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1 Introduction

BSEPACK is a parallel ScaLAPACK-style library for solving the Bethe–Salpeter eigenvalue problem
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and computing the absorption spectrum
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where A, B, X1, X2 ∈ C2n×2n, Λ ∈ Rn×n, d ∈ Cn, and δ(·) is the Dirac δ-function. The matrix

Ω =

[
A B
B A

]

is required to be Hermitian and positive definite.
The library BSEPACK is written in Fortran 90 with MPI, and targets distributed memory HPC

systems. This document concerns the usage of BSEPACK. For the description of the algorithm and
implementation, we refer to [3, 5, 7].

2 Installation

In the following, we provide an installation guide for Unix-like systems.

2.1 Prerequisites

To build the library, the following software is required.

• A Fortran 90/95 compiler.
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• The MPI library, e.g., OpenMPI or MPICH.

• An optimized BLAS library, e.g., ATLAS or OpenBLAS.

• The LAPACK library, version ≥ 3.4.0.

• The ScaLAPACK library (including BLACS and PBLAS), version ≥ 2.0.2.

2.2 How to compile the library

Download location.
The software can be downloaded from the BSEPACK homepage [4].

Files in the tar-ball.
By unpacking the tar-ball through

tar xzfv bsepack.tar.gz

a directory BSEPACK/, which is the root directory of the library, is created with the following files
and subdirectories.

BSEPACK UG.pdf EXAMPLES Legal.txt License.txt MAKE INC Makefile

make.inc README.md SRC SSEIG TESTING

Below is an overview of these items.

• BSEPACK UG.pdf The User’s Guide of BSEPACK (i.e., this document).

• EXAMPLES/ This directory contains two simple drivers.

• Legal.txt Copyright notice of BSEPACK.

• License.txt License agreement of BSEPACK.

• MAKE INC/ This directory contains templates of make.inc.

• Makefile The Makefile for building the library. This file does not need to be modified.

• make.inc This is the only file which requires modifications when building the library. It
contains settings for compilers and external libraries used by the Makefile. The user needs
to modify this file according to the target computational environment before compiling the
library. Templates of this file are provided in the directory MAKE INC.

• README.md A shorter version of this document contains a quick installation guide.

• SRC/ This directory contains source code for all computational routines of the library.

• SSEIG/ This directory contains a set of BLAS/LAPACK-like subroutines for real skew-
symmetric matrices.

• TESTING/ This directory contains testing examples.
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Figure 1: The 2D block-cyclic data layout across a 2 × 2 processor grid. For example, processor
(0, 1) owns all highlighted blocks.

Build the library.
After make.inc has been properly modified according to the computational environment, the library
can be built by

make all

from the root directory of BSEPACK. This command generates the two library archives libbsepack.a
and libsseig.a in lib/, four examples in EXAMPLES/, and test programs in TESTING/. The script
runall.sh in TESTING, which performs a set tests, needs to be run after the compilation. You may
need to modify the MPI execution command in this script, as well as in SSEIG/runpar.sh, accord-
ing to your system (e.g., mpirun, mpiexec, etc.). Hopefully something similar to the following will
be displayed on the screen:

% 4096 out of 4096 tests passed!

% 4096 out of 4096 tests passed!

% 8192 out of 8192 tests passed!

% 8192 out of 8192 tests passed!

...

The result is also collected in the file summary.txt. If all runs passed the test, then the compilation
has been successful.

3 Using the package

3.1 ScaLAPACK’s 2D block-cyclic data layout convention

In ScaLAPACK, the p = prpc processors are usually arranged into a pr × pc grid. Matrices are
distributed across the rectangular processor grid in a 2D block-cyclic layout with block size mb×nb
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(see Figure 1 for an example). The information regarding the data layout is stored in an array
descriptor to establish the mapping between the entries of the global matrix and their corresponding
locations in the memory hierarchy. We adopt ScaLAPACK’s data layout convention in BSEPACK.
In addition we require that the n×n input matrices A and B have identical data layout with square
data blocks (i.e., mb = nb), and the output matrix X has the same block factor as that of A or B.
The processor grid, however, does not need to be square.

A distributed matrix, A, is referenced by two arrays A (local matrix entries) and DESCA (array
descriptor). A typical setting of DESCA is listed below.

• DESCA(1): Type of the matrix. In our case, DESCA(1) = 1 since A is stored as a dense matrix.

• DESCA(2): The handle of the BLACS context.

• DESCA(3), DESCA(4): The size of A, i.e., DESCA(3) = DESCA(4) = n.

• DESCA(5), DESCA(6): Blocking factors mb and nb. We require that DESCA(5) = DESCA(6).

• DESCA(7), DESCA(8): The process row and column that contain h11. Usually, DESCA(7) =
DESCA(8) = 0.

• DESCA(9): Leading dimension of the local part of A on the current processor. This value
needs to be at least one, even if the local part is empty.

3.2 Computing the spectral decomposition

One functionality of this package is to compute the spectral decomposition of a definite Bethe–
Salpeter Hamiltonian matrix

H =

[
A B
−B −A

]
. (1)

The spectral decomposition is of the form

H

[
X1 X2

X2 X1

]
=

[
X1 X2

X2 X1

] [
Λ 0
0 −Λ

]
, (2)

where the eigenvectors are normalized to satisfy

[
X1 −X2

−X2 X1

]∗ [
X1 X2

X2 X1

]
= I. (3)

This can be done by calling the subroutine PDBSEIG for a real H, and PZBSEIG for a complex H. The
interface of PDBSEIG/PZBSEIG displayed below follows the convention of LAPACK/ScaLAPACK
subroutines [1, 2].
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SUBROUTINE PDBSEIG( SOLVER, N, A, IA, JA, DESCA, B, IB, JB, DESCB,

$ LAMBDA, X, IX, JX, DESCX, WORK, LWORK, IWORK,

$ LIWORK, INFO )

*

* .. Scalar Arguments ..

INTEGER SOLVER, N, IA, JA, IB, JB, IX, JX, LWORK,

$ LIWORK, INFO

* ..

* .. Array Arguments ..

DOUBLE PRECISION A( * ), B( * ), LAMBDA( * ), X( * ), WORK( * )

INTEGER DESCA( * ), DESCB( * ), DESCX( * ), IWORK( * )

SUBROUTINE PZBSEIG( SOLVER, N, A, IA, JA, DESCA, B, IB, JB, DESCB,

$ LAMBDA, X, IX, JX, DESCX, WORK, LWORK, RWORK,

$ LRWORK, IWORK, LIWORK, INFO )

*

* .. Scalar Arguments ..

INTEGER SOLVER, N, IA, JA, IB, JB, IX, JX, LWORK,

$ LRWORK, LIWORK, INFO

* ..

* .. Array Arguments ..

COMPLEX*16 A( * ), B( * ), X( * ), WORK( * )

DOUBLE PRECISION LAMBDA( * ), RWORK( * )

INTEGER DESCA( * ), DESCB( * ), DESCX( * ), IWORK( * )

The interfaces of PDBSEIG and PZBSEIG are nearly identical, except that PZBSEIG requires one
extra workspace RWORK of length LRWORK. Examples of calling these subroutines are provided in
EXAMPLES/eigenvalue real.f and EXAMPLES/eigenvalue complex.f. Similar to most LAPACK/
ScaLAPACK subroutines, we advice that PDBSEIG/PZBSEIG is called twice—the first call for per-
forming a workspace query (by setting LWORK = −1) and the second call for actual computation.

A detailed list of the arguments for PDBSEIG.

• SOLVER: (global input) INTEGER.
See Table 2 in Section 3.4 for a full list of supported solvers.

• N: (global input) INTEGER.
The order of A (and B).

• A: (local input) DOUBLE PRECISION array of dimension (DESCA(9),*).
IA,JA: (global input) INTEGER.
DESCA: (global and local input) INTEGER array descriptor of dimension 9.
A, IA, JA, and DESCA define the distributed matrix A.
On entry, the lower triangular part of A contains that of the real symmetric matrix A, and
its strictly upper triangular part is not referenced.
If Tamm–Dancoff approximation (TDA) is used, A is destroyed on exit.
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• B: (local input) DOUBLE PRECISION array of dimension (DESCB(9),*).
IB,JB: (global input) INTEGER.
DESCB: (global and local input) INTEGER array descriptor of dimension 9.
B, IB, JB, and DESCB define the distributed matrix B.
On entry, the lower triangular part of B contains that of the real symmetric matrix B, and
its strictly upper triangular part is not referenced.
If Tamm–Dancoff approximation (TDA) is used, B is not referenced. However, DESCB still
needs to be consistent with DESCA.

• LAMBDA: (global output) DOUBLE PRECISION array of dimension N.
The positive eigenvalues of H defined by A and B as in (1). The eigenvalues are sorted in
ascending order.

• X: (local output) DOUBLE PRECISION array of dimension (DESCX(9),*).
IX,JX: (global input) INTEGER.
DESCX: (global and local input) INTEGER array descriptor of dimension 9.
X, IX, JX, and DESCX define the distributed matrix X. In current release, only IX = JX = 1 is
supported.
On exit, X contains the normalized eigenvectors associated with the positive eigenvalues of H,
i.e.

X =

[
X1

X2

]

as in (2) and satisfies (3). In the case of Tamm–Dancoff approximation (TDA), the X2 block
is not referenced.

• WORK: (local workspace) DOUBLE PRECISION array of dimension LWORK.
LWORK: (local input) INTEGER.
In case LWORK = −1, a workspace query will be performed and on exit, WORK(1) is set to the
required length of the double precision workspace. No computation is performed in this case.

• IWORK: (local workspace) INTEGER array of dimension LIWORK.
LIWORK: (local input) INTEGER.
In case LIWORK = −1, a workspace query will be performed and on exit, IWORK(1) is set to
the required length of the integer workspace. No computation is performed in this case.

• INFO: (global output) INTEGER.
If INFO = 0, PDBSEIG returns successfully.
If INFO < 0, let i = −INFO, then the i-th argument had an illegal value.
If INFO > 0, the eigensolver failed to converge. (This is a rare case.)

A detailed list of the arguments for PZBSEIG.

• SOLVER: (global input) INTEGER.
See Table 3 in Section 3.4 for a full list of supported solvers.

• N: (global input) INTEGER.
The order of A (and B).
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• A: (local input) COMPLEX*16 array of dimension (DESCA(9),*).
IA,JA: (global input) INTEGER.
DESCA: (global and local input) INTEGER array descriptor of dimension 9.
A, IA, JA, and DESCA define the distributed matrix A.
On entry, the lower triangular part of A contains that of the Hermitian matrix A, and its
strictly upper triangular part is not referenced.
If Tamm–Dancoff approximation (TDA) is used, A is destroyed on exit.

• B: (local input) COMPLEX*16 array of dimension (DESCB(9),*).
IB,JB: (global input) INTEGER.
DESCB: (global and local input) INTEGER array descriptor of dimension 9.
B, IB, JB, and DESCB define the distributed matrix B.
On entry, the lower triangular part of B contains that of the complex symmetric matrix B,
and its strictly upper triangular part is not referenced.
If Tamm–Dancoff approximation (TDA) is used, B is not referenced. However, DESCB still
needs to be consistent with DESCA.

• LAMBDA: (global output) DOUBLE PRECISION array of dimension N.
The positive eigenvalues of H defined by A and B as in (1). The eigenvalues are sorted in
ascending order.

• X: (local output) COMPLEX*16 array of dimension (DESCX(9),*).
IX,JX: (global input) INTEGER.
DESCX: (global and local input) INTEGER array descriptor of dimension 9.
X, IX, JX, and DESCX define the distributed matrix X. In current release, only IX = JX = 1 is
supported.
On exit, X contains the normalized eigenvectors associated with the positive eigenvalues of H,
i.e.

X =

[
X1

X2

]

as in (2) and satisfies (3). In the case of Tamm–Dancoff approximation (TDA), the X2 block
is not referenced.

• WORK: (local workspace) COMPLEX*16 array of dimension LWORK.
LWORK: (local input) INTEGER.
In case LWORK = −1, a workspace query will be performed and on exit, WORK(1) is set to the
required length of the double precision complex workspace. No computation is performed in
this case.

• RWORK: (local workspace) DOUBLE PRECISION array of dimension LRWORK.
LRWORK: (local input) INTEGER.
In case LRWORK = −1, a workspace query will be performed and on exit, RWORK(1) is set to
the required length of the double precision real workspace. No computation is performed in
this case.

• IWORK: (local workspace) INTEGER array of dimension LIWORK.
LIWORK: (local input) INTEGER.
In case LIWORK = −1, a workspace query will be performed and on exit, IWORK(1) is set to
the required length of the integer workspace. No computation is performed in this case.
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• INFO: (global output) INTEGER.
If INFO = 0, PZBSEIG returns successfully.
If INFO < 0, let i = −INFO, then the i-th argument had an illegal value.
If INFO > 0, the eigensolver failed to converge. (This is a rare case.)

3.3 Computing the absorption spectrum

Another functionality of this package is to compute the absorption spectrum

ε(ω) =

[
d

−d

]∗
δ

(
ωI −

[
A B
−B −A

])[
d

d

]

over a number of sampling points ω. This can be done by calling the subroutine PDBSABSP for a
real H and d, and PZBSABSP for a complex H and d. Two options are provided: one is to compute
ε(σ) by diagonalizing H, and the other is to estimate ε(σ) by Lanczos algorithm. Note that the
former is much more expensive compared to the latter, though more accurate also.

In practice the Dirac δ-function must be regularized. BSEPACK supports two types of broad-
ening of the δ-function as follows, with broadening factor σ > 0.

1. Gaussian function

fσ(x) =
1√
2π σ

exp
(
− x2

2σ2

)
; (4)

2. Lorentzian function
fσ(x) =

σ

π(x2 + σ2)
. (5)

Hence, a broadened absorption spectrum

εσ(ω) =

[
d

−d

]∗
fσ

(
ωI −

[
A B
−B −A

])[
d

d

]
(6)

is actually computed.
The interface of PDBSABSP/PZBSABSP displayed below also follows the convention of LAPACK/

ScaLAPACK. A workspace query call is recommended before the call for actual computation. As
a remark, even if the Lanczos algorithm is used, all matrices are treated as dense matrices in the
current release.
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SUBROUTINE PDBSABSP( SOLVER, N, NPTS, SIGMA, OMEGA, EPS, A, IA,

$ JA, DESCA, B, IB, JB, DESCB, LAMBDA, X, IX,

$ JX, DESCX, D, ID, JD, DESCD, ALPHA, BETA,

$ RESUME, ITMAX, WORK, LWORK, IWORK, LIWORK,

$ INFO )

*

INTEGER SOLVER, N, NPTS, IA, JA, IB, JB, IX, JX, ID,

$ JD, RESUME, ITMAX, LWORK, LIWORK, INFO

DOUBLE PRECISION SIGMA

* ..

* .. Array Arguments ..

DOUBLE PRECISION OMEGA( * ), EPS( * ), LAMBDA( * ), A( * ),

$ B( * ), X( * ), D( * ), ALPHA( * ), BETA( * ),

$ WORK( * )

INTEGER DESCA( * ), DESCB( * ), DESCX( * ), DESCD( * ),

$ IWORK( * )

SUBROUTINE PZBSABSP( SOLVER, N, NPTS, SIGMA, OMEGA, EPS, A, IA,

$ JA, DESCA, B, IB, JB, DESCB, LAMBDA, X, IX,

$ JX, DESCX, D, ID, JD, DESCD, ALPHA, BETA,

$ RESUME, ITMAX, WORK, LWORK, RWORK, LRWORK,

$ IWORK, LIWORK, INFO )

*

* .. Scalar Arguments ..

INTEGER SOLVER, N, NPTS, IA, JA, IB, JB, IX, JX, ID,

$ JD, RESUME, ITMAX, LWORK, LRWORK, LIWORK, INFO

DOUBLE PRECISION SIGMA

* ..

* .. Array Arguments ..

DOUBLE PRECISION OMEGA( * ), EPS( * ), LAMBDA( * ), ALPHA( * ),

$ BETA( * ), RWORK( * )

COMPLEX*16 A( * ), B( * ), X( * ), D( * ), WORK( * )

INTEGER DESCA( * ), DESCB( * ), DESCX( * ), DESCD( * ),

$ IWORK( * )

A detailed list of the arguments for PDBSABSP.

• SOLVER: (global input) INTEGER.
See Table 4 in Section 3.4 for a full list of supported solvers.

• N: (global input) INTEGER.
The order of A (and B).

• NPTS: (global input) INTEGER.
Number of sampling points for ω.
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• SIGMA: (global input) DOUBLE PRECISION.
The broadening factor in the approximation of the δ-function.

• OMEGA: (global input) DOUBLE PRECISION array of dimension NPTS.
The sampling points for ω.

• EPS: (global output) DOUBLE PRECISION array of dimension NPTS.
The broadened absorption spectrum εσ(ω) evaluated at the sampling points of ω.

• A: (local input) DOUBLE PRECISION array of dimension (DESCA(9),*).
IA,JA: (global input) INTEGER.
DESCA: (global and local input) INTEGER array descriptor of dimension 9.
A, IA, JA, and DESCA define the distributed matrix A.
On entry, the lower triangular part of A contains that of the real symmetric matrix A, and
its strictly upper triangular part is not referenced.
If Tamm–Dancoff approximation (TDA) and full diagonalization are both specified, A is de-
stroyed on exit.

• B: (local input) DOUBLE PRECISION array of dimension (DESCB(9),*).
IB,JB: (global input) INTEGER.
DESCB: (global and local input) INTEGER array descriptor of dimension 9.
B, IB, JB, and DESCB define the distributed matrix B.
On entry, the lower triangular part of B contains that of the real symmetric matrix B, and
its strictly upper triangular part is not referenced.
If Tamm–Dancoff approximation (TDA) is used, B is not referenced. However, DESCB still
needs to be consistent with DESCA.

• LAMBDA: (global output) DOUBLE PRECISION array.
In case of full diagonalization, LAMBDA, of dimension N, contains the positive eigenvalues
of H defined by A and B as in (1). In case of Lanczos algorithm, LAMBDA, of dimension
min(N, ITMAX), contains the Ritz values. The eigenvalues or Ritz values are sorted in ascend-
ing order.

• X: (local output) DOUBLE PRECISION array of dimension (DESCX(9),*).
IX,JX: (global input) INTEGER.
DESCX: (global and local input) INTEGER array descriptor of dimension 9.
X, IX, JX, and DESCX define the distributed matrix X. In current release, only IX = JX = 1 is
supported.
On exit, X contains the normalized eigenvectors associated with the positive eigenvalues of H
(for full diagonalization) or Lanczos vectors (for Lanczos algorithm). In the case of Tamm–
Dancoff approximation (TDA), the X2 block is not referenced.

• D: (local input) DOUBLE PRECISION array of dimension (DESCD(9),*).
ID,JD: (global input) INTEGER.
DESCD: (global and local input) INTEGER array descriptor of dimension 9.
D, ID, JD, and DESCD define the distributed matrix D. D has only one column of length n, and
stores the optical transition vector d.
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• ALPHA: (global output) DOUBLE PRECISION array of dimension ITMAX.
On exit, ALPHA contains the diagonal entries of the tridiagonal matrix produced by the Lanczos
procedure. ALPHA is not referenced in case of full diagonalization.

• BETA: (global output) DOUBLE PRECISION array of dimension ITMAX.
On exit, BETA contains the subdiagonal entries of the tridiagonal matrix produced by the
Lanczos procedure. BETA is not referenced in case of full diagonalization.

• RESUME: (global input) INTEGER.
This argument is not supported in the current release.

• ITMAX: (global input) INTEGER.
The maximum number of Lanczos iterations. ITMAX is not referenced in case of full diagonal-
ization.

• WORK: (local workspace) DOUBLE PRECISION array of dimension LWORK.
LWORK: (local input) INTEGER.
In case LWORK = −1, a workspace query will be performed and on exit, WORK(1) is set to the
required length of the double precision workspace. No computation is performed in this case.

• IWORK: (local workspace) INTEGER array of dimension LIWORK.
LIWORK: (local input) INTEGER.
In case LIWORK = −1, a workspace query will be performed and on exit, IWORK(1) is set to
the required length of the integer workspace. No computation is performed in this case.

• INFO: (global output) INTEGER.
If INFO = 0, PDBSABSP returns successfully.
If INFO < 0, let i = −INFO, then the i-th argument had an illegal value.
If INFO > 0, the eigensolver PDBSEIG failed to converge (for full diagonalization) or the Lanczos
process breaks down after INFO steps and returns successfully (for Lanczos algorithm).

A detailed list of the arguments for PZBSABSP.

• SOLVER: (global input) INTEGER.
See Table 5 in Section 3.4 for a full list of supported solvers.

• N: (global input) INTEGER.
The order of A (and B).

• NPTS: (global input) INTEGER.
Number of sampling points for ω.

• SIGMA: (global input) DOUBLE PRECISION.
The broadening factor in the approximation of the δ-function.

• OMEGA: (global input) DOUBLE PRECISION array of dimension NPTS.
The sampling points for ω.

• EPS: (global output) DOUBLE PRECISION array of dimension NPTS.
The broadened absorption spectrum εσ(ω) evaluated at the sampling points of ω.

11



• A: (local input) COMPLEX*16 array of dimension (DESCA(9),*).
IA,JA: (global input) INTEGER.
DESCA: (global and local input) INTEGER array descriptor of dimension 9.
A, IA, JA, and DESCA define the distributed matrix A.
On entry, the lower triangular part of A contains that of the Hermitian matrix A, and its
strictly upper triangular part is not referenced.
If Tamm–Dancoff approximation (TDA) and full diagonalization are both specified, A is de-
stroyed on exit.

• B: (local input) COMPLEX*16 array of dimension (DESCB(9),*).
IB,JB: (global input) INTEGER.
DESCB: (global and local input) INTEGER array descriptor of dimension 9.
B, IB, JB, and DESCB define the distributed matrix B.
On entry, the lower triangular part of B contains that of the complex symmetric matrix B,
and its strictly upper triangular part is not referenced.
If Tamm–Dancoff approximation (TDA) is used, B is not referenced. However, DESCB still
needs to be consistent with DESCA.

• LAMBDA: (global output) DOUBLE PRECISION array.
In case of full diagonalization, LAMBDA, of dimension N, contains the positive eigenvalues
of H defined by A and B as in (1). In case of Lanczos algorithm, LAMBDA, of dimension
min(N, ITMAX), contains the Ritz values. The eigenvalues or Ritz values are sorted in ascend-
ing order.

• X: (local output) COMPLEX*16 array of dimension (DESCX(9),*).
IX,JX: (global input) INTEGER.
DESCX: (global and local input) INTEGER array descriptor of dimension 9.
X, IX, JX, and DESCX define the distributed matrix X. In current release, only IX = JX = 1 is
supported.
On exit, X contains the normalized eigenvectors associated with the positive eigenvalues of H
(for full diagonalization) or Lanczos vectors (for Lanczos algorithm). In the case of Tamm–
Dancoff approximation (TDA), the X2 block is not referenced.

• D: (local input) COMPLEX*16 array of dimension (DESCD(9),*).
ID,JD: (global input) INTEGER.
DESCD: (global and local input) INTEGER array descriptor of dimension 9.
D, ID, JD, and DESCD define the distributed matrix D. D has only one column of length n, and
stores the optical transition vector d.

• ALPHA: (global output) DOUBLE PRECISION array of dimension ITMAX.
On exit, ALPHA contains the diagonal entries of the tridiagonal matrix produced by the Lanczos
procedure. ALPHA is not referenced in case of full diagonalization.

• BETA: (global output) DOUBLE PRECISION array of dimension ITMAX.
On exit, BETA contains the subdiagonal entries of the tridiagonal matrix produced by the
Lanczos procedure. BETA is not referenced in case of full diagonalization.

• RESUME: (global input) INTEGER.
This argument is not supported in the current release.
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• ITMAX: (global input) INTEGER.
The maximum number of Lanczos iterations. ITMAX is not referenced in case of full diagonal-
ization.

• WORK: (local workspace) COMPLEX*16 array of dimension LWORK.
LWORK: (local input) INTEGER.
In case LWORK = −1, a workspace query will be performed and on exit, WORK(1) is set to the
required length of the double precision complex workspace. No computation is performed in
this case.

• RWORK: (local workspace) DOUBLE PRECISION array of dimension LRWORK.
LRWORK: (local input) INTEGER.
In case LRWORK = −1, a workspace query will be performed and on exit, RWORK(1) is set to
the required length of the double precision real workspace. No computation is performed in
this case.

• IWORK: (local workspace) INTEGER array of dimension LIWORK.
LIWORK: (local input) INTEGER.
In case LIWORK = −1, a workspace query will be performed and on exit, IWORK(1) is set to
the required length of the integer workspace. No computation is performed in this case.

• INFO: (global output) INTEGER.
If INFO = 0, PZBSABSP returns successfully.
If INFO < 0, let i = −INFO, then the i-th argument had an illegal value.
If INFO > 0, the eigensolver PZBSEIG failed to converge (for full diagonalization) or the Lanczos
process breaks down after INFO steps and returns successfully (for Lanczos algorithm).

3.4 Lists of supported solvers

In the computational subroutines, the first argument, SOLVER, is an integer that specifies the choice
of algorithm or algorithmic variant for the computation. In general, there are four classes of options,
and SOLVER is the combination of up to four options, one from each class.∗ The options are defined
in the file solver.f, which needs to be included whenever calling the computational subroutines.
A list of options is shown in Table 1. For example, when calling PZBSABSP,

SOLVER = BSE FULLBSE + BSE LANCZOS + BSE LORENTIAN + BSE QUADAVGGAUSS

means using the Lanczos algorithm with generalized averaged Gauss quadrature to estimate the ab-
sorption spectrum broadened by the Lorentzian for complex full BSE. Some options can be omitted,
especially when they do not make sense. For instance, neither BSE GAUSSIAN nor BSE LORENTZIAN

should be specified when calling PDBSEIG. Lists of all supported solvers are provided in Tables 2–5.

∗Future releases may allow multiple options from Class 4.
†There are known bugs with this option due to bugs in PZHEEV.
‡There are known bugs with this option due to bugs in PZHEEV.
§There are known bugs with this option due to bugs in PZHEEV.
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Table 1: List of options for the argument SOLVER.
Name Class Meaning
BSE FULLBSE 1 Full BSE solver
BSE TDA 1 Tamm–Dancoff approximation (i.e., set B = 0)
BSE DIRECT 2 Diagonalize the BSE Hamiltonian
BSE LANCZOS 2 Lanczos algorithm (for estimating the absorption spectrum)
BSE GAUSSIAN 3 Use the Gaussian function (4) to approximate the δ-function
BSE LORENTZIAN 3 Use the Lorentzian function (5) to approximate the δ-function
BSE PRODUCT 4 Solve the real BSE through the product form (see [5])
BSE SVD 4 Solve the real BSE using SVD (see [5])
BSE LAPACK HEEV 4 Use (P)DSYEV/(P)ZHEEV to diagonalize the matrix (see [1, 2])
BSE LAPACK HEEVD 4 Use (P)DSYEVD/(P)ZHEEVD to diagonalize the matrix (see [1, 2])
BSE LAPACK HEEVR 4 Use (P)DSYEVR/(P)ZHEEVR to diagonalize the matrix (see [1, 2])
BSE LAPACK HEEVX 4 Use (P)DSYEVX/(P)ZHEEVX to diagonalize the matrix (see [1, 2])
BSE QUADAVGGAUSS 4 Use generalized averaged Gauss quadrature to estimate (6) (see [7])

Table 2: List of supported solvers for PDBSEIG.

Full BSE
BSE FULLBSE+BSE DIRECT

BSE FULLBSE+BSE DIRECT+BSE PRODUCT

BSE FULLBSE+BSE DIRECT+BSE SVD

TDA

BSE TDA+BSE DIRECT

BSE TDA+BSE DIRECT+BSE LAPACK HEEV

BSE TDA+BSE DIRECT+BSE LAPACK HEEVD

BSE TDA+BSE DIRECT+BSE LAPACK HEEVR

BSE TDA+BSE DIRECT+BSE LAPACK HEEVX

Table 3: List of supported solvers for PZBSEIG.
Full BSE BSE FULLBSE+BSE DIRECT

TDA

BSE TDA+BSE DIRECT

BSE TDA+BSE DIRECT+BSE LAPACK HEEV†

BSE TDA+BSE DIRECT+BSE LAPACK HEEVD

BSE TDA+BSE DIRECT+BSE LAPACK HEEVR

BSE TDA+BSE DIRECT+BSE LAPACK HEEVX

3.5 Example programs

We provide four simple examples in the directory EXAMPLES/, two for real matrices and two for
complex matrices.

The program absorption real.f reads two 128 × 128 A and B, the optical transition vector
d, and the broadening factor σ from the input file input real.txt, and estimates the (broadened)
absorption spectrum (6) on 1024 sampling points of ω by the Lanczos algorithm. The format
of the input file is described in Table 6. The program eigenvalue real.f reads A and B from
input real.txt (the rest of the input file is discarded), and computes the spectral decomposi-
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Table 4: List of supported solvers for PDBSABSP.

Full BSE/diagonalization

BSE FULLBSE+BSE DIRECT+BSE GAUSSIAN

BSE FULLBSE+BSE DIRECT+BSE GAUSSIAN+BSE PRODUCT

BSE FULLBSE+BSE DIRECT+BSE GAUSSIAN+BSE SVD

BSE FULLBSE+BSE DIRECT+BSE LORENTZIAN

BSE FULLBSE+BSE DIRECT+BSE LORENTZIAN+BSE PRODUCT

BSE FULLBSE+BSE DIRECT+BSE LORENTZIAN+BSE SVD

Full BSE/Lanczos

BSE FULLBSE+BSE LANCZOS+BSE GAUSSIAN

BSE FULLBSE+BSE LANCZOS+BSE GAUSSIAN+BSE QUADAVGGAUSS

BSE FULLBSE+BSE LANCZOS+BSE LORENTZIAN

BSE FULLBSE+BSE LANCZOS+BSE LORENTZIAN+BSE QUADAVGGAUSS

TDA/diagonalization

BSE TDA+BSE DIRECT+BSE GAUSSIAN

BSE TDA+BSE DIRECT+BSE LORENTZIAN

BSE TDA+BSE DIRECT+BSE GAUSSIAN+BSE LAPACK HEEV

BSE TDA+BSE DIRECT+BSE LORENTZIAN+BSE LAPACK HEEV

BSE TDA+BSE DIRECT+BSE GAUSSIAN+BSE LAPACK HEEVD

BSE TDA+BSE DIRECT+BSE LORENTZIAN+BSE LAPACK HEEVD

BSE TDA+BSE DIRECT+BSE GAUSSIAN+BSE LAPACK HEEVR

BSE TDA+BSE DIRECT+BSE LORENTZIAN+BSE LAPACK HEEVR

BSE TDA+BSE DIRECT+BSE GAUSSIAN+BSE LAPACK HEEVX

BSE TDA+BSE DIRECT+BSE LORENTZIAN+BSE LAPACK HEEVX

TDA/Lanczos

BSE TDA+BSE LANCZOS+BSE GAUSSIAN

BSE TDA+BSE LANCZOS+BSE GAUSSIAN+BSE QUADAVGGAUSS

BSE TDA+BSE LANCZOS+BSE LORENTZIAN

BSE TDA+BSE LANCZOS+BSE LORENTZIAN+BSE QUADAVGGAUSS

tion (2).
The programs absorption complex.f and eigenvalue complex.f are similar to their real

counterparts absorption real.f and eigenvalue real.f, respectively. The corresponding input
file input complex.txt contains complex matrices with n = 32.

Note that the sampling points of ω are not read from the input file. If you wish to handle your
own input data format, you will have to modify the example programs.

4 Terms of Usage

BSEPACK is released under a modified BSD license; see License.txt for details. In addition, any
use of the library should be acknowledged by citing the corresponding publication as follows:

• Cite [5, 6] if you use the subroutines PDBSEIG/PZBSEIG;

• Cite [3, 6, 7] if you use the subroutines PDBSABSP/PZBSABSP.
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Table 5: List of supported solvers for PZBSABSP.

Full BSE/diagonalization
BSE FULLBSE+BSE DIRECT+BSE GAUSSIAN

BSE FULLBSE+BSE DIRECT+BSE LORENTZIAN

Full BSE/Lanczos

BSE FULLBSE+BSE LANCZOS+BSE GAUSSIAN

BSE FULLBSE+BSE LANCZOS+BSE GAUSSIAN+BSE QUADAVGGAUSS

BSE FULLBSE+BSE LANCZOS+BSE LORENTZIAN

BSE FULLBSE+BSE LANCZOS+BSE LORENTZIAN+BSE QUADAVGGAUSS

TDA/diagonalization

BSE TDA+BSE DIRECT+BSE GAUSSIAN

BSE TDA+BSE DIRECT+BSE LORENTZIAN

BSE TDA+BSE DIRECT+BSE GAUSSIAN+BSE LAPACK HEEV‡

BSE TDA+BSE DIRECT+BSE LORENTZIAN+BSE LAPACK HEEV§

BSE TDA+BSE DIRECT+BSE GAUSSIAN+BSE LAPACK HEEVD

BSE TDA+BSE DIRECT+BSE LORENTZIAN+BSE LAPACK HEEVD

BSE TDA+BSE DIRECT+BSE GAUSSIAN+BSE LAPACK HEEVR

BSE TDA+BSE DIRECT+BSE LORENTZIAN+BSE LAPACK HEEVR

BSE TDA+BSE DIRECT+BSE GAUSSIAN+BSE LAPACK HEEVX

BSE TDA+BSE DIRECT+BSE LORENTZIAN+BSE LAPACK HEEVX

TDA/Lanczos

BSE TDA+BSE LANCZOS+BSE GAUSSIAN

BSE TDA+BSE LANCZOS+BSE GAUSSIAN+BSE QUADAVGGAUSS

BSE TDA+BSE LANCZOS+BSE LORENTZIAN

BSE TDA+BSE LANCZOS+BSE LORENTZIAN+BSE QUADAVGGAUSS

Table 6: The format of input real.txt and input complex.txt. For complex A, B, and d, each
entry is represented by the real part followed by the imaginary part (in the same line).

line number(s) content
1 two numbers n and n (the dimension of A)
2–(n2 + 1) the entries of A, one each line
n2 + 2 two numbers n and n (the dimension of B)
(n2 + 3)–(2n2 + 2) the entries of B, one each line
2n2 + 3 two numbers n and 1 (the dimension of d)
(2n2 + 4)–(2n2 + n+ 3) the entries of d, one each line
2n2 + n+ 4 two numbers 1 and 1 (the dimension of σ)
2n2 + n+ 5 the value σ (always real even for complex data type)
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