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Simple Summary: Neuroendocrine neoplasms (NENs) have a varied biology. While well-differentiated
neuroendocrine tumors (NETs) typically demonstrate indolent behavior, a subset of these tumors
exhibits rapid growth, and eventual resistance to various treatments over time is the rule. We discuss
intratumoral heterogeneity as a potential contributor to tumor progression and treatment resistance
in these tumors. Clinicians should be aware of the potential for intratumoral heterogeneity, including
variable somatostatin receptor (SSTR) expression, molecular alterations, Ki67 indices, and grade
progression over time. Histopathologic heterogeneity can exist at baseline within primary tumors,
metastases, or between a primary tumor and synchronous metastases. In addition, some NETs
demonstrate increases in Ki67 index and/or grade over the disease course. Apparent reductions in
tumor grade over time should be interpreted with caution, considering the potential impact of prior
treatment and the biopsy size and site. Future strategies may include incorporation of liquid biopsies,
serial tumor biopsies, and imaging techniques to identify the most highly proliferative regions for
biopsies (recognizing that a Ki-67 index obtained from a routine FNA or core needle biopsy may
not adequately represent the whole tumor). Long term, a better understanding of the mechanisms
underlying tumor heterogeneity and resistance to therapy will help guide a personalized approach to
patients with GEP-NETs.

Abstract: Gastroenteropancreatic neuroendocrine neoplasms (NENs) are a heterogenous group
of tumors that are incurable when metastatic, regardless of grade. The aim of this article is to
understand tumor heterogeneity and grade progression as possible contributors to drug resistance in
gastroentropancreatic neuroendocrine tumors (GEP-NETs). Heterogeneity has been observed in the
genetic, pathological, and imaging features of these tumors at baseline. Diagnostic challenges related
to tumor sampling and the potential for changes in grade over time further confound our ability to
optimize therapy for patients. A better understanding of NEN biology and tumor heterogeneity at
baseline and over time could lead to the development of new therapeutic avenues.

Keywords: gastroenteropancreatic (GEP) neuroendocrine neoplasm (NEN); grade; neuroendocrine
tumor (NET); differentiation; heterogeneity; grade progression; grade migration; neuroendocrine
carcinoma; Ki-67 index

1. Introduction

Neuroendocrine neoplasms (NENs) are a diverse group of malignancies that originate
from the neuroendocrine enterochromaffin cells distributed throughout the body. The
most common sites are the gastrointestinal tract, pancreas, and lungs. Their clinical course
varies from slowly progressing over many years to having a highly aggressive disease
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biology. The nomenclature of NENs has evolved in the past few decades to incorporate
the difference in tumor biology and behavior. In 2017 (pancreas) and 2019 (gastrointesti-
nal tract), the World Health Organization (WHO) updated the classification schemes for
gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) to address the fact that
high-grade (G3) disease includes both well and poorly differentiated tumors [1,2]. As such,
NENs are now classified as well-differentiated neuroendocrine tumors (NETs)—Grade (G)1,
G2, and G3 NET or G3 poorly differentiated neuroendocrine carcinoma (NEC), based on
their histopathologic features, differentiation, mitotic count, and Ki-67 proliferation index
(Table 1). Histopathologic classification is not always straightforward; thus, the 2022 WHO
classification acknowledges the growing importance of immunohistochemical staining for
somatostatin receptors (SSTRs) 2/5, Rb, p53, ATRX, and/or DAXX to distinguish between
G3 NETs and NEC. DLL3 and ODF1 expression are other emerging biomarkers that may
have value in distinguishing between G3 NETs and NEC [3].

Table 1. WHO 2022 classification of neuroendocrine neoplasms of gastrointestinal and pancreatic
biliary organs [4].

Terminology Differentiation Mitotic Count Ki-67 Index

Grade 1 NET Well differentiated <2/2 mm2 and/or <3%
Grade 2 NET Well differentiated 2–20/2 mm2. and/or 3–20%
Grade 3 NET Well differentiated >20/2 mm2 and/or >20%

Neuroendocrine carcinoma (NEC)
Poorly differentiated

Small-cell cytomorphology
Large-cell cytomorphology

>20/2 mm2 and/or >20%

Mixed neuroendocrine
non-neuroendocrine
neoplasm (MiNEN)

Well or poorly differentiated
component (≥30%) Variable Variable

The Ki-67 index is a marker of cellular proliferation. G1 NETs require a Ki-67 index
of <3% and a mitotic rate of <2 mitosis/2 mm2, G2 is defined by a Ki-67 index of 3–20%
or a mitotic rate of 2–20/2 mm2, and G3 NETs and NEC have a Ki-67 index of >20% or
a mitotic rate of >20 mitosis/2 mm2. Well-differentiated G3 NETs and poorly differen-
tiated NEC are distinguished based on their morphological and immunohistochemical
tumor characteristics.

The five-year survival varies significantly in terms of the Ki-67 index, even within
grades: 81% [for a Ki-67 index of 3–5%], 72% [for a Ki-67 index of 6–10%], 52% [for a Ki-67
index of 11–20%], 35% [for a Ki-67 index of 21–50%], and 22% [for a Ki-67 index of 51–100%],
respectively [5]. Thus, the Ki-67 index should be considered to be a continuum, and further
subdivision might be necessary to further refine the existing WHO classification [5]. Even
in poorly differentiated NECs, the Ki-67 index may matter; tumors with a Ki-67 index of
<55% have a better prognosis than those with a Ki-67 index of >55% [6].

Recently, data have suggested that some GEP-NENs demonstrate intrapatient hetero-
geneity at baseline and over time. Heterogeneity exists at many levels, including differences
in the Ki-67 index and even the grade within a primary tumor, between a primary tumor
and a metastasis, between synchronous metastases, and in metachronous metastases over
time [7]. In many cases, grade progression occurs, meaning a higher grade is identified in
subsequent biopsy material [8]. In others, an increase in the Ki67 index occurs without an
overt change in grade (i.e., grade migration). Heterogeneity at the molecular level and in
the context of functional imaging has been noted [9–11]. Taken together, the data suggest
that intratumoral heterogeneity can exist within a patient at a given timepoint and emerge
over time, potentially contributing to resistance and confounding our ability to optimally
risk stratify patients and individualize therapy. The precise role of intrapatient tumor
heterogeneity in mediating treatment resistance has not been elucidated but remains an
area of active study.
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2. Clinical Features and Treatment of Low-Grade Neuroendocrine Tumors

Low-grade NETs encompass well-differentiated G1 and G2 tumors. Recurrent genomic
alterations are uncommon in gastrointestinal NETs, but pancreatic NETs are characterized
by alterations in MEN1, DAXX/ATRX, and mTOR pathway genes [10,12]. Low-grade
GEP-NETs are relatively indolent with a median survival measured in years, even when
metastatic. Boyar et al. reported a five-year survival of 53.9% in well-differentiated pan-
creatic NETs (70.2% for local and 33% for distant disease at diagnosis), and Dasari et al.
reported a five-year survival of 50% for distant G1/G2 pancreatic NETs and 69% for distant
G1/G2 small intestine NETs [13,14]. The primary treatment modality for local disease is
complete surgical resection if feasible. Surgical cytoreduction is also performed in selective
patients with metastases. While data from randomized trials are lacking, the resection of
more than 70–90% of liver metastases is associated with improved overall survival (OS)
and progression-free survival (PFS) in patients with GEP-NETs [15,16].

Somatostatin analogs (SSAs), such as octreotide and lanreotide, are used for symp-
tom control from excess hormone production [17] and as an anti-proliferative therapy
in advanced tumors [18]. Data from a CLARINET study demonstrated that lanreotide
delays progression in nonfunctioning GEP-NETs with a Ki-67 index up to 10% [19]. The
cytostatic benefit of long-acting octreotide in midgut NETs was demonstrated in a PROMID
study [20].

In the face of subsequent disease progression, additional therapies can be consid-
ered for GEP-NETs, including treatment with everolimus [21,22], a mammalian target of
rapamycin (mTOR) inhibitors, and peptide receptor radionuclide therapy (PRRT) with
177Lu-DOTA0-Tyr3-octreotate (177Lu-DOTATATE) [23,24]. Liver-directed therapies, such as
liver ablation and intra-arterial embolization, are routinely used for liver-dominant disease,
particularly when it is necessary to alleviate symptoms related to pain, tumor bulk, and/or
excess hormones [25]. Chemotherapy (e.g., temozolomide plus capecitabine) has a limited
role in the treatment of gastrointestinal NETs, but is routinely used in pancreatic NETs
given a response rate of 30–40% [26,27]. Furthermore, treatment with sunitinib, a vascular
endothelial growth factor (VEGF) receptor tyrosine kinase (RTK) inhibitor, is approved for
pancreatic but not GI NETs [28].

Importantly, the optimal sequence of therapy in GEP-NETs has not been defined. Treat-
ment is individualized based on many factors, including the tumor’s location, stage, extent,
rate of growth, Ki-67 proliferation status, somatostatin receptor expression, functional
status, patient preference, and comorbidities [29,30]. Multidisciplinary decision making
facilitates the integration of inputs from surgical oncology, medical oncology, nuclear
medicine, and interventional radiology.

3. Clinical Features and Treatment for High-Grade Neuroendocrine Neoplasms
3.1. Grade 3 Neuroendocrine Tumors

G3 NETs account for 5.6–9% of all GEP-NENs, 12% of well-differentiated tumors, and
roughly 12% of all high-grade NENs, with the pancreas being the most common primary
tumor site [31–35]. About 82–92% of G3 NETs demonstrate somatostatin positivity in
functional imaging [33,36,37]. G3 NETs are associated with a better median OS than that of
poorly differentiated NEC (33–99 months [31,36] vs. <12–17 months) [14,35]. The genomic
features of G3 NETs are not well defined; however, emerging data suggest that pancreatic
tumors may be enriched for alterations in TP53, SETD2, and BRAF [10]. Variable rates of
alteration in MYC and Rb1 have been reported [10,38,39].

Treatment guidelines for G3 NETs are evolving. The NCCN and ESMO guidelines
recommend treatment that mirrors that of low-grade NETs or NEC depending on clinical
and molecular features [23,40]. The resection of the primary tumor and a regional lym-
phadenectomy are recommended for localized disease with a favorable biology. In contrast,
if the tumor has a Ki-67 index > 55% and/or is negative in DOTATATE imaging (has an
unfavorable tumor biology), platinum-based chemotherapy may be appropriate up-front,
even if the tumor is localized. For advanced disease, current guidelines [23,40] recommend
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chemotherapy (including capecitabine/temozolomide, oxaliplatin-based chemotherapy, or
platinum/etoposide), PRRT, sunitinib (pancreas only), everolimus, or liver-directed therapy
depending on the disease extent, Ki-67 index, and tumor biology. Somatostatin analogs
have not been well studied in G3 NETs for tumor control, but patients can likely benefit
from their anti-secretory properties if a tumor is functional [37,41]. The results of multiple
retrospective studies have shown that platinum-based chemotherapy has a lower objective
response rate in well-differentiated G3 NETs compared to that of NEC, particularly when
the Ki-67 index is <55% [42,43]. The use of combination immunotherapies has been shown
to have an objective response rate of around 15% in high-grade NENs, although the precise
level of activity in G3 NETs is not well-defined [44,45].

3.2. Grade 3 Neuroendocrine Carcinomas

NECs are characterized by either small-cell or large-cell morphology, a poor prognosis,
and rapidly progressive disease [3,46]. NECs most commonly arise in the lungs, where the
disease is smoking-related and a small-cell histology dominates. Extrapulmonary NECs
represent approximately 10% of all NEC cases overall, with the majority originating in the
gastrointestinal system (37.4%) and unknown sites (28.2%) [47]. The small-cell or large-cell
subtypes predominate depending on the organ site. Most patients with extrapulmonary
NECs present with metastatic disease, including more than two-thirds of those arising in
gastrointestinal sites [47]. NECs are characterized by genomic instability and enriched for
alterations in TP53 and Rb1 [39], along with mutations often seen in non-neuroendocrine
tumors of the same organ site, including KRAS, BRAF, PTEN, PI3KCA, and APC [48]. The
Ki-67 index of these tumors is usually >70%.

The median survival of NECs varies by organ site but is generally less than 12 months;
for GEP-NECs, the median OS is 7.5 months (25.1 months for small intestine vs. 5.7 months
for pancreatic primaries) [47]. Extrapolating from small-cell lung cancer, platinum/etoposide
(with a response rate of 30–50%) is generally employed as a first-line therapy [49]. Salvage
therapy is inadequate, with poor outcomes regardless of choice of chemotherapy, although
irinotecan-based therapy is emerging as a potential option for GEPNEC [50,51]. A retrospec-
tive analysis of patients who received various second-line chemotherapy regimens showed
no difference in OS regardless of the drug used [52]. Limited data suggest that combination
immunotherapy with ipilimumab and nivolumab has activity in a subgroup of patients
with G3 GEP-NENs, with some studies pooling G3 NETs/NECs [44,45,53]. Combination
immunotherapy with durvalumab and tremelimumab showed limited activity overall in
a multi-cohort DUNE study, although the primary endpoint of the patients’ nine-month
OS was achieved in the G3 GEP-NEN cohort despite a low response rate [54]. Further
investigations with CAR-T cells and bispecific antibodies are underway [55].

4. Diagnostic Challenges Related to GEP-NEN Classification
4.1. FNA vs. Core Biopsy vs. Surgical Sample

The Ki-67 index appears to be more likely to identify a grade change than the mitotic
index, recognizing that the mitotic rate requires a larger sample and the Ki-67 index is easier
to assess in smaller samples [8]. In surgically resected liver metastases, tumor heterogeneity
is more common in higher-grade tumors (i.e., G2 and higher). Measuring the highest grade
(“hot spot”) in a core biopsy sample most accurately represents the tumor grade of the
whole sample [8].

Endoscopic ultrasound (EUS)-guided techniques are evolving, with fine-needle aspi-
ration (FNA) (with a sensitivity of 80–90% and a specificity of about 95%) and larger-bore
fine-needle biopsies (FNB) increasingly being used to diagnose pancreatic NETs [56–59]. In
one study of N = 51 patients with panNETs, the sensitivity of EUS-FNA was 89.2% [60].
Grade concordance between EUS-FNA and the surgical specimens was observed in 69.2%
(9/13) of the patients. Interestingly, the concordance rate was higher in tumors <20 mm
(87.5%; 5/6) compared to that of tumors ≥20 mm (57.1%; 4/7), likely reflecting the tu-
mor heterogeneity not appreciated by FNA. Higher-grade (G2/G3) tumors were more
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likely to be large (>20 mm), have main pancreatic duct (MPD) obstructions, and appear
heterogeneous in EUS than G1 tumors [60]. In another study comparing EUS-FNA with
surgery, grade classification discordance was especially common in G2 tumors, with cy-
tology underestimating the grade at surgery in 10/14 tumors (71%) [61]. Three additional
G1/2 tumors were upgraded to G3 at surgery, while 2/7 G2 tumors were downgraded to
G1 at resection [61]. EUS-guided larger-bore biopsies (with a 19-gauge needle) represent a
potential advance, with samples adequate for histologic diagnosis in 93% of cases and grade
classification concordance with surgery in 83% of (N = 12) paired panNET samples. Only
one patient demonstrated upgrading (G1 to 2) or downgrading (G2 to G1) at surgery [58].
Taken together, the data suggest that EUS-guided biopsy techniques are evolving but are
generally effective for the diagnosis of panNETs. However, accurate grade classification
can be challenging, particularly for large or G2 tumors, or when the sample is small.

4.2. G3NENs with Ambiguous Morphology

The revised WHO classification of NENs requires morphological diagnoses to dif-
ferentiate between G3-NETs and NEC. However, classification based on morphology has
proven challenging, with significant discordance between reviewers noted in some, but
not all studies [34,35]. The Ki-67 index has the appeal of being an objective measure;
however, numerous studies suggest that the Ki-67 index is affected by both intrapatient
and interobserver variability [62]. Furthermore, there is significant overlap in the Ki-67
index observed in G3 NETs and NEC, such that the proliferation index alone is not diag-
nostic [35,43]. Tang et al. in 2016 examined 33 cases of G3 pancreatic NENs and identified
both well-differentiated NET (G3 NET) and poorly differentiated NEC subtypes [63]. The
morphologic and immunohistochemical (IHC) findings of these tumors (either from a
surgical resection or core biopsy) were reviewed by three different pathologists, and the
objective of the study was to assess the concordance of the morphologic findings. Dis-
cordance amongst the pathologists was noted in 61% of the cases; in the remaining cases,
there was a consensus as to differentiation (well-differentiated NET or poorly differentiated
NEC). Subsequent studies have reported variable discordance between pathologists when
classifying G3 NENs, although it seems to be most common when discriminating between
well-differentiated G3 NETs and large-cell NEC [35,64]. The distinction is important, rec-
ognizing that G3 NETs are associated with improved survival compared to their NEC
counterparts [35,63,64].

Given the challenges associated with the classification of high-grade NENs
(G3 NETs/NEC), the integration of additional molecular biomarkers, such as Rb, p53
ATRX, DAXX, and menin, has been recently proposed as a means of generating a more
accurate diagnosis [3]. Tang et al. suggested that the incorporation of additional clinical
information and biomarkers (such as IHC for ATRX, DAXX, p53, and Rb) could lead to a
more accurate diagnosis compared to morphology alone. Specifically, a prior history of
low-grade NET, aberrant ATRX, or DAXX staining suggests a G3 NET; aberrant expressions
of p53, a global loss of Rb or SMAD4, or coexisting adenocarcinoma are supportive of a
NEC diagnosis [63]. Moreover, an organoid growth pattern, the absence of desmoplastic
stroma, and a capillary network in direct contact to tumor cells are consistent with the
diagnosis of a G3 NET [35]. The recent 2022 WHO classification of neuroendocrine neo-
plasms also supports the used of IHC markers to distinguish G3 NETs from NEC, with G3
NETs being more likely than NEC to share genomic and IHC features with G1/2 NETs [3].
While not definitive, a loss of menin, p27, ATRX or DAXX staining, and/or retained
SSTR 2/5 expression support a G3 NET diagnosis. In contrast, a global loss of Rb, diffuse
positivity or global loss of p53, and/or the loss of SSTR 2/5 suggest NEC [3]. The data
suggest that NEC is a distinct entity and does not typically arise via progression from
well-differentiated NETs [65]. In contrast, G3 NETs regularly appear to arise in the setting
of a prior history of G1/2 NETs [3,66]. Distinguishing between the two subtypes of G3
GEP-NENs is important given clinically relevant differences in their outcome and treatment
depending on the histologic type (G3 NET v NEC) [35,63].
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5. Intrapatient Heterogeneity in GEP-NENs—Histopathologic Classification and
Proliferation Rate

Heterogeneity in GEP-NENs has been described in the literature at various levels.
These include differences in location, histopathological grade, hormone secretion, and
somatic molecular and germline genetic changes [67]. As noted above, the Ki-67 prolifera-
tion index and tumor differentiation (well differentiated vs. poorly differentiated) have
been shown to predict disease outcome and influence the choice of therapy. However,
heterogeneity in the Ki-67 index and/or grade also exist within some individual patients
at baseline, as well as over time, presenting a diagnostic challenge and suggesting a po-
tential mechanism for variable tumor biology and resistance to treatment. It is not clear
if the grade heterogeneity in individual patients is due to inherent phenotypic or genetic
heterogeneity [68] or treatment effects [69].

5.1. Heterogeneity of Grade within Primary Tumors at Baseline

Heterogeneity in the Ki-67 index and/or grades within and between synchronous
primary GEP-NETs is relatively common (Table 2). Grillo et al. examined 60 patients
with a total of 250 GEP-NET tumor samples (93% G1/2); approximately 5% of the tumors
demonstrated enough intratumoral variability in the Ki-67 index to change the grade of the
primary tumor [7]. Eight patients had multiple primary tumors, and grade discordance
between tumors was noted in 3/8 (37.5%) of the patients. The Ki-67 index correlated with
tumor size, with 1–2 cm tumors showing a higher grade (G2) compared to subcentimeter
lesions (G1) [7]. Grade discrepancy was observed in 18% of N = 28 patients with multi-focal
small bowel NETs in a pathological analysis [70]. Similarly, Keck, et al. reported grade
discordance between primary tumors in 24% of patients with synchronous (largely small
bowel) tumors [71]. The areas of highest proliferative activity (“hotspots”) are routinely
identified manually and used to assign grade in GEP-NENs, although digital image analysis
has been proposed as an emerging technology for assessing intratumor heterogeneity [72].

5.2. Heterogeneity between Primary Tumors and Synchronous Metastases

Grade discordance between primary tumors and synchronous metastases has also
been observed [7,68] (Table 2). The Ki-67 proliferative index frequently differs in primary
and synchronous metastatic sites, and the variability is significant enough to cause a change
in WHO grade in at least 23–34% of patients [7,71]. For example, Grillo et al. reported
grade discordance (primary vs. metastasis) in 23% of cases (with a higher grade identified
in synchronous metastases) [7]. Out of 11 cases with grade discordance as per the Ki-67
index, a discordant grade was also indicated by the mitotic index in six cases [7]. Keck et al.
reported grade discordance in a third of resected primary and metastatic GEP-NETs [71].
In most cases of discordance, the grade was higher in the metastatic site (24%; usually
G2 v G1); 10% demonstrated a lower grade in the metastatic site compared to the primary
tumor [71]. Importantly, a higher grade in metastatic sites relative to primary sites is
associated with worse clinical outcomes (e.g., the overall and progression-free survival
rates) [71,73,74]. The expression of chromogranin A and synaptophysin also sometimes
varies between primary and metastatic sites, highlighting another layer of heterogeneity in
GEP-NETs [73].

5.3. Heterogeneity of Ki-67 in Synchronous Metastatic Deposits

The heterogeneity of the Ki-67 proliferation index in metastatic sites also frequently
occurs, with grade discordance occurring both within a single metastasis and between syn-
chronous metastases (Table 2). Yang et al. assessed the Ki-67 index in 45 surgically resected
metastatic well-differentiated G1/G2 GEP-NET liver metastases [8]. Forty-seven percent
of the liver metastases showed intratumoral heterogeneity. When the highest Ki-67 in-
dex (“hot spot”) was used instead of the mean Ki-67 index, the grade changed from
G1 to G2 in 33.3% of the hepatic metastases (91% of the G2 tumors were found to show
grade heterogeneity) [8]. When the synchronous resected GEP-NET metastases were com-



Cancers 2023, 15, 3712 7 of 18

pared, grade discordance was noted in 40% of cases [71]. Shi et al. reported that five of
the eight cases of small bowel NETs with at least one G3 liver metastasis had evidence
of all three grades simultaneously (in patients with multiple resected liver lesions), and
the Ki-67 index and intratumoral heterogeneity increased with tumor size [74]. From a
practical standpoint, the data support measuring the Ki-67 index in metastatic sites (not just
primary tumors) and using “hotspots” to identify the regions with the highest Ki-67 index
for grading. Importantly, a change in grade relative to primary tumors appears to be more
likely in distant metastases as opposed to locoregional (nodal or mesenteric) metastases,
with the highest risk in distant sites other than liver metastases [7].

5.4. Grade Progression and Grade Migration over Time

In addition to the existence of heterogeneity in the Ki-67 index within primary and
metastatic tumors at a given time point, increases in the Ki-67 index (+/− grade) with
the evolution of tumors over time have been reported (Table 3). Botling et al. studied
46 patients with pancreatic NET tumor samples collected more than a year apart [75]. The
median Ki-67 index at diagnosis (from a mix of primary and metastatic lesions) was 7%
(1–38%); all follow-up samples were from metastatic sites. In 34 paired samples, 76%
demonstrated an increase in the Ki-67 proliferation index, with the median change in
the Ki-67 index over time being +14% (with a range from −11 to +80%). A longitudinal
grade increase (mostly G1/G2 to G3) was identified in 57.6%; a decrease was observed
in 6.8%. Of note, most G3 tumors retained a well-differentiated morphology. Grillo et al.
evaluated metachronous metastases in 12 patients with GEP-NETs. Grade concordance
between the primary tumor and metastases was noted in 17%; a total of 83% showed
enough of an increase in the Ki-67 index to change grades (nine out of ten switched from
G1 to G2, and one demonstrated a conversion to a G3 NET compared to the primary
tumor). Grade progression was more common in patients with metachronous metastases
than those with synchronous metastases [7]. In another study of N = 43 patients with
well-differentiated NETs of different primary sites (including lung) over time (with a
time interval of 4–81 months), grade discordance was demonstrated in 37% [69]. The
majority (75%) of these cases demonstrated grade progression (31% G1 to G2, 13% G2
to G3, and 31% G1 to G3); all G3 tumors retained a well-differentiated morphology. Of
note, three cases of upstaging and three cases of downstaging occurred in the setting of the
acquisition of a larger pathology sample (FNA to core, or core to surgery). Panzuto et al.
reported on N = 43 patients with G1/G2 GEP-NETs and serial biopsies over time [76]. The
metachronous biopsies revealed an increase in the Ki-67 index over time in 65% of the
patients, translating into a higher grade in 28% of the cases (mostly panNETs). A grade
decrease over time was noted in only two cases (5%), both of which arose in the small
bowel. In a recent work by Merola et al. analyzed the Ki-67 index at baseline and after
recurrence in a group of small bowl and pancreatic NEN patients; 34% of recurrences
showed an increased grade, demonstrating how the Ki-67 index can change over the course
of the disease [77].

With respect to G3 NETs specifically, studies have suggested that G3 NETs can occur
de novo or emerge over time [31,36]. When it occurs over time, it is most commonly
documented in patients with pancreatic NETs that were originally grade 1 or 2. The
magnitude of the change in the Ki-67 index is more prominent in metachronous (especially
non-hepatic) metastases and is associated with poor outcomes [7]. Prospective studies are
needed to fully assess the incidence, but retrospective data suggest grade progression may
contribute to resistance over time in patients with GEP-NETs.
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Table 2. Selected studies assessing heterogeneity in synchronous biopsies in GEP-NETs: Ki67 proliferation index and/or grade.

Reference N Site of
Origin

Time
Between

Biopsies (mo)

Type of
Heterogeneity Description Grade Change,

(n)

Ki67
index
N (%)

Grade
N (%)

Grillo [7] 60

GEP-NET #

(52% SB;
27% P)

Not defined 22/60
(37%) 3/60 (5%) Discordance within primary tumor G2→ G1 (2) (NOS)

G3→ G2 (1) (NOS)

Grillo [7] 8 Not defined 3/8 (37%) Discordance within multiple
primary tumors

Larger tumors (1–2 cm) G2,
smaller tumors G1

Grillo [7] 47 ≤4 months 24/47
(51%) 11/47 (23%)

Variable Ki67 index +/− higher grade
in synchronous metastases vs.

primary tumors

G1→ G2 (8) (NOS)
G2→ G3 (2) (both P)

Grillo [7] 60 Not defined 31/60 (52%)-distant
10/44 (23%)-locoregional

Grade discordance in metastases vs.
primary tumors

Keck [71] 103 Resected GEP-NET ˆ

(77% SB; 20% P)

Not defined-resected
primary tumors with

“concurrent” metastases

25/103 (24%) &
Higher grade in liver or lymph node

metastases vs. resected
primary tumors

G1→ G2 (24) (NOS)
G2→ G3 (1) (NOS)

10/103 (10%) & Lower grade in metastases vs. resected
primary tumors

G2→G1 (10)
(NOS)

9/38 (24%) & Discordance in synchronous primary
tumors (NOS) (NOS)

8/20 (40%) Discordance in synchronous
liver metastases (NOS)

Yang [8] 41
(45 tumors)

Resected NET mix *
(29% P; 27% SB) Same day-liver metastases 21/45 tumors

(47%)
Discordance (G1 and G2) within single

liver metastases 91% of G2 cases heterogeneous (NOS)

Shi [74]

27
(188 liver
lesions)

20
primary tumors

Resected
Liver mets (SB)

≈50%
synchronous 13/20 (65%)

Ki67 discordance in resected
liver metastases ≥1 cm;

Grade discordance between primary
and liver metastases

N = 27 with liver mets,
10 (37%) only G1,

9 (33%) G2 +/-G1 tumors,
8 (30%) G3 +/- G1/2

G1→ G2 +/-G1 (6/17)
G1→ G3 +/-G1/2 (5/17)

G2→G2 (1/3)
G2→ G3 (2/3)

Shi [73] 35

GEP NEN
NET mix
(27.7% P;
26.7% R)

71% synchronous 19/35 (54.3%)

4/35 (11%) Higher grade in metastases vs.
primary tumors

G1→ G2 (3/35)
G1→G3 (1/35)

1/35 (2%)
Lower grade in metastases

compared to primary
tumors

G2→G1 (1/35)

# pancreas, jejunum/ileum >> stomach, duodenum, colon/rectum; grade at dx-N = 37 G1, N = 19 G2, N = 4 G3; ˆ small bowel> pancreas >> duodenum, colon; * pancreas, small
bowel >> rectum, lung, bile duct, stomach + unknown primary; N = number of patients (unless otherwise specified); GEP-NET = gastroenteropancreatic neuroendocrine tumor;
SB = small bowel; P = pancreas; NET = neuroendocrine tumor; NOS= not otherwise specified; R = Rectum; & modified WHO.
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Table 3. Selected studies assessing heterogeneity in metachronous biopsies in GEP-NETs: Ki67 proliferation index and/or grade.

Reference N Site of
Origin

Definition of
Metachronous

(mo)
Type of Heterogeneity Description Grade Change,

(n)

Ki67 Index
N (%)

Grade Change
N (%)

Singh [69] 43
NET mix ˆ

(47% SB; 14% P)
(baseline grade NOS)

Not explicitly
Defined &

(13/16 cases of grade change
metachronous; range 229–2613 days

between samples)
(3/16 cases of grade change

synchronous; range 111–143 days)

12/43 (28%)

Higher grade over time (9/12 initial
biopsies of the primary site;

11/12 follow-up biopsies of the
metastatic site)

G1→G2(5)
(3 SB, 1P, 1R)
G1→G3(5) **
G2→G3(2) **

4/43 (9%)

Lower grade over time
(3/4 had biopsies of the metastatic site
followed by the primary site; 1/4 had
serial biopsies of the metastatic site)

G3→ G1 (1)
(1 SB)

G2→ G1 (3)
(1 SB, 1 P, 1R)

Grillo
[7] 12

GEP-NET #

(52% SB;
27% P)

(93% G1/2)

>4 mo 10/12 (83%) Higher grade over time in
metastases

G1→ G2 (9)
(NOS)

G2→G3 (1)
(1 P)

Botling [75] 46
Pancreas NET

(96% G1/2) Not defined *

76% with ↑ Ki67 index 34/59 samples (58%)
↑ Ki67 index +/− higher grade in

metastases vs. original biopsy
(52% with G1/2 to G3 NETs)

G1→G2 (7)
G1/G2→G3(27)

(all P)

4/59 samples (7%) Lower grade over time in metastases
vs. original biopsies

Panzuto [76] 43
G1 /G2

GEP-NET ˆˆ
(56% P; 44% SB)

≥ 3 mo &

(range of 3–148 mo for
pancreas; 5–128 mo for SB)

28/43 (65%) with ↑
Ki67 index

(71% P; 29% SB)

12/43 (28%)

↑ Ki 67 index and/or higher grade at
disease progression (10/24 (41.7%) of

P cases and 2/19 (10.5%) of the SB
cases had grade progression)

G1→G2 (8)
(6P; 2 SB)

G2→G3 (4)
(all P; 4/24, 16.7%)

2/43 (5%) Lower grade at progression G2→G1(2)
(SB only)

Merola
[77] 47 G1/G2 GEP-NET

(43% P; 57% SB) 4–176 mo 31/47 (65%) with
↑ Ki-67 index

Higher grade in 34% of cases
over time

N = number of patients (unless otherwise specified); mo= months; NET = neuroendocrine tumor; SB= small bowel; P = pancreas; R = rectal; GEP-NET = gastroenteropancreatic neuroen-
docrine tumors; NOS = not otherwise specified; ˆ small bowel > pancreas > lung> unknown > large bowel/rectum, appendix, gastric, other; # pancreas, jejunum/ileum >> stomach,
duodenum, colon/rectum; grade at diagnosis-N = 37 G1, N = 19 G2, N = 4 G3; ˆˆ small bowel, pancreas; & Initial biopsies mostly from primary tumors; follow-up biopsies mostly from
metastases; * 70% of initial biopsies and all follow-up biopsies from metastases; ** 7 cases of progression to G3: 3 SB, 1 P, and 3 bronchial NETs.
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5.5. Treatment-Related Changes in High-Grade Tumors

Grade migration in G3 neuroendocrine neoplasms has not been well studied. Serial
Ki-67 index values were evaluated in one series of 20 treated G3 NENs (mostly pure or
mixed NEC) [78]. In 90% of the cases, the Ki-67 index was lower in the post-treatment
sample compared to that of the pretreatment sample (p < 0.02) [78]. In 15/20 of the samples,
a Ki-67 index of <20% was observed at least focally, and in 6/20 of the cases, the final Ki-67
index assessment based on “hot spots” falsely suggested a low-grade (G1 or G2) tumor. In
45% of the cases, the Ki-67 index was heterogeneous, with “cold-spot regions” in the G1 or
G2 range. In approximately 50% of the cases, the post treatment morphology was similar
to that of the pre-treatment sample; four cases showed more nuclear pleomorphisms and
seven showed evidence of a more well-differentiated morphology post therapy [78]. Taken
together, the data suggest that intrapatient heterogeneity in the Ki-67 index is common post
chemotherapy and/or radiation in NEC; thus, the post treatment classification and grading
of treated G3 NENs can be unreliable. The clinical implications of a reduction in the Ki-67
index or morphologic changes post treatment are unclear. As such, the current consensus is
that a pretreatment diagnosis of NEC or a G3 NET should be consistent throughout the
disease course [78].

6. Heterogeneity in GEP-NENS: Molecular Features
6.1. Heterogeneity of Molecular Features—Primary vs. Metastasis

Walter et al. explored the genetic heterogeneity in small intestine G1/G2 NETs with
tumor samples obtained from primary (small intestine) and synchronous liver metastases in
five patients [79]. The somatic mutation rate was less than <1/Mb. Interestingly, however,
the authors documented varying degrees of discordance in the copy number variants
and single-nucleotide variants in the primary and metastatic samples, with one pair of
tumor specimens having no common variants at all. The analysis of allele frequency in
the metastatic site suggested that clonal selection from the primary site contributes to
metastatic spread [79]. The whole-genome DNA methylation analysis also suggested that
epigenetic alterations play a role in the tumorigenesis of small intestine neuroendocrine
neoplasms [79], and this is consistent with a lack of recurring mutations.

Zhou et al. used single-cell RNA sequencing (scRNA-seq) to study the spatiotem-
poral heterogeneity in one patient with a G2 pancreatic NET [9]. Heterogeneity in the
transcriptome between cells from the primary site, metastatic site, and within the tumor
microenvironment was identified. Based on copy number variations (CNV), a few tumor-
associated clusters were identified, representing genes encoding cell functions such as
cell cycle proliferation and differentiation. Hypoxia pathway genes were expressed pre-
dominantly in the primary tumor, whereas gene clusters with metastatic potential and
drug resistance were enriched in the metastatic sites. The expression of PSCK1/SMOC1
was shown to correlate with a high risk of recurrence and was validated in a cohort of
30 patients with G1/G2 NETs [9].

6.2. Heterogeneity of Molecular Features—Changes over Time

Next-generation sequencing (NGS) has proven to be a valuable tool for studying
the molecular underpinnings of NENs. Emerging data suggest that genomic alterations
in NENs can evolve over time. Raj et al. analyzed tumor samples from 96 patients
with metastatic panNETs. The tumor mutation burden increased with grade [10]. In
twelve patients, the samples were analyzed longitudinally at multiple time points. Eight
patients (67%) demonstrated grade progression over time, and some chemotherapy-treated
patients demonstrated acquired tumor hypermutation. Moreover, tumor samples from
three patients treated with everolimus showed evidence of clonal selection in the context of
acquired resistance to therapy. The presence of an SETD2 or BRAF mutation was associated
with an aggressive phenotype [10]. Tang at al. conducted whole-exome sequencing of
tumors from a single patient with a metastatic G2 pancreatic NET [66]. Tissue samples
from the patient’s pancreas, liver, and lymph nodes were collected at various time points
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during disease progression over a course of thirteen years. Driver genes associated with
tumor progression were identified in all tumor samples. However, the tumor mutation
burden (TMB) in the synchronous and metachronous metastatic samples (liver and lymph
nodes) was found to be lower than that of the primary tumor (pancreas). The analysis
of the clonal and sub-clonal architecture and gene profiling indicated that most of the
metastatic subclones could be tracked back to the primary tumor. The authors proposed
two potential mechanisms for this metastatic spread: (1) the presence of a subclone from
the beginning of the tumor origin; and (2) polyclonal seeding events followed by metastasis
spread [66]. Additional studies are needed to fully understand the degree to which the
molecular underpinnings of GEP-NENs change over time.

7. Heterogeneity in GEP-NENs—Functional Imaging with 18F-FDG (18-Fluorine
Fluorodeoxyglucose) vs. 68Ga DOTATATE PET

Somatostatin receptor (SSTR) positron emission tomography (PET) imaging with
68Ga-DOTATATE and 64Cu-dotatate PET computerized tomography (CT) has revolution-
ized imaging in NENs; however, emerging data suggest that tracer uptake by tumors
is not always uniform (Table 4). A retrospective analysis of patients with G1/G2 NETs
undergoing peptide receptor radionuclide therapy (PRRT) with 177Lu DOTATATE or 117Lu-
DOTATOC revealed that, compared to tumors with homogenous expression, tumors with
heterogenous SSTR expression showed a decreased OS and time to progression (TTP) after
PRRT (e.g., TTP 54 months vs. 26 months (p < 0.013)) [80]. Kayani et al. reported that
68Ga-DOTATATE PET/CT is a superior imaging modality when compared with 18F-FDG
PET/CT for well-differentiated NETs [81]. They proposed that paired functional imaging
with both 68Ga-DOTATATE and 18F-FDG may provide a more comprehensive tumor assess-
ment in intermediate- and high-grade tumors [81]. Others have reached similar conclusions,
that combined imaging with dual tracers (18F-FDG PET and 68Ga-DOTATATE) may help
guide therapy in patients with a G2 or G3 NET at diagnosis, with worse outcomes after
PRRT in patients with FDG-avid tumors [11,81–84]. Zhang et al. performed dual tracer
imaging on GEP-NENs of all types (including NETs and NEC) [11]. A negative correla-
tion between 68Ga-DOTATATE SUVmax and the Ki-67 index was observed, along with a
positive correlation between 18F-FDG PET SUVmax and the Ki-67 index [11]. While some
patients had tumors with concordant update on both types of PET scans, others had tumors
that were negative on both scans, positive on only one scan, and/or showed heterogeneous
tracer uptake [11]. The overall survival correlated with the imaging findings; tumors that
were only 68Ga-DOTATATE-negative or only FDG-PET-positive had the worst prognosis.

Chan et al. also performed dual FDG-PET and 68Ga-DOTATATE PET imaging on
patients with metastatic G1-3 NETs. Patients were classified into five groups (P1–P5) based
on the SUVmax of the of the lesions on the two types of functional imaging, also known
as the “NETPET score”. The NETPET score correlated with survival and may provide
information beyond the histological grade [85]. This was again validated in a larger cohort
of 319 patients [86]. A similar study demonstrated that a score (FDZ score) based on
SUVmax assessed by dual imaging correlates with overall survival in G3 GEP-NENs [87].
Another group reported on the use of 18F-DOPA PET (18 Fluro-dihydroxyphenylalanine) in
functional gastrointestinal NETs. The mean uptake of 18F-DOPA varied 1–44-fold (median
= 8-fold) between individual lesions within the same patient [88], providing additional
evidence of intratumoral heterogeneity at the functional level.

Changes in functional imaging in the setting of drug resistance and grade progression
have also been noted. Assi et al. evaluated seven patients with rapid disease progression
after PRRT, two of whom had biopsy-proven grade progression (a G1 NET to a G3 NET,
and a G2 NET to a NEC). Three patients underwent 18F-FDG-PET imaging, all with uptake
in some, but not all, lesions. Most patients had a mixed response in 68Ga-DOTATATE
imaging, with some patients demonstrating variable tumor uptake in either FDG-PET or
68Ga-DOTATATE PET imaging [89]. These findings add to the growing body of evidence
suggesting intrapatient tumor heterogeneity and changes over time in GEP-NENs.
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Table 4. Heterogeneity seen in somatostatin receptors in functional imaging.

Study N Tumor
Type Site

Proportion of
Patients/Lesions

with Heterogeneity
Types of Scans Compared Conclusions

Chan [85] 62 G1–G3 NET NET mix (P = 39%,
midgut = 32%) 33/62 (53%)

68Ga- DOTATATE
and 18F-FDG PET scan.

Dual imaging is prognostic

Zhang [11] 83 GEP-NEN P = 27%, GI = 42%,
Unknown = 13% 37/83 (44%)

68Ga-DOTATATE and
18F-FDG PET scan

Dual imaging is prognostic,
especially if Ki-67 > 10%.

Kayani [81] 38
(303 lesions) G1–G3 NEN

Lung = 6
GEP = 28

Unknown = 4

71/303
(23%)

68Ga-DOTATATE
and 18F-FDG PET scan.

Dual imaging facilitates
the characterization of intermediate

and high-grade NETs
(and the heterogeneity within and

between tumor sites)

Graf [80] 65 G1/G2 NET NET mix
(ileum = 36.9%, P = 24.6%) 28/65 (43%) SSTR expression by

68Ga-DOTA PET imaging

Heterogeneous SSTR expression by
68Ga-DOTATATE or 68Ga-DOTATOC

PET imaging is
prognostic in G1/2 NETs

Zhang [83] 495 G1/G2/G3 NEN

NET mix (P = 199,
midgut = 139, rectal = 20,
lung = 38, stomach = 8,
unknown/other = 91)

382/495(77%)
68Ga-DOTATATE and 18F-FDG PET

scan in patients before PRRT

Positive lesions in 18F-FDG PET
imaging is an independent prognostic
factor in patients treated with PRRT.

Chan [86] 319 G1/G2/G3
Unknown NEN

NET mix (midgut = 52%,
P = 36%,

hindgut/rectum = 7%,
other = 5%)

193/319 (63%)
68Ga- DOTATATE and

18F-FDG PET scan
Dual imaging as prognostic.

Adnan [84] 36 G1–G3 NET/NEC NET mix
68Ga-DOTATATE and 18F-FDG PET

scan in patients before PRRT and
WHO grading

Dual imaging showed better
prognostication in PRRT than WHO

grading, differentiation,
and immunohistochemistry

NET mix = neuroendocrine tumor mix; P = pancreas; GEP-NEN = gastroenteropancreatic neuroendocrine neoplasm.
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8. Conclusions

De novo NENs consist of both well and poorly differentiated tumors and account for
a minority of neoplasms arising in any organ site. Taken together, however, they represent
the second most common tumor type in the gastroenteropancreatic system, with G3 NETs
emerging as a new and less well-defined subtype, especially in the pancreas. The treatment
options for advanced GEP-NETs have greatly improved in the past two decades in parallel
with a better understanding of the molecular underpinnings and the discovery of new
targeted therapies. However, the timing, choice, and optimal sequence of therapy remain
ill defined. Resistance is ubiquitous, and treatment for advanced disease remains palliative.

Intrapatient heterogeneity has been described at the many levels in GEP-NETS, in-
cluding histopathologic features (including grade and the Ki-67 index), genomic and
other molecular changes, the tumor microenvironment, and imaging characteristics [9].
Studies of small-cell lung cancer and treatment-emergent lung and prostate NEC suggest
that the neuroendocrine phenotype can evolve over time, even arising in the setting of
non-neuroendocrine elements and potentially contributing to resistance [90–92]. Whether
or not these findings can be extrapolated to GEP-NETs is unknown, but the concept of
intratumoral heterogeneity appears to be a common theme across tumor types. Grade
heterogeneity exists at baseline in GEP-NETs, particularly within larger primary tumors
and in liver metastases compared to primary tumors. Grade can also change over time
and with therapy in GEP-NETs, potentially contributing to resistance and presenting bar-
riers to accurate diagnoses, risk stratification, and treatment selection. Current estimates
suggest that grade progression is common, occurring in 28–83% of GEP-NETs over time
and associated with reduced survival [7,69,75,76]. This finding has important implications
for the use of archived tissue for clinical trial eligibility and risk stratification (particularly
in panNETs, which appear to have the highest rate of grade progression over time). The
mechanisms underlying grade progression and migration are unknown in GEP-NETs,
as is whether higher-grade clones exist at baseline or emerge over time. Limited data
suggest that progression to G3 (typically well differentiated) from G1/G2 is most common
in panNETs [7,75,76].

Clinicians should be aware of the potential for intrapatient tumor heterogeneity,
including variable SSTR expression, FDG-avidity, Ki-67 indices, molecular alterations,
and grade progression over time (Figure 1). Heterogeneity can have important thera-
peutic implications, e.g., outcomes with PRRT are worse if the SSTR expression is vari-
able, the tumor has an FDG-avid component, or there is an element of high-grade dis-
ease [93]. Platinum-based therapy may be preferable if there is a component of tumor with a
Ki 67 index >55% [35,94]. Immunotherapy may play a role if a high tumor mutation burden
emerges over time (e.g., after temozolomide-based therapy) [95]. Current data suggest that
the early identification, prevention, and/or reversal of grade progression may improve
outcomes in GEP-NETs over time. Providers should have a low threshold for repeat tumor
biopsies and/or 18F-FDG PET imaging in the face of an evolving tumor biology to rule
out progression to G3, particularly if the results would impact future therapy or prog-
noses [75]. Importantly, while the conversion from G1 or G2 NETs to G3 NETs has been
repeatedly documented, it is generally believed that NECs do not typically arise from well
differentiated NETs [7,73,75,78]. Apparent reductions in tumor grade over time should be
interpreted with caution, considering the potential impact of prior treatment, the size of
the biopsy, and site of biopsy (i.e., when there is discordance, primary tumors typically
demonstrate a lower grade than that of biopsies of metastatic sites). Future strategies
may include the incorporation of liquid biopsies, serial tumor biopsies, and/or imaging
techniques to identify the most highly proliferative regions for biopsies, recognizing that
a Ki-67 index obtained from a routine FNA or core needle biopsy may not adequately
represent the whole tumor. In the long term, a greater awareness of tumor heterogeneity
and a better understanding of the mechanisms underlying resistance to therapy and the
impact of treatment on histopathologic features will help guide a personalized approach to
patients with GEP-NETs.
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