the calculations. We have not specified a stopping rule for Polak-He Algorithm

3.2.1. However, we recommend to use one of the standard stopping rules: ferminate
: PPILE

the calculations when lxy — %l < e, Flxg, X1} = —e, and/or 8(x;} > —¢, where

.
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¢ > 01l a pre-defined parameter (e.z., 1079}, The final iterate will then be an approx-
imation to a stationary point, with ¢ determining the precision of the approximation.
The next theorem shows that points generated by Polak-He Algorithm 3.2.1 con-

verge to a stationary point of the type defined in Theorem 3.1.1.

Theorem 3.2.1. Consider the problem ICP. Suppose that the functions f;. ¢z
IR" — 1R, 7 €q, k& p, are continuously differentiable. {x,}3, is a sequence con-
structed by Polak-He Algorithm 3.2.1 in soiving TCP, then anv accumulation point
x* of the sequence {x,}2, satisfles 0(x"} = 0, defined in (3.2.4), and X" is stationary,

ie, x" satisfies (3.1.4) and (3.1.5) for some ji Lve b, )

In the first-order reliability method (FORM), an optimization problem of the

following form must be solved {see (2.1.6)):

xsR™

LI -
Prorar min {533}(];' | olx) < 0} , (3.2.7)

where g R™" — IR is a limit-state function. For Progas, Polak-He Aleorithm 3.2.1
g RAL )

takes a simplified form: In {3.2.4), replace §; by

O = — min  { HxTx — 2x Vo) + Vol TV g(x)) i

ST

[y}
&
e
Z

+(x] Vg(x:) ~ Vol T Vglx) + g(x)u (3.
TTG{X)ITQX}** (x4 — gix:) ],

which has the solution

. XIVglx) = Vg(x)TVg(x) + g(x) (3.2.9)
. (3.2.9)
, g - 2] Vi) + Vglx) TV g(x) ‘

X
whenever the right-hand side of {3.2.9] is defined and has a value in [0, 1], Otherwise,
the solution of (3.2.8) is either u* = 0 or p* == 1, whichever vields the lowest value

for the objective function in (3.2.8). Additionally, in (3.2.5), replace h; by

by = —pmx, — {1 - 1"V g (x). (3.2.10)



Finally, set the parameters v =4 = 1 in Polak-He Algorithm 3.2.1.

3.3 Semi-Infinite Optimization Algorithms

Algorithms for solving S1Ps typically invelve some form of discretization of the
sets over which the maxima are computed. Subssections 3.3.1 and 3.3.2 describe such
discretization methods. Subsection 3.3.3 presents an alternative algorithm for solving
SIP for the special case with smooth constraints.

As was the case for ICP, SIP usually requires an infinite number of iferations of
an optimization algorithm before convergence to a stationary points can be obtained.
Hence, in practical problem solving we need a stopping rule for terminating the cal-
culations. In the algorithms below, we have not specified a stopping rule. However,
we reconmunend to use one of the standard stopping rules: terminate the calculations
when [|x;,; — xl} < ¢ and/or i > i, where € > 0 is a pre-defined parameter (e.g.,
107%) and 4, is the maximuwm number of iterations. The final iterate will then be an

approximation to a stationary point.

3.3.1 Pre-defined Discretization Scheme

The following algorithm solves a sequence of ICP, which are gradually better
approximations of SIP. We assume that one can construct subseis Y, n C Y,
7 < {0.1,...¢q}, with finite cardinality, which can be used in the construction of

approximating problems.

Assumption 3.3.1 We assume fhat there exist a strictly decreasing function &
IN — (0,00) with the property that A{N) — 0, as N — oc, and constants Ny & IN,
C' < oo such that for every N > Ny and y; & Y, 5 € {0.1,...,q}, there exist

vy € Y;n such that

Ca

]

f—y
-

ly; = yil £ CAN). je{0. L ..q}. (:
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For example, if Y is the unit cube in R™, fe., Y, = 1" with I = [0, 1], then we can
define Y, v = I%, where

Iy = {0.1/a(N}, 2/a(N}, ., (a(N) — 1)/a(N), 1}, (3.3.2)
with a(N) = 277" Ny Tn this case, A(N) = 1/a(N) and C = =t
Now, for N = 1.2,3, ..., we define approximations to (3.1.7) and (3.1.8) by
Fay ;
Yn{x) = maxy; n(x), (3.3.3)
izq

y y(x) = & m{ézx oy {001 L g), (3.3.4)

YEY, i

and, additionally, ¥y (x). = 2 max{0, ¥n(x}}. Shmilar to (3.2.1), for N == 1,2, 3, ...

we define

Fn(x %) = man{g n(x") ~ do p (X — vyt (%),

(%) ()}, (335)

where v > 0 is a parameter. Finally, for N =1,2.3, ..., and any x, h & R"™ we define

FAY

s (3, x4+ ) 151‘:1*\ fas (%, v) + (Vedy(x,y), hi -ih)*Y, 7 € {0,1, g}, (3.3.6)

s

Yn{x,x +h) = max W (%, % + h), (3.3.7)
Jeq

Frix,x+h) = max{wo v (x,x = h) ~ Yo nix) — v (X},

) (3.3.8)
Uy{x, %+ h) —gnix)t,
Bre(x) = lm]%?n Fr(x,x + I, (3.3.9)

where v > 0. It can be shown that fy(x) in {3.3.9) is of the same form as #(x) in

(3.2.4) (Theorem 2.2.8 in Polak (1997)), and hence it can be evaluated in a finite
number of iterations.
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Algorithm 3.3.1. (Solves SIP)

Parameters. o, 5, w € (0,1), v,¢ > 0.

Data. x, €« ", N; € IN.

Step 0. Set i = 0.

Step 1. Eater inner loop.

Inner-Step 0. Set N = N,

Inner-Step 1. Compute #y(x;), defined in (3.3.9}, and

hu{x;) = arg 1113%5 Fy(x;. % + h). (3.3.10)

Inner-Step 2. If O5(x;) = 0, set x” = x;, and 2o to Inner-Step 4.

Else, compute the step-size

Ay(x) = 1%%:3{,(35 D (s, %+ Pha(x)) < a9y (x)}. {3.3.11}

Inner-Step 3. Set x™ = x; + Ax(3x:thy (%)

Inner-Step 4. If Fy(x,x") < —eA{N)¥, exit inner loop, and go to Step 2.

Else, replace N by N + 1, and go to Inner-Step 1.

Step 2. Set X34y = x*, Nyyy = N, replace { by 1 + 1, and go to Step 1. O

The next theorem shows that points generated by Algorithm 3.3.1 converge to a

stationary point of the tvpe defined in Theorem 3.1.2.
! ¥i

Theorem 3.3.1. Consider the problem SIP. Suppose that Assumption 3.3.1 holds,
the fuuctions ¢;{-. ;.7 € {0,1,....q}, are contimiously differentiable, the gradients

Vae;(-0).7 € {0,1....,¢}, are Lipschitz continuous on compact sets, and the sets

Y;, 7 € {0,1,...q} are compact. If {x,}%°, is a sequence constructed by Algorithm
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3.3.1 in solving SIP, then any accumulation point X of the sequence {x;}%, is sta-

tionary, Le., 0 € G{R), with G(%) as defined in (3.1.9). |

3.3.2 Method of Quter Approximations

The method of outer approximations solves SIP by constructing and solving a
sequence of gradually more accurate approximating problems of the form ICP. As
was the case in Subsection 3.3.1, the approximations are constructed by discretiza-
tion of the sets Y ;. 7 € {0,1,...,¢}. Instead of using a pre-defined sequence of sets
Y, N = 1,2 .. the method of outer approximations sequentially constructs the ap-
proximating sets as the algorithin progresses. The foliowing algorithm also includes

the “constraint-dropping” scheme from Gonzaga and Polak (1979), ie., a scheme for

reducing the cardinality of the sets Y .
Outer Approximations Algorithm 3.3.2. {Solves SIP)

Parameters. «, /5 € (0,1).

Data. Ny € IN, xy, € R, {on}Fon, with oy | 0, {Tnt¥on,, with v | 0.

{64&7;3}?\?:;\76.;ij\1‘- with ENN T O'E:\"}ii > D: foi' all j\fv’A < _{“\f-? ENE T £R. &

[¥2]

N — oo, uniformly in k, & > ey, for N >k, and & — 0, as k — oc.
Step 0. Set NV = N,
Step 1. Compute approximate solutions yvin € Y; of the problem

max (X, ¥) (3.3.12)
}'€Yj ) . .

by using Polak-He Algorithm 3.2.1. Terminate Polak-He Alporithm 3.2.1 when
u faud o ta)

the left-hand side of (3.2.4) is greater than —op

N

Step 2. Set T'y = max{0, &;(xn,v;n).7=01,...,q9}
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Step 3. For all b € {Ny, 2. ..., N} such that ['y > ey, include Yik i Y vy for ali
J€40.1,...q} such that Ty = ¢;{xp, ;1)

Step 4. Use Polak-He Algorithin 3.2.1 to compute an approximate solution Xp.g €
P 2 ! . ]

R” of
1115%1 {iho ver(x) | ¥ {x) < 0}, (3.3.13)
x<R™ '
which satisfies
91\-'_._1()(;\-',1_1} = =T (3314)
dvg(xXys1) < 7w (3.3.15)

with fx (-] and ¥y () defined in (3.3.9) and (3.3.3), respectively.

Step 5. Replace N by N + 1, and go to Step 1.

An example of the double indexed sequence {en i }32_y, pen 18 Eng = pF—pM | with
2 € (0.1). It can be shown {Theorem 2.2.8 in Polak {1997)) that x satisfies Oy (x) = 0
if and enly if x is a statiopary point for the problem min.egs{tg ~(x) | ¥ (x) < 0},
ie, x satisfies (3.1.4) and {3.1.5} with the appropriate change of notation. Hence, it
1s seen from Step 4 that Outer Approximation Algorithm 3.3.2 solves the sequence
of approximation problems with gradually higher precision. The next theorem shows
that points generated by Algorithm 3.3.2 converge to a point that is stationary, i.e.,

the point satisfies the optimality conditions in Theorvem 3.1.2.

Theorem 3.3.2. Consider the problem SIP. Suppose that the functions ¢

R" x ™ — R, j < {0.1,....q}, are continuously differentiable, the subseis Y, j €
{0.1,....¢}. are compact. and that the approximating solutions y,; . — ¥ioas N —
oo, with yi,7 € {0,1,...,q}, being a global solution of (3.3.12). If {x,}3%, is a se-
quence constructed by Algorithm 3.3.2 in solving SIP, then any accumulation point

% of the saquence {x, }72, is stationary, Le., 0 £ G(X), with (%) as defined in (8.1.9)0
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3.3.3 Generalized Polak-He Algorithm

Cansider the specialized case of SIP, with no semi-infinite constraints, given by

SIP! min {1o(x) | f(x) < 0}, (3.3.16)

xzh
where Yo(-) and f{-) are defined in (3.1.8) and (3.1.3). respectively.

Let

e

{/J' = {fJ‘lv H’ﬂfl%g) e R

N
Lerp14-g

- (3.3.17)
Ly 20,7 {1, on+l+qf, 00 g =1}
In Polak et al. {2000). we find the following generalization of Polak-He Algorivhm

3.2.1.

Generalized Polak-He Algorithm 3.3.3. (Solves SIP')
Parameters. o € (0,1}, € {0,1}, v > 0.

Data. x; ¢ R™,

Step 0. Ser 1 =0,

Step 1. Compute

n+1
g, = - min E ps g (%) —éo(xm}"j} () 4]
HEDrp1ag, Vi€ Y0 ol ) ' -
J=1

q
3 Mgl — fix0)] (3.3.18)
F=1

PR » - v
+§i! Z s Vo Xiy ¥i) + Zﬂ-flfl+jvff(xi”~} .

j=1

and

n-1 q
h; = — {Z 13 Vudolx. ¥3) + Zii;,+1+_jv~fj(xi)} ; (3.3.19)
i=1

=1

where (4, ¥],¥5. . Y}, 18 any solution of (3.3.18).



Step 2. Compute the step-size
pye 1‘;’1%5‘3:{;5“" | Foo(xi, % + 0%hy) < a0} (3.3.20)

o

where Fo(x', x") = max{ung(x") — (') — v f (X )a, FXT) = f0X)5 1

Step 3. Set x;,1 = x; + Ahy, replace £ by 14+ 1, and go to Step 1. ]

Contrary to the problem in (3.2.4}, 8, in (3.3.18) is not a quadratic program. but a
standard nonlivear optimization problem. Hence, (3.3.18) may have non-unique solu-
tions, even though the search direction h; is uniquely defined by {3.3.19}. Because of
this, (3.3.18) can be ill-conditioned. Based on the observations in Polak et al. (2000)
and Chapter 6, it appears that (3.3.18) can be sclved with reasonable efficiently, at
least for the case with Y heing a ball, e, Yo = {y € R™ | {ly¥y] < p}. The next
theorem shows that points generated by Algorithm 3.3.3 converge to a point that is

stationary, 1.e., the point satisfies the optimality conditions in Theorem 3.1.2.

Theorem 3.3.3. Consider the problem SIP'. Suppose that the functions &g

R" x R™ — R and f; : R* — R, j € q, are continuously differentiable, and the
subsat Yq is compact. If {x:}22, Is a sequence constructed by Algorithrm 3.3.3 in |
solving SIP, then any accumulation point % of the sequence {x;}%, is stationary,

ie. 0 G(R), with G(X) as defined in (3.1.9). 0
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Chapter 4

Algorithms for Reliability-Based

Structural Design Optimization

1his chapter defines three classes of reliability-based optimal structural design
problems, which were introduced in Chapter 1, and derives algorithms for their so-
lution. Since these problems are unsolvable by existing optimization algorithms, we
derive tractable approximating problems that are solved iteratively. The problems
are unsolvable due to the facts thas the failure probability is not known to be contin-
uously differentiable, and that it cannot he evaluated exactly in finite computational

time.

The appearance of the failure probahility in these problems dictates the solution
strategy. Consequently. the problems are categorized according to where the failure
probability appears. The first class of preblems (Py, P1gye) has a smooth, non-
probabilistic objective function, but iz subject to constraints sxpressed in terms of
the failure probability. In the second class (P2, Ps ). the objective function is given
by the failure probability and the constraint set is non-probabilistic. The third class
{Ps, P contains the failure probabilitv in both the objective function and the
constraint set description. The derivation of algorithms is based on the assumption
that the system failure probability for the structure is given by a series structural

svstem, as defined in Chapter 2. Additionally, it is assumed that the median point
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of the random variables is not in the failure domain, defined in (2.1.2), for each com-
ponent. In practice, this is usually the case due to the high reliability of engineering
structures,

The algorithms in this chapter are described without a stopping rule for termi-
nating the caleulations. In practical problem solving, the calculations must end,
obviously, at some point. We recommend to use one of the standard stopping rules:
terminate the calculations when | x4 — x{ < ¢ and/or ¢ > 4, where ¢ > 0 is a
pre-defined parameter and 7. is the maximum number of iterations. Other stopping

rules involving the objective and constraint functions can also be used.

4.1 Failure Probability in either Objective or Con-
straint Functions (P, Ps)

Let x € IR™ be a vector of design variables, and let the component failure probabil-
ities pp(x), bk € K = {1, ..., K}, and the system failure probahility p(x) be as defined
in Chapter 2. We define the first class of reliabtlity-based optimal design problems

by

Py Iﬂé%l_{cﬂ(x} Loe(x) < e ke K, xe X (4.1.1)
xER? :
Py H".tIiPILl {eolx) | p(x) <5, pe(x) <P k€ K, x € X}, {4.1.2)
x£IR™
where ¢; 1 IR" — IR is a smooth ohjective function describing the cost of the initial

design, gz, b € K, and p are pre-defined probability bounds, and
X2 {xeR" | f,(x) <0, =1,...q}, (4.1.3)

with f; : R™ — IR being smooth functions describing deterministic constraints. Note
that P; is different from Py by not including the system failure probability.

We define the second class of problems by



P min {maxp(x) | x € X1, {1.1.4a}
= x—ElR"‘{ kgCK Prixy i I X }
Pasys min {p(x) [ x € X}. (4.1.4b)

B
Note that Py minimizes the component fallure probability of the “least reliable”
component, fe., minimizes the critical failure component, while Py, minimizes the
failure probability of the system.

The problems Py, Pige, P2 and Pag,s have a solution if X is compact and
the functions cof-), p{-), pe(t), & € K, are continuous. A sufficient condition for
). pel), k€ K, to be continuous is given helow. This result is a trivial extension

of Coroflary 1 in Polak ef al (2000). First, we need the following assumption.

Assumption 4.1.1. We assume that

M{ueR™ | g{x.u)=0}) =90, (4.1.50)

for all k€ K x € X, where, for any set S € R™. the measure

E.L..k
[

f&[{S)é / wiu)du, (-
S

with ¢{ ) the standard normal probability density function. 0

bBssentially, Assumption 4.1.1 requires that the interval (for m = 1), area (for
m o= 2}, volume {for m = 3), etc. in which the limit-state function vanishes, have
length. area, volume, etc equal to zero, respectively, This 15 normally satisfied in
o ¥ i “ (e

realistic design problems.

Theorem 4.1.1. Suppose that Assumption £.1.1 is satisfied and the limit-state
functions gi{-,-).k ¢ K, are continuous. Then, the component failure probability
pel )k € K, defined in (2.1.1), and the series structural system failure probability

pl-). defined in {2.1.3) and (2.1.4), are continuous. O



4.1.1  Approximating Problems
In Kirjner-Neto et ol (1998), Der Kiureghian and Polak (1998) and Polak et ol
(2000} we find that approximating problems for P, and P can be constructed by
replacing the compounent failure probability terms pe(.), £ € K, appearing in {4.1.1)
and {4.1.4a). by functions that denote the minima of the corresponding limit-state

functions within balls of specified radii. We define a ball of radivs p > 0 centered at

e I by
{4.1.5¢)

Y7 f— LRI
Bli,p) £ fueR™ | |
Hence, for any approximation parameter vector s = (s;,..., 35}, with s, > 0, we

obtain the following approximation to Pq:

P, 1{13%};1({{@(}() | s (x) <0k e K, x € X}, {1.1.6)
where for any o > 0, 14, 0 IR" -+ R is defined by
(4.1.7)

PiolX) = u;%?gm{—y;«(x‘. u)}.

Similarly, for any approximating parameter r > 0, we obtain the following ap-

proximation to Ps:
(4.1.8)

min

P, maxdy (¥ ix e X

2.r XU X = .
' x-a‘IR”{ kEK ’ J }
where iy .{ i3 as defined in (;17} Obgerve that P and Ps, are semi-infinite

optimization problems, and hence can be solved by any of the appropriate algorithms

described in Chapter 3.
Relations between Py and Py ¢, and between Py and Py, are stated in the following

theorems. These results are minor extensions of the ones in Kirjner-Neto et al. {1998)
and Der Kiureghian and Polak (1998). Similar extensions were derived independently
in Polak et al (2000). For the following exposition, it is convenient to denote the
feasible set for Py by

K,xe X} (4.1.9)

M

P2 {x e R | pulx) < pe.k

i



40

Theorem 4.1.2. Consider P;. Suppose that the functions ¢o(-) and gu(-. ). k € K,
are continuous, the feasible set Fy is compact, the limit-state functions gp{-, -}, k € K,
are affine in their second argument, and that gi(x,0) > O forallx € F, bk € K. If
s = — @), k € K, with ®(-) being the standard normal cumulative distribution

function, then x* solves Py if and only if it solves Py .

Proof. Since gi(x,-) is affine for all £ € K, there exist functions a; : IR® — IR and
by : R™ — R™ such that gi{x,u) = ai{x) + bi(x}7u. The fact that gi{x.0) > 0
for all x € Fy, implies that we can assume without loss of generality that g;(x, u) =

I+ cp{x)Tu, with cp(x) = by{x)/ax(x). Hence, it follows from (4.1.7) that
oo, (%) = 1 + selles ()] (4.1.10)
Consequently, x* € X is a feasible point for Py if and only if
—1 4+ spller(xM) < 0, (4.1.11)

for all k € K. Hence, (4.1.11) holds if and only if
1 < &P, (4.1.12)
e (x|
By the fact that gi(x, ) is affine, g,(x,0) > 0 for all x € F;, and the standard nor-
meal probability density function is rotationally symmetric, we can infer from (2.1.1)
that
pi(x) = (=~ B1x{x)), {(4.1.13)

with
1

.Bl.k:(X} T e
lee(x]]
Since ®(+) is a strictly monotonically increasing function, it now follows from (4.1.13)

and {4.1.14) that (4.1.12) holds if and only if

(4.1.14)

Pi(%) < P (4.1.15a)

This completes the proof. o
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The consequence of Thecrem 4.1.2 is that the approximating problem P, has
solutions identical to those of Py if the failure probability terms in the latter are
expressed in terms of the first-order reliability approximation, see (2.1.8).

For non-affine imit-state functions, the situation is somewhat more complex. We
see from (4.1.7) that an increase in the value of the parameter s, in P . implies that
the constraint ¢y, (x) < 0 guarantees the non-negativity of gi{x, ) in a larger ball
than it would for a smaller s, The non-negativity of gi(x, ) in a ball of radius s,
gives rise to an upper bound on pi(x), and this upper bound is closer to zero. ie.,
it is tighter, for larger values of s; than for smaller values. Hence, by selecting a
sufliciently large value of s; we can ensure that the constraint pu(x) < f; is satisfied.

In the case of system failure probability constraints {P; ), we can also use the
parameter vector s to ensure that the constraint p{x) < p iz satisfied, From Ditlevsen

and Madsen (1996), we have that

max p(x) < p(x) < ;};pk{X)- (4.1.155)

Hence, the {ailure probability of the system is closely related to the component failure
probabilities and particularly the critical {failure component. By selecting sufficiently
large values of s, k € K, we can in view of {4.1.15b} and the discussion in the previ-

ous paragraph, ensure that the constraint p{x} < 9 is satisfied.

Theorem 4.1.3. Consider Py, Suppose that the functions g.(-, ), &k € K, are con-

tmuous, the feasible set X is compact, the limit-state finctions g,(-.-), k £ K, are

affine in their second argument, and that gi.(x,0) > 0, for all x € X k € K. Then,
X" solves Py if and only if it solves P .. with arbitrary r > 0.

Proof. By the same arguments as in the proof of Theorem 4.1.9, we can assunie
without loss of generality that go(x, u) = 1 + ¢{x)7u. Hence, it follows from (4.1.7)
that

Ypr(x) = —1 4 rlicp{x)|. (4.1.16)
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and, therefore, Py, takes the form

1£1I1P1L}1{max{ 1-+rllep(x))} | x e X} (4.1.17)

By {4.1.13} and (4.1.14), and the fact that ®(-) is strictly increasing. we see that the

new prohlem
max {mzn i | x € X} (4.1.18}

xelR" | keK [jcp{x
is eguivalent to Py, i.e., X" is a solution of the problem in (4.1.18) if and only if it is

& solution of Py. Furthermore, it {ollows by inspection that the problem

mlng{mak ler(x))l | x e X} (4.1.19)

is also equivalent to P2, Since v > 0 is a constant, the problem in (4.1.19) has the

same solution as the one in (4.1.17). This completes the proof. |

The consequences of Theorem 4.1.3 are similar to the ones for Theorem 4.1.2. If
the failure probability terms in Pj are expressed in terms of the first-order reliabil-
ity indices f;x{x), see (2.1.8), then the approximating problem P, has solutions
identical to those of Py for arbitrary = > 0.

A geometric interpretation of problems Py and Py, using the first-order reliability
approximation pp(x) = ®(~3; x(x)) helps us understand the situation for non-affine
limit-state functions. Assuming that this approximation is exact, the distance from
the origin in IR™ to the nearest point in [, ., Q(x) is given by F, (x), where k2 is the
index of the critical faillure component, see {2.1.8). In view of (4.1.13), we see that P»
finds the optimal design by maximizing this distance. In contrast, Ps.. finds the opsi-
mal design by minimizing maxgex 5 (+) or, equivalently, maximizing the minimun
value of the limit-state functions within the ball of radius ». This minimum may occur
at a point fi;(x), which, in general, is different from uj{x) as defined in (2.1.6), see
Figure 4.1. From Theorem 4.1.3, it is clear that for affine limit-state functions these
two approaches lead to identical results. For non-afline limit-state functions, we see
from Figure 4.1 that the two approaches would produce identical designs if  is equal

to ) 1(x"), where x* is a solution of Py, and py{x") == ®{—3, :(x*)). Furthermore,
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based on the geometric interpretation in Figure 4.1, one would expect the solution of
P, for a non-afline limit-state function to be close to the solution of P, and to be
ingensitive to the value of v in the neighborhood of 3, ((x*). Consequently, we can
also conclude in view of (4.1.15b} that Pa,. with » close to —~®~1plx*)) (x* solution

of Pyeys). is a reasonably good approximation to Py

8YE*

4.1.2 Algorithms

In view of Theorems 4.1.2 and 4.1.3. it is clear that when the limit-state functions
gi( ), ke K, are affine, Py and Py can be solved by applying one of the algorithms
for semi-infinite optimization to P: . and Ps,.. To obtain approximate solutions in
the case of non-affine limit-state functions and/or problems involving series systems,
we repeatedly solve the approximating problems Py, and Py, as described below.
This approach was originally proposed by Der Kiureghian and Polak (1998) and Po-
lak et al. (2000} for problems with component failure probabilities, i.e., P, and Ps.
Here, we extend this approach to also address P .. and Pag.. Before we proceed,

we need to define the following term.

Definition 4.1.1. We say that j,(x) is an appropriate estimate of the component

failure probability pp(x) for the current run of Algorithm “A” if
(i) pr{x) can be computed in finite time,

(i} fr(x)is computed using the same reliability method (e.z., FORM, SORM. Monte

Carlo Simulation, see Chapter 2} as the one used to verify the final design

obtained by the current run of Algorithm “A.” and

(iti) pp(x) is computed with approximately the same accuracy as the one used when

verifying the final design cbtained by the current run of Algorithm “A

We say that p(x} is an appropriate estimate of the system failure probability pix) for
¥ PoTo; A I ¥

the current run of Algorithm “A” if items (i), (ii} and (i) hold with §i(x) replaced
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by px). =

Algorithm 4.1.1. (For P;)

Data. X & IR,R; 1?\/-0: ;’7\\"_1, ;?Sv‘rg, with J‘?\’vg‘ ? 00, a8 { ool j’\f'z' - I,

S‘tep 0 Se{ I - 0: Sg = “-((I)i}(p} (b—l{:ﬁg}: veny (15—1(ﬁj('}}‘

Step 1. Set x4 to be the last iterate after N, iterations of Algorithm 3.3.1 or 3.3.2

on the problem Py ., with initial point x,.

Step 2. Compute appropriate estimates pp(x;1), &k € K, of pp{x,y). &k € K, for the
carrent run of Algorithm 4.1.1, see Definition 4.1.1,
Step 3. Update the components of s;.; by setting

. (I)_li/ﬁk} \
(Sk)it1 = (Sk)im: ke K. (4.1.20

Step 4. Replace ¢ by i+ 1 and go to Step 1. O

Algorithm 4.1.2. (For P, ,.)
Data. xp € R", Ny, Ny, N, .., with NV; T oo, as i — 20, N; € N,

Step 0. Set 1 =0, 85 = (1 L D HPa), ..., P HPx))

Step 1. Set X414 1o be the last iterate after V; iterations of Algorithm 3.3.1 or 3.3.2

on the problem Py o . with initial point x;.

Step 2. Compute appropriate estimates gy (x;03 ),k € K, and p{x; D of gl ) k €
K, and p(x41) for the current run of Algorithm 4.1.2, see Definition 4.1.1.
Step 3. Update the companents of s,0, by setting
(s0) (5. Q’)“l(ﬁ\) Vi Gl &\} {_1 o
.S;f)j,.l = ASk i VA & arg max PeiXis1)1 4.1 J
\ 4 } q}fl{p{xwl}) ’ =} }chi 3

(sp)ie1 = (H;C)TM VE & arg max{f(x:.: )} {4.1.22)
e = S T ey T R b |
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Step 4. Replace ¢ by i+ 1 and go to Step 1. O

For the special case of Py, with no component failure probability constraints,

Fm.
s

P*y aps n.l]fgl {eolx) | plx) <5, x e X}, (4.1.23)
»<IR™

we can apply the following algorithm.

Algorithm 4.1.3. (For P~ ,.)

Parameter. v > 1.

Data, Xg & ]Rn., f\f‘vg, lV}._ ."\/—3, ..., with .‘?\/—.cg 1 OG, a5 g — 53, .fr\’rz‘_ « IN.

Step 0. Set i =0, sg = —{d~1(p), & 1p),..., &) € RF,

Step 1. Set x,,1 to be the last iterate after N, iterations of Algorithm 3.3.1 or 3.3.2

on the problem P o, with initial point x;.

Step 2. Compute an appropriate estimate p{x41) of p{x;,) for the current run of

Algorithm 4.1.3, see Definition 4.1.1.

Step 3. Update the components of s.y; by setting

. ) $HH) ‘
S5 ix1 = (Sp )i 1.1.24
(8 )izt l\Sk)L(I)il(?}(Xi_é_i)}‘ (4.1.24)
Step 4. Replace { by i + 1 and go to Step 1. O

The points x;, %3, ... generated by Algorithm 4.1.1, 4.1.2 or 4.1.3 are approximate
solutions of Py, Pis,. ..., and hence are first-order approximations to the solution of
Py It is expected and experienced, see Chapter 6, that by adjusting the approxima-
fion parameter vector s, we are able to significantly improve on the first-order approx-

imations. For series structural systems, P, Pig,. ... are also good approximations
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to P because, as discussed following Theorem 4.1.2, the dominant contribution o
the series system failure probability comes from the critical failure component.

The second class of problems can be solved by the following algorithn.

Algorithm 4.1.4. (For P; and P ...)

Data. x5 € R™, Ny Ny Ng, o, with N; T o0, as i — o0, N; € IN, 7y, 74,75, ..., with

ry>01=01.2 .
Step 0. Set 7= 0.

Step 1. Set x4 to be the last iterate after N; iterations of Algorithm 3.3.1, 3.3.2 or

3.3.3 on the problem Py ., with initial point x;.

Step 2. If cousidering P, compute appropriate estimates pr(x,.1 0, b € K, of pp{xiq ) b &

K, for the current run of Algorithm 4.1 4, see Definition 4.1.1.

If considering Py o, compute an appropriate estimate j(x;; 1) of p(xe ) for the

current run of Algorithm 4.1.4, see Definition 4.1.1..

Step 3. Replace ¢ by i + 1 and go to Step 1. o

The points x;. X, ... generated by Algorithm 4.1.4 are approximate solutions of
Vo, Por ..., and hence are first-order approximations to the solution of Py, It is
expected and experienced, see Chapter 6 and the discussion following Theorem 4.1.3,
that the design obtained from solving Po, for r-values close to —® ! (p(x*)) is close
to x7, where x* is the solution of the original problem P, or P 2.5

We cannot guarantee that any of the Algorithms 4.1.1, 4.1.2, 4.1.3 and 4.1.4 con-
verges to the exact solution of the respective design problem under general conditions.
However, since the design found is optimal with respect to a first-order approxima-
tion, we expect that results generated by Algorithms 4.1.1, 4.1.2, 4.1.3 or 4.1.4 will

be sufficiently close to the true optimal solution for practical applications.
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4.2 Failure Probability in both Objective and Con-
straint Functions (P3)

The third class of veliability-based optimal structural desizn problems consists of

Psand Pa.. Py has the form

A
'y m}% co(x) + ch(x)pk(x} i) ke K, xe X ) (4.2.1)
s k=1

with ¢« R" — R,k £ {0,1, ..., K}, being smooth functions describing the initial
cost cp(-) and the cost ¢p{-) associated with the failure of the k-th component. The
objective function in Py can be interpreted as the initial cost plus the expected cost
of failure, when expected costs of failure of the components are additive. As above,
the component failure probabilities p.(-), k € K, are defined in Chapter 2, e e K,
are pre-described bounds, and X C IR™ is the deterministic constraint set defined in
{4.1.3).

Before we define Py .., we need to establish further notation. Consider the simul-
tancous design of L structures. Let x € IR be the design vector containing all the
design variables associated with all the structures. Let each structure be modeled as
a geries system and the corresponding failure probabilisty p{x).[ ¢ L = {1, L},
of the I-th structure be defined by {2.1.3). The k-th limit-state function of the [-th

. (4 N -4 - - :
structure is denoted g (-, -} F € Ky = {1, ., K}l € L. Then we define

L L
P' 555 . ; iy 5 ] Iy () 1 /
3.5y5 min Zcé“(x) + Z Oix)pt (x) Lpix) < pPle L, xe XY, (4.2.2)
w=iR™ ~ N N : : ) '
I=1 l=1

where ¢, o™ . R — IR,! & L, are smooth functions describing the initial cost and
the cost associated with failure of the {-th structure, and $0,{ & L, are pre-described
bounds, This expanded definition of Py is applicable to the optimal design of a
portfolio of structures. An example would be the design of retrofit strategies for a
portfolio of bridges.

The presence of failure probabilitv terms in both the obiective function and the
: I b A
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constraint set of Py and Pj g makes the derivation of approximating problems more
complicated. We proceed with two different approaches. The first approach is lim-
ited to Py, with K = 1, and results in an approximating problem of generalized
serni-infinite type, This particular tvpe of generalized semi-infinite optimization proh-
lems has in the past been unsolvable. We present a new algorithm for solving such
problems in Chapter 5. The second approach addresses Py and Pj .. and results in
an approximating problem that is a collection of semi-infinite optimization problems

solvable by the algorithms in Chapter 3.

4.2.1  Algorithms for the Solution of Single Component P,
Approximating Problems

Consider the special case of Py with K = 1. To simplify the notation, we let
Pl = pul), g() = @il )y B = B, Aul) = Fua(), wr() = wi (), and o) = &1,
The construction of an approximating problem consists of two steps. In the first step,

we need the following auxiliary problem

P, { \
e . . —rg(x,0) N\ |
min iczg{\x) + e(x}b ( ; \‘j( - ) Cedx) <0, x & X} ; (4.2.3)
<et % (%) + g(x. 0)
where r, s > 0 are approximation parameters, and for any o > 0
U {x) 2 max {—glx,u}}. (4.2.4)

LIS R ILENAY

Theorem 4.2.1. Consider Py with K = 1. Suppose that the functions cp(+), of ) and
g{-,-), are continuous, the feasible set ¥, defined in (4.1.9), is compact. the Hmit-
state function g(-.-), is affine in its second argument, and that g(x,0) > 0 for all
xeFy Ifr>0and s = —07Yp), with ®() being the standard normal cumulative

distribution function, then x* solves Py if and only if it solves P, ..

Proof. Since the constraint sets in Py, and Py, with K = 1, are identical, we
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Figure 4.2: Affine limit-state function.

deduce from Theorem 4.1.2 that v.(x) < 0,58 = ~®~}(p), if and only if pix) < 5
Since g{x, ) is affine, there exist functions a : R” — IR and b : R® — IR™ such that
gix.u) = a{x} + b{x}Tu. The fact that g(x,0) > 0 for all x € Fy, defined in (4.1.9),
implies that we can assume without loss of generality that g{x, u) =1+ c(x)tu with

e(x} = b(x)/alx). Hence, it follows from (4.2.4) that

d(x) = ~1+re(x)]. (4.2.5)
Consequently, using (4.1.13) and (4.1.14), we obtain
—rg(x,0) ( -7 L . .
D1 - et =@ . = p(x}. {4.2.6
(z;<-f<x> +alx o>) S P A i
This completes the proof, a

Note that Ps . replaces the failure probability in the ob jective function of P,

with K = 1, with an approximation basad on geometric relations for afine limit-state
Pr
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Figure 4.3: Non-affine limit-state function, m =

9

functions, see Figure 4.2, The abscissa in Figure 4.2 is the line in IR™ (the standard

normal space} through the origin and the “design point” u*{x) defined in {2.1.6), and

the ordinate shows the corvesponding values of the affine linit-state function for a

o

11

to the first-order reliability index 5, (x). as illustrated in Figures 4.3, 4.4 and 4.5.

Figure 4.3 shows the locations of the “design point

xed x. For non-affine limit-state functions, the relation provides an approximation

u*(x), defined in (2.1.6).

and the maximizer U(x) = arg max g1 —g(%, uj} for a two-dimensional problem.

The unit vectors o™ (x) and &(x) denote the corresponding directions of these points.

As illustrated, for a non-affine limit-state function the two points u*{x) and i{x) do

not necessarily lie along the same line through the origin. Figure 4.4 shows the values

of the limit-state function for a fixed x along the line through the origin and the

“design point,” and Figure 4.5 shows the values of the limit-state function for a fixed



Figure 4.4: Non-affine limit-state function along o™ (x).

x along the line through the origin and the point a(x). Obviously, the approximation
in the objective function in Py, is exact when u*{ x) coincides with G{x}. Further-
more, when the first-order approximation in {2.1.7) is used, the approximation in the
objective function in Py, . is exact when r = 3 (x).

Observe that Py, is not a semi-infinite optimization problem in the form de-
scribed in Chapter 3. Hence, we proceed with the second step leading to a generalized
semi-infinite optimization problem solvable under certain assumptions.

Essentially, the second step consists of moving the max-operator in the denom-
inator of the cbjective function in Py, ., see (4.2.3}, out in front of the expression.
This operation can be performed if we restrict the values of u to a subset of 130, )
as rigorously stated in Theorem 4.2.2 below. The new approximating problem takes

the form

PB;T‘:S()

———
e
2
1

Z

. \ rg(x, 0) ‘ .
min max ¢ op{x) -+ ofx)@ ( g et Py <0, xe Xy,
XER™ ueY o (x) ‘ gix,u} — g(x,0) '

"



Figure 4.5: Non-affine Hmit-state function along &(x}.

where for v > 0
V() £ {u € BO,r) | g(x,u) - glx.0) <~ (4.2.5)

Let for any s > 0,

Fa.={x X |v.(x) <0} (4.2.0)

This problem is related to Py .. as stated in the next theorem.

Theorem 4.2.2. Consider Py, o with 7.5 > 0. Suppose that the functions ¢ol-), o)
and g+, -) are continuous, the feasible set ¥y . Is compact, g(x,0) > 0 for all x € Fg;,
and that for some v > 0, Yo (x) # 0 for all x € Fs,. Then x" solves Py, ¢ 1if and

only if it solves Pur . ..

Proof. The constraint sets in Py, and P3, ., are identical. Hence, we turn our
attention to the objective functions. Since Y,.(x) € B(0,r) for all x £ ¥y, we must
have

min g{x,u) < min g{x, u. (1910
usB{0.r; g( )7 uEYa--,,{X)g\ o 3 )

Suppose for the sake of a contradiction that strict inequality holds in {4.2.16). Then
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1

there exists

a€arg min g(x, u) (4.2.11)
usB{0,r}
such that & € Y, (x}. Hence,
Gix, &) > glx, 0} — 9. (4.2.12}

But since Y,.(x) # 0, there must exist u* € Y. () such that
gix,u"} < g(x,0) 7. (4.2.13)

Hence., 4 cannot be a minimizer of g(x, u) on (0,7}, which is a contradiction.
Consequently,

min gix,u) = min x.ul. {4214
ugna(o,-r;}j’ ) uéyrg.-lix}g( » ) ) )

Next, for any compact set X' < R" and any continnous function # - R — R,
: ) i 3 . :

ax ~min{—f{x)}. 4.2.15)
max f{x) = - min{-f(x)} ( )
Furthermore, if f{x) < 0 for all x € X/, it follows by inspection that
i 1
max IR e (4.2.16)
x=X' f(x)  mingexs f{x) :

Hence, by (4.2.14), (4.2.15), (4.2.16), and the fact that &(- ) s strictly increasing, we
obtain

o ( —rg(x,0) - —rg(x, 0)
)+ g0,0) ) \max{glx.u) jue B0, 7} + g(x,0)

7g(x, 0
- @ X ) : (4.2.17)
min{g{x,u) - 45(x.0) | ue Y, (x)} ‘ ’
= max ¢ r91x,0) )
UEY oy (30) gix,u) — g(x, 0},

Since cyl-) and e} are independent of 11, we see that the objective functions in Py, .

and Py, ;- are identical. Hence, the proof is complate. |

In view of Theorems 4.2.1 and 4.2.2, we see that Ps. with I = 1, and P, , ~ have

identical solutions when g(x, ) is affine, 7 > 0,5 = =& L(p), and v > 0 is sufficiently



[
(i3]

small. Furthermore. for non-affine limit-state functions, the solution x* of Py, .,
with 7 = s = —@7}{p), is correct to first-order approximation if ¥,.(x*) = 0, i.e., the
constraint is active at x”. Otherwise, P3, ., 8 a coarser approximation to Pj.

The problem Ps, ; - is & generalized semi-infinite optimization problem because the
set Y, (x) is a function of the design variables x. Hence, the algorithms described for
semi-infinite optimization problems in Chapter 3 are not applicable. In the following,

we present two aliernative strategies for solving Py

Algorithms

The first of two strategies for solving Py, is based on the assumption that the
set Y,..(x) can be replaced by a set independent of x. This results in a semi-infinite
optimization problem of the type described in Chapter 3, and hence, it can be solved

by the aigorithms described therein.

Assumption 4.2.1. We assume that there exists a subset Y, C IB(0,r) ¢ R™

such that
(i) g(x,u) —g(x,0) <Oforall x € F3, andue Y, and
(ii) for all x € ¥y (defined in {4.2.9))

min g{x,u) = min glx,u), {4.2.18)

ugBi0,7} ug Y],

Note that the set Y, | depends on the parameter s because the set F3, depends on
s. In & practical design problem, it can be difficult to construct a set Y .. However,
in some cases there is a clear interpretation of the components of the random vector

U, which may lead to a construction of Y., For example, Y. may be defined

F.8

as a subset of a quadrant {n=2), octant (m = 3), etc., of B(0, 7} containing the

minimizer in (4.2.11) for all x € Fa,. An initial first-order reliability analysis with
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& well-chosen feasible x may help in determining an appropriate descri iption of Y7 |

The replacement of the set Y..(x) by Y7 _ results in the following problem.

!
P 3.r.s

rg(x, 0)

. , )
) | (x) <0, x £ Xf . (4219

9%, 1) — g(x, 0)

min max { co(x) + c{x)P
*ERP uz Yl

where Y/ | satisfies Assumption 4.2.1.
The following algorithms for Py solve a sequence of P’y problems under As-

sumption 4.2.1. The algorithms are simifar to the ones deseribed in Section 4.1.

Algorithm 4.2.1. (For Py, K = 1)

Data. xp € R", Ny, Ny, Ny, .., with N; | o0, as i — oo, N; ¢ IN, Y, < B0 r)

satisfying Assumption 4.2.1 for all r, s > 0.
Step 0. Set i =0, rp = 55 = —7 ().

Step 1. Set x;.; to be the last iterate after N, iterations of Algorithm 3.3.1 or 3.3.2

on the problem Pz, ,,, defined in (4.2.19), with initial point x,.

Step 2. Compute an appropriate estimate (x4, of p(x;41) for the current run of

Algorithm 4.2.1, see Definition 4.1.1.

Step 3. Set ryy1 s0 that it approximately satisfies

D[~ _,?‘.H'I‘?{'XH,LO} = p(X;.1 ). (4.2.20)
oy (Xowq) + g{Xi41.0)

Step 4. Set

ﬁhlf -

Sap = 5 P (4.2.214)

o (I) j {}:}{Xz*i 7 / ’

Step 5. Replace 7 by 1 + 1 and go to Step 1. |

We may be interssted in a first-order approximation to the structural reliability,

Le., in Ps. we replace p(x) by ®(~/3(x)), defined in (2.1.8). This leads to a slightly



w1

simplified algorithm.

Algorithm 4.2.2. (For P;, K =1, First-Order Reliability)

Data. xy € R", Ng, NV, Ny, ., with V; T oo, as¢ — oo, NV, € IN. Y., C B(0.7)

satisfying Assumption 4.2.1 for all r, 5 > 0.
Step 0. Seti=0, rp = s =~ p).

Step 1. Set x;.; to be the last iterate after N; iterations of Algorithm 3.3.1 or 3.3.2

on the problem P’y ,, defined in {4.2.19), with initial point x;.

Step 2. Compute the first-order reliability index 3;(x;.1) to a level of accuracy that
is considered acceptable.

Step 3. Set Vign = JBL(\X?}FI)-

Step 4. Replace i bv i+ 1 and go to Step 1. O

The second strategy for solving Py, is based on an algorithm to be described
in Chapter 5. Prior to this study, there was no implementable aigorithm for solving
problems of the form Py, ... The algorithm in Chapter 5 is the first implementable
algorithm for problems in the form P, . ., but it does not consider constraints. Hence,

for the unconstrained version of Ps we can use the following algorithm. Let

Py p;lﬂi%}ﬁ{co{x) +e(xjplx)}. (4.2.21b)

Theoretically, a well-formulated objective function incorporating the cost of failure
may make constraints superfluous. Hence, unconstrained problems of the form Pj

can arise in practical structural design.

Algorithm 4.2.3. {For P}, K = 1)

Parameter ~ > 0.



Data. xp € R", Ny, Ny, Na, ..., with N, T oc, as { — oo, N, € IN,
Step 0. Set i =10, 7o = 55 = —»—fl)_l(;ﬁ))

Step 1. Set x,41 to be the last iterate after N, iterations of Algorithm 5.4.1 (see

Chapter 5) on the problem Psrisn, defined in (4.2.19), with no constraints

and initial point x;.

Step 2. Compute an appropriate estimate ${x,41) of p{xs1) for the current run of

Algorithm 4.2.3, see Definition 4.1.1.

Step 3. Set r;.; so that it approximately satisfies
P + ! .

*7’%19(}%;1:0\} ) y o
i = DX ) (4221c
(i) = o) A

Step 4. Set

q)_E Loy
Sipy = 57—‘""“"-:%1\"%22-—— (4 221(11)
O {p(xi41))
Step 5. Replace i by ¢4 1 and go to Step 1. O

We cannot guarantee that any of the Algorithms 4.2.1,4.2.2 and 4.2.3 converges
to the solution of the respective design problem under general conditions. However,
since the design found is approximately optimal with respect to a first-order reliability
approximation. we expect that results generated by Algorithms 4.2.1, 4.2.2 or 4.2.3

will be sufficiently close to the true optimal solution for practical use.
¥ P I

4.2.2  Algorithm for the Solution of P,

Approximating Problems

We now return to the general form of Py as defined in ( 42.1). We construct
approximating problems for Py by replacing the failure probabilities in the ob jective
function of Py with parameters. The parameters are included in an augmented design
vector and, hence, their values are automatically determined by the optimization

procedure.
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Let X == (x,a) € IR"™" be an augmented desizn vector, where x € R™ is the
original design vector and a = (ay,....ax) € R" is a vector of K parameters. We

define the problem

Py . R . ) )
nin col{x) + ZCMX)&!;: i) =ap, 0<Sar <prheK, xeX

{XEB)ERR+I{ -
’ [SES]

-
e
i~J
o
s

R

The eqguivalence between P3 and Pj is clear from the following theorem:

Theorem 4.2.3. Consider Py, Suppose that Assumption 4.1.1 is satisfied, the
functions cp(-), cx(-) g1 (-, ), B € K, are continuous, and the set X is compact. Then,

P; and Py are equivalent in the sense that

K
min . colx) + Zc,;\ Xiap | pe(x) =ap, 0 <ap <H, ke K, xe X

(x‘a) mn+
— Y L 3
11{&1%1 cafx) Z(,;‘ pelx) <gnLkeK xeX

Proof. By Theorem 4.2.1, P3 has a solution and the sclution is a finite nmumber,

First observe that for any parameter vector a € IR with 0 < a, < P, & & K, the
! : Pk, )

et

boy]

is contained in the feasible set
F.={xc pe(x) < k€ KT (4.2.25)
and that the chjective functions in Py and Py are identical on F{a). Hence, for any

as RN withO <a < g}k. Fe K,

i < ep(x) 4 ZCk(x %) L pe(x) < h ke K, xe X

xEIR™ —
=l (4.2.26)
< min ¢ cgi{x) -+ ng(x)m | pe(x)=ap. b e K, xeX

xeR™
L1
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Suppose X is a solution of Py, Set ay = pu{x™), k& £ K. By (4.2.26) and the fact that

* is a solution of P3. we obtain
K
X*) + E C (X )pi{x7)

= min < ¢(x) + ch(:x pelx) [ onix) <P ke K, xs X

x| .k T
< milil co(x) + ZCA(X xS pelx) = (X ) ke K, x e X {4.2.27)
el
= Imin ¢ colx) + ;ck(x)pk(m | pe(x) = pe(x*) ke K, x € X
H B
= %) + Z Ce(x o (x7).
k=1

Hence, minimization over a € IR® satisfying 0 < qp < Pr. k€ K, of the right-hand

side of (4.2.26) must vield (4.2.23). This completes the proof. i

It can be seen from {4.2.22) that P; is a minimizasion problem of a smooth
objective function with failure probability eguality constraints. This is similar to Py,
but P, contains inegquality constraints. We proceed along the lines in Section 4.1 and

construct an approximating problem with semi-infinite equality constraints. For any

te= (., i) € RY with ¢, > 0.k € K, we define the e approximating problem

36
K
min ColX) + Zukhﬂm Uy WK =0 0<a <o ke K, xeX ),
R=(xa)cR™TH P
(4.2.28)
where, for any o > 0, k ¢ K, z,,;w SRV~ R s defined by
Vpol{T) 2 max {—gu(x, =27 (a3 )ou)}. (4.2.29)

usl(0,1)

The relation between Py and P, is given in the following theorem:
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Theorem 4.2.4. Suppose that Assumption 4.1.1 holds, the functions cof-), ('),
aul, ), k € K, are continuous, the set X is compact. the limit-state functions
apl 0k € K, are affine in their second argument, p, < 05k € K, and that
2(x.0) = 0 forallx e X b e K. Ift, = 1.k € K, then x* solves 1:-’3 if and

only if it solvas Py, .

Proof. By a linear transformation, we obtain that

 " ey . . 5 \
Dhopi X = max - T(X. uly, (ri,n,?;(}
Vol ) ue—ﬂB{G‘—@*l(uk)a-}{ I o } ’ )

where & Hay e is a positive number because of the assumption that a < p <
0.5,k « K. It now follows by the same arguments as in the proof of Theorem 4.1.2
that ¢ 1 (X) = 0 if and only i p(x) = gz, where ¥ = {x,a). This completes the

proof. 0

Since P4, contains semi-infinite equality constraints, we cannot directly use the
algorithms described in Chapter 3, which are for inequality constraints. However, as
the following theorem shows, the equalities in If)f;:t can be replaced by inegualities
without altering the solution of P’Bt For any t = {f1, ..., tx) € R* with tp > 0.k &
K, we define the problem 153;., which iz identical to P’“ except that the equality
constraints are replaced by inegualities.

P

iz ) CO{X) + ckix)a.k- f "\v.&th(}-‘f\f <0, 0< <o ke K, xeX
R=(majeRHE = S

(42.31)
Theorem 4.2.5. Suppose that Assumption 4.1.1 holds, the functions col-), ce{-).
gel-. ), k€ K, are continuous, the set X iz compact, cp{x) > 0 for all k € K and

x e X, pp <05, ke K, and that for all k € K and x € X there exists au € IR™

such that gi(x,u) = 0. Then, x* solves 15312 if and only if it solves P§ .

Proof. Suppose that ¥ = (x*,a"} is a solution of Ps;. Then, zﬂkgik{“}f*) <0 0<
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ap, <pr, k£ K, x* ¢ X, and

K

K
cp{x™) + Z cr(x"ay < colx) + Z cp{X g, (4.2.32a)
ke k=l
for all ¥ = (x, a) satisfving L“h(i) < 0,0 < ap <ok €K, x € X Suppose,
for the sake of a contradiction, that there exists a K* ¢ K such that K* £ @ and

’lﬁ‘;:‘t,-; (%"} < 0 for all k € K*. Then we have from (4.2.30) that
gr(x",u) > 0, (4.2.325)

min
wEB(0,~2~a} Jty)

for all & € K*. By the assumption that g,(x*,u) = 0 for some u and the fact that
—¢ W) > —@ Hw") if and only if W' > W . there must exist for each &£ € K* an
ay. € (0,a7) such that

min gr(x",u) = 0. {4.2.32¢)
usB{O & Hal My

Let x' = x*, @}, = af, k & K*, and let a} be as above for k¥ ¢ K*. Furthermore, let
a' = (a}, ay, .., af) and ¥ = (x/,a'). Clearly, ¥ satisfies x' € X,0 < ap <, ke K,
and sz,“k(“}f’) = 0F ¢ Kk € K. Additionally, from (4.3.32¢) we have that
Uos (X)) = 0,k € K*. Hence, ¥ is a feasible point for Py,. Since o, < af for all

ke K*# 6 and (x; > 0 for all k € K and x € X, we have contradicted {4.2.32a).

N

x

Consequently, every solution ¥ = (x .a") of Pgy must satisfv ¢, (%) = 0.k € K,

and hence the conclusion follows. o

Note that the assumption that cz(x) > 0 for all k € K, x € X in Theorem £.2.5
is trivially satisfled in application because c,(x) is the monetary cost of failure of
the &-th component for design x. The assumption shat o < 0.5,k € K, is generally
satisfied due to the high reliability of structural systems. Furthermore, the assumption

that for all £ € K ,x € X there exists a u € IR™ such that g, (x,u) = 0 is usually

7

satisfied. If there exists an x € X such that gu(x,u) # 0 for all u € IR™. then the
corresponding component cannot fail for the given design vector x. Such “absolutely
safe” designs are unrealistic in applications. If a mashematical model should give rise

to & limit-state function not satisfying the assumption, then the design space can be
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limited to a subset X' < X on which the assumption holds. Relevant designs notf in
X' are special cases, which typically give rise to trivial design problems.
Algorithm

In view of Theorems 4.2.3, 4.2.4 and 4.2.5, we can derive an algorithm for solving
P, based on the solution of a sequence of the problems Py for varying values of the
approximation parameters t and the use of the semi-infinite optimization algorithms

in Chapter 3. The next algorithm is based on this idea.

Algorithm 4.2.4. (For P3)
Data. xp € R, Ng, N7 N3, . with N, T oo, as i — oo, IV; € IN.
Step 0. Seti=0, a5 = (P1.....0x), tg ={(1,....1) & RE %, = (g, ag).

Step 1. Set ;.1 to be the last iterate after N, iterations of Algorithm 3.3.1 or 3.3.2

on the probiem ]Z:')g:ti. defined in (4.2.31), with initial point X,

Step 2. Compute appropriate estimates pri{x;,q ),k € K. of pr(x;01), k € K, for the

current run of Algorithm 4.2.4, see Definition 4.1.1.

Step 3. Tor b 2 K| set

. (te 1D H(an i)

Bi)py b (1236
(fidirs D Prlxi0)) k )

where {ipy = {Xi$1=a.f+‘l}, with Ay — ((a'l)i-%-la ciey ((l-_p;’).i+1}.

Step 4. Replace ¢ by ¢+ 1 and 2o to Step 1. £

We cannot guarantee that Aleorithm 4.2.4 converges to the solution of Py, How-

ever, since the design found is approximately optimal with respect to a frst-order ap-
proximation, we expect that results generated by Algorithm 4.2.4 will be sufficiently
close to the true optimal solution for practical use. Typically, structural systems

are relizble, and hence the failure probabilities tend to be small, i.e., p(x) is small.
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In implementation of Algorithm 4.2.4, numerical difficulties caused by the potential
difference in the orders of magnitude of the components of a and x can be avoided
by use of the transformation a; 2 ®(—bp), k € K, where ®() is the standard normal
cumulative distribution function. Then the optimization in Algorithm 4.2.4 is over

the vector {x,b), where b = (by, ..., by ).

4.2.3  Algorithm for the Solution of P,

Consider the problem Py, defined in (4.2.2). We follow the same approach as

the one in Sub-section 4.2.2. Consequently, et
PS‘SVF}
b
min m(x; + Z Diya | pix)=a, 0<aq <pPlel, xeX
(x,a)sR"+4

(4.2.37)
The equivalence between Ps sys and Pg sys 18 clear from the next theorem, which fol-

lows by the same arguments as Theorem 4.2.3

Theorem 4.2.7. Consider Py .. Suppose that Assumption 4.1.1 is satisfied, the
- : a I . :
functions cz’ (1), ¢P(), ¢ (” bk € Kyl € L, are continuous, and the set X is com-

pact. Then, Ps gy and P3,5y5 are equivalent in the sense that

min Z ’j’x\% Z(“’ ”’(x}:af‘ D<a <pPicel, xeX
(x,8)sIRAHE [(_[
= min Z ,é}”l}x) + vc‘z'(x PUx) PP <l lel, xeX
xS
h =1 jv—i
(4.2.38)
]

We construct an approximating problem to P e With semi-infinite equality con-
straints. Forany t = (#,...,7,) € RY, with #;, > 0,1 € L, we define the approximating

oblem



!
35vs.t
L
- et |5y e :
min o ey (X)) =0, 0< g <5V Il xe X,
T=(x.ajsR"TE Z u ; : ) R )
(4.2.39]
where, for any o > Jand [ € L, zﬁff' CRPTE R s defined by
7 i
P (% }E max max {- g m —® a)au)}. (4.2.40)

BEK; usBi01)

We are not able to prove an equivalence theorem of the same nature as Theorem

4 for the present case. However, if the limit-state functions g ( LhkeK,lel
were affine in their respective second arguments, then @’.:;gz, (X) = 0 implies that the
critical failure component, say k&, of the [-th structure has fallure probability pg,)(x) =
O~ @7 a)t;). Hence, when t; = 1, p (x} = ;. Due to the close relation between
the component failure probabilities a.ﬂd the failure probability of the serieg syetem,
see (4.1.15b), we can adjust £, such that p¥(x) ~ a; whenever Q,Et X} = 0. Hence,
o2l . 18 a good approximation to }.5;3:53..5 for a suitable selection of £ = (#1, ..., {1}, L.e.,

3. S¥S,

foralll e L,
K=(xa) e R | 0® =0} = (X = (x.a) e R | p0(x) = ). (1241)

Since Pgmt contains semi-infinite equality constraints, we cannot directly use
the algorithms deseribed in Chapter 3 for inequality constraints. However, we can
praceed as in Sub-section 4.2.2. In the following theorem, we show that the equalities
in PL% syst C2N be replaced by inequalities without altering the solution of Ps syst FOT
any t = {ty,...11) € RY with #; > 0,1 € L, we define the problem Pg‘s)rg_t which iz
identical to P s Except that the equality constraints are replaced by inequalities.

EYE.%

P&sys.t

min Z(‘g’(x) + ZC(J)(X}{LE Lff'( <0, 0<aq<plicel, xe X}

T=ix,a)sntl =

Theorem 4.2.8. Suppose that Assumption 4.1.1 holds, the functions cg} 3, ¢

Gy : o ” . .
gv(-, ), ke K, 1 € 1, are continuous, the set X is compact, d(x) > 0 forall [ € L

\
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and x € X, p' < 0.5,1 £ L, aud that for all | £ L and x € X there exist a1 2 = R™

- {13 N . o R s
and a k < K, such that g;;’(x? w) = (. Then, X" solves Py if and only if it solves

Pé.sys.t'

~

— P . - T ALY sy
Proof. Suppose that X* = (x*,a*) is a solution of Py, Then, 'aj;"i' X)) <0, 0<
P ) . Y i ‘ -

af <pP1el, x* € X, and
L L L

L
Z cg'}(_x") 4 Z oy (x")a] < cg}{x) + Z c“)(x}ak? (4.2.43a)
[ i=1 I=1 [
for all X = {x, a; satisfving c:“ (X) <0, 0<g <pWleL, x < X. Suppose for the
sake of a contradiction that there exists an L* © L such that L* # @ and L{f){§*> < 0,
for all I £ L. Then by {4.2.40) and a linear transformation, we obtain that

_ : £
min min g{ Nx*u) >0, (4.2.43b)
REK, ugB0,~ 51 (a7 1))

()

for all [ € L. By the assumption that ¢ G (%", u) = 0 for some u and k&, and the fact
that —®7Hw') > =0~ Hw") if and enly if W’ > o, there must exist for each [ € L~

an a; € {0,a]) such that

. . Ve . N
min min g,,g)(x Ju) =90, (4.2.43¢)
*EK) ugB0.~&~1(a))k) '

Let x' =x" af = af 1 €Ll € L, a' = {(d},a}, o) and ¥ o= (X al
L. Addlhonal

"} = 0,1 € L*. Hence, X is a feasible point for

a3

£
N‘-
i
T,
N
v("-A
m

.~ -~ A f P o
satisties x' € X, 0 < o} < ¢, ] € L, and ¢,

from (4.3.43¢c) we have that o }(

il
41,

Pgavae. Since of < af for all [ S0 and dix) > 0foralll € L and x € X,

o)
we have contradicted (4.2.43a). Consequently, every solution ¥* = (x*, a* ) of Paavsy

L

: T )
must satisfy ;" (X") = 0.1 € L, and hence the conclusion follows. O
For remarks on the assumptions in Theorem 4.2.8, see the paragraph after Theo-
rem 4.2

Algorithm

In view of Theorems 4.2.7 and 4.2.8, and the comments after {4.2.40), we can

derive an algorithm for solving P3sye based on the solution of a sequence of the prob-
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lems Pjyay. ¢ for varying values of the approximation parameters t and the use of the
semi-infinite optimization algorithms in Chapter 3. The next algorithm is based on

this idea and it is quite similar to Aleorithm 4.2.4.
d 2

Algorithm 4.2.5. (For P3...)

Data. x5 £ IR", No, Ny, Ny, .., with N, 7 o0, as i — oo, N, € N,

M

Step 0. Set ¢ =0, ag = {f1, ..., 01), to = (1,....1) € R" % = (x5, a9).

Step 1. Set X4, to be the last iterate after N; iterations of Algorithm 3.3.1 or 3.3.2

on the problem }.53_”, defined in (4.2.31), with initial point X;.

Step 2. Compute appropriate estimates 5 (x,11),1 € L, of p{x,21),1 € L, for the
1,

current run of Algorithm 4.2.5, see Definition 4.1.

Step 3. Forl € L, set , \
B (tz)fq?—l{(a-t\)-aﬂ)

t1)ie1 = , (4.2.47
( l’)’! L1 @‘1(}3”) (Xi_!_l}) ( )
where ¥ = (X0, a41), with ayy = ((ay )i o (Gn )i )
Step 4. Replace 2 by 7+ 1 and go to Step 1. O

We cannot guarantee that Algorithm 4.2.5 converges to the solution of Piavs-
However. since the design found is approximately optimal with respect to a firsi-
order approximation, we expect that results generated by Algorithm 4.2.5 will be
sufficiently close to the frue optimal solution for practical use.

Typically, structural systems are reliable, and hence the failure probabilities tend
to be small, ie, p{x} is small. In implementation of Algorithm 4.2.5, numerical diffi-
culties caused by the potential difference in the orders of magnituds of the components
of a and x can be avoided by use of the transformation a; =N (=b). 1 = L, where ®{)
is the standard normal cumulasive distribution function. Then the optimization in

Algorithm 4.2.5 is over the vector (x, b), where b = (by, ..., b.).
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Chapter 5
An Algorithm for Generalized
Semi-Infinite Min-Max Problems

As seen in Section 4.2, there is a need for solving generalized semi-infinite opti-

mization problems of the form (4.2.7). There is no implementable algorithm for (4.2.7)
or its unconstrained version in the literature. This chapter derives an algorithm that

can be used to solve {4.2.7) in the case of no constraints.
This chapter is self-contained, i.e., it doss not use notation defined i other chap-

[—ry
f—y
[

ters. Any notation established in this chapter does not carry over to other chapters,

5.1
min ¥{x],
(5.1.2)

Introduction
We consider the class of generalized semi-infinite min-max problems in the form
xcR"

S 0} g R™
R It can be

M

max{op{x,y) | f{x,y) < 0}.
y&Y
€ R™|gly)
L)

P
where ¢ 1 R" — IR is defined by
q

W(x)

with ¢« IR7 x BR™ — R, f: R* x R™ — R™, Y £ {y

IR™, and v < 0 meaning v, <0, ..., vy <0, for any v = {v
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seen that {4.2.7) without constraints is of the form {5.1.1).

In addition to be of practical interest in the field of reliability-based optimal
structural design, this class of generalized semi-infinite min-max problems is also
theoretical interest. There is a nontrivial literature dealing with existence of and
formulas for directional derivatives of generalized max-functions, such as the one in
(5.1.2), {e.g.. Bonnans and Shapiro (2000) and Rockafellar and Wets {1897}), and with
first-order optimality conditions for generalized semi-infinite optimization problems

of the form

min { () | 9(x) < 0}, (5.1.6)

where fy 1 IR" —— IR is smooth and ¥{-) is as in (5.1.2} (Jongen et al. {1998),Ruckmann
and Shapiro (1999), Stein (2001}, Stein and Still (2000), Still (1999), Weber (1999}).
Just as we do in our Assumption 5.2.6 below, Weber (1999}, also, assumes that
the linear independence constraint qualification for the “inner problem” (5.1.2) is
satisfied. Under this assumption, Weber (1999) shows that the problem in {5.1.6)
is equivalent to a standard semi-infinite optimization problem, i.e., a problem in the
form mingzwn{ folx) | dlx.w) < 0, w ¢ Q}, with ¢{-.-) smoocth and O of infinite
cardinality. However, it 1s not clear how to impiement a procedure for constructing
the equivalent problem.

There are only a few papers dealing with numerical methods for problems in the
form (5.1.6). In Graettinger and Krogh (1988), an algorithm is presented, without a
convergence proof, for a special class of problems, with fy(x) = ¢ £ IR, arising in the
evaluation of the acceleration radius of manipulator positioning systems. Other basic
ideas for solving problems of the form (5.1.6) in robotics (maneuverability problems},
can be found in Hettich and Still (1991}, A special case of (5.1.6) arising in robotics
and minimum time optimal control problems is considered in Kaplan and Tichatschke
(1997), where ¥y € R,m = 1. In Kaplan and Tichatschke (1998), we find an algo-
rithm for the solution of the special case with d(x.y) = 1{y. Gy} + {a,y) + ly. Hz),

G, H matrices, fr(x,¥) = (po,y) + gl

5

x}), a,pe € IR™ and convex functions g;. n

Still (1999) and Still (2001) we find a conceptual algorithm for solving the problem
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(5.1.6). In these papers it is assumed that the LICQ, second-order sufficient condi-
tions, and strict complementary slackness, for the "inner-problem,” in (5.1.2) hold.
The algorithm in Still (1999) and Still (2001) applies a giobally convergent Newton-
type method to the Karush-I{uhn-Tucker system for a locally reduced problem. In
addition, a conceptual algorithm, based on discretization, is presented in Still (2001).
In the still unpublished paper Levitin (2001), Levitin employs a differentiable penalty
function to remove the constraints f(x,y) < 0, and shows that the sequence of global
solutions of the penalized problem converges to a global solution of (5.1.6), as the
penalty goes to infinity. Thus, in spirit, his approach is close to ours. To the authors’

knowledge there exists no implementable algorithm for solving general forms of P.

In this chapter we present an implementable algorithm for solving general forms
of P under a calmness assumption. We use an exact penalty function to eliminate
the inequalities in {5.1.2) that depend on x. ie., f{x,y) < 0, and as a result convert
the generalized semi-infinite min-max preblem into a standard semi-infinite min-masx
problem with an unknown penalty parameter. In principle, we could have picked
any one of the existing exact penalty or augmented Lagrangian functions for this
purpose, see, e.g., DI Pillo {1994) and Polak {1997). However, the use of augmentad
Lagrangians together with differentiable multiplier estimates as in Glad and Polak
(1979}, is unattractive becanse it would require a second-order sufficient condition
to hold at solutions of the “inner problem” in (5.1.2). evaluation of second-order
derivatives even by a first-order algorithin, and the linear independence assumption
on the gradients Vy fi(x,¥) and Vgu{y) at every x € R" and ¥y € Y. Hence we
opted for a standard nondifferentiable exact penalty function, which avoids the need
for an assumption about a second-order sufficient condition, second-order derivative
evaluations, and requires only the linear independence assumption on the gradients
Vy/ulx, v and Vgiu(y) at points v € Y, which are solutions o the “inuer problem”
(5.1.2). The selected approach leads to an algorithm that generates sequences con-
verging to weaker stationary points than the ones given in Stein (2001), see Section
5.7. 1t is unknown whether a different penalty function would have resulted in an

algorithm converging to stronger stationary points.
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Since a penalty function of the form ¢(x,y) — 7|f(x, v) il 18 in fact a min-
function, use of a nondifferentiable exact penalty function results in a semi-infinite
min-max-min problem with an unknown penalty parameter. This problem can be
approximated by a finite min-max problem obtained by discretizing the semi-infinite
part and smoothing the min-function. This adds two more parameters to the resulting
min-max problem. In view of this, our algorithm combines tests for adjusting the
three parameters with the Pironnean-Polak-Pshenichnyi min-max algorithm Polak
{1997} and Pshenichnyi and Danilin {1975). Under mild assumptions, we show that
if the algorithm generates a bounded sequence, then the penalty parameter remains
bounded and that there existe an accumulation point which satisfies a first-order
optimality condition.

In Section 5.2 we define the penalized problem and establish its relation to P. In
the process we obtain a new first-order optimality condition for P. Approximations for
the solution of the penalized problem: are defined in Section 5.3. Section 5.4 presents
the algorithm and the proof of ifs convergence. The chapter ends with a numerical

example, concluding remarks, an additional result regarding optimality conditions.

5.2 Exact Penalization

As described in the introduction, we introduce exact penalization for the violation
of the constraints f(x,y) < 01in (5.1.2). Let 7 denote this penalty. Hence, for any

7 > (} we define & family of related problems by

P, min ¥ {x). (5.2.1}
xegmn )

where ¢, 1 R" — R iz defined by

e () = mmax{@(x, y) — wEGG ¥4l ) (5.2.2)

with f[vi]e £ max{max{vy, 0}, ..., max{v, 0}}.

At first glance (5.2.1) looks like an ordinary min-max problem. However,

i Vo S . LA 4
103, ¥ )+ {loo is & max-function, and hence we see that, withr = {1, ...r}and r =7, +



-]
S

1,
U (x) = max{o(x, ¥} — 7If (%, ¥ )il } = max min dy - (x, ). (5.2.3a)
vEY . ’ veyY ker ’ ’
where
_ oo . A -
P ¥) 2ol y) — Tl y) ESr 2 {1 ), (5.2.30)
A .
b (X, ¥) = B(x,¥). {5.2.3¢)

Ve need the following notation: Let IB(x, p) = {x' ¢ RM|ix — x| < p}, and let
wr tRT X R™ = R, Y R* — 28" apd ¥, : R" — 28" be defined by

wr(%,¥) 2 mingea(x,y), (5.2.3d)
Y(x) = argmax{ox,y) | f(x,y) <0}, (5.24a)

Yo%) = argmax{o(x,¥) ~ 7f0x,y)- ) = {y € ¥ | walx.y) = t(x)}. (5.2.40)
¥e

Note that {5.2.3a,d} imply that ¢, (x) = maxyey w, (X, v).

Assumption 5.2.1. We assume that

iy ol il b ers={1,..r}. and gu(-). k € 1a S0 T9}. are continuously
) ! }

differentiabie, and
(ii) Y C IR™ is compact, and {y € Y{f(x,y) < 0} # 0 for all x ¢ R™. w

The notion of calmness, sece Clarke {1983, Burke (1991), can be used to show the

local equivalence of P, and P for = sufficiently large. For any x € R and u ¢ R™

consider the perturbed “inner-problem,” see {(5.1.2), defined by
IP(x, u max{olx,y) | f(x,y) < u}. (5.2.5)
ve

Let the value function v R" x R™ — R{J{—oc} of IP{x, 1) be defined hy



7

v(x, u) = m-e&?;{g"){x,y) fixy) < uj, (5.2.6)
ye
where v(x,u) = ~c0 i f(x,y) >uforally e Y.

We now define local calmness. A sufficient condition for local calmness will be

given at the end of the section.

Definition 5.2.2. We say that IP(%X, 0} is locally calm at x € IR", if there exist

g >0 and & < o0 such that

v(5,1) = 5,0} < &fuo (5.2.7)

for every x € IB(%, p) and u € R™. O

Theorem 5.2.3. Suppose that Assumption 5.2.1 holds and that IP{%,0) is locally

IR*. Then, there exist a 7 < oc and a p > 0 such that ¥(x) = ¥4(x}

M

calm at X
for all x € B(x, p), and hence x is a local minimizer for P if and only if X is a local

minimizer for Ps.

Proof. Let 5 > 0 and & < oo be as in Definition 5.2.2. Now, let x ¢ B(x, p) and
v € Y{x; be arbitrary. We will show that y € Y(x]}, with # = & For the sake of &
contradiction, suppose that y € Y:(x). Then there exists ¥ €Y such that

Bix, ) = FIEOGY )4l > ) — FIEGE V) s e (5.2.80)

o

Hence,

@(ny) - Q(X }’) = ﬁ“iif()&y’[+“% - f”f(}g Y)*Egcc

Next, ¢(x, ¥") < v{x. f(x,¥');) and o{x,y) = v(x,0). Hence, by (5.2.7)



ox.y') — b y) = wix iy - vlx,0)

(5.2.8¢)

which is a contradiction. Hence, y € Y(x), y € Y;(x), and

Ua(x) = glxy) = A Y |
(5.2.84)
= h(x).
Hence ¢(x) = ¥x(x)} for all x € B(x, 3}, and the result follows, o

Optimality conditions can be expressed in terms of continuous, non-positive val-
ued optimality functions, which vanish at local minimizers, see Polak (1997}
Theorem 5.2.4. Suppose that Assumption 5.2.1 holds, and for anv = > 0, let

8. IR" — R be an optimality function defined by

C LA . . Lo -
0ix)= — min (y+ G+ =f¢)" (5.2.9)
' CaGnlx) 2

-

G (%) = conv cony Pa (X} — wr (X, ) ! {5.2.10)
veY¥ ker FmA

where elements of G, (%) © R™? are denoted by ¢ = {{_1,(0, ¢}, with{ € IR™. Then,
(1) #.(-) is continuous and non-positive valued, and (i1} if % is a local minimizer for
P, then 6,(%) = 0.

Proof. (i) By Corollary 5.3.9 and 5.4.2 in Polak (1997), 6,{-} is continuons and

non-positive valued.

{ii) If % is a local minimizer for P, then

3

d-{x;h) >0, ¥YheR" (5.2.11qa)



where d_v.(x: I} is the lower Dini directional derivatives of 1,{-) at a point x, in a

direction h, ie,

A Co{x Eth) — U (x) _
= lim(zni br(x + tl e (5.2.118)
£10 :

d_(x; h)

- . ~ & ,
Next,forenyx € R"andy € Y, letF (xy)={k € v | - y) = w:(x.¥)} By
using (5.2.4b), the facts that for any y € Y, —¢,{x) < —w.{x,v), that f.(x,y) C 1,
and the definition of r.(x,y). we obtain that for any x. h € IR" and £ > 0,

Pu(x +th) — d(x)

o= max  min
t yEY . (x+th) ker i
o dpgxthy) - wn{xy - :
< max min : ) (5.2.11c)
yEY o {x+th) kefa {x,y) t
= max min  {Vgp.{x+ sth,y), h),

YV (x+th) kSR (x,¥)
where s € {0, 1]. Hence, since Y,{) is outer semicontinuous in the sense of Kuratowski-

Painlevé, see Rockafellar and Wets {1997) and Polak (1997), we have that

. e th) U (x . ‘ - |
lint inf al ) = ¥l(x) < max  min (Vo (x. ¥).h). (5.2.11d;
o i ¥ (%) FEER(xY) )

Next, we proceed by contraposition. Suppose that 0 € G (%), Then there exists
a nonzero vector h € ™ such that (Vidr.(%,¥), h) < 0for all y & Y, (%) and
all £ € £,(X,¥). Hence by (5.2.11d}, d_¢,(x;h) < 0. Therefore, {5.2.11a) implies

0 € Giy(%) and 6,.(%) = 0. O

In view of Theorem 5.2.3, we can formulate the following optimality condition for

P

Theorem 5.2.5. Suppose that Assumption 5.2.1 holds and that IP(X,0) is locallv
calm at x ¢ ", If X is a local minimizer for P, then there exists a # < oo such that

0:(%) = 0 and (X} = (). 0

The optimality condition for P in Theorem 5.2.5 can be related to an ontimality
It A 3

condition in Stein (2001), see Section 5.7.



In the remainder of the section, we derive resuits leading to the conclusion that
Assumption 5.2.1, together with Assumption 5.2.6 below, are sufficient conditions for
local calmness.

Y (x}, the vectors

m

Assumption 5.2.6. We assume that for any x € R” and y

Vyfelx.¥). k € rj(x,y), together with the vectors Vg,(v), k € r3(y). are linearly

independent, where ry = {1,...,r}, rz = {1. T2}, and
* /—\‘ H ~ g3
ri(xy) = (k€ vl y) = (%, y)g e = 0, (5.2.12a)
r3(y) = {k € ralguly) = 0}, (5.2.120)
O

Next, we will define a test function. which plays a crucial role in determiniug the
value of the penalty 7 that is sufficiently large to ensure the local equivalence between

P and P, near a point & € IR™. We need the following building blocks: Let

Alx,y) 2 [ y(x‘”\ (5.2.130)

be an (# + ) ® m matrix with

£ (6 7) E (T il ), e By fr (907, (5.2.13b)
g (¥) = (Var(y). o Van(v))) (5.2.13c)

and
B(x.y) & diag(B,(x,¥), Ba(y)) (5.2.13d)

bean (r:+7y) x (71 +73) diagonal matrix defined in terms of the two diagonal matrices

.

B, y) = diag([fi(x,¥) ~ 805 ¥)allocl oo Ly (5.3 = 60 3) 1 o), (5.2.13¢)

Baoly) = diag([o: ()", .-, [9.. (v)]%). (5.2.13f)



=]

bt

Furthermore, let z : R™ x IR™ — R™™™ be defined by

HI>

(0 vy, Sy E A YA y) By AR, Y) V(x, v),
{(5.2.13g)
where n{x,y) € R™, £(x, v} £ IR™ and M denotes the psendoinverse’ of the matrix

M.

z{x, jy')

Using a stmilar construction as in Glad and Polak (1979). we define for any # > 0

o
o3

the test function ¢, - R™ x K™ — R by

2.13h)

s
N.Jt

t(xy) & ~m oy imlxy)l

where 7 > 1.

The function n(-, ) has the following properties, which will ensure that the test
function in (5.2.13h) is well-defined for all x € R™ and y € R™, and it is continuous
whenever 7(-,-) is continuous. Note that n(x,y)} is under certain assumptions related

to the multipliers of the “inner-problem” in (5.1.2), see the proof of Lemma 5.2.7

Lemma 5.2.7. Suppose Assumption 5.2.1 holds and o > 1 in {5.2.13h).
(i) Then, (-, ) is well defined for all x € R™ and y € R™.

(ii) If x ¢ R™ and y € R™ are such that V, fi{x.y), b € rj(x. ¥}, (see (5.2.12a)).
together with Vor(y), b € ri(y). (see (5.2.12b)), are linearly independent, then
Alx,y)AGx, v)" + B(x,y), see (6.2.13a,d), is positive definite, and n{-,") is

continuous at x € R™ and y € R™.

(iii) If x € R" and = > 0 is such that t.(x,yx) < 0 for some vy € Y(x), and
Vifelx,¥e), kB € 13X yy), (see (5.2.12a)), together with Vgu(yx), k € r5{yx),

fsec (5.2.12b)), are Iiﬂear]}-' independent, then vy € Y(x) and (x) = = (x).

IThe pseudoinverse of a real matrix M is obtained by first saking a singular-valus decomposition
M = PDQ, with P and Q unitary matrices, and D diagonal, and then setting M+ = QT DTPT,
The psendoinverse of a diagonal matrix is obtained hy replacing the i-th diagonal serm d;; with 1/dy;
whenever dy; = 0, otherwise with 0, see incaid and Cheney {1596,
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Proof. (i) By Theorem 4 in Section 5.4 in Kincaid and Cheney (1996), the pseu-

doinverse is unigue, and hence 5(-, ) is uniquely defined for all x £ IR™ and v & R™

(ii) Let x € R" and y € IR™ be such that V, fi(x,y).k € 15(x, y). (see (3.2.12a}},
together with Vgu(y), & € ri(y), (see (5.2.12h)), are linearly independent. By the

definition in (5.2.13g). z(x, y) satisfies the equation
Alx, y)AX, y)" 4 Bx, y)jzlx, y) ~ A, y)Vyo{x,y) =0, {5.2.14a)

which is also the first-order necessary optimality condition for the unconstrained

convex quadratic optimization problem

min {[| = V,6(x,y) + A(x.y)z|[* + (z, B{x,y)z)}. (5.2.14b)

zeRT1H2
We will first show that z{x,y) is the unique solution of (5.2.14b). Since (5.2.14Db)
is a quadratic problem, we only need to show that the guadratic function being
minimized is positive definite. Clearly, this function is positive semi-definite. Let
z = (1.£). Then, the quadratic part of the cost function in {5.2.14b} canr be written
as follows:

(z.[Ax, y)A(xy)" + B(xy)l7)

=605 00 + &y 0P + 0 Biboyh) + (€ Bolev)E). (5.2.150)
Hence, the quadratic funetion in {3.2.14b) is positive definite if and only if
iy (3, ¥) 70 + gy (TEI" + {1, Ba(x, y)m) + (€, Ba(x, v)E) =0 (5.2.150)

implies 7 = 0 and € = 0. Now, when (5.2.15 b} holds, we must have that 7, = 0 for

all b ¢ ri(x,y). and & = 0 for all k ¢ ri{y). Hence, (-:)E.L:')b} implies that

Z Ny (%, y) Z SValy) = 0. (5.2.15¢)

EEri{x.y) kers(y)

It now follows from the linear independence hypothesis thas (5.2.15¢). and hence also

(5.2.15b), hold if and only if = 0 and € = 0. This shows that A YA T+

B(x.y)] is positive definite, and hence z(x.y) is the unigue solution of (5.2.14b).

/
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Next, since there is an unigue solution to (5.2.14b), it follows that [A(x, v)A(x, ¥)" 4

B(x, y)] is invertible, and the inverse is identical to the pseudoinverse. Hence,

2(x.y) = [Ax YA Y + Blx )] A ¥V, 6(x,y) (5.2.154)

Since 'A{x,¥)A(x,y)7 + B{x,y)| is positive definite, there exists ¢ > 0 such that
A, y)AX, y)T+B(x', y')] is positive definite for all (/. v') € IB{{x,y),e). Hence,
(5.2.15d) holds, with x = x" and y = ¥/, for all (x',y') € B{(x,y),¢), which implies
that z{-, -} is continuous at (x,v).

(ifi) Let x € R", yx € R™ and 7 > 0 be such that #,.(x. v} < 0, yx € Y,(x), and

Ve ¥yl k€ r3{x, yi). together with Vaulyx) k € r5(yy), are linearly indepen-

dent at (x,yy). Then yx is a minimizer for the problem, see (5.2.3a) and (5.2.4b),

min max{ —¢p . (x, )}, (5.2.

VEY kér

(]
[
Y
it
]
L

and it follows from first-order optimality conditions, see Polak (1997}, that there
exist multipliers v € R", with vy, > 0,k € r,> 7 2 = 1, and p € R™T!, with

i = 0k e {0,173, D00 o e = 1, such that

mor b T
\ ! = . i o
Hao {Z ”""I/icvy(f)k;r(x: ytx}J + Z fith}\(}x} - 0 {')zlj)f)
k=1 #=1
o (Z V(=i (%, ) + wﬁf\x,n;}}] =D ngi(yy) = 0. (5.2.159)
bz ] A k=l

By the linear independence hypothesis, pg > 0. Using (5.2.3b) and (5.2.3¢), (5.2.15f)

can be rewritten as

~Vypx vl ) AV Sl v + ﬁfiwk(yx) =0, (5.2.150)
k=1 e=1 19

and, also using the fact that each term in (5.2.15g) must be non-negative, (5.2.15g)

can be rewritten as

Vel fulx, yx) — N8 Vo) lloc) = 0, k€14, (5.2.151)



v, ve )l = 0, {6.2.15j)
Hi — - =N
H_gk(yx) =0, k€T, (5.2.15k)
g

Then, we see from (5.2.14b), and the definitions (5.2.13a) and (5.2.13d) that

.

™1

nflnflllijiIP" { l e TVC) Z 7?5_{‘ fh X, }x) -+ ZEAT:}; X)[

g k=1 . k=1 (5.2.150)
S A% v = B v+ )+ D Gas(va)E 2 0.

=1 =1

Since the cost function in {(5.2.151) is non-negative for all vectorsn € IR™ and £ € IR™2,

it follows, by taking 77 = {17, ..., ve ) and £ o= (g / o, ,,.,fu.r,?/y.@‘} and (5.2.15h,1k),
that
T Tz
.,,gﬁéal?s;m,.g{él = Vyo(xyx) + Z MV fi(3%, y) + Z &V an(yy)]
+Zm Ful3¥x) = B v e floe))? +Z I
b1
< = Veo(x, va) ‘S‘yk”v Frix. v H\T,u, Vaulye )l
! Ail h:?é ; 2
+ 3 e v — Iy )P+ S {ﬁ’ ] =0
k=1 F—1 LEO .

(5.2.15m)

Since the linear independence property holds at (x, vy), it follows from the proof

W

of part (i) that (5.2.14b} has an unigue solution. Hence, in view of (5.2.15Lm),
(X, ¥x) = {107, .., Ve, ).
Suppose that ||[f(x, yx )y [l > 0. Then by (5.2.15)), 14 = 0 and hence § 1%, 1 = 1.

Now, since t,(x, y,) < 0 by assumption, see {5.2.13h),

\

T T1
oy Im(x vy = O'Z VTt == O (5.2.151)
k=1 S

But this is a contradiction because o > 1. Hence (3, y) < 0. Since y, € Y,{x), we



81
have that for every y' £ Y such that f{x. y") <0,

@(Xﬂ)’r‘,} = é{xzy’}_ﬁyf‘:X:}’J)@%%w

i1

I

A(X, ¥y ) — TR, Yo ) lloo (5.2.150)

= B(x.vy).

Hence. yx € Y(x), and

Ur(x) = O yx) = T ya)s oo

This completes the proof. O

P

In the following, for any 8 C IR™ and p > 0, let S+ B, = {y ¢ IR™

i i
N o o St Furﬁhel‘lﬂ.ore we denote the convergence Of ar iﬂﬁﬂit@ (Sub sequendce
H g S

{x; }icr, ¥ € IN, to a point x, by x;, —& x.

Lemma 5.2.8. Suppose Assumptions 5.2.1 and 5.2.6 hold. Then, for every x & R™

there exist a compact set Q{x)  R™, and a scalar pg > G such that

(i} for every x € B(%, pz) and v € QX), Alx, y)Ax, v)¥ +B(x,y), see (5.2.13a,d),

is positive definite, and hence V fi(>. ¥y}, &

Mn

rii{x,¥), {see (5.2.12a)), together

with Vi (y), k € vily), (see (5.2.12b)), are linearly independent, and
(ii) Yix)+ B, < Qx).

Proof. Let x € IR" be arbitrary. By Assumption 5.2.6, V, fr(%,7),k € ri(%x.¥),
together with Vgu{¥). & € r5(y), are linearly independent for anv ¥ € Y(%). It
follows from Lemma 5.2.7(ii) that AR, ¥AR, ¥)7 + B{x,¥) is positive defiuite.

Thus, by continuity of A(,,-} and B{-, ), there exist a compact set (%) < R™ and

T

a pr > 0such that A(x, y)A(x, v)7 + B(x,y) is positive definite for all x € B(%, pg)

and y £ Q(%), and V(%) + B, € Q%)
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By positive definiteness, both sides of (5.2.13a) are strictly positive for all x &
B{X,pehy € %) and z = (5.€) # 0, with p € R” and £ £ R™. Hence. (5.2.15b)
must imply that (n.&) in (5.2.15b) is zero for all x € B(X, py) and y € Q(%). But
then, V, filx,y), &

dependent for all x £ B(%, pz) and y € {U%X). Because if that was not true, we may

m

r1{x,y), together with Vgi(y). & € r3{y) must be linearly in-
have (5.2.15b) satisfled for (1, £) +£ 0. This completes the proof, i

Lemma 5.2.9. Suppose that Assumption 5.2.1 holds. Then, for everv % € R”. 7 > 0,
> 0 and € > 0, there exist & € [, o0) and jp € (0. p, such that Yx(x) C Y(%) + B,
for all x € B{x, 5).

Proof. Let x CIR™ 7 > 0, p > 0 and € > 0 be arbitrary. To prove the desired result,

we will show that (i) there exists a # € [x, o) such that Y. (%) C Y% %)+ B.je, and

i

(ii) there exists a § € (0, p] such that Yi(x) C Ya(%) + B.; for all x € B(x, p).

(i) Let the set-valued function I' : [0, 00} — 287 be defined by

I(s) = a max¢'(s, y), (5.2.16a)

I

where ¢ - {0, 00) x IR™ — R{_}{~oc} is defined by

S

N S

e
~

Play) 2 ek y). s=0 =0 .

L_n
l\)

2.16b)

e, 5= 0,805, ¥) sl > 0

First, we ghow that T'(} is outer semicontinuous at s = 0 in the sense of Kuratowski-
Painlevé, see Rockafeilar and Wets (1997} and Polak (1997). By Theorem 5.3.7 in
Polak (1997), we only need to show that the outer limit of {I'(s;)}22, is contained in
I'(0) for any sequence {s;}7Z; < [0,00) such that s; — 0. Let {5}, < [0,20), be

such that s; — 0, and let ¥ € IR™ be a point in the outer lmit of {I'(s;)}%2,. Then

i=0"

there exists a sequence {y;}>%, such that v; € Pis;) for all i € IN, and y; — 7, as

i 00,
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Now, consider the hypo-graphs, see Rockafellar and Wets (1997) and Polak {1997),

of the problems maxycy @'(s,,y) given by

E & {lyny) e R™ |y e Y, vy < d(s0y)}, (5.2.16¢)
and of the problem max, -y ¢{0, ¥} given by
E={(ysy) e R™ |y €Y, yo < #(0,¥)}. (5.2.164)

By Theorem 3.3.2 in Polak (1997}, the sequence of sets { E;}72, converges to E in the
Kuratowski-Painlevé sense (see Rockafellar and Wets (1997) and Polak (1997}) if and
only if (a) for any v < Y,
liminf, oo ¢'(3:, %) > &'(0,¥"}, and (b) for any infinite sequence {yltexw < Y,
K C N, such that y! —% y/, as i — oo, limsup,_x. ¢'(5,¥") < ¢(0,y).

Iirst, we consider {a). Suppose ¥’ € Y. Then, we have directly from (5.2.16h}
that Hmy ... ¢'(s, ¥ = &0, ).

Second, we consider {b). Let {yi}.cx €Y be an infinite sequence, K < IN, such
that yi —% y'. as i — oc. Without loss of generality, we assume that vi = ¥, as
1 - 0. Now, we have two cases.

i

Case I Suppose |f(x,¥"), ]~ > 0, for some 6 > ¢. Then by continuity of (-, },

there exists an iy € IN such that [f{X,y!) |l = §/2 for all ¢ > ¢;. Hence for all

i > dp, such that s; > 0, ¢'(5,,¥)) = (X, ¥yl — [fx v o/ < o3, vi) — 6/(2s4),

and for all ¢ > ip, such that s; = 0, ¢'{s;,¥{) = —oc. Sinee 5; — 0, we have that

Bimgeoe (s, v0 = ¢{0.y) = —2c.

Case II: Suppose f{X, ¥} < 0. Then by (5.2.16b), Hmsup,. . &'(s;,v)) € (5. ¥y =
50,5

Hence by Theorem 3.3.2 in Polak (1997}, { £}, converges to £, As a consequence
of the convergence of {E£,}%2, to E, Theorem 3.3.3 in Polak (1997) states that any
accumulation point of a sequence of global maximizers of masyev ¢/(s;, ¥) is a global
maximizer of maxyey ¢'(0,y). Hence, ¥ € (0}, which is a contradiction. Hence, we

have that ['(+) is outer semicontinuous at s = 0.
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Next, let ¥ € I'(0). It follows from (7 2.16b) and Assumption 5.2.1(ii), that

L

f{%,y*) <0and ¥* € Y(%). Hence, r{0)  Yix).

Finally, by outer semicontinuity of T'(-) at s = 0, there exists a #

that Yi(%) C Y(%) + B, /2, and (i) holds.

M

im, o0} such

(if) Let & be as in (i), First, we show that Yi(-) is outer semicontinuous at %.
By Theorem 5.3.7 in Polak {1997), we only need to show that the outer limit of
{Ya(x)1, is contained in Y (%) for any sequence {x;}?°, C R" such that x; — %.
Let {y;}{2, be an arbitrary sequence such that v, € Y (x;) and y; — . Then,

YOl > A0, ¥) = 7K Y4 o (5.2.16¢)

foraliic INand y €Y. Hence, by adding ¢(%,3) — #[[f{%,¥)< | to both sides of

(5.2.16e), and rearranging terms, we obtain that

B5,5) = FIEE, )4l 2 mas{8(%,9) = FIE%, )l ~ 6lx0 )
IS
PR Vi) o + B0 ) — FEGE ) oo}
5.2.161)
It now follows by the continuity of the right-hand side of (5.2.16f) that (%, ¥} —
FIEE F) 1l 2 ¥2(%), and hence that ¥ £ Y;(X). Hence Y.(.) is outer semicontin-
uous at X, which implies that (i} holds. Now, the conclusion follows diractly from (i)

and (if). O

Theorem 5.2.10. Suppose Asswmptions 5.2.1 and 5.2.6 hold, Then, for any & € R”.

IP(x,0) is locally calm at x.

Proof. Let x € IR". By Lemmas 5.2.7(ii) and 5.2.8, there exist a compact, set,
0 C ™ and pg > 0 such that n(-, ) is continuous on B(%, pz) x Q%) and
Y (%) +B,, < (%), Hence,

A
e Ao

7" = max  may o E lx. vl (5.2.17a)
xEB{X,pe) y20iR)
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with ¢ > 1, is weli-defined. By Lemma 5.2.9, there exist p € (0, pz] and 7 > 7" such
that Ya(x) C Y(x) + B, for all x € B(k, j). Let x € B{%, p) be arbitrary, Then,
Ya(x) C QU%), and hence for any y, € Yi(x), we have by (5.2.17a) and (5.2.13h)
that t2(x,¥x) < 0, and, by Lemma 5.2.8 that V(X ¥x). k € ri{x, ¥«), together
with Vgu(yx), b € rily.) arve linearly independent. Hence, by Lemma 5.2.7(iii},

« € Y(x). Next let y € Y and u € R” be such that f(x,v) < u. Then,

X yx) = % ya) = AR v+ flec

> olx,y) = Tk y) —uly e — Fllulle

I
o
kS
art
[
3
=

]

By (5.2.6), v(x,0} = &(x,yx). For every u € IR"™ such that v{x,u) > —oc, there

I

exists yl, € Y such that f{x.y) < u and &{x,v}) = v{x,w}. Hence, by (5.2.17b),

for every u € IR™ such that v(x, u} > —oo. we have that

vix,u) ~ v(x,0) < 7llulle.. (5.2.17¢)

Since {5.2.17¢) alse holds for u € R™ such that v{x, 0} = —oco, we have that {5.2.17¢)

f

holds for every u € IR™. Finally, because x € IB(x, g} was assumed arbitrary, the

conclusion follows with & = #. ]

5.3 Approximations to P,

In view of Theorem 5.2.3, P can be solved by solving P, for a sufficlently large
7 > 0. To facilitate the solution of P, we introduce two approximations. First, for
any sel Yy C Y, N e IN e {1,2,...}, of finite cardinality and » > 0, we define the

approximation ¥, x : IBR" — IR to the function ¥..( ), see {(5.2.3a), by
! Yol js L 3

o . .
e (X)) = max we(x,v), (5.3.1a)
' YEY
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with w,{:, ) as in (5.2.3d).

Second, we introduce a smoothing technique that can be found in Bertsekas (1932,
Li (1997}, For any 7w > O and p > 0, let w,, : R* x ™ — R be the smooth
approximation to (-, ) defined by

4o i : . :
rpl%, ¥} 5 = 2 In(Y e sl (5.3.1b)
P k=1
Hence, for any # > 0, N £ IN and p > 0 we define a family of min-max approxi-

mations to P, by

Pinvg min Py (X), {5.3.1c)
U Y, .
where 9y n, 0 R® — IR is defined hy
; LA : o
Uy vp(X) = max wy (X, y), (5.3.2a)
. vaYy

Referring to Section 5.2.1 in Polak (1997), we find that a continuous optimality

function, 0, »,: R" — IR, for the problem P.np is given by

1
/\ + bl — At
Orp(x)= — min &+ =[] (5.3.25)
ESCe v p(x) 2
where £ = (&,6) € R, with £e R and

- fy zj;l__‘\;ﬁ{x) - wﬂm){x; .;}

Yo N p(X) = cony ’ (5.3.2¢)
o YEY

\_fberj(X y)

We require that the error associated with the discretization of the set Y satisfies a
certain relation as specified in Assumption 5.3.1(ii) helow. Note also that Assumpiion

5.3.1{iv), below, is & Mangasarian-Fromowitz-type constraint qualification.

Assumption 5.3.1. We assume that

(i) o) fule, ) k €1y and g.{0), k € ra, are twice continuously differentiable,



0
=3

(i1} there exist a strictly decreasing function A IN{ J{oc} — [0, 00), with the prop-
erty that A(N) — 0, as N — oc, and Afoo) 20, and constants Ny ¢ N,
U < oo such that for everv N > Ny andy € Y, there exists ay’ € Y n such

that,

by — '] < CAIN). (5.3.3a)
(iii) for every N > Ny and x € R"
{ye¥Yu|flxy) <0}#0, (5.3.3b)

(iv) for sny x & R" and y € Y there exists an h € R™ and 4 > 0 such that for
all k € vy satisfying fe(x,y) = 0, (Vi fi(x.v),h) < 0, and for all u € (0,4,
gly +uh) <0.

0
For example, if Y is the unit cube in R™, f.e., Y = I, with I = [0, 1], then we

can define Y == I, where

Ty = {0, 1/a(N), 2/a(N), ..., (a(N) — 1}/a(N), 1}, (5.3.3c)

with a{ V) = 2V NN, In this case, A(N) = 1/alN) and C = im?/2
We need the following notation: Let Y : R™ — 28" ¥ _ o R™ — 287 and be

defined by

Y nlx) = arg max{aix, yviIf{x. v} <0}, {5.3.4a)
YEY &
Vow(3) Sy € Y | wn(x,¥) = ¢y n(x)} = arg max{olx, y) — 7llf(x, y)s [}
ye¥y
(5.3.4b}

Lemma 5.3.2. Suppose Assumptions 5.2.1 and 5.3.1 hold and = > 0. Ifx, — %,

vi =¥, Ny — o0, as ¢ — oo, withy; £ Yaoni(x;) and N, « IN, for all i € IN, then



Proof. Let # > 0, {x;}72, CR" {y:}, CR™ (N2, cIN, s e R and ¥ 2 Y

besnch that v; € Y, v (x;), Xy — %, y; — ¥. and N; — oc. Then.

i ya) = (% yidelloe 2 6(x, v) = 7l (%0 ¥) sl (5.3.5a)

foralli € W and y € Yu,. Hence, by adding (X, ¥) — 7| f(%, %), to both sides of

{5.3.5a), and rearranging terms, we obtain that

oy = wlfX, Y]l > max{o(%,3) — wllf(% ¥)ifix — o(xi, )
YSX

_—
Lot
T
o
ey

A vk lloe + S(xiy) = AF 00, ¥) 4 o}

It now follows from the continuity of the right-hand side of (5.3.5b), see Corollary
5.4.2 in Polak (1997), and Assumption 5.3.1(i1) that ¢{%, 7) ~ 7 [f (%, ¥) 1 llee = (%),
and hence that ¥ € Y, (X). I

Lemma 5.3.3. Suppose Assumptions 5.2.1 and 5.3.1 hold. Then,

(i) for every & &€ R™ and ¢ > 0, there exist # < oo, N < oc and p > 0, such that
Y. wi{x) < Y(xl B, forallx s Bk, gy, m > % and N > N, N IN, and

(ii) for every X € B N € IN, N > Ny, with Ny as in Assurnption 5.3.1(ii), and
¢ > U, there exist # < o0 and p > 0. such that ‘)\."ﬁ“.\.—(x} - YN(:Q:) -+ IB.. for all

x £ B(x, p) and « > 7.

Proof. (i) Forany s > 0, ¢t € T2 {t (0,1, 1/t € IN}UJ{0} and x € R™, let
w = (s,t,x} € R"™°. We define the set-valued function W : [0, 50} x T x R® — 2!

by

W{w) = a arg max ¢(s, x,y), (5.3.6a)
¥ox]
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where Y7 YV with N =1/f fort € T\t > 0, Y] = SY for f = 0, and ¢ : [0,00) x
R"™ « R™ — R }{~oc} is defined by

. 1 .
d(x,¥) = = £, ¥)ellor 5> 0
S

(s:%,¥) o0,y $= 010 y)tlie =0 - (5:3.60)

Let x € R" be arbitrary. We will first show that W{-) is outer semicontinuons at

= (0.0, %) in the sense of Kuratowski-Painlevé, see Rockafellar and Wets (1997) and
Polak {1997}. By Theorem 5.3.7 in Polak (1997), we only need to show that the outer
limit of {W{w;)}52, is contained in W () for any sequence {w;}=, C [0, 00) x T x R"
such that w; — . Let {w;}52,, with w; = {51, %) € [0.00) x T R", be such that
w; — @, and let ¥y € R™ be a point in the outer limit of {W{uy;)}2,. Then there
exists a sequence {y;}°, such that y, ¢ Wi{w,) for all i € IN, and y; — ¥. as © — o0,
Now, consider the hype-graphs, see Rockafellar and Wets (1997) and Polak (1997),

of the problems max, ev- ¢(5;, %, v) given by

B2 {{ye,y) € R™ |y € Y7, vo < &lsi, %, v)}, (5.3.6¢)

and of the problem maxycy @ o(0,%, v) given by

EE{yoy) e ™ [y €Y, yo < 6(0.%,v)}. (5.3.6d)

By Theorem 3.3.2 in Polak (1997), the sequence of sets { £}, converges to F in the

Kuratowski-Painlevé sense (see Rockafellar and Wets {1997} and Polak (1997)) if and

only if {a} for any ¥ € Y, there exists a sequence {¥; } 2o with 3, € Y], such that
¥ — ¥, as i — oo, and liminf,_., ¢(s;, % ¥:) > &(0,% and {b) for every infinite
sequence {y; hop, with K C N, such that ¥, € Y] for all i € K, and y; Y ¥, as

T

i — o, Hmsup,__xo B8, % ¥ < (0, %, ).
First, consider (a). Sdppaae that ¥ € Y. Now, we have two cases.

Case T: Suppose (%, ¥)ullee > 0. Then, (0,%,5) = —oc, and hence by Assumption
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5.3.1(1) there exists a sequence {§:}22, C Y such that §; € Y7, foralli € N, §; — ¥,
as ¢ - 00, and lim inf; ... cf){\si;xi,yi) > 5{0,5{,}”’).
Case II: Suppose f{%,¥) < 0. We infer from Assumption 5.3.1(iv) that there exist

h e IR™, 6 > 0 and v > 0 such that for all u € (0, u*]

fulX, ¥ +uh) < —du, ¥ k€r;, (5.3.6¢}
g(¥ +uh) <0. (5.3.6F)

Let L < oo be a Lipschitz constant for fi(,-),k € ry, on B(%, 1) x By, u k).
Hence by (5.3.6e), for all w € {0,4*/2], x € B(X, 1) and y € B(¥ + uh, «*||h]|/2), we

have that

fel,y) £ =du+ L{|lx - %[+ [y +uh-y]), ¥ kerg, (5.3.69)

Let a = 6/(2L}. Then, there exits w** € (0,u*/2] such that for all u € (0,u™], au <
min{l, v h[[/2}. Let w € (0,4*]. Then for allx € B(%, au) and y € B(F +uh, au),

f;;(X, }’) < {, ¥V k<, (536[2)

Since x; — X and #; — 0, as { — oo, there exists iy € IN such that for all i > 4,
% — R < au™ and CA{L/t;) € au™, see Assumption 5.3.1(i1). For all { > 44, we
define u; = max{{ix; — X|, CA(1/¢)} /e, and y! = § + wh. By (5.3.6f), gly)) < 0,
and hence y; € Y. Then by Assumption 5.3.1(ii), for every i > 4, there exists §; € Y7
such that [ly; — %:ll < CA(1/t;). It now follows by construction that {¥, 2, is such
that §; — ¥, as i — oc, and by {5.3.6h) that |f(x;, 7). |l = 0 for all ¢ > #,. Hence
by continuity of ¢(-, ), limy_e @{s;. %z, 1) = O(0,%,§).

Second, consider (b). Let {¥,}iex be an infinite sequence, & C N, such that
i€ Yy, foralli e K §; —5 ¥, as i — oo, Without loss of generality, we assime
that ¥; — ¥, as i — oo. Now, we have two cases.

Case I Suppose [[f (X, ¥}l > ¢, for some § > 0. Then by continuity of £{. -}, there

exists an 49 € IN such that |[f(x, ¥i)+ |l > 6/2 for all © > 4. Hence for all i > 4,
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such that s; > 0, dls:, %, ¥:) = &(x,, 50— M(xs, ¥i) i loo/s0 < d{xe, 7,) — 6/(2s,), and
for all i > 4y, such that s; = 0, @(_si,xi_.j’ff) = —o¢. Since w; — 1w, we have that
5; — 0, and hence lim, . @(s;, %, ¥,) = 600, %, §) = —xc.

Case 1I: Suppose f(%,¥) < 0. Then it follows directly from {5.3.6b) that lim SUP o ae
Bs, 3, ¥11< d(X.§) = 30, %, 7).

Hence by Theorem 3.3.2 in Polak (1997), {E;}2, converges to F. As a conse-
quence of the convergence of {£;}7%, to E, Theorem 3.2.3 in Polak {1997) states that
any accumulation peint of a sequence of global maximizers of MmaXyey; gf)é\sig X, ¥} i8
a global maximizer of maxyey ¢(0, %, y). Hence, ¥ € W (). So we have that 1( -} is
outer semicontinuous at @ = (0, O,)”c).

Next, let y* € W{d), with @ = (0,0,%). It follows from Assumption 5.2.1(ii) and
(5.3.6b) that feﬁ,y*_} < 0and y* € Y(%). Hence, W) < Y(%).

Next let € > 0. Then, by outer semicontinuity of W(-) at i = {0,0. %), there exists
p > Osuch that Wiw) CW{d) + 1B, forall w € [0, 00) x T x R" with [jw — 1]l < p.
Hence, for all w 2 3/p, N > 1/p, N € N, and x € IB(x, p}, Y, n(x) C V(%) + 13

{ii) Using the same arguments as in {i), we obtain (ii). This completes the proof. O

The approximating, smooth functions in (5.3.1b) have the property, see Bertsekas

(1982, Li (1997), that

1

0 Cwlxy) —weplx,y) < =In (5.3.7)
¥
forallx e R", ¥y €Y and » > 0. Hence, forall x €« R and # > 0
¥ {x) = ma &\vjwfxf}")
1, ‘
LA Wy (X, V) o+~ InT (5.3.8a)
YEY » :
A |
= Yaplx)+—lnr
. p
with
W o (%) = MAX Wr piX, V). (5.3.80)

¥eY



92
Next, it also follows from {5.3.7) that for all x € B" and % > 0

P(x) = maxw.(X,v]

A

Zomax Wy p(X. Y ) {(5.3.8¢)

yEY

= ?i’ﬁ,ji{x) .

By the same arguments Jeading to (5.3.8a) and (5.3.8¢), we have that
. L Lo -
0 <t (X)) = p yplx) < =lnr (5.3.9)
. -

forallx e R™ 7> 0 and &V ¢ IN.

Lemma 5.3.5. Suppose Assumptions 5.2.1 and 5.3.1(ii) hold. Then for every
bounded set 5 < IR" and ®@ > 0, there exists a constant K < oc such that for
all N > Ny, with Ny as in Assumption 5.3.1{ii}, p > 0 and x £ 8§

0 < (%) — 1 p(x) < KA(N) (5.3.10a)

0 < e p(X) =t np(%) < KA(N), (5.3.100)

Proof. Since ¢y .{-,-), & € r, are continuously differentiable, they are Lipschitz con-
tinunous on bounded sets. Hence, w. (-, ) is also Lipschitz continuous on bounded sets.
First, becanse Yy C Y, we always have that U, v(x) < ¢.(x). Second, let 8 ¢ R"
be a bounded set, and let L < oc be a Lipschitz constant for wo (- -} on S, For any
x £ 8, there must exists a v, £ Y such that ¥.(x} = w.(x. v.). By Assumption

5.3.1011), there exists v, € Y such that |y, — vl < CA{N). Hence,

Yo v(3) 2 a3 ¥5) 2 wal, ) = LOAN) = () = LCA(V).  (5.3.100)

Hence {5.3.10a) holds with K = L.



Next, wyp{-. -}, defined in {5.3.1b), has gradient with respect to y
T)W" ol (X, .Y Z,eul T p v éﬂ (X:Y): (ESEOdJ
where, for any k™ € r,
no eXplepop A% Y . .
L plX, Y ) = bl P Y) (5.2.10¢e}
>er D =Pk (%, ¥ )]
we have that for all p > 0

(5.3.10f)

)’r" o YH:

Hence, by the Mean Value Theorem and {5.3.106d.e)

xR andy, v Y

p(X,,:}’"}] g r Z Elvyékt,-r(xr ¥+ "{}( - y))
k=1
) 13 Lipschitz continuous on bounded sets with a
rguments

|wn {3, ¥)
for some s € [0,1]. Hence, w, (-, ) is Lipschit
Lipschitz constant independent of p. The result now follows by the same argumen
as for (5.3.10a; G
Lemma 5.3.6. Suppose that Assumptions 5.2.1 and 5.3.1(i) hold. Then for every
bounded set S < IR™ and w > 0, there exists an L < oo such that
2 = k
A, (H.3.11a)
g

&
(v, T2 < prge)
iz twice

|

forallyveY.xe8veR andp>1
Proof. Let m > 0 be arbitrary. By Assumption 5.3.1{), w-,0. ¥}, ¥y € Y,
differentiable with gradient
Vinp(X.y) = Z,{lhvg(}.j)v D (X, ¥) (5.3.110)
k=1
is given by {5.3.10e}, and Hesstan matrix
N "(x: Y
Ix?
5.3.1ic)

where pi (%, ¥) 1

52’4’"'?:@(& v) & Z

?

k#ix"u(}‘- yﬁvxﬁfﬂm (X, 3) T+ bk D(X }’}

r.ﬂk&

ax2 _
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where, for any &% < r,

Vxﬁik"ﬁ]p{\ix,y) ;pluh‘"p(x W Z}'iﬁ [X ‘ {’v{:’“ @k "\X ZV: v(ﬁ%’ﬂ'ﬁ(xr }))
{5.3.11d)
et 5 C IR" be bounded. Then by continuity, there exists & K < oo such that
ilvxq‘;gﬁ_ﬁ{xﬁy)!% < Koand (v, % (x,¥)/0x%v) € Klv||* for all x € S,v & R",
yveYandk<r Then forall x €8,

I Visitir wplx, ¥ < pz UVt (3, ¥ ) = Ve (X, ¥ < 2pr K. (5.3.11¢)

k=]

Hence, there exists K| < oc such that

v, Z VK)U’]E!’FT,;H(X: y)vx@k.r(x; y}TV > < p}‘\:l i\’”2 {3311f)

kET

forallx €8 ve R"and y €Y. By inspection, 0 < gy %y <1 forallx € R,

veY, kcrandp>0 Hence forp>1,x<8, yeYandv e R

M

Hur, v) o
(v, Peraly), ) S PRV Ky |
\ Ix (5.3.11g)
< pliG +rHvi
Hence. L = K +ri{. This completes the proof. 1

Lemma 5.3.7. Suppose that Assumptions 5.2.1 and 5.3.1(ii) hold, and that the
sequences {x; 122, © R", {N 12, C N, and {p;}2, < (0,00) are such that x; — %,

Py — o0 and N; — 0o, as i — oo, Then for any 7 > 0, lmsup b, p. . (%) < 6.(%). O

Proof. For every ¢, let
L= (Lo ) € arg min \:” +3 II\[ (5.3.12a)
Then there exist multipliers vy = 0oaset J; © IN, and yi; € Yy, such that

T-- V. o = 1
L JEI; T :
Foi PR . ; - At Eva SYEDY
oi = E Vil e NepAXe) = G, (30, Vi), (5.3.125)
jed



and

5*5 Vig ¥ x‘»v*"p‘xa,.,z]J

7=k

(5.3.12¢)

In view of (5.3.10e), we have that all p o (X, ys5) 2 00 and 3 jern (X0 vi,) = 1.

Hence, we obtain the following expression for &

§ym g Vi g M (X, Vi g)
igd; k&r

Now let

.i,-j/!ﬁ.f\"—jrz:li (Xi) = Wi {Xi: ylj)

Vil {3, ¥ig)

@k\?f(‘x’i‘-y_f.j,} L }*z }’Ej

— A . i
=G0 =D vy > Prap(x¥iy) U (i) =
JE3, keEr

Vit X, Vi)

Then, by inspection ¢ € @’gi’r(xg;}, and hence

—0:(x;) < kG i

1,ny 7)

(5.3.12d)

=),

= 3 vl (%) = Y (6] = T (360, Y1) — W (5, i3]}

Now, for any j < J, and k= € r,

Fiowm (\XL‘. ; }193 Eék’*.ﬁ{};iw yi,}:} = {3, yuj)]
Phon (X, ¥ig) — wielXe ¥ 5)

E;‘:}.Er exp{:ﬂii(c"i-vj'?(x? K ;Y‘E.,j) o (PLTF(Xi ;Y'f.j ”}
By Ot (X i) — w3, ¥ )
~

O\p{fj @lx* 7“()\1:}11} (}*z Yig/ J}

1
pilexp{1]

It now follows from (5.3.7), (5.3.9), (5.3.10a), (5.3.12g) and (5.3.12f

~0.(x.) <~ ,,(xi-)*mgim? + KA(N),

) that

—
T
D
[y
[A]
Tk
R

(5.3.129)

(5.3.12R)
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with K < oc asin (5.3.10a). By continuity of 8,(-) and (5.3.12h)}, the result follows

directly. O

5.4 Algorithm for P

In view of Theorem 5.2.5, P can be solved by solving P, for a sufficiency large
penalty = > 0. However, a priori the size of the penalty is unknown. Hence, in
the following algorithm we use the test function defined in {5.2.13h)} to control the
penalty w.

As shown n Section 3, ¢ (+) can be approximated by . v (). Hence, P, can be
approximately sotved by solving P, »,. The following algorithm adaptively increases
the precision parameters N and p, based on a series of tests, such that for all x ¢ IR™,
e v plX) converges to ¥, {x). For given 7, N and p, the algorithm calls the Pironneaun-
Polalk-Pshenichnyi min-max algorithm (see Polak {1997) and Pshenichnyi and Danilin
(1975)) as a subroutine to perform one iteration on | SO

I the algorithm below, let A IN — R, Ny € I be as in Assumption 5.3.1, and

let Yy C Y, N > N be the finite-cardinality subsets of Y in the definition of Powvp.

Algorithm 5.4.1.

Parameters. o, g, p € (01); 7 > In(m + 1 oo, > O ok > 10y >> L
T2 hipzp > (e N (>2; Nge N,

Data. x5 ¢ BR™
Step 0. Set =0, j=0,k=0,and d = 1.

Step 1. Compute v; £ =Y. Lo i), and the smallest eigenvalue on,, (%, v;) of the

Wil

matrix [Alx,, yi)A(Xi,yrg}' + Bix;, v:)], see (5.2.13a.d), and set = = m;_,.

Step 2. M oyuniX: ) = 0,00, set oy = oy_y. and go 10 Step 3.

r

Else, set o, = po, 1. and go to Step 10.

Step 3. If f.(x;, ¥} <0, see (5.2.13h), set 7; = 7, and go to Step 4.



Else, go 10 Step 10

Step 4. Compute 0., n, . (%) and the augmented search direction, see (5.3.2h),

(hgm wope %) 0, vy (X)) = —  argmin £+

Eéai (5.4.

g
Wi
[
ol
e

EEGYmy v, oy 1%4)

L'F'—-‘

Step 5. Compute X, = X + An, w0 (X0 ey g (%), where the Armijo step-size

)\m MNops {}‘I) =

lna\ “]N{}-; ?’”"' P\ Ui{xﬁ + )’3 h"’ \1 i (\X?)} - '1.‘(;’,4'?;',1"\_1,;);_ {Xl} g Q;,:))SBTLAT\TL{JZ(X}}

(5.4.16)
Step 6. If

EEF\

A lui

" i T P - N
,,,., 1.?-1(X?;‘l".-i} —_— 'l.'i’sf'“-; Vi ipe (Xz} > “‘“};‘ — 7'-;_./_\(.&“1'}, (041(3)
i

go to Step 7.
Else, set N,y = N; and pyy = p, replace i by i + 1, and go to Step 1.

Step 7. Set NV € IN equal to the smallest integer satisfying

. . St T , :
A(Nijp1) € min { max i_ll NS ! AN 5. (5.4.1d
/ g , 5 LVe, .

Step 8. If (initial stage)

CJI

k| "Yj'}
A <# oand § =1, {1
ERETPY \

set pien = max{m /{plA%} . o/ (v — 1)} replace k by k + 1,
go to Step 1.

A.1e)

i hy i+ 1, and

Elseif (switch stage)

71 TDi . - -
max § ———, ——— > >0 and & =1, 4.1f
{ﬁé\w v 1 } ( /



set = max{2 , vp/((y — 1)k + 1))}, poss = 0{k +2). replace k bv k+ 1. 7 by
1+ 1, and go to Step 1.

Else {final stage} zo to Step 9.

Step 9. If 6(i+2) < yp,/{v— 1), set piyy = py, veplace i by i+ 1, and go to Step 1.

Else find the smallest £ ¢ IN such that & < F* <iand §(k"+2) > ~vp, /(v — 1),

and set p;o; = 0(A" + 2), replace k by & 4+ 1,4 by i + 1, and go to Step 1.

]

Step 10. Set xi = x;, 7 = «’**7_y, replace j by j + 1, and go to Step 3. 0
: 7

Lemma 5.4.2. Suppose that Algorithm 5.4.1 has generated a sequence {p;}>,.
& & 1=

Then, the following hold:

(i) If the test in (5.4.1¢) is satisfied an infinite number of times, then there exists an

" € IN such that p,-.; is set in the “swiich stage” of Step 8.

(i) If there exists an i* < N such that p,. ., is set in the “switch stage” of Step &,
then for all 1 < i* such that (5.4.1c) is satisfied, p,., is set in the “initial stage,”

and for all © > " such that (5.4.1c) is satisfied, p;;, s set in the “final stage.”

Proof. (ii) Suppose that there exists an 7 € IN such that pi.y is set in the “switch
stage.” Then, Algorithm 5.4.1 sets 6 = max{2,95/({v — Dk + 1))} > 2 > 1 in
lteration i*. Hence, (5.4.1e.f) cannot hold for 7+ > 4*, and p,.; must be set in the
“final stage” of Step 8 for all { > 7 such that {5.4.1c) holds. Hence, p;y, must be set

in the “initial stage” of Step 8 for all 7 < i* such that {5.4.1¢) holds.

(1) Suppose for the sake of a contradiction that for all 7 € IN, pyer 18 not set in the
“switch stage”™ of Step 8. Then, § = 1 for all i € I because § = 1 for i = 0,
and ¢ 15 only changed in the “switch stage” of Step 8. Hence, because § = 1
for all i « IN and the hypothesis thet p;, is not set in the “switch stage”, po. .
is set by the “initial stage” of Step 8 for all { € IN such that (5.4.1c) is satis-

fied. Hence, poy1 2 yp:/{y — 1) for all i £ IN such that {5.4.1¢) is satisfied. Since

Die1 = P/ {7 — 1} an infinite nwmber of times, there must exists an ** € N such
FEAT ;
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that max{r/(p|Avy--]), vpe-- /{7 — 1}} > §. see the “initial stage” of Step 8. Hence

(5.4.1f) is satisfied for ¢ = "%, but {5.4.1e) is not. This is & confradiction, which

completes the proof. O

The mechanisms in Algorithm 5.4.1 can by described as follows. Step 2 ensures
that the linsar independence property of Assumption 5.2.6 iz eventually satisfied at
(x;,v:), and Step 3 ensures that the test function remains non-positive. In view of
Lemma 5.2.7(iii), we see that Steps 2 and 3 increase the penalty » to a sufficiently
large value that ensures local equivalence between P and P

Suppose that 7~ is sufficiently large, 1.e.. there exists an * € [N such that 7, = 7~
for all ¢ > %, Then, Algorithm 5.4.1 solves the sequence of approximating prob-
lem {Po n,p 172,,, associate with a sequence of monotonically increasing precision
parameters N, p; that diverge to infinity. At a given precision level, N', p', say, Algo-
rithm 5.4.1 computes iterates that approach a stationary point of the approximating
problem P~ . When the current iterate is sufficiently close to a stationary point
for Py wp. 88 determined by the test in {5.4.1c), the precision level is increased
from N' p' to N7 ¢, say. Algorithm 5.4.1 then continues by computing iterates that
are approaching a stationary point of P« ao,» until the test in (5.4.1c) again deter-
mines that the precision level has to be increased, The last iteration of the previous
precision level is used as a “warm start” for calculations on the next precision level.

It becomes gradually harder and harder to satisfy (5.4.1¢} as V,, p, — oo. Hence,
as the precision level is increased, the iterates generated by Algorithm 5.4.1 gradually
get closer and closer to a stationary point of the current approximating problem
before the precision level is increased. Thus, Algorithm 5.4.1 computes approximaie
solutions to a sequence of approximating problems {P.- n, . j55,. with higher and
higher precision as the number of iterations increases.

The sequences of precision parameters { N; }5%, and {p;}7%; are not determined a
priori but is constructed by Algorithm 5.4.1. When (5.4.1¢) is satisfled, the precision
level is increased by an amount determined by Steps 7, 8 and 9.

In the “early™ iterations, Le., before the test in (5.4.1e) fails, the smoothing pre-
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cision parameter is increased by an amount related to the value of the cost-decrease
Awy. When (A, is large, piyy tends to be only mar ginally larger than p;, with a
minimum increase of p;/(y — 1}, On the other hand, when [Av;] is small, Pip1 bends
to be angmented by a considerahle amount.

When the test in (5.4.1¢) fails, § is set to be larger than 1 in the “switch stage” of
Step & Hence for all subsequent iterations, the increase of the precision parameter
will be determined by the “final stage”, ie, Step 8, of Algorithm 5.4.1. Tn the “Anal
stage”, the precision parameter is augmented by a multiple of § whenever i1 > D

The increase of the precision parameters N;,p; are motivated by the following

M

considerations: (i) Suppose that the algorithm parameter 7, = In{ry + 1), where 7
Nis as in (5.2.3b), 7y = K, where K < oo is &5 in Lemma 5.3.5, (%41} = ¥y (%51,
and ¢{x;) = ¢ (x;), then we have by (5.3.82), (5.3.8¢). (5.3.9) and Lemma 5.3.5 that

i) — B(x) < A+ 2 1 AN, (5.4.2)
8

1

Hence, ¥(x;4:) — (%) < 0 whenever the test in (5.4.1¢) fails, i.e., the precision is
not increased as long as the new iterate guarantees a decrease in the cost function
(). The constant K in Lemma 5.2.5 mav seldom be known. In absence of any
information about K, we recommend setting 7 = 1. Note that larger values for
7y will drive NV 1o infinity faster. (ii) When (5.4.1¢) is satisfied, we can no longer
guarantee that ¥(x;51) — ¥(x;) < 0, and we set Nivy and py.y t0 be larger than N,
and p;, which, hopefully, will ensure that W(XKipo) ~ ¥ix;g) < 0 will hold. (iii) If
the current iterate is very close to a stationary point of the approximating problem,
|Aty] tends to become extremely small. Hence, the factor ¢, see (5.4.1d}. and the
fixed increase of p, in the “final stage”™ is introduced o prevent N, p; to become very
large prematurely. (iv}) Lemma 5.4.3 below must hold.

Let € > 0 be the desired tolerance on the solution. Then every p; >> In{r, + 1}/7
is associated with an ervor, see (3.3.7), In(r; + 1)/p, << t. Hence we recommend

sat the algorithm parameser p. used to decide when to switch from the “initial
stage” to the “final stage”, be set equal to In(r; + 1}/t. Furthermore, we recommend

to set v equal To a large number, e.g., 10°, to avoid anyv practical influence on the
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determination of p4,

The parameter p € (3, 1} controls how the errar associated with the discretization
of Y compares with the error associated with the smoothing of w (. ). When p is
close to unity, the error associated with the discretization tends to be “small” and
the error associated with smoothing tends to he “large”. When p is close to zero, the
situation is reversed. Since a fine discretization implies a high computational cost,
it can be efficient to bias the approximation error towards the smoothing error by
selecting p close to 0.

Algorithm 5.4.1 is quite insensitive to the selection of the parameters o_y > 0
and g4 £ (0,1) used in Step 2. However, note that larger values of o_; and p will

cause the penalty 7 to increase faster. We recommend setting o_; = 107% and u = 0.5.

Lemma 5.4.3. Suppose that Assumption 5.2.1 holds and that the sequences {x;}32,,

{N 32, and {p;}35, are generated by Algorithm 5.4.1. Then the following hold:

(i) The sequences {N;}°°, and {p;}°, are monotonically increasing, and, if p;.1 > ps,

then piy: > oo/ (v — 1), and, if Nioy > Ny, then AN ) < (v~ DA(N) /7,

with v as in Algeorithm 5.4.1.

(ii) If {x;}2, has an accumulation point, then N; — oo, p; — o0, and y oo, 1/p: =

o3,

Proof. (i) If the test in (5.4.1c) fails, then Ny, = N,y and poy = p,. I the test
in {5.4.1c) is satisfied, then, according to Step 7 of Algorithm 5.4.1 (see (5.4.1d}),
ANy ) < (v = DJA(N)/~. Next, consider the construction of {p,}72,. If the test in
{5.4.1c) is satisfied, then we have three cases corresponding to the “initial,” “switch”
and “final” stages of Step 8.

Case I: Suppose that p,y is defined as in the “initial stage” of Step 8 in Algorithm
5.4.3. Then, pyy: > ypi/(v — 1),

Case II: Suppose that p,.; is defined as in the “switch stage” of Step 8 in Algorithm

4.1. Then,



Dix1 = max{2 2 ———p———}equi}

> e
L

If 1> 0, then, by Lemma 5.4.2(i1), p; was constructed according to the “initial stage”

(5.4.3a)

of Step 8. Hence, it follows from the definition of p, and (5.4.1e) that p; < . Hence,
by {5.4.3a) we have that p.o > yp /(v —1). i =0, then p,.; > ~p /(v — 1) because
0z

Case III: Suppose that p is defined as in the “final stage” of Step 8, see Step 9.
Thew, piyy = ypi/{v — 1) whenever p.yy > p;. Hence, (i) holds.

(1) Suppose that Algorithm 5.4.1 has generated the sequence {x;}%, with accumn-
lation point X, and that at least one of the sequences {N;}2, {p;}2, are bounded
from above. Now, we have three cases.

Case It Suppose that both {N;}72, and {p;}32; are bounded. Then the test in (3.4.1¢)
can only be satisfied a finite number of times. hecause otherwise {5.4.1d) would have
caused {N;}Z, to diverge to infinity. Hence, there must exist an ¢* € IN, an N* < oo

and a p* < oo such that for all § > 7, Ny = N*, p, = p*, and
: s s Y Tl 2 a1 et v "
'l,»")TrL-:N“,p* {Xi—il‘) - wﬂ—;!:\?*,p" lX I < e 1!—‘2"-3(. -PV ) J‘ (L}_lab)

By inspection, @ p(X) — Y x(x) € 0 for all #” > 7', N £ N, and x € R". Hence,

by (5.3.9} and {5.4.3b}, we have that for all i > 7*

"d‘:ﬁ.,._;.l,."\"* (Xi41 ) '""" ‘l.il)"rn;:N" fXJ

= P we (Rien) = G v (K ) e (301 ) — U e (35)

\ . 1 .
L0 Y e (i) — Py e e (%) 2—; In{r; + 1)

o
Lt
s
(V]
[}

—

1 .
< = AN T+ 1)
P’ p
< m?"z_/x(i\r")

Thus, ¥, v-{x,) — —00, as 1 — oc. But there exists an infinite subset & < IN such

that x; — % as1 — oo, If {7185, is bounded, then there exists an ¢** > i* such that
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K

7 = 7" for all 4 > ¢ and hence by continuity, ¥ y-(x;) =% U e (x7), a5 § — 2.

K oy~ (x*), as

It m — o0, then we can infer from Lemma 5.3.3(i1) that 9., v-(x;) —
¢ — oo, This is a contradiction.
Case L0 Suppose that {N;}7Z, is bounded, but {p;}3%, diverges to infinity. Then
the test in (5.4.1c) can only be satisfied a finite number of times, because otherwise
4.1d) would have caused {N.}, to diverge to infinity. Since p.y = p; whenever
the test in (5.4.1c) fails, it follows that p,.y > p; only a finite number of times. Hence.
{p: 1%, has to be bounded, which is a contradiction.
Case III: Suppose that {NV;}22, diverges to infinity, but {p;}2, is bounded from
above. Then the test in (5.4.1¢c) must be satisfied an infinite number of times, because
otherwise {N;}72, would not have diverged to infinity. Hence, Algorithm 5.4.1 enters
Step 8 an infinite number of times. By Lemma 5.4.2. there exists an i* € IN such
that piyg is set by the “final stage” for all ¢ > ¢~ such that (5.4.1¢) is satisfied. Since
2

{pi}iy is bounded from above and Step 8 is entered a infinite number of times, we

must have that, see Step 9,

TP

(5.4.3d)

for an infinite number of iterations. Bui since there exists an p* < oo such that
» < ptfor all i € IN, (5.4.3d) cannot be satisfied for an infinite number of iterations

which 15 a contradiction.
Hence, N; — oo and p; — o0, as 1 — co. Next, we prove that > 7 1/p; = oo

stin {5.4.1c

R

Since p;y > py only if (5.4.1c) is satisfied, and p; — oo, as © — oc, the te
must be satisfied an infinite number of times. Hence, by Lemma 5.4.2. there exists
an " € IN sach that for all ¢ > %, p,.; is set by the “final stage” of Step 8 whenever
{5.4.1c) is satisfied. Hence, for all ¢ > ¢*, poy = py or pyoy < 3{i+ 2}, see Step 9. The

final result now follows from the fact that 5 2 1/1 = 0

Lemma 5.4.4. Suppose that Assumptions 5.2.1 and 5.3.1(i) hold. For every bounded

set 8 CIR®, 7> 0 and o, 7 € (0,1}, there exists a K < oo such that for all p > 1,
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NelNandxe S
) ;s JRxQ . e L
U (X + A v p (0 (X)) — U (X)) < o;m;mf‘n ~p(X), (5.4.4a)
where Ay x (%) and h, v ,(x) are the step size and search direction of Algorithm 5.4.1,

see (5.4.1ah).

Proof. In Section 5.2.1 in Polak {1997), we find the following equivalent form of

87:,1\-",;11(_'}: see (532}3)

L -
Orvp(X) = min max we (X, y) = e vp(x) + (Ve (%, v), 0 + = |h][® (5.4.48)
o heR" yeYy * 2

Ay

Let S C IR™ be bounded. It follows from Assumption 5.2.1 and (5.3.2b.c) that there
exists a constant AY < oo such that ||k, pa(x))] < A for all x € S8, N € IN and
p >0 Next, let Sp ¢ R* = xeR" ! fix - x| < M x" £ S} and let L € [1,00) be
the constant corresponding to Sp such that (5.3.11a) holds for all x £ S5, y € Y,

€ R and p > 1. Then for all A € (0,1, x € 8, N € IN and p > 1, we have by
expansion, Lemma 5.3.6 and (5.4.4b) that for some 5 € [0, 1]

b+ Mg (3)) = 10, (%)
= 111§x{w_ + M v (3, ¥ — e v (%0}

= n‘a\{ww)(\ }\—d-n,p( b A AV, (%, ¥ ) By v X))

YEY N
' W"' 1;€X Jﬁ C).)\I—l D{}\-
/h N 1) BX‘Z AV )}Lu Nop ( }>}
. X .
S )\ J}CYW\- {L\Jr J{X S - l,n— N ZJ( )—-}— fvxwr,p(x}) 1—1__ Ng,(x)\ 5 _j_z I}J " J(}J?"}
= MO N+~ (}\pL — 1) hy () 2)
(5.4.4c)

Hence, for all A € (0. 1/{pL}]

wﬂ":f\-".?(x + )\hr\,L{X}) o ’l.i"‘frj.‘\’l_‘.’)‘(x) - QAQW‘N@(X}
(5.4.44)
< MI—o)fovgp(x) €0



105

Now it follows from (5.4.4d) and the step-size rule in (5.4.1b} that

)\’T;\’D(X) -z ""é”” (5 4—16)

Ny oL ‘
for all x € S, ¥ = IN and p > 1. Hence the conclusion follow with Kg = 3/L. This
completes the proof. |

Theorem 5.4.5. Suppose that Asswmptions 5.2.1 and 5.3.1 hold and that Algorithm

5.4.1 has generated a bounded sequence {x;}2, and a finite sequence {x}}_q. Then,

there exist an infinite subset KX ¢ IN and an % € R” such that x;, —% % and
G (%) = 0, where 7° = 8/ "lx_y, with x, 7y as in Algorithm 5.4.1.
Proof. Since {x}}/_; is a finite sequence, there exists an <" € IN such that m; = 7" ==

/T m g for all ¢ > 17, For the sake of a contradiction, suppose that there exists an

€ > { such that

Hmsup Oy pdx) < —c. (5.4.5¢a)

O

Since {x;}7°, s a bounded sequence, it has at least one aceumulation point. Hence
by Lemma 5.4.3(i1), p. N; — 00, ag ¢ — oo, Next, by Lemma 5.4.4 there exist an
A < oc such that

A

7.—”}/’7”,{‘\)]41{-(Xi+1) - wr*,.f\f[?pg ’!\X?) < g}"_;"fg::"ﬂi.pl ‘ix'i,): (545b)
it}
for all ¢ > ¢ Now, for all N ¢ N and p > 0, let
~ 2 . ¥ - - -
Jor 30 (X)) = W o p(X) + = Inr = v KA(N), {(5.4.5¢)
. / . "

where v > 1 is as in Algorithm 5.4.1 and K < o as in Lemma 5.3.5, Now we have
three cases corresponding to whether p and N were increased or not in Step 7 and 8
of Algorithm 5.4.1:

Case . Suppose that p; < py and Ny < Ny Then by Lemma 5.4.3(1)

-~

.
%
=
[
£,

Pic1 = i

-1
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v =1 . P

W
i

and we have that for all ¢ > ¢

L’“ BiUTRR N —1(X1+1/ f(;il;r"‘.f\"‘-a:m(xi)

R 1,3{]77"._’\; H "”J,Tl (-‘—1} 'I;i'{'.'T'“.f\riﬁpf {xéj‘

+ (wij - j—) I+ K{ANG) — AN
P P

—  af ‘ Yo Y oi (. .0 .
- @’7»"?-’\"-;4-111?:%(‘XE-H} - wﬁ’-f\‘l,p-ﬁ (X'i"%lf" T U N (Xip1) — Won Ny.pi {X@_)

+(”—1%quﬁwm@gymn

Picy i

. _ 1 .
’ij/'ﬂ-n:__,\ff_i_l {Xg.:_i) — Tf’ XlTl) + —inr + G_ 6’- Ny pl(X )

Py

+(j;——>Mrmd&AmrﬂwAA)
Picr Dy
M

) 1 B} ) _
?,»'brr* {X‘H—l} e QL’F*(Xi_+1) + —Inr +- E{A(J\‘}‘) -t Cl“““““fg-u Ni (X ) (Eiﬂf)
i Py

y .
- (“‘—f"‘ — l) hj? -+ "‘].X (.A(jv?'_;_lj,‘ e A{;\JTZ}}
E)‘ZT]. pf
M ,
g 3"‘——97.*“[\‘7 R E\X7.>~
Y2 o

I/

I

Case 1L Suppose that p, = piyy and N, < Ny, Then (5.4.5¢ + holds, and we have
that for all § > ¢*

Wit Mig1pig (XHE,} - ri,"{‘w",."\’z pi{ Xb\f

EESEIRN

= e m g (Kin) = Yo v (30 + KA (NG ) — ALN)
- @{’W”“,_:’\f,,_-,a_.‘nt ( r—-) = W= N, p?\:’i ) + 2; w N {:"‘Li—'-l) ﬁ* ‘I-.Z']?r“._"\’g,pg (Xt)

TR Ny ) — AN '

A
Ve, (Rig1) = W, (X)) + KA(N) *OJ}WGM Ny s

oL

ot
frn

AN

FYE (AN ) — ALN))

M
(}-——97_ N
I

I/

WP {}HJ
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Case II1. Suppose that p; = p; and N, = Noo;. Then we have that for all { > ¢

Wrs Nigipie: (Xi%l} - E;!W“-N;,Pl {.X?’)
= Yo woy (Xig1) = Une v, o, (X5) (5.4.50)
A
< oo Ny (%)
]3‘12 ‘

By Lemma 54.3(ii), > 7 1/p; = +oo. Hence by (5.4.5a) and (5.4.5f,2h).
gﬁﬁ,_,\ri‘pl (x;) — —oc, as ¢ —» oc. Then we also must have ¥, P (X)) — —o0, as i —
oo. Let X7 be an accumulation point of {x;}2%,. Then, there exists as infinite subset
K* ¢ IN such that x; =& x*, and by (5.3.9) and (5.3.10a) ¢y, (5) = e ()] <

Ve s (30) = U 6]+ [ (30) = W (33)] b (3] — 4 ()] =57 0, 2

72}

¢ — oG, which is a contradicvion. Thus,

4.5i)

[

Hmsup by, p (%) = 0. (:

[ OC
Hence by Lemma 5.3.7, and (5.4.51), there have to exist an infinite subset KX < IN

and an X € R such that x; —" % and 4. (x) = 0. This completes the proof. O

Lemma 5.4.6. Suppose that Assumptions 5.2.1 and 5.2.6 hold. Then, the small-
ast eigenvalue oqin(-,-) of the matrix-valved function [A(, YA, YT + B(., )], see
(5.2.13a,d), is continuous. and for every compact set § © R™,

min min ogn{xy) > 0. (

*E3 yeVix)

4.6)

o

Proof. For any x € R" and y € R™, let C(x,¥) = Alx,v)Ax,v) + Blxy),
with the smallest eigenvalue oy (x,y). Since og(x,v) = mingvi=1 (v, Cix, ¥)v)
and C(-, -} is continuous, it follows from Corollary 53.4.2 in Polak (1997) that o (-, )
is continuous,

Next let § < R™ be a compact set. By Theorem 5.4.3 in Polak (1997}, Y{-),
see (5.2.4a), is outer semicontinuous and compact-valued. Hence, by Theorem 5.4.1

in Polak (1997), min__ ¢\ Omin{,¥) i1s lower semicontinuons. Since the infimum of
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a lower semicontinuous function over a compact set is attained, {5.4.6) follows from

Lemma 5.2.7(ii) and Assumption 5.2.6. O

lu

Theorem 5.4.7. Suppose that Assumptions 5.2.1, 5.2.6 and 5.3.1 hold, and that
{x:}32 is a bounded sequence generated by Algorithm 5.4.1. Then, there exist an
% € R"™ and an infinite subset K < IN such that x; —* % asi — oo, and X Is a

stationary point for P.

Proof. Let {x}} be the sequence generated by Algorithm 5.4.1 in Step 10. We will
show that {x;} must be a finite sequence. For the sake of a contradiction. suppose
that {x]}7%; is an infinite sequence. Since {x;}7%, is a bounded sequence, {x}}32, is
bounded, and hence, there must exist an infinite subset X © IN and x™ ¢ IR" such

BT 3™ as ¢ — oo

o)

that x7 —
By Lemmas 5.2.7(ii} and 5.2.8, there exist a compact set Q{x*") and a py- such

that n(-, -) is continuous on B(x*™, pe-) x Q{x*), and

Yi(x™)+B,,.. <Qx™). (53.4.7a)
Hence,
) -
= max max o ¥ |gdx y)l (5.4.7b}
XERI(207 " i ) yEacmT) . '

ig well-defined, and therefore, f.(x,y) < 0 for all w > 7™, x € B(x"™, g ) and
y £ Gix™). Since {x}} is an infinite sequence, m; — oo, as { — oc. Hence, there
exists 79 € IN such that m; > 7 for all ¢ > 45, Hence, £, (x,,¥) < 0 for all i > 4.
%; € B{X™, pe=e ) and y € Q(x™). By Lemma 54.3(ii), N, — 00, as i — oo. Let
{yi}Z; be the sequence generated by Algorithm 5.4.1 in Step 1. Then, by Lemma
5.3.3(i) and {5.4.7a) there exist ¢; > 1y and py € {0, pe--| such that for all 4 > 1, with

x; € B(xX™, py),

~q
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Next, by Lemma 5.4.6 there exists € > 0 such that

Ze =  min min Gy, (X, v} (5.4.7d;
xEB(x"".m) ye¥ix)

Moreover, gupi,{. -} is continnous, and hence uniformly continuous on B(x™, p;) x
Q(x"*}. Hence there exists py € (0, p;] such that
i A A AN Y
!Jmm(.x ' ¥ ) "" gmin{h s Y } S € (-3.4.16)

for all o, x" € IB(x™, py) and y', v" € Q(x™), with [|x'—=x"l] < g0 and [y —y"l] < po.

\

By Lemma 5.3.3(1), there exist py € (0, pa] and 4y > 7 such that for all i > 4, with

DO ]B(X*** .03)3-

vi € Yo on(x) CY(x™) + B, € Qx™). (5.4.75)

Consequently, for all 7 > iy with x; € IB{x™, pa). there exists y! € Y (x™) such that

-

vl — yill < py. Hence by (5.4.7d) and (5.4.Te), we have that for all i > i, with

X & H_J)(Xm/}ﬁ

Umin{xfi- }"?:) == T min (Xz‘: 3} . Gmin(X**r }’f) -+ Jmin(}‘:x*: }") 2 —€ -t 2e = ¢, (51"—9‘)

Since for all i > iy and x; € B{E™, o), £, (3, i) < 0, Le, the test in Step

)
i

3 is matisfied for all = > 4. Siuce ®; —% X", there must exist an infinite set
A7 ¢ N, with elements diverging to infinity, such that o (X, v:) < o, for all
1 £ K™, ie., the test in Step 2 fails an infinite number of times. Hence, o, — (. as
1 — oo, Therefore, there exists an i3 > 7y such that for all 1 > 43, 7,1 < . Now, we
have that for all ¢ > 43 with x; € IB{x™, g3}, opnix, vi) = 0,1 and £, (%, v;) < 0 for

all # > ;. Consequently, no x;

T

B(x™, p3) is converted into x; after i, which is

a contradiction. Hence {x!}*_, Is a finite sequence with j* < oo,

It foliows from Theorem 5.4.5 there exist an infinite subset ' < IN and an x < [R™®

K L LR

such that x; —" x and 6.-(%) = 0, with #* = &’ 7*7_,. Furthermore, there exists

1" € IN such that for all + > ¢ the test in Step 2 is satisfied and the test in Step 3
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is satisfied with 7 = m,_1, lLe., there exists 0™ > 0 such that for all i > ¢*, 7; = T,
gming\fxaﬁ: Yi} Z (_T*,‘ and
f?." (Xi-. }’-7') S 0. (5 ?JI )

Now, {y:}72 C Y, which is compact. Hence there exist [ ¢ & and ¥ € Y such

that v, —

V. as 1 — oo, By Lemma 5.4.3(ii), N; — oc. Hence, Lemma 5.3.2 gives
that ¥ Yf«fx ). By Lemma 5.4.6, o,(-, ) is continuous, and hence by continuity,
Tmin{X, ¥) > o*. This implies that A(%, y)A(:?c v)7 +Bl%, ) is positive definite, and
hence by Lemma 5.2.8(i), Vyfi(x. 7).k {%,y), together with Vg,(¥), & € r3(¥).
are linearly independent. By Lemma 5.2.7 (1}}: tee(-,-) i continuous at (&, ¥). It

follows from (5.4.7h) that ¢,.(X,y) < 0. Hence, by Lemma 5.2.7(iii),
V(&) = e (). (5.4.70)

It now follows from Theorems 5.2.5 and 5.2.10 that % is stationary for P. This com-

pletes the proof. ]

5.5 Numerical Example

We illustrate Algorithm 5.4.1 by a numerical example computed on a 500 MHz

PC running Matlab Mathworks (1999). Let x = (21 25.23) € R®, 5 € R, and

Plx.y) =3z —y)? + (2 — )z + 5(zy + YV 2ay A 310 — 2+ e % (5.5.1a)

., 1. i .o

fix,yl = = sin{myas) +y — 5 (5.5.1b)
nly) = v (5.5.1c)
gyl =y~ 1, (5.5.1d}

e,y =L =2and Y =101 ¢ R
Based on the reasoning in the paragraphs following Lemma 5.4.2, we take 7, = In 2,
o= lo=r=2 p= 0001 p=05 0, =10" =5 10% v = 10° and

{ = 2. Furthermore, ws set the step-size parameters to be a = 0.5 and 3 = 0.8, The
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discretization scheme

fe. Y = {0,11Y, = {0,0.5,1}.Y, = {0,0.333,0.667, 1}, stc, and A{N) = 1/N.

f—

s such that Yy contains V + 1 equally spaced numbers in [0, 1],

‘The approximation parameters are set to be pg = 1, Ny = 1 and 7_; = 1, which give
a coarse approximation.

Using the starting point x = (2, 1,0), we obtain the local minimizer % = (-—0.0033,
—~1.0002. ~0.3928), with ¥(x) = 2.4100. The penalty = was increased to 1024 in the
first iteration, and remained constant after that throughout the rest of the compu-
tation. The parameter N and p reach 1113 and 1 - 10°, respectively, hefore the cal-
culations are terminated. It is observed that the precision parameters N and p stay
low until the iterate is close to a local minimizer. The initially coarse approximations
reduce ill-conditioning potentially caused by a high smoothing precision parameter,
see Polak and Royset Polak et al (2002) for an examination of such effects, and

computational cost caused by high discretization.

5.6 Concluding Remarks

We have developed an implementable algorithim for a class of generalized semi-
infinite min-max problems based on & sequential solution of gradually better-
approximating finite min-max problems. The approximating problems are obtained
by exact penalization, discretization and smoothing. The penalty, discretization and
smoothing parameters are automatically adjusted by using a series of tests. Under
mild assumptions, we have shown that if the algorithm generates a bounded sequence,
then the penalty parameter remains bounded and there exists an accumulation point
which satisfies a first-order optimality condition.

Clearly, discretization is a computationally expensive technigue in high-dimensional
spaces, and hence the proposed algorithm will be computationally inefficient for prob-
lems with a high-dimensional semi-infinite part, i.e., large m. In spite of this, we used
a discretization technigue because of the need for global maximizers of the inner prob-
lem of the min-max-min problem. Obviously, other global optimization technigues

could have been used, but we have not evaluated the relative merits of alternative
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techniques,

5.7 Relations between Optimality Conditions

The optimality condition for P derived in Theorem 5.2.5 (see also Theorem 5.2.10)
can be related to the following optimality condition deduced from Theorem 3.3 in

Stein (2001).

Theorem 5.7.1. Suppose that X is a local minimizer for P. that Assumption
5.2.1 holds, and that the vectors Vy fi!{%,v), k € r3(X.y), together with the vectors

Vaely). k € v4(y). are linearly independent for all y & Y{%X). Then,

0 € conv {V,o(k y) — fix v alk, v}, {5.7.1a)
YEY{R)

where (X, y) € R™, together with 3(%,y) & R™ (not used here), are the unique

o

Karush-Kuhn-Tucker multipliers for the “inper-problem”™ (5.1.2) at the point v €

Yix), ie, (alx,y), Bk, y)) satisfy

Ve y) - (X v el y) — g (yv) A%y =10, (5.7.1h)
a(% vy Ry )+ 8%,y gly) =0, (5.7.1¢)
%, vy =0, gk yv) =0 (5.7.1d)

flx.y) <0, gly) <0 (5.7.1e)

0

We can then show that the stationary condition in Theorem 5.7.1. relates to the

-

stationary condition in Theorem 5.2.5.

Theorem 5.7.2. Suppose that Assumption 5.2.1 holds, that % satisfies (5.7 1a), and

that the vectors Vy fi(X,v), k £ ri(X.y), together with the vectors Vi (y), k < ry{y).
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are linearly independent for all y € Y(%). If w > 0 is such that ¥:(%) = ¢, (%), and

for ally & Y{%)

!

1
r=1

o
[a5]
=1
I
&

p—

with n{-,-} as in (5.2.13g), then 0 € Gy (X).
Proof. By Caratheodory’s Theorem, see, e.g., Theorem 5.2.5 in Polak (1997}, (5.7.1a}
holds if and only if there exist §; € Y (%), 7 € {1,...,n+ 1}, and a multiplier vector

i € Togr 2 {(pe R =04 {1, .,n+1} }::H’; p; = 1} such that

m

41 n4l
GMZ,H Ved(X, ¥:) ZZ# (3 ¥ Ve Fe(X, 900 (5.7.26)
i=1 k=l

Lﬂ

"*I

QJ
R

We will now construct multipliers such that 0 € Gy (%). Let 7 > 0 satisfy (5.
for all y & Y(x),

N -
i = —op(X,¥4), K Sry (5.7.2¢)
s
o TAl
os=1— G (5.7.2d)
k=1
=, 15 {1, n 4 1, {(5.7.2¢)
and v: S92 {Lon+ 1} Trivially, p € Sppr.y: € Y, and £(&.y,) < 0, for all
ie {1, ,n+ 1} Furthermore, forall k€ vy and 12 {1,....n+ 1}
Bilha Gk (X, 72) —wa{Xo¥i)] = —maiGeafilX, i) e
(O 42f)
= Mlji(lk{ﬁzjri)f.ﬁ:(}::*. :}}i) = 03
because from (5.7.1¢,dve), on{X, ¥ fu(X, 7.0 =0, forall k € vy and 7 € {1,. }

Also, @ (X, vi) ~wr(Xy;) =0foralie {1, ~,n+ 1} Next, by (5.7.2b)



n+l n+1 n+1 13
ZZ#’[(I}c‘ivxék.ﬁ(k;}/—i} = Z,U-fvx@{f{: }’i) - ZZﬁflz‘(k.ﬁvxfk(ks}’?:)
i=1 k=1 i=1 =1 h=]
n+1 n+1 T
= Z,u,\‘ ¢, 3:) — ZZM‘LAiS Wile(ky:) =10
o ] =1 k=

It now remains to show that (o, > 0 for all1 € {1, . n< 1} It follows by inspection

N

that the unique multipliers (%, y;) and J(%, §,;), see (5.7.1b-e), solve the minimization
probler in {5.2.14b} with x and y replaced by % and §;, respectively. Hence, (X, vy
and 3%, ¥;) also satisfy the necessary optimality conditions for (5.2.14b} given in
(5.2.142a). Since the solution of (5.2.14a) is unique under the linear independence
cmsun}ptlon see the proof of Lemma 5.2.7(ii), we have by definition of n{.,.), see

(5.2.13g), that n(%.y,) = a(X,¥;), for all i € {1, ..., n -+ 1}. Hence,

1
=1 = Y (%, ¥)
Lo ZS& WZ ALY
T =t . (5.7.2h)
= 1-= ;’:yk(fc,yi'} z1-=-r=0

This completes the proof.

{:l
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Chapter 6
Numerical Design Examples

In this chapter, we present four examples demonstrating applications of the pro-
posed approach to reliability-based optimal structural design. The first example con-
siders a rectangular column and optimal design problems in the form of P, P, and
P3 with one failure component, as defined in Chapter 4. This example is sufficiently
sitaple to allow reproduction of the results by the interested reader. The second ex-
ample concerns the selection of member sizes for an offishore platform and the optimal
design problem P, with one failure component. This example demonsirates an ap-
plication where the limit-state function is not available in a closed form and finite
element analysis is required to evaluate the limit-state function and its gradient. The
third example considers the design of a one-bay frame that has several failure mecha-

nisms. This example illustrates the optimal design of a series structural system in the
form of P; 4. The fourth example concerns the design of a reinforced concreie girder
in a highway bridge. This example demonstrates application of the proposed optimal
design algorithm with system failure probabilities in both the objective function and

the constraint set definition. The resulting problem is in the form of Py ..

For the purpose of these applications, the optimization algorithm and reliability
methods were programmed in Mathworks (1999). with the exception of the system
reliability analysis in the third example, where the program CalREL (Liu ef ol 1959)

was used. Since computational efficiency was not the focus in this siudy. no effort
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Table 6.1: Statistics of lognormal random variables in short column example,

1 Variable | Mean | cov. |
Ay 250 kNm | 0.30
Ay 125 kNm | 0.30
P, 2500 kN | 0.20
Y 40 MPa | 0.10

was made to select an ideal optimization algorithm for the problem. or optimize the
computer code with respect to computation time. Finally, we note that the sizes of
structural members in actual practice are constrained in more ways than we consider
in these examples, e.g., the availability of standard sizes. Thug, these examples should
e considered as illustrative of the algorithms developed in this study rather than

actual design exercises.

6.1 Short Rectangular Column

Consider a short column with a rectangular cross section of dimensions b and
fo and material vield strength ¥, which is subjected to bi-axial bending moments
My and M, and axial force F,. Assuming an elastic-perfectly plastic material, the

reliability of the column 15 defined by the limit-state function

2}

o dmy, dmg ( Do\~
Gixvi=1m en - —=2 | 223 5.1
V) thiy | By -\bhy> | (6:1.1)

where v = (my,me, pa,y) € IR* denotes a realization of the random vector V =
(M My, F,Y) and x = (b, h) < IR® denotes the vector of design variables. Since
there is only one failure component in this example. we simplify the notation from
Chapter 4 by dropping the subscript & associated with the failure component. We
assume that Afy, My, P, and V' are statistically independent lognormal random vari-

ables with the means and coefficients of variation (c.o.v.) listed in Tabie 6.1.
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Table 6.2: Results for Py design of short column.

| Trer. 1 || X; ] colx;) ; Pix:) ’ Fix;) * 55 i
0 (0.500 m, 0.500 m) | 0.250 m* - - 3.00
1 (0.346 m, 0.553 m) | 0.191 m® | 0.002401 | 3.00 | 3.19
2 (0.334 m, 0.586 ) ; 0.195 m* | 0.001350 | 3.19 -

6.1.1 Single Component P,

Suppose that the column is to be designed for minimum cross-sectional area 4 =
bh, subject to failure probability p{x) < 0.001350, b,h > 0, and 0.5 < §/h < 2,
Le, Py, with K = 1, as defined in Chapter 4. The last constraint is imposed to
bound the aspect ratio of the cross section. We use Algorithm 4.1.1 with Algorithm
3.3.1 to obtain the resuits summarized in Table 6.2, Included are the iterates x;,
the objective function ¢p(x;), the failure probability p(x;), the first-order reliability
index J1{x;) {see {2.1.8)}, and the parameter s; for iterations 0, 1, and 2. The
failure probability p{-) was computed by Monte Carlo Simulation with a coefficient
of variation 0.05. Note that the design after the first iteration satisfies a constraint
Bi(xy) < 3= —& }{0.001350). Hence, the design x; gives a sufficiently safe structure
if the reliability constraint is to be satisfied in first-order approximation. In view of

the comments after Theorem 4.1.2, thiz wag expected.

6.1.2 Single Component P;

Now suppose we wish to design the colmmn for minimum failure probability, sub-
ject to byh > G, 0.5 < b/h < 2, and, additionally, bh < 0.1875 m?, ie., Py, with
K = 1. We use Algorithm 4.1.4 with Algorithm 3.3.3 to obtain the results swm-
marized i Table 6.3. Included are the values of the parameter r;, iterates x, the
objective function {the failure probability) p{x;}, and the first-order reliability index
F:{x;). The failure probability p{-) was computed by Monte Carlo Simulation with
coefficient of variation 0.05.

Note that the range of values of parameter r encompasses the value —~@ Yp(x;))

= 2.70, as recommended in the discussion after Algorithm 4.1.4. It is observed that



Table 6.3: Results for P, design of short column.

| Tter. 7 X; plxa) | Bilx) | @(=pulxg) | 7 |

0 ] (0.500 m, 0.500 m) - - : i
1 (0,310 m, G.605 m) | 0.003467 | 2.90 0.001866 | 2.0
2 {(0.309 m, 0.606 m) | 0.003467 | 2.90 0.001866 | 2.5
3 (0.310 m, 0.605 m) | 0.003467 | 2.90 0001866 | 2.8
4 (0.310 m, 0.605 m} | 0.003467 | 2.90 0.001866 | 2.9
5 {0310 m, 0.605 m) | 0.003467 | 2.9 0.001866 | 3.0
6 (0.310 m, 0.605 m) | 0.003467 | 2.90 GL001E66 | 3.5
7 (0.310 m, 0.605 m) | 0.003467 | 2.50 0.001866 | 4.0
§ (70300 m, 0.607 m) | 0.003467 | 2.00 | 0.001866 | -

the optimal solution is virtually invariant of v. Furthermore, the first-order approxi-
mation of the failure probability, ®(~5(x,)}, is significantly different from p(x;), thus
mdicating that the limit-state surface is strongly non-affine. We know from Theo-
rem 4.1.3 that for an affine limit-state function the assumed value of r is immaterial.
The results in the Table 6.3 indicate that this property also approximatelv holds for
non-affine limif-state functions. Based on the results in Table 6.3, the optimal di-
mensions of the column in this case are 0.310 m and 0.605 m with the optimal failure

probability 0.003467.

6.1.3 5ingle Component Py

Suppose that the column is to be designed for minimum cross-sectional area
colx) = bh plus expected cost of failure, where the cost of failure is assumed to he
100 times the cost of the cross section, 1.e., o{x} = 100bh, subject to p(x) < 0.001350.
b.h >0, and 0.5 < b/h < 2. This problem is of form: Py with K = 1.

Let T,(-) be the transformation of realizations v of V into realizations u of a
standard normal random vector U, as described in Section 2.1, In this particular
case, T.() is independent of %, and hence we write T(-) = T,(\). Generally, we
can attempt to construct a subset of IR™ satisfving Assumption 4.2.1 by considering
“larger-than-average” realizations of random variables associated with loads and “less-

than-average” realizations of random variables associated with the strength of the
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Table 6.4: Results for Ps design of short column, fizst-order reliability.

lter. i ]; X; | h(x) | Obj. of Py, . FObj. of Py | [ g ]
0 (0.500 m, 0.500 m) - - - 3.00 | 3.00
1 (0314 m, 0625 m) | 3.22 0.205 0.208 3.22 | 3.00
2 (0.349 m, 0.572 m} | 3.33 0.207 0.208 3.33 | 3.00
3 (0349 m. 0572 m) | 3.33 0.208 0.208 - -
Table 6.5: Results for Py design of short column.

i X . plx;) [ Obj of Py JObl. ofPy| v | s |

04 (0.500 m, 0.500 m - - - 3.00 | 3.00

1) (0.314 m, 0.625 m} | 0.001223 0.205 0.220 371297

240 {0.370 m, 0.556 m) | 0.000466 0.212 0.215 3.94 1 2.67

3 {0370 m. 0.561 m) | 0.000362 0.214 0.215 4.01 1 2.38

4| {0.372 m, 0.559 m) | 0.000362 0.215 0.215 - -

structure. Since My, M; and P, are random variables associated with loads and Y is
associated with the strength of the column, we can show that the set

Y., = {u={T{m), T{im), T(p,), T(y)) £ R? ‘

{(6.1.2;

tu e BO,7), T =0, Tlma) =20, Tip,) >0, T{y) <0}

satisfies Assumption 4.2.1 for v, 5 > 0. Suppose we were interested in a first-order
reliability model. i.e., we accept the approximation p(x) = &5 (x)}. Then, we
can solve the design problem by using Algorithm 4.2.2 with Algorithm 3.3.1. The
results are summarized in Table 6.4, Included arve iterates x;, the first-order reliability
index §)(x,;}, the objective function of Py, , (see 4.2.19), the objective function
Coix; ) +o{xp(x;), and the value of the parameters r; and s,. Note that the constraint
p{x) < 0.001350 is equivalent to §;(x) > 3 in first-order approximation.

We see from Table £.4 that by construction we satisfy the reliability constraint
f1{x;) = 3 for each iteration. However, the objective function in P's,, . is not accu-
rate, i.e., there is a discrepancy between column 4 and 5 in Table 6.4. In accordance to
Algorithm 4.2.2, we update the parameter r to improve the accuracy of the objective
function in P’ ., ..

Now suppose we do not accept the approximation p(x) =2 &~/ (x)), but want to



Table 6.6: Distributions of random variables in offshore jacket structure.

Variable | Distribution | Mean [ co.v. |

H Gumbel 70 kN 0.3
P Gumbel 2940 kN 1 010
W Gumbel 20 kN .10
K Lognormal | 210 GPa { 0.12
ks Lognormal | 30 kN/m | 0.30

use “exact” reliability calculations obtained by Monte Carlo simulation (with c.o.v.
0.05). Then we can solve the problem by using Algorithm 4.2.1 with Algorithm 3.3.1.
The results are summarized in Table 6.5, As can be seen, the failure probahility
constraint is satisfled, but the objective function in Py, ., is not accurate until we

reach the fourth Heration.

6.2 Offshore Jacket Structure (Py)

Ceonsider the idealized offshore jacket structure shown in Figure 6.1, which is

5 b R I
I linear elastic

sith linear elastic members and supported by
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springs representing the Hexibility of the foundation. The structure is subjected to
combined wave and wind loads of magnitudes proportional to 1, and gravity loads
£ and W, all applied at the nodes of the truss. The load magnitudes as well as the
elastic modulus of the material, £, and the stiffnesses of the supporting springs, k.,
are considered to be statistically independent random variables with the distributions
listed in Table 6.6.

The structure has six different member types, each fype having a circular tubular
cross section with an outside radius R; and wall thickness ;7 = 1,...,6. The ratio of
the wall thickness to the outside radius of each member is assumed fo be a constant,
t;/ Ry = 0.05. The task is to optimize the radii R; to achieve minimum probability
for the horizontal displacement at the top right node of the structure to exceed a

thresheld of Dy = 0.20 m. This is a single component reliability-based optimal design



i = member type ¥ |
b |i=1,2,..,6 < s

1 20 m
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Figure 6.1: Offshore jacket structure.



fot
o)
I3

problem of the form Py, The limit-state function is defined as
Gix,v) = Dy — Div, x}, (6.2.1)

where v € R iz a realization of the random vector V. = (H,P,W.E k)

(Ri,...Hg) € R" is the vector of design variables, and D{v.x} is the horizontal
displacement of the structure at the top right node for given v and x. Since there
is only one failure component in this example, we can in this section simplify the
notation from Chapter 4 by dropping the subscript & assoeciated with the component.
The function D(-,-) is not available in an explicit form and its evaluation requires
structural analysis by means of, e.g., a finite element code. A Matlab structural
enalysis program was written for the present application to compute D{-, ) and iis
gradients with respect to v and x. The jacket structure is designed for minimum
failure probability, subject to the total volume of the material not exceeding 6.25 m”.

This implies the constraint function

5N,
oy i 2 2 - ¢
fl Q}S_) = E E L’z‘.‘j“KR; - (R» - t7) ) - 6.2-3, (622)
fe=1 =1
where L, ; is the length of the j-th member of type 7 and W, is the number of members

of type 4. To prevent failure of the members by buckling, each member of the truss
nstrained to have a slenderness ratio {length divided by the radius of gyration

5 €O
of the cross section) not exceeding 130. For the circular tubular cross section. this

implies 2L, ./ \,«"’ B2+ {R; — ;)7 < 130. Let L, be the maxiroum length of members of

type ¢ Using #; = 0.055,. the above inequality leads to the constraint functions

faili = —=E__ p i1 6 (6.2.3)

13041 + 0.95% \

which are equivalent to the following constraints on the individual radii: R > 0.201
m, By > 0179 m, B; > 0156 m, Ry > 0,258 m. As > 0.199 m, and R > 0.291 m.

We design the jacket structure by solving problem Py, with X = 1 and the

constraint set X = {x ¢ R® | filx) < 0,i=1.2,.., T using Algorithm 4.1.4 with

Algorithm 3.3.3. The results are summarized in Table 6.7. Included are iterates x;,



Table 6.7: Results for P, design of offshore jacket structure.

[Tter. i X; (m) | oplx) TOx) | r ]
0 {0.300, 0.300, 0.300, 0.300, 0.300, 0.300) - - 2.5
1 {0.354,0.240,0.156.0.259,0.199,0.201) | 9.574- 10771 2.72 3.0
2 (0.354,0.240,0.156,0.259,0.199,0.291) | 9.574 - 1077 | 2,72 | 3.5
31 (0.354,0.240, 0,156, 0.959,0.109,0.291) | 0574 105 | 272 |1 4.0
I (6350 0,940, 0,156, 0.250.0.199. 0.201) | 0574 1077 | 972 145
5 (0.354,0.240,0.156,0.259,0.199,0.261) 1 9.574 . 16— | 2.72 -

the objective function (the failure probability) p(x;}, the first-order reliability index
Bi(x;). the values of the parameter r;. The failure probability p(-) was computed by

Monte Carlo Simulation with a coefficient of variation of 0.01.

It 18 observed in Table 6.7 that the optimal solution as well as the failure probabil-
ities are virtually invariant of the assumed value of . In view of Theorem 4.1.3, this
result is as expected. It is noted that the first-order failure probahility approximation,
px) = ®{—-F1(x;)) = 9.9611 - 1075, is quite close to the “exact” failure probability
computed by Monte Carlo simulation. This indicates that the limit-state surface for
the problem is most probably nearly affine. ¥rom the sclution given in Table 6.7, it
is clear that the constraint functions f;{:).7 = 1,4,5,6,7, are active at the optimal
design point.

As mentioned above, the transformed limit-state function glx.-) = G(x. T,
with 75 (-} as in Chapter 2, for the example under consideration appears to be nearly
affine. One way to impose greater deviation from an affine limit-state function is to use
more strongly non-normal distributions and larger variances for the random variables
V. To achieve this, we consider each random variable to be independently uniformly
distributed with the bounds, means and c.o.v.'s listed in Table 6.8, We realize that the
assumed distributions or the range of variations may not be realistic for an offshore
jacket structure. Nevertheless, we use these values to check the robustness of the
proposed optimal design algorithm in terms of its sensitivity to the assumed value of
7 with a non-afiine limit-state function. Table 6.9 summarizes the results of the design

of the jacket structure for the new set of random variables. We observe that now there
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Table 6.8 Uniformly distributed random variables for modified jacket example.

| Variable | Range | Mean [cox. |
H (-20 kN, 160 kN) 70 kN 0.7
F (1880 kN, 4000 kN) | 2940 kN | 0.21
W (-10 kN, 50 kN) 20 kN 0.87
I (130 GPa, 290 GPa) | 210 GPa | 0.22
ks (25 kN/m, 75 kN/m) | 50 kN/m | 0.29

Tabie 6.9: Results for P, design of modified oflshore jacket structure.

l Iver. 1 || x; (m) [ pixg) | Buix) | 7y |
0 (0.300,0.300.0.300, 0.300. 6.300, 0.300 - - 2.5
1 (0.354,0.241,0.156,0.259,0.199,0.291) | 7.532 - 107° | 3.32 | 3.0
2 (0.354,0.241,0.156,0.259,0.199,0.291) { 7.235- 10> | 353 |35
3 (\0,354:0.241,0)156:0.259,0.199,{1291) 7.235-107% ] 353 40
4 (0.354,0.241,0.156,0.259,0.199,0.291) | 7.235 - 1077 | 3.53 45
5 (0.354,0.241,0.156,0.259,0.195,0.291} ; 7.235 - 10°° | 3.53 -

Is & significant difference between p(x;) and $(—73,(x;)) = 2.078 - 107, indicating
that the limit-state function is non-affine. Nevertheless, the optimal solution and the
failure probabilities still remain practically in-variant to the assumed value of 7. This
is a confirmation of our earlier conjecture that the solution of problem P, for a non-
affine Himit-state function is insensitive to the value of v in a bread neighborhood of
the value of the first-order reliability index at a solution. The design solution in this
case is nearly the same as the solution for the previous case. Again, the constraint

functions f;{-},7 = 1,4,5,6, 7 are active at the solution point.

6.3 Structural Frame (P, ;)

Consider the dasign of & one-bay frame subject to random loads H in the horizontal
direction and V' in the vertical direction, as shown in Figure 6.2, The columns of the
frame have rectangular cross sections of width b and depth Ay and the beam has a
rectangular cross section of width b and depth hy. The material of the frame is elasto-

plastic with yield stress V', which is also considered to be a random variable. Plastic
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Figure 6.2: One-bay frame example.

hinges may form in the lower ends of the columuns and in the beam. Under the applied
loads, the frame may collapse in any of the “sway,” “heam” or “combined” failure
mechanisms shown in the lower portion of Figure 6.2. Thus, the frame constitutes
a series structural system. The objective is to determine the optimal dimensions
{(b. fiy. hy) for minimum material volume, subject to a constraint on the system failure
probability of the frame.

Using the method of virtual work, limit-state functions defining the three failure

modes of the structural system are derived as

Giix,v) = 0.5bR%y + 0.5bhiy — 5, (6.3.1)
Golx,v) = bhiy — v, (6.3.2)
Galx,v) = 0.5bh5y + bhsy — Bh — b, (6.3.3)

where v = (h,v,y) € IR iz a realization of the random vector V = {H V,Y) and



Table 6.10: Distributions of randow: variables in frame example.

E Variable | Distribution | Mean [ .0V ]
H Gumbel 50 kN | 0.30 |
%
b

Gumbel 60 kN | 0.20
Lognormal | 25 MPa | 0.10

= (b, hy, hy) € IR? is the vector of design variables. We assume H, V,and Y are
statistically independent random variables with the distributions Hsted in Table 6.10.
The objective is to minimize the material volume cy(x) = 10{bh, +Bhy,), subject to the
system failure probability constraint p(x) < 0.006210. We also impose a minimum
of 0.2 m on each member dimension, a maximum aspect ratio of 2 on each cross
section, and a “strong-column-weak-beam” design requirement. These requirements
vesult in the constraint functions fi(x) = 0.2 ~ hy, fo(x) = 0.2 — hy, fa(x) = 0.2 — b,
fal(x) = hy — 2b, and f5(x) = ho — hy + 0.0001. Note that the requirement hy > A

forees the formation of hinges in the beam instead of the upper ends of the columns.

This problem is of type P s, with K = 3 and the constraint set X = {x

Yl fx) <005 = 1,2, .5}, which we solve by using Algorithm 4.1.2 with Algo-
rithm 3.3.1 and parameter v = 1.072. This parameter was determined 1 by computing
the first-order reliability index for the most critical failure mode of an initial design
of the frame. This initial point was obtained by solving a problem of the fype Py
with K == 3. Note that the value of v is not critical, but a well-selected value resulte
in convergence of Algorithm 4.1.3 in fewer iterations. The results are summarized
in Table 6.11. where the design vector x,. the objective cqf (x;), the svstem failur
probability p(x;), and the parameter s; are Hst The system failure probability is
evaluated using Monte Carlo simnulation with a coefficient of variation of 0.02. From
Table G.11, it is not clear whether the “strong-column-weak beam” design require-
ment is satisfied after the second iteration. However, an examination of the omitted

digits reveals that the constraint is satisfled.



Table 6.11: Results for Py .y design of structural frame.

Flter. ¢ x; (m) Leolx) | opix) S: |
0 (0.201,0.348,0.348; - - (2.80,2.80,2.80)
(0.200,0.350.0.350) | 1.40 | 0.007143 | {2.86,2.86.2.86}

i

AN

(0.200,0.352,0852) | 141 10006210

6.4 Reinforced Concrete Girder

Consider a highway bridge with reinforced concrete girders of the type shown in
Figures 6.3 and 6.4. In this example, we design one such girder using the material and
load data from Lin and Frangopol (1996) and Frangopol ¢f al {1897). The design

variables are collected in the vector
X = (.*4‘5‘- bu h’fe bws hw: ‘42#- S.l; SQ? SS) = IR?} {641)

where A, is the area of the tension steel reinforcement, b is the width of the Aange,
Ry is the thickness of the flange, b, is the width of the web, A, is the height of
the web, 4, is the area of the shear reinforcement (fwice the cross-section area of a
stirrup), and 57,55 and Sy are the spacings of shear reinforcements in tervals 1, 2,
and 3, respectively, see Figure 6.4, The random variables describing the loading and

material properties are collecied in the vector

V= (fyfé PD: JMFI_: ID*UFS‘Er 35311'} € g%g (643)

where f, is the yield strength of the reinforcement. f/ is the compressive strength
of concrete, Fp is the dead load excluding the weight of the girder, M, is the live
load moment, FPsy, Pso and Pgs are the live load shear forces in intervals 1, 2 and
3, respectively, see Figure 6.4, and I is the unit weight of concrete. Following Lin
and Frangopol (1996}, all the random variables are considered to be independent and
normally distributed with the means and coeflicients of variation as listed in Table
6.12. In the remainder of this section, the random variables and their realizations
are denoted with the same symbol. Let the girder length be L, = 18.30 m, and the
distance from the bottom fiber to the centroid of the tension reinforcement be oo = 0.1

m, see Figure 6.3.
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Table 6.12: Statistics of normal random variables in girder example.

| Variable Description ﬂ Mean ( c.o.v.ﬂg
fu Yield strength of reinforcement 413.4.10° Pa 0.15
£ Compressive strength of concrete 27.56.10° Pa 0.158
Fr Dead load excluding girder 1357 10° N/m | 0.20
M, Live load moment 929 . 10° Nm 0.243
Ps, Live load shear in interval 1 138.31-10° N | 0.243
Pos Live load shear in interval 2 183.39-10° N (0.243
Pqs Live load shear in interval 3 22851 107 N 1 0.243
W Unit weight of concrete 22,74 10° N/m* | 0.10

The objective is to design the girder according to the specifications in AASHTO
{1992). However, these specifications do not lead to problems of the form: Py, Py
or Py, as defined in Chapter 4. In fact, she resulting optimal design problems are
not well-defined for two reasons. First, some of the constraints are not continuouns
functions, but of the form fix) < 1 whenever h(x) < 0 and otherwise f{x) < 2,
where f(-} and Ai(-) are continuous functions. Second, A() may also depend on the
random variables of the problem. In the following, the first difficulty is overcome by
considering different cases. For example, Case 1 has the constrainte f(x) < 1 and
hix) < 0, while Case 2 has the constraints f{x} < 2 and h{x} > 0. The optimal
design for each case is found independently, and the design with the smallest value of
the objective function is our solution. The second difficulty is overcome by replacing

A

any random variables in the definition of A{.} by their mean values. Consequently,

we proceed by first defining four cases that must be solved independently.

Case 1

Case 1 corresponds to the situation where the force in the tension reinforcement

can be balanced by a compression force in the flange, ie.,

0.85fbh; > f,As, (6.4.3)
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and the shear capacity in the shear reinforcement is less than or equal to a value

related to the cross-section area and the strength of concrete, ie.,

.‘4.1} ’
S_f <4y fiby, (6.4.4)

i

where v = 6,89 - 10° and the varisbles are given in SI units {i.e., meter. Nawton,
etc). Hence, {6.4.3) and (6.4.4). with f and £, replaced hy their mean values, are the
constraints for Case 1. Conseguently, we have the following deterministic constraints

{all variables in ST units):

—0.85f7 bhy + F,4, <0, (6.4.5)
AT =
5, b gy b <0, (6.4.6)

where f, and f'_ are the mean values of f, and f/, respectively, see Table 6.12, and

o AT .

YT B0y, = =1

S Ry 4 b —a)/2 <0, (6.4.8)

Sy —0.6096 < 0, (6.4.9)
At _

S, — _~j“ < () (6.4.10)
a0+ )

Sy~ thy+ hy —aif2 <0 (6.4.11)

Sy — 0.6006 < 0 (6.4.12)

"4‘1.!—}?7

Sq — <) 6.4.13)

3T Ryt (6.4.13)

83 (,‘[LT f'Z_.w — O{‘}/’? S 0 (6414}

Sy — 0.6096 < 0, (6.4.15)

buf2 — by <0, (6.4.16)

b db, <0, (6.4.17)



1 4,/0.001 <0, (6.4.19)
b—1.22 <0, (6.4.20)
0.15 — hy < 0, (6.4.21)
0.15 — by, < 0, (6.4.22)
Fo /B — 4 < 0, (6.4.23)
1— A,/0.0001 <0, (6.4.24)
e <0, (8.4.25)
~5, <0, (6.4.26)
~ 5, <0, (6.4.27)
—S5 <0, (6.4.28)
Byt by — 12,50, (6.1.29)
m —4 <0, (6.4.30]
plx) — (0.75p,(x) < 0, (6,431}

where
plx) = i o)’ (6.4.32)

527
pulx) = & 8?; 8050?3 . (6.4.33)
and

po = p(x) <0, (6.4.3%)

with py = 200v/f,. The 28 inequalities in (6.4.5)-(6.4.34) define the constraimt set X
in {4.1.3). The 1‘eader should consult Lin and Frangopol (1996} regarding background
information on the above constraints, which result froms AASHTO (1992} rules.

The girder is considered a series structural system with four components defined

as follows: The failure in flexure is specified by the limit-state function



| M PpLi  (bhy+buhy ) WIZ B
Crbev)=l———te o 2t e (6.4.35)
\ wix,v)  8Bwix,v) Sw(x, v)
where
Lu{j\X,_V) = ‘4»§fy <hf + ;zu: — - ??(}i VJ) (6436)

and 7(x, v} = A,f,/{0.85f!b). Failure in shear in interval 1 is defined by the limit-

state function

Fg FoL, fohy + by b )WL, (6.4.57
H;(‘X} v) 61‘\?1(}(. v Ges(x,v) ’ 0.=.00)

GQ(X;\F} =1

where £1{x, v) = 8.45b, (hy + hy — a)y/f1/7/0.0254% + A, f,(h; + hy, — 2}/ Sy, with

adl variables in ST units. Failure in shear in interval 2 is defined by the limit-state

function
N 2 Ln ‘il“[i71: 34 VL o
Galxeov) =1 - —252__ _Foly [0y hubne Wy (6.4.38)
Y fa{x, V) Bealx,v) Jra(%,v) ‘

where ru{x, v) = 8450y (hy + fiy — )/ f1/7/0.0254% 4 A, f,(h; + by — @)/ Sy, with
all variables in ST units. Fallure in shear in interval 3 is defined by the limit-state
tunction

pgg PpLD B (Z)hf + buhn)ﬁ[/)g

G.g(X:V\) =1- T p \ 7 s
Fz(, v 2m3(x,v) 2r3(x,v)

(6.4.39)

where a3(x, v) = 8450, (hy + hy — @)/ f1/7/0.0254% + A, f (ks + By — a) /S5, with
all variables in Sf unite. The reader should consult Lin and Frangopel (1996) regard-
ing background information on the above limit-state functions, which originate from

AASHTO (1992) rules.

Case 2

Case 2 corresponds to the situation where the force in the tension reinforcement

cannot be balanced by a compression force in the flange. ie.,

0.85fbhs < £, 4., (6.4.40)
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and the shear capacity in the shear reinforcement is less than or equal to a value
refated to the cross-section area and the strencth of concrete, ie. (6.4.4) holds.

Hence, in Case 2, the constraint set X 18 defined by the inequality
0.85f7 bhs — [,A: <0, (6.4.41)

the nequalities (6.4.6}-(6.4.30), and the inequalities (6.4.31) and {6.4.34) but now

. 4

with
plx) = v A - (6.4.42)
S bulhy Ry - o)
. . HZ_T SW L. - 57 '_fz: W
o) = 0855, 7000 N 0.85f (b — by )Ry Qm (6.4.43)

fy ST0004 f./v  bufylhs+hy—a)) b
The limit-state functions are defined by {6.4.35), (6.4.37), (6.4.38) and (6.4.39), but
now with

A

Wi, V) = By Ay R — = (v )/2) 4 SV n(x V) — )2, (6.444)

where £(x,v) = G.85f.(b — b h;/f, and n(x,v) = (A, — £(x,v)) f,/{0.85f/b,}, all

variables i SI units.

Case 3

Case 3 corresponds fo the situation where the force in the tension reinforcement
can be halanced by a compression force in the Hange, l.e., {6.4.3) holds, and the shear
capacity in the shear reinforcement is greater than or equal to a value related to the

cross-section area and the strength of concrete, e,

Aty e -
o A/ flbus (6.4.45)
Sl ) )
Hence, in Case 3, the constraint set X iz defined by the nequalities
Al o
SN T AT (6.4.46)
51 '
(6.4.5), the modified nequalities
‘4?.-“??-H —
S5 — ——=— < 0. (6.4.47)

IOO?bw
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S — (h.f + Ay — Q)/—fc < 0, (6448)
Sy —0.3048 < 0, (6.4.458)
AT,

Sy e (), 6.4.50)

2T 00, < (6450}

Sy = (At + hy —al)j4 <0, (6.4.51)

S — 0.3048 < G, (6.4.52)
A ,

Y () §.4.53}

3 1007b, = (6.4.53)

53 - (hf + flw - Q‘)’;”i g . (645-1)

S — 03048 < §, (6.4.55)

and the inequalities (6.4.16)-(6.4.34). The limit-state functions are given by (6.4.35)-
it . 12 ¥l J

Case 4

Case 4 corresponds to the situation where the force in the tension reinforcement
cannot be balanced by a compression force in the flange, Le.. (6.4.40) holds, and the
shear capacity in the shear reinforcement is greater than or equal to a value related
to the cross-section area and the strength of concrete, ie., (6,4.45) holds. Hence in
Case 4, the constraint set X is given by the inequalities (6.4.41), (6.4.46)-(6.4.55).
(6.4.16)-(6.4.30), (6.4.31) and (6.4.34), with p(x} and py(x) given by {6.4.42) and

(6.4.43), respectively.

6.4.1 Design for Minimnum Initial Cost (P )

Suppose that the objective is to minimize the material cost of the reinforeed
concrete givder subject to a constraint on the system failure probability, i.e, a design
probiem of the type Pias. Let €, = 50 and €, = 1 be the unit costs of stesl
reinforcement and concrete per cubic meter, respectively. As i Lin and Frangopol

{1996), we define the objective function to bhe

co(x) = 0.78C Ly A+ Cong A {hy + by — o + G50, + CoLglbhy + byohyy, (6.4.56)
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Teble 6.13: Results for P o design of reinforced concrete girder.

f § Tteration 25
A, 0.009832 m*
b 0418 m
oy G5.415 m
B 3196 m
P 0.785 m
Ay $.0001859 m”
Sy 0.508 m
Sq 0.224 m
S 0.140
cal{xy) 13.664
n(X:) 0.001310

where ng = L,(1/5, +1/5; +1/53)/3 is the total number of stirrups. In (6.4.56), the
first term represents the cost of the bending reinforcement. The factor 0.75 appears
due to the assumption that the total amount of bending reinforcement is placed only
within a length L,/2 centered at the middle point of the girder, and the remaining
part iz reinforced with 0.54,. The sscond and third terms in (6.4.56) represent the
coste of shear reinforcement and concrete, respectivelv. Let the constraint on the
system failure probability be p(x) < 0.001350.

This problem is of type P3

Taver 988 (4.1.23), which we solve by using Algorithm
4.1.3 with Algorithm 3.3.2 and parameter v = 1. Case | defined above vields the
lowest cost, and the result for this case after 25 iterations of Algorithm 4.1.3 are
given in Table 6.13, where the design vector x;, the objective cu{x;), and the system
faiture probability p(x,) arve listed. The system failure probability is evaluated using
Monte Carlo simulation with c.o.v. 0.01.

A direct comparison with Lin and Frangopol (1998) is not possible because of
diffevent assumptions regarding o (see Figure 6.3) and the fact that we have intro-
duce additional constraints ((6.4.20), (6.4.21), (6.4.22) and (6.4.29)) to eliminate the
possibility of an unrealistic geometric shape of the girder. However, the design in
Table .13, with a cost of 13.6, appears to be better than the one reported in Lin and

Frapgopol {1996}, which has a cost of 16.7.
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Table 6.14: Results for Pg, . design of reinforced concrete girder.

! ” Tteration 25 !

:

A, 0.01157 m*
b 0,492 m
hy 0415 m
b, 0.196 m
Pl .785 m

A 0.0002266 m”

S 0.502 m
S5 0.226 m
S3 0.142m

(i 0.0001799
Objoctive 17.017

Pz 00001875

6.4.2 Design for Minimum Life-Cycle Cost (Ps o)

Suppose that the objective is to minimize the initial cost plus the expected cost of
failure of the reinforced concrete girder, subject to a constraint on the system failure
probability, ie, a design problem of the type P;... Since we consider only one
structure, we have L = 1 in the definition of Py, see (4.2.2). Hence in the following
we drop the superscript (1) when L == 1. Let C, = 50 and O, = 1 be the unit costs of
the steel reinforcement and concrete per cubic meter, as before. We define the initial
cost co{-} to be as in (6.4.56). The cost of failure iz assumed to be c{x) = 500cs{x).
Let the constraint on the system failure probability p{x) < 0.001350.

We solve Py ... by using Algorithm 4.2.5 with Algorithm 3.3.2. Case 1 defined
above yields the lowest cost, and the result for this case after 25 iterations of Algorithm
4.2.5 s given in Table 6.14, where the design vector xg5, the auxiliary design variable
g5, see (4.2.37), tha chjective ColXos )+ c(Xas Jp{xps ). and the system failure probability
p(z) are listed. The system failure probability is evaluated using Monte Cario
simulation with c.o.v. 0.01.

We see in Table 6.14 that there is a relatively small discrepancy between as:
and p(xsz). This is caused by the approximation in (4.2.41). As the computations

progress in Algorithm 4.2.5, the parameters ¢ are automatically modified in a way
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that the error in the approximation in {4.2.41) is reduced. Note that the system

failure probability constraint is not active in this example.

6.4.3 Design for Minimum Cost of Deteriorating Girder (Pj.,.)

Suppose that the girder is subject to corrosion of its longitudinal reinforcement.
We adopt a corrosion model similar to that used in Frangopol et al. {1997), where

the diameter Dy{t) of a longitudinal reinforcement bar at time ¢ is given by

A Dbg'—zy{f e _Lr]) t>T;

g, otherwise

with Dy being the initial diameter, v being the corrosion rate, and T} being the corro-
sion initiation time. The factor 2 in (6.4.537) takes into account that the reinforcement
bar iz subject to corrosion from all sides. We assume T3 S A4+ Be,, where 4 is a
lognormal random variable with mean 5 vears and c.o.v. equal to 0.20, representing
the time it takes to initiate corrosion with a 10 mm concrete cover, F is a lognormal
random variable with mean 300 vears/m and c.e.v. equal to 0.20, representing the
additional time it takes to initiate corrogion per meter additional concrete cover, and
o 15 the concrete cover in meters in addition to the 10 mm minimum cover. The
additicnal concrete cover ¢, 15 considered a design variable and is included in the

design vector x, le.,

H

X = (Ag. B by, by, by Aw, S1. 53, 53, ¢0) € R, (6.4.58)

We assume that the corresion rate v is lognormally distributed with mean 4.0 - 107°
m/vears and coefficient of variation 0.30. All the random variables are assumed to
be statistically independent, with the distribution parameters as lsted in Table 6.15.

As seen from (6.4.57), the area of bending reinforcement is reduced over thne.

The remaining bending reinforcement arvea after time ¢ i3

Aty = nym Dy (1) /4 (6.4.50)
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Table 6.135: Statistics of lognormal random variables describing corrosion.

| Variable | Mean | cov. |
A 5 vears .20
B 300 vears/m (L.20
v 4.0-107" m/vears | 0.30

4

where n, is the number of reinforcing bars and D,(t) is given in (6.4.57). We assume

that the initial diameter of all the reinforcing bars is 0.025 m. Then, we obtain that

ALft) = AR (t). (6.4.60)
where the reduction factor
Bty =1 —4v(t — Ty)/0.025 + 402(t — T73%/0.025%, (6.4.61)

The reinforced concrete girder is now a time-varying structure with A, replaced
by AL(t) in the definitions of the limit-state functions G1(}, Gol-), G5} and Guf-),
see (6.4.35), {6.4.37), (6.4.38) and (6.4.39), respectively. Hence, the reliability of the
girder can be analyzed according to the framework in Section 2.2, Let Th = 50 Vears
be the lifetime of the girder. We assume the system failure probability in the time
iterval [0, 7y] (see (2.2.6)) is equal to the point-in-time system failure probability
at Ty, plx, T} {see (2.2.3)), ie, (2.2.11) holds. This results in an optimal design
problem of the form Py, with L = 1, where the system failure probability p(x) =

p(x. T}, the initial cost is

clx) = 0.75C, LA + Cong Ay (hy + by — a4+ 0.5b, ) + CoLy(bhy 4 buhy) + CoLgbycy,

(6.4.62)
the cost of failure is o(x) = 500¢s(x), and the deterministic constraints defining X are
as sbove with two changes. First, A, is replaced by 4 (Ty) = AR.(T:) in (6.4.5),
(6.4.19), {6.4.32), (6.4.41) and (6.4.42), where T..(T}) is equal to R.(77) with v, A and
B replaced by their respective mean values, sse Table 6.15. Second, we also inclnde

the following two additional constraints bounding the new design variable ¢,:

i

a/0.05 — 1 <0, (6.4.63)
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Table 6.16: Results for Py, design of deteriorating girder.

[ | lteration 25 |
A, .01460 m°
b 0,511 m
hiy 0.415 m
by 4.196 m
g {0.785 m
A, 0.0002291 m-”
oh 0.502 m
S5 0.226 m
Sy .142 m
Ca 0.050 m
ios 0.0001869
Objective 19.712
P(Xas} 0.0001509

The first of these constraints imposes an upper limit of 0.03 m on c,.

We ignore the effect of the small additional load caused by the weight of the
additional concrete cover. As above, let 0y = 50 and €, = 1 be the unit costs of the
reinforcement and conerefe per cubic meter, respectively, and let the system failure
probability constraint be p(x) < 0.001350. We solve Py .. by using Algorithm 4.2.5
with Algorithm 3.3.2. Case 1 defined above yiclds the lowest cost, and the result for
this case after 25 iterations of Algorithm 4.2.5 is given in Table 6.16, where the design
VeCtor xps, the auxiliary design variable s, the objective co{xas) + o{xes )p{xe2s), and
the system fallure probability p(xg) are listed. The system failure probability is
evalnated using Monte Carlo simulation with c.o.v, 0.01.

Similar to the situation in Sub-section 6.4.2, we see from Table 6.16 that there is 2
discrepancy between ag; and p(xgs). This is caused by the approximation in (4.2.41).
As the computations progress in Algorithim 4.2.5, the parameters t are modified in a
way to reduce the error in the spproximation in (4.2.41). Note that the constraint

(6.4.63) is active, Le., the use of maximun concrete cover is most cost efficient.
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6.4.4 Design of Maintenance Plan for Deteriorating Girder
(PSS}S)

As can be seen from comparing Tables 6.14 and 6.16, the presence of the corrosion
threat results in a significant increase in optimal bending reinforcement. Hence, it
can be beneficial to consider maintaining the girder during its lifetime.

Suppose that the lifetime of the girder is Tp = 60 vears, and that it is decided
to maintain the structure in infervals of 20 years, Lo, at 20 and 40 vears after its
construction. The time of maintenance can be incorporated as a design variahle. but
in this example we have fixed those times for simplicity. Let my £ [0,1] and my € [0, 1]
be two design variables characterizing the maintenance effort at 20 vears and 40 vears,
respectively. Let m; = 0 denote no maintenance, and m; = 1 denote full maintenance,
re., restoration to the state of the structure at the beginning of the i-th time interval.
Furthermore, we consider 1 — iy as the fraction of the aging of the structure from
initial construction {f = 0) to the first maintenance action (¢ = 20 years), which is
not restored fo its initial condition. Thus, 40 — 20m;y vears is the effective age of the
structure before the second maintenance action at ¢ = 40 vears. Similarly, 1 — m i8
the fraction of the aging of the structure from the first maintenance action (¢ == 20
years) to the second maintenance action { = 40 vears), which is not mitigated by
the second maintenance effort, i.e, 60 - 20m,; — 20m, vears is the effective age of the
structure at ¢ = I = G0 years. We add the two variables m, and ma o the vector

of design variables, ie,,

x = (Ag. b he, by, hoy Ay 54,52, 53, 00, iy, mn) € IR (6.4.65)

We ensure the safety of the girder by imposing the constraints that the system
fallure probabilities in the three time intervals 0, 20] years, [20, 40] vears, and [40, 60]
vears are each less than 0.001350. As in Sub-section 6.4.3, we assume tha’ the time-
interval system failure probability can be approximated by the point-in-time svstem
failure probability p/(x, T} at the end of the time interval 7. To comply with the

notation in the definition of Py, see {4.2.2), we think of the girder in the three time
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intervals as “different” structures. Hence, we have the three probability constraints

P} = plx, 20) < 0.001350, (6.4.66)
P x) = plx, 40 — 20m,) < 0.001350, (6.4.67)
P¥x) = p(x. 60 — 20m, — 20ms) < 0.001330, {6.4.68)

where, for any ¢, p{x,t} is as in Sub-section 6.4.3. The constraint in (6.4.66) limits the
system failure probability of the 20-vear-old structure at £ = 20 vears. The constraint
in {6.4.67} limits the system fallure probability of the effectively (40— 20m, )-vear-old
structure at ¢ = 40 vears. Finally, the constraint in (6.4.68) limits the svstem failure
probability of the effectively (60 — 20m; — 20y, -vear-old structure at £ = 60 years.
The three “different” structures are subject to the same deterministic constraints
defining X as in Sub-section 6.4.1 with the additional constraints in (6.4.63) and

(6.4.64) and
m; - 1<0,7=12, (6.4.69)

—my; <0,7=1,2 {(6.4.70)

For the sake of this example, we construct the following cost-model. Let the
initial cost of the structure be as in {6.4.62), the cost of maintenance be equal to
0.1 exp{l/{1 —1my)), j = 1,2, and the cost of failure be equal to the initial cost times

500 in each of the three time intervals. Hence in the notation of Py, see (4.2.2),

we have

cr, X)MO-{‘}CL A+ CngAy(hy + by — a+0.58,) + C Ly{bhs + byliy) + CoLgbyca,
(6.4.71)

ch‘j)(X) =0.1ettm) 5y 2 (6.4.72)
'WM—;%H%)J:Lza (6.4.73)

As above, let , = 50 and O, = 1 be the unit costs of the reinforcement and
concrete per cubic meter, respectively. We solve Py with L = 3, by using Algo-
rithm 4.2.5 with Algorithm 3.3.2. Case 1 defined above vields the lowest cost, and

the result for this case after 25 iterations of Algorithm 4.2.5 is given in Table 6.17,



Table 6.17: Results for Pj.,. design of maintenance plan.

| !3 [teration 25 f

Al 0.01320 m*
b 0.561 m
Tig 0415 m
by 0.211m
Foy 0.785 m
A, 0.0002582 m*
S 0544 m
S (3.236 m
Sy (0.145 m
2, (1050 m
e 0.4684
My .5316
Objective 21121
P {xg5) 0.00004752
P (5045 (.00005945
PPy | 0.00010041

where the design vector x5, the objective E?:l cg){ Xaos) + Z?: B (x93 10" (x25), and
the system failure probabilities p!)(xzs) are listed. The system failure probabilities
are evalnated using Monte Carlo simulation with c.o.v. 0.01.

We observe from Table 6.17 that the system failure probability is smallest in the
first time interval and largest in the last time interval. Hence, with the present cost-
model, it is not cost efficient to maintain the inivial safety level of the structure. This
result is expected from the form of (6.4.72), where the cost of maintenance goes to
infinite when the structure is restored to its initial state. We also see from Table 6.17
that it is most cost efficient to have a 12 percent more intense maintenance effort at

40 years than at 20 years.
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Chapter 7

Conclusions

7.1 Summary of Major Findings

We have developed a collection of algorithms for solving three classes of reliability-
hased optimal structural design problems. The first class of probierns is to minimize
the cost of the design, subject to fallure probability and structural coanstraints. The
second class is to minimize the failure probability of the design, subject to cost and
structural constraints, The third class of problems is to minimize the initial cost plus
the expected cost of failure, subject to failure probability and structural constraints.
The failure probabilities can describe component failures or series structural system
tailures.

In their original form, the three classes of problems appear to be intractable by any
rigorous approach for at least two reasons. First, the failure probability is defined
in terms of a high-dimensional integral over a domain that depends on the design
variables. The failure probability function, or its approximations, is not known to
be continuously differentiable, and hence standard nonlinear optimization algorithms
are not applicable. Second, even if the failure probability were to be smooth, com-
putationally it would be extremely expensive to approximately evaluate the failure
probability and its gradient in the optimal design problem.

Based on a first-order approximation to the failure probability, we have con-
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structed approximating problems that can be solved repeatedly to obtain an ap-
proximation to a solution of the original design problems. By the use of higher-arder
refiability methods in the iterative scheme, e.g., second-order or Monte Carlo simula-
tion, the approximating solution can be made o satisfy failure probability constraints
in the sense of any computational reliability method. The approximating problems
are either semi-infinite optimization problems that ean be solved using algorithms
from the literature, or they are generalized semi-infinite optimization problems that
can be solved using a newly developed algorithin.

The newly developed algorithm is based on exact penalties, which convert the
generalized semi-infinite min-max problem into a finite family of semi-infinite min-
max-min problems. Furthermore, the inner min-function is smoothed and the semi-
infinite max part is approximated, using discretization, to obtain a three-parameter
family of finite min-max problems. Under a calmness assumption, we have shown
that when the penalty is sufficiently large the semi-infinite min-max-min problems
have the same solutions as the original problem. and that when the smoothing and
discretization parameters go to infinity the solutions of the finite min-mas prob-

lems converge to solutions of the original problem, provided the penalty parameter

D

. Gardla laro T T ies Faota fer aditrabima Rl e e
18 sufliciently large. The new algorithm combines tests for sdjusting the penalty,

the smoothing and the discretization parameters and makes use of a min-max algo-
rithm as a subroutine. In effect, the min-max algorithm is applied to a sequence of
gradually better-approximating min-max problems, with the penalty parameter even-
tually stopping to increase, but the smoothing and discretization parameters driven
to infinity. The algorithm is found to perform well on a test example. The nawly
developed algorithm is applicable to a wide range of problems arising in engineering
and elsewhere.

The approximating problems to the original optimal design problems are made
dependent on a set of parameters that can be adjusted to improve the accuracy of the
first-order approximations. The adjustment of the parameters is based on separate,
approximate evaluation of the failure probahility, including by means of Monte Carlo

simulation. In special cases, we have shown that the approximating probiems are
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identical to the original ones. We have developed a set of parameter-adjustment rules
that, together with subroutines for solving the approximating problems, composes
the collection of new algorithms for solving reliability-based optimal structural design
problems. Effectively, the new algorithms solve a sequence of first-order approximat-
ing problems that are constructed as the computations progress. It is observed that
the parameter-adjustment rules are efficient tools for improving the accuracy of the
first-order approximations.

A significant advantage of the new algorithms for solving reliability-based optimal
structural design problems is that the fallure probabilities are only evaluated as part
of the parameter-adjustment rules. This gives the user flexibility in the selection of
the method for approximately computing the failure probability. The first-order or
second-order reliability method, Monte Carlo Simulation, or any other computational
reliability method can be emploved.

The report shows application of the new algorithms in a collection of numerical
design examples from the fleld of structural engineering. The first example considers
the design of a short column subject to axial forces and bending moments. Three
cagses were computed: Minimize the weight of the column subject to a constraint on
the failure probability; minimize the faiinre probability subject to a constraint on the
weight of the column; and minimize the initial cost plus the expected cost of failure
with a constraint on the failure probability. The new algorithms converged to an
approximate solution in few iterations. In fact in the second case, it was necessary {o
perform only one iterasion to obtain an approximate sohution of the original design
problem. Hence, the first-order approximating problem is an excellent approximation
of the original problem,

The second example considers the design of an offshore jacket platform for oil
production subject to wave, wind and service loads. The platform is designed for
minimum failure probability subject to a constraint on the total weight of the struc-
ture. As in the first example, the new algorithim converged in only one iteration.

The third example considers the design of a structural frame with three failure

modes. We computed both the minimum weight with a system failure probability
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constraint and the minimum initial cost plus expect cost of failure with a system
failure probability constraint. It is observed that the new algorithms converge in few
iterations, even for this case with a system failure probability constraint.

The fourth example considers a reinforced concrete girder in a highway bridge, We
took four failure modes into account. First, we minimized the cost of the design sub-
ject to a gystem failure probability constraint. Second, we minimized the initial cost
plus the expected cost of failure, with a constraint on the system failure probability.
Third, we also included the effect of deterioration of the girder caused by corrosion.
We minimized the initial cost plus the expected cost of failure hased on a time-variant
failure probability. Fourth, we found the initial design and the maintenance effort for
the deteriorating girder, which together minimize the life-cycle cost. This example
demaonstrates that the new alzorithms can also be used in maintenance planning and
in cases with time-variant failure probabilities.

The reliability-based optimal structural design algorithms developed in this study
present significant departures from the state-of-the-art. In particular, careful atten-
tion is given to the underlyving assumptions and approximations to ensure a Tigorons
mathematical foundation for the algorithms. This, together with the fact that first-
or second-order reliability methods, Monte Carlo Simulation, or any other computa-
tional reliability method can be emploved, makes the algorithms efficient, robust and

versatile tools for solving reliability-based optimal structural design problems.

7.2 Further Studies

Typically, the behavior of real-life structures is modeled using ordinary {ODE)
or partial (PDE} differential equations. Such equations are usually solved using nu-
merical integration methods, such as the Runge-Kutta or Finite Element Methods.
Hence, any objective or constraint function associated with ODEs or PDEs can be
evaluated only approximately, with the mesh size acting as a precision parameter.

In this report, we have assumed that the behavior of the structure can be evaluated

exactly in finite computing time. Effectively, this means thaet we have assumed that
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the structure is discretized in time and space prior to application of the optimization
algorithms. Heuce, we compute the optimal design of a discretized structure that
may or may not represent the real structure accurately.

A more sophisticated way to deal with ODEs and PDEs is to incorporate the dis-
cretization into the opfimization algorithms. The difficulty associated with such dis-
cretization of ODEs and PDEs can be managed, at least in principle, using the theory
of consistent approximations, which provides a framework for adaptively increasing
the precision as computations progress. This approach tremendously increases the
utilization efficiency of appropriate numerical methods. as well as providing a means
for establishing proof of convergence to a solution. However, in a complex struc-
ture, many integrations may be required, and the precision of each may have to he
controlled independently. At present there is no multi-parameter adaptive precision
scheme in the literature, and this will have to be developed to obtain high accuracy,
efficient numerical methods for the solution of large classes of optimal design prob-
lems. A first effort to use consistent approximations in reliability analysis can be
found in Rovset ef ol {2002).

Failure probabilities of structures are defined in terms of a high-dimensional in-
tegral over a domain that depends on the design variables. Such functions are not
known to be continnously differentiable, and even if thev are, the evaluation of the
failure probabilities and their gradients will be extremely cosily. In this report, a
particular scheme is used to approximate the failure probability. The major disad-
vantages of this approximation scheme are its limitation to series structural svstems
and to reliability models with a constant or monofonic failure probability in time.
Future efforts should focus on developing smooth approximations to the failure prob-
ability of general systems with gradually improved accuracy as precision parameters
are driven to infinity, A preliminary study of optimization problems with non-smooth
failure probability functions can be found in Polak and Royset (2002). Furthermore,
efforts should be directed towards problams where the reliability is not monotonic in

time, but iz defined in terms of out-crossing rates.
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