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Abstract. It is well known that the free motion of a single-degree-of-freedom
damped linear dynamical system can be characterized as overdamped, under-
damped, or critically damped. Using the methodology of phase synchroniza-
tion, which transforms any system of linear second-order differential equations
into independent second-order equations, this characterization of free motion
is generalized to multi-degree-of-freedom damped linear systems. A real scalar
function, termed the viscous damping function, is introduced as an extension of
the classical damping ratio. It is demonstrated that the free motion of a multi-
degree-of-freedom system is characterized by its viscous damping function, and
sometimes the characterization may be conducted with ease by examining the
extrema of the viscous damping function.

1. Introduction. We consider the set of homogeneous linear second-order equa-
tions

Mq̈(t) +Cq̇(t) +Kq(t) = 0 , (1)

with initial conditions q(0) = q0 and q̇(0) = q̇0. All quantities in (1) are real and the
superposed dots denote derivatives with respect to the independent variable t ≥ 0
(time). The coefficients M, C and K are symmetric positive definite (SPD) n× n
matrices, and q(t) is an n-dimensional column vector. Equation (1) is a cornerstone
in vibration theory and, for example, models the motion of particles around their
equilibrium positions, or the currents and voltages in electrical networks [13, 14,
16, 18, 22, 27]. Adopting vibration terminology, we refer to (1) as an n-degree-of-
freedom linear system, or simply a system, for short. The response of the system (1)
can exhibit oscillations, i.e., the components of the solution q(t) can cross zero
infinitely often before settling to zero as t → ∞. The decay of these vibrations
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is controlled by the term Cq̇(t), and the matrix C is referred to as the damping
matrix. If the damping is very strong, no oscillatory behavior can be observed, and
the components of the solution q(t) cross zero at most once before approaching zero
as t → ∞.

In many applications, it is important to determine the effect of damping on the
solution of (1), i.e., to find out whether system (1) exhibits oscillatory or non-
oscillatory behaviors. For example, in engineering design applications one needs to
know how oscillations can be suppressed by varying certain system parameters; a
very slow decay of the oscillations is often desirable in electrical networks. Char-
acterization of the free motion of (1) is well understood in single-degree-of-freedom
systems (i.e., n = 1 for which the coefficient matrices are simply positive real num-
bers m, c and k). In this case, the nature of damped free motion can be determined
by inspection of the viscous damping ratio, which is a scalar defined by (see, e.g.,
[22])

ζ =
c

2
√
km

. (2)

In vibration terminology, the system is termed underdamped if ζ < 1; it is critically
damped if ζ = 1 and overdamped if ζ > 1. Oscillatory behaviors can be observed in
underdamped systems, while the free response of an overdamped system decays ex-
ponentially without oscillations. Critical damping represents the boundary between
oscillatory and non-oscillatory behaviors.

The situation is less clear in multi-degree-of-freedom systems. In principle, one
could determine whether or not the free response of system (1) is oscillatory by
inspection of its solution. However this approach is impractical because the system
may exhibit oscillations for one set of initial conditions, while the response is non-
oscillatory for another set. Searching for oscillatory and non-oscillatory behaviors
within the space of initial conditions is unfeasible for large systems, so it is desirable
to study the effects of viscous damping based upon solution of algebraic equations,
rather than by studying the differential equation (1). Various criteria for determin-
ing the response characteristics of (1) have been presented in the literature. For
example, a sufficient condition for non-oscillatory behavior is Duffins overdamping
condition [9]

(xTCx)2 > 4(xTMx)(xTKx), (3)

for all real column vectors x 6= 0. However, this condition and others reported
in [1, 3, 4] are rather difficult to verify and have not really found their ways into
applications. Most other approaches to this problem [2, 12, 15, 24, 25, 26, 27] rely
upon simultaneous diagonalization of the coefficient matrices M, C and K by linear
coordinate transformations. However, it is well known that three matrices cannot be
diagonalized by linear transformations unless certain restrictive conditions apply [5].
Systems that can be diagonalized by linear coordinate transformations are termed
classically damped. The techniques in [2, 12, 15, 24, 25, 26, 27] apply to classically
damped systems only and are not applicable in general.

The purpose of this paper is to study the response characteristics of multi-degree-
of-freedom, second-order linear systems under viscous damping. Unlike previous
attempts, no restriction is placed on the damping matrix C. In Section 2, we
briefly review a methodology and algorithm for transforming (1) into independent
scalar second-order equations using a time-shifting map. This process is termed
“decoupling.” Decoupling simplifies the response characterization of system (1) to
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studying the response characteristics of n independent single-degree-of-freedom sys-
tems. It is shown that the decoupling of (1) represents a complete solution to this
problem, but it requires the solution of a quadratic eigenvalue problem. In Sec-
tion 3, we define a real scalar function and show that the effects of viscous damping
can be determined by finding the global extrema of this function, without solving
any eigenvalue problems. In Section 4, several examples are given to highlight ad-
vantages and disadvantages of the decoupling and minimization approaches. The
paper concludes with a summary of major findings in Section 5.

2. The decoupling of second-order linear systems. It is well known that
two SPD matrices M and K can be simultaneously diagonalized by a congruence
transformation [22]. The same congruence transformation that diagonalizes M and
K also diagonalizes a SPD matrix C if and only if [5]

CM−1K = KM−1C . (4)

It follows that system (1) generally cannot be decoupled into a set of mutually
independent, real, scalar, second-order equations by a linear mapping q(t) → Lp(t),
with the linear operator L independent of t. However, it was recently shown that
any system can be decoupled if one utilizes time-dependent transformations [17, 20,
21, 23]. Here, we follow [23] closely to review how system (1) is decoupled.

Associated with (1) is the regular quadratic eigenvalue problem [11, 18, 19, 30]

(Mλ2
j +Cλj +K)vj = 0 , (5)

where λj is termed an eigenvalue and vj is the corresponding eigenvector. There
are 2n eigenpairs {λj ,vj} (j = 1, . . . , 2n) that are complex in general. Because
M, C and K are real matrices, the complex conjugate of the eigenpair {λj ,vj} is
also an eigenpair. The system is non-defective if the eigenvectors associated with
repeated eigenvalues are linearly independent [18, 19, 30]. Because a damped linear
system selected at random is non-defective with probability one [20], we assume for
the reminder of this paper that (1) is non-defective. However, this assumption can
be relaxed [17].

Upon solving the quadratic eigenvalue problem (5), the solution of the differential
equation (1) can be written in terms of the solution of the algebraic equation (5):

q(t) =

2n
∑

j=1

vje
λjtaj , (6)

where aj are constants determined by the initial conditions. If all eigenvalues are
complex, the solution becomes

q(t) =
n
∑

j=1

vje
λjtaj + vje

λjtaj . (7)

Every summand in the above equations is real, and we refer to a summand

sj(t) = vje
λjtaj + vje

λjtaj (8)

as a mode. These modes sj(t) (j = 1, . . . , n) may be written in the form

sj(t) = ajvje
λjt + ajvje

λjt = Cje
αjt







rj1 cos(ωjt− θj − ϕj1)
...

rjn cos(ωjt− θj − ϕjn)






, (9)
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where θj and Cj depend on the initial conditions, αj and ωj denote the real and
imaginary part of the eigenvalue λj , respectively, and where rjk and ϕjk are the
absolute value and phase angle, respectively, of the elements of the eigenvector
vj . When the modes are written as in (9), it becomes clear that each component
of (1) performs exponentially decaying harmonic motion with the same frequency
and the same exponential decay when vibrating in a mode. However, there is
a constant phase difference between any two system components. The key idea
to decoupling (1) is to synchronize all modes sj(t) by evaluating each component
at a different, but fixed, time lag. This process is called phase synchronization
[20, 21, 23]. Upon phase synchronization, we obtain a synchronized vector

yj(t) = pj(t)zj , (10)

where

pj(t) = Cje
αjt cos(ωjt− θj) , zj =

[

eαjϕj1/ωj · · · eαjϕjn/ωj
]T

. (11)

To invert the synchronization operation, we can apply the time-shifting operation

sj(t) =







sj1(t)
...

sjn(t)






=







yj1(t− ϕj1/ωj)
...

yjn(t− ϕjn/ωj)






(12)

and derive a formula for the mode sj(t) in terms of the scalar functions pj(t):

sj(t) = diag
[

pj(t− ϕj1/ωj) , . . . , pj(t− ϕjn/ωj)
]

zj . (13)

Because the homogeneous solution q(t) is the superposition of the n modes, we
obtain

q(t) =

n
∑

j=1

diag
[

pj(t− ϕj1/ωj) , . . . , pj(t− ϕjn/ωj)
]

zj . (14)

The above equation represents a mapping from the set of mutually independent
functions pj(t) to the homogeneous solution q(t) of system (1). Straightforward
calculations show that the functions pj(t) satisfy the system of second-order differ-
ential equations

p̈+D1ṗ+Ω1p = 0 , (15)

where

p(t) =
[

p1(t) · · · pn(t)
]T

, (16)

D1 = −diag
[

λ1 + λ1 , . . . , λn + λn

]

, (17)

Ω1 = diag
[

λ1λ1 , . . . , λnλn

]

. (18)

Note that the coefficients in (15) are real and diagonal, so (15) represents a real,
decoupled system into which (1) is transformed. The decoupling process is complete
if we connect the initial conditions of (1) with those of (15). It can be shown [20, 23]
that

[

p(0)
ṗ(0)

]

=

[

I I

Λ Λ

] [

V V

VΛ VΛ

]−1 [
q(0)
q̇(0)

]

, (19)

where I is an n× n identity matrix, Λ is a diagonal matrix of the n eigenvalues λj

(that constitute the n complex conjugate pairs) and V is an n× n matrix of the n
corresponding eigenvectors vj .

Although we have presented the decoupling procedure only for the case of com-
plex eigenvalues, the decoupling method and formulas remain valid if some or all
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eigenvalues are real (see [21, 23] for details). It can be checked that the quadratic ei-
genvalue problems associated with (1) and (15) yield the same eigenvalues. Similar
transformations decouple systems of the form (1) with non-symmetric coefficients
and with a non-zero right-hand-side [21, 23]. Finally, the decoupling transformation
generated by phase synchronization is the only transformation (unique up to an e-
quivalence class) that decouples system (1) while keeping its eigenvalues invariant
[21, 23]. For this reason, decoupling by phase synchronization brings about a unique
characterization of system (1).

Upon decoupling (1), it is clear that the solution q(t) is oscillatory if at least one
of the decoupled coordinates, say, pk(t) is oscillatory and if, in addition, pk(0) 6= 0.
The solution q(t) is oscillatory for every set of initial conditions if all decoupled
coordinates pj(t) are oscillatory. Similarly, q(t) is non-oscillatory for every set
of initial conditions if all decoupled coordinates pj(t) are non-oscillatory. Thus,
decoupling (1) reduces the problem of studying the response characteristics of (1) to
studying the response characteristics of the n independent, single-degree-of-freedom
oscillators of (15). To determine whether all or some decoupled coordinates pj(t)
are oscillatory or not, we can use the viscous damping ratio (2). When system (1)
is non-defective, the number of overdamped, underdamped, or critically damped
coordinates is an essential and invariant characteristic of system (1) [17]. The
decoupling of (1) by phase synchronization thus represents a complete solution to
the problem of determining the response characteristics of the linear system (1).
To decouple the system, the quadratic eigenvalue problem (5) needs to be solved,
and hence the complexity of determining the response characteristics of (1) by
decoupling is on the order of n3 [8, 20, 21]. A flowchart for decoupling (1) under
real and complex eigenvalues is given in [21, 23].

3. The viscous damping function. Recall that the viscous damping ratio (2)
provides a straightforwardmeans to determine if the free response of a single-degree-
of-freedom system is oscillatory or not. How can the viscous damping ratio (2)
be generalized to apply to multi-degree-of-freedom systems? Is there a way to
determine the response characteristics of (1) that does not involve decoupling the
equations of motion?

Define a viscous damping function for any complex vector x 6= 0 by

ζ(x) =
x∗Cx

2
√

(x∗Mx) (x∗Kx)
, (20)

where x∗ denotes the complex conjugate transpose of x. Note that the viscous
damping function is a nonlinear function of x and that it is real because M, C and
K are SPD. If vj is a complex eigenvector, then ζ(vj) yields the viscous damping
ratio of one of the decoupled equations. Furthermore, the viscous damping function,
when evaluated at any eigenvector vj , determines if the corresponding eigenvalue
λj is real or complex. To demonstrate this statement, pre-multiply (5) by v∗

j to
obtain

λj =
−v∗

jCvj ±
√

(

v∗

jCvj

)2 − 4
(

v∗

jMvj

) (

v∗

jKvj

)

2v∗

jMvj
. (21)

In terms of the viscous damping function, (21) becomes

λj =

(

−ζ(vj)±
√

ζ2(vj)− 1

)

√

v∗

jKvj

v∗

jMvj
. (22)
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Evidently, the eigenvalue λj is complex if and only if ζ(vj) < 1 and it is real if and
only if ζ(vj) > 1. Moreover, it can be shown [17, 20, 21, 23] that all decoupled
coordinates of (1) are oscillatory if and only if all eigenvalues are complex and
all decoupled coordinates are non-oscillatory if and only if all eigenvalues are real.
Because the decoupled coordinates determine the response characteristics of (1), we
have the following theorem.

Theorem 3.1. The free response of (1) is oscillatory for every set of initial con-
ditions if and only if max

j
ζ(vj) < 1. The free response of (1) is non-oscillatory for

every set of initial conditions if and only if min
j

ζ(vj) > 1.

To utilize Theorem 3.1, one needs to compute the eigenvectors of (1). To decouple
(1) by phase synchronization, only the eigenvalues need to be determined. The
eigenvectors are only needed for the transformation from p back to q, but not to
construct the decoupled equations. With respect to numerical efficiency, it makes
more sense to decouple system (1) by phase synchronization and to compute the
damping ratios of the n independent equations of motion, rather than applying
Theorem 3.1. However, we can simplify Theorem 3.1 by realizing that

min
x∈Cn

ζ(x) ≤ min
j

ζ(vj) ≤ max
j

ζ(vj) ≤ max
x∈Cn

ζ(x) . (23)

The following corollary is a simple consequence of this inequality.

Corollary 1. If max
x∈Cn

ζ(x) < 1, then the response of (1) is oscillatory for every set

of initial conditions. If min
x∈Cn

ζ(x) > 1, then the response of (1) is non-oscillatory

for every set of initial conditions.

We can further reduce the computational costs of checking Corollary 1 by recog-
nizing that

max
x∈Cn

ζ(x) = max
x∈Sn

R+

ζ(x), min
x∈Cn

ζ(x) = min
x∈Sn

R+

ζ(x) , (24)

where Sn
R+ = {x ∈ Rn : ||x || = 1, xj ≥ 0 for all j} denotes half of the real unit

sphere Sn
R = {x ∈ Rn : ||x || = 1}. To prove (24), first observe that ζ(αx) = ζ(x)

for any α 6= 0 and that ζ(x̄) = ζ(x). Thus,

max
x∈Cn

ζ(x) = max
x∈Sn

C+

ζ(x), min
x∈Cn

ζ(x) = min
x∈Sn

C+

ζ(x) , (25)

i.e., it is sufficient to search for the extrema of ζ(x) only on that part of the complex
unit sphere represented by Sn

C+ = {x ∈ Cn : ||x || = 1, Im(xj) ≥ 0 for all j}. It re-
mains to show that the viscous damping function attains its extrema at real x. We
first note that ζ(x) is continuously differentiable so that the global maximum and
minimum of the viscous damping function are attained at a critical point (a local
maximum, minimum or saddle point). Moreover, it can be shown that

(

2C

x̂∗Cx̂
− K

x̂∗Kx̂
− M

x̂∗Mx̂

)

x̂ = 0 (26)

if and only if x̂ is a critical point (i.e., the gradient of ζ(x) with respect to the
real and imaginary part of its argument equals zero). Let x̂ be a critical point of
ζ(x), and let U be a real n× n matrix that defines a congruence transformation to
diagonalize M and K simultaneously: UTMU = I and UTKU = Ω, where Ω (the
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spectral matrix) is diagonal with positive diagonal elements. Then p̂ = U−1x̂ is a
critical point of

ζ̂(p) =
p∗Dp

2
√

(p∗p) (p∗Ωp)
, (27)

where D = UTCU (the modal damping matrix) is SPD. Because p̂ is a critical

point of ζ̂,
(

2D

p̂∗Dp̂
− Ω

p̂∗Ωp̂
− I

p̂∗p̂

)

p̂ = 0 . (28)

The above equation implies that

Dp̂ =
p̂∗Dp̂

2

(

Ω

p̂∗Ωp̂
+

I

p̂∗p̂

)

p̂ (29)

so that
EDp̂ = DEp̂ (30)

for any diagonal matrix E. If E is diagonal and unitary, then ŷ = Ep̂ is a critical

point of ζ̂ because

ŷ∗Dŷ

2

(

Ω

ŷ∗Ωŷ
+

I

ŷ∗ŷ

)

ŷ = E
p̂∗Dp̂

2

(

Ω

p̂∗Ωp̂
+

I

p̂∗p̂

)

p̂

= EDp̂ = DEp̂ = Dŷ .

(31)

Pick E to rotate the critical point p̂ towards the real axis, i.e.,

E = diag
[

e−iθ1 , . . . , e−iθn
]

, (32)

where θ1, . . . , θn are the phase angles of the elements of p̂. This matrix E is unitary

and, therefore, ŷ is a real critical point of ζ̂. Thus, x̂ = Uŷ is a real critical point
of ζ. Equation (24) now follows from the continuity and symmetry of ζ. We thus
have derived the following theorem.

Theorem 3.2. The response characteristics of the linear dynamical system (1) can
be determined by inspection of its viscous damping function ζ(x).

(1) If min
x∈Sn

R+

ζ > 1, the response is non-oscillatory for every set of initial condi-

tions.
(2) If max

x∈Sn
R+

ζ < 1, the response is oscillatory for every set of initial conditions.

(3) At least one eigenvalue is real and defective if ζ(x̂) = 1 and ∇ζ(x̂) = 0 (i.e.,
the gradient of ζ(x) is zero at x̂) for at least one real x̂ 6= 0.

Proof of Part (3) of Theorem 3.2. To prove Part (3) of Theorem 3.2, suppose that
x̂ 6= 0 satisfies the equations ζ(x̂) = 1 and ∇ζ(x̂) = 0. From the definition of the
viscous damping function given in (20), ζ(x̂) = 1 implies that

x̂∗Kx̂ =
(x̂∗Cx̂)2

4x̂∗Mx̂
. (33)

It is easy to see that ∇ζ(x̂) = 0 if and only if
(

2C

x̂∗Cx̂
− K

x̂∗Kx̂
− M

x̂∗Mx̂

)

x̂ = 0 . (34)

Equations (33) and (34) imply that
(

M

(

− x̂∗Cx̂

2x̂∗Mx̂

)2

+

(

− x̂∗Cx̂

2x̂∗Mx̂

)

C+K

)

x̂ = 0 . (35)
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Thus, − (x̂∗Cx̂) / (2x̂∗Mx̂) is an eigenvalue of (5) with eigenvector x̂. By Theo-
rem 4.2 in [18], this eigenvalue is real and defective. Therefore, at least one eigen-
value of system (1) is real and defective.

The significance of (24) in terms of computations is evident. To determine the
response characteristics of system (1), it is sufficient to compute the maximum and
minimum of the real viscous damping function over half of the real unit sphere Sn

R+

(instead of over the complex vector space Cn). Eigenvalues need never be com-
puted. If n = 1, the viscous damping function ζ(x) in (20) becomes the viscous
damping ratio ζ in (2) and Theorem 3.2 gives the familiar definitions of overdamp-
ing, underdamping and critical damping of single-degree-of-freedom systems. It is
in this sense that the viscous damping function (20) represents a direct extension
of the viscous damping ratio ζ.

Simpler sufficient conditions can be obtained in terms of upper and lower bounds
of the viscous damping function. Sharp upper and lower bounds are

σ(C)

2
√

σ̄(M)σ̄(K)
≤ ζ(x) ≤ σ̄(C)

2
√

σ(M)σ(K)
. (36)

In the above inequality, σ and σ̄ denote the smallest and largest eigenvalue, re-
spectively. To show that the bounds given in (36) are sharp, simply check that
the bounds are achieved by a system with M = diag [1, 2], C = diag [0.5, 0.1] and
K = diag [1, 3]. We thus have the following corollary:

Corollary 2. If σ̄(C)/2
√

σ(M)σ(K) < 1, the response of the linear dynamical

system (1) is oscillatory for every set of initial conditions. If σ(C)/2
√

σ̄(M)σ̄(K) >
1, the response of the linear dynamical system (1) is non-oscillatory for every set
of initial conditions.

4. Examples and further discussion. To illustrate the decoupling theory of
Section 2 as well as the use of the viscous damping function (20) and Theorem 3.2,
several numerical examples are provided. Inherent limitations in the optimization
of the viscous damping function are then discussed, followed by a comparison of the
relative merits of the two strategies developed for system characterization: opti-
mization of the viscous damping function and decoupling by phase synchronization.

4.1. Example 1. Consider a simplified, quarter-car model as shown in Fig. 1. The

*
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Figure 1. Quarter-car suspension model of Example 1.

unsprung and sprung masses are denoted by m1 and m2, respectively. The tire is
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modeled by a linear spring k1 in parallel with a viscous damper c1. The suspension
is modeled by a linear spring k2 in parallel with a viscous damper c2. Typical
parameters [6, 31] of a lightly damped passenger car are listed in Table 1.

Table 1. Parameters of the quarter-car suspension model in Fig. 1.

Sprung mass m1 36 kg
Unsprung mass m2 240 kg
Damping coefficient of tire c1 10 N-s/m
Damping coefficient of suspension c2 980 N-s/m
Stiffness of tire k1 160,000 N/m
Stiffness of suspension k2 16,000 N/m

The system is governed by (1) with mass, damping and stiffness matrices

M =

[

m1 0
0 m2

]

, C =

[

c1 + c2 −c2
−c2 c2

]

, K =

[

k1 + k2 −k2
−k2 k2

]

. (37)

The maximum of the viscous damping function of this system is computed to be

ζmax = 0.27 at x̂ = xmax = [0.15, −0.99]
T
. The viscous damping function takes on

its minimum at x̂ = xmin = [0.71, 0.71]
T

with ζmin = 7.51 × 10−4. By Theorem
3.2, the response of this system is oscillatory for every set of initial conditions.
To verify this result, the system is decoupled by phase synchronization and the
viscous damping ratio for each decoupled degree of freedom is computed according
to (2). It is found that both degrees of freedom, p1(t) and p2(t), are underdamped
with viscous damping ratios 0.22 and 0.20, respectively, confirming the results we
obtained by using the viscous damping function.

In some applications, damping in the tire is neglected [6, 31] so that c1 = 0.
The viscous damping matrix C is now symmetric positive semi-definite. Upon
solution of the quadratic eigenvalue problem (5) with c1 = 0 and the remaining
parameters as in Table 1, it is found that all decoupled degrees of freedom associated
with (1) are underdamped with viscous damping ratios 0.22 and 0.20, respectively.
Thus, the system response is oscillatory for every set of initial conditions, but no
undamped motion can be observed because the system is pervasively damped [7,
12, 13]. The viscous damping function is applicable to pervasively damped systems
with a symmetric positive semi-definite viscous damping matrix. Note, however,
that ζmin = 0 does not imply that at least one degree of freedom is undamped. If
system (1) is not pervasively damped, undamped coordinates should be removed
by classical modal analysis [22]. The viscous damping function should be applied
to the remaining pervasively damped subsystem. In applications, viscous damping
can be expected to be pervasive because energy is always dissipated and no truly
undamped motion exists.

4.2. Example 2. This example is taken from [7], where it is used to show that the
overdamping condition proposed in [15] can be misleading. The system is governed
by (1) with

M =

[

1 0
0 1

]

, C =

[

7/4 0
0 21/2

]

, K =

[

1/2 1
1 7

]

. (38)

Using the Euclidean norm, the viscous damping function in (20) is evaluated on the
unit circle ||x || = 1 and plotted in Fig. 2.
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Figure 2. Viscous damping function ζ(x) of Example 2.

We observe that ζmin < 1 and that ζmax > 1 and, thus, Theorem 3.2 is inconclu-
sive. Upon decoupling this system by phase synchronization, it is found that one
decoupled degree of freedom is underdamped (with viscous damping ratio 0.99) and
the other is overdamped (with viscous damping ratio 1.42). The system may exhibit
oscillatory behaviors for some initial conditions and non-oscillatory behaviors for
others.

4.3. Example 3. A two-degree-of-freedom system is defined by

M =

[

1 0
0 1

]

, C =

[

4
√

41− 24
√
2

√

41− 24
√
2 8

]

, K =

[

1 0
0 4

]

. (39)

The viscous damping function of this system is evaluated on the unit circle ||x || = 1
and plotted in Fig. 3. By inspection, ζ(x) ≥ 1 for all real x. By Theorem 3.2, the
free response of this system is non-oscillatory for any set of initial conditions. It can

be checked that ζ(x̂) = ζmin = 1 and ∇ζ(x̂) = 0 for x̂ = x1 = [0.82, −0.58]
T
. This

system possesses at least one real, defective eigenvalue. Decoupling of the system
by phase synchronization confirms that one of the decoupled degrees of freedom is
critically damped, which implies that one eigenvalue is real and defective [17]. The
other degree of freedom is overdamped with viscous damping ratio 3.24. Thus, the
response of this system is non-oscillatory for every set of initial conditions.

4.4. Example 4. A three-degree-of-freedom system is given by

M =





1 0 0
0 2 0
0 0 2



 , C =





3 −2 0
−2 4 −2
0 −2 4



 , K =





2 −1 0
−1 2 −1
0 −1 2



 . (40)

The viscous damping function ζ(x) of this system is evaluated on the unit sphere
||x || = 1 and plotted in Fig. 4. The minimum and maximum of the viscous damp-
ing function are ζmin = 0.43 and ζmin = 1.37, respectively, and so Theorem 3.2
is inconclusive. Upon decoupling the system by phase synchronization, it can be
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verified that one of the decoupled degrees of freedom is underdamped with viscous
damping ratio 0.47 and the remaining two decoupled degrees of freedom are over-
damped with viscous damping ratios 1.07 and 1.20, respectively. The system thus
exhibits oscillations for some initial conditions and no oscillations for others.



60 MATTHIAS MORZFELD, DANIEL T. KAWANO AND FAI MA

4.5. Discussion. In the previous examples, minimization of the viscous damping
function (20) was carried out by Newton’s method, but other methods (such as
quasi Newton methods, gradient descent, or conjugate gradient methods [10, 28])
may also be used. In any numerical minimization, an initial seed is required. In
the above examples we initialized our search for the minimum using the eigenvector
corresponding to the smallest eigenvalue (in magnitude) of the symmetric matrix

2C− σ̄C,KK− σ̄C,MM , (41)

where σ̄C,K and σ̄C,M denote, respectively, the largest eigenvalue (in magnitude)
of the symmetric eigenvalue problems Cu = σKu and Cu = σMu. We initialized
the search for the maximum using the eigenvector corresponding to the largest
eigenvalue (in magnitude) of the symmetric matrix

2C− σ
C,KK− σ

C,MM , (42)

where σC,K and σC,M denote the smallest eigenvalue (in magnitude) of the sym-
metric eigenvalue problems generated by C and K and C and M, respectively. This
initialization is motivated by the fact that, at a critical point, the corresponding
vector x̂ is an eigenvector of the symmetric matrix

2C− x̂TCx

x̂TKx
K− x̂TCx

x̂TMx
M . (43)

This initialization worked well in the examples we considered. The computational
costs of minimizing or maximizing the viscous damping function depends on the
numerical minimization technique used. With Newton’s method and a “good” ini-
tial guess, minimizing or maximizing the viscous damping function is comparable
in complexity to decoupling (1) by phase synchronization. In all examples, we have
confirmed the optimization results by “flooding the space,” i.e., by evaluating the
viscous damping function on a fine discretization of the unit sphere.

We can expect difficulties with the minimization of the viscous damping function
for systems with a very large number of degrees of freedom. The minimization may
get trapped in local extrema, and there is no guarantee that the global extrema
of ζ(x) can be found, regardless of the minimization technique used. Optimiza-
tion of the viscous damping function is thus feasible for problems of a relatively
small dimension only, and the approach of studying the response characteristics of
system (1) by decoupling via phase synchronization appears more applicable and
more accurate. Moreover, Theorem 3.2 only addresses conditions of sufficiency and
thus may be inconclusive in many applications (recall Examples 2 and 4), whereas
necessary and sufficient conditions are obtained by decoupling (1) through phase
synchronization.

5. Concluding remarks. Determining the response characteristics of a multi-
degree-of-freedom, linear dynamical system in free motion is important in analysis
and design. We have developed two strategies for such a task. Major findings are
summarized in the following statements.

1. The response characteristics of a linear dynamical system can be determined
by decoupling the equation of motion while keeping its eigenvalues invari-
ant. The decoupled system can be obtained efficiently (at a cost of order n3)
and uniquely by the methodology of phase synchronization. Decoupling the
system reduces the problem of determining the response characteristics of a



CHARACTERIZATION OF DAMPING 61

multi-degree-of-freedom system to studying the response characteristics of n
independent, single-degree-of-freedom oscillators.

2. The effect of viscous damping on the free motion can also be determined
by minimization and maximization of a viscous damping function, defined in
(20). The viscous damping function represents a direct extension of the clas-
sical damping ratio and is applicable to multi-degree-of-freedom systems. In
applications, optimization of the viscous damping function may be problem-
atic because the iterations can get trapped around local extrema.

The methods presented herein are applicable to any damped linear dynamical
system without the usual assumption of classical damping. This present paper thus
extends and concludes the theory presented in [2, 12, 15, 24, 25, 26, 27]. Among
other things, it is hoped that this paper helps to identify directions for further
research. For example, stability analysis and response characterization of damped
linear systems subjected to gyroscopic and circulatory forces now appears feasible
and is worthwhile in a subsequent course of investigation.
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