
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Essays on Treatment Effect Heterogeneity in Education Policy Interventions

Permalink
https://escholarship.org/uc/item/3rq5d9ms

Author
Lee, Joon-Ho

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rq5d9ms
https://escholarship.org
http://www.cdlib.org/


Essays on Treatment Effect Heterogeneity in Education Policy Interventions

by

Joon-Ho Lee

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Education

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sophia Rabe-Hesketh, Chair
Professor Bruce Fuller

Associate Professor Avi Feller

Spring 2020



Essays on Treatment Effect Heterogeneity in Education Policy Interventions

Copyright 2020
by

Joon-Ho Lee



1

Abstract

Essays on Treatment Effect Heterogeneity in Education Policy Interventions

by

Joon-Ho Lee

Doctor of Philosophy in Education

University of California, Berkeley

Professor Sophia Rabe-Hesketh, Chair

The key focus of this dissertation is on how to understand and measure treatment effect
heterogeneity in experimental or quasi-experimental evaluations of educational policy inter-
ventions. When testing the impact of an intervention, it can be important to know not just
the overall or average effect of the intervention on key outcomes but also how the effect
varies across subgroups of study participants, as defined by several dimensions including
their pre-treatment characteristics, site-level contexts, and the distribution of an outcome
measure. Heterogeneity or variation in effects has critical implications for understanding
how interventions work and which aspects of an intervention’s implementation are most
closely associated with its effectiveness. This dissertation examines both methodological
and substantive questions that pertain to such heterogeneity.

In Chapter 1, I examine Bayesian hierarchical models for multi-site trials that allow esti-
mation of site-specific treatment effects and their distribution. Modeling site-specific effects
using observed data is a critical component in understanding the results of multisite tri-
als. A standard approach leveraging Bayesian methods is to rely on Gaussian distributional
assumptions and to use the posterior means (PM) of the random effects. The standard ap-
proach can be misleading, however, in the estimation of individual site-specific effects and
their empirical distribution and ranks. In this chapter, I review the following two strategies
developed to improve inferences regarding site-specific effects: (a) relaxing the normality
assumption by flexible modeling of the random-effects distribution using Dirichlet process
mixture (DPM) models, and (b) replacing the choice of PM as the summary of the poste-
rior by alternative estimators, such as the constrained Bayes (CB) or the triple-goal (GR)
estimators. I then examine when and to what extent the two strategies and combinations
thereof work or fail under varying conditions.

In Chapter 2, I study methodological issues arise in the practice where Bayesian quantile
regression (BQR) models are applied. The BQR models allow us to study treatment effect
heterogeneity across the distribution of an outcome measure such as a student achievement
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test score. In BQR, the most commonly applied likelihood is the asymmetric Laplace (AL)
likelihood because it is computationally convenient for Markov chain Monte Carlo algorithms.
For easier computation, the scale parameter of the AL distribution is often fixed at a pre-
estimated value or an arbitrary constant. This paper demonstrates that posterior inference
in BQR with an AL likelihood is highly sensitive to the choice of the fixed scale parameter.
Based on sensitivity analyses using Monte Carlo simulations and a real data example, I make
two claims. First, not only the variance directly obtained from the posterior distribution,
but also the adjusted posterior variance proposed by Yang et al. (2015), is highly sensitive to
the value of the scale parameter. Second, in finite samples, both conventional and Bayesian
point estimators can be biased at extreme quantiles. Researchers need to be aware of the
possibility of low coverage probabilities at extreme quantiles mainly caused by biased point
estimates.

In Chapter 3, I examine the use of the grouped/multilevel instrumental variable (IV) quantile
regression approach, a quantile extension of Hausman and Taylor (1981). The common
approach of estimating the shift of group-level (level-2) averages of individual-level (level-1)
outcomes may mask important but more subtle effects on the outcome distribution. For
example, a school-level intervention may have little effect on school-level average test score
but may cause a substantial shift in the lower quantiles of the within-school test score
distributions if the intervention is particularly beneficial for low-performing students. As
one real-world empirical example, I used the grouped/multilevel IV quantile approach to
estimate the effects of district-level increases in per-pupil spending on quantiles of the within-
district distribution of school quality measures. I show how new dollars flowing to districts
did affect varying mixes of teachers and organizational practices inside schools, but in ways
that mitigated against narrowing disparities. Better funded high schools reduced access to
college-prep courses relative to electives, and novice teachers were often assigned to courses
serving English learners, inequities that widened in high-poverty schools.
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Chapter 1 

Improving the Estimation of Site-Specific Effects and 
their Distribution in Multisite Trials 
 

1.1  Introduction 
   Multisite trials, which arise when individuals are randomly assigned to experimental 
conditions within each site, are prevalent in education research. For example, multisite trials take 
up more than 66% of the 175 randomized controlled trials (RCTs) funded by the Institute of 
Education Sciences in the past 26 years (Spybrook, 2013; Raudenbush & Bloom, 2015). 
Designing and analyzing multisite trials is gaining increased interest because multisite trials can 
provide an opportunity to address a series of important questions about the effectiveness of 
educational interventions.  

A multisite trial can be viewed as a fleet of randomized experiments or a planned meta-
analysis (Bloom et al., 2017). Thus, it shares common inferential goals with a meta-analysis such 
as (a) estimating overall mean impact of treatment or (b) quantifying treatment effect 
heterogeneity across study sites. Estimating mean impact is of concern to aggregate evidence 
across multiple contexts to provide a reasonable basis for general policy recommendations 
(Meager, 2019). Knowing about the extent to which treatment effects vary offers an important 
ground for understanding how an intervention might differentially operate in different contexts 
(Miratrix et al., 2016).  

   Many inferential goals in multisite trials, however, require studying individual site-specific 
treatment effects. School or teacher effectiveness studies, for example, directly aim to estimate 
the individual school- or teacher-specific effect parameters (Raudenbush & Willms, 1995). There 
also has been continuous interests in producing rankings or league tables based on the estimated 
site-specific effects for schools or other service providers (Goldstein & Spiegelhalter, 1996; 
Lockwood et al., 2002; Normand & Shahian, 2007). Similar performance evaluation goals based 
on site-specific effects include identifying hot spots (Wright et al., 2003) or estimating the 
proportion of sites with an effect larger or smaller than some threshold (Conlon & Louis, 1999; 
Miratrix et al., 2016).  

   If the individual site-specific effect parameters could be observed, we could easily construct 
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the true cross-site effect distribution and generate the target quantities according to it. As we 
cannot observe the true value of the site-specific effect, however, a key task in this setting is to 
model the distribution of the individual site-level effects using observed data. A standard 
modeling approach is to rely on parametric distributional assumptions in random-effect 
multilevel models and to use an empirical Bayes (EB) prediction of the random effects (e.g., 
Raudenbush & Bloom, 2015). When a fully Bayesian approach is adopted, as in this chapter, 
empirical Bayes, is replaced by the posterior means (PM) of the random effects over the joint 
posterior distribution of the random effects and model parameters. A convenient modeling 
assumption is that the distribution is Gaussian, but this could be problematic when the true 
distribution is multi-modal or long-tailed, for instance. McCulloch and Neuhaus (2011) pointed 
out that the shape of the distribution of the EB predictions is likely to reflect the assumed 
Gaussian distribution, not the true underlying distribution of the random effects.  

   A popular response to this threat has been to adopt flexible distributional assumptions for the 
random effects. Flexible alternatives include (a) continuous parametric non-Gaussian 
distributions such as Student’s 𝑡 (Pinheiro et al., 2001) or the skewed parametric family (Liu & 
Dey, 2008), (b) arbitrary discrete distributions through nonparametric maximum likelihood 
(NPML, Rabe-Hesketh et al., 2003) or smoothing by roughening (Shen & Louis, 1999), and (c) 
mixture distributions such as finite mixtures of Gaussians (Verbeke & Lesaffre, 1996),  
penalized Gaussian mixtures (Ghidey et al., 2004), or Dirichlet process mixtures (Paddock et al., 
2006; Antonelli et al., 2016). These studies advocate the use of flexible distributional 
assumptions since they protect against model misspecification with little loss in efficiency.  

   Instead of relaxing the usual normality assumption by flexible modeling of the random-
effects distribution, alternative approaches replace the choice of PM (or EB) as the summary of 
the posterior by alternative estimators, such as the constrained Bayes (Louis, 1984) or the triple-
goal (Shen & Louis, 1998) estimators. These estimators have been developed to correct the 
underdispersion of the distribution of posterior mean estimates induced by shrinkage. Rather 
than focusing on the robustness of the model specification, these approaches modify the loss 
function being minimized by the estimator, targeting the loss function toward inferential goals. 
For example, the triple-goal estimators aim to optimize the estimation of the empirical 
distribution and ranks of the site-specific parameters with a little trade-off in the optimality of 
individual parameter estimates. These strategies have been considered less than flexible 
modeling of the random-effects distribution and have rarely been used jointly with flexible 
modeling (e.g., Antonelli et al., 2016).  

   Thus, the primary focus of this study is to investigate when and to what extent the two 
diverging strategies, flexible modeling of the prior distribution and minimizing alternative loss 
functions, and combinations thereof work or fail under varying conditions. Paddock et al. (2006) 
provides pioneering work on a similar issue, but they focus mainly on the performance of 
flexible Dirichlet process mixture (DPM) compared with the normality assumption combined 
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when the triple-goal estimator is used. That is, the costs and benefits of using varied 
combinations of the two strategies with respect to different inferential goals were not considered. 
When the inferential goal is to recover the shape of the true distribution of site-specific effects, 
for instance, using a Gaussian model with the triple-goal estimator may be more effective than 
employing a flexible DPM model with the PM which induces underdispersion of the distribution 
due to shrinkage. 

   We are particularly interested in the low-data environment where the number of sites or the 
number of individuals within sites is hardly large. In the context of multisite trials, sites are 
generally small to moderate in number, reaching only to the hundreds (Miratrix et al., 2016). For 
example, the number of sites was equal to 5 in the Moving to Opportunity experiment (Katz et 
al., 2000), 19 in the Early College High Schools study in North Carolina (Edmunds et al., 2015), 
65 in the National Study of Learning Mindsets study (Yeager et al., 2019), and 350 in the 
national Head Start Impact Study (Bloom & Weiland, 2015). Furthermore, even large-scale 
multisite trials are likely to include a high proportion of sites with small sizes which leads to 
large sampling variation. Paddock et al. (2006)’s well-designed simulation study did not consider 
the number of sites as a factor and considered only moderate to high levels of sampling error 
which correspond to the conventional pooling factor metrics (Gelman & Hill, 2007) larger than 
0.5. Here we vary the number of sites, consider a larger range of sampling errors, and directly 
compare the influences of the two strategies for improving inferences regarding site-specific 
effects. 

   This chapter is organized as follows. We begin by presenting standard approaches to 
modeling site-specific effects, namely the Rubin (1981) model and the posterior mean estimator. 
We then discuss inferential goals and threats to inferences for site-specific effects and provide a 
detailed description of the two strategies to improve inferences for a distribution of site-specific 
effects. Next, we provide the design and results of our simulation study. Finally, we summarize 
simulation results and discuss their implications.  

 

1.2  Standard approaches to modeling site-specific effects 

1.2.1  Basic setup: the Rubin (1981) model 
Multisite trials generate multilevel or clustered data because individuals are randomly 

assigned to a treatment or control group within each site. While a broad set of generalized linear 
mixed models is available to analyze such multilevel data, this paper focuses on the Rubin 
(1981) model for parallel randomized experiments, also known as a random-effects (or empirical 
Bayes) meta-analysis (DerSimonion & Laird, 1986; Raudenbush & Bryk, 1985). Suppose a 
multisite trial consists of 𝑁 sites indexed by 𝑗 = 1, … , 𝑁 in which the same treatments are 
performed. Since site-specific true effects, 𝜏)’s, are unobservable, researchers only have access 



4 

 

  

to the observed or estimated effects �̂�) from each of the 𝑁 sites with their corresponding 
squared standard errors 𝑠𝑒-)

.. The �̂�) and 𝑠𝑒-)
. are obtained by maximum likelihood (ML) 

estimation using only the data from site 𝑗. The first stage of Rubin’s (1981) hierarchical model 
describes the relationship between the observed data �̂�) and the latent parameter 𝜏):  

 �̂�)|𝜏), 𝑠𝑒-)
. ~ 𝑁2𝜏), 𝑠𝑒-)

.3      𝑗 = 1, … , 𝑁.  (1) 

The second stage of the Rubin model assumes that 𝜏) are independent and identically 
distributed (𝑖. 𝑖. 𝑑.) with a certain prior distribution 𝐺,  

 𝜏)|𝜏, 𝜎. ~ 𝐺 ≡  𝑁(𝜏, 𝜎.)     𝑗 = 1, … , 𝑁.  (2) 

The prior distribution 𝐺 is unknown in general, but the Rubin (1981) model specifies 𝐺 as a 
Gaussian distribution with two hyperparameters: 𝜏, the mean treatment effect, and 𝜎., the 
variance in true site-specific effects 𝜏)’s across sites, both defined at the population level. 

The key insight of the Rubin model is that the observed variation in estimated site-specific 
effects, var(�̂�)), reflects two sources of variation: (1) genuine heterogeneity in true effects 𝜏)  
between sites (𝜎.), and (2) the sampling variation of each �̂�) around its 𝜏) within sites (𝑠𝑒-)

.). 
When site sample sizes are small, the ML estimates of site-specific effects �̂�) can have large 
sampling error variances 𝑠𝑒-)

.. Thus, the �̂�) will have an empirical distribution function (EDF) 
that is very different from that of the true 𝜏) due to overdispersion of the EDF of �̂�). 
Furthermore, the rank order of effects for different sites can be misrepresented because sites with 
the smallest samples tend to have the most extreme estimates due to large 𝑠𝑒-)

. (Raudenbush & 
Bloom, 2015). Hence, it is necessary to remove the influence of sampling error within sites to 
uncover the true heterogeneity in treatment effects across the population of sites. The Rubin 
(1981) model’s hierarchical framework is designed to separate the genuine heterogeneity 𝜎. 
from the sampling variation 𝑠𝑒-)

. (Meager, 2019).  

 

1.2.2  Site-specific parameter estimation 

Maximum likelihood estimation (MLE), restricted maximum likelihood (REML) or Bayesian 
approaches are typically used to estimate the parameters. Bayesian approaches yield posterior 
mean estimates of 𝜏,  𝜎. and the 𝜏), whereas MLE and REML yield estimates of 𝜏,  𝜎. only, 
and these parameters are treated as known when obtaining conditional posterior means of 𝜏), 
also known as empirical Bayes (EB) estimates. In multisite studies and meta-analyses, the 
primary parameters of interest are typically 𝜏 and  𝜎.. Since the estimation of 𝜏 and 𝜎. using 
Gaussian hierarchical models is found to be robust to misspecification of the prior distribution 𝐺 
(McCulloch & Neuhaus, 2011), the Rubin model can deliver reliable inference for these 



5 

 

  

parameters.  

The focus of this chapter is on inferences for 𝜏), however, which can be sensitive to 
misspecification of 𝐺. Here we provide some details on the conditional posterior distribution of 
𝜏), given the hyperparameters 𝜏 and  𝜎.. When MLE or REML estimates for these 
hyperparameters are plugged in, the mean of the conditional posterior distribution is an empirical 
Bayes estimate. 

Under the model’s normality assumptions, the conditional posterior distribution of 𝜏)is 
normal (Gelman et al., 2013) 

𝜏)|𝜏, 𝜎., �̂�) ~ 𝑁2𝜏)
∗, 𝑉)3     𝑗 = 1, … , 𝑁, 

where 

 𝜏)
∗ =

1
𝜎. ∙ 𝜏 + 1

𝑠𝑒-)
. ∙ �̂�)

1
𝜎. + 1

𝑠𝑒-)
.

 ,    𝑉) =
1

𝜎. +
1

𝑠𝑒-)
.  . (3) 

The inverse of the 𝜎. and 𝑠𝑒-)
., the so-called precisions, hence serve a critical role in obtaining 

the conditional posterior mean 𝜏)
∗ and variance 𝑉). The conditional posterior mean effect is a 

weighted average of the prior mean effect 𝜏 and the observed effect for the site, �̂�), with 
weights given by the precisions. 

The posterior mean effect 𝜏)
∗ can be rewritten as the observed mean effect 𝜏)̂ shrunk toward the 

the prior mean effect 𝜏: 

 𝜏)
∗ = 𝜏 + 2�̂�) − 𝜏3 ∙

𝜎.

𝜎. + 𝑠𝑒-)
.  .  (4) 

The weight, 𝜎. (𝜎. + 𝑠𝑒-)
.)D , can be interpreted as the reliability of the ML estimator of �̂�), 

defined as the proportion of the variance of the ML estimator that is due to the genuine 
underlying heterogeneity across sites (Rabe-Hesketh & Skrondal, 2012). If 𝑠𝑒-)

. = 0, the ML 
estimator of �̂�) is perfectly precise or reliable, and thus the posterior mean and the ML estimator 
are identical (𝜏)

∗ = �̂�)). A large 𝑠𝑒-)
. indicates relatively less informative data about the 𝜏) than 

the prior distribution for 𝜏, which results in the posterior mean effect 𝜏)
∗ shrunken more toward 

the prior mean effect 𝜏. We use the weight, also known as the shrinkage factor, which ranges 
from 0 to 1, to compare the magnitude of 𝜎. to that of 𝑠𝑒-)

.. If the weight is smaller than 0.5, it 
indicates that 𝑠𝑒-)

. is smaller than 𝜎., suggesting larger shrinkage toward the prior mean effect 
𝜏. 
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1.3  Improving inferences for site-specific effects 

1.3.1  Inferential goals and threats to inferences for 𝛕𝐣 

If site-specific effects 𝜏) are the central parameters of interest, there can be three different 
inferential goals (Shen & Louis, 1998): (1) estimating the individual site-specific effect 
parameters, 𝜏), (2) ranking the sites based on 𝜏), and (3) estimating the empirical distribution 
function (EDF) of the 𝜏)’s. For the first goal, we will explain below that it makes sense to use 
the posterior mean of 𝜏) as its estimator, but for the other goals, other summaries of the 
posterior distribution are preferable. Shen and Louis (1998) point out that the loss function that 
are minimized by the estimators should be targeted towards the inferential goal. For the first 
goal, the estimator with the least mean squared error loss (MSEL) is preferred: 

 MSEL =
1
𝑁 ∙ L2𝑎) − 𝜏)3.

N

)OP
  ,  (5) 

where 𝑎) is the estimate of 𝜏) generated by a candidate estimator. The posterior mean (PM) of 
𝜏) minimizes the MSEL. When the hyperparameters are treated as known, the conditional PM, 
such as 𝜏)

∗ in equation (3) and (4), is optimal with respect to the MSEL. That is, the conditional 
MSEL is minimized when 𝑎) = 𝜏)

∗.  

For the second inferential goal, we aim to identify an estimator for the vector of ranks of 𝜏) 
that minimizes the mean squared error loss of the ranks (MSELR),  

 MSELR =
1
𝑁 ∙ L2𝐓S − 𝐑S3

.
N

)OP
  ,  (6) 

where 𝐑S = ∑ 𝐼(𝜏W ≥ 𝜏))N
)OP  is the true rank of 𝜏) with the indicator function 𝐼(∙), and 𝐓S is 

the candidate vector of estimated ranks. As Goldstein and Spiegelhalter (1996) have shown, 
ranks based on the PMs can be suboptimal in general.  

   The Rubin model, combined with PM estimation of the site-specific effects, can perform 
poorly particularly for the third inferential goal. The third goal, estimating the empirical 
distribution function (EDF) of the 𝜏)’s, is one of the Bayes deconvolution problems: using the 
observed sample �̂�) to recover an unknown prior density 𝐺 (Laird, 1978; Stefanski & Carroll, 
1990; Efron, 2016). The prior density 𝐺 is not the same as the EDF of 𝜏), but an estimator of 
the EDF of 𝜏) can be viewed as an estimator of 𝐺. If the PM estimator of the Gaussian 
hierarchical model is used for this goal, there can be multiple threats to the valid estimation of 
the prior distribution 𝐺.  
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First, even when the prior distribution 𝐺 is correctly specified, it is well-known that the 
EDF of the PM effect estimates 𝜏)

∗ is under-dispersed relative to the EDF of 𝜏) because of the 
shrinkage toward the prior mean effect 𝜏 while the EDF of the observed ML effect estimates �̂�) 
is over-dispersed due to the presence of sampling errors (Mislevy et al., 1992). To resolve this 
issue, Shen and Louis (1998) suggest using the integrated squared error loss (ISEL) function to 
identify the optimal estimate of the EDF. Suppose the true EDF is 𝐺N(𝑡) = 𝑁YP ∙ ∑ 𝐼{[\] ^} 

where −∞ < 𝑡 < ∞. Then the ISEL measures the discrepancy between the 𝐺N(𝑡) and 𝐴(𝑡), a 
candidate estimator of 𝐺N(𝑡):  

 ISEL(A, Gf) = g{𝐴(𝑡) − 𝐺N(𝑡)}.d𝑡  .  (7) 

Second, the shape of the estimated EDF of 𝜏)’s can be sensitive to the assumed form of the 
prior distribution 𝐺. McCulloch and Neuhaus (2011) have shown that most aspects of statistical 
inference are highly robust to the misspecified Gaussian assumption for the random effects. 
According to their simulation study, however, the shape of the estimated random effects 
distribution was one prominent exception to the robustness. If the true prior distribution for 𝐺 is 
not Gaussian, the adoption of a Gaussian prior for 𝐺 leads to a misspecified likelihood function, 
which results in nonresponsiveness to skewness, long-tail, multimodality and other complexities 
in the estimation of the EDF of the 𝜏)’s. Since there hardly exist any substantive reasons to 
believe that the true distribution of site-specific effects follows a Gaussian distribution, the Rubin 
model assuming the Gaussian prior for 𝐺 can be unreliable for the third inferential goal, 
particularly when estimating thresholds or tails of the underlying prior distribution for the 𝜏)’s.  

 

1.3.2  Strategies to improve inferences for a distribution of 𝛕𝐣 

There have been two strategies to respond to threats explained in the previous section, one 
regarding posterior sample summarization and the other regarding specification for the prior 
distribution 𝐺. The first is to use posterior summary methods that are directly targeted to an 
inferential goal via choice of the appropriate loss function. The posterior mean is one kind of 
posterior summary estimators which aims to minimize the MSEL of the individual 𝜏). To 
minimize the ISEL of the EDF of 𝜏)’s, Raudenbush and Bloom (2015) recommend using 
constrained Bayes estimator (Louis, 1984; Ghosh, 1992) which rescales the posterior means to 
have variance equal to the estimated marginal variance of the 𝜏)’s. The triple-goal estimator 
developed by Shen and Louis (1998) also directly addresses the threats by attempting to balance 
trade-offs between the losses for the three inferential goals. The section 1.3.3 provides a detailed 
explanation of these estimators.  

The second strategy is to adopt flexible semiparametric or nonparametric specifications for 
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the prior distribution 𝐺 to protect against model misspecification (Paddock et al., 2006). To 
relax the Gaussian assumption for 𝐺, we can hypothesize a less restrictive prior distribution for 
𝐺 that specifies the space of distributions that 𝐺 can take on and specifies a prior for the 
distributions in the selected space (Antonelli et al., 2016). The Dirichlet process (DP) prior is one 
of the most commonly used nonparametric specifications among numerous such priors proposed 
in the Bayesian literature (Lockwood et al., 2018). We explain the use of the DP prior in the 
current setting in section 1.3.4.  

   These two strategies have been rarely used jointly in practice with some notable exceptions 
(e.g., Paddock et al., 2006; Lockwood et al., 2018). In addition, the costs and benefits of the two 
strategies have not been compared directly much in detail under varying conditions in the 
previous simulation studies. The benefits of the strategies on recovering an unknown prior 
density 𝐺 may differ depending upon the number of sites, the reliability of the ML estimator of 
�̂�), the heterogeneity of the 𝑠𝑒-)

., and the shape of true population distribution of 𝐺. In particular, 
we are unaware of any previous studies that investigate the effect of having a small to moderate 
number of sites which is common in the context of meta-analyses and multisite trials. Models 
with DP prior, for example, may requires sample sizes that are quite large to decently recover 𝐺 
or may be highly sensitive to the specification of hyperpriors.  

 

1.3.3  Posterior summary methods: constrained Bayes and triple-goal 
estimators 

In this section, we consider two posterior summary methods that have been developed to 
respond to the threat posed by under-dispersion of PMs: the constrained Bayes estimator (Louis, 
1984; Ghosh, 1992) and triple-goal goal estimator (Shen & Louis, 1998). Our target of interest is 
𝐺N, the EDF of 𝜏)’s. Shen and Louis (1998) showed that the optimal EDF estimator that that 
minimizes the ISEL in equation (7) is  

 �̅�N(𝑡) =  E[Gf(𝑡)| 𝛕k] =
1
𝑁 ∙ L Pr2𝜏) ≤ 𝑡o�̂�)3, (8) 

where 𝛕k = (�̂�P, ⋯ , �̂�N). Let the posterior mean of 𝜏), E(𝜏)|�̂�)), be 𝜂) and the posterior variance 
of 𝜏), Var(𝜏)|�̂�)), be 𝜆). Then, the marginal mean of �̅�N and the finite sample version of the 
marginal variance of �̅�N can be defined as follows (Shen & Louis, 1998): 

 E[�̅�N] = g 𝑡d �̅�N(𝑡) =
∑ 𝜂)

𝑁 = �̅� , (9) 
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 Vart [𝐺N̅] = g 𝑡.d �̅�N(𝑡) − �̅�.  =
∑ 𝜆)

𝑁 +  
∑2𝜂) − �̅�3.

𝑁 − 1  . (10) 

The finite sample variance of posterior means 𝜂) appears in the second term of equation (10). 
PMs tend to be under-dispersed because their variance lack the first term, ∑ 𝜆) 𝑁⁄ , from the 
estimated marginal variance of �̅�N. The goal of the CB estimator is to adjust the posterior means 
to have a variance equal to the estimated marginal variance specified in equation (10). The CB 
estimate denoted as 𝑎)

vw that minimize the posterior expected squared error loss can be defined 
as follows (Ghosh, 1992):  

 𝑎)
vw = �̅� + 2𝜂) − 𝜂̅3 ∙ x1 +

𝑁YP ∑ 𝜆)

(𝑁 − 1)YP ∑2𝜂) − �̅�3.  . (11) 

Since the term in the square root of equation (11) is always positive and larger than 1, the 𝑎)
vw’s 

are more dispersed around �̅� than are PMs (Shen & Louis, 1998).  

   The triple-goal estimator aims to obtain a single set of estimates that could satisfy the three 
inferential goals simultaneously. In essence, however, the triple-goal estimator is designed to 
minimize the losses for two of the goals: estimating the EDF of 𝜏)’s, 𝐺N, and estimating the 
rank of 𝜏), 𝐑). The abbreviation GR reflects the two direct inferential targets and is often used 
to denote the triple-goal estimator in the literature (e.g., Paddock et al., 2006). This chapter also 
uses GR to denote the estimator.  

The GR estimator starts with estimating the posterior mean of the rank of each 𝜏), denoted 
as 𝑅z), which minimizes the MSELR in equation (6): 

 𝑅z) = E{𝑅)|𝜏)̂| = L Pr(𝜏) ≥ 𝜏}|
N

}OP
�̂�)) . (12) 

Then the optimized 𝑅z) are used to obtain integer ranks  𝑅~) = rank(𝑅z)). 𝑅~) is the discretized 
minimum squared error estimate of the rank.  

   Next, we define a discretized version of �̅�N, the EDF estimate that minimizes the ISEL. 
Shen and Louis (1998) showed that the optimal discrete EDF estimate with at most 𝑁 mass 
points is equal to  

  𝑈�� = �̅�N
YP �

2𝑟 − 1
2𝑁 �  ,            𝑟 = 1, ⋯ , 𝑁. (13) 

Then, the GR estimate of 𝜏), denoted as 𝑎)
��, can be obtained by estimating the quantile of the 
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distribution of 𝜏)’s evaluated at 𝑅~) (Lockwood et al., 2018). That is, 𝑎)
�� is equal to 𝑈��~\ 

where 𝑅~) = 1, ⋯ , 𝑁.  

   The estimated 𝑎)
��’s are optimal for estimating the EDF of 𝜏)’s and their ranks because it is 

based on the two discretized minimum squared error estimators, 𝑈�� and 𝑅~). The GR estimator 
pays no explicit attention to reducing the MSEL of the individual site-specific parameters 𝜏). 
However, Shen and Louis (1998) argued that the GR estimator tends to produce small MSEL for 
the individual 𝜏)’s because assigning the 𝑈�’s to co-ordinates by a permutation vector 𝐳 to 

minimize ∑ �𝑈��\ − 𝜂)�
.

 is the same assignments as those aim to minimize ∑2𝑎) − 𝜏)3. . Still, 

the focus and strength of the GR estimator lies in the good estimation of the EDF and ranks of 
𝜏)’s. Thus, it is an open question whether it performs well in estimating the individual site-
specific parameters under various conditions.  

 

1.3.4  Relaxing distributional assumption for the prior 𝐆: Dirichlet process 
mixture 

Instead of assuming that the prior distribution 𝐺 in equation (2) has a known parametric 
form such as Gaussian, the Dirichlet process (DP) can be used to set a prior on the unknown 
distribution 𝐺, acknowledging uncertainty about its form (Congdon, 2020). The DP prior has 
two hyperparameters: a base distribution 𝐺� and a precision parameter 𝛼 (Antoniak, 1974). A 
two-stage hierarchical model incorporating the DP prior can be specified as  

 �̂�)|𝜏), 𝑠𝑒-)
. ~ 𝑁2𝜏), 𝑠𝑒-)

.3      𝑗 = 1, … , 𝑁,   

 𝜏)|𝜏, 𝜎. ~ 𝐺 ≡  DP(𝛼, 𝐺�)     𝑗 = 1, … , 𝑁.  (14) 

Since this model allows measurement errors (𝑠𝑒-)
.) on the observed site-level treatment effects at 

the first-stage, we referred to this model as a Dirichlet process mixture (DPM) model 
(MacEachern & Muller, 1998; Basu & Chib, 2003). This model can be viewed as 
semiparametric because the first-stage model for �̂�) is a parametric model with Gaussian error 
distribution but the second-stage model for 𝜏) allows a nonparametric specification with a DP 
prior.  

𝐺� provides an initial best guess of the shape of the prior distribution 𝐺, which is commonly 
taken to be a Gaussian distribution in practice. The precision parameter 𝛼 then controls the 
degree of shrinkage of 𝐺 toward 𝐺�. In other words, 𝛼 determines the extent to which 
distributions in the sample space partitioned into measurable subsets 𝐺P, ⋯ , 𝐺� are divergent 
from 𝐺�. To understand the role of 𝐺� and 𝛼 more intuitively, it is helpful to refer to a form of 
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the induced prior distribution on the site-specific parameter 𝜏), so-called the Polya urn scheme 
(West et al., 1994; Dunson et al., 2007): 

 𝜏)|𝐺�, 𝛼, 𝜏P, ⋯ , 𝜏)YP  ~ �
𝛼

𝛼 + 𝑗 − 1� ∙ 𝐺� + �
1

𝛼 + 𝑗 − 1� ∙ L 𝛿(𝜏})
)YP

}OP
 ,    (15) 

where 𝛿(𝜏}) denotes a point mass at 𝜏}. This conditional prior distribution for 𝜏) is a 
weighted mixture of the base distribution 𝐺� and probability masses at the previous site’s 
parameter values, that is, the EDF of (𝜏P, ⋯ , 𝜏)YP). In this scheme, the first site’s treatment 
effect 𝜏P is drawn from 𝐺�. Then the second site’s treatment effect 𝜏. is drawn from 𝐺� with 
probability of 𝛼/(𝛼 + 1) or a new empirical distribution 𝛿(𝜏P) with probability of 1/(𝛼 + 1). 
This sampling rule continues, and for the 𝑗th site, 𝜏) is drawn from 𝐺� with probability 
proportional to 𝑗 − 1, the number of previous sites which already have realized site-specific 

parameters, or is sampled from the new empirical distribution of ∑ 𝛿(𝜏}))YP
}OP  with probability 

proportional to 𝛼 (Gelman et al., 2013).  

𝛼 can be viewed as a prior sample size in some sense (Gelman et al, 2013), as opposed to 
the sample size of empirical data 𝑁. Thus, a huge 𝛼 value implies an extreme weight on the 
(prior) base distribution 𝐺�. In that case, the joint distribution of 𝜏)’s tends to be the product of 
𝑁 independent draws from 𝐺� (Antonelli et al., 2016) and the second-stage model in equation 
(14) converges to the Rubin (1981) model with a Gaussian prior. On the other hand, a zero 𝛼 
value imposes a null weight on 𝐺�, which leads to the distribution of 𝜏) being a point mass of 
𝛿(𝜏P). Then, the second-stage model in equation (14) collapses to a model with all sites sharing 
the common value of 𝜏P.  

   Hence, we can infer that 𝛼 determines the number of distinct values of 𝜏), often referred to 
as the unique number of clusters 𝐾 generated by the DP. The 𝐾 is not necessarily an exact 
representation of the number of mixture components 𝐶 (latent subpopulation with substantive 
meaning) as specified in finite mixture models, but 𝐾 can be considered as an upper bound of 
the 𝐶 (Ishwaran & Zarepour, 2000). The expected number of 𝐾 is a function of 𝛼 and 𝑁, 
given by the sum of the weights of 𝐺� in equation (15) over all 𝑁 sites: 

 E(𝐾|𝐺�, 𝛼, 𝑁) = L
𝛼

𝛼 + 𝑗 − 1

N

)OP
 .     (16) 

   The hyperprior for 𝛼 plays an essential role in determining the expected number of clusters 
and therefore in controlling the posterior distribution over clusters. In practice, it is a standard 
approach to use a Gamma(𝑎, 𝑏) distribution with fixed hyperparameters, the shape parameter 𝑎 
and the rate parameter 𝑏, to capture the uncertainty in 𝛼 (Escobar & West, 1995). A key issue is 
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whether the choice of 𝑎 and 𝑏 may have a substantial impact on the posterior distribution of 
𝛼, and in turn on the clustering behavior. There exist a group of studies arguing that the choice of 
hyperparameters is less of a concern because the data tend to be quite informative, resulting in a 
concentrated posterior even with a high variance prior for 𝛼 (Leslie et al., 2007; Gelman et al., 
2013). On the other hand, another group of studies report that estimation or inference can be 
sensitive to the specific choice of the hyperparameters and in general to the strategies for 
selecting 𝛼 (Dorazio et al., 2008; Dorazio, 2009; Paddock et al., 2006; Murugiah & Sweeting, 
2012). Our interest is to evaluate the sensitivity under two different options, diffuse and 
informative DP priors, particularly in the context of recovering the EDF of 𝜏)’s. 

   The first option is to specify a diffuse Gamma distribution when a priori knowledge on 𝛼 or 
𝐾 is absent. Antonelli et al. (2016) chose values of 𝑎 and 𝑏 such that 𝛼 is centered between 1 
and 𝑁 with a large variance to assign a priori mass to a wide range of 𝛼 values. If 𝑁 = 50, for 
example, we can assign 25 as the mean of the 𝛼 distribution and 250 as a variance which is ten 
times the magnitude of the mean. Given these a priori values for the mean and variance of 𝛼, we 
can obtain the corresponding values of 𝑎 = 2.5 and 𝑏 = 0.1 based on the moments of a 
Gamma distribution: E(𝛼|𝑎, 𝑏) = 𝑎/𝑏 and Var(𝛼|𝑎, 𝑏) = 𝑎/𝑏..  

   This study suggests the second option, using 𝜒. distribution to construct an informative 
prior for 𝛼. This strategy is based on the probability mass function for the prior distribution of 
𝐾 induced by a Gamma(𝑎, 𝑏) prior for 𝛼 and the number of sites 𝑁 (Dorazio, 2009; 
Antonelli et al., 2016): 

 Pr(𝐾|𝑁, 𝑎, 𝑏) =
𝑏� ∙ 𝑆P(𝑁, 𝐾)

Γ(𝑎) ∙ g
𝛼���YP ∙ exp(−𝑏𝛼) ∙ Γ(𝛼)

Γ(𝛼 + 𝑁) 𝑑𝛼
£

�
,     (17) 

where 𝑆P(𝑁, 𝐾) is the unsigned Stirling number of the first kind and 𝐾 = 1, ⋯ , 𝑁. Suppose 
Pr(𝐾) that encodes our prior information for the distribution of the expected number of clusters 
𝐾. We can obtain a solution for 𝑎 and 𝑏 by minimizing the discrepancy between the encoded 
prior Pr(𝐾) and the 𝛼-induced prior Pr(𝐾|𝑁, 𝑎, 𝑏), defined by the the following Kullback-
Leibler (KL) divergence measure: 

 𝐷¥¦(𝑎, 𝑏) = L Pr(𝐾) ∙ log ª
Pr(𝐾)

Pr(𝐾|𝑁, 𝑎, 𝑏)«
N

�OP
 .     (18) 

Dorazio (2009) proposed specifying 𝑎 and 𝑏 to be the values for which Pr(𝐾|𝑁, 𝑎, 𝑏) most 
closely matches the discrete uniform distribution to reflect the absence of explicit prior 
information. This method attempts to mimic a noninformative prior for 𝐾.  

   Our proposal is to take Pr(𝐾) ~ 𝜒.(df = 𝑢) to more intuitively encode our prior 
knowledge on the expected number of clusters 𝐾 and its uncertainty. The 𝜒. distribution has 
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only one parameter: a positive integer 𝑢 that specifies the number of degrees of freedom. Our 
framework is mainly motivated by the feature of the 𝜒. distribution that its mean and variance 
are 𝑢 and 2𝑢, respectively. If it is expected that there are approximately five clusters (𝐾 = 5) 
and 𝑁 = 50, then one can simply assume that Pr(𝐾) follows a 𝜒.(5) distribution and specify 
a Gamma(𝑎, 𝑏) that closely matches 𝜒.(5) using equations (17) and (18). Panel A of Figure 
1.1 shows the result of the numerical analysis based on a grid search algorithm designed to 
identify the global minimum of the KL divergence measure defined in equation (18). The 
Gamma distribution with (𝑎, 𝑏) = (1.60, 1.22) obtained as the solution that minimizes the KL 
closely matches the 𝜒.(5) distribution as shown in Panel B of Figure 1.1. This strategy is useful 
for constructing an informative prior for 𝐾, particularly when one wants to impose near- zero 
probabilities beyond a certain threshold (𝐾 = 25 in the example shown in Figure 1.1) and to be 
clear about the prior mean and variance of K.  

 

 

Figure 1.1: The derivation of the informative prior for the precision parameter 𝛼 by 
approximating a Gamma(𝑎, 𝑏) to a 𝜒.(5)  

 

1.4  A simulation study 

1.4.1  Design of the simulation 
   We conduct a comprehensive Monte Carlo (MC) simulation study focusing on relative 
benefits of the two strategies to improve inferences for site-specific effects: using loss-based 
posterior summary methods targeted to inferential goals (PM, CB, and GR) and adopting a 
flexible Dirichlet process for 𝐺. We chose to systematically vary four factors for data 
generation: (a) the number of sites, (b) the reliability of the ML estimates or the shrinkage factor, 
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(c) the heterogeneity of the 𝑠𝑒-)
.’s, and (d) the true population distribution of 𝐺.  

   The three choices of the number of sites were 𝑁 = 25, 50, 200. Meager (2016) suggests not 
to use flexible nonparametric specifications in a low-data environment (𝑁 < 50) because the 
model risks overfitting the scarce data. Gelman et al. (2013), in contrast, claim that the DP has no 
tendency for overfitting due to its intrinsic penalty that favors allocation to few clusters that are 
really needed to fit the data. Our main interest regarding this factor is to evaluate whether 
increasing 𝑁 moderates the impact of adopting flexible DP priors on performance measures.    

   A vector of the first-stage measurement or sampling errors, 𝑠𝑒-)
.’s, is generated by the 

combination of two factors: the average reliability of the ML estimates 𝜏)̂ denoted as 𝐼 and the 
heterogeneity of the 𝑠𝑒-)

.’s across the 𝑁 sites denoted as 𝑅. Values of 𝐼 examined in this study 
are 𝐼 = 0.1, 0.5, 0.9, and those of 𝑅 are 𝑅 = 1, 5, 10. We denote the resulting vector of 
simulated 𝑠𝑒-)

.’s as 𝚬�.  

The average reliability 𝐼 determines how informative the first-stage ML estimates �̂�)’s are 
on average. Since we will fix the between-site variance to one (𝜎. = 1) in all the true data-
generating models for 𝐺,  𝐼 is given by 1 (1 + GM2𝑠𝑒-)

.3)⁄  where GM(𝑠𝑒-)
.) represents the 

geometric mean of 𝑠𝑒-)
., exp2∑ ln (𝑠𝑒-)

.)N
)OP 3. Hence, a large average reliability value indicates 

less noisy, more informative observed ML estimates �̂�)’s. If 𝐼 = 0.9, the average within-site 
sampling variance is about a tenth of the between-site heterogeneity (GM2𝑠𝑒-)

.3 = 0.11, 𝜎. =
1.00). We are particularly interested in low informative data environments where 𝐼 = 0.1, which 
are often encountered in practical applications with small site sizes. If 𝐼 = 0.1, GM2𝑠𝑒-)

.3 is 
nine times as large as 𝜎., generating quite noisy �̂�)’s.  

   While the 𝐼 determines the geometric mean of the 𝑠𝑒-)
.’s, 𝑅 controls the heterogeneity of 

the 𝑠𝑒-)
.’s across sites. 𝑅 is defined as the ratio of the largest to smallest 𝑠𝑒-)

. as in Paddock et 
al. (2006). The largest and smallest 𝑠𝑒-)

. can be expressed as a function of 𝐼 and 𝑅: 𝑠𝑒-±²³. =

𝑅 ∙ �PY´
´ � and 𝑠𝑒-±µ¶

. = P
� ∙ �PY´

´ �. We can obtain  𝚬� , a vector of simulated 𝑠𝑒-)
.’s, by taking the 

exponential of 𝑁 equally spaced values ranging from ln (𝑠𝑒-±µ¶
. ) to ln (𝑠𝑒-±²³. ). The resulting 

𝚬�  reflects both the overall level and heterogeneity of 𝑠𝑒-)
.’s across sites which are encapsulated 

in the two simulation factors 𝐼 and 𝑅. If 𝐼 = 0.1 and 𝑅 = 1, all site-specific ML estimates 
will be uniformly noisy. If 𝐼 = 0.1 and 𝑅 = 10, there will be sites that have very noisy ML 
estimates as well as those with precise estimates, although the overall level of data 
informativeness is the same as when 𝐼 = 0.1 and 𝑅 = 1.  

   The true population distribution 𝐺 is either a Gaussian distribution, a mixture of two 
Gaussian distributions, or an asymmetric Laplace (AL) distribution. Figure 1.2 shows the shape 
of each distribution. We consider the Gaussian mixture and AL distributions to examine the non-
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normal circumstances where true 𝐺 is multimodal, skewed, or long-tailed. Note that the 
Gaussian distribution in Panel A of Figure 1.2 has mean 0 and variance 1 (𝜏) ~ 𝑁(0, 1)). For 
comparability with the Gaussian model, we normalized the Gaussian mixture and AL models to 
have zero means and unit variances as well. Suppose that the Gaussian mixture data-generating 
model has two mixture components, 𝑁(𝜏P, 𝜎P

.) and 𝑁(𝜏., 𝜎.
.), with a mixture weight for the 

first component, 𝑤. To force this mixture distribution to have mean 0 and variance 1, we define 
a normalizing factor denoted as 𝐶:  

 𝐶 = [𝑤𝑢. + (1 − 𝑤) + 𝑤(1 − 𝑤)𝛿.]P/.,     (19) 

where 𝛿 = 𝜏. − 𝜏P and 𝑢 = 𝜎.
./𝜎P

.. Then, with probability 𝑤, 𝜏) is simulated from the first 

normalized component 𝑁(− ¸¹
v , P

v), otherwise from the second normalized component 

𝑁((PY¸)¹
v , º

v) with probability of 1 − 𝑤.  

 

 

Figure 1.2: The true population distribution 𝐺: Gaussian, mixture of two Gaussian, and 
asymmetric Laplace distributions 
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To simulate 𝐺 from the AL distribution with zero mean and unit variance, the location and 
scale parameters, 𝜇 and 𝜓, are adjusted as follows as functions of the skewness parameter 𝜌: 

 𝜏)|𝜇, 𝜓, 𝜌 ~ AL(𝜇, 𝜓, 𝜌)     𝑗 = 1, … , 𝑁,       

where 

 𝜇 = −
𝜓(1 − 𝜌.)

√2𝜌
 ,      𝜓 = ¿

2𝜌.

1 + 𝜌ÀÁ
P/.

 .  (20) 

The skewness parameter 𝜌 is set to 0.1 so that the resulting 𝐺 can have a right-skewed 
distribution with a long tail. This AL data-generating model is useful to evaluate whether the two 
strategies for the improved 𝜏) inferences help to recover large but rare site-level effects.  

   These four factors (𝑁, 𝐼, 𝑅, and true 𝐺) generate 3À = 81 simulation conditions and for 
each condition 100 datasets are generated. We fit three models to each of the 8,100 datasets: (a) 
G is standard Gaussian model, (b) G is a Dirichlet process mixture (DPM) model with a diffuse 
𝛼 prior (DP-diffuse), and (c) G is a DPM model with an informative 𝛼 prior (DP-inform). 
These three models share the same first stage model specifications: �̂�)|𝜏), 𝑠𝑒-)

. ~ 𝑁2𝜏), 𝑠𝑒-)
.3. The 

models differ based on the second stage specifications for modeling 𝐺, 𝜏)|𝛉 ~ 𝐺 where 𝛉 
represents a vector of hyperparameters for 𝐺.  

The Gaussian model assumes that 𝐺 ~ 𝑁(𝜏, 𝜎.) where hyperpriors are set to be vague: 
𝜏 ~ 𝑁(0, 100) and 𝜎. ~ Unif(0, 100). We avoid using the inverse-gamma prior for 𝜎. 
because it does not have any proper limiting posterior distribution particularly for the simulation 
settings we have, where the number of sites 𝑁 is small or the site-level variation 𝜎. is small by 
design (Gelman, 2006). The two DPM models assume that 𝐺 ~ DP(𝛼, 𝐺�) where 𝐺� is a 
Gaussian base distribution and 𝛼 is a precision parameter, and differ in their priors for the 
precision parameter. Both DPM models, DP-diffuse and DP-inform, share the same base 
distribution 𝐺� ~ 𝑁(𝜏)|𝜏, 𝜎.) with non-informative hyperpriors as in the Gaussian model: 
𝜏 ~ (0, 100) and 𝜎Y. ~ Unif(0, 100).  

The two DPM models differ depending upon the specification of the Gamma(𝑎, 𝑏) priors 
for 𝛼. In the DP-diffuse models, 𝑎 and 𝑏 are chosen so that the mean and variance of 𝛼 are 
E(𝛼|𝑎, 𝑏) = 𝑁/2 and Var(𝛼|𝑎, 𝑏) = 𝑁/5, respectively. For the three choices of 𝑁 =
25, 50, 200, the pairs of (𝑎, 𝑏) for the DP-diffuse model are (1.25, 0.1), (2.5, 0.1), and 
(10, 0.1). On the other hand, for the DP-inform models, 𝑎 and 𝑏 are chosen as the solution 
that minimizes the KL distance of the distribution of the number of clusters to the 𝜒. 
distribution with df = 5. This means that the DP-inform models assume that the expected 
number of clusters 𝐾 is five and that 𝐾 values larger than about 25 nearly impossible. The 
obtained solutions were (1.24, 0.64), (1.60, 1.22), and (1.96, 2.38) for the three choices of 
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𝑁 = 25, 50, 200. Figure 1.3 shows the distributions of the number of clusters for the two DPM 
models when 𝑁 = 50. We see that the two DPM models represent contrasting beliefs regarding 
𝐾. The DP-inform model is more favorable to a more uneven and multimodal 𝐺, assuming that 
about five clusters are needed for 50 sites, while the DP-diffuse model favors smoother 𝐺 with 
about 25-30 clusters for 50 sites.  

  

 

Figure 1.3: The distributions of the expected number of clusters 𝐾 for the DP-diffuse and DP-
inform models (𝑁 = 50) 

 

For each generated dataset, we use four Markov Chain Monte Carlo (MCMC) chains of 
length 2,000 with a burn-in of 1,000 for each chain. MCMC simulations generate posterior 
samples of size 4,000 from the joint posterior distribution of 𝑁 site-specific effects (we ignore 
the other parameters). We apply the three posterior summary methods discussed in the previous 
section to obtain posterior mean (PM), constrained Bayes (CB), and triple-goal (GR) estimates of 
site-specific effects for each model and dataset.  

 

1.4.2  Performance evaluators 
   To examine the performance of the strategies for improving inferences for site-specific 
effects, we mainly assess three performance criteria: (a) the mean squared error loss (MSEL) for 
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the individual site-specific effect parameters 𝜏), (b) the mean squared error loss of the ranks 
(MSELR) based on 𝜏), and (c) the integrated squared error loss (ISEL) for the EDF of the 𝜏)’s. 
These criteria are directly aligned with the inferential goals we illustrated in the previous 
sections. In addition, we estimate biases in the percentile estimates of 𝐺 to investigate the 
performance of the strategies in recovering the unknown density 𝐺 at specific parts of the 
distribution. We estimate these biases at the 50th and 90th percentiles. In particular, the 
discrepancy between the true and estimated 90th percentile estimates reflects the performance of 
the strategies in recovering large and uncommon impacts at the extreme.  

   We fit a series of meta-model regressions (Skrondal, 2000) to investigate the relationships 
between the performance evaluators and the experimental factors. The analysis and reporting of 
simulation results continues to rely mostly on conventional visual or descriptive analyses 
(Harwell et al., 2017), although there have been recommendations of using so-called meta-
models, model-based inferential analyses of simulation results guided by experimental design 
(Skrondal, 2000; Boomsma, 2013; Paxton et al., 2001). The meta-models can be useful to 
accurately detect important patterns and precisely estimate their magnitude. 

   Our meta-model regressions are fitted separately for the simulation results from three true 
population distribution 𝐺’s: a Gaussian, a mixture of two Gaussian, and an AL distributions. An 
analytic sample from each data-generating model consists of 24,300 observations: a factorial 
combination of (a) three levels of 𝑁 (25, 50, and 200), (b) three levels of 𝐼 (0.1, 0.5, an 0.9), 
(c) three levels of 𝑅 (1, 5, and 10), (d) three choices of data-analytic models (Gaussian, DP-
diffuse, and DP-inform), (e) three choices of posterior summary estimators (PM, CB, and GR), 
and (f) 100 replications. To consider the statistical dependence induced by the same data-
generating processes, we construct 2,700 cluster (dataset) identifiers (based on 𝑁, 𝐼, 𝑅, and 100 
replications), the relevant factors used for data-generation. We denote the total number of 
observations, 24,300 as 𝑛.  

   Our target outcome variables are five performance evaluators, MSEL, MSELR, ISEL, and 
biases of the 50th and 90th percentiles. For the explanatory variables, we consider the five 
simulation design factors, 𝑁, 𝐼, 𝑅, data-analytic models, and posterior summary methods. We 
construct a set of dummy variables for the five factors with reference groups being 𝑁 = 25, 𝐼 =
0.1, 𝑅 = 1, the Gaussian data-analytic model, and the PM posterior summary method. 
Accordingly, each design factor with three categories generates two dummy variables, which 
results in total 10 dummy variables included in the model.  

Since the target outcomes are all continuous variables, we adopt a standard linear regression 
model to specify a meta-model as 

 𝐘Ê×P = 𝐗Ê×Í𝛃Í×P + 𝛜Ê×P . (21) 

In this model, 𝐘 is the 𝑛 × 1 outcome vector and 𝛜 is the vector of error terms of the same 
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length. 𝐗 is the design matrix that includes (a) a vector of 1’s for the intercept, (b) 10 columns 
that consist of the five times two individual dummy variables for main effects, and (c) 40 
columns for two-way interactions of the ten dummy variables. We have 40 two-way interaction 
variables, not 10C2 = 45, because the five interaction terms between dummy variables within the 
same simulation factor are excluded. Hence, the total number of columns of the design matrix 𝐗, 
denoted as 𝑝, is 51. 𝛃 is the 𝑝 × 1 coefficient vector which contains the parameters of interest 
in our meta-model. We will interpret the meaning of each 𝛽 coefficient in the next section. 
Cluster-robust standard errors for 𝛃� based on the sandwich estimator are obtained where the 
clusters are the 2,700 datasets. This is similar to using a repeated-measures ANOVA where data-
analytic model and summary method are within-subject factors and the other design variables are 
between subject. 

 

1.4.3  Results 
   Table 1.1 and Table 1.2 summarize results from the meta-models separately fitted for the 
simulation results from with the Gaussian mixture and AL distributions. The intercept for each 
model indicates the estimated mean of loss estimates (MSEL, ISEL, and MSELR) when all 
simulation design factors are set to be their reference groups: that is, when the Gaussian data-
analytic model is used combined with the PM posterior summary estimator under the data-
generating condition of 𝑁 = 25, 𝐼 = 0.1, and 𝑅 = 1. This reference condition can be viewed 
as the most challenging low-data environment where a standard Gaussian-PM approach to 
modeling site-specific effects is applied. Under this low-data environment it is expected that the 
Gaussian model with PM estimator produces substantial shrinkage, and hence poor performance 
for ISEL and MSELR. We observe from the intercepts in both Table 1.1 and Table 1.2 that the 
loss estimates for the individual site-specific parameters 𝜏) are far larger compare to those for 
the EDF of 𝜏)’s and the rank estimates based on 𝜏)’s.  

The coefficients for the ten individual dummy variables indicate how much the loss estimates 
are reduced from the reference condition when a single simulation factor is changed. For 
example, in Table 1.1, increasing the number of sites 𝑁 (from 25) to 50 or 200 reduces the 
MSEL for individual 𝜏) by 0.236 or 0.410 on average, respectively, which is about 17.6% or 
30.6% of the MSEL estimate of the reference condition (1.339). The increased heterogeneity of 
𝑠𝑒-)

. is also helpful to reduce the MSEL for 𝜏). When 𝑅 increases, more individual sites have 
relatively smaller sampling errors, which leads to lower-error estimates for these lower-error 
cases (Paddock et al., 2006). Although there are also more sites with higher sampling errors as 𝑅 
increases, it seems that the positive impact of having lower-error sites on reducing the losses 
overwhelms the negative impact of having higher-error cases under the low-data environment 
(small 𝑁 and 𝐼).
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Table 1.1: Meta-model regression results (Data-generating model: a mixture of two Gaussians) 

Outcomes: MSEL for 𝜏) ISEL for the EDF of 𝜏)’s MSELR for rank 
Terms 𝛽 estimate 𝑡 𝛽 estimate 𝑡 𝛽 estimate 𝑡 
Intercept 1,339 44.3 269 41.8 111 100.7 
N = 50 -263 -9.8 -38 -6.8 4 3.9 
N = 200 -410 -16.5 -82 -17.1 6 6.8 
I = 0.5 -747 -29.3 -179 -35.6 -54 -53.3 
I = 0.9 -1,186 -47.5 -243 -50.2 -92 -105.2 
R = 5 -235 -8.3 -16 -2.9 -2 -2.2 
R = 10 -401 -15.9 -55 -11.3 -7 -7.3 
DP-diffuse 565 19.4 4 0.6 1 0.7 
DP-inform 41 1.5 -3 -0.5 0 0 
CB 671 22.8 -107 -20.5 0 0 
GR 627 22 -110 -20.8 0 0.3 
N = 50 × I = 0.5 197 9.3 17 4.6 -3 -4 
N = 200 × I = 0.5 280 14.3 37 11.4 -4 -5 
N = 50 × I = 0.9 219 10.6 30 8.2 -3 -3.9 
N = 200 × I = 0.9 317 16.6 60 18.8 -7 -10.8 
N = 50 × R = 5 43 2.2 -4 -1.1 -2 -3.2 
N = 200 × R = 5 80 4.5 3 1.2 -2 -3.1 
N = 50 × R = 10 139 7.9 5 1.8 -2 -2.1 
N = 200 × R = 10 144 8.9 13 5.1 0 -0.2 
N = 50 × DP-diffuse 42 2.3 -3 -0.9 0 -0.6 
N = 200 × DP-diffuse 138 8.2 -6 -2.3 0 -0.8 
N = 50 × DP-inform -15 -0.9 -3 -1.1 0 -0.2 
N = 200 × DP-inform -35 -2.2 -6 -2.5 0 -0.5 
N = 50 × CB -52 -3.1 3 1 0 0 
N = 200 × CB -51 -3.3 11 3.8 0 0 
N = 50 × GR -37 -2.3 6 1.9 0 0.2 
N = 200 × GR -23 -1.5 17 6 0 0.1 
I = 0.5 × R = 5 271 13.4 10 2.9 5 6.9 
I = 0.9 × R = 5 292 14.7 16 4.7 6 9.6 
I = 0.5 × R = 10 444 23.8 39 12.3 10 13.3 
I = 0.9 × R = 10 473 26 47 15.5 12 19.2 
I = 0.5 × DP-diffuse -721 -37.3 -19 -5.8 0 -0.2 
I = 0.9 × DP-diffuse -738 -39 -13 -4 -1 -1.3 
I = 0.5 × DP-inform -63 -3.6 1 0.5 1 0.7 
I = 0.9 × DP-inform -46 -2.6 8 2.8 0 -0.2 
I = 0.5 × CB -606 -34.5 70 20.2 0 0 
I = 0.9 × CB -679 -39.7 90 26.9 0 0 
I = 0.5 × GR -546 -31.9 72 20.9 0 -0.3 
I = 0.9 × GR -631 -37.9 92 27.6 0 -0.5 
R = 5 × DP-diffuse -84 -4.8 -3 -1 0 -0.4 
R = 10 × DP-diffuse -155 -9.6 -4 -1.7 0 0.6 
R = 5 × DP-inform 1 0.1 -1 -0.4 0 -0.6 
R = 10 × DP-inform -3 -0.2 -2 -0.6 0 -0.1 
R = 5 × CB -62 -3.9 3 0.8 0 0 
R = 10 × CB -82 -5.6 7 2.7 0 0 
R = 5 × GR -62 -4 2 0.6 0 -0.4 
R = 10 × GR -74 -5.2 6 2.1 -1 -0.9 
DP-diffuse × CB 268 17.6 24 8.2 0 0 
DP-inform × CB 18 1.3 1 0.5 0 0 
DP-diffuse × GR 256 17.2 17 6 0 -0.3 
DP-inform × GR 0 0 -2 -0.7 0 -0.2 

Note: The total number of observations 𝑛 = 24,300; The 𝛽 coefficient estimates are multiplied by 1,000. 
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Table 1.2: Meta-model regression results (Data-generating model: asymmetric Laplace distribution) 

Outcomes: MSEL for 𝜏) ISEL for the EDF of 𝜏)’s MSELR for rank 
Terms 𝛽 estimate 𝑡 𝛽 estimate 𝑡 𝛽 estimate 𝑡 
Intercept 1,300 48.1 280 37.7 113 102.2 
N = 50 -275 -10.8 -85 -14.7 7 6.5 
N = 200 -397 -17.7 -119 -22.4 9 9.8 
I = 0.5 -766 -32.6 -186 -33.9 -48 -45.7 
I = 0.9 -1,188 -52.4 -247 -46.4 -93 -106.2 
R = 5 -201 -8.1 -42 -7.2 -5 -4.9 
R = 10 -258 -10.1 -58 -10.2 -4 -3.9 
DP-diffuse 578 21.7 20 3.3 0 0.1 
DP-inform 57 2.3 2 0.3 0 -0.1 
CB 696 25.8 -88 -15.4 0 0 
GR 653 24.6 -95 -16.7 0 0.2 
N = 50 × I = 0.5 252 11.8 47 12.1 -6 -6.5 
N = 200 × I = 0.5 341 17.9 63 18.1 -6 -8.2 
N = 50 × I = 0.9 280 13.6 60 16.1 -5 -7.2 
N = 200 × I = 0.9 361 19.6 88 26.1 -9 -13.6 
N = 50 × R = 5 63 3.5 21 6.1 0 -0.6 
N = 200 × R = 5 68 4.4 15 5 0 0.3 
N = 50 × R = 10 14 0.7 19 5.9 -3 -3.9 
N = 200 × R = 10 27 1.6 15 5.1 -3 -5.2 
N = 50 × DP-diffuse 36 2 -1 -0.2 0 -0.3 
N = 200 × DP-diffuse 124 7.7 -2 -0.5 0 -0.4 
N = 50 × DP-inform -24 -1.4 -2 -0.8 0 -0.2 
N = 200 × DP-inform -50 -3.3 -3 -1.2 0 -0.4 
N = 50 × CB -64 -3.8 5 1.6 0 0 
N = 200 × CB -61 -4.1 13 4.1 0 0 
N = 50 × GR -40 -2.4 10 3 0 0.2 
N = 200 × GR -25 -1.7 21 6.9 0 0.2 
I = 0.5 × R = 5 252 13.4 26 7.5 5 6 
I = 0.9 × R = 5 260 14.2 30 8.8 8 12.3 
I = 0.5 × R = 10 402 20.8 43 12.8 5 7.2 
I = 0.9 × R = 10 425 22.7 49 14.8 12 18.6 
I = 0.5 × DP-diffuse -735 -38.5 -36 -10.8 0 0.2 
I = 0.9 × DP-diffuse -735 -39.9 -29 -8.7 0 -0.7 
I = 0.5 × DP-inform -91 -5 4 1.2 0 0.6 
I = 0.9 × DP-inform -41 -2.4 7 2.3 0 -0.4 
I = 0.5 × CB -634 -36 52 14.7 0 0 
I = 0.9 × CB -696 -41 71 20.7 0 0 
I = 0.5 × GR -564 -32.4 57 16.3 0 -0.3 
I = 0.9 × GR -658 -39.3 75 22.2 0 -0.4 
R = 5 × DP-diffuse -102 -6.3 -6 -2.1 0 0.2 
R = 10 × DP-diffuse -164 -10 -9 -3.2 0 0.3 
R = 5 × DP-inform -16 -1.1 -3 -1.1 0 0.1 
R = 10 × DP-inform -20 -1.3 -4 -1.7 0 0.1 
R = 5 × CB -57 -3.9 3 0.8 0 0 
R = 10 × CB -89 -5.9 3 1 0 0 
R = 5 × GR -45 -3.1 4 1.4 0 -0.6 
R = 10 × GR -67 -4.5 4 1.4 -1 -0.9 
DP-diffuse × CB 266 17.8 24 8.2 0 0 
DP-inform × CB 15 1.1 -1 -0.2 0 0 
DP-diffuse × GR 252 16.9 18 6.1 0 -0.2 
DP-inform × GR -12 -0.9 -4 -1.7 0 -0.1 

Note: The total number of observations 𝑛 = 24,300; The 𝛽 coefficient estimates are multiplied by 1,000. 
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The single most influential factor, however, is the reliability of the ML estimates or the shrinkage 
factor 𝐼. In Table 1.1, when the reliability changes (from 0.1) to 0.5 or 0.9, the MSEL for 𝜏) 
decreases on average by 0.747 or 1.186 from the MSEL estimated under the reference condition. 
These are quite substantial changes, which correspond to proportional reductions of the losses of 
55.8% or 88.6%, respectively. The impact of 𝐼 is also sizable for other loss estimates, the ISEL 
for the EDF of 𝜏)’s and the MSELR for rank estimates. In particular, the 𝐼 dummy variables and 
their associated interaction terms show very high impacts on the MSELR while the other predictors 
have statistically zero or limited effects on reducing the MSELR. This is not surprising considering 
the relative noisiness of rank estimates compared to other estimates. Goldstein and Spiegelhalter 
(1996) pointed out that extremely informative data is needed in order for rankings to be useful. 
Our meta-model results also suggest that the informativeness of the data (𝐼) is almost the only 
critical factor that determines the quality of rank estimates.  

Figure 1.4 shows how the estimated EDF of 𝜏)’s changes with the level of 𝐼. The EDF in 
Figure 1.4 is estimated for the scenario of 𝑁 = 50, 𝑅 = 1, and 𝐺 given by a Gaussian mixture 
distribution. The true population distribution 𝐺 is presented as a bold line. The first column of 
Figure 1.4 shows the distribution of the ML estimates,  �̂�)’s. As expected, in the scenario of 𝐼 =
0.1, the distribution of the 𝜏)̂’s is largely overdispersed due to noise or sampling errors. On the 
other hand, the distribution of the �̂�)’s closely approximates the true population distribution 𝐺 
in the scenario of 𝐼 = 0.9 because the individual �̂�)’s are highly informative. We observe from 
the third row of Figure 1.4 that the choice of data-analytic model or posterior summary method 
does not make a significant difference when the �̂�)’s are highly reliable.  

The effects of increasing 𝑁 or 𝑅 vary largely depending upon the level of 𝐼, the 
informativeness of the observed data �̂�). The coefficients of the interaction terms involving 𝐼 
and either 𝑁 or 𝑅 in Table 1.1 and 1.2 capture how the effects of 𝑁 or 𝑅 are moderated by 
the level of 𝐼. Figure 1.5 provides a visual representation of the interaction effects. Overall, 
increasing 𝑁 is an effective strategy only when the reliability of the ML estimates is low (𝐼 =
0.1), specifically for the MSEL of 𝜏) estimated by PM and the ISEL of the EDF estimated by 
GR. In Figure 1.5, the effects of increasing 𝑁 from 25 to 200 are significantly larger than those 
of increasing 𝑁 from 25 to 50, only when 𝐼 = 0.1. In the scenario of highly informative data 
(𝐼 = 0.9), increasing 𝑁 has minimal (mostly statistically insignificant) effects on the loss 
estimates. Similar patterns are observed for the effects of 𝑅. When 𝐼 = 0.5, the effects of 
increased 𝑅 tend to be nonsignificant and smaller in magnitude than the effects of 𝑁. Since the 
data-analytic choice for 𝐺 matters little across scenarios in Figure 1.5, it is not an effective 
strategy to specify a flexible DP prior to reduce the losses in estimation under the low-data 
environment with noisy �̂�). Instead, strategies such as increasing the number of sites or including 
more participants within sites to improve the reliability of ML estimates will be helpful to reduce 
the losses in estimation.  
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Figure 1.5: The effect of the number of sites (𝑁) and the heterogeneity of 𝑠𝑒-)
. (𝑅) on the two 

loss estimates: (a) the MSEL of 𝜏) estimated using PM and (b) the ISEL of the EDF estimated 
using GR. The reference group is defined as the scenario where 𝑁 = 25, 𝑅 = 1. True 𝐺 is the 
Gaussian mixture model.  
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   We now turn to the impact of the posterior summary method in the low-data environment. In 
Figure 1.4, the PM estimator tends to yield underdispersed EDF estimates due to the substantial 
shrinkage to achieve the optimality of the MSEL for individual 𝜏). Note in Table 1.1 that using 
CB or GR estimators rather than PM exacerbates the MSEL for 𝜏) by 0.671 or 0.627 on 
average, respectively, increasing the MSEL by about 50% compared with the reference condition 
(1.339). When CB or GR estimators are used, however, the ISEL for the EDF of 𝜏)’s is reduced 
on average by 0.107 or 0.110 from the ISEL under the reference condition using PM (0.269). 
These effects correspond to average proportional reductions of about 40% in the ISEL. Thus, the 
low-data environment with small 𝐼 and 𝑁 requires us to carefully select posterior summary 
estimators aligned with inferential goals. 

 

 

Figure 1.6: The effect of using CB or GR on the two loss estimates: (a) the MSEL of 𝜏) and (b) 
the ISEL of the EDF of 𝜏)’s. The reference group is defined as the scenario where 𝑁 = 25, 𝑅 =
1, and PM is used as a posterior summary method. True 𝐺 is the Gaussian mixture model.  

 

Figure 1.6 shows how the effect of using the CB or GR estimator is moderated by the level of 
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𝐼 and by the data-analytic choice for 𝐺 in the scenario where 𝑁 = 25, 𝑅 = 1, and true 𝐺 is  
a Gaussian mixture. As expected, the performance of CB and GR relative to PM greatly 
improves with respect to the ISEL of the EDF, while the PM estimates outperform CB and GR in 
terms of the MSEL of individual 𝜏). Yet, the effect of using CB or GR, either positive or 
negative, decreases in magnitude as the reliability of the ML estimates increases. This indicates 
that choosing the posterior summary estimator targeting a specific inferential goal is particularly 
critical in practice when analyzing low-informative data. We also observe that the benefit of 
using the CB or GR estimator is not significantly different across the data-analytic choice for 𝐺, 
except for the DP-diffuse model that aggravates the performance regarding the MSEL of 𝜏). In 
general, Figure 1.6 suggests that the posterior summary method is a more important factor than 
the data-analytic choice for 𝐺 under the low-data environment.  

 

 

Figure 1.7: The effect of using DP priors on the two loss estimates: (a) the MSEL of 𝜏) estimated 
using PM and (b) the ISEL of the EDF estimated using GR. The reference group is defined as the 
scenario where 𝑁 = 25, 𝑅 = 1, and the Gaussian model is used for 𝐺. True 𝐺 is the Gaussian 
mixture model.  

 

   Figure 1.7 presents how the effect of using DP priors on the loss estimates varies according 
to the level of 𝐼 and the true 𝐺 under the low-data environment. We observe that the two 
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models using different DP priors show quite contrasting loss estimates, which indicates that 
assumptions on the hyperparameter 𝛼 can largely affect the posterior distribution when the data 
are less informative. When 𝑁 = 25, the DP-diffuse and DP-inform models set the prior for 𝛼 
as Gamma(1.25, 0.10) and Gamma(1.24, 0.64), respectively. The mean and variance of the 
first Gamma distribution are 12.5 and 125, while those of the second Gamma distribution are 1.9 
and 3.0. Figure 1.4 shows that the EDF estimates of the DP-diffuse model tend to be more 
dispersed or noisier than those of the DP-inform model mainly because the expected number of 
clusters 𝐾 among 25 sites is larger in the DP-diffuse model (E(𝐾|𝐺�, 𝛼, 𝑁) = 12.1) than that in 
the DP-inform model (E(𝐾|𝐺�, 𝛼, 𝑁) = 5.1). 

The DP-inform model does not make a meaningful difference compared to the Gaussian 
model under the low-data environment. The DP-inform model tends to produce slightly 
improved loss estimates for the EDF when the true𝐺 is a mixture of two Gaussian distributions 
because it is more favorable to a multimodal 𝐺 with a few number of clusters while the DP-
diffuse model is more favorable to smoother 𝐺 with many clusters. Considering the Monte 
Carlo errors represented as error bars in Figure 1.7, however, this is not a significant benefit of 
using the DP-inform model relative to the Gaussian models. In contrast, the DP-diffuse model 
improves the MSLE of individual 𝜏) across all true 𝐺’s, only in the scenario where the 
reliability of the ML estimates is moderate to high (𝐼 = 0.5, 0.9). But the DP-diffuse model is 
strongly biased in estimating individual 𝜏) when 𝐼 = 0.1 and it seems not to be a good choice  
compared to the Gaussian model in estimating the EDF of 𝜏)’s across all level of 𝐼. These 
patterns are consistent even in the scenario where 𝑁 = 50 or 𝑁 = 200, which suggests that the 
average benefit of using the flexible DP priors is not considerable relative to the standard 
Gaussian model in general. Rather, the choice of the posterior summary estimators targeted 
toward inferential goals has a more decisive impacts on the loss estimates.  

Although the DP prior models do not improve the loss estimates on the EDF of 𝜏)’s on 
average, they may be effective in estimating tail areas of the underlying 𝐺, or in general, in 
estimating percentiles of  𝐺. Table 1.3 provides results from the meta-model regression analyses 
for mean biases in the 50th and 90th percentile estimates of 𝐺. We include only the results from 
the two non-normal true 𝐺’s, the Gaussian mixture and AL distributions, where the dummy 
variables and reference conditions are the same as in Tables 1 and 2. Since we observe very 
similar patterns for the Gaussian mixture and AL distributions, we interpret the estimated 
coefficient  𝛽Ò  for the former here.  
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Table 1.3: Meta-model regression results for mean biases in the 50th and 90th percentile estimates of 𝐺   

Outcomes: mean biases  50th Mixture 50th ALD 90th Mixture 90th ALD 
Terms 𝛽Ò   𝑡 𝛽Ò   𝑡 𝛽Ò   𝑡 𝛽Ò   𝑡 
Intercept -19.4 -15.1 -21.6 -16.9 7.6 24.5 6.9 18.9 
N = 50 -4.1 -3.5 -0.5 -0.5 2 5.8 2.9 8.4 
N = 200 -10.9 -10.6 -10.6 -10.6 3.1 10.6 3.4 11 
I = 0.5 2 1.8 4 3.6 -1.1 -3.4 0.4 1.2 
I = 0.9 19 18.8 18.3 18.3 -7.5 -23.2 -3.5 -10.7 
R = 5 0.5 0.5 2.4 2.1 1.1 3.2 1.2 3.6 
R = 10 2.5 2.2 2.2 2 2 6.8 1.7 5.1 
DP-diffuse 8.7 7.8 8 7.2 -5.2 -14.3 -5.6 -14.9 
DP-inform -0.4 -0.3 -0.5 -0.5 -0.1 -0.3 -0.7 -2 
CB 9.2 8.7 8.7 8.2 -7.7 -21.7 -8.2 -22.2 
GR 6.5 6.1 6 5.6 -6.3 -19.7 -7.1 -20.9 
N = 50 × I = 0.5 4.1 5 1.4 1.6 -0.8 -2.6 -2.9 -10.1 
N = 200 × I = 0.5 10.9 14.8 10.4 14.3 -2.4 -9 -3.5 -13.2 
N = 50 × I = 0.9 3.1 4 1 1.3 -0.8 -2.6 -2.8 -10 
N = 200 × I = 0.9 7.5 11.1 8 12.1 -1.8 -7 -2.9 -11.4 
N = 50 × R = 5 -1.5 -2.1 -2.7 -3.6 -0.4 -1.5 -0.2 -0.8 
N = 200 × R = 5 -1.5 -2.3 -1.4 -2.1 -0.7 -2.6 0.1 0.2 
N = 50 × R = 10 -3 -4.2 -1.3 -1.8 -1.6 -5.9 -0.1 -0.6 
N = 200 × R = 10 -2 -3.1 -0.5 -0.8 -1 -4 -0.8 -3.4 
N = 50 × DP-diffuse 1 1.5 1.7 2.5 -0.7 -2.6 -0.2 -0.8 
N = 200 × DP-diffuse 3.8 6.1 4.2 6.9 -1.8 -7.3 -1.3 -5.6 
N = 50 × DP-inform 1.3 1.8 1.1 1.4 -0.2 -0.9 0.2 0.7 
N = 200 × DP-inform 3.3 5.2 2.6 4.1 -0.7 -3.1 0 0.1 
N = 50 × CB 1 1.3 0.8 1 0.4 1.5 0.8 3.2 
N = 200 × CB 2.2 3.2 2.7 4 0.6 2.3 1 4.1 
N = 50 × GR 1.4 1.8 1.2 1.5 -0.1 -0.5 0.4 1.5 
N = 200 × GR 3 4.3 3.3 4.9 -0.3 -1.2 0.1 0.5 
I = 0.5 × R = 5 2.9 3.8 -0.2 -0.2 -1.7 -6.2 -2.2 -8.4 
I = 0.9 × R = 5 -0.1 -0.1 -1.9 -2.8 -1.2 -4.5 -2.2 -8.4 
I = 0.5 × R = 10 0 0 -2.4 -3.3 -2.8 -11 -2.4 -9.5 
I = 0.9 × R = 10 -3.2 -4.6 -3.1 -4.6 -1.9 -7.4 -2.5 -9.9 
I = 0.5 × DP-diffuse -5 -6.9 -4.9 -6.7 5.2 19.5 5.5 21.1 
I = 0.9 × DP-diffuse -3.1 -4.5 -4.3 -6.3 5.4 20.5 6.1 23.9 
I = 0.5 × DP-inform 6.2 8.3 4.2 5.6 -1.3 -5.5 -0.5 -2 
I = 0.9 × DP-inform 6.1 8.9 4.1 5.9 -0.9 -3.7 0 0.2 
I = 0.5 × CB -3 -3.8 -2.8 -3.5 3.2 12.5 4.7 19.1 
I = 0.9 × CB -8.1 -10.9 -8.4 -11.5 6.3 24.6 6.9 28.7 
I = 0.5 × GR -3 -3.7 -2.4 -3 3.2 13 4.3 18.5 
I = 0.9 × GR -10.2 -13.7 -9.4 -12.8 6.7 27.6 7 30.3 
R = 5 × DP-diffuse 0 0 0.1 0.2 0.8 3 1 4.1 
R = 10 × DP-diffuse -0.5 -0.8 -0.5 -0.8 1.4 5.9 1.5 6.5 
R = 5 × DP-inform 0.2 0.4 0.6 0.9 0.1 0.4 0.2 0.8 
R = 10 × DP-inform -0.1 -0.2 -0.2 -0.3 0.1 0.4 0.2 0.9 
R = 5 × CB -0.8 -1.2 -0.2 -0.3 0.7 2.7 0.6 2.4 
R = 10 × CB -0.6 -0.9 0 0.1 0.5 2.1 1 4.4 
R = 5 × GR 0.6 0.8 0.9 1.3 0.2 0.7 0.2 0.7 
R = 10 × GR 1.7 2.5 2.2 3.2 -0.2 -0.7 0.3 1.3 
DP-diffuse × CB -2 -2.9 -1.8 -2.7 -2.1 -8.9 -2 -8.7 
DP-inform × CB 0.3 0.4 1 1.4 -0.4 -1.9 0 -0.2 
DP-diffuse × GR -1.7 -2.5 -1.2 -1.8 -2.3 -10.1 -2.1 -9.7 
DP-inform × GR 1.3 1.9 2 2.8 -0.8 -3.6 -0.2 -1.2 

Note: The total number of observations 𝑛 = 24,300; 𝛽Ò  represents the estimates for 𝛽  
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Figure 1.8: The effect of the number of sites (𝑁) on the mean biases of the 50th and 90th 
percentile estimates of 𝐺. The percentiles are estimated by GR. The reference group is defined 
as the scenario where 𝑁 = 25, 𝑅 = 1.  
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The mean biases for the 50th and 90th percentiles of 𝐺 under the reference condition are 
estimated to be -19.4 and 7.6, respectively. Under the low-data environment, the main source of 
the biases is shrinkage toward the overall (prior) mean effect. If substantial shrinkage occurs, 
percentile estimates for the left side of the distribution tend to be underestimated, while those for 
the right side in the distribution, particularly the right tail or extremity, are overestimated. Hence, 
positive 𝛽Ò’s indicate evidence of bias reduction for the models fitted to the mean biases in the 
50th percentile estimates. In the case of the 90th percentile estimates, negative 𝛽Ò’s represent 
effectiveness. 

As shown in Table 1.3 and Figure 1.8, increasing the number of sites (𝑁) is not an effective 
strategy to reduce bias in the percentile estimates when the data is less informative (𝐼 = 0.1). 
Instead, when 𝐼 = 0.1, increasing 𝑁 significantly exacerbates the biases because the 
distributions of the PM, CB, and GR estimates become more sharply peaked as 𝑁 increases due 
to shrinkage. However, when 𝐼 = 0.5 or 𝐼 = 0.9, increasing 𝑁 improves the percentile 
estimates based on the DP prior methods. In particular, the DP-diffuse models significantly 
moderate the effect of increasing 𝑁 on reducing biases in both the 50th and 90th percentile 
estimates when the observed ML estimates are (highly) informative.  

Figure 1.9 shows that the DP priors are typically effective in reducing biases in percentile 
estimates of 𝐺. When the observed ML estimates are not reliable (𝐼 = 0.1), the DP-diffuse 
model is the best choice to reduce biases in percentile estimates. As shown in Figure 1.4, the DP-
diffuse model recovers tail areas of 𝐺 more accurately because they produce smoother and more 
dispersed PM, CB, and GR estimates than the other models. Panel B of Figure 1.9 suggests that 
the DP-diffuse model needs to be combined with CB or GR estimators so that it can diminish 
biases in tail areas of 𝐺 when analyzing informative data (𝐼 = 0.5 or 𝐼 = 0.9). On the other 
hand, the DP-inform model is effective in recovering the true 50th percentile with informative 
data. This result is related to the DP-inform model’s capability to precisely capture the true 
modes in the distribution (Paddock et al., 2006), which can be seen in the second row of Figure 
1.4 where 𝐼 = 0.5.  
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Figure 1.9: The effect of using the DP priors on the mean biases of the 50th and 90th percentile 
estimates of 𝐺. The reference group is defined as the scenario where 𝑁 = 25, 𝑅 = 1.  

 

1.5  Conclusion 
   Modeling the distribution of site-level treatment effects is an important but formidable task. 
Among the common inferential goals we considered in this chapter, recovering an unknown prior 
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density 𝐺 or estimating the EDF of the 𝜏)’s is the most challenging one. We reviewed two 
strategies to improve inferences regarding 𝜏): (a) using posterior summary methods directly 
targeted toward inferential goals via choice of the appropriate loss functions, and (b) adopting 
flexible semiparametric specifications for the prior distribution 𝐺 to protect against model 
misspecification. We considered the CB and GR for the first strategy, and the DP priors for the 
second one. The impacts of employing these two strategies on reducing loss estimates were 
evaluated under varying conditions, particularly focusing on the low-data environment.  

The first key finding is that the most influential factor for all inferential goals is the reliability 
of the ML estimates, that is, the informativeness of the data. This factor was not only the sole 
predictor that significantly affects all three of loss functions but also was a pivotal moderator that 
determines the effects of other the other simulation factors. Thus, when analyzing data from a 
multisite trial, the first and foremost task for the analytic decision making is to compute the 
average reliability of the ML estimates, 𝐼 = 𝜎. (𝜎. + 𝑠𝑒-)

.)D , closely related to the pooling site-
specific pooling factor, 𝜔) = 𝑠𝑒-)

. (𝜎. + 𝑠𝑒-)
.)D . They provide information on which strategy 

needs to be employed to reduce the potential losses in the estimation.  

   When the data are highly informative (𝐼 = 0.9), the other simulation factors mattered 
relatively little. This is mainly because the highly reliable ML estimates approximate the true 𝜏) 
well, there’s little shrinkage in the PM’s even with an Gaussian prior distribution, so that the 
rankings of the 𝜏)’s, as well as their EDF, are recovered well. Accordingly, there is not enough 
room for the two strategies, CB/GR and DP priors, to improve upon PM with a Gaussian prior. 
Increasing the number of sites (𝑁) or the heterogeneity of the sampling errors (𝑅) is not helpful 
either in reducing the losses in the estimation. One can achieve all three inferential goals even 
with a small number of sites (𝑁 = 25) if the data are highly informative. This result has an 
implication for designing a multisite trial – increasing site sizes rather than the number of sites is 
preferable for the inferential goals based on the site-specific effect parameter 𝜏), since between- 
and within-site variances are out of our control.  

   When the data are uninformative (𝐼 = 0.1), on the other hand, study design factors such as 𝑁 
and 𝑅 as well as the posterior summary estimator significantly affect the performance of 
estimation. Yet, specifying a flexible DP prior is not in general an effective strategy to reduce the 
losses in estimation under the low-data environment compared to a Gaussian model. Our 
findings suggest that the posterior summary estimator matters more and needs to be chosen with 
great care to align it with the inferential goal. For example, when the inferential goal is to 
estimate the EDF of the 𝜏)’s with noisy data, the standard Gaussian model with the CB or GR 
estimators performs better than the flexible DPM models with the PM estimator. In contrast, the 
standard Gaussian model with the PM shrinkage estimator is more effective than the DPM 
models with the CB or GR estimators in the estimation of the individual site-specific effect 𝜏) 
with uninformative data. Rather than complicating the model specification in a low-data 
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environment (𝐼 = 0.1), we suggest using a simple parametric model combined with a posterior 
summary method targeted toward an inferential goal.  

Since DPM models are designed to be more adaptive to the data, they require informative 
data (𝐼 = 0.5, 0.9) to be effective. Key previous studies recommending the use of DPM models 
(e.g., Paddock et al., 2006) often consider only moderate to high levels of sampling variation 
which corresponds to 𝐼 larger than 0.5. Therefore, our findings are consistent with these 
previous studies. The DP-diffuse model improves the losses only in the scenario where the data 
is informative, though less substantially than using appropriate posterior summary methods. 
However, our findings suggest that the DPM models perform better than the Gaussian model in 
estimating percentiles of the true underlying 𝐺 when the data is informative. Combined with the 
CB or GR estimators, the DP-diffuse models were effective in estimating tail areas of the 
underlying 𝐺 because they produce smoother and more dispersed EDF estimates than the other 
models. On the other hand, the DP-inform model outperforms the Gaussian model when 
estimating the median because they tend to capture the true modes of the distribution precisely 
and the median is often close to the mode. Thus, the prior for the precision parameter 𝛼 needs to 
be selected with the inferential goal in mind, with different choices preferred for 50th versus 90th 
percentile estimation.  

One of the most important limitations of this study is that site-level covariates are not 
considered in the data-generating and data-analytic scenarios. Models relying on shrinkage 
toward the overall mean can be problematic if some specific sites sharing common 
characteristics vary distinctly in their treatment effects. The multimodality of the site-level effect 
distribution, for example, might be reflecting such potential moderation of impacts by site-level 
covariates. In these cases, shrinkage toward a predicted value based on site-level covariates, 
rather than the overall mean, is more appropriate (Rabe-Hesketh & Skrondal, 2012). Thus, it is 
another valuable direction of inquiry to investigate how the two strategies to improve inferences 
for a distribution of 𝜏) work or fail in scenarios where shrinkage happens misleadingly toward 
overall mean despite the presence of meaningful site-level moderators. 
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Chapter 2 

Sensitivity of Bayesian Quantile Regression to the Scale 
Parameter of the Asymmetric Laplace Likelihood 
 

2.1  Introduction 
The advantage of quantile regression over conventional linear regression is that it allows a 

comprehensive analysis of how covariates affect different points of the conditional distributions 
of the outcome. For instance, in education policy research it can be important to know not just 
the mean effect of an educational intervention, but also how the effect varies across the 
achievement distribution. The limitation of estimating only the mean effect has been addressed in 
the literature by introducing the quantile treatment effect (QTE), the difference between the 
response’s distribution quantiles under the two treatment conditions (Abadie et al., 2002; Bitler 
et al., 2014; Venturini et al., 2015). 

In recent years, the use of Bayesian inference in quantile regression has attracted interest. 
Bayesian quantile regression methods make use of Markov chain Monte Carlo (MCMC) 
algorithms to sample the parameter values from their posterior distribution, and thus uncertainty 
estimates can be calculated easily from posterior samples of MCMC draws. In contrast, 
frequentist quantile estimators rely on asymptotic methods such as the Wald-type interval 
estimator (Bassett & Koenker, 1982) or bootstrap. Point estimates can be obtained by minimizing 
an appropriate loss function through linear programming algorithms without any likelihood 
function. The usual asymptotic variance-covariance matrix becomes difficult to estimate reliably 
when the response is censored or when a covariate has missing values (Yang et al., 2015). 

Unlike classic quantile regression, Bayesian quantile regression requires a likelihood. There 
are several proposals including semiparametric likelihoods (Reich et al., 2011; Reich and Smith, 
2013), nonparametric likelihoods (Gelfand & Kottas, 2002; Reich et al., 2010), and empirical 
likelihoods (Otsu, 2008; Yang & He, 2012). By far, however, the most commonly applied 
likelihood is the asymmetric Laplace (AL) likelihood first employed in Yu and Moyeed (2001). 
The motivation for using an AL likelihood is that maximizing this likelihood corresponds to 
minimizing the loss function. Further, Bayesian quantile regression with an AL likelihood is 
parsimonious, has easily understood interpretations of parameters, and most importantly is 
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computationally convenient for MCMC algorithms.  

The fundamental limitation of employing the AL likelihood is that it does not provide a 
decent approximation to the data generating mechanism. The choice of the AL likelihood is 
mainly motivated by computational convenience. Therefore, from a modeling point of view, it is 
a misspecified likelihood. While Yu and Moyeed (2001) argued that the use of AL likelihood is 
satisfactory in terms of point estimates even if it is not the true underlying distribution and 
Sriram et al. (2013) established posterior consistency of the point estimators, credible intervals 
do not generally have correct coverage (Yang et al., 2015; Syring & Martin, 2015). The problem 
is largely due to the arbitrary scale parameter 𝜎 of the AL distribution having a great impact on 
the variance of the posterior distribution. It is a common practice to fix 𝜎 to 1 (e.g. Yu & 
Moyeed, 2001; Yu & Stander, 2007; Sriram et al., 2013) 

Yang et al. (2015) argued that asymptotically correct standard errors can be obtained using a 
simple adjustment. The proposed adjustment first employs maximum AL likelihood estimation 
for quantile regression at the median to estimate 𝜎. Then, 𝜎 is treated as a known constant, set 
equal to this estimate, during Bayesian estimation. Finally, an adjustment is applied to the 
posterior covariance matrix that mimics the sandwich estimator, which is borrowed from the 
frequentist domain.  

In spite of having been widely applied in practice, the sensitivity of Bayesian quantile 
regression to the choice of fixed 𝜎 has not been investigated much. Although Yang et al. (2015) 
provides evidence that interval estimates based on his adjusted standard errors are stable across 
different values of the fixed scale parameter, their evidence comes from only one empirical data 
set which is not sufficient for establishing invariance or insensitivity of the posterior inference to 
the choice of 𝜎. In this article we show that the adjusted uncertainty estimates  proposed by 
Yang et al. (2015) are even more sensitive to the value of 𝜎 than the unadjusted posterior 
standard deviations, which contradicts Yang et al.’s (2015) results. The proposed posterior 
variance adjustment seems to work only when 𝜎 is fixed at the maximum likelihood estimate of 
the scale parameter at the median. In finite samples, it is shown that point estimates at extreme 
quantiles can be biased when 𝜎 is fixed at very large and unreasonable values.  

The outline of the article is as follows. First, we review Bayesian quantile regression methods 
with an AL likelihood including their computational properties. Then, we compare the non-
Bayesian asymptotic variance of estimates with the Bayesian posterior variance with the AL 
likelihood to discuss the sensitivity of posterior inference to the scale parameter. Finally, 
sensitivity analyses are performed with simulated datasets and a real data example from 
education research.  
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2.2  Bayesian quantile regression with asymmetric Laplace 
likelihood 

2.2.1  Connection between quantile regression and ALD 

Let 𝑌 be a continuous response variable and and 𝐗 a p-dimensional vector of covariates 
with the first element equal to one. Let QÖ(𝑌|𝐗 = 𝐱) denote the conditional quantile function of 
𝑌 given 𝐗 = 𝐱 at a quantile level of τ ∈ (0, 1). Suppose that the relationship between 
QÖ(𝑌|𝐗 = 𝐱) and 𝐱 can be modeled with the following linear quantile regression model: 

QÖ(𝑌|𝐗 = 𝐱) = 𝐱Ú𝛃(𝜏) 

where 𝛃(𝜏) is a vector of unknown quantile parameters of interest. Then, consider the working 
quantile regression model given by  

𝑦µ = 𝐱𝒊
Ú𝛃(𝜏) + 𝜖W, 𝑖 = 1, … , 𝑛, 

where 𝜖W is the error term whose distribution is restricted to have the 𝜏th quantile equal to zero, 

that is, ∫ 𝑓[(𝜖W)𝑑𝜖W
�

Y£ = 𝜏.  

The error density 𝑓[(𝜖W) often remains unspecified in conventional quantile regression. The 
unknown parameters 𝛃(𝜏) can be estimated from a random sample of data 𝐷 =
{(𝑦W, 𝐱W), 𝑖 = 1, … , 𝑛} of (𝑌, 𝐗), by minimizing  

𝑅Ê(𝛃, 𝐷) =  L 𝜌[(𝑦W − 𝐱W
Ú

Ê

WOP
𝛃), 

where 𝜌[(𝜇) = 𝜇{𝜏 − 𝐼(𝜇 < 0)} is the quantile loss function and 𝐼(∙) denotes the indicator 
function. It is not possible to derive explicit solutions to this minimization problem because the 
quantile loss function is not differentiable at zero. Thus, linear programming methods are used to 
obtain quantile regression estimates for 𝛃(𝜏) (Koenker & d’Orey, 1994). In the rest of this 
section, we denote 𝛃(𝜏) as 𝛃 within equations for simplicity. 

A connection between this minimization problem and maximum-likelihood theory is 
provided by the AL distribution (Yu & Moyeed, 2001; Yu & Zhang, 2005). We say that a random 
variable 𝑦W is distributed as AL(𝜇, 𝜎, 𝜏) with location parameter 𝜇, scale parameter 𝜎, and 
skewness parameter 𝜏, if its probability density function is given by  

𝑓(𝑦W|𝜇, 𝜎, 𝜏) =  
𝜏(1 − 𝜏)

𝜎 exp ª−
𝜌[(𝑦W − 𝜇)

𝜎 «. 

Figure 2.1 shows the AL density for different values of 𝜏. Most of the mass of the ALD lies 
in the right tail when 𝜏 = 0.1 while most of it is situated in the left tail when 𝜏 = 0.9. We can 
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see that the skewness of the AL density changes based on the value of 𝜏.  

 

 

Figure 2.1: Standard (𝜇 = 0, 𝜎 = 1) asymmetric Laplace densities at 𝜏 = 0.1, 0.5, 0.9 

 

By assuming yµ ∼ 𝐴𝐿(𝐱W
ã𝛃, 𝜎, 𝜏), the AL likelihood for 𝑛 independent observations 

becomes 

𝐿(𝛃, σ|𝐷) =  
𝜏Ê(1 − 𝜏)Ê

𝜎Ê exp å−
∑ 𝜌[(𝑦W − 𝐱W

Ú𝛃)Ê
WOP

𝜎 æ. 

Note that 𝐿(𝛃, σ|𝐷) is proportional to the exponential of minus the scaled loss function 
𝑅Ê(𝛃, 𝐷) 𝜎⁄ , with normalizing constant 𝜏Ê(1 − 𝜏)Ê 𝜎Ê⁄ . For any value of 𝜎, maximization of 
the likelihood 𝐿(𝛃, σ|𝐷) with respect to the parameters 𝛃 is equivalent to minimization of the 
loss function 𝑅Ê(𝛃, 𝐷).  

The fact that the skewness of the AL density depends on the quantile 𝜏 that we happen to be 
interested in explains why the AL likelihood cannot be the data generating distribution. As shown 
in Figure 1, the AL density is unimodal and the mode occurs at zero. Since 𝜏 determines the 
skewness of the residual, with low 𝜏 implying right-skewed residuals and high 𝜏 left-skewed 
residuals, the AL likelihood can be inflexible in the modeling of the residuals at extreme 
quantiles, thereby resulting in invalid posterior inference due to model misspecification. It should 
be noted that the choice of AL likelihood is mainly motivated by computational convenience 
which will be explained in the next section.  
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2.2.2  Bayesian computation and properties 

Here we outline how the AL likelihood is used in Bayesian quantile regression. With a prior 
specified as 𝑝�(𝛃) on 𝛃, the posterior of 𝛃 can be written as  

𝑝Ê(𝛃|𝐷) ∝  𝑝�(𝛃) exp å−
∑ 𝜌[2𝑦W − 𝐱W

Ú𝛃3Ê
WOP

𝜎 æ. 

It has been shown that the use of improper priors for quantile regression parameters 𝛃, including 
uniform priors, leads to proper posterior distributions of 𝛃 (Yu & Moyeed, 2001; Tsionas, 2003; 
Choi & Hobert, 2013). Although the computational algorithms may need to adapt to the choice of 
prior 𝑝�(𝛃), the asymptotic properties of the posterior are not dependent on the prior choices. 

In the Bayesian framework, estimation and inference based on the proposed model can be 
easily implemented using Markov chain Monte Carlo (MCMC). Although the posterior 
distribution of 𝛃 is generally intractable, the AL distribution has a nice hierarchical 
representation which facilitates the implementation of MCMC scheme for Bayesian estimation. 
The AL distribution can be represented as a scale mixture of normal distribution (Reed & Yu, 
2009; Kozumi & Kobayashi, 2011):  

Let 𝑦W ∼ 𝐴𝐿(𝜇, 𝜎, 𝜏), 𝑧W ∼ 𝑁(0, 1), independent of 𝑣W ∼ exp (𝜎). Then 

yµ ≅ 𝜇 + 𝜃P𝑣W + 𝜃.𝑧Wì𝜎𝑣W, 

where 𝜃P = PY.[
[(PY[), 𝜃.

. = .
[(PY[), and exp (𝜎) represents the standard exponential distribution 

with mean 1 𝜎⁄ , and ≅ denotes approximate equality in distribution. Figure 2.2 demonstrates 
that the scale mixture of normal distribution nicely approximates 𝑦W ∼ 𝐴𝐿(𝜇 = 0, 𝜎 = 1, 𝜏 =
0.9). A Bayesian quantile regression model can therefore be expressed using this hierarchical 
representation of 𝑦W (Kozumi & Kobayashi, 2011). We simulate draws from the AL distribution 
by first drawing 𝑣W from an exponential distribution then a normal distribution whose mean is 
𝐱Ú𝛃 + 𝜃P𝑣W and whose standard deviation is 𝜃.ì𝜎𝑣W. 

In this posterior sampling scheme, 𝜎 can either be fixed or considered as an unknown 
parameter to be assigned a prior distribution. If σ is assigned an inverse Gamma prior that is 
independent of 𝛃 as in Kozmi and Kobayashi (2011), the conditional distribution of 𝜎 given 
the other parameters will remain in the inverse Gamma family. Meanwhile, it is a common 
practice to set 𝜎 to a fixed value to make the MCMC algorithm more efficient. For instance, 
Sriram et al. (2015) fix 𝜎 to 1, and Yang et al. (2015) recommend fixing 𝜎 at the maximum 
likelihood estimate of 𝜎 at 𝜏 = 0.5. The finite sample performance of the posterior, however, is 
highly sensitive to the choice of 𝜎. We will further discuss this issue in the next section and 
argue that fixing 𝜎 at an arbitrary value for MCMC computation will lead to invalid posterior 
variance.  
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Figure 2.2: Kernel density plot of 1,000 draws from the ALD and a scale mixture of normals 
with 𝜇 = 0, 𝜎 = 1, and 𝜏 = 0.9 

 

2.3  Sensitivity of posterior inference to the scale parameter 
Generally one of the advantages of a Bayesian approach is that uncertainty of parameter 

estimates can be estimated directly from the MCMC chains by calculating the posterior standard 
deviation. Even though earlier literature (Yu & Moyeed, 2001; Sriram et al., 2013) claims that 
the posterior mean with an AL likelihood is consistent, this does not justify using the uncertainty 
estimates constructed form the posterior. Recently it has been reported that the stationary 
distribution for the posterior from Bayesian quantile regression with an AL likelihood does not 
provide valid posterior inference (Yang et al., 2015; Syring & Martin, 2015). This is mainly 
because the AL likelihood is misspecified and thus typically yields poorly estimated uncertainty 
intervals. 

We focus on the presence of an extra nuisance parameter 𝜎 in the posterior which presents a 
challenge to valid inference. The role of the scale parameter 𝜎 in the AL likelihood is to weight 
the information in the data relative to information in the prior and to control the spread of the 
posterior distribution. Consequently, the performance of the posterior is highly sensitive to the 
choice of this scale parameter. In this section, we explain 1) why the posterior variance-
covariance matrix of Bayesian quantile regression with the AL likelihood is invalid and 2) why 
the matrix is sensitive to the choice of fixed 𝜎. The advantage and limitation of the posterior 
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variance adjustment proposed by Yang et al. (2015) as one way of overcoming the challenges 
will also be discussed.  

 

2.3.1  The frequentist asymptotic variance of 𝛃�(𝛕) 

We start from the established asymptotic validity of the variance of 𝛃�(𝜏) in the frequentist 
domain. Suppose there exist positive definite matrices 𝐷� and 𝐷P such that 

𝐷� = lim
¶→£

nYP L 𝐱µ𝐱µ
Ú

Ê

WOP
 

and 

𝐷P = lim
Ê→£

𝑛YP L 𝑓îï(
Ê

WOP
𝐱W

Ú𝛃𝟎|𝐱W)𝐱W𝐱W
Ú. 

where 𝑓îï(∙ |𝐱W) denotes the conditional density of the response 𝑦W given covariate 𝐱W 
evaluated at the 𝜏th conditional quantile. The analytic methods for obtaining approximate 
standard errors in the quantile regression model are derived from a general result described in 
Koenker (2005) giving an asymptotic multivariate normal distribution to the joint distribution of 
the coefficient estimates 𝛃�(𝜏) (Hao & Naiman, 2007): 

√𝑛𝛃�(𝜏) ñ
→ 𝑁(𝛃�, 𝜏(1 − 𝜏)𝐷P

YP𝐷�𝐷P
YP), 

where the mean of this distribution, 𝛃�, is the true value of 𝛃(𝜏), and the asymptotic variance, 
𝜏(1 − 𝜏)𝐷P

YP𝐷�𝐷P
YP, takes the form of a Huber-White sandwich estimator (White, 1980).  

   While the so-called sparsity function 𝐷� can be estimated easily from the data, estimating 
the inverse covariance (precision) matrix 𝐷P

YP is a challenging task with non-Bayesian methods. 
Two approaches to the estimation of 𝐷P

YP are described in Koenker (2005). One is an extension 
of sparsity estimation methods suggested by Hendricks and Koenker (1992), and the other is 
based on kernel density estimation and was proposed by Powell (1986). The key idea of Yang et 
al.’s (2015) posterior variance adjustment is to use the estimated 𝐷P

YP delivered automatically 
by the MCMC chains in Bayesian quantile regression with the AL likelihood, and to avoid the 
necessity of estimating the local conditional density 𝑓îï 2𝐱W

Ú𝛃�o𝐱W3.  

 

2.3.2  The Bayesian posterior variance of 𝛃�(𝛕) with the AL likelihood 

For large 𝑛 and improper flat prior 𝑝�(𝛃) ∝ 1, we can expect that the posterior density, 
𝑝Ê(𝛃|𝐷), is asymptotically a normal density with the following mean and covariance matrix 
(Yang et al., 2015): 
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𝑝Ê(𝛃(𝜏)|𝐷) ñ
→ 𝑁 ò𝛃(τ),

𝜎𝐷P
YP

𝑛 ó. 

The asymptotic posterior variance-covariance matrix from Bayesian quantile regression with the 
AL likelihood is a function of the precision matrix 𝐷P

YP, the fixed scale parameter 𝜎, and sample 
size 𝑛. Since this variance-covariance matrix is not yet adjusted to achieve asymptotic validity, 
we can denote the variance as Σ~(𝜎)ºÊ�ñ).  

We can make two claims regarding Σ~(𝜎)ºÊ�ñ). First, the asymptotic limit 𝜎𝐷P
YP 𝑛⁄  is not 

the right approximation to the sampling variance of 𝛃�(τ) because the asymptotically valid 
variance-covariance matrix of 𝛃�(τ) was proven to be the sandwhich estimator 
𝜏(1 − 𝜏)𝐷P

YP𝐷�𝐷P
YP/𝑛. This explains why the unadjusted posterior variance is invalid. Second, 

since the posterior covariance matrix depends on 𝜎, the posterior variance of 𝛃�(τ) is highly 
likely to be sensitive to the choice of fixed 𝜎. Therefore, setting 𝜎 to an arbitrary constant 
could lead to invalid inferences. 

   As one way of addressing these challenges, Yang et al. (2015) suggests a simple posterior 
variance adjustment based on assuming that Σ~(𝜎)ºÊ�ñ) is approximately equal to 𝜎𝐷P

YP 𝑛⁄  and 
converting that expression to 𝜏(1 − 𝜏)𝐷P

YP𝐷�𝐷P
YP/𝑛. The adjustment therefore is 

Σ~(𝜎)�ñ) =
𝑛𝜏(1 − 𝜏)

𝜎. Σ~(𝜎)ºÊ�ñ)𝐷��Σ~(𝜎)ºÊ�ñ),   

where 𝐷�� = 𝑛YP ∑ 𝐱W𝐱W
ÚÊ

WOP  provides a consistent estimator of 𝐷�. Yang et al. (2015) argues that 
the adjusted posterior variance, Σ~(𝜎)�ñ), is asymptotically invariant to the value of 𝜎 and 
yields asymptotically valid posterior inference. They recommend setting σ equal to the 
maximum likelihood estimate of σ under the AL likelihood at the median, though no proof is 
provided. 

   This argument, however, has not been tested much under varying conditions. The posterior 
density might not approximate the normal density with mean of 𝛃�(τ) and variance-covariance 
matrix of 𝜎𝐷P

YP 𝑛⁄ , depending upon varying factors such as finite sample size, quantile of 
interest, value of the scale parameter, and data-generating processes. When the approximation 
does not work, a specific choice of 𝜎 might have some influence on the adjusted covariance 
matrix. Therefore, it is important to empirically test the invariance or insensitivity of posterior 
inference to the choice of the fixed σ and other possibly significant factors when using the 
proposed adjustment method.  
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2.4  Simulation studies 
To conduct a controlled investigation of the sensitivity of Bayesian quantile regression 

estimates to the scale parameter of the AL likelihood, we conduct a Monte Carlo simulation. We 
include one covariate 𝑥W which is an independent standard normal variable (𝑥W ∼ 𝑁(0, 1)). The 
simulation uses 100 replications, and the Bayesian methods use MCMC chains of length 20,000 
with a burn-in of 4,000. Data were simulated in R software (R Core Team, 2016), and analyzed 
using the R package MHadaptive (Chivers, 2015) for Bayesian quantile regression and the R 
package quantreg (Koenker, 2016) for conventional quantile regression. We used the Barrodale 
and Roberts linear programming algorithm for 𝑙P-regression described in Koenker and d’Orey 
(1994) to estimate the conventional frequentist quantile regression.   

 

2.4.1  Design of the simulation 
Two factors were systematically varied for data generation: (a) sample size and (b) data-

generating models. For each simulated dataset, three features of estimation were varied: (c) 
quantile of interest, (d) value of the scale parameter, and (e) uncertainty estimator. We focus on 
two sample sizes, 𝑛 = 200 and 𝑛 = 500, and three quantiles of interest 𝜏 = 0.1, 𝜏 = 0.5, and 
𝜏 = 0.9. For the fixed value of σ, eight values were employed. We first obtain the maximum 
likelihood estimate of σ under the AL likelihood at the median, σ÷ÖO�.ø, and then obtain the 
natural log of σ÷ÖO�.ø. By adding eight constant increments c = {−4, −2, −1, −0.5, 0, 0.5, 1,
2} to log σ÷ÖO�.ø, we make the magnitude of the fixed scale parameter vary multiplicatively 
around the σ÷ÖO�.ø, a baseline for comparisons. For example, if we obtained 3.50 for  σ÷ÖO�.ø, 
log σ÷ÖO�.ø + 1 and log σ÷ÖO�.ø − 1 would be log(3.50 × 𝑒P) and log(3.50 × 𝑒YP) 
respectively. Then the set of values for σ will be {0.06, 0.47, 1.29, 2.12, 3.50, 5.77, 9.51, 25.86}. 

Four data-generating models are specified which are similar to models used in Yang et al. 
(2015)’s simulation studies. For each model, the 𝜏th conditional quantile function is 
𝑄[(𝑦W|𝑥W) = 𝛼(𝜏) + 𝛽(τ)𝑥W, where 𝛼(𝜏) and 𝛽(𝜏) represents the true quantile coefficients at 
𝜏. 𝛼(𝜏) and 𝛽(𝜏) may or may not vary across quantile levels depending on the data-generating 
models. When not dependent on the quantile, the fixed parameters are chosen as (𝛼, 𝛽, 𝛾) =
(1.0, 2.0, 0.5). γ is a parameter used in Case 3 to model heteroscedastic error.  

Case 1: True ALD  

yµ = 𝛼 + 𝛽𝑥W + 𝜖W(𝜏), where 𝜖W(𝜏) ∼ 𝐴𝐿(𝜇 = 0, 𝜎 = 1, 𝜏). The τth conditional quantile 
function is 𝑄[(𝑦W|𝑥W) = 𝛼 + β𝑥W because E[𝜖W(𝜏)|𝑥W] is equal to 0. In this case, the AL 
likelihood approximates the true data-generating mechanism. Note that different data must be 
simulated depending on the value of 𝜏 which also shows that AL can never be correctly specified 
if more than one value of 𝜏 is considered. 
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Case 2: Location shifted normal  

yµ = 𝛼 + 𝛽𝑥W + 𝜖W, where 𝜖W ∼ N(0, 1). The 𝜏th conditional quantile function is 
𝑄[(𝑦W|𝑥W) = [𝛼 + ΦYP(𝜏)] + β𝑥W where ΦYP(𝜏) is the 𝜏th quantile of standard normal 
distribution. This is a location-shift model in the sense that the intercept is shifted by ΦYP(𝜏), 
which depends on 𝜏, and a homoscedastic model because the slope 𝛽(𝜏) = 𝛽 is constant across 
quantile levels.  

Case 3: Location shifted and scaled normal 

yµ = 𝛼 + 𝛽𝑥W + (1 + 𝛾𝑥W)𝜖W, where 𝜖W ∼ N(0, 1). The τth conditional quantile function is 
𝑄[(𝑦W|𝑥W) = [𝛼 + ΦYP(𝜏)] + [𝛽 + γΦYP(𝜏)]𝑥W. This model has a location shift of ΦYP(𝜏) and 
a scale shift of γΦYP(𝜏). This is a heteroscedastic error model because the 𝑥W has a different 
effect on different quantiles of the 𝑦W distribution. 

Case 4: General Location shifted and scaled model 

yµ = 𝛼(𝑢W) + 𝛽(𝑢W)𝑥W, where 𝑢W ∼ Unif(0, 1) is independent of 𝑥W, 𝛼(𝑢W) =
sgn(0.5 − 𝑢W) ∙ log (1 − 2|0.5 − 𝑢W|) and 𝛽(𝑢W) = 2𝑢W, where sgn(𝑧W) is a sign function used 
to extract the sign of real number 𝑧W (sgn(𝑧W) = −1 if 𝑧W < 0,  sgn(𝑧W) = 0 if 𝑧W = 0, and 
sgn(𝑧W) = 1 if 𝑧W > 0). The τth conditional quantile function is 𝑄[(𝑦W|𝑥W) = 𝛼(𝜏) + 𝛽(τ)𝑥W 
for any 𝜏 ∈ (0, 1), where 𝛼(𝜏) = sgn(0.5 − 𝜏) ∙ log (1 − 2|0.5 − 𝜏|) and 𝛽(𝜏) = 2𝜏. This is a 
location and scale shift model with heteroscedastic error because both intercept and slope depend 
on the randomly generated quantile level 𝜏.  

We consider four different standard error and corresponding interval estimators for 𝛼(𝜏) and 
𝛽(𝜏): for conventional quantile regression, Wald-type standard errors based on asymptotic 
normality (Bassett & Koenker, 1982) or standard errors based residual bootstrap (De Angelis et 
al., 1993), and for Bayesian quantile regression with the AL likelihood calculated, both 
unadjusted and adjusted posterior standard deviations, the latter based on Yang et al.’s (2015) 
proposal. 

 

2.4.2  Performance evaluators 
In evaluating the simulation results, we assess three performance criteria: (a) bias, (b) relative 

error, and (c) coverage. Suppose that the true parameter is 𝛽(𝜏) and that the 𝑖th simulated 
dataset (𝑖 = 1, … , 100) yields a point estimate 𝛽ÒW at the 𝜏th quantile with its model-based 
standard error 𝑠W. We can compute the mean and the variance of m=100 estimates of 𝛽ÒW as �̅� =
P
$

∑ 𝛽ÒWW  and V%� =  P
$YP

∑ 2𝛽ÒW − �̅�3.
W . We also compute 𝑠.zzz = P

$ 𝑠W
. and 𝑉�& = P

$YP
∑ 2𝑠W

. −W

𝑠.zzz3.
, because standard theory yields unbiased estimates of the variances, not of the standard 

deviation (White, 2010). Table 2.1 summarizes how to compute the empirical estimates and their 
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Monte Carlo (MC) error of the three performance evaluators with these means and variances of 
𝛽ÒW and 𝑠W. The estimated Monte Carlo (MC) error is defined as the standard deviation of each 
estimated performance evaluator over repeated simulation studies. The MC error estimates 
represent the uncertainty of the simulation results due to having only a finite number of 
replicates.  

The estimated bias is computed to evaluate the performance of the point estimates 𝛼k(𝜏) and 
𝛽Ò(𝜏). The relative error assesses the performance of the estimated model-based standard error of 
the 𝛼k(𝜏) and 𝛽Ò (𝜏). The relative error is based on the ratio of the average model-based standard 

error (ì𝑠.zzz) to the standard deviation of the estimates (ìV%� ). The latter, often called Monte Carlo 
standard deviation (MCSD), approximates the true sampling variation. Thus, relative error 
essentially assesses how well the estimated standard errors represent the true sampling variation. 
Because we subtract one from the ratio, the relative error will have the value of zero if the mean 
model-based standard error is equal to the (estimated) true sampling standard deviation, MCSD. 
Joint performance of the point estimates and their model-based standard errors can be assessed 
by coverage probabilities. The coverage of a nominal 95% confidence interval is the proportion 
of 95% confidence intervals that contained the true parameter. Only models that converged 
properly were included when calculating these three evaluators to cull out improper point 
estimates and standard errors in the analyses.  

 

Table 2.1: The empirical estimates and their Monte Carlo errors of performance evaluators  

Performance evaluator Estimate Monte Carlo error 

Bias �̅� − 𝛽 'V%�/𝑚 

Relative error 
ì𝑠.zzz

ìV%�
− 1 )

ì𝑠.zzz

ìV%�
− 1*x

𝑉�&

4𝑚𝑠.zzz. +
1

2(𝑚 − 1) 

95% coverage 
probability 

𝐶 =
1
𝑛 L 𝐼(

W
o𝛽ÒW − �̅�o < 𝑧.�.ø𝑠W) ì𝐶(1 − 𝐶)/𝑚 

Note: 𝛽 is the true parameter; 𝐼(∙) is the indicator function; 𝑧.�.ø is the critical value from the 
normal distribution. 
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2.4.3  Results 

   Table 2.2 summarizes the estimates of three performance evaluators and their Monte Carlo 
errors when the scale parameter is fixed at σ÷ÖO�.ø as recommended in Yang et al. (2015). For 
simplicity of presentation, we first present only Case 1 and 4 with 𝑛 = 500 because the results 
from Case 2 and 3 have similar patterns as Case 4. Results for Case 2 and 3 can be found in the 
Appendix. 

When the true data generating process follows an AL distribution, we observe that there are 
no significant biases even for the extreme quantiles (τ = 0.1, 0.9). In contrast, point estimates for 
the extreme quantiles are systematically biased when the true data generating model is a location 
shifted and scaled model: 𝛼k(𝜏 = 0.1) is negatively biased while 𝛽Ò (𝜏 = 0.1) has positive bias. 
The intercept and slope parameter estimates at 𝜏 = 0.9 demonstrate the opposite directions but 
similar magnitude of bias. This result confirms previous work (e.g. Cade et al., 2005; Sriram et 
al., 2013; Hausman et al., 2014) which has shown that the slope parameter estimates of linear 
quantile regression were biased at extreme quantiles, with lower quantiles biased upwards 
towards the median-regression coefficients and upper quantiles biased downwards towards the 
median-regression coefficients. Biases at the extreme quantiles seem not to be due to the 
misspecification of the likelihood because point estimates from the linear programming method 
are also biased.  

When the data-generating process follows an AL distribution, we see that relative error 
estimates for the three uncertainty estimators except for the unadjusted Bayesian intervals 
produce similar patterns. The unadjusted Bayesian uncertainty estimates tend to be greatly 
inflated at extreme quantiles. The relative error estimates in Case 4 confirm Yang et al.’s (2015) 
previous observation that the unadjusted Bayesian intervals from the AL likelihood tend to be 
systematically underestimated which lead to relatively poor coverage. For example, the relative 
error of the model-based standard error of the point estimate 𝛽Ò(𝜏 = 0.5) in Case 4 is estimated 
to be -0.20. This means that the average model-based standard error is estimated to be 20% lower 
than the MCSD. In contrast, the standard errors based on the proposed variance adjustment is 
only 4% lower than the MCSD. For 𝛽Ò(𝜏 = 0.5), the two non-Bayesian methods differ in their 
performance. While the bootstrapped standard error estimates are similar to the MCSD and 
adjusted Bayesian standard errors, the Wald-type standard error estimates to be 19% lower than 
the MCSD. The performance of the two non-Bayesian methods seems to be less stable across 
quantiles because of the difficulty in approximating the variance–covariance matrices of the 
quantile estimates. 
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Table 2.2. Bias, relative error, and coverage probability in case 1 and 4 with 𝑛 = 500 when the 
scale parameter is fixed at σ÷ÖO�.ø. MC errors are presented in parentheses.   

Data-
generating 

model 

Uncertainty 
estimator 

Bias Relative error Coverage 

α(τ) 𝛽(τ) α(τ) 𝛽(τ) α(τ) 𝛽(τ) 

𝜏 = 0.1 

Case 1:  
True ALD 
  

Bayes²-S -.04 (.02) -.02 (.02) .19 (.09) .23 (.09) .98 (.01) .99 (.01) 
Bayes.¶²-S -.04 (.02) -.02 (.02) 1.01 (.14) .99 (.14) 1.00 (.00) 1.00 (.00) 

BR/001 .00 (.01) -.01 (.02) .16 (.08) .10 (.08) .96 (.02) .97 (.02) 

BR¶µ- .00 (.01) -.01 (.02) .23 (.09) .03 (.07) .97 (.02) .96 (.02) 

Case 4: 
Location 
shifted 
and scaled 
model 

Bayes²-S -.08 (.01) .17 (.01) .15 (.09) .02 (.08) .93 (.03) .62 (.05) 
Bayes.¶²-S -.08 (.01) .17 (.01) -.18 (.06) -.13 (.06) .87 (.03) .49 (.05) 

BR/001 -.07 (.01) .16 (.01) .12 (.08) .12 (.08) .94 (.02) .68 (.05) 

BR¶µ- -.07 (.01) .16 (.01) .14 (.08) .35 (.10) .96 (.02) .82 (.04) 

𝜏 = 0.5 

Case 1:  
True ALD 
  

Bayes²-S .00 (.01) -.01 (.01) .03 (.07) .13 (.08) .95 (.02) .95 (.02) 
Bayes.¶²-S .00 (.01) -.01 (.01) -.02 (.07) .06 (.08) .95 (.02) .95 (.02) 

BR/001 .00 (.01) -.01 (.01) .03 (.07) .14 (.08) .97 (.02) .96 (.02) 

BR¶µ- .00 (.01) -.01 (.01) .08 (.08) .13 (.08) .97 (.02) .96 (.02) 

Case 4: 
Location 
shifted 
and scaled 
model 

Bayes²-S .00 (.01) .00 (.01) -.05 (.07) -.04 (.07) .88 (.03) .90 (.03) 
Bayes.¶²-S .00 (.01) .00 (.01) -.23 (.06) -.20 (.06) .85 (.04) .86 (.03) 

BR/001 .00 (.01) .00 (.01) -.05 (.07) -.05 (.07) .90 (.03) .86 (.03) 

BR¶µ- .00 (.01) .00 (.01) -.02 (.07) -.19 (.06) .93 (.03) .86 (.03) 

𝜏 = 0.9 

Case 1:  
True ALD 
  

Bayes²-S .02 (.02) .00 (.02) .17 (.08) .05 (.08) .99 (.01) .94 (.02) 
Bayes.¶²-S .02 (.02) .00 (.02) .93 (.14) .71 (.12) 1.00 (.00) 1.00 (.00) 

BR/001 -.02 (.02) .00 (.02) .07 (.08) .00 (.07) .95 (.02) .89 (.03) 

BR¶µ- -.02 (.02) .00 (.02) .10 (.08) -.06 (.07) .94 (.02) .91 (.03) 

Case 4: 
Location 
shifted 
and scaled 
model 

Bayes²-S .09 (.01) -.16 (.01) .14 (.08) -.08 (.07) .89 (.03) .61 (.05) 
Bayes.¶²-S .09 (.01) -.16 (.01) -.18 (.06) -.22 (.06) .79 (.04) .57 (.05) 

BR/001 .08 (.01) -.15 (.01) .14 (.08) .00 (.07) .91 (.03) .70 (.05) 

BR¶µ- .08 (.01) -.15 (.01) .18 (.09) .21 (.09) .93 (.03) .84 (.04) 
Note: Bayes²-S and Bayes.¶²-S represent the Bayesian quantile regression based on an AL likelihood, 
with and without posterior variance adjustment; BR/001 is the frequentist quantile regression using 
Barrodale and Roberts’s linear programming algorithm for 𝑙P-regression with standard error estimates 
based on residual bootstrapping; BR¶µ- uses the same frequentist model with Wald-type standard errors. 
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Sensitivity of point estimates to the value of 𝛔.  

Figure 2.3 shows estimated biases and their MC errors for the intercept and slope coefficients 
for each quantile when the AL likelihood is correctly specified. We see that the Bayesian quantile 
regression estimator yields approximately unbiased slope coefficients, which are not sensitive to 
the quantile levels and fixed values of the scale parameter. Clearly, the intercept estimates from 
the Bayesian methods, however, have considerable biases when the fixed scale parameter is large 
at tail quantiles. As can be seen in Figure 2.4,  𝛼k(τ) tends to approach the true parameter value 
when the sample size increases from 200 to 500. Thus, we can expect that biases tend to zero in 
very large samples, as might be expected given that Sriram et al. (2013) established posterior 
consistency of Bayesian quantile regression estimator with an AL likelihood. However, we need 
to note that the finite sample performance of point estimators can be greatly affected by the fixed 
value of the scale parameter even when the AL likelihood is correctly specified.  

Bias estimates when the data generating process follows a location shifted and scaled model 
are given in Figure 2.5. As we observed in Table 2.2, the intercept estimates are negatively 
biased and the slope estimates are positively biased at the lower quantile (𝜏 = 0.1) whereas 
opposite directions of bias are observed at the upper quantile (𝜏 = 0.9). Although biases are 
present both in conventional and Bayesian quantile regression, the Bayesian estimates are more 
biased when the scale parameter is fixed at large values. The difference in estimates between the 
Bayesian and conventional methods is expected to converge to zero as the sample size increases 
as can be seen in Figure 2.5. We are not sure, however, whether biases themselves at the tail 
quantiles will be reduced to zero as the sample size increases. In our simulation results, we 
observe that the intercept parameter tends to be estimated with bias when the quantile regression 
model is fitted to data generated with location shift (Case 2, 3, 4), and the slope parameter 
estimates are biased in the scaled data generating models (Case 3, 4). Therefore, researchers 
working with finite samples need to be aware of the possibility of biased estimates at the extreme 
quantiles. 
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Figure 2.3: Sensitivity of bias to the fixed scale parameter σ in Case 1 with 𝑛 = 500 

 

 

Figure 2.4: Sensitivity of the biases of  𝛼k(τ) to the fixed scale parameter σ in Case 1 with 𝑛 =
200 and 𝑛 = 500 
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Figure 2.5: Sensitivity of bias to the fixed scale parameter σ in Case 4 with 𝑛 = 500 

 

 

Figure 2.6: Sensitivity of the biases of  𝛼k(τ) to the fixed scale parameter σ in Case 4 with 𝑛 =
200 and 𝑛 = 500 
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Sensitivity of model-based standard errors to the value of 𝛔.  

Figures 2.7 and 2.8 clearly show that both the unadjusted and adjusted posterior standard 
deviations depend heavily on the value of σ. As a constant increment is added to the log σ÷ÖO�.ø, 
the relative errors of the unadjusted and adjusted posterior standard deviations increase 
exponentially. It is important to note that the curves for the relative errors of the adjusted and 
unadjusted standard errors approximately intersect at σ÷ÖO�.ø, (where the x-axis is 0), where the 
relative error for both methods is close to zero. The only exception is the unadjusted posterior 
standard deviation estimated at extreme quantiles in Case 1. The unadjusted uncertainty 
estimates seem to be inflated systematically. We can therefore expect reasonable performance of 
the Bayesian model-based standard errors if the scale parameter of the AL likelihood is fixed at 
σ÷ÖO�.ø as Yang et al. (2015) recommended. However, the standard errors are underestimated if 
the fixed scale parameter is less than σ÷ÖO�.ø and overestimated if the scale parameter is fixed at 
larger values than σ÷ÖO�.ø.  

   Although Yang et al. (2015) argue that the adjusted posterior variance is asymptotically 
invariant to the value of σ, the simulation results rather suggest that the adjusted posterior 
variance is far more sensitive than the unadjusted one in the range around σ÷ÖO�.ø. This pattern 
persists throughout all the data generating models. Therefore, in order to take advantage of Yang 
et al.’s (2015) posterior variance adjustment, one should first employ standard frequentist 
quantile regression at the median of the response on the predictors to estimate the σ÷ÖO�.ø. Setting 
the scale parameter to an arbitrary fixed constant such as 1 will lead to underestimated 
uncertainty estimates if the constant is less than σ÷ÖO�.ø. 

Sensitivity of the joint performance of point estimates and model-based standard errors to 
the value of 𝛔.  

Since the Bayesian posterior variance increases dramatically as a function of σ, the coverage 
probability also tends to increase rapidly with the value of σ. When the σ is set to a very large 
value, overestimated standard errors are therefore expected to lead to coverage close to 1. Thus, 
we consider only a reasonable range of σ to investigate the joint performance of point estimates 
and model-based standard errors. Figure 7 plots coverage probabilities just below and above the 
σ÷ÖO�.ø for that reason.  

Figure 2.9 shows that the Bayesian intervals with adjustment have higher coverage than the 
corresponding intervals without adjustment in most cases. However, the Wald-type intervals 
constructed from the conventional quantile regression estimator outperform the two Bayesian 
counterparts in most cases when the data generating process follows the location shifted and 
scaled model. The Wald intervals have coverage closer to the nominal 90% level than the 
Bayesian intervals in most scenarios considered. In contrast, the coverage probabilities of the 
Bayesian intervals with or without posterior variance adjustment seem less stable because the 
point estimates and model-based standard errors are sensitive to the choice of σ.  
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Figure 2.7: Sensitivity of the relative error of the model-based SE to the fixed scale parameter σ 
in Case 1 with 𝑛 = 500 
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Figure 2.8: Sensitivity of the relative error of the model-based SE to the fixed scale parameter σ 
in Case 4 with 𝑛 = 500 

 

 

 

 



53 

 

  

 

 

 

Figure 2.9: Sensitivity of the coverage of 95% confidence/credible intervals to the fixed scale 
parameter σ in Case 4 with 𝑛 = 500 
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2.5  Real data analysis 
We demonstrate the sensitivity of Bayesian quantile regression to the scale parameter of the 

AL likelihood using a data from the Programme for the International Assessment of Adult 
Competencies (PIAAC). PIAAC provides direct measures of cognitive skills such as literacy and 
numeracy from a nationally representative sample of adults. Taking advantage of these measures, 
we aim to investigate the relationship between adults’ monthly earnings and their literacy skills 
in South Korea. The outcome variable 𝑙𝑤𝑎𝑔𝑒W is the natural logarithm of total monthly earnings 
for salary earner 𝑖, expressed in US dollars at purchasing power parity (PPP) rates. The sample 
mean, minimum and maximum value of the log wage is 8.00, 5.62, and 10.44 respectively. The 
explanatory variable 𝑙𝑖𝑡𝑒𝑟𝑎𝑐𝑦W is the z-score of salary earner’s literacy skill (with mean of zero 
and standard deviation one). The estimation sample contains a total of 1,357 adults in South 
Korea. We consider the following simple linear quantile regression model: 

QÖ(𝑙𝑤𝑎𝑔𝑒W|𝑙𝑖𝑡𝑒𝑟𝑎𝑐𝑦W) = 𝛼(𝜏) + 𝛽(𝜏)𝑙𝑖𝑡𝑒𝑟𝑎𝑐𝑦W. 

This model assumes that wage grows or decreases as a function of the cognitive literacy 
skills. We focus on quantiles 𝜏 = 0.1, 0.5 and 0.9 and estimate 𝛼(𝜏) and 𝛽(𝜏) using the 
Bayesian quantile regression estimator based on the AL likelihood with fixed scale parameter σ. 
We investigate how the point estimates and model-based standard errors of 𝛼(𝜏) and 𝛽(𝜏) 
change across varying values of σ. As in the simulation study, we first employ eight levels of the 
fixed value of the σ by adding eight constant increments c = {−4, −2, −1, −0.5, 0, 0.5, 1,
2} to the log σ÷ÖO�.ø. As σ÷ÖO�.ø is estimated to be 0.229 from the data, the set of the varying 
quantities of the pre-estimated σ will be {0.004, 0.030, 0.084, 0.139, 0.229, 0.378, 0.622, 1.692}. 
Then we add larger constant increments such as 4 and 6 to investigate the behavior of point 
estimates and their uncertainty estimates when the scale parameter is fixed at extremely large and 
unreasonable values. The scale parameter σ will be set to 12.503 when 4 is added to log σ÷ÖO�.ø, 
and 92.385 when 6 is added to the value.  

Figure 2.10 shows 95% credible intervals of the coefficient of literacy as a function of the 
scale parameter. Similar to the simulation results, this figure suggests that the posterior standard 
deviation depends heavily upon the fixed value of σ. The two Bayesian intervals are not far from 
the Wald-type interval when the scale parameter is fixed at σ÷ÖO�.ø. However, setting the fixed σ 
to smaller values than σ÷ÖO�.ø results in underestimation of the Bayesian uncertainty intervals 
while setting it to larger values than σ÷ÖO�.ø leads to the overestimation of the intervals. It is 
important to note that the width of the 95% intervals is more sensitive to different values of σ 
when the posterior variance adjustment is used. In fact, when σ = 1.692 (log σ÷ÖO�.ø+ 2), the 
posterior variance adjustment yields remarkably larger standard errors, which are about three 
times of the standard errors estimated without adjustment. This result contradicts Yang et al.’s 
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(2015) finding that the Bayeisan intervals are stable across different values of σ with the 
proposed posterior variance adjustment.  

Table 2.3 presents the estimates and standard errors and shows a similar pattern as the 
simulation results. At the lower quantile (𝜏 = 0.1), we see that the 𝛼(𝜏) is estimated to be 
smaller with the Bayesian method than with the conventional quantile regression when σ is 
large, whereas the Bayesian 𝛽(𝜏) estimates are larger than the conventional estimates. Opposite 
directions of biases are observed at the upper quantile (𝜏 = 0.9). Although we are not sure 
whether or not the conventional estimates are biased, it seems evident that the Bayesian point 
estimates deviate more from the conventional estimates as σ increases. This deviation can be 
regarded as biases introduced by fixing the scale parameter at very large and unreasonable 
values.  
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Figure 2.10: Sensitivity of the estimates of 𝛼(𝜏) and 𝛽(𝜏) to the fixed scale parameter 𝜎 
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2.6  Conclusion 
In this paper, we explored the sensitivity of posterior inference of Bayesian quantile 

regression to the value of the scale parameter of the AL likelihood. It is shown in the paper that 
not only the variance directly obtained from posterior distribution but also the adjusted posterior 
variance proposed by Yang et al. (2015) depend heavily upon the value of the scale parameter. In 
contradiction to Yang et al.’s (2015) argument that the adjusted posterior variance is 
asymptotically invariant to the value of 𝜎, we found that the adjusted variance is even more 
sensitive to the scale parameter than the unadjusted one. While Yang et al.’s (2015) empirical 
evidence was based on only one data set, our results are based on both a real data analysis and 
comprehensive simulation studies that varied important factors such as data generating models. 
Our finding persisted for all data generating models considered in the simulation design.  

It is important to note that the proposed posterior variance adjustment works only when 𝜎 is 
fixed at the maximum likelihood estimate of the scale parameter at the median (σ÷ÖO�.ø). Even 
though Yang et al. (2015) argues that the posterior variance adjustment leads to asymptotically 
valid posterior inference independent of the choice of 𝜎, our finding suggests that fixing the 
scale parameter at σ÷ÖO�.ø should be considered as a critical requirement to obtain valid posterior 
intervals. Although further work is needed to provide a theoretical proof, it seems that the 
posterior variance-covariance matrix does not approximate to 𝜎𝐷P

YP 𝑛⁄  for finite n when 𝜎 is 
fixed. We found that the Bayesian approach performs reasonably with σ÷ÖO�.ø. This method can 
be a simple alternative to the Syring and Martin (2015)’s Gibbs posterior scaling algorithm that 
adaptively select the scale parameter to calibrate the corresponding Gibbs posterior variance.  

We also found that point estimates can be biased both in conventional and Bayesian quantile 
regression at extreme quantiles. According to the asymptotic results for 𝛃�(𝜏) by Hao and 
Naiman (2007) the estimator is asymptotically unbiased. In practice, however, it has been often 
reported that the slope parameter estimates of linear quantile regression tend to be finite-sample 
biased at extreme quantiles (e.g. Cade et al., 2005; Sriram et al., 2013; Hausman et al., 2014). 
The Bayesian estimates tend to be more biased when the scale parameter is fixed at large values.  

This might be due to a reduced density of the data in the tails. In quantile regression, it is 
known that away from the median the distributions of the estimated parameters become skewed 
and their dispersion is greater because of the data sparsity (Davino et al., 2014). When fitting 
quantile regression to finite samples, the skewed and dispersed distribution is likely to shift its 
center. Fortunately, the direction of the shift is predictable as previous research and this paper 
have shown. For example, the slope parameter estimates for the the lower quantiles tend to be 
biased upwards towards the median-regression coefficients, whereas the coefficients for the 
upper quantiles are biased downwards towards the median-regression. Researchers working with 
small to medium sample sizes should consider the direction and magnitude of possible biases at 
extreme quantiles.  
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Figure 2.11: Sensitivity of bias to the fixed scale parameter σ in Case 2 with 𝑛 = 500 
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Figure 2.12: Sensitivity of bias to the fixed scale parameter σ in Case 3 with 𝑛 = 500 
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Figure 2.13: Sensitivity of the relative error of the model-based SE to the fixed scale parameter 
σ in Case 2 with 𝑛 = 500 
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Figure 2.14: Sensitivity of the relative error of the model-based SE to the fixed scale parameter 
σ in Case 3 with 𝑛 = 500 

 

 

 



63 

 

 

  

 

 

 

Figure 2.15: Sensitivity of the coverage of 95% confidence/credible intervals to the fixed scale 
parameter σ in Case 1 with 𝑛 = 500 
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Figure 2.16: Sensitivity of the coverage of 95% confidence/credible intervals to the fixed scale 
parameter σ in Case 2 with 𝑛 = 500 
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Figure 2.17: Sensitivity of the coverage of 95% confidence/credible intervals to the fixed scale 
parameter σ in Case 3 with 𝑛 = 500 
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Chapter 3 

Does finance Reform Move Teachers and School 
Organizations? California’s $23 Billion Equity 
Initiative1 
 

3.1  Introduction 
Fresh infusions of school funding work to raise student achievement, especially among 

disadvantaged pupils, according to findings emerging over the past quarter-century (Candelaria 
& Shores, 2019; Card & Krueger, 1992; Greenwald, Hedges, & Laine, 1996; Hyman, 2017; 
Lafortune, Rothstein, & Schanzenbach, 2018; Jackson, Johnson, & Persico, 2015). California’s 
contemporary reform offers one robust case in point.  

Pressed by Gov. Jerry Brown, the California legislature approved in 2013 a weighted-student 
formula (Local Control Funding, LCF) that would boost annual spending by $23 billion by the 
fifth year, and send the lion’s share of new funding to districts serving large shares of English 
learners and pupils from poor or foster care families.2 But little is known about how the effects 
of this ambitious reform, especially why it has failed to narrow achievement gaps, even in years 
when mean levels of learning climb (Johnson & Tanner, 2018; authors’ citation, in press).  

We back-up to ask how infusions of new spending may shift the attributes of teachers among 
schools, and organizational and curricular structures that may variably direct inputs to certain 
students within schools. Despite calls in policy and scholarly circles for identifying not simply 
whether money matters, but how it alters teacher qualities or school-level mediators, the issue 
remains under-theorized and rarely studied (Hanushek & Woessmann, 2017).  

This paper advances a conceptual model that first captures how this pair of intertwining 
mediators – teacher inputs and organizational practices – arrive to schools in varying levels and 

 
1	 Sections 3.1-3.4 and 3.7 are co-authored with Prof. Bruce Fuller.	 	
2 California’s finance legislation and subsequent regulations refer to the reform as the Local Control Funding 
Formula or LCFF, an acronym that we shorten for brevity and to avoid confusion with weighted-pupil formula 
(WPF) in this paper. 
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mixes. Economists have long seen teachers as key inputs to schools, cast as a “production site”. 
But how new funding translates into inputs distributed among schools, and then deployed by 
principals within schools, is not well understood. We estimate how funding infusions may spur 
change in organizational practices, such as class size, teacher workloads, and the school’s 
relative emphasis on college-preparatory classes. Our theoretical framework also highlights how 
threats to the equitable distribution of inputs or practices can occur at three levels, as new dollars 
flow from state capitals: between districts, among schools within districts, and applied to 
differing students within schools.   

The California reform operates through a weighted-pupil formula (WPF), granting wide 
discretion to local districts over how their new funds can be allocated, whether used for 
classroom instruction, rising health-care costs or pension liabilities. Pro-equity groups such as 
the American Civil Liberties Union (ACLU) have sued several districts that allegedly ignored the 
spirit of the LCF reform, allocating new dollars to schools or cost items disconnected from 
disadvantaged students (Kohli, 2016, 2019). This prompts a counter-hypothesis to government’s 
official theory-of-action. That is, the insufficient targeting of new funding on stronger teachers or 
improved classrooms and curricular structures may lead to null effects when it comes to raising 
mean achievement or narrowing disparities (e.g., United Way, 2018). 

This paper closely follows recent methodological advances by Johnson and Tanner (2018; 
Jackson, Johnson, & Persico, 2015) to identify the exogenous portion of California’s LCF 
finance reform. Then, we estimate the quasi-experimental effect of the reform on changes in the 
qualities of teachers working inside schools, organizational features of schools, and curricular 
structuring, during the initial four years of LCF implementation, 2013-2017.  

Building from Johnson and Tanner’s earlier study, we advance a theoretical framework and 
estimation strategy that (1) focuses on change in district-level spending on students and 
instructional costs (including teacher salaries), rather than relying on gross revenue changes, (2) 
taking into account multiple sources of possible endogeneity bias, (3) disaggregates elementary 
from high school effects, (4) examines how teacher inputs and organizational practices among 
schools may respond to varying levels of new dollars over time, and (5) employs quantile 
regression to illuminate how effects from finance reforms may differ among schools serving 
varying types of students. 

We find that schools in districts that spent more on teachers and the instructional program 
over time, relative to their counter-factual level, at first hired more novice and substitute teachers 
and then continued to rely more on inexperienced teachers. The infusion of new LCF dollars did 
help high-poverty schools attract new, mostly white teachers with master’s degrees. This surge in 
hiring did foster a modest shrinkage of class size. Teacher workloads rose modestly in terms of 
the count of instructional periods assigned each day.  

Additional effects may help to explain why California’s sharp rise in school spending has not 
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discernibly moved achievement gaps. High schools increased the number of distinct courses, 
while reducing the share of courses qualifying as college-prep, especially in schools serving high 
shares of disadvantaged students. Growing shares of English learners attended classes taught by 
the rising count of novice teachers. Overall, we find that California’s fresh infusion of dollars did 
spur the hiring of new teachers during the initial five years, but declining levels of teacher 
experience, along with observed organizational practices, worked against efforts to narrow 
disparities in student achievement.  

We first review prior work that associates funding gains with achievement change, along 
with the few recent studies on school-level mediators. Second, we summarize what’s known 
about decentralized and variably targeted finance reforms, some of which utilize weighted-pupil 
formulae (WPF). Third, we describe California’s ambitious finance reform, spotlighting 
disappointing progress in narrowing achievement gaps, the stated goal of this massive reform.  

 

3.2  Does finance reform alter school organizations? 

3.2.1  The promise of progressive finance 

Scholars continue to find achievement effects that stem from state-initiated gains in spending, 
efforts aimed at raising average pupil performance or narrowing disparities. Recent work, for 
instance, details how per pupil spending grew by over half in the poorest quintile of school 
districts nationwide (based on household income) between 1990 and 2012, yet by just under one-
third in the most affluent fifth of all districts (Lafortune, Rothstein, & Schanzenbach, 2018). 
Encouragingly, students in the poorest districts displayed modest gains in achievement (about 
0.10 SD over a decade, depending on grade level and subject) following discrete jumps in state 
spending. These researchers exploited the randomness of when states enacted finance reforms, 
allowing for quasi-experimental estimation. 

Similarly, Jackson, Johnson, and Persico (2015) worked from randomly timed finance 
litigation among states, occurring in the 1970s forward, then estimated whether pupils achieved 
at higher levels over the post-reform period. Conducting this event study with instrumental 
variables, they estimated that a 10% boost in spending per pupil over 12 grades resulted in one-
third of a year more schooling completed, along with a 7% bump in wages downstream. These 
benefits were greater for students from low-income families. 

Narrower benefits of modest magnitudes have been estimated for California’s LCF reform, 
first underway in the 2013-14 school year. Johnson and Tanner (2018) found that the exogenous 
portion of the LCF infusion of new dollars did predict significant increases in high school 
graduation rates and gains in eleventh-grade test scores in math and English language arts (ELA) 
over the initial four years. In math, students from poor families showed stronger gains than 
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middle-class peers. 

Overall, this line of work demonstrates that money does matter, at least when it comes to 
raising the learning curves of disadvantaged students. Yet, little empirical progress has occurred 
to discover how rising spending may alter the attributes of teachers deployed inside schools, or  
features of the school organization that may mediate achievement effects that resulting from new 
spending. Researchers have long tried to identify discrete inputs that display the greatest 
predictive validity (efficiency) vis-à-vis student achievement (e.g., Ferguson, 1991; Hanushek, 
2016; Hedges, Picott, & Polanin, 2016; authors’ citation). But this work has yet to be linked back 
up to state-level finance reforms, nor situated inside schools to learn how inputs are deployed by 
principals or teacher-leaders.  

A handful of scholars are beginning to focus on mediating mechanisms or social processes 
that may stem from finance gains. Lafortune and SchÖnholzer (2018) found significant effects of 
school construction on achievement, as mostly disadvantaged children moved into new facilities 
in Los Angeles. Shifts in class size and teacher composition, differing between aging and new 
campuses, did not explain pupil-level effects, but the reduction in overcrowding did significantly 
mediate achievement gains, animated by a $19.5 billion boost in capital spending within the L.A. 
Unified School District.  

 Klopfer (2017) exploited the random incidence of state finance reforms since the 1970s to 
estimate change in indicators of school quality and instructional time. He found that finance 
infusions did not lead districts or schools to hire more teachers or better qualified instructional 
staff. But fresh funding did affect the length of the academic year, on average, allowing districts 
to add additional instructional days. This illustrates how funding infusions may animate 
organizational changes, which in turn may result in achievement gains.3 

States may display less concern for efficiency under some finance reforms. In California, the 
governor and legislature placed priority on narrowing sticky achievement gaps by dramatically 
shifting new dollars to districts that serve larger concentration of disadvantaged students. In turn, 
Johnson and Tanner (2018) did find significant gains in teacher salaries and instructional 
spending, greater pension contributions by districts, and modest reductions in pupil-teacher ratios 
in the wake of LCF. Despite their pioneering work on district spending and school-level inputs, 
we know much less about the attributes of newly hired teachers, whether they are deployed to lift 
lower achieving students, and whether input infusions shift organizational and curricular 
structuring inside schools – possible mediators of how new spending lifts learning. 

 

 
3 He usually infers that districts and schools behave in ways to minimize labor costs: lengthen instructional time was 
about half as costly as hiring additional teachers. 
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3.2.2  Policy enthusiasm for decentralized weighted-pupil funding 

Aiming to adequately fund public schools, while narrowing achievement gaps, policy 
activists and scholars increasingly embrace WPF strategies. Distributing state dollars based on a 
district’s student composition (weighting certain students more heavily) recognizes the higher 
cost of lifting disadvantaged students over state proficiency hurdles. “Because not all students 
come to school with the same individual, family, or neighborhood advantages, some need more 
resources than others to meet a given achievement standard,” argued the architects of 
California’s reform (Bersin, Kirst, & Liu, 2008:5). This marks a shift away from equal to greater 
funding for disadvantaged pupils, as policy leaders struggle to narrow disparities. 

WPF strategies also replace centrally regulated categorical-aid programs, limiting the state 
capital’s role to the progressive distribution of funding, while decentering budget authority over 
programs and school-by-school allocations out to local districts (Augenblick, Myers, & 
Anderson, 1997; Odden & Picus, 2014). This proves politically appealing to district managers, 
who gain discretion, and unions leaders who welcome more money on the bargaining table. 
Then-Gov. Arnold Schwarzenegger pushed through legislation in 2009 to consolidate over 65 
separate funding streams and programs. This precursor to the far-reaching LCF reform began to 
worry equity advocates, fearing diminished accountability over funds once targeted for poor 
children. After all, the original argument for categorical aid, going back to the Civil Rights Era, 
was that dollars would drift to schools in politically stronger neighborhoods, if left unregulated. 

Evidence remains mixed on the extent to which WPF strategies affect the distribution of 
teachers, stronger school organizations, or curricular gains. Hawaii’s statewide reform drove 
larger allocations to schools serving greater shares of poor students, but with few discernible 
effects for students (Levin et al., 2013). An ambitious WPF experiment in Prince George’s 
County, Maryland triggered only a slight redistribution of resources to poor pupils. This district 
“unlocked” for principal discretion only certain teaching posts, while most remained centrally 
allocated (Malen, Dayhoff, Egan, & Croninger, 2015).4 Two independent studies find that Los 
Angeles Unified progressively allocated more new dollars to high schools serving greater 
concentrations of poor students in the wake of new LCF funding. But per pupil spending climbed 
equally among elementary schools, whether situated in middle-class or poor neighborhoods 
(Partnership, 2018; United Way, 2018). 

In California, Gov. Brown targeted a large amount of new dollars on big urban districts, 
along with other districts serving large shares of disadvantaged students. But his legislation 
placed no statutory strings on how districts could spend their new dollars. He resisted efforts by 

 
4 Miles and Roza (2006) similarly found that the devil lies in policy details, after studying WPF schemes in 
Cincinnati and Houston. The share of district budgets to which pupil weights are applied, niceties of the school-
allocation formula, and highly institutionalized ways of distributing teaching posts worked to undercut redistributive 
effects. 
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the ACLU and equity advocates to require local boards to report on which schools benefit from 
rising state revenues. This leads to the pivotal policy question: do large infusions of new 
revenues – sent from a state capital out to districts in decentralized fashion – alter the attributes 
of teaching staff or the social organization of classrooms and curriculum in ways that improve 
mean achievement or narrow disparities in learning? 

 

3.3  Progressive finance reform in california 
“We are bringing government closer to the people, to the classroom where real 
decisions are made, and directing the money where the need and the challenge is 
greatest.” (Brown, 2013) 

The Golden State’s LCF reform swept aside scores of categorical aid programs in the 
summer of 2013, along with revenue limits on districts set in place by Proposition 13 back in 
1978. The new weighted-pupil formula would contain three funding tiers. The base grant 
provides equal dollars per pupil in amounts set at about $6,900 per K-6 student, $7,200 per 
middle school student, and $8,300 per high school student, adjusted for inflation each year 
(California, 2013). Supplemental grants send to districts an amount equal to 20% of the base 
grant for each student from a poor family, designated EL, or child in foster care. Concentration 
grants further raise per-pupil distributions to districts by an amount equal to 50% of the base 
grant for each additional poor student after their representation surpasses 55% of total 
enrollment.5 California regulations require that districts expand or improve services for the 
students generating the new supplemental and concentration grants in proportion to their share of 
district enrollment.6  

 

3.3.1  Rising state spending 

The state’s resurging economy, along with a constitutional set-aside for K-12 spending, 
spurred a dramatic rebound from recession-era cuts, commensurate with Gov. Brown’s approval 
of the LCF reform in the summer of 2013. Spending per pupil had declined by one-fifth through 
the Great Recession (2007-2011). Then, K-12 spending climbed by nearly $23 billion in yearly 

 
5  District leaders in Oakland and San Francisco had earlier experimented with WPF allocations among their 
constituent schools, awarding more dollars and discretion to schools serving larger shares of poor students. Effects on 
staffing patterns or pupil achievement remain mixed (Chambers, Shambaugh, Levin, Muraki, & Poland, 2008). 

6 Seeking transparency and compliance with this provision, the ACLU and pro-equity allies have won three cases to 
date where districts were found to divert new funding away from schools that served poor students (Fensterwald, 
2015; Kholi, 2016). 
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outlays, rising to $61 billion in 2018-19, a remarkable boost relative to the pre-reform base year, 
2012-13 (California, 2018). Per-pupil spending – at $11,645 – has reached an all-time high, 
although still far below states like New York and Massachusetts.7 

The bulk of total state funding (88%) flows through the WPF mechanism, with additional 
dollars moving through categorical aid. The progressivity of the LCF allocation formula means 
that districts serving larger concentrations of poor students have received most of the new 
dollars. Districts with enrollments of less than 25% weighted students enrolled received just 5% 
more revenues per-pupil between, 2012-2019, compared with a one-third gain in revenues for 
districts with at least 80% of pupils falling into the weighted-pupil categories (EdSource, 2016).8 

 

3.3.2  Little progress in narrowing achievement gaps 
But despite this new spending, achievement gaps statewide have yet to budge. The 

percentage of Black and Latino students meeting the state’s English-language arts (ELA) 
standard equaled 28% and 32% in 2015 (first year of California’s shift to Smarter Balance 
testing), compared with 61% of White peers. This Black-White disparity had not moved through 
2018, while the Latino-White disparity narrowed by 3 percentage points. In mathematics, no 
gap-closing was observed between Black and White pupils during the period. Since the second 
year of testing, overall student performance has been flat overall, with proficiency levels even 
falling among eleventh-graders, the only grade tested in high school (Department, 2018). 

Importantly, our analysis reveals differing patterns between high and low-needs schools, 
based on differing shares of disadvantaged students (Figure 3.1). Panel A reports the percentage 
of high school pupils, split between English learners (ELs) and English-proficient students, who 
met or exceeded the proficiency standard in math. English-proficient pupils performed higher 
when attending low-poverty schools, those with less than half their enrollment disadvantaged. In 
general, gaps have failed to move. The pattern is similar when splitting students by race or 
economic status, except disparities widen for pupils attending high-needs schools.  

 

 
7 New York spent an estimated $22,433 per pupil in 2013-14; Massachusetts, $17,719 (Cornman, Zhou, Howell, & 
Young, 2018). 

8  The state’s centrally set goals offer a mix of intentions, emphasizing implementation of Common Core State 
Standards; improving parent participation and school climate; widening “course access” and deepening student 
engagement, along with raising achievement and “other student outcomes” (California, 2013). The reform also hopes 
to widen civic participation in devising budgets, requiring a local accountability plan (Wolf & Sands, 2016). 
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Drawing on the same test-score data, Johnson and Tanner (2018) found that LCF-induced 
increases in district spending led to significant gains in eleventh graders’ math achievement, 
particularly for disadvantaged students. Note in our panel B that the percentage meeting or 
exceeding standard in math rose from 27.9% to 31.3% for disadvantaged students in low-poverty 
high schools; in panel C Latino students in high-needs schools saw their average math 
performance move from 12.4% to 14.5% meeting or exceeding standard. 

Note that Johnson and Tanner (2018) used “school and district-level averages that do not 
reflect inequality or changes across student groups within schools and districts (p. 27),” which 
may have missed heterogeneity of treatment effects among different types of schools. We 
observe from Figure 1 that school context matters, and likely yields differing effects from similar 
finance infusions. These descriptive patterns show how poor students attending schools in less-
poor communities perform much better than peers attending schools surrounded by impoverished 
families. And achievement gaps between disadvantaged and non-disadvantaged pupils, and 
between white and black students, grew wider inside high-needs schools.  

So, despite policy makers’ aim of reducing disparities, California’s massive infusion of new 
funding is somehow not getting to intended students, as districts distribute new dollars among 
schools, or principals within schools engage static or changing organizational practices and 
curricular structures. This problem animates the conceptual framework sketched in our analytic 
strategy and motivates the empirical analysis. 

 

3.4  Analytic strategy 
This section delineates a theoretical framework for that identifies pathways (or stages) 

through which fresh resources may prove effective in closing disparities in learning. Our analytic 
approach largely replicates and supplements the strategy employed by Johnson and Tanner 
(2018) to trace the effects of school finance reforms, and we closely follow their method of 
estimation. Yet, our analytic strategy moves from the disappointing fact that almost no progress 
has been made in narrowing achievement gaps in California.  

First, we distinguish among three system levels at which threats to equitable distributions 
may occur, as states send new dollars down to local school districts (Figure 3.2). This 
distribution of inputs (or resource patterns) may be fairly or regressively distributed among 
districts. In California, “equitable” distribution recognizes the higher cost of lifting 
disadvantaged students over state proficiency hurdles. So, more dollars per pupil move to 
districts that host larger shares of disadvantaged students. Overall, our framework captures why 
finance infusions may not narrow achievement disparities – operating at three stages or 
organizational level: new resources flowing among districts; how districts distribute resources 
among schools; and how school leaders apply these fresh resources within organizational 
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routines and practices. 

In addition, we emphasize how new dollars may not reach schools that host intended 
beneficiaries. So, we must attend to the distribution of new dollars among schools within 
districts. Lafortune (2019) details how California’s reform achieved progressive distribution of 
new funding to districts that host higher concentrations of poor students, but often fail to move 
new resources to constituent schools in proportion to their enrollment of disadvantaged pupils. 
Districts serving large concentrations of poor students, have been better able to lower class size, 
compared to low-needs districts, and allocate a larger share of their budget for teacher salaries 
and new hiring. Lafortune’s findings mostly replicate Johnson’s (2019:135-137) earlier results, 
now drawing on one additional year of implementation. But little work has traced which inputs 
in reality do attract new resources inside schools (recent exceptions discussed above, Klopfer, 
2017; Lafortune & Schönholzer, 2018). So, we first examine whether schools in districts 
receiving greater funding (relative to their counter-factual level) employ differing mixes of 
teachers of terms of experience, employment and non-tenured status. 

 

 

Figure 3.2: Three stages (or levels of social organization) in which inputs are distributed among 
districts, schools, and students. 
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We then turn to features of the school organization, including curricular structuring, that 
may further mediate the effects of new funding on the mean level and distribution of 
achievement among racial and social-class groups. In this way, our theoretical framework offers 
another conceptual advance: Estimating which social practices inside schools are sensitive to 
funding infusions, and which might mediate achievement effects. These factors are not only 
material inputs, they are mobilized or allocated within the rules and norms of human 
organizations, mediated by principals and other school leaders (Bryk et al., 2010; Simon, 1979; 
authors’ citation). We address specific features of social organization of schools, including 
working conditions (pupil-teacher ratios, instructional periods assigned to teachers), along with 
decisions regarding the distribution of courses (e.g., curriculum that emphasizes college-prep 
courses or wide-ranging electives). 

Finally, the effects of funding infusions on input allocations and organizational practices may 
vary among schools, based on the kinds of students being served. We saw above (Figure 1) how 
achievement levels and time-trends differ between high and low-needs schools. This suggests the 
utility of quantile regression to test for the differential effects of the district-level LCF policy at 
different points of the school-level outcome distribution within the same district. 

Overall, we estimate the extent to which districts receiving larger funding increase altered 
teacher staffing and instructional inputs, and organizational practices, over the five years 
following the 2013 enactment of California’s finance reform, speaking to these questions: 

RQ1. To what extent did teacher characteristics, organizational practices, and curricular 
structure change among schools (descriptively) following 2013 enactment of California’s finance 
reform through 2017?  

RQ2. Does the exogenous portion of the finance reform help to explain change (from 2013 to 
post-reform years, 2014-2017) in teacher attributes, including the share of new teachers hired, 
reliance on long-term substitutes or less experienced teachers, and propensity to hold a graduate 
degree?   

RQ3. Does the exogenous portion of the finance reform help to explain change in 
organizational practices and teachers’ working conditions, including mean class size and the 
count of instructional periods assigned to teachers?   

RQ4. Does the exogenous portion of the finance reform help to explain change in the 
curricular structure (as organizational practice) of high schools, including the prevalence of 
Advanced Placement or college-preparatory courses as shares of all courses offered, as 
distinguished from regular courses? 

RQ5. Does the exogenous portion of the finance reform help to explain change access to 
experienced teachers or college-preparatory curriculum by English learners within schools?   
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RQ6.  To what extent do estimated effects of the finance reform vary among schools within 
the same district, based on the socioeconomic features of students enrolled? 

 

3.5  Method 

3.5.1  Data 
   Core information comes from administrative data compiled by the California Department of 
Education (CDE), yielding measures of district-level revenues and spending, control variables, 
and the core outcomes measures related to teacher characteristics, organizational practices, and 
curricular structure. To exploit variation between schools, nested in all California school districts, 
we built school-by-year-level panel data sets, 2003-04 to 2016-17, for 6,867 traditional 
elementary and high schools (excluding charter schools) in 941 districts.  

Data to identify the exogenous portion of the LCF reform. Local Control Funding “snapshot 
data” and district-level revenues and expenditures drawn from the standardized account code 
structure (SACS) data files are used to estimate the funding-formula-induced exogenous 
increases in district expenditures (CDE, 2018a). Data on district enrollment and the unduplicated 
count of students, used for supplemental and concentration grant calculations, are available from 
the LCF funding snapshot data. Monthly statements of general fund cash receipts and 
disbursements from the state’s fiscal controller, including overall general fund spending, are used 
to construct the counterfactual trends in district per-pupil revenues, exploiting the exogeneity of 
the onset of the LCF reform. 

To break down the SACS financial data into meaningful categories, we borrowed the 
definitions of expenditures utilized by Loeb et al. (2006), distinguishing student-related spending 
from other categories. This bin for student spending excludes district spending that’s distant from 
classroom instruction, teacher salaries or student support services, such as debt service, capital 
outlays and facilities. 

Data for student demographics and outcome measures. The California Longitudinal Pupil 
Achievement Data System (CALPADS) provides yearly data for teacher and staff demographics, 
pupils nested in courses (or elementary homerooms), and staff assignments by course, allowing 
us to construct a variety of outcome measures related to teacher characteristics and 
organizational features at the school level (CDE, 2018b). We linked CALPADS staff data files 
for each school year: (1) teacher demographics, experience, and credentials, (2) counts of FTE 
teachers, (3) teacher assignments to course and students, and (4) course enrollment data. 

 

3.5.2  Measures 
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Using CALPADS data, we generated school-level outcome measures. Our school-by-year 
panel data (spanning 2003-2016) includes 79,688 school-by-year observations of 5,764 
elementary schools and 14,972 observations of 1,103 high schools. Table 3.1 reports descriptive 
statistics for our three sets of outcome variables -- teacher characteristics, features or practices of 
school organizations, and curricular structure -- for elementary and high schools statewide. We 
include two control variables, enrollment counts and percentage of students eligible for free or 
reduced-price meals (FRPM). Data are split between the highest-poverty quintile (Q5) of schools 
and the lowest-poverty, economically best-off schools (Q1), based on 14-year averages of a 
school’s share of FRPM students.  

School enrollment and student attributes as controls. School enrollments and percentage of 
pupils, FRPM, were drawn each year from the CALPADS data. For elementary schools, we 
observe higher enrollments in high-poverty schools (mean enrollment, 627), than in low-poverty 
schools (558). The reverse is true for high schools. 

Teacher characteristics. Variables for teacher attributes, aggregated to the school, are 
calculated from CALPADS staff data. This yields information on teacher counts by school and 
year and by whether the teachers were new to the district in a given year, the teachers’ ethnicity, 
novice status (two or less years of experience), probationary or tenured status, and attainment of 
a master’s or higher graduate degree.  

Profiles of teachers differed between schools serving low or higher-income families. Only 
39.2% of teachers in Q5 high schools, for instance, held master’s degree or above, compared 
with 48.6% in Q1 high schools. About 8% of Q5 high school teachers were novices (less than 
two years experience), compared with 5% of teachers in Q1 schools. The ethnic composition of 
teachers differed sharply: under half the teachers in Q5 elementary schools were white (47.6%), 
compared with 84.5% of peers in Q1 elementaries. High schools showed similar differences. 

Features of and practices within school organizations. Discrete organizational facets were 
calculated from CALPADS course-level data, including mean class size (again aggregated to the 
school level), and the mean number of class periods taught by each teacher, split for math and 
English language arts (ELA) classes, as two measures of working conditions. We see in Table 1 
that mean class size is slightly smaller in high-poverty (Q5) high schools in ELA and math 
classes, than in low-poverty (Q1) schools. However, no significant differences in the mean 
number of class periods assigned to ELA or math teachers appear between Q1 and Q5 schools.  

Curricular structure. CALPADS course-level data were used to generate the total number of 
courses and shares of classes designated as Advanced Placement (AP), and courses approved by 
the University of California for possible admissions. The latter are courses, falling into so-called 
‘A to G’ categories, focused on core academic subjects, such as English, mathematics, and lab 
sciences. We refer to AP and A-G courses as college preparatory. 
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Table 3.1: Descriptive statistics for teacher characteristics, organizational features, and curricular 
structure by low- and high-poverty schools (Q1 and Q5), pooled data, 2003-2016 

Variables 

Elementary Schools High Schools 

Overall Mean by 
Subgroup Overall Mean by 

Subgroup 
Mean Q1 Q5 Mean Q1 Q5 

Student characteristics       
Enrollment 548.5  557.6  627.2  1655.9  1893.1  1528.1  
% Students eligible for FRPM 59.5  14.0  91.7  49.6  14.2  83.1  
Teacher characteristics       
% Teachers newly hired in the district 7.4  7.1  6.9  10.5  9.3  11.0  
Years of service in the district (school mean) 12.2  12.1  12.2  10.9  11.1  10.4  
% Novice teachers (< 2 years of experience) 4.9  4.1  5.2  6.6  5.2  8.0  
Teacher employment status:       

% Tenured teachers 78.5  80.7  76.9  73.2  77.2  70.2  
% Long-term substitutes 5.6  7.0  4.6  5.5  7.0  5.2  
% Probationary teachers 12.4  10.5  12.0  17.6  14.0  18.3  

% White teachers 69.3  84.5  47.6  71.4  81.6  49.6  
% Teachers holding a master's degree or above 35.3  40.7  33.3  40.8  48.6  39.2  
School organization and working conditions       
School average class size (Homeroom) 23.2 23.9  22.9     
School average class size (ELA)     25.3  26.8  24.5  
School average class size (Math)    26.4  27.9  26.3  
Class periods assigned to teachers (ELA)    3.9  3.8  3.9  
Class periods assigned to teachers (Math)    4.1  4.1  4.1  
Curricular structure       
Total number of courses offered in the school 6.4 6.2 6.1 70.3  78.5  61.1  
% Classes always approved as A-G (ELA)    7.2  9.0  6.1  
% Classes always approved as A-G (Math)    55.3  66.9  49.8  
% Classes cannot be approved as A-G (ELA)    6.7  4.4  9.4  
% Classes cannot be approved as A-G (Math)    10.5  6.8  13.3  
% AP classes (ELA)    5.8  7.5  4.6  
% AP classes (Math)    5.1  8.5  3.4  
Number of schools 5,764 1,145 1,144 1,103 220 219 
Number of observations (school by year panel) 79,688 15,959 15,970 14,972 3,124 2,589 

Note: Highest (lowest) poverty schools are those in the top (bottom) quintiles of school-level distributions of 14-year 
mean percentage of FRPM students (2003-2016), labeled as Q1 and Q5 respectively
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The structure of the curriculum differs consistently between Q1 and Q5 schools. Campuses 
hosting higher-income families (low poverty) list 78.5 differing courses offered over the entire 
period, on average, compared with 61.1 in low-income counterparts.9 In general, low-poverty 
high schools offer more college-preparatory courses than their high-poverty schools. The 
percentage of math classes that qualify for the A-G designation, for instance, is much lower in 
Q5 high schools (49.8%), than in low-poverty (Q1) high schools (66.5%).  

English learners’ access to experienced teachers and college-prep curriculum. To capture 
how students are differentially assigned to differing instructional resources within schools at the 
third stage, we linked the CALPADS course enrollment data to teacher characteristics via each 
teacher’s unique ID, available from 2012 to 2017. We then constructed measures that capture  
ELs’ access to instructional resources within schools.10 First, we calculated a simple index that 
equals the mean percentage of ELs enrolled in classes taught by novice teachers (two or less 
years of experience), minus the mean percentage taught by experienced teachers (more than two 
years) within each school (the two adding to 100%). The same measure is constructed for classes 
taught by non-tenured and tenured teachers.  

Table 3.2 reports descriptive statistics for these proportional differences. The English leaners’ 
access to experienced or tenured teachers differs little in elementary homerooms. But the 
tendency for novice or non-tenured teachers to be assigned to classes with a larger percentage of 
EL students is greater in high-poverty high schools, compared with low-poverty schools. For 
example, the math classes in high-poverty high schools taught by novice teachers had 6.5% more 
ELs on average compared with the math classes taught by experienced teachers in the same 
school. The mean difference measure was calculated to be 2.5% for low-poverty schools.  

We generated a similar measure to summarize ELs’ access to A-G classes: the mean 
percentage of ELs enrolled in classes approved as A-G, minus the mean percentage of ELs in 
classes not approved as A-G within each school. The math classes approved as A-G in high 
poverty schools had 18.4% less EL students on average compared with the non-A-G math classes 
in the same school. This gap ranges lower in low-poverty schools.  

These gap measures capture the disparate allocation of instructional resources, including 

 
9 The mean high school during the period offered between 8 and 12 different courses in each the following subjects: 
ELA, math, social studies, science. Eight foreign language courses were offered, along with 14 career and technical 
education courses, the fastest growing category post-2013. In addition, five tutorial and “instructional service” 
courses were offered on average. 
 
10 We focus on the within-school measures of English learners (ELs) in this study because the CALPAD course 
enrollment data includes only the student group among three LCF-defined high-need student groups: English 
learner, low-income student, and foster youth. Also, in Figure 1, achievement gaps were the widest between ELs and 
English-proficient students. Since we aim to uncover how fresh resources may prove ineffective in closing 
disparities in learning, examining within-school resource allocation to ELs is well-aligned with our original 
interests.   
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change in curricular structuring, within schools, which has not been explored in earlier studies. 
We use the similar school-level teacher quality indicators measuring teacher experience and 
education, similar to Johnson and Tanner (2018), while adding detailed aspects of teachers’ 
employment status. And we examine the differential effects of LCF policy on different schools 
within a district, while Johnson and Tanner (2018) assumed commonly shared effects.  

 

Table 3.2: Access of English learners to experienced teachers and college-prep (A-G) classes,  
pooled data, 2012-2017.  
 

Variables 
Overall Mean by 

Subgroup 
Mean Q1 Q5 

English learners’ access to experienced teachers    
 Elementary homeroom classes  0.1 1.5 -1.1 

%𝐸𝐿zzzzzzN78W9: − %𝐸𝐿zzzzzz;<Í:�W:Ê9:ñ High school ELA classes 3.9 2.1 5.6 
 High school Math classes 4.4 2.6 6.5 
 Elementary homeroom classes  0.3 1.1 0.4 

%𝐸𝐿zzzzzzN7Êã:Êº�:ñ − %𝐸𝐿zzzzzzã:Êº�:ñ High school ELA classes 3.9 2.3 5.9 
 High school Math classes 4.1 2.3 8.1 

English learners’ access to rigorous curriculum path    

%𝐸𝐿zzzzzz=� − %𝐸𝐿zzzzzzN7Ê=� 
High school ELA classes -31.8 -24.7 -38.4 

High school Math classes -13.7 -10.2 -18.4 
 

Note: (1) %𝐸𝐿zzzzzzN78W9: − %𝐸𝐿zzzzzz;<Í:�W:Ê9:ñ: The average percentage of English learners (ELs) in classes taught by the 
novice teachers minus the average percentage of ELs in classes taught by the experienced teachers (more than 2 
years of experience) within the school. (2) %𝐸𝐿zzzzzzN7Êã:Êº�:ñ − %𝐸𝐿zzzzzz ã:Êº�:ñ: The average percentage of ELs in 
classes taught by the non-tenured teachers minus the average percentage of ELs in classes taught by the tenured 
teachers within the school. (3) %𝐸𝐿zzzzzz=� − %𝐸𝐿zzzzzzN7Ê=�: The average percentage of ELs in classes approved as A-G 
minus the average percentage of ELs in classes not approved as A-G within the school. 

Highest (lowest) poverty schools are those in the top (bottom) quintiles of school-level distributions of 14-year mean 
percentage of FRPM students (2012-2017) and are labeled as Q1 and Q5 respectively. 

 

3.5.3  Empirical strategy 

The key challenge in estimating effects that stem from progressively targeted finance, 
including WPF-style initiatives, is that school spending is an endogenous treatment. That is, 
school spending tends to be associated with unobserved time-varying or time-invariant school-
level factors, either attributes of student or parental selection, forces that likely drive both school-
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level outcomes and funding gains. Thus, the primary challenge of causal identification is to 
isolate the arguably exogenous spending changes induced solely by the (LCF) finance reform. 
Two sources of exogeneity have been exploited to identify such reform-induced changes in per-
pupil spending: the timing of reform events and the state’s funding formula. 11 The novelty of 
Johnson and Tanner (2018)’s methodology lies in leveraging both sources of exogeneity by 
conducting an event study with a simulated instrumental variable (IV) approach. Their 
instrumental variables for estimating the effects of LCF on student outcomes are: (1) the number 
of school-age years a student was exposed to the LCF policy (exposure), and (2) the LCF reform-
intended fully funded amount in district per-pupil spending from the state (dosage or simulated 
IV). While the former relies on the timing of LCF reform event being random or arbitrary, the 
latter exploits the availability of the formula for the intended allocation of funding along with the 
variables the formula was based on.  

Let us review how Johnson and Tanner (2018) exploit these two sources of exogeneity to 
tease out only the LCF reform-induced funding increases, and use the exogenous variation to 
estimate potential effects of the spending increases on average student outcomes at the school 
level. Their design consists of three estimation steps: (1) prediction of the counterfactual district 
per-pupil revenue in the absence of the LCF, (2) estimation of the LCF-induced exogenous 
increases in district per-pupil expenditure, using dosage (or simulated IV), exposure, and the 
predicted revenues from the first step, and (3) estimation of the effect of the LCF-induced 
exogenous increases in district per-pupil expenditure on averaged school-level outcomes. Steps 2 
and 3 correspond to the first and second stage of two-stage least squares IV estimation (2SLS-
IV). This involves carving out a part of variation that is exogenous in the first stage, and then 
using only that part in to estimate causal impacts on an outcome in the second stage.  

Step 1 is necessary for the causal identification when combining the 2SLS-IV with an event-
study framework. The unobserved time-invariant district or school- level confounders and 
common statewide time trends in outcomes might be addressed by incorporating a variety of 
fixed effects and by instrumenting the district per-pupil spending with dosage and exposure. Still, 

 
11 This approach parallels two tandem lines of work. The first group of studies is based on the idea that states without 
reform events serve as a useful counterfactual for states that do have reform events, after accounting for fixed 
differences between the states and for common time effects. Assuming that the exact timing of events is as good as 
random, these studies employ an event-study framework and report a narrowing gap in Scholastic Achievement Tests 
(SAT) by parental education (Card & Payne, 2002), higher graduation rates for high poverty students (Candelaria & 
Shore, 2017), and a gradual reduction of family-income effects on national assessment scores (Lafortune, Rothstein, 
& Schanzenbach, 2018). The second group of studies leverage reform-induced variation in funding brought about by 
the funding formula within individual states. These studies are mostly based on instrumental variable type estimation. 
Guryan (2001) use sharp discontinuities in the state funding formula as exogenous instruments for district revenues 
and observe increases in fourth-grade math, science, and social studies test scores. Papke (2008) uses discontinuities 
in Michigan’s funding formula to instrument for school expenditures and finds meaningful increases in the percentage 
of fourth-graders who cleared the state proficiency standard in mathematics. 
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unobserved time-varying confounders remain, namely the dynamic effect of structural economic 
conditions on district revenue and expenditures, which might confound the relationship between 
the LCF policy treatment and changes in school-level outcomes over time. 

To account for these time-varying confounders, Johnson and Tanner modeled the predicted 
counterfactual evolution of K-12 revenues in the absence of the LCF. The rapid acceleration of 
state K-12 spending may stem both from the legislated framework under LCF and California’s 
Proposition 98 funding guarantee, requiring that about 38% of the state budget go for public 
schools and community colleges. As California’s economy continued to expand in the post-
recession period, the district per-pupil revenues would have grown without the LCF policy 
enacted in 2013 due to Proposition 98 which reflects business cycle fluctuations. Johnson and 
Tanner directly predict this counterfactual trend based on prior funding and statewide California 
spending on non-K-12 expenditures.  

Our analytic approach replicates Johnson and Tanner’s three-step research design, 
acknowledging that their methodology is a generalized and sophisticated strategy for tracing the 
effects of California’s LCF finance reform. We precisely replicated steps 1 and 2, with a single 
exception: we separate district total spending into student and non-student spending and use only 
the student spending for the predictor of focal interest. Student spending parallels the CDE’s 
definition of Current Expense of Education per ADA and excludes spending on debt services, 
capital outlay and facilities, pre-K and adult programs, retiree benefits, and other non-agency and 
community services (consistent with Lafortune, 2019; Loeb, 2006; Bruno, 2018). Student-tied 
spending thus includes teacher salaries, instructional materials and supplies, special education, 
and pupil services. We estimate the effect of LCF-induced per-pupil student spending increases, 
which are more integral to pupil experience inside schools.  

Our estimation method diverges from Johnson and Tanner at Step 3, since we do not estimate 
the effect of LCF-induced spending increases on birth-cohort-specific student outcomes, but 
instead estimate the effect on changes in teacher inputs and organizational practices applied to 
the entire school. Given our motivation of examining input levels and organizational practices in 
tandem, the analytical unit exposed to the LCF policy treatment is defined as a school, not a 
student, which leads to a diverging definition of the exposure variable. While Johnson and 
Tanner compares the change in (school-level average) student outcomes between exposed and 
unexposed “birth cohorts” from that district, we compare the change in school characteristics 
between exposed and unexposed “academic years” from that district. Both approaches share the 
common identification assumption that the timing of the LCF school finance reform is 
exogenous to changes in outcomes across different time points within districts. Since Johnson 
and Tanner use school-level averages of pupil achievement, the structure of the school-by-
academic-year panel data constructed from our design is the same as the school-by-cohort panel 
data set used in their analysis, differing only in the time scale. 
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One methodological contribution appears in Step 3 where we use the recently developed 
multilevel instrumental variable quantile regression approach (Chetverikov, Larsen & Palmer, 
2016) to estimate the heterogenous or distributional effects of the district-level LCF policy on  
school-level outcome distributions within districts. The common approach of estimating the 
location-shift of group-level averages of outcomes may mask important but subtle effects on the 
outcome distribution. In LCF reform studies, including Johnson and Tanner (2018), district-level 
increases in per-pupil spending may have little effect on the district-level average of school-level 
teacher quality measures but may still move the lower or higher quantiles of teacher quality 
distributions within a district. We allow each district to have a different treatment effect, and we 
estimate the treatment effect on district-level quantiles instead of on the district-level mean. We 
next provide the details of each step.  

Step 1 – Predicting the counterfactual trends of district per-pupil revenue in the absence of 
LCF. The first step constructs the counterfactual trends in district per-pupil revenues. Following 
Johnson and Tanner, we construct two variables predict counterfactual district per-pupil revenue: 
(a) expenditures for total state operations, excluding education-related categories such as 
spending on state universities and colleges (State^), and (b) the total local assistance 
expenditures outside of spending on K-12 schools, community colleges, and the state teacher 
retirement system (Local^). These two variables were deflated by the consumer price index (CPI-
U) to real 2016 dollars, divided by the state K-12 enrollment each year, and then converted to the 
natural log scale. The Step 1 prediction model is given by  

logPPRñ^ = 𝛼�,ñ + 𝛼P,ñlogState^ + 𝛼.,ñlogLocal^ + 𝜆^ + 𝜖ñ^.        (1) 

where log𝑃𝑃𝑅ñ^ is the natural log of district per-pupil revenue from the state for district 𝑑 for 
year 𝑡; 𝛼�,ñ is a district-specific intercept, 𝜆^ is a year fixed effect; 𝜖ñ^ is an error term. 𝛼P,ñ 
and 𝛼.,ñ represents the expected percentage change in the district per-pupil revenue for district 
𝑑 when State^ and Local^ increase by 1%, respectively. These coefficients encapsulate the 
district-specific sensitivity of revenues to changes in statewide expenditures.  

The parameters of this model were estimated using the pre-LCF data (2003-2012) and then 
predictions were made for the post-LCF (2013-2017) years. Thus, the predicted log per-pupil 
revenue  logPPRñ^@  in the post-LCF years can be viewed as an estimate of the counterfactual 
per-pupil revenue if LCF had not occurred (Johnson & Tanner, 2018). This reflects the dynamic 
effect of time-varying economic conditions on district revenues that might confound the 
relationship between LCF policy treatment and changes in school-level characteristics over time.  

Figure 3.3 shows increases in observed per-pupil revenues during the pre-recession years 
(2003-06), along with dramatic reductions during the recession (2007-12), leading-up to LCF 
implementation. Predicted values in the post-LCF (2013-2017) years suggests that average per-
pupil revenues would have increased without the LCF policy as the state expenditures recovered 
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from the recession. The gap between observed revenue and its prediction in the post-LCF years 
can be regarded as an exogenous increase in per-pupil revenue due to the LCF reform. And recall 
how the LCF reform dramatically shifted the distribution of new funding to districts that serve 
larger shares of disadvantaged pupils.  

 

 

Figure 3.3: Observed and predicted (counterfactual) levels of California state revenues per pupil, 
2003-2016. Note: Dollars are deflated into constant 2016 dollars. 

 

Step 2 – Estimating LCF-induced exogenous increases in district per-pupil expenditure. To 
isolate exogenous changes in district per-pupil student spending that are unrelated to unobserved 
determinants of school-organizational features, we first construct two key variables containing 
the sources of exogeneity at this step: Dosageñ and Exposure^. Dosageñ, the simulated 
instrumental variable or dosage for district 𝑑, is the LCF-intended amount of the supplemental 
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and concentration grants in 2013, generated from the state funding formula. The CDE publishes 
the LCF Funding Snapshot every year to show key data elements and to summarize individual 
LCF target entitlement calculations for all school districts. LCF target entitlement refers to the 
target levels of LCF fully funded amount based on the following funding formula for district 𝑑: 

Fundñ = Baseñ + {0.20 × Baseñ × UPPñ} + {0.50 × Baseñ × max[UPPñ − 0.55,  0]}.  (2) 

Baseñ is the base grant that depends on enrollment and varies only by grade level. UPPñ is the 
unduplicated percentage of disadvantaged students: those eligible for free or reduced-price lunch, 
with limited English proficiency, or in foster care. The supplemental grant is 20% of Baseñ 
multiplied by the UPPñ. The concentration grant is an additional grant equal to 50% of Baseñ 
for each district with UPPñ in excess of 55 percent multiplied by the district's UPPñ points 
above 55 percent. LCF funding snapshot data provides Baseñ and UPPñ, which enables us to 
obtain the LCF-intended amount of funding, Fundñ.  

Dosageñ is defined as  Fundñ − Baseñ because it takes only the supplemental and 
concentration grants portion which is directly relevant to the overall level of district-level 
disadvantage. We use only the dosage for the first year of the reform (2013-14), Dosageñ

.�PC,  
to rule out any effects caused by district’s incentive to classify more students as disadvantaged to 
obtain more funding. Next, Exposure^ represents the number of school years after the initial 
year of LCF reform for academic year 𝑡. Exposure^ varies from 0 (pre-LCF years from 2003, 
before 2013-14) to 4 (post-LCF year 2016-17) and reflects the exogenous timing of reform 
event.  

Once the two key variables are defined, the first stage model of 2SLS-IV is estimated 
through the following fully nonparametric event-study model (following Jackson, Johnson, & 
Persico, 2015; Johnson & Tanner, 2018): 

logPPEñ^ = L L �𝐼D³E0F.GHIOÍ × 𝐼J0FHJHKµLHM&NOPO�� ∙ 𝛼Í,�

À

ÍO�

P�

�OP
+ 𝛾PlogPPRñ^@ + 𝜇ñ + 𝜆^ + 𝑣ñ^.  (3) 

The endogenous treatment variable of interest, logPPEñ^, is the natural log of per-pupil 
student spending for district 𝑑 for year 𝑡. District fixed effects 𝜇ñ and year fixed effects 𝜆^ 
are included to account for general underlying differences across districts and years and to 
exploit only variation within district-by-year cells. logPPRñ^@  is the predicted natural log of the 
counterfactual per-pupil revenue for district 𝑑 for year 𝑡 estimated from step 1 to capture time-
varying confounders.  

To estimate a flexible version of the first-stage equation of 2SLS-IV rather than assuming 
linear slopes of Exposure^ and Dosageñ

.�PC, we convert each original variable to a series of 
indicator variables,  𝐼D³E0F.GHIQRand 𝐼J0FHJHKµLHMQS&NOP , respectively. 𝐼D³E0F.GHIOÍ equals 1 if  
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Exposure^ equals 𝑝 which varies from 0 to 4, and 0 otherwise. 𝐼J0FHJHKµLHMQS&NOP is an indicator 

variable that takes a value of 1 if the decile of Dosageñ
.�PC (DoseDecileñO�

.�PC) equals 𝑧 and 0 
otherwise. Thus, the coefficients for the two-way interactions of 𝐼D³E0F.GHIQR and 

𝐼J0FHJHKµLHMQS&NOP, 𝛼Í,�, summarize the LCF-reform-induced exogenous increases in per-pupil 

student spending in districts with dosage decile 𝑧 after 𝑝 years from the reform. logPPEñ^@  is 
then the natural log of per-pupil student spending for district 𝑑 for year 𝑡 instrumented by the 
two sources of exogeneity, the timing of reform event and funding formula.  

Step 3 – Estimating the effect of LCF-induced increases in funding on the within-district 
distribution of teacher and school-organization outcomes. Once we carve out the part of per-
pupil spending variation that is exogenous in the first stage of 2SLS-IV at Step 2, we specify the 
second-stage outcome model at Step 3 to estimate the effect of the LCF-induced exogenous 
increases on school outcomes. The structure of the outcome model follows a difference-in-
difference (DiD) estimation approach. Instead of having treatment and control groups, the LCF-
induced exogenous spending increases serve as the “the amount of treatment” or “dosage”. We 
can obtain the DiD estimate by comparing the pre-to-post intervention change in school-level 
outcomes between high dosage districts and low dosage districts.  

In such DiD estimation, A conventional linear model can be fit to estimate the treatment 
effect on the district-level mean of the school-level outcome variable. This common approach of 
estimating the location-shift of district-level averages of outcomes, however, may miss 
heterogeneity of treatment effects among different types of schools within districts. The 
multilevel instrumental variable (IV) quantile regression approach (Chetverikov, Larsen, & 
Palmer, 2016) allows us to estimate such within-district heterogeneity. The goal of this model is 
to examine whether the LCF-induced district-level spending increases have differential effects at 
different points (quantiles) of the school-level outcome distribution within the same district, 
while controlling for unobservable district-level confounders. 12 Within the DiD framework, the 
conditional quantile, 𝑄TUMI(𝜏), at quantile level 𝜏 (e.g., 𝜏 = 0.2, 0.5, 0.8) of the outcome 
variable, 𝑌�ñ^, for school 𝑠 within district 𝑑 in year 𝑡 is modeled as  

Level-1:  𝑄TUMI(𝜏) = 𝛼ñ^(𝜏) + 𝛽P(𝜏)Enroll�ñ^ + 𝛽.(𝜏)FRPM�ñ^,    𝜏 ∈ (0, 1)                  (3)  

 
12 The causal identification relies more on the validity of instruments, that is, how to validly tease out LCF-induced 
exogenous spending increases at Step 2, rather than the statistical modeling choices on the grouped outcome 
distribution at Step 3. But we make one additional assumption at Step 3 for the interpretation of estimates for a 
specific quantile. An impact estimated from the quantile regression basically measure the impact on a particular 
statistic (a quantile of interest), not necessarily on a specific school. To interpret the quantile regression estimates as 
differential effects of an intervention for individual schools, it is required to assume that school’s rank within 
districts is preserved before and after the intervention, or stated differently, the LCF-induced spending increases do 
not substantially reorder schools in terms of school-level teacher or course characteristics (Schochet, Puma, & Deke, 
2014). 
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Level-2: 𝛼ñ^(𝜏) = 𝛾�(𝜏) + 𝛾P(𝜏)𝐼D³E0F.GHIV� + 𝛾.(𝜏) log PPEñ^@ + 

                                        𝛿JµJ(𝜏) ∙ 2𝐼D³E0F.GHIV� × log PPEñ^@ 3 + 𝛾C(𝜏) log PPRñ^@ + 𝑢ñ^(𝜏).    (4)  

Here, the cluster is defined as a district-by-year cell. Hence Equation 3 is referred to as the 
Level-1 or within-cluster model, and Equation 4 is referred to as the Level-2 or between-cluster 
model. For a fixed quantile level 𝜏,  The key term of this model is the varying intercept 
𝛼ñ^(𝜏), interpretable as the district-by-year-specific conditional quantile of the school-level 
outcome after adjusting for differences between clusters in the level of the two school-level 
confounders: total enrollment (Enroll�ñ^) and percentage of FRPM students (FRPM�ñ^). Each 
district-by-year cell (cluster) has one value of 𝛼ñ^(𝜏). 

 𝛼ñ^(𝜏) is treated as the outcome variable in the Level-2 between-cluster model to estimate 
the effect of the key treatment variable log PPEñ^@  where 𝑢ñ^(𝜏) represents unobserved factors 
at the district-year level which can affect the 𝜏th quantile of 𝑌�ñ^. We are primarily interested in 
estimating the difference-in-difference parameter 𝛿JµJ(𝜏). 𝐼D³E0F.GHIV� equals 1 if Exposure^ 
is larger than 0, which indicates that the academic year is after the LCF. logPPEñ^@  represents the 
predicted or instrumented natural log of district per-pupil student spending for district 𝑑 in year 
𝑡. Thus, the coefficient of their interaction term, 𝛿JµJ(𝜏), measures how much the change in 
𝛼ñ^(𝜏) between exposed and unexposed academic years from the same district tends to be larger 
for those districts that experienced more LCF-induced increases in per-pupil spending across 
exposed and unexposed years, after controlling for the effect of time-varying confounder 
log PPRñ^@ .13 A positive value of 𝛿JµJ(𝜏 = 0.2), for example, would indicate that the LCF-
induced increase in per-pupil spending boosted the lower tails of the within-district distribution 
of the school-level outcomes after the reform.  

We then extend this DiD model at level 2 to the fully nonparametric event-study model to 
account for the LCF’s multiyear phase-in timeline to incrementally close the gap between new 
target level of funding and actual funding over years (following Johnson & Tanner, 2018): 

Level-2: 𝛼ñ^(𝜏) = 𝜆^(𝜏) + { 𝛾.(𝜏) + 𝛿^(𝜏)} ∙ log PPEñ^@ + 𝛾C(𝜏) log PPRñ^@ + 𝑢ñ^(𝜏)    (5) 

where 𝛿�(𝜏) = 0. Equation 5 includes the term 𝛾.(𝜏) log PPEñ^@  and the constraint 𝛿�(𝜏) = 0 
so that the parameter 𝛿^(𝜏) represents the difference in the effect of log PPEñ^@  on 𝛼ñ^(𝜏) 
between reference year 2012-13 (𝑡 = 0, the year prior to June 2013 enactment of LCF or the pre-
reform base year) and 𝑡 years after (or before) the reference year after controlling for the effect 

 
13 The difference in logs can be used to approximate proportionate change. Because the treatment variable is in natural logs, the 
𝛿JµJ(𝜏)/100 represent the absolute change in 𝛼ñ^(𝜏)  when 𝑃𝑃𝐸ñ^@  increases by 1%. This can be interpreted as the semi-
elasticity of 𝛼ñ^(𝜏) with respect to 𝑃𝑃𝐸ñ^@ . The effect of 10% increases in 𝑃𝑃𝐸ñ^@  can be approximated by 𝛿^(𝜏)/10. We would 
not want to use this nonlinear approximation for much larger percentage changes in 𝑃𝑃𝐸ñ^@  such as 50%. 
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of the time-varying confounder log PPRñ^@ . We present the nonparametric event-study estimates 
𝛿Ò^(𝜏) using the event study plots in Figure 3.7-3.9. The event study plots show the varying 
effects of the LCF-induced spending increases across the post-LCF phase-in period while the 
𝛿ÒJµJ(𝜏) presents only an average effect over the same period. The event study plots also allow 
us to visually assess the credibility of our research design by checking pre-reform estimates. Null 
effect estimates of LCF-induced spending increases in pre-reform years imply that the estimated 
LCF-induced increases in spending are not relevant to the changes of outcomes before the 
reform. 

 

3.6  Findings 

3.6.1  Time trends 
Let us first examine trends in our three sets of outcomes – teacher characteristics, 

organizational features and curricular structure at the school level – before and after 2013 
implementation of California’s LCF finance reform. 

Teacher characteristics. We first display time trends for teacher characteristics, aggregated to 
elementary schools statewide, then split between low-and high-poverty campuses (Figure 3.4). 
Overall, we observe that the hiring of novice teachers, new to the district, picked-up as new 
funding came to districts and schools. But these staffing profiles, in general, return to pre-
recession patterns. The post-2013 surge in hiring also led to a modest spike in the hiring of long-
term substitutes (not shown), but this trend line settled back down, as districts and schools hired 
novice, yet credentialed teachers. High-poverty schools tended to rely more on novice teachers in 
the post-reform period, compared with low-poverty schools. 

One exception appears in panel D, where high-poverty schools have come to employ a higher 
share of tenured teachers, relative to heavier reliance on probationary (non-tenured) staff prior to 
the recession. This may be the result of leveling student enrollment statewide, and stabilizing 
teacher staffs. These time trends are similar for high schools (available from authors). 

 School organization, working conditions and practices. We observe more notable shifts, 
post-reform and relative to the pre-recession periods, when it comes to organizational features 
and curricular structure, the latter at the high school level. To illustrate the shrinkage of class 
size, we display this outcome for elementary homerooms, where students spend most of their 
time (Figure 3.5). Mean class size declined after the LCF reform, from 25.6 to 24.0 in low-
poverty homerooms, and 24.4 to 23.3 in high-poverty schools, a modest improvement (panel A). 
These class sizes remain higher than in the pre-recession period, 2003-2008. 
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Figure 3.4: Time trends in selected teacher characteristics for low- and high-poverty elementary 
schools (Q1 and Q5, respectively), 2003-2017.
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Figure 3.5: Time trends for selected organizational features and curricular structure for low- and 
high-poverty elementary and high schools (Q1 and Q5, respectively), 2003-2017. 
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Turning to high schools, the mean count of instructional periods assigned to teachers moved 
up slightly in high-poverty high schools (panel C) from a low of 3.9 during the recession to a 
high of 4.2, post-reform. No change in this count is observed for teachers in low-poverty high 
schools, and their mean count is considerably lower post-reform, compared with pre-recession 
workload levels. 

Curricular structure. We see in panel B in Figure 3.5 that the mean number of course offered 
steadily increased, although counts remain lower in high-poverty schools. The curricular 
structure is becoming more differentiated in low-poverty schools, even relative to the pre-
recession period. This may be a reaction to the earlier curricular narrowing under No Child Left 
Behind, along with observed growth in tutorial and special instructional periods appearing in the 
CDE course data. 

Panel D suggests that high schools have modestly moved away from college-prep curriculum 
since the post-2013 infusion of new funding. As the listing of courses has grown among high 
schools statewide, a diminishing percentage are approved as A-G college-prep in character. And 
this structuring differs starkly between low- and high-poverty high schools. The share of courses 
deemed A-G declined from 70.2% to 63.9% during the five years since LCF implementation in 
low-poverty high schools. This diminishing trend fell from 54.3% to 49.4% in high-poverty high 
schools. 

English learners’ access to experienced teachers and college-prep curriculum. Access to 
experienced teachers and A-G courses by EL students also slipped during the post-2013 period 
(Figure 3.6). Panel A shows that the proportional representation of EL pupils in classes taught by 
non-tenured (probationary) versus tenured teachers varies little in low-poverty high schools. But 
EL representation in classes taught by non-tenured staff increased modestly during the post-
reform period in high-poverty schools. Ideally, this disparity would narrow, if the reform aimed 
to reduce disparities in student achievement. 

Panel B displays a similar pattern, with lower representation of EL students attending A-G 
courses in the year prior to the LCF reform, a gap that grows modestly post-2013. The practical 
magnitudes of these differences are not great. But they are consistently moving in the opposite 
direction of organizational or curricular shifts that would likely help narrow achievement gaps, at 
least for English-learners.  
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Figure 3.6: Time trends in access to non-tenured teachers and college-prep (A-G) classes by 
English learners, 2003-2017.  

 

3.6.2  Did LCF move mediators? Results from the quantile estimation 

Next we report difference-in-difference (DiD) estimates of LCF treatment effects for each set 
of school-level outcomes: teacher characteristics, school organization and teachers working 
conditions, curricular structure, and ELs’ access to instructional resources within each school. 
Table 3.3 provides a summary of difference-in-difference estimates, 𝛿JµJ(𝜏), from the model 
equation 4 . Estimates shown in Table 3.3 indicates the effect of an 1% LCF-induced increase in 
the district per-pupil spending on the change in the district-specific conditional quantile of 
school-level outcomes after the event. 

We observe that LCF-induced increases in per-pupil spending result in significant increases 
in the percentages of teachers who were newly hired to their district, as well as share of teacher 
workforces comprised of novice teachers. These findings are consistent with the significant 
reduction in average years of service in one’s district. An LCF-induced 10% increase in district 
per-pupil expenditures during the post-LCF years resulted in a 0.98 percentage point gain in the 
increases in the share of newly hired teacher in elementary schools that previously had fewer 
share of new teachers during the pre-LCF years (𝜏 = 0.2). The effect size diminishes as the 
quantile level increases to 𝜏 = 0.8 in elementary and high schools, which implies that schools 
that had more shares of new teachers in pre-LCF years hired fewer new teachers post-LCF. 
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Table 3.3: Summary of the estimated difference-in-difference estimates of the effects of LCF-
induced spending increases on school-level teacher characteristics, organizational features, and 
curricular structure  

Outcome variables Elementary Schools High Schools 
τ(0.2) τ(0.5) τ(0.8) τ(0.2) τ(0.5) τ(0.8) 

Teacher characteristics       
% Teachers newly hired in the district 9.8*** 8.6*** 7.1*** 9.6*** 10.3*** 7.9*** 

Years of service in the district (school mean) -2.2*** -2.7*** -3.1*** -0.3 -1.2* -1.6** 

% Novice teachers  3.7** 2.9** 2.7** 5.0** 5.4*** 4.7** 

% Tenured teachers -6.6** -7.7** -7.8** -7.0* -11.2** -14.2** 

% Long-term substitutes/ temporary employee 1.5* 1.9** 2.3** 0.3* 0.4* 0.4* 

% Probationary teachers 11.9*** 10.4*** 9.6*** 9.8** 9.7** 4.7* 

% White teachers 8.0*** 5.5* 3.0 14.4*** 8.1* 0.6 
% Teachers holding a master's degree or above 4.0** 2.2 1.0 8.5* 8.7* 5.9 
School organization and working condition       

School average class size (Homeroom) -3.3*** -3.5*** -3.8***    
School average class size (ELA)     -2.3** -2.0** -2.1** 

School average class size (Math)    -2.1** -1.7* -2.0** 

Class periods assigned to teachers (ELA)    -0.0 -0.1 -0.1 
Class periods assigned to teachers (Math)    0.5** 0.2 0.1 
Curricular structure       

Total number of courses offered in the school 0.4 0.1 1.3 3.9** 4.5** 6.9*** 
% Classes always approved as A-G (ELA)    -3.6*** -3.6*** -5.7*** 

% Classes always approved as A-G (Math)    -3.0 -8.6* -11.6** 

% Classes cannot be approved as A-G (ELA)    0.2 0.7 -0.6 
% Classes cannot be approved as A-G (Math)    5.1** 5.0** 2.6 
% AP classes (ELA)    -2.6*** -2.7*** -3.4*** 

% AP classes (Math)    -2.2** -2.6*** -3.2*** 

English learners’ access to experienced teachers and rigorous curriculum path 
%𝐸𝐿zzzzzzN78W9: − %𝐸𝐿zzzzzz;<Í:�W:Ê9:ñ (Homeroom) 1.5 0.4 -2.0    
%𝐸𝐿zzzzzzN78W9: − %𝐸𝐿zzzzzz;<Í:�W:Ê9:ñ (ELA)    7.6 4.6 -1.3 
%𝐸𝐿zzzzzzN78W9: − %𝐸𝐿zzzzzz;<Í:�W:Ê9:ñ (Math)    -1.9 2.8 8.8* 

%𝐸𝐿zzzzzzN7Êã:Êº�:ñ − %𝐸𝐿zzzzzzã:Êº�:ñ(Homeroom) -0.6 1.6 2.2    
%𝐸𝐿zzzzzzN7Êã:Êº�:ñ − %𝐸𝐿zzzzzzã:Êº�:ñ (ELA)    0.0 2.1 7.2 
%𝐸𝐿zzzzzzN7Êã:Êº�:ñ − %𝐸𝐿zzzzzzã:Êº�:ñ (Math)    -1.9 1.0 3.7 

%𝐸𝐿zzzzzz=� − %𝐸𝐿zzzzzzN7Ê=� (ELA)    9.3* 2.8 -3.0 
%𝐸𝐿zzzzzz=� − %𝐸𝐿zzzzzzN7Ê=� (Math)    3.1 -1.2 -4.5 

Notes: ***p ≤ .01, **.01 < p ≤ .05, *.05 < p ≤ .10. The reported estimates are relevant to the difference-in-difference 
parameter, 𝛿JµJ(𝜏), from the model equation 4. Standard errors available from the authors.  
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Nonparametric-event-study estimates presented in Figure 3.7 (along with 95% confidence 
intervals) show the varying effects of the LCF-induced funding increase across the post-LCF 
implementation period. Here we only present results from the 0.5 quantile level (median), since 
patterns were quite similar in the other quantiles. Note that none of the effect estimates in pre-
LCF years are statistically significant at the 5% level. This means that the estimated LCF-
induced increases in funding are not relevant to the changes of outcomes before the reform and 
therefore lends support to our analytic strategy’s ability to isolate the effect of the LCF-induced 
exogenous funding increases.  

Effects of the LCF reform on the share of teachers newly hired were felt immediately in the 
first year of funding increases, and then peaked at the fourth year of reform (panel A). This 
pattern is mirrored by the reduction in average years of service in the district (panel B). And 
LCF-induced 10% increase in funding leads to the 0.6% points increase in the share of teaching 
staff, novices, after four years of exposure to LCF (panel C). Newly hired teachers, stemming 
from  LCF-induced funding increases, often included non-tenured staff, such as novices.  

Districts relied on hiring long-term substitutes in the first and second years of LCF, and then 
more on probationary teachers in subsequent years. The magnitude of effects from LCF-induced 
funding was the largest for the share of teachers with probationary status: 10% increases in 
funding lead to 1.75 percentage point increase in the share of probationary teachers after four 
years of LCF exposures (panel E). To put these magnitudes in context, per pupil spending grew 
by up to 40% during the post-LCF period in urban districts with high shares of disadvantaged 
students (California Analyst, 2018). So, a portion of these effects hold practical significance in 
the staffing and organizational structure of schools. 

Figure 3.8 displays heterogeneous effects of LCF on the within-district distributions of 
school-level teacher composition. Panel A shows that an LCF-induced 10% increase in per-pupil 
spending results in about 1.12 percentage point and 1.05 point gain in the share of school staff  
made-up of white teachers at the lower tail of its distribution (𝜏 = 0.2) in the third and fourth 
years of LCF, respectively, while no significant effect was found for the higher quantile (𝜏 =
0.8). 

A similar pattern was observed for share of teachers holding master’s degree or above (panel 
A). This means that the exogenous funding increases lifted the percentage of school-level 
teaching staff that were, white or holding a master’s degree or above, especially for schools that 
previously employed small proportions of such teachers in the reference year. Since the schools 
with lower shares of white or master’s holders tend to serve higher-poverty students, as seen in 
Table 1, it’s fair to conclude that the infusion of new LCF dollars helped high-poverty schools to 
attract more white or better highly-educated teachers, mitigating any disproportionate sorting of 
teachers between schools. 



 

 
 

 
 

96 

 

Fi
gu

re
 3

.7
: E

ve
nt

 st
ud

y 
es

tim
at

es
 o

f L
oc

al
 C

on
tro

l F
un

di
ng

 e
ffe

ct
s o

n 
sc

ho
ol

-le
ve

l d
is

tri
bu

tio
ns

 o
f t

ea
ch

er
 c

ha
ra

ct
er

is
tic

s (
m

ed
ia

n,
 0

.5
 

qu
an

til
e)

.



97 

 

  

  

 

Figure 3.8: Event study estimates of Local Control Funding effects on school-level distributions 
of shares of white teachers and master’s degree holders (0.2 and 0.8 quantiles). 
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We also found that LCF-induced funding increases lowered average class size at elementary 
and high school levels (panels A, B, and C in Figure 3.9). Elementary schools show immediate 
declines in class size after one year of LCF exposure, while high schools felt the effect 
incrementally as the exposure to the reform accumulates. Though statistically significant, effect 
sizes were modest: an LCF-induced 10% increase in funding reduced the elementary homeroom 
class size by 0.59 in the first year and high school ELA and math class sizes by 0.27 and 0.25, 
respectively, after four years of exposure. We found little evidence that spending increases 
significantly altered the count of instructional periods assigned to teachers each day.   

Panels D, E, and F display how the curricular structure changed among high schools in the 
wake of LCF-induced changes in spending. An LCF-induced 10% increase in per-pupil spending 
significantly lowered the percentage of all high school ELA classes that qualified for the college-
prep A-G designation by about 0.52 percentage point in the third year of reform. Shares of ELA 
and math Advanced Placement classes declined following the exogenous spending increases.  

DiD estimates for each quantile presented in Table 3.3 suggest that the proportional 
shrinkage of rigorous college-prep courses (AP and A-G) occurs most severely at the higher 
quantile (𝜏 = 0.8), and in schools that began with higher shares of college -prep courses in the 
reference year (low-poverty schools). These results present some evidence in favor of the 
hypothesis that schools in districts receiving larger funding increases ended up reducing presence 
of college-prep courses relative to a growing number of elective courses.  

We found little evidence that LCF-induced funding successfully reduced disparities in access 
to experienced teachers or A-G courses by EL students. We found that ELs’ access to 
experienced teachers worsened for math classes in high-poverty schools, which showed greater 
inequities in the reference year (𝜏 = 0.8). We infer that the high-poverty schools suffering from 
high teacher turnover rates filled vacancies with novice or inexperienced teachers, then assigned 
them to classes with lower-achieving students.  

We do see that these inequities in the curricular structure and teacher assignments persist 
from pre-LCF periods and widen particularly in high-poverty schools during the post-reform 
period. This raises concern that within-school sorting may prevent experienced teachers from 
being assigned to students who need them most, even when between-school teacher sorting can 
be mitigated. The steady expansion of elective courses, following the arrival of LCF dollars, may 
prevent low-achieving students from pursuing a more rigorous curriculum.  
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3.7  Discussion and policy implications 
California’s effort to progressively fund districts serving poor children, while decentering 

fiscal control to local districts, offers a remarkable policy experiment. Our findings demonstrate 
how resulting spending gains far exceeded levels predicted, due to the LCF reform and the state’s 
set-aside for K-12 funding during a robust economy. The state’s distribution of funding among 
local districts changed dramatically, favoring those hosting larger shares of disadvantaged pupils 
(relative to district counter-factual levels) as intended by policy makers.   

Still, this sizeable infusion of new funding unfolded under a hazy theory-of-action in terms of 
what inputs (resource patterns) and organizational practices might change, likely mediators that 
operate proximal to student learning. Five years into California’s ambitious funding reform – 
boosting yearly K-12 spending by $23 billion – we observed little discernible progress in 
narrowing student achievement gaps statewide. Our analytic strategy then endeavored to 
understand how LCF altered the mix of teacher inputs and organizational practices in ways that 
failed to lift the lowest achieving pupils  

Our findings do show that new funding went for additional teaching positions, modestly 
lowering class sizes, while yielding organizational effects that may have worked against greater 
equity within schools. We also find that socioeconomic conditions under which funding infusions 
arrive matter. That is, the descriptive trends in the post-2013 period differed by the wealth or 
poverty of families served by schools. Many districts, quickly searching for new teachers as 
funding arrived, initially relied heavily on long-term substitutes or temporary employees, and 
then on rising shares of novice and probationary (non-tenured) teachers. And schools in high-
poverty conditions relied even more heavily on novice teachers, compared with their better-off 
counterparts. 

Key features of school organizations shifted modestly as well. High-poverty schools 
experienced a modest class-size decline from 24.4 to 23.3 pupils; low-poverty schools saw mean 
class size fall from 25.6 to 24.0. The count of teaching periods assigned to staff ticked up slightly 
in high-poverty schools, 4.0 to 4.1, while falling in the economically best-off quintile of schools, 
from 4.0 to 3.9. These small magnitudes – while significantly affected by the exogenous portion 
of the LCF reform – reveal that basic organizational features of schools and teachers’ working 
conditions did not change dramatically on average. Much of the new funding may have simply 
returned schools to their pre-recession staffing levels. 

On the other hand, we observed consequential shifts in teaching assignments and curricular 
structuring in schools located in districts that received stronger finance gains, organizational 
changes that likely worked against the state’s pro–equity intentions and efforts by schools to 
narrow achievement gaps. First, as many districts enjoyed fresh funding and hired novice 
teachers, these less experienced staff were assigned to classes with higher shares of EL pupils. 
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Between the year just prior to LCF (2012-13) and 2017-18, the excess share of ELs in classes 
taught by probationary teachers, compared with tenured teachers, climbed from 4.7% to 10.7% 
in high-poverty high schools, while declining in the best-off quintile of schools (2.4% to 1.7%). 

Second, the curricular structure of high schools began to de-emphasize college-prep courses 
after enactment of LCF. This may have occurred in response to the partial collapse of No Child 
Left Behind and its stricter testing-and-accountability policies. Or, the hiring of new teachers 
may have allowed schools the chance to recover lost elective courses. For whatever reason, the 
simple index of A-G college-prep classes (percentage A-G minus non-A-G) remained constant 
for low-poverty high schools, while falling 3.4 percentage points in math and 10.2 points in ELA 
among the poorest quintile of school after LCF implementation. 

Overall, these trends suggest that LCF’s large infusion of new funding has shifted the 
average profile of staff toward less experienced teachers, lowered class size, and moved high 
school curricula away from a college-prep emphasis. Future work should examine whether these 
trends persist, or whether local education leaders can retain more experienced teachers and 
enrich the curricular structure and other internal workings of schools that operate proximally to 
student learning. 

The exogenous portion of the LCF reform helped to explain other modest changes in teacher 
attributes and organizational features of schools. For the middle quintile of schools in the event 
study, we observed significant treatment effects: a short-term spike in the hiring of long-term 
substitutes, followed by heightened reliance on novice teachers. The surge in hiring exercised by 
schools with low shares of white teachers (higher-poverty schools) led to increased employment 
of white teachers and holders of master’s degrees.  

The event study also revealed LCF-treatment effects in shrinking average class size for 
elementary and high schools. But the infusion of new spending also led high schools to reduce 
the proportion of classes qualifying for A-G designation, along with declines in the share of 
Advanced Placement courses. Some educators may applaud the robust return of electives. But 
the shift away from college-prep offerings may fail to boost college-going or to narrow 
achievement disparities among high school graduates. 

Our study holds certain limitations. The focus on teacher characteristics and organizational 
features of schools is limited by available data for the 15-year time series. These mediators make 
intuitive sense and illuminate how finance infusions do indeed alter historical trends in teacher 
inputs, key facets of school organizations, curricular patterns and teaching assignments. Still, we 
have much to learn about the predictive validity of these particular mediators in terms of shaping 
student learning over time. Ideally, other mediators that operate between finance infusions and 
achievement will become available over time. 

We are presently building district-by-district data on teacher salary levels, which have 
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variably shifted upward over the same period. It may be that large finance infusions contribute to 
wage and fringe-benefit gains, leaving comparatively thin resources that actually reach 
classrooms or school principals. 

California’s education department maintains quite rich course-level data, which we exploited 
to tease apart how novice teachers are assigned to courses dominated by EL students, the pattern 
worsened by rapid infusion of new teacher hiring. Still, much work remains in understanding the 
racial or class-based tracking of students within schools. The arrival of fresh inputs and new 
dollars could be deployed to reduce (or reinforce) internal tracking of low and higher-
achievement students inside schools, again depending on organizational practices.  Our results 
suggest that medium-term reliance on less experienced teachers, who are then assigned to classes 
with higher shares of EL pupils, fails to address inequities in the opportunity to learn. It’s a ripe 
example of how gains in dollars or raw inputs are variably mediated by how principals and 
school-level actors shape the social organization of their schools. 

Finally, former Gov. Jerry Brown displayed little interest in learning about the effectiveness 
of his massive finance reform. This may change as LCF comes under greater scrutiny by a 
recently elected governor and new legislative leaders. Despite calls in policy and scholarly 
circles for learning not simply about whether money matters, but also when or through what 
mediators, it remains a question that’s under-theorized and rarely examined with longitudinal 
data in the wake of major finance reforms. This limits our understanding of when – through 
which organizational practices and for which schools – more money likely matters. 

Knowledge continues to grow regarding how the organization of schooling affects social 
cohesion and motivates students and teachers (e.g., Bryk et al., 2010). But little has been learned 
about how such mediators – be they fresh mixes of teacher inputs or textured organizational 
practices – are touched by sizeable infusions of new funding. When the political stars do align to 
progressively fund schools, we must rigorously dig into whether these initiatives truly advance 
fairness and, if so, through what changes in staffing patterns and the social organization of 
schools. 
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