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Sensory and cognitive plasticity: implications for academic
interventions
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Research in neuroscience has great potential for trans-
forming education. However, the brain systems that sup-
port academic and cognitive skills are poorly understood
in comparison to the systems that support sensory pro-
cessing. Decades of basic research have examined the
role that brain plasticity plays in the genesis and treat-
ment of developmental visual disorders, which may help
to inform how cognitive training approaches can be tai-
lored for students who experience environmental disad-
vantage. In this review, we draw parallels between vi-
sual and cognitive intervention approaches, and suggest
research avenues that could inform educational practice
in the future.
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Introduction
Fluid cognitive skills, such as reasoning, working memory,
and processing speed, are highly correlated with performance
in school [1,2]. Many attempts have been made to improve
cognitive skills in children with varying degrees of success
[3,4], and with only limited evidence of transfer to academic
performance [5,6]. Failures in cognitive training studies are
so common that some have argued that cognitive skills are
fixed [7]. However, the concept of fixed cognition is diffi-
cult to reconcile with the overwhelming evidence that brain
systems are highly plastic [8]. More likely, we simply have
not yet discovered the optimal way to promote cognitive
plasticity.

The basic science of cognitive plasticity is in its infancy, as
is the translational science of developing cognitive interven-
tions. In contrast, the visual system offers a well-studied
paradigm of neuroplasticity, both in terms of basic mecha-
nisms, and in terms of real-world applications. In this review,
we discuss important findings from visual neuroscience and
their relationship to the development of treatments for indi-
viduals with visual deficits. Then, we draw analogies to the
neuroscience of cognitive plasticity, and to efforts to improve

fluid cognitive skills and academic achievement in children
from disadvantaged backgrounds. Finally, we discuss future
directions for research on visual and cognitive plasticity, and
how these fields can be mutually informative.

Visual neuroscience and clinical treat-
ment: a test-case for neuroscience-informed
intervention
It is well known that the visual system requires experience for
the development of normal visual function [9]. If the brain is
deprived of the normal patterns of visual experience during
development, enduring deficits can result. In the extreme,
some visual functions are subject to “critical periods” – fixed
and finite durations of heightened brain plasticity, often oc-
curring early in life. Studies in animals suggest that the me-
diation and eventual closure of critical periods in visual cor-
tex rely on a diverse set of mechanisms including: myelina-
tion [10], the maturation of inhibitory neurons [11], and the
formation of perineuronal nets that stabilize cellular struc-
tures [12,13]. Many such studies use monocular deprivation
paradigms, in which one eye is physically occluded or other-
wise weakened with respect to the other. Because primary vi-
sual cortex is organized in ocular dominance columns, these
studies allow for the close examination of how deprivation
affects cortex devoted to input from each eye.

In humans, a relatively prevalent example of deprivation dur-
ing a critical period is amblyopia, a condition that can oc-
cur in young children if one eye has a much larger refractive
error than the other (is more out of focus) or is misaligned
with the other (“lazy eye”). Amblyopia is estimated to affect
approximately 3% of the population [14], and encompasses
a constellation of visual deficits that range from poor visual
acuity (or clarity) in the weaker eye, to lack of stereovision, to
higher-level issues related to visual processing. The similari-
ties between amblyopic visual experience and animal models
of monocular deprivation suggest that their effects on the vi-
sual system may be mediated by similar neural mechanisms
[15]. Related to this idea, recent interest in how therapies for
amblyopia may exploit different aspects of neural plasticity
has led to rapid advances in our understanding of the time
course and potential outcomes of both conventional and new
amblyopia treatment types.
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The treatment of amblyopia almost always begins with cor-
recting the weaker eye, either with optics or surgery. That
is, the first step is to remove the original cause. In some
cases, this may be sufficient to restore normal vision within
a few months [16]. If visual deficits persist even after the oc-
ular cause is removed, this confirms the presence of a neural
deficit. For centuries, the mainstay of amblyopia therapies
has been patching: the stronger eye is covered with a patch,
and the child must perform daily tasks using the weaker eye
on its own. It is thought that patching exploits plasticity in the
early visual pathways to strengthen the processing of signals
coming from the weaker eye. However, children’s respon-
siveness to this treatment is highly age-dependent: earlier

intervention is more effective. Cross-sectional studies report
that children under the age of seven respond best to patch-
ing, confirming standard clinical practice [16,17]. Older chil-
dren can respond to treatment, but the efficacy is substantially
worse and thus the condition is less likely to fully resolve.

At the same time, animal work has also established that dif-
ferent visual functions have different critical periods, sug-
gesting a developmental progression of plasticity within the
visual system [18,19]. In recent years, there has been grow-
ing interest in new therapies that improve amblyopic visual
function beyond the conventional critical period, highlighting
the idea that different treatments can be tailored for different

ages. Two recent studies show that visual function can con-
tinue to improve if targeted “dichoptic” treatment is adopted
after any improvements gained with patching have plateaued
[20,21]. The dichoptic method involves encouraging the two
eyes to work together, rather than forcing the use of one eye
on its own. Other “perceptual learning” therapies involve in-
tensive training of the weaker eye on specific visual tasks
[22].

The precise mechanism of improvements in juvenile and
adult amblyopia with these new therapies remains contro-
versial [23], particularly because a variety of different ap-
proaches have produced similar results [24]. However, it
is appealing to propose that the improvements with non-
patching treatments reflect the hierarchical nature of visual
plasticity. While patching may be effective at times when
early visual pathways are most malleable, the maturation of
higher-level modulatory circuits may be necessary to induce
different types of plasticity later in life [25,26]. There is
much left to learn, but it is clear that the plasticity of the vi-
sual system changes drastically from infancy to adulthood,
and that understanding these changes has tangible conse-
quences for the timing, type, and efficacy of interventions.

Improving cognitive skills: lessons from
visual neuroscience
The treatment of amblyopia serves as an example of a pro-
ductive bidirectional relationship between neuroplasticity re-
search and intervention development that can be considered
analogous to the development of interventions to improve
fluid cognitive skills. We will limit the scope of discussion to

the skills typically assessed by fluid intelligence tests: fluid
reasoning, working memory, and processing speed [27]. We
will focus on the case of children whose cognitive skills are
impacted by environmental disadvantage, such as low socioe-
conomic status [28,29], as these children represent a large
proportion of students who struggle in school.

1. The first step is to remove the original cause. In the
case of amblyopia, the cause is relatively easy to both diag-
nose and treat. On some level, the same can be said of envi-
ronmental disadvantage, even if the broader picture is more
complicated: the cause is the lack of economic resources and
the treatment is supplementing these resources. In adults, in-
creased income, in the form of unconditional cash transfers
[30] or increased wealth from a successful harvest [31], is as-
sociated with improved cognition. One possible mechanism
for these effects is that the stress associated with poverty de-
tracts from cognitive function. Indeed, just prompting indi-
viduals in poverty to think about their finances reduces cog-
nitive performance [31]. Less is known about the impact of
income on children. One study found that an increase in in-
come amongst families in poverty is associated with emo-
tional and behavioral benefits for children [32]. However,
because it is often not practical to supplement family income
directly, a more tractable goal may be to support parental so-
cioeconomic mobility [33,34]. Alternatively, it may be ef-
fective to build caregiver capacities for buffering the stresses
associated with economic disadvantage [35]: parenting inter-
ventions with this goal have had some of the most impressive
and long-lasting effects on child cognitive skills [36,37]. Cur-
ricula that empower teachers to alleviate stress in the class-
room may be similarly effective [38].

As with treating amblyopia, sometimes removing the original
cause, in this case environmental disadvantage, may be suffi-
cient to treat, or even prevent, cognitive disparities, depend-
ing on the age at which this type of intervention occurs. But
in cognitive interventions, removing the cause is not always
an option. Schools often cannot modify home environments
and therefore must take alternate approaches to boosting cog-
nition.

2. Earlier intervention is more effective. Patching treat-
ment for amblyopia is more effective in younger children,
perhaps because the early maturation of visual circuits leads
to a critical period for ocular dominance that starts at a young
age and closes around age seven. What do we know about
the timing of the neural mechanisms that underlie critical,
or more generally, “sensitive” periods for cognitive systems?
Sensitive periods of cognitive development have been rela-
tively well-studied in the case of language acquisition, with
evidence supporting multiple periods of plasticity that in-
clude early and restricted, as well as later and more flexible,
intervals [39]. It is still unknown whether there are analogous
critical or sensitive periods for fluid cognitive skills and their
neural substrates, such as association cortex.

Structural and functional properties of association cortex in
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Fig. 1. Theoretical relationships between sensory and cognitive plasticity. A. Greater plasticity is associated with both greater inter-
vention efficacy and greater susceptibility to deprivation and disadvantage. However, note here that efficacy reflects a response to an
intervention applied at a fixed interval in time, not to the time at which the root cause is removed. The onset of peak plasticity may be
synchronous or asynchronous across systems, and the systems might share the same duration of heightened plasticity (symmetric) or
cognitive plasticity may last longer (asymmetric). B. Across individuals, the age of peak sensory plasticity may or may not predict the
age of peak cognitive plasticity, i.e., they may be correlated or independent. Although not shown, in these plots overall differences in
synchronicity as illustrated in A would appear as uniform shifts of all points along one axis relative to the other.

humans, e.g. low heritability [40], high inter-individual vari-
ability [41,42], and slow development [43–45], suggest en-
hanced and prolonged sensitivity to the environment [46].
Further, association areas remain less myelinated than sen-
sory cortices in adulthood [47], a sign that these regions are
more flexible given the role of myelin in limiting plasticity
[10]. However, a recent study showed that genes associated
with the opening and closing of critical periods exhibit simi-
lar temporal patterns of expression in visual and frontal cor-
tex, suggesting that the timing of maximal sensitivity may
not be all that different between systems [48]. Understand-
ing the developmental trajectory of plasticity in association
cortex could be useful for determining the optimal timing of
cognitive interventions. Earlier interventions may not always
be more effective if they take place prior to the opening of
the sensitive period, and it may not be necessary to intervene
early on some cognitive skills if the window of peak plasticity
remains open into adulthood.

There is limited research on the age-dependence of cogni-
tive plasticity in humans. Studies of international adoption
have found that earlier adoption (at less than one year of

age) is associated with better cognitive outcomes [49,50].
Many of the most effective educational interventions have
been targeted at preschoolers (e.g., The Perry Preschool Pro-
gram [51], The Abecedarian Project [52], Tools of the Mind
[38]), and there is some evidence that long-term curricular
changes are more effective in preschool than they are at later
ages [54]. To our knowledge, only one short-term cognitive
training study compared outcomes across different ages of
children. Four-year-old children showed greater behavioral
improvements from attention training than did six-year-old
children, but both age groups showed brain activity changes
consistent with maturation [55]. However, because the train-
ing task could have been more appropriate for four-year-
olds than for six-year-olds, the differential responsiveness
could be attributed to factors other than differential plastic-
ity. This complexity highlights the difficulty of assessing the
age-dependency of cognitive plasticity.

3. Different treatments can be tailored for different
ages. Like visual abilities, cognitive skills have also been hy-
pothesized to be hierarchical. According to the Developmen-
tal Cascade Model [56], processing speed supports working
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memory, which in turn supports fluid reasoning. These skills
develop at different ages, and longitudinally, gains in a lower-
level skill predict future gains in a higher-level skill [57].
Cognitive interventions might be most effective if matched to
a child’s cognitive skill profile. For example, a younger child,
or a child with low processing speed, might benefit more
from processing speed training than from reasoning training
because deficits in the lower-level skill create a bottleneck for
the higher-level skill. Future research is necessary to deter-
mine whether there are indeed multiple hierarchical sensitive
periods in cognitive development, and whether educational
interventions are more effective if tailored to age or develop-
mental stage.

Conclusion
For decades, clinical observations have inspired research in
visual neuroscience, and in turn, basic research on neuro-
plasticity has informed our understanding of visual disorders.
We suggest that this bidirectional relationship can serve as a
model for the future of cognitive plasticity research. Three
specific research avenues stand out to us as analogous across
fields: understanding and treating the root cause, defining the
optimal timing of interventions, and tailoring interventions to
age and developmental stage.

Important differences between fields could potentially limit
the usefulness of these analogies. At a cellular level, plas-
ticity in ocular dominance columns is easier to measure than
plasticity in association cortex, because the structure of as-
sociation cortex is not as well understood. However, recent
work suggests that there may be maps in association cor-
tex that are analogous to those in sensory cortex, which may
make cognitive plasticity research more tractable in the future
[58,59]. Behaviorally, animal models of monocular depriva-
tion closely parallel human experiences with amblyopia, but
it is unclear whether animal models of cognitive enrichment
and social isolation adequately mirror the diversity of human
cognitive experiences. Clinically, treatment efficacy is eas-
ily defined and measured in vision, e.g., acuity gain per 100
hours of patching [17], but optimal outcomes are more diffi-
cult to define in cognitive plasticity research. Most interven-
tions show effects on some cognitive and academic measures
but not others and the relative importance of these measures
is unclear.

Looking forward, direct comparisons of sensory and cogni-
tive plasticity both in terms of mechanisms and phenomenol-
ogy will help maximize our ability to translate progress
across brain systems. For example, modeling methods used
to identify the time course of sensitivity to deprivation in
the human visual system via perceptual measurements (e.g.,
[60]) could be applied to cognitive measurements, allowing
for common tracking of plasticity across brain systems. How-
ever, clearly defined periods of environmental disadvantage
are likely much less common than periods of altered vision.
Thus, rather than focusing on susceptibility to deprivation,
the same principles could be applied by reasoning that sen-

sitive periods are also marked by maximal responsiveness to
experience and training. This would allow for the testing of
hypotheses about the time-course of plasticity: Does cogni-
tive plasticity occur together with or lag behind sensory plas-
ticity (Figure 1A)? Are there individual differences in the
timing of peak plasticity that span sensory and cognitive sys-
tems? For this second question, Figure 1B illustrates two ex-
ample scenarios: the peaks of cognitive and sensory plastic-
ity are correlated (upper panel) or uncorrelated (lower panel)
across individuals. Note that an overall delay or advance
in one system relative to the other (as shown in A) would
simply be a shift along either axis of the plots. If sensory
and cognitive plasticity are indeed correlated across individ-
uals, it would suggest that visual plasticity could be used as
a predictor for cognitive plasticity. For example, if a stu-
dent were identified as an “early developer” based on visual
assessments, it would suggest that she would benefit more
from earlier cognitive interventions. These questions will be
essential to understanding how the human brain is shaped by
experience, both in general and in the classroom.

Critically, advances in basic neuroscience have the poten-
tial to impact both the treatment of visual disorders and ed-
ucational efforts to improve cognitive skills. Neuroscien-
tists have discovered methods for restoring plasticity in older
animals by altering neurotransmitter levels through brain
stimulation [61], pharmacology [62], environmental changes
[63,64], and behavioral manipulations to boost attention and
motivation [65]. Some of these approaches have been trans-
lated, experimentally, to humans to improve both visual per-
ception and cognition [66–68]. However, it is still unclear
which, if any, of these approaches are appropriate for chil-
dren. Altering plasticity during key developmental stages
may not be without cost, especially if typical patterns of de-
velopmental plasticity are poorly understood. In particular,
increased plasticity is associated with both increased treat-
ment efficacy and increased susceptibility to trauma or depri-
vation (See Figure 1). For example, in an animal model of
amblyopia, prolonged immersion in complete darkness can
restore plasticity and improve vision in older animals that
have previously undergone monocular deprivation [63,64],
but the same intervention performed in younger animals can
result in temporary blindness [19]. More broadly, periods of
high plasticity, while essential for tuning brain systems to the
demands of their environment, likely also come at a cost in
terms of stability and metabolic energy. It is likely that brain
development occurs in such a way so as to efficiently learn,
consolidate, and exploit predictable aspects of the demands
posed by one’s environment. Greater knowledge about neu-
roplasticity, including a better understanding of its variabil-
ity across brain regions and across individuals, is necessary
for the optimal design and timing of interventions to improve
both vision and cognition.
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