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ABSTRACT OF THE DISSERTATION

Tableaux formulas for Lascoux polynomials

by

Tianyi Yu

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Brendon Rhoades, Chair

Lascoux polynomials simultaneously generalize two famous families of polynomials

arising from geometry and representation theory: They are non-symmetric analogs of

Grassmannian stable Grothendieck polynomials, which represent Schubert classes in the

connective K-theory of Grassmannians. Additionally, they serve as non-homogeneous

analogs of key polynomials, the characters of Demazure modules. Both of these families

have classical combinatorial formulas involving tableaux. We further generalize several of
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these formulas by establishing two combinatorial formulas for Lascoux polynomials.
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Chapter 1

Introduction

Fix n ∈ Z>0. In this thesis, we establish three combinatorial rule for Lascoux

polynomials using combinatorial proofs. Lascoux polynomials, denoted by L
(β)
α , are a

Z[β]−basis for Z[β][x1,x2, . . . ,xn] indexed by weak compositions α∈Zn
≥0. They are related

to the following polynomials:

• Schur polynomials: denoted by sλ and indexed by partitions (weak compositions

which are weakly decreasing). They are symmetric polynomials in Z[x1, · · · ,xn]

which are homogeneous polynomials with degree |λ|, where | · | represents the sum

of entries in a weak composition. The Schur polynomials play an important role in

representation theory of the symmetric group and the general linear group.

• Key polynomials: denoted by κα, which are polynomials in Z[x1, · · ·xn] indexed by

weak compositions. They are homogeneous with degree |α|. They were introduced

by Demazure in [Dem74] for Weyl groups and are characters of Demazure modules.

• Grassmannian stable Grothendieck polynomials: denoted by G(β)
λ

, which are polyno-
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mials in Z[β][x1, . . . ,xn] indexed by partitions. Note that the β is also an indeterminate

and works as an grading variable: if a monomial in G(β)
λ

has x-degree d, then the β

in it must have degree d −|λ|. These polynomials are symmetric in the x variables.

They represent Schubert classes in the connective K-theory of Grassmannians.

Notice that the β in a Lascoux polynomial L(β)
α also works as a grading variable: if

a monomial in L
(β)
α has x-degree d, then the β in it must have degree d −|α|. The relations

between these four polynomials can be described as follows.

• Key polynomials generalize Schur polynomials. More explicitly, for a partition λ,

κrev(λ) = sλ,

where rev(·) is the operator that reverses a weak composition.

• The G(β)
λ

is a non-homogeneous analog of sλ: The lowest degree terms in G(β)
λ

form

the Schur polynomial sλ. In other words, G(0)
λ

= sλ.

• Extending this viewpoint, L(β)
α is a non-homogeneous analog of κα: L(0)

α = κα.

• Lascoux polynomials generalize Grassmannian stable Grothendieck polynomials in a

manner analogous to the generalization of Schur polynomials by key polynomials:

L
(β)
rev(λ) = G(β)

λ
,

2



Their relations are summarized in the following diagram:

L
(β)
α G(β)

λ

κα sλ

specialize

β=0 β=0

specialize

Here is another perspective to see how the Lascoux polynomials fit into the larger

picture. Lascoux and Schützenberger found an expansion of Schubert polynomials into

key polynomials [LS89]. This expansion was proved by Reiner and Shimozono [RS95].

Grothendieck polynomials are K-theoretic analogs of Schubert polynomials [LS82]. Buch,

Kresch, Shimozono, Tamvakis and Yong [BKS+08] proved the stable limit version of this

expansion. They expanded symmerized Grothendieck polynomials into Grassmannian sta-

ble Grothendieck polynomials. Finally, Reiner and Yong [RY21] conjectured an expansion

of Grothendieck polynomials into Lascoux polynomials, generalizing both expansions.

Shimozono and Yu [SY23] proved this conjecture.

The three polynomials in the diagram have well-known tableaux formulas which

come in two different flavors. Schur polynomials are generating functions of semistandard

Young tableaux (SSYT), or equivalently reversed semistandard Young tableaux (RSSYTs),

of shape λ:

sλ = ∑
T∈SSYTλ

xwt(T ) = ∑
T∈RSSYTλ

xwt(T ). (1.1)

Lascoux and Schützenberger[LS90, LS89] generalized Equation (1.1) by writing κα as a

generating function of of SSYT(α)⊆ SSYTα+ and RSSYT(α)⊆ RSSYTα+ where α+ is

3



the partition obtained by sorting α:

κα = ∑
T∈SSYT(α)

xwt(T ) = ∑
T∈RSSYT(α+)

xwt(T ).

On the other hand, Buch [Buc02] extended Equation (1.1) to G(β)
λ

using set-valued tableaux

(SVT), or equivalently reverse set-valued tableaux (RSVT):

G(β)
λ

= ∑
T∈SVTλ

β
ex(T )xwt(T ) = ∑

T∈RSVTλ

β
ex(T )xwt(T ).

We generalize both flavors of the three formulas by writing L
(β)
α as generating functions of

SVT(α)⊆ SVTα+ and RSVT(α)⊆ RSVTα+ .

L
(β)
α = ∑

T∈SVT(α)
β
ex(T )xwt(T ) = ∑

T∈RSVT(α)
β
ex(T )xwt(T ).

Kohnert defined moves on diagrams known as Kohnert moves. Every weak compo-

sition α is associated with a diagram D(α). Let KD(α) be the set of diagrams obtained by

repeatedly applying K-Kohnert moves on D(α), then Kohnert showed

κα = ∑
D∈KD(α)

xwt(D).

Ross and Yong [RY13] defined a generalization of Kohnert moves which we call

K-Kohnert moves. Repeatedly applying K-Kohnert moves on D(α) yields a set of diagrams

which is denoted as KKD(α).

4



Conjecture 1. [RY13] The Lascoux polynomial L(β)
α is given by

L
(β)
α = ∑

D∈KKD(α)
β
ex(D)xwt(D) .

Pechenik and Scrimshaw [PS19] proved a special case of this conjecture where all

positive numbers in α are the same. The third main result of this thesis is to establish this

rule.

There also already exist various combinatorial formulas of Lascoux polynomials:

• Another model for key polynomials is the Kohnert diagrams developed by Kohn-

ert [Koh90]. Ross and Yong [RY13] conjectured a generalization of Kohnert diagrams

for Lascoux polynomials. Pechenik and Scrimshaw [PS19] proved a special case of

this conjecture where all positive numbers in α are the same. The general case was

proved by Pan and Yu [PY23].

• Buciumas, Scrimshaw and Weber [BSW20] established a set-valued skyline filling

formula, which was first conjectured by Monical [Mon16].

• Buciumas, Scrimshaw and Weber [BSW20] established a SVT rule involving the

right keys and the Lusztig involution, which was first conjectured by Pechenik and

Scrimshaw [PS19]. In general, our rule and the rule in [BSW20] sum over different

sets of SVTs.

• Presnova and Smirnov[PS23] provides a formula for Lascoux polynomials in terms

of subdivisions of Gelfand–Zetlin polytopes.
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Chapter 2

Tableaux formulas for key polynomials

In this chapter, we first define Lascoux polynomials and key polynomials. We then

define Gλ and sλ as special cases of Lascoux polynomials and key polynomials. Then we

give necessary background and describe several classical tableaux formulas: formulas for

key polynomials involving SSYT and RSSYT; formulas for G(β)
λ

involving SVT and RSVT.

The main goal of this thesis is to generalize these formulas to Lascoux polynomials.

2.1 Defining Lascoux Polynomials

The symmetric group Sn acts on the polynomial ring Z[β][x1, · · · ,xn] by permuting

the x variables. Let si ∈ Sn denote the transposition that swaps i and i+1. Following [LS89]
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and [Las01], we define three operators on Z[β][x1, · · · ,xn]:

∂i( f ) = (xi − xi+1)
−1( f − si f )

πi( f ) = ∂i(xi f )

π
(β)
i ( f ) = πi( f +βxi+1 f ).

These three operators satisfy the braid relations. For instance, ∂i satisfies:

∂i ◦∂ j( f ) = ∂ j ◦∂i( f ) if |i− j|> 1,

∂i ◦∂i+1 ◦∂i( f ) = ∂i+1 ◦∂i ◦∂i+1( f ).

Let α be a weak composition. We use αi to denote the ith entry of α. Let siα be the weak

composition obtained by swapping its ith entry and (i+1)th entry. The Lascoux polynomial

L
(β)
α is defined by [Las04]

L
(β)
α =


xα if α is a partition

π
(β)
i L

(β)
siα if αi < αi+1.

(2.1)

The key polynomial κα is defined by

κα = L
(β)
α |β=0. (2.2)
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Example 2. We compute the Lascoux polynomial of α = (0,2,1).

L
(β)
(2,1,0) = x2

1x2,

L
(β)
(2,0,1) = π

(β)
2 (L

(β)
(2,1,0))

= x2
1x2 + x2

1x3 +βx2
1x2x3,

L
(β)
(0,2,1) = π

(β)
1 (L

(β)
(2,0,1))

= x2
1x2 + x2

1x3 + x1x2
2 + x1x2x3 + x2

2x3

+β(x2
1x2x3 + x1x2

2x3 + x2
1x2

2 + x2
1x2x3 + x1x2

2x3)+β
2x2

1x2
2x3.

Thus, by setting β = 0, we obtain the key polynomial of α

κα = x2
1x2 + x2

1x3 + x1x2
2 + x1x2x3 + x2

2x3

We will use the Lascoux polynomial and key polynomial of (0,2,1) as our running example

to demonstrate various combinatorial objects in this chapter and the next chapter.

Instead of defining G(β)
λ

and sλ, we restate their relations with Lascoux polynomials

L
(β)
α and κα:

For a partition λ,

G(β)
λ

:= L
(β)
rev(λ), sλ := κrev(λ),

where rev(·) reverses a weak composition.
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Example 3. When λ = (2,1,0), readers may compute:

sλ = x2
1x2 + x2

1x3 + x1x2
2 +2x1x2x3 + x2

2x3 + x1x2
3 + x2x2

3,

Gλ = x2
1x2 + x2

1x3 + x1x2
2 +2x1x2x3 + x2

2x3 + x1x2
3 + x2x2

3,

+β(x2
1x2

2 + x2
1x2

3 + x2
2x2

3 +3x2
1x2x3 +3x1x2

2x3 +3x2
1x2x2

3)

+β
2(2x2

1x2
2x3 +2x2

1x2x2
3 +2x1x2

2x2
3)+β

3x2
1x2

2x2
3

2.2 Tableaux

Given a partition λ, a Young diagram of shape λ is a finite collection of left-justified

boxes, where ith row has λi boxes. We use English convention for our Young diagrams and

tableaux, so the first row is the highest row. For partitions µ and λ, we write µ ⊆ λ if the

Young diagram of µ lies in that of λ. In that case, λ/µ denotes the set of boxes in λ but not

µ.

We define a tableau as a filling of a λ/µ with [n] := {1, · · · ,n}. A tableau has normal

(resp. antinormal) shape if it is empty or has a unique northwestmost (resp. southeastmost)

corner. A semistandard Young tableau (SSYT) (resp. reverse semistandard Young tableau

(RSSYT)) is a tableau whose columns are strictly increasing (resp. decreasing) and rows

are weakly increasing (resp. decreasing). Let T be a tableau. The weight of T , denoted by

wt(T ), is a weak composition whose ith entry is the number of i in T . The column order is

a total order on cells of T . It goes from left to right and from bottom to top within each

column. The column word of T , denoted by word(T ), is the word we get if we read the
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number in each cell of T in the column order.

Let SSYTλ (resp. RSSYTλ) denote the set of SSYTs (resp. RSSYTs) with shape

λ. Then it is well-known that Schur polynomials are generating functions of SSYTλ and

RSSYTλ, see (1.1).

A key is a SSYT with normal shape such that each number in the jth column also

appears in the ( j−1)th column. There are natural bijections between weak compositions

and keys. Let key(·) be the map that sends the weak composition to its corresponding key.

Its inverse map is simply wt(·). For instance, if n = 4,

key(1,0,3,2) =
1 3 3

3 4

4

The Knuth equivalence ∼ is defined on the set of all words over the positive integers

by the transitive closure of

uxzyv ∼ uzxyv if x ≤ y < z,

uyxzv ∼ uyzxv if x < y ≤ z,

where u and v are words. From [Ful97], for each SSYT (resp. RSSYT) T , there ex-

ists a unique SSYT T↘ with antinormal shape such that word(T ) ∼ word(T↘) (resp.

rev(word(T )) ∼ rev(word(T↘))), where rev(·) reverses a word. Moreover, the shape of

T↘ is obtained by rotating the shape of T .

Each SSYT or RSSYT T with normal shape is associated with two keys: the right

key K+(T ) and the left key K−(T ). Let T≥ j be the tableau we get if we remove the first

10



j−1 columns of T . Then column j of K+(T ) is consists the numbers from the rightmost

column of T↘
≥ j . Let T≤ j be the tableau we get if we only keep the first j columns of T . Then

column j of K−(T ) is consists the numbers from the leftmost column of T↘
≥ j .

Example 4. Let T be the following SSYT:

1 2 4 7

3 5 6

4 8

6

Then T≥1 = T . Consider the following SSYT T ′ with antinormal shape:

2

3 4

1 5 7

4 6 6 8

Notice that word(T )= 6431852647∼ 4616538742=word(T ′), so T ′= T↘. Thus, column

1 of K+(T ) consists of {2,4,7,8}. Similarly, T↘
≥2,T

↘
≥3 and T↘

≥4 are

4

2 7

5 6 8

4

6 7

7 .

11



Thus, K+(T ) is

2 4 4 7

4 7 7

7 8

8

.

On the other hand, T↘
≤3,T

↘
≤2 and T↘

≤1 are

2

3 4

1 5 6

4 6 8

2

1 3

4 5

6 8

1

3

4

6

.

Thus, K+(T ) is

1 1 1 4

3 4 4

4 6

6

.

Finally, we can introduce a well-known combinatorial rule of key polynomi-

als [LS90, LS89]. Let α be a weak composition. Let SSYT(α) (resp. RSSYT(α)) be

the set of all SSYT such that T has the same shape as key(α) and K+(T )≤ key(α) (resp.

K−(T )≤ key(α)) where the comparison is entry-wise.

Then

κα = ∑
T∈SSYT(α)

xwt(T ) = ∑
T∈RSSYT(α)

xwt(T ). (2.3)
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Example 5. Let α = (0,2,1). Readers may check

SSYT(α) =

{
1 1

2
, 1 1

3
, 1 2

2
, 1 2

3
, 2 2

3

}
.

RSSYT(α) =

{
2 1

1
,

3 1

1
,

2 2

1
,

3 1

2
,

3 2

2

}
.

Either formula yields κα = x2
1x2 + x2

1x3 + x1x2
2 + x1x2x3 + x2

2x3, which agrees with

the computation in Example 2.

Remark 6. Let λ be a partition. Then consider key(rev(λ)). Clearly, key(rev(λ))≥ T for

any key T with shape λ. Thus, SSYT(rev(λ)) = SSYTλ and RSSYT(rev(λ)) = RSSYTλ.

This explains why (2.3) recovers (1.1).

2.3 Set-valued Tableaux

A set-valued tableau is a filling of λ/µ where entries are non-empty subsets of [n].

For a set-valued tableau T , define S(T ) to be the set of tableaux obtained by picking one

number in each cell of T . Let SVT(λ) (resp. RSVT(λ)) consists of all set-valued tableaux

T such that S(T ) ⊆ SSYT(λ) (resp. S(T ) ⊆ RSSYT(λ)). We will refer to elements of

SVT(λ) (resp. RSVT(λ)) as “SVT” (resp. RSVT).
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Example 7. The following T is a SVT:

T =
1 13 36

23 47

567

,

where 23 represents the set {2,3}. The set S(T ) consists of 48 SSYT, including

1 3 6

3 7

7

and
1 3 6

2 4

5

.

The following example is not a SVT

1 14 46

23 47

567

since if we pick 4 in both cells of column 2, the resulting filling cannot be a SSYT. The

following T2 is an RSVT:

T2 =
76 64 321

4 31

321

,

where 76 represents the set {7,6}.

Remark 8. We may view SSYT (resp. RSSYT) as a SVT (RSVT) where each set is a

singleton.

Definition 9. Let T be a SVT or RSVT of shape λ. Let wt(T ) be the weak composition

14



whose ith entry is the number of i’s in T . Let ex(T ) be the number |wt(T )|− |λ|.

It is clear that the definition of wt(·) agrees with our previous definition when every

set in T is a singleton. Intuitively, ex(T ) counts the number of “extra” numbers in T .

The notions of SVT and RSVT were first introduced by Buch [Buc02] to give a

combinatorial formula for G(β)
λ

.

Theorem 10 ([Buc02]). Let λ be a partition. Then

G(β)
λ

= ∑
T∈SVTλ

β
ex(T )xwt(T ) = ∑

T∈RSVTλ

β
ex(T )xwt(T ). (2.4)

Remark 11. We know sλ = G(0)
λ

. By setting β = 0 in (2.4), the sum only involves T ∈ SVTλ

or RSVTλ such that ex(T ) = 0. In other words, the sum is only SSYTλ or RSSYTλ. Thus,

Theorem 10 recovers (1.1).
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Chapter 3

Main results

In this chapter, we describe our tableaux formulas for Lascoux polynomials and

describe how they recover the corresponding classical formulas of κα or G(β)
λ

.

3.1 SVT formula

Let α be a weak composition. We define SVT(α) as the set of SVT T such that

S(T )⊆ SSYT(α).

Theorem 12. For a weak composition α, we have

L
(β)
α = ∑

T∈SVT(α)
β
ex(T )xwt(T ).
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Example 13. Let α = (0,2,1). We may write SVT(α) as

SSYT(α)
⋃{

1 1

23
, 1 12

3
, 12 2

3
, 1 2

23
, 1 12

2
, 1 12

23

}
.

By Theorem 12, L(β)
(0,2,1) = κα + β(2x2

1x2x3 + 2x1x2
2x3 + x2

1x2
2)+ β2x2

1x2
2x3, which

agrees with our computation in Example 2.

Remark 14. We show how Theorem 12 recovers the SSYT rule in (2.3) and the SVT rule

in (7).

• If we set β = 0 in Theorem 12, the left hand side becomes κα. In the right hand side,

only T with ex(T ) = 0 can survive. Clearly, {T ∈ SVT(α) : ex(T ) = 0}= SSYT(α).

Thus, our rule recovers the SSYT rule in (2.3).

• Let λ be a partition. By Remark 6, SSYT(rev(λ)) = SSYTλ. Thus, we know

SSYT(rev(λ)) consists of all T such that S(T )⊆ SSYTλ, so SSYT(rev(λ)) = SVTλ.

If we set α = rev(λ) in Theorem 12, the left hand side becomes G(β)
λ

and the right

hand side becomes a sum over SVTλ. This is exactly the SVT rule in (2.4).

3.2 RSVT formula

Let T be a RSVT. We define L(T ) as the RSSYT obtained by keeping only the

largest number in each cell. Let α be a weak composition. We define RSVT(α) as the set

of RSVT T such that L(T ) ∈ RSSYT(α).
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Theorem 15. For a weak composition α, we have

L
(β)
α = ∑

T∈RSVT(α)
β
ex(T )xwt(T ).

Example 16. Let α = (0,2,1). We may write RSVT(α) as

RSSYT(α)
⋃{

32 1

1
, 3 1

21
, 3 21

2
, 3 2

21
, 2 21

1
, 3 21

21

}
.

By Theorem 15, L(β)
(0,2,1) = κα + β(2x2

1x2x3 + 2x1x2
2x3 + x2

1x2
2)+ β2x2

1x2
2x3, which

agrees with our computation in Example 2.

Remark 17. We show how Theorem 15 recovers RSSYT rule in (2.3) and the RSVT rule

in (7).

• If we set β = 0 in Theorem 12, the left hand side becomes κα. In the right hand

side, only T with ex(T ) = 0 can survive. Clearly, {T ∈ RSVT(α) : ex(T ) = 0} =

RSSYT(α). Thus, our rule recovers the SSYT rule in (2.3).

• Let λ be a partition. By Remark 6, RSSYT(rev(λ)) = RSSYTλ. Thus, we know

RSSYT(rev(λ)) consists of all T such that L(T ) ∈ RSSYTλ, so RSSYT(rev(λ))

= RSVTλ. If we set α = rev(λ) in Theorem 12, the left hand side becomes G(β)
λ

and the right hand side becomes a sum over RSVTλ. This is exactly the RSVT rule

in (2.4).
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Chapter 4

Proving the SVT formula

In this chapter, we prove Theorem 12. Our proof mimics Kashiwara’s study of

Demazure modules and crystal bases [Kas93]. Based on our crystal, we define i-strings

similar to [Kas93]. A key step of our proof is Corollary 67, which is a result analogous

to [Kas93, Proposition 3.3.5].

4.1 Abstract Kashiwara crystal

We first recall some basic notions about abstract Kashiwara crystals [Kas90, Kas91]

following [BS17].

Definition 18. [BS17, Definition 2.13] An abstract Kashiwara GLn crystal is a nonempty

set B together with maps:

ei, fi : B → B ⊔{0},

εi,ϕi : B → Z⊔{−∞},
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wt : B → Zn,

where i ∈ [n−1], satisfying the following two conditions.

K1: For all X ,Y ∈ B , we have ei(X) = Y if and only if fi(Y ) = X . If this is the case then

εi(Y ) = εi(X)−1,

ϕi(Y ) = ϕi(X)+1,

wt(Y ) = wt(X)+ vi − vi+1,

where v1, . . . ,vn is the standard basis of Zn.

K2: For all X ∈ B , we have

ϕi(X) = ⟨wt(X),vi − vi+1⟩+ εi(X).

Furthermore, B is called seminormal if

εi(X) = max{k : ek
i (X) ̸= 0} and ϕi(X) = max{k : f k

i (X) ̸= 0}

for all X ∈ B and i ∈ Bn−1.

Definition 19. [Kas93] Let B be an abstract Kashiwara GLn-crystal. For each i ∈ [n−1],

an i-string is a sequence X0, . . . ,Xk ∈ B satisfying:

• ei(X0) = fi(Xk) = 0

• fi(X j) = X j+1 for each j ∈ {0,1, . . . ,k−1}.
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We say X0 is the source of its string. Diagrammatically, we can represent the string as:

X0
i−−−−−−−→ X1

i−−−−−−−→ X2
i−−−−−−−→ ·· · i−−−−−−−→ Xk

It is clear that B can be broken into a disjoint union of i-strings for each i. If we

know B is seminormal, then we have the following well-known result regarding the weight

of elements in an i-string.

Lemma 20. [BS17, Proposition 2.36] Let B be a seminormal abstract Kashiwara GLn-

crystal. Consider the i-string X0, . . . , Xk for some i ∈ [n− 1]. Then wt(X j) = siwt(Xk− j)

for each j ∈ {0,1, . . . ,k}, where si is the operator that swaps the ith entry and the (i+1)th

entry.

Now we describe a well-known example of an abstract Kashiwara crystal. Take

T ∈ SSYTλ and consider its column word. We replace each i by “)” and replace each i+1

by “(”. Then we remove all other numbers. The resulting word is called the i-word of T .

We may pair “(” with “)” in the usual way.

Definition 21. Define εi(T ) as the number of unpaired “(” and ϕi(T ) as the number of

unpaired “)”.

If ϕi(T ) = 0, then fi(T ) := 0. Otherwise, we can find the i in T that corresponds to

the last unpaired “)” in the i-word. We change this i into i+1 and get fi(T ).

If εi(T ) = 0, then ei(T ) := 0. Otherwise, we can find the i+1 in T that corresponds

to the first unpaired “(” in the i-word. We change this i+1 into i and get ei(T ).

It is a well-known result that SSYTλ, together with ei, fi,ϕi,εi and wt, form a

21



seminormal abstract Kashiwara GLn-crystal. Moreover, they correspond to the crystal basis

of the irreducible highest weight Uq(gln) module of highest weight λ.

We can use the operator fi to compute SSYT(α). Let S be a subset of SSYTλ.

Define FiS as {( fi)
j(T ) : T ∈ S, j ≥ 0}−{0}.

Theorem 22 ([Kas93]). Let α be a weak composition such that α+ = λ and αi > 0 for

i > n. We can write α as si1 . . .sikλ, where k is minimized. Then we have

SSYT(α) = Fi1 . . .Fik{uλ}.

Here, uλ is the SSYT with shape λ such that its rth row only has r.

The set SSYT(α), together with the maps, is known as a Demazure crystal.

4.2 The right keys

In this section, we first describe a direct way to compute K+(T ) for SSYT T with

normal shape. Then we generalize the right key to all SVT with normal shape.

4.2.1 Compute right keys using the star operator

We use the following operator to compute right keys. This method is a reformulation

of Willis’ method [Wil13].

Definition 23. First, we define S ⋆m for S ⊆ Z and m ∈ Z. Let m′ be the largest number

in S such that m′ ≤ m. If m′ does not exist, we let S⋆m = S⊔{m}. Otherwise, we define

S⋆m = (S−{m′})⊔{m}.
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More generally, we may define ⋆ to be a right action of the free monoid of words

with characters in the set Z, on the power set of Z. If w = w1 · · ·wn is a word of integers,

we define S⋆w = (· · ·((S⋆w1)⋆w2) · · ·⋆wn), and S⋆w = S if w is the empty word.

Example 24. We have

{2,4,5,7}⋆3462 = {2,3,4,6,7},

{2,4,5,7}⋆1284 = {1,2,4,5,8}.

Lemma 25. We have S⋆w = S⋆w′, if w and w′ are Knuth equivalent.

Proof. Routine case studies.

We have the following way to compute a right key.

Lemma 26. Column j of K+(T ) consists of /0⋆word(T≥ j).

Proof. By definition, column j of K+(T≥ j) equals the last column of T↘
≥ j . Since T↘

≥ j has

antinormal shape, /0⋆word(T↘
≥ j) is the set of numbers in the last column of T↘

≥ j . Then the

proof is finished by word(T≥ j)∼ word(T↘
≥ j) and Lemma 25.

Example 27. Let T be the following SSYT:

1 2 4 7

3 5 6

4 8

6

Then column 1 of K+(T ) consists of /0⋆6431852647 = {2,4,7,8}. Column 2, 3 and 4 of
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K+(T ) consist of: /0⋆852647 = {4,7,8}, /0⋆647 = {4,7} and /0⋆7 = {7}. Thus, K+(T ) is

2 4 4 7

4 7 7

7 8

8

which agrees with Example 4.

4.2.2 Generalizing K+(·) to SVT

In this subsection, we assign a SSYT to each SVT with normal shape. Then we

explains why this assignment naturally generalizes K+(·).

Definition 28. Let T be a SVT with normal shape. Define

Tmax := max
P∈S(T )

(K+(P))

where max is entry-wise.

Example 29. We start with the SVT T . The set S(T ) has two SSYT.

T =
1 23

3
, S(T ) = {

1 2

3
,

1 3

3
} .

We compute the right keys of the two tableaux in S(T ) and get:

2 2

3
and 1 3

3
.
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Take the maximum of each entry and obtain:

Tmax =
2 3

3
.

Remark 30. Readers might wonder whether Tmax can be computed as follows: Pick the

largest number in each entry and compute the right key of this SSYT. The previous example

shows that this approach does not work. If we pick the largest number in each entry, we

obtain
1 3

3

whose right key is not Tmax.

From the definition of Tmax, it is an entry-wise maximum of several SSYT. Thus,

Tmax is also a SSYT. Next, we find an easier way to compute Tmax and show it is a key. We

start with a definition.

Definition 31. For finite S ⊆ Z>0, let word(S) be the word we get if we list numbers of S in

increasing order. For a SVT T , let word(T ) := word(S1) · · ·word(Sn), where S1, . . . ,Sn are

entries of T in the column order.

Now we may introduce an easier way to compute Tmax:

Lemma 32. Let T be a normal SVT. Column j of Tmax consists of /0⋆word(T≥ j), where T≥ j

is obtained by removing the first j−1 columns of T .

Example 33. Let T be the SVT in example 7. Then word(T ) = 567231471336. Column

1 of Tmax consists of /0 ⋆ 567231471336 = {3,6,7}. Column 2 and 3 of Tmax consist of
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/0⋆471336 = {6,7} and /0⋆36 = {6}. Thus,

Tmax =
3 6 6

6 7

7

.

We may check this agrees with the definition of Tmax. First, we compute the right

keys of the two SSYT from S(T ) in example 7. We get

1 6 6

6 7

7

and
3 3 6

4 6

6

,

whose entry-wise maximum is the key above. The right keys of the other 46 SSYT in S(T )

are entry-wise less than or equal to this key.

To prove the lemma, we need the entry-wise maximum of sets:

Definition 34. Let C be a finite collection of sets such that all sets in C have the same size k.

We may view each element of C as a column of a SSYT and take the entry-wise maximum.

Then maxS∈C S is the set corresponding to the resulting column. More explicitly, maxS∈C S

is the set with size k such that its ith smallest number is

max
S∈C

(ith smallest number in S).

Proof of Lemma 32. It is enough to assume j = 1. By the definition of Tmax and Lemma 26,
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column 1 of Tmax consists of maxP∈S(T ) /0⋆word(P). Thus, we need to prove

max
P∈S(T )

/0⋆word(P) = /0⋆word(T ) (4.1)

First, we prove (4.1) for T that only has one column. Let S1, . . . ,Sk be the entries of

T , enumerated from bottom to top. We have min(Si) > max(Si+1) for 1 ≤ i ≤ k−1. As

P ranges over S(T ), word(P) ranges over s1 · · ·sk with si ∈ Si. Thus, /0 ⋆word(P) ranges

over {s1 > · · ·> sk} with si ∈ Si. The left hand side of (4.1) is {max(S1)> · · ·> max(Sk)}.

For the right hand side, notice that /0⋆word(S1) = {max(S1)}. Since max(S1)> max(S2),

/0⋆word(S1)word(S2) = {max(S1),max(S2)}. A simple induction on i would yield

/0⋆word(S1) · · ·word(Si) = {max(S1)> · · ·> max(Si)}.

Since word(T ) = word(S1) · · ·word(Sk), the right hand side of (4.1) is {max(S1) > · · · >

max(Sk)}. We have established (4.1) for T with one column.

Now we prove (4.1) for all SVT T . We perform an induction on the number of

entries of T that are not in column 1. For the base case, we assume T has no such entries.

In other words, T has only one column. This case is checked above.

Now assume T has more than one column. Let X be the highest entry in the

rightmost column of T . We may remove X from T and raise all entries below X . The

resulting filling, T ′, is clearly a SVT. We have

word(T ) = word(T ′)word(X) and

{word(P) : P ∈ S(T )}= {word(P′)x : P′ ∈ S(T ′),x ∈ X}.
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Our goal (4.1) becomes

max
P′∈S(T ′),x∈X

/0⋆word(P′)x = /0⋆word(T ′)word(X). (4.2)

To show this equality, we first find an alternative way to write its right hand side.

By the inductive hypothesis,

max
P′∈S(T ′)

/0⋆word(P′) = /0⋆word(T ′).

Use {a1 < · · · < ak} to denote /0 ⋆word(T ′). We know k = | /0 ⋆word(P′)| for any

P′ ∈ S(T ′). Thus, k is the number of entries in column 1 of K+(P′), which is also the

number of rows in T ′ and T . Consequently, k = | /0⋆word(P)| for any P ∈ S(T ).

Next, we show min(X) ≥ a1 by contradiction. Assume there exists x ∈ X with

x < a1. We may pick P′ ∈ S(T ′) such that min( /0 ⋆word(P′)) = a1. Then consider the

tableau P ∈ S(T ) with word(P) = word(P′)x. We have /0 ⋆word(P) = ( /0 ⋆word(P′)) ⋆ x,

which has more than k numbers. Contradiction.

Since min(X) ≥ a1, we may partition X as X1 ⊔ ·· · ⊔Xk by Xi = X ∩ [ai,ai+1),

where ak+1 = ∞ by convention. Consider the action of word(X) = word(X1) · · ·word(Xk)

on {a1, . . . ,ak}. When Xi acts, ai is still in the set. If Xi is non-empty, ai will be bumped

by min(Xi), which is then bumped by the second smallest number in Xi. Eventually, the

action of Xi replaces ai by max(Xi). Thus, {a1, . . . ,ak}⋆word(X) = {a1 < · · ·< ak}, where

ai = max(Xi) if Xi ̸= /0 and ai = ai otherwise.

We have turned the right hand side of (4.2) into {a1 < · · · < ak}. It remains to

establish the following two statements:
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• For any P′ ∈ S(T ′),x ∈ X and 1 ≤ i ≤ k, the ith smallest number of /0⋆word(P′)x is

at most ai.

• For any 1 ≤ i ≤ k, we may find P′ ∈ S(T ′) and x ∈ X such that the ith smallest number

of /0⋆word(P′)x achieves ai.

Now we prove these two claims.

• Take any P′ ∈ S(T ′) and x ∈ X . Let {b1 < · · ·< bk}= /0⋆word(P′). Our inductive

hypothesis implies bi ≤ ai for all 1 ≤ i ≤ k. Now, assume x bumps b j when acting on

{b1 < · · ·< bk}, becoming the jth smallest number in the resulting set. We only need

to check x ≤ a j. Notice that x < b j+1 ≤ a j+1 with bk+1 = ∞ by convention. Thus,

x ∈ X1 ⊔ ·· · ⊔X j. If X j ̸= /0, a j = max(X j) ≥ x. Otherwise, x ∈ X1 ⊔ ·· · ⊔X j−1, so

x < a j = a j.

• Take 1 ≤ i ≤ k. First, assume Xi ̸= /0. By the inductive hypothesis, we may pick

P′ ∈ S(T ′) such that if we let {b1 < · · ·< bk}= /0⋆word(P′), then bi+1 = ai+1. Pick

x = max(Xi), so bi+1 = ai+1 > x ≥ ai ≥ bi. When x acts on {b1 < · · ·< bk}, it will

bump the bi. The ith smallest number in the resulting set is x = ai. Finally, assume

Xi = /0, so ai = ai. Pick P′ ∈ S(T ′) such that if we let {b1 < · · ·< bk}= /0⋆word(P′),

then bi = ai. Pick any x ∈ X . If x < ai, x will not bump bi when acting on {b1 < · · ·<

bk}. Otherwise, we know x ≥ ai+1 because Xi = /0. Since bi+1 ≤ ai+1 ≤ x, x will not

bump bi when acting on {b1 < · · · < bk}. In either case, the ith largest number of

{b1 < · · ·< bk}⋆ x remains to be bi = ai.

Corollary 35. Tmax is a key .
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Proof. Let j be a positive integer. By Lemma 32, it remains to show

/0⋆word(T≥ j)⊇ /0⋆word(T≥ j+1).

It remains to show S⋆ j ⊇ S′ ⋆ j if S ⊇ S′, which is a routine case study.

Definition 36. The right key of a SVT T is K+(T ) := Tmax.

Remark 37. From the definition, it is clear that SVT(α) = {T : K+(T )≤ key(α)}.

4.3 Abstract Kashiwara crystals on SVTs

To prove our SVT rule, we construct an abstract Kashiwara GLn-crystal on the set

of SVTs.

4.3.1 Constructing an abstract Kashiwara crystal on SVT

The goal of this subsection is to turn SVTλ into an abstract Kashiwara GLn-crystal.

First, we let wt(·) be the weight function on SVT defined earlier. To define the maps φi, εi,

fi and ei, we need to generalize the i-word defined on SSYT.

Definition 38. Take T ∈ SVTλ and i ∈ [n−1]. The i-word of T is a word built by “(”, “)”,

and “)− (” under concatenation. It is created as follows.

Read through entries of T in the column order. Whenever we see a set containing i

but not i+1, we write “)”. Whenever we see a set containing i+1 but not i, we write “(”.

Whenever we see a set containing i and i+1, we write “)− (”.
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Example 39. Consider the following element from B4

T =
1 1 2 23

2 23

34

.

It has 1-word ()()((. It has 2-word ())− ())− (. It has 3-word )− (((.

Take T ∈ SVTλ. Next, we describe a way to break the i-word of T into continuous

sub-words. Ignore all “−” and pair the “(” with “)” in the usual way. Then we construct

an equivalence relation on all characters. This relation is generated by the following two

requirements.

• If an “(” is paired with “)”, then these two characters and everything between them

should be in the same equivalence class.

• For each “)− (”, these three characters are in the same equivalence class.

It is easy to see that each equivalence class is a contiguous sub-word.

Example 40. Assume a SVT has i-word ))− (())− ())− (()− (. Then it is partitioned into

four equivalence classes:

) )− (())− () )− ( ()− (

Notice that any unpaired “)” must be the first character in its class. Any unpaired

“(” must be the last character in its class. Thus, we may classify each class by whether it

starts with an unpaired “)” and whether it ends with an unpaired “(”.

• null form: This class does not have unpaired “(” or “)”. For example, “(()− ())− ()”.
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• left form: This class does not have unpaired “)” but ends with an unpaired “(”. This

class is either “(” or “(u)− (” for some word u. For example, “(())− (” is in this

class.

• right form: This class does not have unpaired “(” but starts with an unpaired “)”.

This class is either “)” or “)− (u)” for some word u. For example, “)− ()− ()” is in

this class.

• combined form: This class start with an unpaired “)” and ends with an unpaired

“(”. This class is either “)− (” or “)− (u)− (” for some word u. For example,

“)− ()− (())− (” is in this class.

In Example 40, the first two classes are right forms. The third class is a combined

form and the last class is a left form. In general, if we ignore the null-forms in a word, then

we have several right forms, followed by zero or one combined form, followed by several

left forms. This idea allows us to define ϕi and εi on SVTλ.

Definition 41. Take T ∈ SVTλ and take i ∈ [n−1]. Let ϕi(T ) (resp. εi(T )) be the number

of right forms (resp. left forms) in the i-word of T .

Then we can check they satisfy the condition (K2) in Definition 18.

Lemma 42. Take T ∈ Bn and i ∈ [n−1]. Then

ϕi(T )− εi(T ) = ⟨wt(T ),vi − vi+1⟩,

where v1, . . . ,vn is the standard basis of Zn.
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Proof. Consider the i-word of T . The left hand side is the number of right forms minus the

number of left forms. Next, observe the following.

• In each right form, there is one more “)” than “(”.

• In each left form, there is one more “(” than “)”.

• In each combined form or null form, the numbers of “(” and “)” are equal.

Thus, ϕi(T )−εi(T ) is also the number of “)” minus the number of “(” in the i-word

of T . Correspondingly, it is the number of i in T minus the number of i+1 in T , which is

⟨wt(T ),vi − vi+1⟩.

To define fi and ei, we first define operators f ′i and e′i on SVTλ ⊔{0}. They can be

viewed as “square roots” of fi and ei: Later, we will define fi(T ) as f ′i ( f ′i (T )) and ei(T ) as

e′i(e
′
i(T )).

Definition 43. Define f ′i ,e
′
i on SVTλ ∪{0}. First, f ′i (0) = e′i(0) = 0. Now take T ∈ SVTλ.

To define f ′i (T ), consider the following cases.

• Case 1: If its i-word has a combined form, we find the entry in T that corresponds

to “)− (” in the beginning of this combined form. We remove i from this entry and

obtain f ′i (T ).

• Case 2: Otherwise, if its i-word has no right forms, we set f ′i (T ) = 0.

• Case 3: Otherwise, find the last right form in its i-word. Find the entry in T that

corresponds to “)” at the end of this right form. Add i+1 to this entry and obtain

f ′i (T ).
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To define e′i(T ), consider the following cases.

• Case 1: If its i-word has a combined form, we find the entry in T that corresponds to

“)− (” in the end of this combined form. We remove i+1 from this entry and obtain

e′i(T ).

• Case 2: Otherwise, if its i-word has no left forms, we set e′i(T ) = 0.

• Case 3: Otherwise, find the first left form in its i-word. Find the entry in T that

corresponds to “(” at the start of this left form. Add i to this entry and obtain e′i(T ).

Example 44. Consider T in Example 39. Its 2-word “())− ())− (” has a null form “()”,

a right form “)− ()” and a combined form “)− (”. The “)− (” in the beginning of this

combined form corresponds to the entry in column 4 of T . We remove the 2 in it and obtain

f ′2(T ).

T =
1 1 2 23

2 23

34

f ′2−→
1 1 2 3

2 23

34

= f ′2(T ).

Now f ′2(T ) has 2-word “())− ()(”. It has no combined form and the last right form

is “)− ()”. The “)” at the end of this right form corresponds to the entry in column 3 of

f ′2(T ). We add a 3 to it and obtain f ′2( f ′2(T )).

f ′2(T ) =
1 1 2 3

2 23

34

f ′2−→
1 1 23 3

2 23

34

= f ′2( f ′2(T )).

Before further investigating f ′i and e′i, we need to make sure when they do not yield

0, the resulting tableau is indeed a SVT.
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Lemma 45. For any T ∈ SVTλ and i ∈ [n−1], f ′i (T ),e
′
i(T ) ∈ SVTλ ⊔{0}.

Proof. We check f ′i (T ) ∈ SVTλ ⊔{0}. The proof for e′i(T ) is similar. Assume f ′i (T ) ̸= 0

and consider what f ′i does on T . If it removes an i from an entry of T , we know that entry

corresponds to an “)−(” in the i-word of T . Thus, this entry has both i and i+1. Removing

i from it will yield a valid SVT.

Now, assume f ′ adds an i+1 to an entry S in T . We know S corresponds to an “)”

in the i-word of T . Moreover, it is the last character in the last right form. We know S

contains i but not i+1. Now let S↓ (resp. S→) be the entry below S (resp. right of S) in T .

We need to check the following two statements.

• The entry S↓, if exists, has no i+ 1: Assume it is not true. Clearly, i is not in S↓,

so S↓ corresponds to an “(” in the i-word of T . It is immediately before the “)”

that corresponds to S. Then this “)” cannot be the last character in a right form.

Contradiction.

• The entry S→, if exists, has no i: Assume it is not true. Since there is no i+1 in S↓ if

it exists, there is no i+1 below S→. We know S→ corresponds to “)− (” or “)”. In

either case, the “)” is unpaired. It must be part of a right form or a combined form.

However, there is no combined form or right form after the “)” that corresponds to S.

Contradiction.

We can also check f ′i and ei satisfy the following property.

Lemma 46. Take T1,T2 ∈ SVTλ and i ∈ [n−1]. Then f ′1(T1) = T2 if and only if e′2(T2) = T1.
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Proof. Let w1 (resp. w2) be the i-word of T1 (resp. T2). Assume f ′1(T1) = T2, so T1 and T2

differ at exactly one entry, say S. Consider what f ′i does. First, assume f ′i removes i from S.

Then S in T1 corresponds to the “)− (” at the beginning of the combined form in w1. The

word w2 is obtained from w1 by turning this “)− (” into “(”. The combined form in w1

becomes a left form in w2. Moreover, it is the first left form in w2. The “(” at the beginning

of this left form corresponds to S in T2. If we apply e′i on T2, it will add i to S and yield T1.

Now assume f ′i puts i+ 1 into S. This entry corresponds to the “)” at the end of

the the last right form in w1. The word w2 is obtained from w1 by turning this “)” into

“)− (”. This right form in w1 becomes a combined form in w2. The “)− (” at the end of

this combined form corresponds to S in T2. If we apply e′i on T2, it will remove i+1 in S

and yield T1.

Consequently, we know f ′i (T1) = T2 implies e′i(T2) = T1. The other direction can

be proved similarly.

Finally, we define fi and ei on SVTλ.

Definition 47. For T ∈ SVTλ, fi(T ) := f ′i ( f ′i (T )) and ei(T ) := e′i(e
′
i(T )).

We can make sure fi and ei changes εi, ϕi and wt correctly.

Lemma 48. Take T ∈ SVTλ and i∈ [n−1]. Assume f ′i (T ), fi( f ′i (T ))∈ SVTλ. Let v1, . . . ,vn

be the standard basis of Zn. Then

εi( fi(T )) = εi(T )+1,

ϕi( fi(T )) = ϕi(T )−1,

wt( fi(T )) = wt(T )− vi + vi+1.
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Proof. Consider what f ′i does on T . If T has a combined form in its i-word, then f ′i removes

an i from T . The combined form in the i-word of T becomes a left form. Thus,

ε( f ′i (T )) = ε(T )+1, ϕ( f ′i (T )) = ϕ(T ), wt( f ′i (T )) = wt(T )− vi.

Otherwise, if T has no combined form in its i-word, then f ′i adds an i+1 to T . A

right form in the i-word of T becomes a combined form. Thus,

ε( f ′i (T )) = ε(T ), ϕ( f ′i (T )) = ϕ(T )−1, wt( f ′i (T )) = wt(T )+ vi+1.

Now consider T and f ′i (T ). Exactly one of these two has a combined form in its

i-word. We know wt( fi(T )) is either wt( f ′i (T ))− vi = wt(T )+ vi+1 − vi or wt( f ′i (T ))+

vi+1 = wt(T )− vi + vi+1. Our claim of ϕi( fi(T )) and εi( fi(T )) can be checked similarly.

Now we can establish the main result of this subsection.

Theorem 49. The set SVTλ, together with maps fi,ei,εi,ϕi and wt, is a seminormal abstract

Kashiwara GLn-crystal.

Proof. We have established the two axioms in Definition 18: Axiom (K1) follows from

Lemma 46 and Lemma 48; Axiom (K2) is checked in Lemma 42.

Next, we check it is seminormal. Take T ∈ SVTλ. Each time we apply ei, the i-word

of T would lose one left form. Thus, eεi(T )
1 (T ) has no left form. We have εi(T ) = max{k :

ek
i (T ) ̸= 0}. The other equality can be proved similarly.
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Example 50. In the picture on the next page, we depict the 27 elements of B3 with shape

(2,1). A blue solid arrow represents the f ′1 operator and a red dashed arrow represents the

f ′2 operator. Thus, by following two consecutive blue solid arrows, one can move from T to

f1(T ). By following two consecutive red dashed arrows, one can move from T to f2(T ).

One can see how our crystal operators differ from the crystal operators defined

in [MPS20] by comparing the picture next page with Figure 1 in [MPS20]. For example,

consider the first SVT in the fourth row of picture next page. The f2 in our definition sends

it to the first SVT in the sixth row. The f2 in [MPS20] would send it to the third SVT in the

sixth row.
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4.3.2 Double i-strings

In this subsection, we introduce and investigate double i-strings, which can be

viewed as analogues of i-strings. Based on the definition in Chapter 2, an i-string in

SVTλ is a sequence of SVT T0, . . . ,Tk such that ei(T0) = fi(Tk) = 0 and fi(Tj) = Tj+1 for

j = 0,1, . . . ,k−1.

Example 51. The following are 2-strings in B3.

1 2

2

1 3

2

1 3

3

1 23

2

1 3

23

2 2

2

Now we generalize this notion and define a double i-string. We simply replace ei

and fi in the definition of an i-string by e′i and f ′i .

Definition 52. Take i ∈ [n−1]. A double i-string is a sequence T0, . . . ,Tk ∈ SVTλ such that

e′i(T0) = f ′i (Tk) = 0 and f ′i (Tj) = Tj+1 for each j ∈ {0,1, . . . ,k−1}.

We say T0 is the source of its double i-string. Diagrammatically, we can represent

the double i-string as:

T0 T2 T4 · · · Tk−2 Tk,

T1 T3 T5 · · · Tk−1

i

i

i

i

i

i

i i

i
i

i

i

i i i

i

where solid arrow represents fi and dash arrow represents f ′i .
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Remark 53. A double i-string can be viewed as a refinement of the “i-K-string” in [MPS20].

If we remove all dash arrows except the one from T0 to T1, we get an i-K-string.

We make some basic observations about a double i-string.

Lemma 54. Let T0, . . . ,Tk be a double i-string. Then we have the following.

1. The number k is even.

2. If k ≥ 2, then this double i-string consists of two i-strings: T0,T2, . . . ,Tk and T1,T3, . . . ,

Tk−1. An element in the former i-string has no combined form in its i-word. An

element in the latter i-string has a combined form in its i-word.

3. wt(T2 j+1) = wt(T2 j)+ vi+1.

4. wt(T2 j) = wt(T2 j−1)− vi.

Proof. We know T0 and Tk have no combined forms in their i-word. By the definition

f ′i , the i-word of Tj+1 has a combined form if and only if the i-word of Tj has no

combined form. This implies (1). (2) is immediate. (3) and (4) follow from the proof

of Lemma 48.

Example 55. The following is a double 2-string in B3.

1 2

2

1 3

2

1 3

3

1 23

2

1 3

23

2

2

2

2
2

2

2
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This double 2-string consists of two 2-strings that appear in the previous example.

Observe that the three SVT in the first row do not have combined forms in their 2-words,

while the two SVT on the second row have.

4.3.3 Double i-string and the right key

This subsection investigates how the right key is changed in a double i-string. More

explicitly, we prove:

Lemma 56. Let T0,T1, . . . ,T2k be a double i-string in SVTλ. Assume K+(T0) = key(α).

Then αi ≥ αi+1, and there are two possibilities:

• K+(T1) = · · ·= K+(Tk) = key(α), or

• K+(T1) = · · ·= K+(Tk) = key(siα).

Example 57. Let T0, . . . ,T4 be the double 2-string of B3 in Example 55. We have K+(T0) =

key(α) and K+(T1) = · · ·= K+(T4) = key(siα), where α = (1,2,0)

To prove Lemma 56, we study how f ′i and e′i change K+(T ), where T ∈ SVTλ has

a combined form in its i-word. We start with a few basic properties about the ⋆ operator.

Lemma 58. Let S be a finite subset of Z. Pick i ∈ Z and assume w is a word of Z with no

i+1. Then if S⋆ iw contains i+1, it must also contain i.

Proof. If i+ 1 /∈ S ⋆ i, then i+ 1 /∈ S ⋆ iw since w has no i+ 1. We are done in this case.

Otherwise, i, i+1 ∈ S⋆ i. When w acts on S⋆ i, to change the i, it first needs to bump the

i+1. Thus, i remains in S⋆ iw if it contains i+1.
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Definition 59. Let S a finite subset of Z. We define the set ∂iS according to the following

cases

• If i, i+1 ∈ S, then ∂iS = S.

• If i ̸∈ S and i+1 ̸∈ S1, then ∂iS = S.

• If i ∈ S and i+1 ̸∈ S1, then ∂iS = S−{i}⊔{i+1}.

• If i /∈ S and i+1 ∈ S1, then ∂iS is undefined.

Lemma 60. Let S1 be a set such that ∂i(S1) is defined. Let S2 = ∂iS1. Then we have the

following.

• For any x ̸= i or i+1, the set S2 ⋆ x is S1 ⋆ x or ∂i(S1 ⋆ x);

• S2 ⋆ (i+1) = S1 ⋆ (i+1).

Proof. If S1 = S2, then clearly S2 ⋆ x = S1 ⋆ x and S2 ⋆ (i+1) = S1 ⋆ (i+1). Now assume

S1 ̸= S2 (i.e. i ∈ S and i+1 /∈ S). We know S2 is obtained by changing the i in S1 into i+1.

We check the two statements.

• If x bumps some y ̸= i in S1 or adds itself to S1, then x would do the same in S2,

so S2 ⋆ x = ∂i(S1 ⋆ x). Now if x bumps i in S1, then it would bump i+ 1 in S2, so

S2 ⋆ x = S1 ⋆ x.

• The i+1 must bump i in S1 and i+1 in S2, so S2 ⋆ (i+1) = S1 ⋆ (i+1).

With these basic tools, we can investigate how f ′i and e′i affects the right key.
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Lemma 61. For T ∈ Bn and i ∈ [i−1], K+( f ′i (T )) = K+(T ) if T has a combined form in

its i-word.

Proof. Assume f ′i removes i from the entry S, which is in column c of T . Then clearly

K+(T ) and K+( f ′i (T )) must agree on column j if j > c. We only need to worry about

column j of K+(T ) and K+( f ′i (T )) for j ≤ c. Let T≥ j be the SVT obtained by removing

the first j−1 columns of T . Let u = word(T≥ j). Recall that column j of K+(T ) is /0⋆u.

We may write u as u1 i i+1 u2, where the i and i+1 correspond to the i and i+1

in S. Then column j of K+( f ′i (T )) is /0⋆u1 (i+1) u2. Thus, it remains to prove:

( /0⋆u1)⋆ i (i+1) = ( /0⋆u1)⋆ (i+1) (4.3)

Consider the i-word of T . The combined form must follow a right form or a null-

form or nothing. Thus, the character before the combined form must be “)” or nothing. In

other words, u1 has two possibilities: has neither i nor i+1, or has the form u1
1 i u2

1, where

u2
1 has no i+1. By Lemma 58, we have either i+1 ̸∈ /0⋆u1 or i, i+1 ∈ /0⋆u1. Now we

study these two cases.

1. Assume we have the former case. If we let i act on /0⋆u1, it will change a number

into i, or add itself to it. Then if we let i+1 act on the result, it will replace the i by

i+1, which is the same as ( /0⋆u1)⋆ (i+1).

2. Assume we have the latter case. Action of i or i+1 on /0⋆u1 will not do anything.

Both sides of (4.3) must agree with /0⋆u1.
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Similarly, for e′i, we have:

Lemma 62. Take T ∈ Bn and i ∈ [i− 1]. Assume T has a combined form in its i-string.

Assume K+(T ) = key(α). If T also has a left form, then K+(e′i(T )) = key(α). If T has no

left form, then K+(e′i(T )) = key(α) or key(siα).

Proof. Assume e′i removes i+1 from the entry S, which is in column c of T . Then clearly

column j of K+(T ) and K+(e′i(T )) must agree if j > c. We only need to worry about

column j of K+(T ) and K+( f ′i (T )) for j ≤ c. Let T≥ j be the SVT obtained by removing

the first j−1 columns of T . Let u = word(T≥ j). Recall that column j of K+(T ) is /0⋆u.

We may break u into u1 i (i+1) u2, where the i and i+1 correspond to the i and

i+1 in S. Then column j of K+(e′i(T )) is /0⋆u1 i u2. Thus, it remains to compare:

( /0⋆u1)⋆ i (i+1) u2 and ( /0⋆u1)⋆ i u2.

Let S1 = ( /0⋆u1)⋆ i and S2 = ( /0⋆u1)⋆ i (i+1). Clearly, i ∈ S1. If i+1 ∈ S1, then

i, i+1 ∈ S1 and S1 = S2. If i+1 ̸∈ S1, then S2 = S1 −{i}⊔{i+1}. In either case, we have

S2 = ∂iS1.

Now we think about the i-word of T . The combined form must be followed by a

left form or a null-form or nothing. Thus, the character after the combined form must be “(”

or nothing. In other words, we have two cases.

• Case 1: The word u2 can be written as u1
2 (i+ 1) u2

2. By Lemma 60, S2 ⋆ u1
2 =

∂i(S1 ⋆u1
2). Then S2 ⋆u1

2 (i+1) = S1 ⋆u1
2 (i+1), so S2 ⋆u2 = S1 ⋆u2.

• Case 2: The word u2 has no i or i+1. By Lemma 60, S2 ⋆u2 = ∂i(S1 ⋆u2).
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The second case is possible only when the i-word of T has no left form. This is exactly

what we need to prove.

Now we are ready to prove Lemma 56.

Proof of Lemma 56. First, we consider T0. Since it has neither combined form nor left

form, its last character in the i-string, if exists, must be “)”. Thus, columns of K+(T0) will

be /0 ⋆ u1 i u2 or /0 ⋆ u, where u2 and u have no i or i+ 1. By Lemma 58, if a column of

K+(T0) has i+1, it must also have i. Thus, αi ≥ αi+1.

Now by Lemma 61, we know K+(T2 j−1) = K+(T2 j) where j ∈ [k]. By Lemma 62

we know K+(T2 j) = K+(T2 j+1) where j ∈ [k]. Thus, T1, . . . ,T2k all have the same right key.

Finally, notice that T1 is the source of its i-string, so it has no left form. By

Lemma 62 again, K+(T1) = key(α) or key(siα), where α = K+(T0).

Corollary 63. Let T be a SVT. If fi(T ) ̸= 0 and K+(T ) ̸= K+( fi(T )), then T must be the

source of its double i-string.

4.3.4 Proof of Theorem 12

In this subsection, we derive a few lemmas and then use them to prove Theorem 12.

First, we describe a well-known result that is implicit in [Kas93]. It states that the generating

function of each i-string behaves nicely under πi. For the sake of completeness, we provide

a brief proof.

Lemma 64. For each i-string T0, . . . ,Tk, we have

πi(xwt(T0)) =
k

∑
j=0

xwt(Tj).
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Proof. Write xwt(T0) as mxa
i xb

i+1, where m is a monomial with no xi or xi+1. By Lemma 20,

xwt(Tk) = mxb
i xa

i+1. Thus, k = b−a. Finally, we have

πi(xwt(T0)) =mπi(xa
i xb

i+1)

=m
b−a

∑
j=0

xa− j
i xb+ j

i+1

=
k

∑
j=0

xwt(Tj).

As mentioned earlier, double i-string can be viewed as a refinement of i-K-string

in [MPS20]. Authors of [MPS20] knew that the generating function of an i-K-string

behaves nicely under π
(β)
i : Applying π

(β)
i on the weight of the source yields the generating

function of a whole i-K-string. This property is also satisfied by double i-strings. The

following is implicit in [MPS20, Theorem 7.5].

Lemma 65. For each double i-string T0, . . . ,T2k, we have

π
(β)
i (xwt(T0)β

ex(T0)) =
2k

∑
j=0

xwt(Tj)β
ex(Tj),

π
(β)
i (

2k

∑
j=0

xwt(Tj)β
ex(Tj)) =

2k

∑
j=0

xwt(Tj)β
ex(Tj).

Proof. First, we establish the first equation using the argument in [MPS20]. Notice that

π
(β)
i ( f ) = πi( f +βxi+1 f ).
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Thus, its left hand side becomes

πi(xwt(T0)β
ex(T0)+βxi+1xwt(T0)β

ex(T0)).

Notice that xwt(T1) = xwt(T0)xi+1 and ex(T1) = ex(T0)+1. We can further simplify the left

hand side into

πi(xwt(T0)β
ex(T0)+ xwt(T1)β

ex(T1))

=πi(xwt(T0)β
ex(T0))+πi(xwt(T1)β

ex(T1)).

Then the first equation is established by Lemma 64.

For the second equation, notice that ∑
2k
j=0 xwt(Tj)βex(Tj) is symmetric in xi and xi+1.

Then the equation is established by the fact: π
(β)
i ( f ) = f if si( f ) = f .

Next, we describe SVT(α) in terms of double i-strings.

Lemma 66. Take any weak composition α. For each double i-string T0, . . . ,T2k, if Ti ∈

SVT(α) with i > 0, then T0, . . . ,T2k ∈ SVT(α).

Proof. We know K+(Ti)≤ key(α). Since T1, . . . ,T2k all have the same right key, they are

all in SVT(α). By Lemma 56, K+(T0)≤ K+(Ti), so T0 ∈ SVT(α).

The following is analogous to [Kas93, Proposition 3.3.5].

Corollary 67. For a weak composition α and a double i-string S = {T0, . . . ,T2k}, we know

SVT(α)∩S is S, /0, or {T0}.
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Lemma 68. Let α be a weak composition such that αi >αi+1. We can decompose SVT(siα)

into a disjoint union of double i-strings. For each of the double i-string in SVT(siα),

SVT(α) either contains its source or all of it.

Example 69. When α = (1,2,0), the set SVT(s2α) is a disjoint union of three double

2-strings. Besides the double 2-string in Example 55, it also contains

1 12

2

1 13

2

1 13

3

1 123

2

1 13

23

2

2

2

2
2

2

2

and

1 1

2

1 1

3
.

1 1

23

2

2
2

For each of these three double 2-strings, the set SVT(α) only contains the source.

Proof. Let T0, . . . ,T2k be a double i-string that intersects with SVT(siα). Corollary 67

implies T0 ∈ SVT(siα). Let γ=wt(K+(T0)), then key(γ)≤ key(siα). We know each SVT in

this double i-string has right key key(γ) or key(si(γ)). Since αi > αi+1, key(siγ)≤ key(siα).

Thus, the whole double i-string is in SVT(siα).

Lemma 56 implies that γi ≥ γi+1, so key(γ)≤ key(α). We have T0 ∈ SVT(α). By

49



Corollary 67, SVT(α) either contains T0 or the whole double i-string.

Now we are ready to prove our first main result:

Proof of Theorem 12. We only need to check ∑T∈SVT(α) xwt(T )βex(T ) satisfies the recursive

definition of L(β)
α . In other words, we need to prove:

• If α is a partition, then

∑
T∈SVT(α)

xwt(T )βex(T ) = xα.

• If αi > αi+1, then

π
(β)
i ( ∑

T∈SVT(α)
xwt(T )βex(T )) = ∑

T∈SVT(siα)

xwt(T )βex(T ) (4.4)

The first statement is immediate. For the second one, we break SVT(α) into A⊔B. The

set A consists of all T whose whole double i-string is in SVT(α). The set B contains all

T ∈ SVT(α) such that part of its double i-string is not in SVT(α). Let B be the union of

double i-strings who intersect with B. By Lemma 68, elements in B are sources of double

i-string and SVT(siα) = A⊔B. Now by Lemma 65,

π
(β)
i ( ∑

T∈A
xwt(T )βex(T )) = ∑

T∈A
xwt(T )βex(T ),

π
(β)
i ( ∑

T∈B
xwt(T )βex(T )) = ∑

T∈B

xwt(T )βex(T ).

Equation (4.4) is obtained by summing up the two equations above.
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Chapter 4, in full, is a reprint of the material as it appears in Set-valued tableaux

rule for Lascoux polynomials. Tianyi Yu, Combinatorial Theory, 2023. The dissertation

author was the primary investigator and author of this paper.
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Chapter 5

Proving the RSVT formula

In this section, we prove Theorem 15. The first step is to rewrite it as a rule involving

RSSYT, instead of RSVT, using the following notion:

Definition 70. For a RSSYT T , define WT(T ) by

WT(T ) = ∑
T ′

β
ex(T ′)xwt(T

′),

where the sum is over all RSVT T ′ with L(T ′) = T .

Then Theorem 15 can be rewritten as:

Theorem 71. For a weak composition α, we have

L
(β)
α = ∑

T∈RSSY T (α)
WT(T )

It is clear that Theorem 15 and Theorem 71 are equivalent. Readers may still insist

that Theorem 71 involves RSVTs, since they appear in how we defined WT(T ). The
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following lemma resolves this issue:

Lemma 72. For any RSSYT of shape λ,

WT(T ) = xwt(T ) ∏
(s,k)

(1+βxk) (5.1)

where (s,k) runs over pairs such that s is a box in λ, k is less than the value of T in that

box, and replacing the s-th entry of T by k results in a RSSYT.

Proof. Consider the following way of turning T into a RSVT in L−1(T ). Let a be an entry

in T . Let b be the entry on its right and b = 1 if such an entry does not exist. Let c be

the entry below a and c = 0 if such an entry does not exist. We turn a into {a}, and then

add some numbers to this set. We may add any k such that a > k, k > c and k ≥ b. Not

adding this k will contribute 1 and adding this k will contribute an βxk. Thus, each such k

contributes (1+βxk). Clearly, the choices are independent and any element in L−1(T ) can

be obtained this way.

In the rest of this chapter, we show Theorem 71 using only RSSYTs. The idea is to

show the sum in Theorem 71 satisfies the defining recursion of Lascoux polynomials. Fix

an i throughout the rest of this chapter In section 5.1, we partition all RSSYTs into several

families. In section 5.2, we investigate the left keys of RSSYTs in a family. In section 5.3,

we derive a few identities regarding the operators πi and π(β). Finally, in section 5.4, we

study the weight-generating function over RSSYTs in a family and particularly how the

operators apply to them. Then we can prove Theorem 71.
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5.1 Partitioning RSSYTs

Let T be a RSSYT. We classify its i and i+1 into 3 categories: “ignorable”, “frozen”,

and “free”. First, we find all pairs of i+1 and i that appear in the same column. We pair

them and say they are “ignorable”. Next, we find non-ignorable i and i+1 such that:

1. i is on the left of i+1.

2. Any column between them must have an ignorable pairs.

We pair them and say they are “frozen”. Other non-ignorable i and i+1 are called “free”.

Example 73. When i = 3, consider the following RSSYT:

6 6 6 6 4 4

5 4 3 3

4 3

The red entries are ignorable and blue entries are frozen. Other 3 and 4 are free.

Based on this labelling, we may partition RSSYTs into families.

Definition 74. A family is an equivalence class under the transitive closure of the following:

two RSSYTs are related if they differ by changing a single i into an i+1 (or vice versa)

where the changed letters are free in both tableaux.

Example 75. Consider the reverse tableau in the previous example. Its family also includes:

6 6 6 6 4 3

5 4 3 3

3 3

6 6 6 6 4 3

5 4 3 3

4 3

6 6 6 6 4 3

5 4 4 3

4 3
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6 6 6 6 4 4

5 4 3 3

3 3

6 6 6 6 4 4

5 4 4 3

4 3

However, the following is in another family:

6 6 6 6 4 3

5 4 4 3

3 3

Given an RSSYT, how can we write down all the elements from its family? Clearly,

to obtain its family members, we can only change its free entries. We also need to make

sure they are still free after our changes. In other words, assume a and b are two free entries.

If a is on the left of b and all columns between them have ignorable pairs, then we cannot

change a into i and b into i+1. This criterion leads to the following definition.

Definition 76. Let T be a RSSYT. We partition its free i and i+1 into “blocks”. Two entries

are in the same block iff all columns between them have ignorable pairs.

Thus, to enumerate the family of a RSSYT T , we just replace entries in each block

by a weakly decreasing (from left to right) sequence of i and i+1. The reader may check

the enumeration of the family in the previous example.
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5.2 Families and left keys

This subsection aims to describe the left keys of a family. This idea is formalized in

the following lemma:

Lemma 77. Let F be a family. Then its elements can have at most 2 different left keys. If

they all have the same left key γ, then γi ≥ γi+1.

If they have two different left keys, then they must be γ and siγ, where γi > γi+1. In

this case, we also have:

1. T ∈ F has left key γ iff T ’s leftmost block only has i.

2. All columns before the first block must have ignorable pairs.

Before proving the lemma, we need to introduce an algorithm that computes the left

key. The algorithm is introduced in section 5 of [Wil13]. Here we describe this algorithm

in a slightly different way.

Definition 78. Given two sets C1,C2 of numbers, we define the set C1 ◁C2 as follows.

Assume C2 = {a1 < a2 < · · ·< am}. We find the smallest b1 in C1 such that b1 ≥ a1. Then

we find the smallest b2 in C1 such that b2 ≥ a2 and b2 > b1. Similarly, we find b3, . . .bm.

Let C1 ◁C2 = {b1 < b2 < · · ·< bm}.

More generally let C1,C2, . . . ,Ck be finite sets of numbers. Observe that the follow-

ing expression is well-defined when j ≤ k

C j ◁ · · ·◁Ck :=C j ◁ (C j+1 ◁ · · ·◁Ck)
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where the base case is

Ck ◁ · · ·◁Ck :=Ck

For a RSSYT T , let C j be the set of numbers in column j of T . Then column k of

K−(T ) consists of C1 ◁ · · ·◁Ck by [Wil13].

To study this algorithm, we need to classify columns of T . We may identify a

column of a RSSYT with the set of numbers in it. Each column can be classified as follows:

1. Type 1 column: It has neither i nor i+1.

2. Type 2 column: It has i but no i+1.

3. Type 3 column: It has i+1 but no i.

4. Type 4 column: It has both i and i+1.

Now we make several observations.

Lemma 79. If C1 has type 4 and C2 does not have type 3, then C1 ◁C2 cannot have type 3.

Proof. Assume C1 ◁C2 has type 3. Then we must pick i+ 1 in C1 for some m in C2.

Moreover, i in C1 is never picked. Thus, m must be i+1 and C2 cannot have i. C2 has type

3, contradiction.

Lemma 80. Let T be a RSSYT with no free i+1. Assume γ = K−(T ). Then γi ≥ γi+1.

Proof. Let C1,C2, . . . be columns of T . Consider column k of K−(T ). We only need to

prove it cannot have type 3.

Suppose C1, . . . ,Ck all have type 4. Then Lemma 79 guarantees C1 ◁ · · ·◁Ck cannot

have type 3. Otherwise, we can find j ≤ k such that C1, . . . ,C j−1 have type 4 and C j does
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not have type 4. Since T has no free i+1, C j must have type 1 or 2. Then C j ◁ · · ·◁Ck must

also have type 1 or 2. By Lemma 79, C1, . . . ,C j−1 cannot turn it into type 3.

Lemma 81. Assume C2 has type 2. We change its i into i+ 1 and obtain C′
2. Assume

concatenating C1 and C′
2 yields a RSSYT. Then,

1. If C1 has type 4, then C1◁C2 =C1◁C′
2, or C1◁C′

2 is obtained from C1◁C2 by changing

an i into i+1.

2. If C1 has type 1 or 3, then C1 ◁C2 =C1 ◁C′
2.

Proof. We do a case study based on the type of C1.

1. Assume C1 has type 4. When we consider i in C2, there are 3 possibilities: The i in

C1 is picked; or a number larger than it is picked; or the i is still available.

In the first 2 cases, clearly this i in C2 behaves as if it is an i+1. Then C1◁C2 =C1◁C′
2.

In the last case, i in C2 picks i, and i+1 in C′
2 picks i+1. Our claim is clear.

2. Assume C1 has type 1 or 3. Clearly the i in C2 behaves as if it is an i+ 1, so

C1 ◁C2 =C1 ◁C′
2.

Lemma 82. Let T be a RSSYT. Assume column j of T has a free i, which is the leftmost

free i in its block. We change this i into i+1 and get T ′. If γ = K−(T ), then K−(T ′) = γ or

siγ. Moreover, if the latter case happens, we must have:

1. The i we changed is in the leftmost block of T .

2. Each of column 1, . . . , j−1 of T has ignorable pairs.

58



Proof. Let C1,C2, . . . be the columns of T . Let D1,D2, . . . be the columns of T ′. Consider

column k of K−(T ) and K−(T ′). If k < j, then clearly they are the same. Now assume

k > j. Let C =C j+1 ◁ · · ·◁Ck. Because the i in column j is free, we know that C j+1, . . . ,Ck

all have type 4, or the leftmost non-type-4 column among them has type 1 or 2. Similar

to the proof of Lemma 80, C cannot have type 3. Next, we compare C j ◁C and D j ◁C. If

i in C j is picked by x in C, then this x will pick i+ 1 in D j. Thus, D j ◁C is obtained by

changing i in C j ◁C into i+1. If i in C j is not picked, the i+1 in D j will not be picked.

Then C j ◁C = D j ◁C.

Consequently, if k ≥ j, C j ◁ · · · ◁Ck agrees with D j ◁ · · · ◁Dk, or the latter differs

from the former by changing an i into i+1. In Lemma 81, we showed this difference might

be preserved or corrected by type 4 columns. If C1, . . . ,C j−1 all have type 4, then we know

column k of K−(T ) agrees with column k of K−(T ′), or the latter differs from the former

by changing an i into i+1. Otherwise, we let l be the largest such that l < j and Cl does

not have type 4. Since the i in column j of T is the leftmost i in its block, Cl must have

type 1 or 3. By Lemma 81,

Cl ◁ · · ·◁Ck = Dl ◁ · · ·◁Dk

Thus, each column of K−(T ′) either agrees with the corresponding column in

K−(T ), or differs by changing an i into i+1. Since K−(T ′) is a key, we have K−(T ′) = γ

or siγ. In the latter case we know C1, . . . ,C j−1 have type 4. Our claims are immediate.

Now we may prove Lemma 77.

Proof. First pick T from F that has no free i+ 1. Assume γ = K−(T ). By Lemma 80,
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γi ≥ γi+1.

Then we enumerate other elements in F by changing free i in T into i+1. As long

as we do not change the first block, the left key will still be γ. Once we change the first i in

the first block, the left key might be fixed, or turned into siγ. The latter case is possible only

when all columns before the first blocks have ignorable pairs. After that, no matter which i

we change, the left key will be fixed.

5.3 πi and π
(β)
i

In this subsection, we derive some basic facts about πi and π
(β)
i . Define Xi =

xi(1+βxi+1) and Xi+1 = xi+1(1+βxi). Then we have

1. si(Xi) = Xi+1

2. πi( f ) = ∂i(xi f ) and π
(β)
i ( f ) = ∂i(Xi f )

3. ∂i(Xi) = ∂i(xi) = 1.

The following lemma describes how ∂i acts on a product of several xi and Xi:

Lemma 83. Assume we have u1, . . . ,un, where each u j is either xi or Xi. Then

∂i(u1 . . .un) =
n

∑
j=1

si(u1 . . .u j−1)u j+1 . . .un

For instance,

∂i(xiXixiXi) = XixiXi + xi+1xiXi + xi+1Xi+1Xi + xi+1Xi+1xi+1
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Proof. Notice:

∂i(u1 . . .un) = ∂i(u1)u2 . . .un + si(u1)∂i(u2 . . .un)

= u2 . . .un + si(u1)∂i(u2 . . .un)

Then the proof is finished by induction.

Corollary 84. Assume we have u1, . . . ,un, where each u j is either xi or Xi. Then

πi(u1 . . .un) = u1 . . .un + xi+1

n

∑
j=1

si(u1 . . .u j−1)u j+1 . . .un (5.2)

π
(β)
i (u1 . . .un) = u1 . . .un +Xi+1

n

∑
j=1

si(u1 . . .u j−1)u j+1 . . .un (5.3)

5.4 WT(T ) and Family

In this subsection, we investigate how WT(T ) works and how it changes within a

family. More explicitly, the goal is to understand: ∑T∈F WT(T ) where F is a family.

The first step is to understand what governs the power of (1+ βx j) in WT(T ).

Based on our definition, each row can have at most one entry that contributes (1+βx j) for

a fixed j. How is it determined whether a row has such a contributor? The following lemma

answers this question. To make it concise, we adopt the following convention throughout

the rest of this section: a 0 is appended below each column in a RSSYT.

Lemma 85. A row has an entry that contributes (1+βx j) iff we can find an entry j′ on this

row such that:
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1. j′ > j

2. The entry below j′ is less than j.

Proof. Assume an entry m contributes 1+βx j. Then clearly m > j and the entry below m

is less than j. The row of m clearly satisfies the requirement.

Conversely, assume a row has j′ that satisfies the two requirements. Moreover, we

pick the rightmost j′ among all such j′ on this row. Then the entry to the right of j′ either

does not exist or is at most j. Changing this j′ to j will make T a valid anti-SSYT. Thus,

this entry contributes (1+βx j).

With this lemma, we may ascribe contributions of (1+βx j) to rows, instead of

entries. However, we would like to ascribe contributions of (1+βxi) and (1+βxi+1) to

specific entries, but the rule is different from our previous criterion. If a row contributes

(1+βxi), then we may find the leftmost entry on this row satisfying:

1. It is larger than i.

2. The entry below it is less than i.

We say this entry contributes an (1+βxi). Similarly, if a row contributes (1+βxi+1), then

we may find the rightmost entry on the row below satisfying:

1. It is less than i+1.

2. The entry above it is larger than i+1.

We say this entry contributes an (1+βxi+1). To illustrate our new “contribution system”,

consider the following example:
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Example 86.

6 6 6 6 4 4

5 4 4 3 0 0

4 3 0 0

0 0

When i = 3, each blue 4 contributes x4(1+βx3). The red 3 contributes x3(1+βx4).

Now we fix an arbitrary family F throughout this subsection. Take any T ∈ F . Let

m be the number of blocks in T . Then we may break WT(T ) into a product:

WT(T ) = gT f T
1 . . . f T

m

Here, f T
j is the contribution of the jth block in T from left to right. gT contains the

contribution of xi, xi+1, (1+βxi) and (1+βxi+1) from all other entries. It also contains

powers of x j and (1+βx j) with j ̸= i or i+1. Next, we analyze these polynomials. Let us

start with gT :

Lemma 87. gT is invariant within the family. Moreover, sigT = gT .

Proof. Clearly, changing free entries will not affect powers of x j and (1+βx j) with j ̸= i

or i+1. Let us focus on powers of xi, xi+1, (1+βxi) and (1+βxi+1). Each ignorable pair

contributes xixi+1. Now, consider a frozen i. The column on its right must have an ignorable

pair or a frozen i+1. In either case, if we look at the entry the entry above it and the entry

on its top right:
a b

i

We must have a > i + 1 ≥ b. Thus, a frozen i always contributes xi(1 + βxi+1) = Xi.
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Similarly, a frozen i+1 always contributes Xi+1. Thus, each frozen pair contributes XiXi+1.

Now, we still need to look at contributions of (1+βxi) and (1+βxi+1) by entries

that are not i or i+1. Assume j is an entry that contributes (1+βxi+1) and j is not i or

i+1. Let j′ be the entry above j. Then j < i and j′ > i+1. There is a k′ on the row of j′

such that k′ contributes (1+βxi). Also, k′ is weakly left of j′. The diagram looks like:

k′ . . . j′

k . . . j

with k′ > i+1 and k < i. We pair this j with k′. Similarly, given such k′, we can find its

corresponding j. In other words, we pair (1+βxi) contributors with (1+βxi+1) contributors

that are not i or i+1. This pairing is clearly invariant under changing free entries.

Due to this result, we may change our notation gT into gF , since it only depends on

F . The next step is to study each f T
j . Clearly, a free i contributes either xi or Xi. How can

we determine its contribution? Consider the following lemma:

Lemma 88. Choose a free i in T . If it is not the last entry in its block, then it contributes xi

iff it is contiguous to the next free i. If it is the last entry in its block, then it contributes xi iff

one of the following happens:

1. It is in the highest row.

2. There is a b on its top right:
b

i with b > i+1.

Proof. First, assume i is not the last entry in its block. We study the entry on its right:

1. The column on its right has ignorable pair. Then we look at
a b
i where our chosen i

is red. We must have a > i+1 ≥ b. This i contributes Xi.

64



2. The column on its right has a free i and this free i is in the same row. Then we have
a

i i with a > i+1, or our chosen i is in the top row. In either case, it contributes xi.

3. The column on its right has a free i and this free i is not on the same row as our

chosen i. Then we have
a b
i with a > i+1 and b ≤ i. Our chosen i contributes Xi.

Now assume i is the last entry in its block. If it is in the top row, then it clearly

contributes xi. Otherwise, we look at:
a b
i We know a > i+1. If b exists and b > i+1,

then clearly our i contributes xi. Otherwise, our i contributes Xi.

Similarly, for i+1, we have:

Lemma 89. Choose a free i+1 in T . If it is not the first entry in its block, then it contributes

xi+1 iff it is contiguous to the previous free i+1. If it is the first entry in its block, then it

contributes xi+1 iff there is an a on its lower left with a < i.

i+1

a

We omit the proof since it is basically the same as the previous one.

Now we understand how the free entries contribute. Clearly, the contribution

of one block is independent from other blocks. This implication allows us to simplify

∑T∈F WT(T ). In this family F , there are a j +1 ways to fill the block j, where a j is the

number of entries in block j. Let f l
j be the contribution of this block when the number of
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(i+1)’s is l. l ranges between 0 and a j. Then we have the following:

∑
T∈F

WT(T ) = gF
m

∏
j=1

(
a j

∑
l=0

f l
j

)

Then we have

Lemma 90.
a j

∑
l=0

f l
j = πi( f 0

j ) or π
(β)
i ( f 0

j )

Moreover, take any T ∈ F such that its jth block has an i+1. Then we are in the

second case iff the first i+1 in the jth block of T contributes Xi+1.

Proof. First, assume block j only has i. Let up be the contribution of the pth free entry.

Then f 0
j = u1 . . .ua j and each up = Xi or xi.

We change the first free i into i+ 1. By Lemma 88, this change only affects the

first entry’s contribution. Then f 1
j = vu2 . . .ua j with v = xi+1 or Xi+1. If a j = 1, we are

done by Corollary 84. Otherwise, we change the second free i into i+ 1. The second

i+ 1 contributes xi+1 iff it is contiguous to the first free entry. Also, u1 = xi iff the first

entry is contiguous to the second entry. Thus, we know the second entry contributes siu1.

f 2
j = vsi(u1)u3 . . .ua j . Continuing this argument, we have f l

j = vsi(u1 . . .ul−1)ul+1 . . .ua j .

The proof is finished by invoking Corollary 84.

By this result, ∑
a j
l=0 f l

j must be symmetric in i and i+1. Recall that we have shown

gF is symmetric in i and i+1. Thus, ∑T∈F WT(T ) is symmetric in i and i+1. Finally, we

have enough results to prove Theorem 71.
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Proof. Let α be a weak composition with αi > αi+1. Let A := {T ∈ F : K−(T )≤ α} and

B := {T ∈ F : K−(T )≤ siα}.

We only need to show

π
(β)
i

(
∑

T∈A
WT(T )

)
= ∑

T∈B
WT(T ) (5.4)

This is clearly true when B = /0. Now assume B ̸= /0. If A = B, then A = B = F ,

(5.4) is true since ∑T∈F WT(T ) is symmetric in xi and xi+1.

Finally, assume A is a proper subset of B. We can find γ with γi > γi+1 such that

elements in A has left key γ and elements in B has left key siγ. Then siγ ≤ siα and γ ≤ α.

By Lemma 77, A has elements whose first block only has i. We have:

∑
T∈A

WT(T ) =

(
gF

m

∏
j=2

(
a j

∑
l=0

f l
j

))
f 0
1

Take T ∈ B. Consider its i+1 in the first block. There are two possibilities: It is in

the first column, or the column on its left has an ignorable pair. In either case, this i+1

contributes Xi+1, so

π
(β)
i ( f 0

1 ) =
a1

∑
l=0

f l
1
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Finally, letting f = gF
∏

m
j=2(∑

a j
l=0 f l

j), we have

π
(β)
i

(
∑

T∈A
WT(T )

)
=π

(β)
i ( f f 0

1 )

= f π
(β)
i ( f 0

1 )

= f
a1

∑
l=0

f l
1

= ∑
T∈B

WT(T )

Chapter 5, in full, is a reprint of the material as it appears in Grothendieck-to-

Lascoux expansions. Mark Shimozono and Tianyi Yu, Transactions of the American

Mathematical Society, 2023. The dissertation author was the primary investigator and

author of this paper.
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