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COMPUTATIONAL GEOMETRY TOOLS IN GRID GENERATION

Bharat Soni* and Bernd Hamann®*

ABSTRACT

The B-spline approximation wechniques epplicable 1o surface grid generation pertioent 1o computational
fiedd simulstions are presented. A sysiematic procedure 1o first comea design process crmors and then unile se-
lected surface paiches yielding an overall continuous spproximation is developed. The application of these tech-
niques 10 surface grid redistribution, sutomaic remapping, and elispuc refinemeant is presented.

INTRODUCTION

Very often, CAD/CAM data files resulting from design processes CoDLAin errors, such as gaps between suf-
face paiches and interseciions of paiches. The comection of these errors are extremely crucial in the generation
of surface and volume grids applicable o field simulations, Geomerric design and compuler aided peometnic
desipgn techniques [ | -4] have been uiilized 10 eliminate design errors for proper surface generation. The resultung
B -spline surfaces are utilized in development of well-distributed and well-refined surface grids [5-5).

B-SPLINE APPROXIMATION

The creation of & single B-spline cubic paich approximating a pan of the given geometry requires four
points on the original surface in either clockwise or counter—clockwise order. These points determine @ 3D hexa-
hedral block used for the selection of the surfaces to be approximated. The “top™ and “bomom™ {ece arc computed
by considering normal vectors at the specified quadrilatesal's corners and the lengths of is edges. A piciorial
view of four selected surface points, unit normal vectors at these points, and edge lengths are shown in figure
la, and the constructed biock is shown in figure 1h

Fig. le. Surface and four sclecied poings Fig. 1b. Implied hlock

Fig. 1. Block construcied from guadrilasessl

Bezier, B-spline, and NURES surfaces lie within the convex hull of their control points [1,2]. Therefore,
such surfaces can not have interior B8k points if the bounding box of their control points has 6o intersection
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with the bounding box of the block. All riangies used for the surfaces’ discretization lying completely or partly
inside a block are kept. The clipping of surface triangles against block faces is illustrated in figure 2.
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Fig. 2. Clipping surface triangles againct block faces

In order to compute a B-spline approximation for the surface lying inside & block, & finite set of
(M + 1NN + 1)points is generated. These points are interpoiated vielding the local surface approximation, The
finite st of surface poinis is obtained by intersecting the surface riangles inside the block with line segments.
Each line segment ab is defined by a pair of corresponding points on opposite block faces, one point on the “top™
face, thie other one on the “botom™ face, Aline segment can inlersect exactly ons mangle, mose than one riangle,
‘or no triangle s all. 1f ar least one intersection point is found the point closest to the block’s “wop™ face is chosen
for the approximaton.

Since exactly (M = 1MN + 1) points are interpolated for the local approximation, additional peints are
needed in case that certain line segments do not intersect any tiangle. Each intersection point can be wrinen
& (l = e + b, ¢ € [0.1]. Additional points are generated using Hardy 's reciprocal multiquadric method [3]
to compute & bivariate function ¢ (&, v). The bivariate interpolation constraints are obtained by considering all
intersection points found and using a yniform parametrization for the bilinear “10p™ and “bottom™ faces,

by =ty = Z 2 i (R - ".u:': Ay, = "',f) i 2
JEMarer MY VB[, M (2}
I e ..., ML E M, ...N),

where onoly those values 1, &, i, ¥, md v, are considered for which an intersection point has been found.
Using uniform parameter spacing (3, = ., — w0 = 0.(M = 1), 8, = v, = v, j = 0...(N = 1)), the val-
uuﬂ-%{ﬂ_+d-.}mdm:npuu:m—ﬂﬂﬂl yield good results. If the analytical definition of all surfaces is
known all intersection points found are mapped onto the real surfaces.

The (M + 1}N + 1) points are interpolated by & C* continuous, piecewise bicubic B-spline surface. The
resulting B-spline surface of order 4 is givea by

n [_]
s, 'I-'} = :E-a z;"d” H"‘ "U} I"irlllli [“}. u e [ﬂ].. II'H_I]..'I-' & [PJ,‘IH-I-!I' {3}
where o, is a B-spline control point and N, (u) aad N, (v) are normalized B -spline basis functions defined on
Iwo pre—computed knod sequenees fu, < w, < . < w,Jeod v, <= v, = ., < v, ][I

: In this application, the domain of a B-spline surface, which is [,.u..,] = [v,.v..,]. is normalized by set-
Log wy = vy = 0 and w.., = v,.; = |. Therefore, the lincar sysiem 1o be solved becomes
+2 8+
I-I‘J = 'ﬂ:":l-rrv: H'} * E; Zﬂ Inr|.»' H:.: {"!+I:I H}.d f"'!
' R B
Onee & local B-spline approximation is delermined, an error estimate is computed. This estimate is the
Tool-mean-squane aror estmale based on shones: distances between points oo the approximating B-spline

L I=0.MJ=0.N {4)
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surface and the approximated surface(s). This error estimate can be compured, regardiess, whether an analviical
definiton of the origingl surfsces is known or ool

CONNECTING B-SPLINE SURFACES

Topologically, all approximating B-spline surfaces are four-sided entities having st most four neighbors,
Two B-spline surfsces are considered neighbors when sharing a common boundary curve. All B-spline surfaces
used in the approximation must satisfy these wopoiogical constraine: (i) Each boundary curve of & B-spline sur-
face is shared by at most rwo surfaces (no bifurcations), (i) A corner veriex of a B-spline surface can be shared
by any number of surfaces. (iii) Each B-spline surface has at least one point along one of its boundary curves
in common with another surface (“connectivity™). (iv) If & comer venex of a B-spline surface is shared by &
second surface then this poim is also a corper vernex of the second surface (" full-face interface™). Examples of
such topologies are llusmrated in figure 3.

& K

Fig. 3. Possible B-spline surface iopologies
A connectivity table stores the (up 1) four neighbors of each surfsce. Two surfaces are identified as neigh-
bors if an estimate for the “distsnce™ berween pairs of boundary curves of rwo surfaces is smaller than some 1oler-

ance Once determined, this connectivity table is used in the enforcement of continuity slong edges of neighbar
surfaces and a1 surface cormer venices shared by muliipie surfaces

All surfaces construcied must be compatible, Le., they must be piecewise bicubic surfaces, all having the
same number of conrol poims and the same knots along common boundary curves. If this condition is violaed
surfaces are made compatible by performing degree raising and knot insemion (4], Once all surfaces are compat-
ible, conunuiry is enforced along the common boundary curves of two surfaces by sveraging rows (or columns)
of control points along the common curve. Continuity is enforced &1 8 commaon corner vertex of multiple surfaces
by averaging control points “around” this vemex. Cumently, each B-spline surface must be represented by at
least six rows and six columns of control points

The figures 4 and 5 demonstrate the surface approximation of different peometries. A single B-gpline sur-
face epproximating pans of multiple parametric surfaces of a fighter aircraft is represented in figure 4, Multiple

approximating surfaces on the space shuttle peometry are shown in figure 5. Onginal surfaces are shaded darker
than the approximating surfaces,

Fig 4 Figher Configuration (Single Approximating Fig 5. Space Shunttle Configuration (Multiple
B-5pline Surlace) Approximating B-Spline Swrfaces)

2004



SURFACE GRID REDISTRIBUTION AND REMAFPPING:

Letr = (588, 20519, x5 0))deoote a paramezric surface with Euclidean coordinates (x,, x,.1,) and pa-
rameter values (1, . The parametric space associaed with a NURBS surface is ransformed as the distribotion
(normalized arc leagth based) mesh [5). The redistributed surface grid is obisined by evaluating the B-spline
surface ot the respective parameter associated with the desired distribution space.

Now, consider o sculptured surface (figure 5a). The surface grid is mapped as an O-grid on the surface.
However, if the user is interested in mapping a A-type grid on the surface then o re-mapping process is accom-
plished by essentially creating & distribution space which. when evaluated, resulis in & surface grid of figure 5d.
The associated parametric (distribation) spaces are presented in figures Sb-c. The creation of the distribution
space for remapping is intuitive and highly application—dependent. Remapping of the surface grid is also re-
quired when the interior object(s) is (are) 10 be kept fixed as pant of the interior surface grid. For example, consid-
er the sculptured surface and the associated parametric space presented in figures 6a-b, lmerior objects on the
surface are presented in dark. The remapping process is needed o blend interior objects as a part of the surface
grid. An interpolation search algorithm based on the NURBS presentation is developed to evaluate parameters
associated with the interior object The interpolation/search algorithm utilizes derivatives £, r. ro .. andr, &0d
Teylor's expansion o inversely evaluate parameters. An sutomatic algorithm based on the weighted rransfinite
imerpolation [5,7) io rwo dimensions is developed which biends the parameters associated with interior object
into an overall distribution space. The resulting re-parametrized distribution space is demonstrated in figure Ta.
The surface grid is then evaluated with respect 1o this new distribution space. The resulting, re-mapped surface
gnd s presented in figure Th.

ELLIFTIC REFINEMENT:
Consider a three-dimensional elliptic grid generation system [8.9]
3 3
L

EE“W" Z#'.rh =0,
fom ] o | i

where

i
= .!7[ [g.-g"l s EHR“} y

i=1,23%j= |23,
and £ = (x,%.5,) sad £ = (£'.£% %) denote the physical and computational space, respectively.

(5)

The control functions ¢, & = 1.2,3, for an onthogonal grid [6] can be formulated as

6,=41 2L qg ;}T'ﬂ,? (i, B eyelic |,

2 it
grrd F
_ &, & = fori = 1,23,
¢t - S.l.ltsll n
A quasi rwo—dimensional elliptic sysiem for surface peneration can be formulated [9] as
lu[r“ 5 "’l"r] i IE“"H e T lﬁ':i’q] - .i:l."{.ﬂ"ﬂrcpu}_ (&)
w.hm l‘l! -ﬂ'ufﬂ " Irr:r‘;':'_ I-E'jlrlq,- rfl-tqu}+3“rm '{I'rﬂ*:l 15{-]-.-

I.rt:.-,l.ll' )
Here, the surface is represented a5 @ coordinate surface f'= constant (£ = f'andp = £7),
¢ = and {7 ~lines are assumed 10 be perpendicular 1o £ lines (g,, = g, = 0), and the principal curvatures of
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Fig. 5b. Parameiric space associased witk
initial O-type grid

Fig. 3¢ Re-mapped parsmesric space for

- e
+ i
1
==
o ¥
= ¥ | i
13 e
ser o |
m N e
- g

Fig. 5d. Resubing H-type prid
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Fig 6b. Parametric space mssocipied witk
NURES represeniation of ihe
sculprired surface

Fig. Tb. Resuliop surface grid



the £*-lines are assumed 1o be zero on the surface. The elliptic system of equations (6} - (7) can be ransformed

1o the parametric space &s follows:
JoA - lalr, = flr)
lﬂhﬂ = "I"‘LIIJ - :'-.lu:lilql + By — BT+ iz P -0, (8
J » (wlr, — B,
Bl = By = 2ty + 8, — @10 + A f:;rﬁﬂ 2P 5

where J"t = .!"i'! - "!!lﬁ P

A= n]rh— :'ﬁir.vl-r]r# '

Blmzgeyy+az

T'ﬂ::+yf+:f.w

i
bl = Gy, = ya) + lp =220 + g = )
The elliptic surfsce grid refinement is accomplished by solving (8)=09) with proper forcing functions for

the distritution mesh (5.1) and then cveluating the essociaied B-spline surface ot refined parameter values.

Fig Ba Initial surface prid Fig. b, Refined gnid

" An example demonsmating the influeoce of the reflinement algorithm 13 presented in Figure Bz b,
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