
UC Berkeley
UC Berkeley Previously Published Works

Title
Characterization of defense responses against bacterial pathogens in duckweeds 
lacking EDS1

Permalink
https://escholarship.org/uc/item/3rk6c4pw

Journal
New Phytologist, 236(5)

ISSN
0028-646X

Authors
Baggs, Erin L
Tiersma, Meije B
Abramson, Brad W
et al.

Publication Date
2022-12-01

DOI
10.1111/nph.18453

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3rk6c4pw
https://escholarship.org/uc/item/3rk6c4pw#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Characterization of defense responses against bacterial
pathogens in duckweeds lacking EDS1

Erin L. Baggs1 , Meije B. Tiersma1 , Brad W. Abramson2 , Todd P. Michael2 and Ksenia V. Krasileva1

1Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA; 2Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological

Studies, La Jolla, CA 92037, USA

Author for correspondence:
Ksenia V. Krasileva

Email: kseniak@berkeley.edu

Received: 20 April 2022

Accepted: 19 August 2022

New Phytologist (2022) 236: 1838–1855
doi: 10.1111/nph.18453

Key words: antimicrobial proteins,
duckweed, EDS1, plant immunity,
Pseudomonas syringae, transcriptional
response.

Summary

� ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) mediates the induction of defense

responses against pathogens in most angiosperms. However, it has recently been shown that

a few species have lost EDS1. It is unknown how defense against disease unfolds and evolves

in the absence of EDS1. We utilize duckweeds; a collection of aquatic species that lack EDS1,

to investigate this question.
� We established duckweed-Pseudomonas pathosystems and used growth curves and micro-

scopy to characterize pathogen-induced responses. Through comparative genomics and tran-

scriptomics, we show that the copy number of infection-associated genes and the infection-

induced transcriptional responses of duckweeds differ from other model species.
� Pathogen defense in duckweeds has evolved along different trajectories than in other

plants, including genomic and transcriptional reprogramming. Specifically, the miAMP1

domain-containing proteins, which are absent in Arabidopsis, showed pathogen responsive

upregulation in duckweeds. Despite such divergence between Arabidopsis and duckweed

species, we found conservation of upregulation of certain genes and the role of hormones in

response to disease.
� Our work highlights the importance of expanding the pool of model species to study

defense responses that have evolved in the plant kingdom independent of EDS1.

Introduction

Receptors and signaling components of the plant immune signal
network likely evolved before the divergence of flowering plants
181 million years ago (Ma; Kumar et al., 2017). The two primary
layers of plant innate immunity, microbe-associated molecular
pattern (MAMP)-triggered immunity (MTI) and effector-
triggered Immunity (ETI; Alhoraibi et al., 2019), form an intri-
cate network of cross-amplifying pathways (Ngou et al., 2021;
Tian et al., 2021; Yuan et al., 2021a). The shared evolutionary
history of MTI and ETI suggests that they intricately co-evolved
and are foundational for immunity in flowering plants.
ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) is a cen-
tral hub in MTI and ETI signal transduction and amplification.
Mutations abolishing activity of EDS1 compromise ETI and
MTI (Wagner et al., 2013; Cui et al., 2017; Pruitt et al., 2021).
Surprisingly, genomic studies have revealed several angiosperms
that thrive in their natural environments without EDS1, includ-
ing the Lemnaceae (Baggs et al., 2020). It is unknown how the
response to bacterial pathogens would proceed or evolve in the
absence of a functional EDS1.

Lemnaceae diverged from other monocots at 128 Ma (Kumar
et al., 2017). The common ancestor of the Lemnaceae was pre-
sent in a freshwater aquatic environment and had a reduced body

plan of a frond (a fused stem and leaf) and root (Acosta
et al., 2021). Genera within the Lemnaceae include Spirodela,
Landoltia, Lemna, Wolffia and Wolffiella, all of which primarily
reproduce through asexual budding (Bog et al., 2019). The small
genome and body plan is conducive to the Lemnaceae’s rapid
lifecycle with a doubling time of as little as 34 h (Michael
et al., 2020). Lemnaceae are very easy to grow in the laboratory
which has stimulated research into their use as biofuels (Su
et al., 2014; Van Hoeck et al., 2015; Xu et al., 2018) and enabled
the growth of genomic resources (Wang et al., 2014; Michael
et al., 2017, 2020; Hoang et al., 2020; Abramson et al., 2021).
Spirodela polyrhiza has a small genome of 158Mb and has lost
members of the expansin and cellulose biosynthesis families
(Wang et al., 2014; Michael et al., 2017). Wolffia australiana has
lost light signaling pathways and root development pathways,
which is not surprising given the absence of roots in Wolffia
(Michael et al., 2020). In addition to developmental pathways
lost in other Lemnaceae, S. polyrhiza was previously shown to
have lost EDS1 (Baggs et al., 2020), however the extent of
immune pathway loss in other Lemnaceae remained unclear.

Given the absence of the EDS1 pathway in S. polyrhiza (Baggs
et al., 2020), we hypothesized that duckweeds could be a model
system for understanding EDS1-independent innate immunity.
Lemnaceae are globally distributed and only absent from the

1838 New Phytologist (2022) 236: 1838–1855 � 2022 The Authors
New Phytologist � 2022 New Phytologist Foundation.www.newphytologist.com

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

Research

https://orcid.org/0000-0003-3076-9489
https://orcid.org/0000-0003-3076-9489
https://orcid.org/0000-0003-0530-9640
https://orcid.org/0000-0003-0530-9640
https://orcid.org/0000-0003-0888-3648
https://orcid.org/0000-0003-0888-3648
https://orcid.org/0000-0001-6272-2875
https://orcid.org/0000-0001-6272-2875
https://orcid.org/0000-0002-1679-0700
https://orcid.org/0000-0002-1679-0700
http://creativecommons.org/licenses/by/4.0/


Arctic and Antarctica (Landolt, 1992; Crawford et al., 2006); sev-
eral Lemnaceae species are invasive species (Abramson
et al., 2021; CABI, 2021). The wide distribution of duckweeds
means their range overlaps with several model plant pathogens:
Pseudomonas syringae pv tomato DC3000, P. syringae pv syringae,
Xanthomonas perforans, Xanthomonas euvesicatoria (Cai et al.,
2011; Potnis et al., 2015; Guti�errez-Barranquero et al., 2019),
and many others for which genomic and genetic resources are
available. These pathogens often have devastating effects on crop
plants yield and value (Martins et al., 2018).

Microbe-associated molecular pattern-triggered immunity
immune signaling is triggered by the recognition of conserved
molecular patterns through pattern recognition receptors (PRRs)
and their respective co-receptors. There are two main types of
PRRs: receptor-like kinases (RLKs) and receptor-like proteins
(RLPs), that lack an intracellular kinase domain (Lolle
et al., 2020; Offor et al., 2020; Yuan et al., 2021b). Substantial
differences exist between RLP and RLK signaling pathways:
immune signaling through the RLP and Suppressor of BIR1
(SOBIR1) co-receptor pathway genetically requires EDS1, Phy-
toalexin Deficient 4 (PAD4) and Resistance to Powdery Mildew 8
Nucleotide-binding Leucine-rich repeat Receptors (RNLs) and
results in higher levels of ethylene and phytoalexins production,
as well as Pathogenesis Related 1 gene expression (Pruitt
et al., 2021; Tian et al., 2021). Pathogenesis Related (PR) genes are
characterized by their rapid upregulation after pathogen infec-
tion, they include several antimicrobial genes with different
modes of action (glucanase, thaumatin, chitinase, thionin and
defensin; Ali et al., 2018). There are many antimicrobial peptides
that are not classed as PR genes, such as proteins with the
MiAMP1 domain (Marcus et al., 1997; McManus et al., 1999;
Stephens et al., 2005). The MiAMP1 domain was identified as a
key structural motif in the MiAMP1 protein named after its iso-
lation from Macadamia integrifolia and its antimicrobial activity
(Marcus et al., 1997; Stephens et al., 2005). Furthermore, trans-
genic canola expressing MiAMP1 showed enhanced resistance to
the pathogen Leptosphaeria maculans (Kazan et al., 2002). The
diversity and modes of action of these antimicrobials remains
poorly understood.

Receptor-like protein and RLK activation primes the cell to
initiate a stronger immune response upon Nucleotide-binding
Leucine-rich repeat Receptors (NLRs) perception of intracellular
changes caused by pathogen-derived effectors (Tian et al., 2021).
Conserved domain architecture and signaling specificities of NB-
ARC domain-containing proteins allow their classification into
RNLs, coiled-coil NLRs (CNLs), Toll/interleukin-1 receptor
NLRs (TNLs) and TIR-NBARC-Tetratricopeptide repeats
(TNP; Nandety et al., 2013; Shao et al., 2016, 2019; Baggs
et al., 2017; Johanndrees et al., 2021). Disease resistance medi-
ated by TNLs and some CNLs is genetically dependent on RNLs
and the lipase-like proteins EDS1 and PAD4 or SAG101. The
recognition of pathogen presence by an NLR typically leads to
qualitative resistance where the plant shows a discrete resistant
phenotype.

In the absence of NLR triggered ETI, plants are not necessarily
susceptible to a pathogen. Instead, quantitative resistance may be

observed where extent of resistance is more variable and, in some
cases, underpinned by hundreds of loci (Corwin & Klieben-
stein, 2017). Mechanisms implicated in quantitative resistance
include defensins, pathogenesis-related proteins, secondary
metabolite enzymes and pathogen-induced phytohormones accu-
mulation (Corwin & Kliebenstein, 2017). Qualitative disease
resistance follows mendelian patterns of inheritance of resistance
of individuals to a given pathogen genotype. Typically, the mech-
anism of qualitative resistance involves MTI and ETI. In con-
trast, the level of quantitative resistance spans a continuous
distribution and is typically governed by several small effect loci.

In this study, we investigated the phenotypic, genomic, and
transcriptomic characteristics of duckweeds in response to Pseu-
domonas phytopathogens. We found a stepwise reduction of con-
served ETI pathways within the Lemnaceae and loss of MTI
immune pathway components in W. australiana. However, we
observed a shared expansion of the MiAMP1 protein family
across Lemnaceae. Additionally, we noticed species-specific
responses to pathogen treatments among duckweed species. We
investigated the transcriptional response to pathogens of duck-
weed species, a system which is adapted to the absence of EDS1-
mediated immune signaling cascades. Our study highlights duck-
weeds as a rapid growth, high throughput, minimalist MTI-ETI
model organism. As such, it could be utilized to expedite our
understanding of EDS1-independent MTI-ETI mechanisms
of immunity as well as to dissect mechanisms of quantitative
resistance.

Materials and Methods

Landoltia punctata clone 5635 DNA isolation and
sequencing

Landoltia punctata clone 5635 (Lp5635, formerly DWC138) was
received from the Rutgers Duckweed Stock Collective (RDSC;
http://www.ruduckweed.org/). Lp5635 was collected, patted dry
to remove excess water and flash frozen in liquid nitrogen. Frozen
tissue was ground with a mortar and pestle in liquid nitrogen.
High molecular weight (HMW) DNA was isolated using a modi-
fied Bomb protocol (Oberacker et al., 2019). DNA quality was
assessed on a Bioanalyzer and HMW status was confirmed on an
agarose gel. Libraries were prepared from HMW DNA using
NEBnext (NEB, Beverly, MA, USA) and 29 150 bp paired end
reads were generated on the Illumina NovaSeq (San Diego, CA,
USA). Resulting raw sequence was only trimmed for adaptors,
resulting > 609 coverage of the diploid L. punctata genome
(350Mb).

Landoltia punctata clone 5635 genome assembly, gene
prediction and annotation

Illumina paired end reads were assembled with SPADES (v.3.14.0)
with the default settings (Bankevich et al., 2012). Resulting con-
tigs were annotated using a pipeline consisting of four major
steps: repeat masking, transcript assembly, gene model predic-
tion, and functional annotation as described (Abramson
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et al., 2021). Repeats were identified using EDTA (v.1.9.8; Ou
et al., 2019) and these repeats were used for softmasking. RNA-
sequencing (RNA-Seq) reads were aligned to the genomes using
MINIMAP2 and assembled into transcript models using STRINGTIE

(v.1.3.6). The soft-masked genome and STRINGTIE models were
then processed by FUNANNOTATE (v.1.6; https://github.com/
nextgenusfs/funannotate) to produce gene models. Predicted pro-
teins were then functionally annotated using EGGNOG-MAPPER

(v.2; Huerta-Cepas et al., 2017).

Pathway ortholog identification

The genomes and proteomes used included Arabidopsis thaliana
TAIR 10 (Lamesch et al., 2012), Solanum lycopersicum ITAG2.3
(Tomato Genome Consortium, 2012), Oryza sativa v.7 (Ouyang
et al., 2007), S. polyrhiza v.2 (Wang et al., 2014), W. australiana
8730 (Michael et al., 2020), Colocasia esculenta (L.) Schott (C. es-
culenta S; Yin et al., 2021) and C. esculenta Niue (C. esculenta N)
(Atibalentja et al., 2019). Proteome completeness was evaluated
using BUSCO v.5 (Sim~ao et al., 2015; Table S1).

To date the loss of EDS1, PAD4, ADR1 and NDR1, we ran a
BLASTP search using the O. sativa and A. thaliana EDS1, PAD4,
ADR1 and NDR1 proteins as queries against two Taro pro-
teomes; C. esculenta (L.) Schott (C. esculenta S; Yin et al., 2021)
and C. esculenta N. If no ortholog was identified, we used
TBLASTN to check this was not an artifact of annotation. To con-
firm orthologs, the Taro subject sequence was the query for
BLASTP to the O. sativa and A. thaliana proteomes. Upon con-
firming the presence of EDS1, PAD4, ADR1 and NDR1 in Taro,
we utilized TimeTree.org to estimate the time during which
EDS1, PAD4, ADR1 and NDR1 were lost.

To identify orthologous genes, ORTHOFINDER (v.2.5.4; Emms &
Kelly, 2019) was ran on S. polyrhiza 7498 (Wang et al., 2014),
L. punctata 5635, W. australiana 8730 (Michael et al., 2020) and
A. thaliana TAIR 10 (Lamesch et al., 2012). Infection responsive
A. thaliana genes were identified by literature searches (Table S2).
The Arabidopsis GIDs were used to extract orthogroups containing
Lemnaceae homologs which were cross checked using PHYTOZOME.
Gene absence was verified using TBLASTN (Camacho et al., 2009).
For large gene family analysis of MiAMP1, RLK, RLP and NLRs,
PFAMSCAN (Sarris et al., 2016; Madeira et al., 2019) was used to
identify proteins with domains of interest (e-value = 10; MiAMP1,
RLK, RLP and NB-ARC domains; Table S1). Receptor-like kinase,
RLP and MiAMP1 protein sequences were aligned with MUSCLE

v.3.8.1551 (Madeira et al., 2019) and NB-ARC domains were
aligned with hmmalign from HMMER3 (Wheeler & Eddy, 2013) to
NB-ARC1-ARC2 (Bailey et al., 2018). Alignments were manually
curated using BELVU (Barson & Griffiths, 2016) and JALVIEW
(Waterhouse et al., 2009). Maximum likelihood phylogenies were
calculated utilizing RAXML (v.8.2.9; -f a, -x 12 345, -p 12345, -#
100, -m PROTCATJTT).

Plant growth conditions

Duckweed fronds were propagated by transferring three mother
fronds to a new well containing fresh media every 3–4 wk. Plants

were grown on Schenk and Hildebrandt basal salt media (S6765-
10L, 0.8% agarose, pH 6.5; Sigma-Aldrich) in six-well plates and
then placed in a growth chamber set to 23°C with a diurnal cycle
of 16 h : 8 h, light (75 lmol) : dark.

Pathogen inoculation

Bacterial colonies were grown in Luria Broth (LB) media supple-
mented with appropriate antibiotics (10 lg ml�1; kanamycin
(Km), 50 lg ml�1; rifampicin (Rif), 50 lg ml�1; spectinomycin
(Sp)) overnight at 28°C in a shaking incubator (20.5 g). Patho-
gens used in this study included: P. syringae pv tomato DC3000
GFP (Matthysse et al., 1996; Mudgett & Staskawicz, 1999),
P. syringae pv tomato DC3000 cma (Sreedharan et al., 2006),
P. syringae pv tomato DC3000 hrcC (Mudgett & Staskaw-
icz, 1999), P. fluorescens N2C3 (DSM 106121; Parte et al.,
2020), P. syringae B7281 (Feil et al., 2005), P. syringae pv glycinea
race 4 (Staskawicz et al., 1987), P. syringae pv tabaci 11528 (Insti-
tute of Medicine (US) Committee on Resource Sharing
et al., 1996), P. syringae pv maculicola (Davis et al., 1991), X.
euvesicatoria (Roden et al., 2004), X. gardneri (Schwartz et al.,
2017), X. perforans (Bophela et al., 2019), and X. translucens
(Peng et al., 2016). All strains were plated on Rif; P. syringae pv
tomato DC3000 on Rif/Km and P. syringae pv tomato DC3000
cma on Rif/Km/Sp. Liquid culture was centrifuged (3000 g,
15 min). The pellet was resuspended in 10 mM magnesium chlo-
ride (MgCl2), the optical density measured at a wavelength of
600 nm (OD600) was determined, and the infiltration solution
was diluted to a final standard high inoculum of OD600 = 0.1,
equivalent to 19 108 cells of Pst DC3000. Then 500 ll of
OD600 = 0.1 solution was pipetted on to three duckweed fronds
per well. The plate was then returned to the incubator or placed
in vacuum (0.8 PSI) for 10 min.

For growth curves, bacterial cells were resuspended at
19 108 colony-forming unit (CFU) ml�1, OD600 = 0.1 in
10 mM MgCl2. The inoculum was diluted to a standard low
inoculum with a final concentration of 19 105 CFUml�1. Each
well was inoculated with 500 ll of treatment, followed by vac-
uum infiltration (0.8 PSI) for 10 min. For each timepoint 1 cm2

of fronds was sampled in 150 ll MgCl2 and glass beads, then
homogenized by a biospec mini-beadbeater (2000 rpm, vital dis-
tance 3.175 cm). Serial dilutions were made and plated on selec-
tive media. Two days after plating, colonies were counted.

Microscopy

For microscopy of duckweed treated with bacteria, flood inocula-
tion with 500 ll solutions OD600 = 0.1 were used. Whole fronds
were staged in water on slides and covered with a glass coverslip.
The slides were imaged on a Zeiss 710 LSM confocal microscope
(Zeiss) with either the 209 (water), 639 (oil) or 1009 (oil)
objectives. To image bacteria on duckweed fronds, they were
stained with 10 ll of 19 SytoTM BC Green Fluorescent Nucleic
Acid Stain (S34855; Thermo Scientific, Waltham, MA, USA).
Duckweed fronds treated with SA were imaged on an Olympus
SZX12 stereo microscope.
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Hormone supplementation

Coronatine (C8115-1MG; Sigma-Aldrich) powder was dissolved
in 100% dimethyl sulfoxide (DMSO) to create a 200 lMml�1

stock that was then diluted to 3 and 0.3 lM in double-distilled
water (ddH2O). Salicylic acid (SA) BioXtra ≥ 99.0% (S5922-
100G; Sigma-Aldrich) was diluted in water to concentrations of
2, 0.4 and 0.2 mM. Buffer solution used was the same as the sol-
vent for the treatment. Individual wells of 6 or 12 well plates con-
taining three duckweed fronds were inoculated with 500 or
250 ll of phytohormone solution, respectively. Phytohormone
treatments were applied just before pathogen treatment.

RNA-Seq analysis

Inoculations were conducted as outlined earlier using standard
high bacterial inoculum 19 108 CFUml�1. At 30min, 1 h, 6 h
and 12 h after inoculation, fronds from the same well were trans-
ferred to tubes containing 1.5 ml RNA later and frozen in liquid
nitrogen. RNA was extracted using Qiagen RNAeasy plant kit
(74903; Qiagen) and samples with a RNA integrity number score
of > 8.0 (Agilent Bioanalyzer 2100 performed by QB3-UC Berke-
ley, Berkeley, CA, USA) were used for library preparation. Library
construction and sequencing were performed by Novogene (Sacra-
mento, CA, USA) using NEBNext Ultra II RNA library prep by
Illumina (E7770; Illumina, San Diego, CA, USA) and an Illumina
Novaseq 6000 S4. After sequencing, reads were demultiplexed
using Illumina indices and a quality control (QC) check removed
‘N’ containing, low quality, and adapter-related reads. Upon
receiving the data from Novogene, an initial QC of reads was per-
formed with FASTQC (Andrews, 2010). Reads were then mapped to
the S. polyrhiza v.2 genome using HISAT2 (Kim et al., 2015). Read
coverage tables were computed using STRINGTIE (Pertea
et al., 2015) and differential gene expression analysis was carried
out using EDGER (Dai et al., 2014). Genes were considered differ-
entially expressed if they met the criteria |log2FC| > 1, FDR < 0.05
(FC, fold change; FDR, false discovery rate). For a detailed list of
commands see: https://github.com/erin-baggs/DuckweedRNA.
Outliers were removed by visual inspection; the EDGER count
tables were plotted as PlotMDS method log2FC and BCV
(Figs S1–S4). Samples were removed if they alone were causing
most of the variance on a dimension leading to all other samples
clustered into a corner. Then, if one sample of a treatment was
grouping with samples of an opposing treatment, gene expression
was analyzed to check whether the sample’s expression pattern may
have been the result of cross contamination. If the expression was
inconsistent with at least three other replicates from the treatment
group it belonged to, the sample was removed. Replicates removed
from S. polyrhiza analysis included B3, B20, B19, P21, B34, P114.
The replicates B15, B20, P39, P70, H80, B94, P103 and H115
were removed from L. punctata analysis.

ORTHOFINDER (Emms & Kelly, 2019) was used to identify
orthogroups between A. thaliana and duckweeds. Arabidopsis
thaliana gene identifiers of marker genes were then used to
extract the gene identifiers of duckweed homologs. The S. poly-
rhiza and A. thaliana homologous relationships were then cross-

referenced by comparing to PHYTOZOME protein homologs. PHY-

TOZOME was then used to infer O. sativa homologs. The differen-
tial expression of the duckweed homologs to A. thaliana marker
genes was extracted from EDGER data and plotted in R GENEVESTI-

GATOR (https://genevestigator.com; Hruz et al., 2008) was used to
identify the differential expression of A. thaliana homologs to
duckweed upregulated genes in two public Affymetrix Arabidop-
sis ATH1 genome array (AtGenExpress: ME00331 (Kemmerling
et al., 2011) and GEO: GSE5520 (Thilmony et al., 2006)) a
third array was used to investigate ABA response (Array Express:
E-MEXP-2378 (Umezawa et al., 2010)). The differential expres-
sion O. sativa homologs to duckweed conserved pathogen upreg-
ulated genes was extracted from the EBI Expression atlas (Athar
et al., 2019).

Results

Lemnaceae condensed many immune signaling
components and expanded the MiAMP1 protein family

To understand how immune genes have diverged within the
Lemnaceae, we utilized publicly available genomes of S. polyrhiza
(Wang et al., 2014) and W. australiana (Michael et al., 2020).
Additionally, we assembled and annotated the genome of
L. punctata clone 5635 (Table S1), which allowed us to catalog
the presence and absence variation across three duckweed genera
(Fig. 1a; Table S3). Consistent with previous findings EDS1,
PAD4, and RNLs were absent across the Lemnaceae (Lapin
et al., 2019; Baggs et al., 2020; Michael et al., 2020). To estimate
the timing of the EDS1 pathway loss, we used the closest related
species to duckweeds with an available genome, giant Taro (C.
esculenta; Yin et al., 2021). Taro has the EDS1 pathway (Fig. 1a),
suggesting that the loss of these genes in Lemnaceae occurred
after their divergence from Taro 104–117Ma (Kumar
et al., 2017). The identification of several MiAMP1 genes in Taro
(Fig. 1b) suggests the expansion of MiAMP1 proteins can occur
independently of the loss of EDS1. Without greater depth of
sampling of the Araceae family and sister lineages it remains
unclear if MiAMP1 expansions are independent or a single
expansion event.

To understand the extent of the immune signaling pathways
divergence across Lemnaceae, we surveyed the presence of 24
protein families that have a known role in plant disease defense
and pre-date the monocot and dicot divergence. All 24 protein
families selected were present in S. polyrhiza (Tables S3, S4;
Figs S5–S7). Though gene families associated with immunity
were often retained in the Lemnaceae, we noticed a reduction in
copy number, like NLRs (Figs 1b, S7; Table S3). Only three NB-
ARC domain-containing proteins are present in W. australiana
(Michael et al., 2020): two of contain only an NB-ARC and the
other is a TNP whose conservation is consistent with TNPs being
EDS1 independent (Johanndrees et al., 2021).Wolffia australiana
has retained many other immune components. While we identi-
fied no orthologs of Pathogenesis related 4 (PR4), SOBIR1 and
BAK1 interacting receptor 1 (BIR1) in W. australiana, they were
present in L. punctata and S. polyrhiza (Fig. 1b; Table S3). Our
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observations indicate that immune pathways have undergone
varying degrees of gene loss across the duckweed genera.

Despite the trend towards reductionism of immune signaling
components in the Lemnaceae, we identified high copy numbers
of MiAMP1 domain-containing proteins. It has previously been
shown that antimicrobial proteins in general are expanded in
S. polyrhiza 7498 (An et al., 2019). Phylogenies of Lemnaceae
MiAMP1 proteins show lineage specific expansions and rapid
birth and death (Fig. S8) suggesting that selection pressures may
be favoring their diversification.

Duckweed species show variable symptoms upon
Pseudomonas and Xanthomonas challenge

Since Lemnaceae species lack the EDS1 pathway, it was unclear
how they would respond to bacterial pathogen infection. We
challenged S. polyrhiza, L. punctata, and W. australiana to a panel
of common Pseudomonas and Xanthomonas plant pathogens with
a standard high bacterial inoculum (19 108 CFUml�1; Fig. 2a).
We observed variability among replicates in the susceptibility and
resistant phenotypes (Dataset S1; 2b) which is consistent with
quantitative resistance. The variability was observed when experi-
ments were started with a single (Fig. S9) or three mother fronds
(all other experiments). We identified a few virulent pathogens
that produced similar symptoms across all hosts (X. gardneri,
P. syringae pv tabaci) while others caused distinct symptoms on a
given host species. The most common disease symptoms were
chlorosis and reduced growth rate. Surprisingly, despite having

fewer NLRs and lacking SOBIR1 and BIR1, the growth of
W. australiana upon pathogen infection was often less stunted
than that of other duckweed species.

For further experiments, we focused on P. syringae pv tomato
DC3000 (Pst DC3000) and P. syringae pv syringae B728a (Pss
B728a) as there are known virulence factors, large resources of
mutants, and the severity of disease symptoms caused varied
across duckweed species.

Pseudomonas syringae colonizes the substomatal cavity in
Spirodela polyrhiza and infection is slowed in T3SS
mutants

To characterize the pathology of Pseudomonas on duckweed, we
used microscopy and bacterial genetics, taking advantage of the
type III secretion deficient mutant Pst DC3000 hrcC.

Microscopy of flood inoculated S. polyrhiza fronds with stan-
dard high bacterial inoculum at 5 d post inoculation (dpi)
showed Pst DC3000 populations were concentrated at the node
(root and frond joint) and budding pockets (where daughter
fronds emerge; Fig. S10). By 7 dpi, Pst DC3000 populations
were observed at the stomata and within the substomatal cavity
and mesophyll (Fig. 3a; Dataset S2). We also observed Pst
DC3000 populations on root tissue at 7 dpi (Fig. 3b). Pst
DC3000 hrcC infection resulted in surface populations on the
frond at 5 dpi (Fig. S11a). Individual bacteria were present in the
mesophyll (Fig. S11b) but no clear sub-stomatal populations. At
7 dpi like Pst DC3000 the Pst DC3000 hrcC populations were

Fig. 1 Copy number variation of conserved angiosperm immune signaling components. (a) Phylogenetic relationship of duckweeds to other representative
angiosperms and depiction of presence of signaling components. If components were not identified by ORTHOFINDER, reciprocal BLASTP, and TBLASTN, the
representative symbol was not displayed in the cell. (b) The size of circles within each column are proportional to the highest copy number of that gene
family in a given species, the copy number is denoted in white text. White circles with a gray outline indicate no members of that gene family were
identified.
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localized at the frond node (Fig. S11c) however, much smaller
areas were colonized. The pattern of small surface populations
and individual bacteria in the mesophyll remained the same at 5
and 7 dpi with Pst DC3000 hrcC (Fig. S11d,e). Together, our
observations suggest that the visual symptoms of Pseudomonas on
duckweed are a result of active bacterial infection. Therefore, the
duckweed-Pseudomonas pathosystem constitutes a valuable model
for understanding disease progression and EDS1-independent
immune responses.

To advance our understanding of this pathosystem, we infil-
trated S. polyrhiza plants with Pst DC3000 and Pst DC3000 hrcC
with a low bacterial inoculum (19 105 CFUml�1) and moni-
tored bacterial population growth overtime (Fig. 3c,d). The first
black lesions were macroscopically visible at 3 dpi with Pst
DC3000 and by day 5 we observed an increase in the size, num-
ber of lesions and proportion of affected fronds (Fig. 3c). Consis-
tent with the dense populations at the budding pocket and node
observed by microscopy, macroscopic black lesions observed were
initially localized at the budding pocket and node. We observed
no black lesions upon inoculation with Pst DC3000 hrcC at 3 or

5 dpi. In contrast, L. punctata infiltrated with Pst DC3000 or Pss
B728a showed no macroscopic lesions even 5 dpi (Fig. 4a,b).
Three weeks post inoculation, 5/8 replicates of L. punctata inocu-
lated with Pss B728a had turned white and produced fewer
daughter fronds than in other treatments. However, even at 4 wk
post inoculation with Pst DC3000 we observed only a slightly
darker coloration and clumping. Pst DC3000 hrcC did not cause
any symptoms on L. punctata throughout the 3 wk post inocula-
tion (Fig. S12).

Pst DC3000 and Pst DC3000 hrcC were able to proliferate
inside S. polyrhiza (Fig. 3d). Pst DC3000 multiplied to similar
levels as previously described in compatible interactions with
wild-type A. thaliana (Katagiri et al., 2002; Ishiga et al., 2011;
Vel�asquez et al., 2017). However, we observed significantly fewer
colony forming units of Pst DC3000 hrcC compared to Pst
DC3000. This suggests that the virulence of Pst DC3000 on
S. polyrhiza relies on the presence of effectors and the type III
secretion system. In contrast, consistent with the lack of disease
symptoms in L. punctata neither Pst DC3000 nor Pst DC3000
hrcC showed significantly different CFU counts at 5 dpi. Instead,

(a)

(b)

Fig. 2 Phenotypic response of duckweed species to bacterial pathogen treatments. (a). One replicate is shown per treatment (full experiment has been
independently replicated three times, see Dataset S1; Table S5). Each well displays the most prevalent visual symptom of infection 3 wk after pathogen
treatment of five frond clusters. (b) Bar graph showing the percentages of wells displaying each symptom among all replicates (Table S5). Colors of bars
correspond to color legend of disease symptoms.
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(a)

(c)

(d)

(b)

Fig. 3 Pst DC3000 infection of Spirodela polyrhiza. Confocal 9100 microscopy of Spirodela polyrhiza inoculated with Pst DC3000. False colors: pink – Pst
DC3000, green – plastids, gray – transmitted light. (a) Frond surface with stomata in the center of frame. (b) Root tissue. (c) Images of duckweed fronds
and symptoms at 3 and 5 d post inoculation (dpi) with Pst DC3000 and Pst DC3000 hrcC. The Pst DC3000 hrcCmutant lacks the type III secretion system
used for deployment of effectors to the plant. Individual fronds were photographed on a 10 ll tip to indicate size of fronds. Arrows highlight areas where
symptoms are present. (d) Box plot showing the number of colony-forming units (CFUs) of Pst DC3000 and Pst DC3000 hrcC at different time points on
Spirodela polyrhiza fronds. The top horizontal line of each box represents the upper quartile followed by the median and lower quartile. The range extends
between the smallest data point within the first quartile value subtract 1.59 the interquartile range and the largest data point within the third quartile value
add 1.59 the interquartile range. Colored circles indicate individual data points. Mean-t statistic with Holm adjustment used to assess statistical difference
between treatments.
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both bacterial numbers remained at a level similar to those of Pst
DC3000 hrcC in S. polyrhiza (Fig. 4c). Interestingly, although we
saw no visible lesions on L. punctata 5 d after Pss B728a

inoculation, the CFU counts were significantly higher than those
of Pst DC3000 after 5 d. However, the CFU counts of Pss B728a
in L. punctata and Pst DC3000 in S. polyrhiza were similar. Our

(a)

(c)

(b)

Fig. 4 Pst DC3000 infection of Landoltia punctata. (a) Images of Landoltia punctata fronds and symptoms during Pst DC3000, Pst DC3000 hrcC and Pss

B728a. (b) Individual fronds were photographed on a 10 ll tip to indicate size of fronds. (c) Box plot showing the number of colony-forming units (CFUs)
of Pst DC3000, Pst DC3000 hrcC and Pss B728a at different time points on Landoltia punctata fronds. The top horizontal line of each box represents the
upper quartile followed by the median and lower quartile. The range extends between the smallest data point within the first quartile value subtract 1.59
the interquartile range and the largest data point within the third quartile value add 1.59 the interquartile range. Colored circles indicate individual data
points. Mean-t statistic with Holm adjustment used to assess statistical difference between treatments.
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results show that Pseudomonas pathogens Pst DC3000 and Pss
B728a can proliferate in duckweed host and bacterial multiplica-
tion is affected by unknown host factors and by the type III secre-
tion system for S. polyrhiza–Pst DC3000 interaction.

Hormone treatment effects vary among Lemnaceae spp.
and pathogen treatment

In response to biotrophy, plants upregulate the phytohormones
SA (Cao et al., 1994; Clarke et al., 1998) and N-hydroxy pipeco-
lic acid (NHP) through pathways dependent and independent of
EDS1 (Chen et al., 2018). To suppress phytohormone responses,
Pst DC3000 produces the toxin coronatine (Moore et al., 1989;
Mittal & Davis, 1995), a structural mimic of jasmonic acid (JA)
which counteracts SA upregulation (Fonseca et al., 2009; Waster-
nack & Xie, 2010). Since Pst DC3000 was virulent on
S. polyrhiza, we investigated the role of phytohormones and tox-
ins in the absence of EDS1 through our duckweed pathosystem.
The Pst DC3000 cma mutant is deficient in coronatine biosyn-
thesis and causes mild symptoms on S. polyrhiza, marked by the
absence of black lesions (Figs 5a, S13, S14). Addition of coro-
natine alone (0.3 lM) was sufficient to disfigure fronds, reduce
growth, and induce the formation of turion resting bodies. The
effect on growth and turion formation was stronger at higher
concentrations of coronatine (3 lM). However, addition of coro-
natine on its own was not sufficient to recover symptoms of black
lesions and white bleaching of fronds comparable to Pst DC3000
infection. The treatment of fronds with coronatine at the time of
Pst DC3000 cma infection restored the black lesions to some

extent, but the strain still did not induce white bleaching. Our
results show that coronatines role in promoting pathogen viru-
lence is conserved in duckweeds despite the absence of the SA
promoting EDS1 pathway.

Given that a core function of the EDS1 pathway is to reinforce
SA signaling by inducing several SA responsive genes (Jirage
et al., 1999; Bonardi et al., 2011; Roberts et al., 2013; Cui et al.,
2017); we were interested in how exogenous SA treatment of
Lemnaceae would affect disease symptoms. Treatment of Lem-
naceae with high levels of SA (2 mM) that are tolerated in
Arabidopsis were phytotoxic to S. polyrhiza (Fig. S15). We there-
fore carried out experiments using 0.4 and 0.2 mM SA. At these
lower concentrations in the absence of a pathogen, we observed
dose-dependent frond disfiguration, growth reduction and an
increase in turion formation in S. polyrhiza. L. punctata only
showed growth reduction with 0.4 mM SA (Fig. S16).
S. polyrhiza co-treated with SA and Pst DC3000 showed typical
Pst DC3000-induced symptoms (Figs 5b, S17–S20). However, a
small protective effect of SA was observed when Pst DC3000
appeared to be less virulent (Fig. S20). We hypothesize that the
variation in virulence of Pst DC3000 on S. polyrhiza affects the
ability of SA to restrict pathogen growth below a critical thresh-
old. In the L. punctata–Pss B728a pathosystem, there was a clear
protective effect of SA. Priming of L. punctata with SA resulted
in loss of the chlorotic symptoms characteristic of the Pss B728a
treated fronds (Figs 5c, S21, S22). The effect of SA priming on
duckweed pathogen interactions appears to be influenced by
pathogen strain and plant genotype and complicated by strong
endogenous effects of SA on duckweed physiology.

(a)

(b) (c)

Fig. 5 The effects of hormone treatments on
Pst DC3000 and Pss B728a disease
symptoms. (a) Images of disease progression
3 wk after the treatment of three Spirodela
polyrhiza fronds with different
concentrations and combinations of
coronatine and Pst DC3000 mutants (full
experiment has been independently
replicated three times, see Figs S13, S14). (b)
Images of disease progression 3wk after the
treatment of five S. polyrhiza fronds with
different concentrations and combinations of
salicylic acid (SA) and Pst DC3000 (full
experiment has been independently
replicated four times, see Figs S17–S19). (c)
Images of disease progression 3wk after the
treatment of five Landoltia punctata fronds
with different concentrations and
combinations of SA and Pss B728a
treatment, Pss B728a was used rather than
Pst DC3000 as it gives clearer visual
symptoms in L. punctata (full experiment has
been independently replicated three times,
see Figs S21, S22).
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Spirodela polyrhiza and Landoltia punctatamount
transcriptional responses to Pst DC3000

Next, we investigated transcriptional response to Pseudomonas
infection. Despite the absence of EDS1, RNA-Seq revealed a sub-
stantial transcriptional response as early as 30 min post infection

(Figs 6a, S23; Datasets S3, S4). We first examined gene families
that are differentially expressed upon pathogen treatment
in other plant species: WRKY (Dong et al., 2003), MiAMP1
(Fig. 6b; Adomas & Asiegbu, 2006; Adomas et al., 2007), NB-
ARC (Richard et al., 2018), and JAZ domain-containing genes
(Ishiga et al., 2013; Fig. S24; Tables S6–S13). While we did not

(a)

(c)

(d)

(b)

Fig. 6 Log2-fold change (FC) of selected gene families following bacterial pathogen exposure of duckweeds. (a) Schematic of the sampling regime for
RNA-sequencing (RNA-Seq) study. (b) Each square represents a gene with a given domain, the differential expression of the gene is shown by the color of
the square. The treatment comparison is indicated by the shapes shown in (a). (c) Venn diagram of numbers of orthogroups that show differential expres-
sion (log2FC > 1, false discovery rate (FDR < 0.05) in multiple combinations of pathogen treatments and or across different species at any time point. (d)
Microarray differential expression analysis of representatives from Arabidopsis thaliana Col-0 of those orthogroups with conserved upregulation upon Pst

DC3000 in Spirodela polyrhiza and Landoltia punctata.
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observe consistent upregulation log2FC > 1 of NB-ARC and
WRKY domain-containing genes, MiAMP1 domain-containing
genes were consistently upregulated over time in both duckweed
species after pathogen treatment.

We hypothesized that there may be some orthologs of A. thali-
ana bacterial-response genes that are also upregulated in duck-
weed species upon bacterial infection. Among the 33 S. polyrhiza
and 32 L. punctata genes considered homologous to A. thaliana
bacterial-responsive genes (Boudsocq et al., 2010; Bjornson et al.,
2021; Salguero-Linares et al., 2021; Tables S2, S14; Fig. S25), we
were able to identify five S. polyrhiza and five L. punctata gene
orthogroups that were significantly upregulated upon pathogen
treatment (log2FC > 1, FDR < 0.05; Table S15).

Given the suppression of Pss B728a symptoms in L. punctata
upon SA treatment we hypothesized the reduced symptoms seen
in L. punctata compared to S. polyrhiza after Pst DC3000 treat-
ment may be due to greater upregulation of SA pathways in
L. punctata. We investigated the differential expression of duck-
weed homologs of A. thaliana SA biosynthetic and regulated
genes (Fig. S26a; Table S16). In S. polyrhiza and L. punctata we
did not observe consistent upregulation of upstream SA biosyn-
thesis genes and regulators (ICS1, NPR1, SARD1, CBP60g) or
SA catabolism (DMR6; Fig. S26b; Tables S17, S18). However, in
both duckweed species we saw consistent upregulation of PR1/
PR2 -like genes which in A. thaliana are upregulated downstream
of SA production. L. punctata also upregulates WRKY40 homo-
logs after pathogen treatment. Together this indicates that A.
thaliana and duckweed pathogen transcriptional response path-
ways converge downstream of SA production and differences in
SA signaling is unlikely to explain different disease outcomes
between duckweed species.

To investigate which genes have conserved upregulation in A.
thaliana and duckweeds, we created interspecific orthogroups with
ORTHOFINDER (Emms & Kelly, 2019). Then, we identified
orthogroups with members that were significantly differentially
expressed in both duckweeds after Pst DC3000 treatment (Fig. 6c;
Table S19; Dataset S5). For orthogroups with conserved upregula-
tion in both duckweeds, we investigated if the A. thaliana homo-
logs were similarly upregulated upon Pst DC3000 infection, using
publicly available datasets (Figs 6d, S27). Among the A. thaliana
homologs, eight genes showed consistent upregulation after Pst
DC3000 treatment, including a superoxide dismutase GERMIN-
LIKE PROTEIN 5. In contrast upon pathogen treatment,
PATHOGENESIS RELATED 9 (PR9) was upregulated in duck-
weeds but not in A. thaliana. There appears to be limited overlap
in the transcriptional response to Pst DC3000 between A. thaliana
and duckweeds. Interestingly, half of the orthogroups upregulated
in response to bacterial infection, in duckweeds and Arabidopsis
were hormone-regulated or biosynthetic genes suggesting a con-
served role of hormones. As the immune pathways of monocots
and dicots have diverged substantially, we looked at the differential
expression of orthologs of the duckweed upregulated genes in rice
across several pathogen treatments (Fig. S28; Table S20). Ten of
28 orthogroups upregulated in duckweeds were also upregulated
in rice (log2FC > 1.5 across three treatments). Among these genes,
five orthogroups included genes also upregulated in A. thaliana.

Finally, we identified genes upregulated and unique to duck-
weeds. Four orthogroups which showed conserved differential
expression in both duckweed species do not have homologs in A.
thaliana (Table S19) of these only two lacked homologs in rice.
The two unique orthogroups were cytochrome P450 domain-
containing genes. Cytochrome P450s are present in A. thaliana
and O. sativa (Nelson et al., 2004), but lack sequence conserva-
tion to those upregulated in duckweeds. MiAMP1 domain-
containing genes are not present in A. thaliana. Although
MiAMP1 proteins were upregulated across timepoints in both
duckweeds, orthogroups containing these proteins did not meet
the criteria for conserved upregulation. Since duckweed species
do not show a qualitative but a quantitative resistance, we
hypothesize that such resistance mechanisms could involve
MiAMP1 proteins and cytochrome P450s.

Discussion

We investigated the immune responses of Lemnaceae whose
immune pathways have evolved for c. 110 million years in the
absence of EDS1, a hub for signaling and crosstalk in plant
immune system. Whilst the loss of EDS1 predates the divergence
of Lemnaceae, only W. australiana has lost the MTI signaling
components SOBIR1-BIR1 (Gao et al., 2009; Liebrand et al.,
2013; Albert et al., 2015; van der Burgh et al., 2019). Previous
work illustrates RLP-SOBIR1 dependence on EDS1 and PAD4
in A. thaliana (Pruitt et al., 2021). Despite the loss of SOBIR1,
compared to other Lemnaceae, W. australiana did not have
enhanced susceptibility to the bacterial pathogens tested. Given
available resources, we began developing and characterizing the
pathosystem of S. polyrhiza and L. punctata interactions with Pst
DC3000 and Pss B728a. Transcriptional and bacterial mutant
assays revealed the importance of phytohormones in their
response to pathogens; however, differential expression of bacte-
ria responsive A. thaliana orthologs was rarely observed. Further-
more, we show that there is a high copy-number and
upregulation upon pathogen infection of MiAMP1 domain-
containing proteins in Lemnaceae.

Duckweeds exist with complex bacterial communities similar
to the terrestrial leaf microbiome (Acosta et al., 2020). Several
duckweed-associated bacteria have growth promoting effects
(O’Brien et al., 2020). To understand disease resistance of Lem-
naceae to pathogenic bacteria, we screened a range of bacterial
pathogens to identify a model pathosystem. Our data shows dif-
ferences in macroscopic symptoms across Lemnaceae species
upon treatment with the same pathogen. Variability was present
between fronds within the same treatment well, suggesting there
may be environmental and population level factors affecting the
outcome of infection. The variability in susceptibility across time
points is consistent with quantitative resistance. The invasive nat-
ure of duckweeds and numerous healthy populations in the envi-
ronment raises the questions of how environmental factors may
contribute to their quantitative disease resistance. Furthermore,
because duckweeds primarily reproduce clonally, have low muta-
tion rates (Sandler et al., 2020) and effective recombination (Ho
et al., 2019), there is limited opportunity for immune proteins to
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diversify, which is required for generating new resistance speci-
ficities. The rather unique combination of duckweeds life-history
traits of fast-growth, clonal reproduction, reduced morphological
complexity and aquatic habitat could influence mechanisms of
resistance. In a freshwater habitat, the frequency of contact with
MAMPs and microbes likely differs from soil and could affect
the balance of the energy trade-off between growth and defense
(Huot et al., 2014).

The use of bacterial mutant Pst DC3000 hrcC revealed the type-
III secretion system can promote virulence of Pst DC30000 on
S. polyrhiza, similar effects have been observed in A. thaliana
(Hauck et al., 2003; Xin et al., 2016; Huot et al., 2017). Further-
more, our results suggest that virulence of Pst DC3000 on
S. polyrhiza relies on manipulation of host phytohormone pathways
through the production of the JA mimic coronatine, similar to in
A. thaliana (Moore et al., 1989; Mittal & Davis, 1995). In contrast,
L. punctata appears to have a stronger quantitative resistance
response to Pst DC3000 even in the presence of coronatine.
Despite the lack of conservation of the EDS1 pathway in
S. polyrhiza and L. punctata, phytohormones and bacterial toxins
remain key mediators of plant–bacterial infection. The reduction of
MTI/ETI components in duckweeds opens questions of how duck-
weeds pathogens evolve; would reduction in effector repertoire be
selected due to a reduced pressure for MTI/ETI suppression or
would effectors further expand without ETI systems to activate.

Consistent with the variation in phenotypes upon bacterial
inoculations, there was a lot of variation that was not explained
by pathogen treatment between transcriptomes of duckweed bio-
logical replicates. The high variability could be a result of the
asynchronous developmental stages of fronds, the quantitative
nature of the resistance that we observed within the same popula-
tion of duckweed or a combination of factors. The use of whole
plant tissues likely diluted the signal of differential gene expres-
sion. In future studies, single cell transcriptomics might be infor-
mative for studying quantitative resistance phenotypes. Despite
the variability, our transcriptomic analysis revealed that among
the genes consistently differentially expressed after Pseudomonas
treatment were MiAMP1-domain-containing proteins. We
hypothesize MiAMP1-domain proteins maybe upregulated as a
nonspecific response to infection, that protects against some but
not all pathogens. Such consistent upregulation invites the specu-
lation that they could function against pathogens similarly to
MiAMP1 from Macadamia (McManus et al., 1999; Stephens
et al., 2005) which was shown to have anti-microbial activity
against gram-positive bacteria and fungal pathogens (Marcus
et al., 1997; Kazan et al., 2002; Stephens et al., 2005). Thus,
duckweed MiAMP1 proteins warrant further investigation
against some of the known fungal and oomycetes pathogens
of duckweed (Fisch, 1884; Gaumann, 1928; Vanky, 1981;
Rejmankova et al., 1986; Flaishman et al., 1997; Czeczuga et al.,
2005; Brand et al., 2021). Other commonly differentially ex-
pressed protein families were associated with cytochrome P450s
and phytohormones, indicating that specialized metabolites may
have an important role in duckweeds infection response.
Together, our data highlights that, despite the absence of EDS1,
there are conserved areas of immune response pathways across

plant species, such as phytohormones and secondary metabolism.
Perhaps the reduced reliance on NLR–EDS1 pathways in duck-
weeds released selective constraints allowing avoidance of the typ-
ical plant–NLR vs pathogen–effector arms races and facilitating
amplification of alternate immune strategies.

Duckweeds are an exciting system for research into plant
immunity. They provide a reduced redundancy system in terms
of both gene copy number and pathways present. In addition,
their rapid lifecycle of just 34 h (Michael et al., 2020), small size
and susceptibility to model pathogens make them the perfect sys-
tem for high-throughput experimentation. The genomic and
genetic resources are also developing at a rapid pace (Wang
et al., 2014; Michael et al., 2017, 2020; Hoang et al., 2018; An
et al., 2019; Ho et al., 2019; Xu et al., 2019; Harkess et al., 2021)
and a range of transformation protocols (Ko et al., 2011; J. Yang
et al., 2018; G-L. Yang et al., 2018; Liu et al., 2019; Acosta
et al., 2021; Chanroj et al., 2021). Many interesting questions
remain to be answered including how duckweed plants can thrive
in a wide range of environments despite being highly susceptible
to bacterial phytopathogens in the laboratory setting. One
hypothesis is that duckweeds may be using means of disease pro-
tection that are inherently absent in the laboratory due to the way
duckweeds are propagated. This may include microbiome-
mediated disease protection, small peptide defense molecules
such as MiAMP1s or chemical defense strategies. A combination
of genetics, molecular biology and metabolomic approaches will
be needed to address these hypotheses.
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