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Robust Packet Scheduling in Wireless Cellular
Networks

Xiaoqiao Meng*, Zhenghua Fu, Songwu Lu
Computer Science Department

University of California, Los Angeles, CA 90095

Abstract

This paper addresses the following robust scheduling problem: Given that only coarse-grained channel state in-
formation (i.e., bounds on channel errors, but not the fine-grained error pattern) is available, how to design a robust
scheduler that ensures worst-case optimal performance? To solve this problem, we consider two coarse-grained chan-
nel error models and take a zero-sum game theoretic approach, in which the scheduler and the channel error act as
non-cooperative adversaries in the scheduling process. Our results show that in the heavy channel error case, the opti-
mal scheduler adopts a threshold form. It does not schedule a flow if the price (the flow is willing to pay) is too small,
in order to maximize the system revenue. Among the scheduled flows, the scheduler schedules a flow inversely pro-
portional to the price (the flow is to pay) to minimize the risk of being caught by the channel error adversary. We also
show that in the mild channel error model, the robust scheduling policy exhibits a balanced trade-off between a greedy
decision and a conservative policy. The scheduler is likely to take a greedy decision if it evaluates the risk of encoun-
tering the channel error adversary now to be small. Therefore, robust scheduling does not always imply conservative
decision. The scheduler is willing to take “risks” to expect higher gain in some scenarios. Our solution also shows
that probabilistic scheduling may lead to higher worst-case performance compared to traditional deterministic policies.
Finally, the current efforts show the feasibility to explore a probabilistic approach to cope with dynamic channel error
conditions.

I. INTRODUCTION

Packet scheduling, which arbitrates packet transmission precedences among multiple contending flows, has long
been a popular paradigm to ensure fine-grained service guarantees in the wired network (see [3] for a brief survey).
In recent years, researchers have proposed many wireless scheduling algorithms to support service assurance over
cellular networks [4] [8][9] [10][11]. These protocols address the issue of error-prone wireless transmissions and
typically adopt an adaptive approach. They address the following scheduling problem: assuming fine-grained channel
state (i.e., whether the channel is error-free or error-prone at a given time instant) is available, what is the scheduling
policy to provide performance bounds (in terms of fairness or network revenue)?

This paper explores a novel approach to wireless scheduling – game-theoretic worst-case optimal scheduling in
packet cellular networks. We seek to solve a new scheduling problem: Given that only coarse-grained channel state
information (e.g., only bounds on channel errors, but not the exact error pattern that varies over time and location) is
available, how to design a scheduler that ensures worst-case performance bounds? The end goal is to maximize the
aggregate revenue (collected from all scheduled flows) over all the channel error patterns that fall into the specified error
bound. This research is mainly motivated by two factors. The first one is that we would like to relax the requirement for
accurate fine-grained (e.g., slot-by-slot) channel estimation. In practice, the wireless channel may exhibit a wide range
of error patterns, as we show in Section II. It is nontrivial to have reliable channel state estimation, in particular for
indoor mobile users. The second factor is that we intend to explore a novel robust scheduling approach other than the
popular adaptive/opportunistic scheme [8], [9], [10], [11], [4]. If the main issue for wireless scheduling is to address
the highly dynamic channel error conditions, both adaptive and robust schemes provide valuable solution approaches.
While the adaptive scheme has been well studied, the robust approach is not.

To solve the new scheduling problem, we take a zero-sum game theoretic approach. In this approach, the scheduler
and the channel error plays a two-player zero-sum game. They act as non-cooperative adversaries in the scheduling
process. The scheduler seeks to maximize its aggregate revenue generated by all scheduled flows via scheduling the
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right flow at the right time and minimizing the effect of channel error corruptions. The channel error seeks to minimize
the revenue of the scheduler by corrupting the scheduled flow. This is equivalent to a minimax optimization problem
that can be solved using game theory techniques. We solve this problems in both single-slot and multi-slot channel
error models and give the robust scheduling policy which can ensure the worst-case performance bounds.

Our solution also reveals some interesting insights.
1) In the presence of heavy channel errors (one-slot model), the robust scheduling policy adopts a threshold form.

To maximize its revenue, the scheduler will not schedule a flow if the price (that the flow is willing to pay)
is too small. However, among the scheduled flows, the scheduler will not select the flow who pays most with
the largest probability; instead, the scheduler chooses a flow inversely proportional to the price that the flow is
willing to pay. The scheduler employs this conservative policy to minimize the risk being caught by the channel
error adversary.

2) In the presence of mild channel errors (multi-slot model), the robust scheduler exhibits a balanced trade-off
between the conservative policy and a greedy policy. At each scheduling instant, the scheduler always evaluate
the potential penalty incurred by encountering the channel error adversary in the future. When the penalty deems
severe, the scheduler is more likely to take a greedy policy at current time. Otherwise, when the penalty is mild,
the scheduler is more likely to take the conservative one now. Therefore, robust scheduling does not always
imply conservative decision, though its main goal is to provide best worst-case performance. The robust optimal
scheduler is willing to take some “risks” in hope for higher gain in some cases.

3) We also explore the probabilistic scheduling policy space. It turns out that, probabilistic scheduling may lead
to higher worst-case performance compared with deterministic policies. This worst-case optimal property may
benefit some risk-sensitive tasks such as military applications. Moreover, our current effort opens door for future
design of probabilistic scheduling approach to cope with channel errors.

The rest of the paper is organized as follows. Section II describes the problem formulation and our general approach.
Section III describes our game theoretic approach based on single-slot channel error model. Sections IV extends this
game theoretic approach to multi-slot channel error model. Section V evaluates the design via simulations. Section VI
discusses the related work and Section VII concludes this paper.

II. PROBLEM FORMULATION AND GAME-THEORETIC APPROACH

A. Network Model

We consider a wireless cellular network. The scheduler is implemented at the base station and it is responsible for
scheduling both uplink (mobile-to-base-station) and downlink (base-station-to-mobile) flows over the shared wireless
channel. In our model, we divide time into multiple time slots, which are the units for channel allocation, as in related
works [8]1. The base station can only serve one flow in each slot.

We use uk to denote the reward that the user is willing to pay for scheduling flow k in one slot. This value can also
be viewed as the price of flow k per slot. Due to the difference in user’s satisfaction and type of application carried
by each flow, the price varies among different flows. In our model, the base station seeks to optimize its total revenue,
which is the sum of rewards collected from all the flows being scheduled.

B. Channel Error Model

Recent studies [12][13] have reported a wide range of wireless channel error patterns, from highly bursty to quite
sporadic. For example, the measurements in [13] show that each error burst lasts for more than twenty packets, while
[12] reports a quite random pattern with the dominant error length as two or three packets. In order to investigate the
channel error pattern, we have also done some own measurement. We measured the channel quality in three different
locations within a cell in an IEEE 802.11 LAN. Figure 1 shows our measurement results, which indicate that the
channel error patterns vary greatly from one location to another, even though they are within a single cell and share the
same base station/access point.

Given that the wireless channel may exhibit a wide range of error patterns, we adopt a coarse-grained and elastic
channel error model to eliminate the challenging problem of real-time channel state prediction.

1The underlying MAC protocols can be either TDMA or CSMA/CA. In CSMA/CA, one slot corresponds to the time spent to complete a
RTS-CTS-DATA-ACK handshake.
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Fig. 1. Different channel error patterns measured in three different locations within a cell

Multi-slot channel error model (n, δ): Given n slots, the scheduler will not perceive channel error in more than δ
slots.

The above model does not seek to characterize or predict the exact error pattern. Instead, it gives a statistical
estimation on the capability that the channel error may disrupt the transmission. On the other hand, the base station
always has to prepare for the worst case, since it has no information on what the real distribution of channel error will
be. In this work, we are interested in the scheduling policy of a base station which seeks to optimize its worst case
revenue, and we call this the robust scheduling policy.

C. Zero-sum Game

We model the interactions between the scheduler2 and the channel error as a two-player zero-sum game (We refer
to [1] for an introduction to the basics of game theory). In this game, the two players, scheduler and channel error, are
non-cooperative adversaries against each other. The scheduler always seeks to maximize its total revenue by scheduling
m flows, while the channel error (CE) always seeks to minimize the scheduler’s total revenue. The two players act
simultaneously, and neither of them knows the other player’s action in advance. To this end, the CE adversary is
empowered to exhibit any error pattern that conforms to our (n, δ) model.

This game theoretic approach to wireless scheduling provides a framework to design optimal worst case scheduling
policy without the need of channel state prediction, and enables us to characterize the worst case bound on the total
revenue of the scheduler. This is important due to the variety of wireless channel error patterns and the difficulty of
wireless channel estimation. As shown later, the game theory framework also stimulates a new family of probabilis-
tic scheduling policies, which can outperform the traditional deterministic policies [8] in terms of their worst-case
performance.

We admit that this approach may leads to overly conservative scheduling policy in the normal situation, because the
CE player is assumed to be intelligent and the real channel error may not match this intelligence. However, this worst
case optimality is useful when the channel state is error-prone and difficult to predict, and the system wants to make
sure its performance will never be worse than a lower bound.

2We use ’scheduler’ and ’base station’ interchangeably in this paper.
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Corrupt flow 1 Corrupt flow 2

Schedule flow 1 0 u 1

Schedule flow 2 u 2 0

TABLE I
GAME MATRIX IN TWO-FLOW SCENARIO

III. SINGLE-SLOT CHANNEL ERROR MODEL AND ROBUST SCHEDULING

Before introducing the (n, δ) error model, we first study a simple single-slot model in this section; this is also the
model adopted in a recent work [4]. In this model, we consider every individual time slot in which the scheduler must
choose one to transmission from m backlogged flows. We assume that channel error will corrupt one and only one flow
among these m flows in each slot. Each flow has an advertised price representing the reward that the user is willing to
pay for scheduling this flow per unit slot. The same assumptions have also be used in [5]. We denote the price of flow
i as ui. Without loss of generality, we always assume u1 ≥ u2 ≥ ... ≥ um in this paper.

We study this single-slot model due to two reasons. First, it models the scenarios in which channel error is heavy.
Secondly, due to its simplicity, it can help us to gain some insights on the structure and characteristics of the robust
scheduling policy with optimal worst-case performance.

A. 2-flow Case

We start with the simplified two-flow scenario and illustrate the nature of the zero-sum game between the scheduler
and the channel error (CE). There are only two flows with prices as u 1 and u2, respectively (u1 ≥ u2). CE may choose
any one of them to corrupt to minimize the scheduler’s aggregate revenue, and the scheduler seeks to defeat CE by
choosing the other flow in order to maximize its revenue. This can be modeled by a matrix game, as shown in Table I.
Each matrix entry denotes the value when the scheduler and CE take the corresponding decisions.

Let us consider the determinstic strategy for the scheduler and CE: the scheduler chooses to schedule either flow 1
or flow 2, while the CE chooses to corrupt either flow 1 or flow 2. Because the scheduler and CE make their decisions
simultaneously, if they take such a determinstic strategy, there is no equilibrium point (or so-called saddle point in
game-theoretic terminology [1]) in the sense whatever action each player takes, he will regret after the game is over.
For example, if the scheduler decides to schedule flow 1 and the CE simultaneously decides to corrput flow 1, the
scheduler’s gain is zero. Then the scheduler may regret: “If I knew this, I should choose flow 2 to enjoy an outcome of
u2.” On the other hand, if the scheduler chooses to schedule flow 1 and the CE chooses to corrupt flow 2, the scheduler
gains u1. CE may regret: “If I knew this, I would have corrupted flow 1 to make the scheduler suffer from an outcome
of 0.” Therefore, the final policy does not possess an equilibrium property.

We now enlarge the feasible scheduling policy space to a probabilistic setting, which will lead to the equilibrium
property in the zero-sum game. In order to decrease the risk that its decision is guessed by the adversary, each player
independently chooses both flows with some probability, In game theoretic terminology, this is called the probabilistic
strategy. The probabilistic strategy for the scheduler is defined as {schedule flow 1 with probability q, schedule flow
2 with 1 − q}, while the probabilistic strategy for the CE is {corrupt flow 1 with probability p, corrupt flow 2 with
1 − p}, where p, q ∈ [0, 1]. The expectation of the revenue is given as f(q, p) = q(1 − p)u1 + (1 − q)pu2.

The scheduler is the maximizer and CE is the minimizer in the above game, which can be formulated as a minimax
problem maxq minp f(q, p). It is easy to solve this problem and get the solution as follows: the optimal strategy for
the scheduler is q∗ = u2

u1+u2
; the optimal strategy for the CE is p∗ = u1

u1+u2
, and the scheduler’s optimal worst-case

revenue is f∗ = u1u2
u1+u2

. Note that this revenue is in the statistical sense and represents the expectation of the revenue
that the scheduler can achieve in one slot.

We can show that the above probabilistic strategy indeed has an equilibrium property: both players are satis-
fied with the result after the game is over. A brief explanation for this is as follows. Let {q} and {p} denote
the strategy of the scheduler and CE, respectively. Given q, the worst-case revenue of the scheduler is defined as
f(q) = minp∈[0,1](f(p, q)) = minp(qu1 + p(u2 − q(u1 + u2))). If the scheduler chooses q to be larger than the
optimal strategy, i.e., q > q∗, and gives more chance to the flow with higher price, there exists a counter-strategy for
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the CE as p = 1, which yields f(q) = (1 − q)u2 < f∗. This counter-strategy states that CE always chooses to corrupt
flow 1, and it makes the worst case revenue of the scheduler less than the optimal value. Similarly, if the scheduler
chooses q to be smaller than q∗, its worst case revenue will also decrease. On the other hand, when the scheduler
takes the above optimal strategy, the CE can never change p to reduce f(q∗). Therefore, a nice property of the optimal
solution, f(q∗) = f(p, q∗) = f∗ holds for any p ∈ [0, 1]. Any player unilaterally deviates from its optimal strategy
will suffer from a gain decrease from its own perspective. Hence, the strategies p∗ and q∗ reach an equilibrium point.
And at this equilibrium point, the scheduler’s optimal strategy q∗ can ensure the system revenue will be no less than a
threshold f(q∗), no matter what the channel error distribution is. In this sense, we call it robust scheduling policy with
optimal worst case performance.

B. General Case

In this section we generalize to m flows (m > 2). We also consider the different mobile users’ exposure to channel
errors. We model this exposure level as λi, which means if CE decides to corrupt flow i, whether this flow indeed
experiences channel error solely depends on the outcome of an independent random coin-flipping event with probability
1 − λi (0 < λi < 1). When λi increases, flow i becomes more resistant to channel error (if λ i = 1, flow i will be
error-free). We assume these λi are known a priori to the scheduler and CE. Analogously to previous 2-flow case, we
model the scheduling problem as a zero-sum game, and the corresponding game matrix is

A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ1u1 u1 u1 · · · u1

u2 λ2u2 u2 · · · u2

u3 u3 λ3u3 · · · u3
...

...
...

. . .
...

um um um · · · λmum

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m×m

(1)

We are again interested in probabilistic strategies. Now the scheduler’s total revenue is given as

f =
m

∑

i=1

[qi(1 − pi)ui + λipiqiui]

where qi and pi are the probability with which the scheduler schedules and the CE corrupts flow i, respectively. Let f ∗

be the optimal worst-case revenue. Since this is a two-player zero-sum game, justified by Minimax theory [1], there
should be

f∗ = max
{qi}

(min
{pi}

m
∑

i=1

[qi(1 − pi)ui + λipiqiui])

= min
{pi}

(max
{qi}

m
∑

i=1

[qi(1 − pi)ui + λipiqiui]) (2)

We have solved this minimax problem in Appendix. For clarity of illustration, in Theorem 1, we give the solution
when all the λi in matrix (1) are equal to zero. This special case does not change solution structure.

Theorem 1: Consider m flows ordered by their prices u 1 ≥ u2 ≥ . . . ≥ um. Let k be the largest integer 2 ≤ k ≤ m
such that k−2

uk
≤

∑k−1
i=1

1
ui

. Then, the scheduler’s optimal strategy q∗j has the form of

q∗j =

{

1/uj
∑k

i=1 1/ui

for j = 1, . . . , k

0 for j = k + 1, . . . , m.
(3)

while for the scheduler, the worst case happens when CE uses pj to corrupt flow j where

p∗j =

{

1 −
(k−1)/uj
∑k

i=1 1/ui

for j = 1, . . . , k

0 for j = k + 1, . . . , m.
(4)
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Fig. 2. Probabilistic strategy scheduling in a 3-user system

the optimal worst-case revenue is given as f∗ = k−1
∑k

i=1 1/ui

.

Theorem 1 gives the expected optimal worst-case revenue for the scheduler. If this matrix game is independently
played for a sufficiently large number of times, and the worst-case channel error distribution always happens in each
slot , the arithmetic mean of the outcomes earned by the scheduler is equal to the expected optimal worst-case revenue
in Theorem 1. Such a single-slot channel error model may be overly conservative, because CE is assumed to be able to
attack in each slot while the scheduler always has to be prepared for the worst situation. Thus, such a single-slot error
model is suitable for modeling situations where the channel error ratio is high.

Theorem 1 also reveals several interesting points regarding the scheduler’s optimal decision. (1) There always exists
a cut-off price uk. To achieve the optimal worst-case performance, the scheduler will not schedule flows with prices
lower than this uk. Such a threshold-based scheduling policy reflects the collective agreement involving all the flows in
order to maximize the total revenue while taking the least risk. (2) The scheduler also tends to diversify its scheduling
decision among multiple flows with prices higher than the threshold u k. This diversification is employed to be illusive
to the CE adversary and will hopefully decrease the risk of being corrupted by CE. (3) Among the flows that the
scheduler chooses for scheduling, a flow with higher price has a comparatively lower probability to be scheduled. This
counter-intuitive property results from the scheduler’s inherent property to achieve both high performance and low
risk.

We have provided in Appendix the solution to the general case when λi 6= 0. From the solution, we can see that
each λi acts as the weight of flow i’s price. It does not change the structure of the scheduler’s robust scheduling policy,
and there still exists a threshold uk playing the same role as in Theorem 1.

C. Long-term Fairness under Concave Utility Function Model

We have heretofore assumed the price of each flow is invariant during the scheduling process. However, if the user’s
utility is taking an increasing, concave function (concave means its first-order differentiation is a decreasing function.
This assumption has been widely used in the pricing literature such as [6]), the proposed robust scheduling algorithm
can achieve long-term fairness. In this case, the price for each flow is the marginal utility of the user who is perceiving
the flow, thus the price function is decreasing with respect to time slot. Theorem 1 turns out that the scheduler will
not schedule flows with prices lower than a threshold. However, given a concave utility function model, this does not
mean these temporarily starved flows will never be served in the long run.

Let us consider a specific user’s utility function Ui(s) = log(si), where si represents the amount of slots in which
flow i is served. Then its price function, which is the marginal utility, is given as u i(s) = 1

si
. Without loss of

generality, we order m users such that their allocated slots are in increasing order s1 ≤ s2 ≤ . . . ≤ sm (or equivalently,
u1 ≥ u2 ≥ . . . ≥ um). From Theorem 1, we know the cut-off index k satisfies s1 + . . . + sk−1 ≥ (k − 2)sk. It means
that sk−s1

sk
+ sk−s2

sk
+ . . .+

sk−sk−1

sk
≤ 1. Therefore, the service discrepancy ratio among flows is also upper bounded in

the long term. We simulate the proposed robust scheduler with 3 backlogged flows, and plot the amount of slots they
have received in Figure 2. We observe that the slot allocation difference tends to be upper bounded in the long run.
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D. Location Dependent Channel Error

Our framework can be readily extended to accommodate location-dependent channel errors, which are common in
wireless networks due to interference, fades and multipath effects. When location-dependent channel errors happen, a
subset of backlogged flows which are destined to physically closed mobile users will experience the same error pattern,
i.e., they will be corrupted by CE in the same slot. We handle this situation by considering these correlated flows as
one group. Whenever any flow is corrupted by CE, all the other flows in the same group will also be corrupted. For
a m-flow case, if we have G groups in total, we can show that it is equivalent to a G-flow scenario. Then we can still
apply our previous approach.

We illustrate this by a simple example. Considering a {m = 3, G = 2} scenario with flows 1 and 2 in a group and
flow 3 in the other group, the matrix game is written as Table II.

Corrupt flow 1 Corrupt flow 2 Corrupt flow 3

Schedule flow 1 0 0 u 1

Schedule flow 2 0 0 u 2

Schedule flow 3 u 3 u3 0

TABLE II
GAME MATRIX IN {m = 3, G = 2} SCENARIO WITH LOCATION-DEPENDENT ERRORS

From Table II, we can see that scheduling flow 1 is always preferable for the scheduler than scheduling flow 2 due
to u1 > u2, while for CE, whether corrupting flow 1 or flow 2 brings in the same damage to the system revenue.
Therefore, flow 2 can be eliminated from the consideration of both the scheduler and CE. This simplifies the problem
to a {m = 2, G = 1} scenario which is well solved by previous approach.

IV. MULTI-SLOT CHANNEL ERROR MODEL AND ROBUST SCHEDULING

In this section we consider a generalized multi-slot (n, δ) error model to catch a wide range of mild channel error
patterns. We first divide the time into time windows. Each time window consists of n time slots. The (n, δ) error
model means the scheduler perceives channel errors in no more than δ slots in each time window. When n � δ, this
model provides an elastic constraint on the channel error occurrence, which can accommodate a wide range of error
distributions. Thus it is appropriate for modeling scenarios with mild channel error ratio. The goal of this section
is to determine the robust scheduling policy under this generalized error model. Again, we formulate the scheduling
problem into a matrix game, in which the scheduler seeks to maximize the total revenue over the remaining slots until
the end of the time window, while CE seeks to minimize this total revenue.

We still assume m backlogged flows and their prices are sorted by u 1 ≥ u2 ≥ . . . ≥ um. The flow prices are
assumed to be invariant during the total n slots. We also assume that the CE adversary can attack at most one flow in
each slot.

We start from the first slot of the n-slot time window. We denote the state of a slot as (r, ε), where r is the amount of
remaining slots till the end of the current time window, and ε is the amount of credits for the CE adversary to corrupt
during these remaining r slots. For the first slot of the time window, we have r = n and ε = δ.

Similar to previous single-slot matrix game, the scheduler’s strategy is in probabilistic form and denoted as {q1, . . . , qm}
where qi represents the probability of scheduling flow i. However, the objective function that the scheduler seeks to
maximize is no longer the revenue in the current slot, but the sum of the expected revenue over all the remaining r
slots. We denote this expected aggregate revenue as f(r, ε). On the other side, the CE adversary seeks to minimize
f(r, ε). Note that CE has one more choice than the scheduler, i.e., it can either choose to corrupt any of the m flows
or simply delay the corruption and keep this attacking credit for future use. The latter choice may indeed happen if
a later corruption can bring more damage to the system revenue. We denote CE’s strategy as {p1, . . . , pm+1}, where
pi(1 ≤ i ≤ m) is the probability that CE chooses flow i to corrupt, and p m+1 is the probability that CE defers its
corruption in the current slot.

After the current slot expires and both the scheduler and CE have taken their actions, r is decreased by 1. If CE
has decided to corrupt any flow, ε is decreased by 1 ; otherwise, if CE has decided to defer the corruption, ε remains
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unchanged. In this way, the game moves forward to another state and it will continue until r = 0 (after r = 0, a new
time window will start). Such a procedure is well modeled by a dynamic zero-sum game. Solving this game will give
the robust scheduling policy that ensures a bounded worst-case system revenue.

Considering the state (r, ε), we write down its game matrix as follows.

∣

∣

∣

∣

∣

∣

∣

∣

∣

f(r − 1, ε− 1) f(r − 1, ε− 1) + u1 f(r − 1, ε− 1) + u1 · · · f(r − 1, ε− 1) + u1 f(r − 1, ε) + u1

f(r − 1, ε− 1) + u2 f(r − 1, ε− 1) f(r − 1, ε− 1) + u2 · · · f(r − 1, ε− 1) + u2 f(r − 1, ε) + u2

...
...

...
...

. . .
...

f(r − 1, ε− 1) + um f(r − 1, ε− 1) + um f(r − 1, ε− 1) + um · · · f(r − 1, ε− 1) f(r − 1, ε) + um

∣

∣

∣

∣

∣

∣

∣

∣

∣

m×(m+1)

(5)

Then we formalize this matrix game as a minimax optimization problem and find the optimal solution {qi}, {pj},
as we have done in the previous single-slot case. Note that we can extract f(r− 1, ε− 1) from each entry in the matrix
and have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 u1 u1 · · · u1 u1 − θ
u2 0 u2 · · · u2 u2 − θ
u3 u3 0 · · · u3 u3 − θ
...

...
...

. . .
...

...
um um um · · · 0 um − θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m×(m+1)

(6)

where θ = f(r − 1, ε − 1) − f(r − 1, ε). θ can also be considered as a fixed charge that CE imposes on the scheduler
for deferring the attack in the current slot. Based on Lemma 2.2 in [1], we can verify that the optimal strategies {qi},
{pj} do not change when we extract f(r − 1, ε − 1) from the game matrix.

Based on Theorem 1, we give the solution to the game matrix (6) as following

Theorem 2: 1) If θ ≤ (
∑k

1 1/ui)
−1 ( k is defined in Theorem 1), the scheduler’s optimal strategy {qi} and the

worst case are given in Theorem 1. Accordingly, the optimal worst-case revenue isf∗ = k−1
∑k

i=1 1/ui

.

2) If θ ≥ u1, the scheduler will use greedy algorithm in the sense that it always schedules flow 1 which provides
the maximum price. The worst case happens when there is no channel error in the current slot. Accordingly, the
optimal worst-case revenue is u1 − θ.

3) Otherwise if (
∑k

i=1 1/ui)
−1 < θ < u1, we first find d (2 ≤ d ≤ k) satisfying

(
d

∑

i=1

1/ui)
−1 < θ ≤ (

d−1
∑

i=1

1/ui)
−1 (7)

Then the scheduler’s optimal strategy is

qj =











θ/uj , for j = 1, . . . , d − 1;

1 − θ
∑d−1

i=1 1/ui, for j = d;

0, for j > d.

(8)

while the worst case happens when

pj =











1 − ud/uj , for j = 1, . . . , d − 1;

0, for j = d, . . . , m;

ud
∑d−1

i=1 1/ui − (d − 2), for j = m + 1.

(9)

Accordingly, the optimal worst-case revenue is f∗ = (d − 2)θ + ud − θud
∑d−1

i=1 1/ui,
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Proof: (Sketch) the CE’s strategy (9) gives the value for column j = 1, . . . , d − 1, m + 1 of matrix (6). If uj(1 −

pj)−θpm+1 = f∗ for j = 1, . . . , d−1 and ud−θpm+1 = f∗ for j = d. Using pm+1 = 1−
∑d−1

1 pj and solving these
equations for f∗ and pj gives (9). The pj are nonnegative if pm+1 ≥ 0, which follows since d ≤ k and k is defined in
Theorem 1. We can show that if the scheduler chooses any of the rows d + 1, . . . , m, its average revenue is less than
f∗ given the CE’s strategy (9). For all the rows j > d, this average revenue is uj − θpm+1 ≤ ud − θpm+1 = f∗. Thus,
the CE’s strategy keeps the average revenue less than or equal to f∗.

The scheduler’s strategy (8) gives the value for rows j = 1, . . . , d if
∑d

i=1 qiui − qjuj = f∗ for j = 1, . . . , d − 1

and it gives the value for column m + 1 if
∑d

i=1 qiui − θ = f∗. Using
∑d

1 qi = 1 and solving these equations for f∗

and qj gives (8). The qj are obviously positive for j = 1, . . . , d − 1. We must show that if the scheduler uses strategy
(8) and CE chooses any of the columns d, . . . , m to attack, the average revenue will be at least f∗. This average
revenue for columns d + 1, . . . , m is

∑d
1 qiui, greater than or equal to the average revenue for column d, which is

∑d−1
1 piui = (d − 1)θ. The first inequality of (7) implies that this average revenue is greater than f∗, as can be easily

proved. Thus the scheduler’s strategy keeps the average revenue at least f∗.2

Theorem 2 reveals some interesting features of the robust scheduling policy in the multi-slot channel error model.
During each slot, the robust scheduling policy will consider not only the prices of all the backlogged flows, but also
the potential penalty θ = f(r − 1, ε − 1) − f(r − 1, ε), which measures the revenue loss if channel error happens
in the next slot. As can be seen from Theorem 2, (1) if this potential penalty is too large compared to the prices of
backlogged flows, i.e., θ ≥ u 1, the scheduler will make a greedy choice and only schedule the flow with maximum
price. Interestingly enough, here the worst case happens when there is no channel error in the current slot. This
seems to be counter-intuitive. However, the underlying reason is that it is more profitable for CE to defer its attack
to the remaining slots than to corrupt any flow in this slot. (2) If the potential penalty θ is comparatively small,
i.e.,θ ≤ (

∑k
1 1/ui)

−1, the scheduler tends to believe the channel error is an inevitable event in this slot, thus it will
adopt the conservative scheduling policy, which we have presented in the single-slot case. (3) If the potential penalty
is between the previous two extreme cases, the scheduling policy will become a complicated trade-off between the
greedy and conservative scheduling policy.

In a summary, in order to achieve optimal performance in the worst case, the scheduler will always evaluate the po-
tential penalty caused by channel error. If this potential penalty is mild, the scheduler is more likely to take conservative
policy. Otherwise, the scheduler is more likely to use greedy policy.

A. Recursive Computation

To determine the robust scheduling policy in any state (r, ε), we need to know f(r−1, ε−1) and f(r−1, ε), which
further require to compute f(r− 2, ε− 2), f(r− 2, ε− 1) and f(r− 2, ε). Such a forwarding recursive procedure will
finally stop in those states with pre-determined game value (and strategies for the scheduler and CE). We call these
states as boundary states. We describe this recursive computation procedure in the tree of Table III. There are two
types of boundary states: (1) (r, 0). Such a boundary state means the remaining r slots are error-free. It is trivial to
know that the scheduler’s optimal strategy is to use greedy algorithm, which always schedules flow 1. So there should
be f(r, 0) = ru1. (2) (r, r). This boundary state means channel error will happen in each of the remaining r slots.
Thus, in each of the remaining r slots, the scheduler and CE will play a game with single-slot channel error model, as
we have addressed in Theorem 1 (Section III).

B. Algorithms and Time Complexity

Two approaches can be exploited to compute our robust scheduling policy, and they have different time complexity.
1) In the first approach, all the computations are carried on-line. To determine the scheduling strategy in one slot,

a recursive procedure should be applied to determine the game value, as shown in Table III. The total number
of intermediate states is O(nδ). To compute the game value for each state, Theorem 2 is invoked and a time
complexity O(m) is required. Thus, the total time complexity is O(mnδ).

2) In the second approach, before the beginning of the on-line scheduling process, all the intermediate states of
(n, δ) are solved and stored. During the on-line scheduling process, the scheduler first determines the current
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f(r,ε)

f(r-1,ε-1) f(r-1,ε)

f(r-2,ε-2) f(r-2,ε-1) f(r-2,ε)

f(r-3,ε-3) f(r-3,ε-2) f(r-3,ε-1) f(r-3,ε)

. . . . . . . . . . . . . . . . . . . . . . . .

f(r-ε,0) . . . . . . . . .

f(r-ε-1,0) . . . . . .

f(0,0)

f(ε-1,ε-1)

f(ε,ε)

TABLE III
RECURSIVE COMPUTATION OF f(r, ε)

state (r, ε), then it directly retrieves f(r − 1, ε− 1), f(r − 1, ε) and invokes Theorem 2 to solve the game. Such
an off-line approach is more appropriate for real-time requirements but has higher memory consumption.

The pseudo-code for the second approach is given in Algorithm 1.

Algorithm 1 Robust Scheduling with Multi-slot Channel Error Model
Require: {m(number of flows), n(slot number in one session), δ(credits for the channel error to attack}

1: {Before on-line scheduling, do the following off-line computation}
2: Compute boundary conditions(n,δ)
3: for t = 1 to δ do
4: for e = t + 1 to n do
5: solve matrix game Γ(t, e) based on Theorem 2
6: record {qi, i = 1, . . . , m} for state (t, e)
7: end for
8: end for
9: t← n {beginning of on-line scheduling}

10: e← δ

11: while t > 0 do
12: retrieve {qi} for current state (t, e)
13: Do probabilistic scheduling based on {qi}
14: if slot in error() then {perceive a channel error}
15: e← e− 1{decrease e until zero}
16: end if
17: t← t− 1
18: end while

V. SIMULATION EVALUATION

We use simulations to compare the performance of the robust algorithm with other two algorithms, i.e., the greedy
scheduler and the adaptive scheduler [8]. For the robust algorithm, we only consider the multi-slot error model case,
as in Section IV. The greedy scheduler, as we have considered in Section IV, is defined as always scheduling the flow
with the maximum price, regardless of the channel state of the flow. This greedy algorithm can achieve high revenue
in error-free case, yet its worst-case performance is sensitive to concrete error distributions. The adaptive scheduler, on
the other hand, only schedules the flow with the maximum price among all the flows that perceive a clean channel. In
order to dertermine whether a flow perceives a clean channel is based on a one-step prediction, i.e., the channel state
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Lowest Highest Average Variance

Robust Scheduling 51.27 61.39 58.94 1.13
Greedy Scheduling 36.69 65.95 60.43 2.06

Adaptive Scheduling 36.54 67.97 62.59 2.42

TABLE IV
PERFORMANCE COMPARISION AMONG ROBUST, GREEDY AND ADAPTIVE SCHEDULERS
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Fig. 3. Worst-case Performance for robust, greedy and adaptive algorithms (worst-case is only defined on the 1000 simulations runs)

in previous slot. Such a one-step prediction implicitly assumes the channel error is bursty and it may potentially yield
worse performance in less temporal correlated error patterns ([8] also uses this one-step prediction). We believe that
such an adaptive algorithm represents a wide range of adaptive scheduling paradigms.

The above three algorithms are evaluated under a wide range of channel error behavior. To this end, we implemented
a two-state Markov model as the channel error generator. The two-state Markov error model is configured as follows.
For each flow k, p k

e is the probability of perceiving an error given that the current channel state is clean, and pk
g is the

probability of perceiving a clean channel given that the current state is in dirty. Therefore, the average probability of

perceiving channel error for this flow is P k
E = pk

e

pk
e+pk

g
.

We simulate 4 flows (m = 4), and the time window is set to be 100 slots (n = 100). The aggregate user utility
function is chosen as U(s) = sα, where s is the number of slots being scheduled so far. At the beginning of each time
window, s is initialized to be 1. Obviously, the price function, which is the marginal utility, is u(s) = αα−1. For the
four flows, we let α be 0.9, 0.8, 0.7 and 0.6 respectively.

We first use the two-state Markov error model. The two parameters pk
e , pk

g are configured as 0.1, 0.8 respectively. We
run the simulation for 1000 times (each time there are 100 time slots). The three schedulers’ performance are presented
in Table IV. It shows that, among the 1000 simulation runs, the lowest performance achieved by the robust scheduler
is 51.27, which is 40% higher than that of greedy and adaptive schedulers. This better worst-case performance is also
reflected from the smaller performance variance of the robust scheduler. However, the average performance of the
robust scheduler is 61.39, slightly worse than the greedy and adaptive schedulers.

We then keep pk
e (probability of channel state transition from clean to dirty) as 0.8 and decrease pk

g (probability of
channel state transition from dirty to clean) from 0.8 to 0.3. Such a decrease indicates a more bursty channel error
distribution. As we can observe from Figure 3, the worst-case performance for all these three schedulers decrease
as the channel error distribution becomes more bursty. However, the worst-case performance of the robust scheduler
decreases much more gracefully. We also notice that there exists a critical pk

g . Above this critical pk
g , the adaptive

scheduler attains a consistently better worst-case performance than the greedy scheduler. This phenomenon is due to
the failure of the one-step prediction in bursty channel error case.

VI. RELATED WORK

Packet scheduling over wireless cellular networks has been an active research topic in recent years. The most popular
approach is to devise various fair scheduling algorithms to provide performance bounds in terms of delay, throughput
and fairness. These include IWFQ [8], CIF-Q [9], SBFA [10] and WFS [11]. The goal of these wireless fair scheduling
algorithms has been to hide short bursts of location-dependent channel errors from well-behaved flows by dynamically
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swapping channel allocations between backlogged flows that perceive channel errors and backlogged flows that do not,
with the intention of reclaiming the channel access for the former when it perceives a clean channel. Therefore, lagging
flows (that lag behind their error-free reference service due to channel errors) will receive compensation from leading
flows. All these algorithms rely on accurate channel state estimation for every slot, and their performance may suffer
in the presence of wide range of error patterns. Our approach does not rely on channel state prediction, and is robust
in the presence of wide range of channel error patterns. Another recent work [4] studies utility-based fair scheduling.
However, their design still depends on channel state estimation. All these designs are different from our worst-case
optimal approach which does not estimate channel state.

Game theoretic approaches have been applied in networking research in past ten years. In [7], the author studies
packet scheduling in wireline networking context and formulates the problem into a nonzero-sum game, in which each
of multiple selfish users seeks to maximize its own utility. This is different from our work: it does not consider channel
errors, thus the nonzero-sum game is fundamentally different from our zero-sum gamef. Besides, it does not consider
any probabilistic scheduling policy, which is another contribution of our work. To the best of our knowledge, we have
not seen any previous work to study wireless packet scheduling from a game theoretic perspective.

VII. CONCLUSIONS

The main design issue for wireless scheduling is to provide service assurances in the presence of dynamic channel
error conditions. Current wireless scheduling algorithms [4]-[11] typically take an adaptive approach in which the
scheduler adapts its scheduling decision based on the estimated fine-grained channel state. This paper explores an al-
ternative approach to handle channel errors — game-theoretic, robust packet scheduling in wireless cellular networks.
In this approach, the scheduler and the channel error play a zero-sum game and act as adversaries in the scheduling pro-
cess. By solving the corresponding minimax optimization problem, we characterize the worst-case optimal scheduling
policies. The merits of this approach include requirements of only coarse-grained channel state, worst-case optimal
performance, guaranteed service in the presence of a wide range of error patterns, and balanced trade-off between
conservative and greedy policies. Though this work is mainly of theoretic merit, it opens door to further exploring
probabilistic scheduling approach to handle channel errors. Ongoing work seeks to further compare the robust and
adaptive approaches.
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VIII. APPENDIX - PROOF OF THEOREM 1 (SKETCH)

In this section we solve the problem when both the scheduler and CE are playing a zero-sum game with single-slot
channel error model. The game matrix is given in (1).

Before solving the game matrix, we first write down a fundamental theorem for solving linear programming problem
[2].
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Theorem 3: (Optimality Criterion) Given a linear programming problem as following
minimize z when

y1 + · · · + a1,m+1ym+1 + · · · + a1,nyn = b1

y2 + · · · + a2,m+1ym+1 + · · · + a2,nyn = b2

. . .
ym + am,m+1ym+1 + · · · + am,nyn = bm

cm+1ym+1 + · · · + cnyn = z
where bi ≥ 0 (i = 1, . . . , m) and xi ≥ 0 (i = 1, . . . , n).
The minimal value of the objective function is 0 and is attained at the point (b1, b2, . . . , bm, 0, 0, . . . , 0) if cj ≥

0(j = m + 1, . . . , n).

Now we solve the game corresponding to matrix (1). According to [2], it can be rewritten into the following linear
programming problem.

Minimize z
subject to constraints

λ1u1p1 + u1p2 + · · · + u1pi + · · · + u1pm ≤ z
u2p1 + λ2u2p2 + · · · + u2pi + · · · + u2pm ≤ z
· · · · · ·
ump1 + ump2 + · · · + umpi + · · · + λmumpm ≤ z
p1 + p2 + · · · + pi + · · · + pm = 1

For every i-th (i = 1, . . . , m) inequality in the above problem, we bring in a positive slack variable di and use yi = pi

z
to replace pi. We also use the fact that Minimize −y1 − y2 − . . . − ym is equivalent to Maximize y1 + y2 + . . . + ym.
In this way the problem is simplified as

Minimize −y1 − y2 − . . . − ym

subject to constraints

λ1y1 + y2 + · · · + yi + · · · + ym + d1 = 1
u1

y1 + λ2y2 + · · · + yi + · · · + ym + d2 = 1
u2

· · ·
y1 + y2 + · · · + yi + · · · + λmym + dm = 1

um

For easy of illustration, we express the above inequalities in the following tableau.

d1 d2 d3 . . . dm y1 y2 y3 . . . ym

1 0 0 · · · 0 λ1 1 1 · · · 1 1
u1

0 1 0 · · · 0 1 λ2 1 · · · 1 1
u2

0 0 1 · · · 0 1 1 λ2 · · · 1 1
u3

· · · · · · · · ·
0 0 0 · · · 1 1 1 1 · · · λm

1
um

0 0 0 · · · 0 -1 -1 -1 · · · -1 0

Our goal is to convert the negative coefficients in the last row of the above tableau to be positive through variable
elimination. Such a technique is often called pivot operation in Simplex method. We first use the second equation in
the tableau as reference to eliminate y1 from all the other equations. The tableau becomes
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d1 d2 . . . dm y1 y2 y3 . . . ym

1 −λ1 · · · 0 0 1− λ1λ2 1− λ1 · · · 1− λ1
1

u1
− λ1

u1

0 1 · · · 0 1 λ2 1 · · · 1 1
u2

0 -1 · · · 0 0 1− λ2 λ3 − 1 · · · 0 1
u3
− 1

u2

· · · · · · · · ·
0 -1 · · · 1 0 1− λ2 0 · · · λm − 1 1

um

− 1
u2

0 1 · · · 0 0 λ2 − 1 0 · · · 0 1
u2

Since λ2 < 1, there still exists a negative coefficient λ2 − 1 in the last row. However, if 1
u1

− λ1
u2

> 0, we can use
the first row in the tableau as reference to eliminate y2 from all the other rows, and it can be easily verified that this
operation will convert all the coefficients in the last row to be positive. Thus we achieve the ideal form in Theorem
3 and we can directly apply Theorem 3 to determine the solution. Otherwise, if 1

u1
− λ1

u2
< 0, we continue previous

pivot operation, and this time choose the third row as reference to eliminiate y2 from all the other rows. Due to space
limitation, we skip the detailed description of the procedure and only give the final solution as following:

1) if 1
λ1u1

< 1
u2

, the optimal strategy for the scheduler is

qj =

{

1, for j = 1;

0, for j = 2, . . . , k.
(10)

Accordingly, the scheduler’s optimal reward is f∗ = λ1u1.
2) if

{

1
λ1u1

≥ 1
u2

1
(1−λ1)u1

+ 1
(1−λ2)u2

< 1−λ1λ2
(1−λ1)(1−λ2)

1
u3

the optimal strategy for the scheduler is

qj =















(1−λ2)u2

(1−λ2)u2+(1−λ1)u1
, for j = 1;

(1−λ1)u1

(1−λ2)u2+(1−λ1)u1
, for j = 2;

0, for j = 3, . . . , m.

(11)

Accordingly, the scheduler’s optimal reward is

f∗ =
u1u2(1 − λ1λ2)

(1 − λ2)u2 + (1 − λ1)u1

3) if there is a cut-off k (2 ≤ k ≤ m − 2) s.t.























k
∑

i=1

1

(1 − λi)ui
≥

[

k
∑

i=3

1

1 − λi
+

1 − λ1λ2

(1 − λ1)(1 − λ2)

]

1

uk+1

k+1
∑

i=1

1

(1 − λi)ui
<

[

k+1
∑

i=3

1

1 − λi
+

1 − λ1λ2

(1 − λ1)(1 − λ2)

]

1

uk+2

the optimal strategy for the scheduler is

qj =















































k
∏

i=1
i6=j

(1 − λi)ui

k
∑

i=1

k
∏

l=1
l 6=i

(1 − λl)ul

, for j = 1, . . . , k;

0, for j = k + 1, . . . , m.

(12)
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Accordingly, the scheduler’s optimal reward is

f∗ =

k
∏

i=1

ui









−
k

∏

i=1

(1 − λi) +
k

∑

i=1

k
∏

l=1
l 6=i

(1 − λm)









k
∑

i=1

k
∏

l=1
l 6=i

(1 − λl)ul

(13)

4) if
∑m−1

i=1
1

(1−λi)ui
≥

[

∑m−1
i=3

1
1−λi

+ 1−λ1λ2
(1−λ1)(1−λ2)

]

1
um

, the optimal strategy for the scheduler is (12) with

k = m, and the scheduler’s optimal reward is (13) with k = m.




