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Abstract�
 

Neurocognitive Mechanisms of Uncertainty Reduction in Value-based Decision Making 
 

by�
 

Kenji Kobayashi 
 

Doctor of Philosophy in Neuroscience�
 

University of California, Berkeley�
 

Professor Ming Hsu, Chair 
 
 
Adaptive decision making critically depends on agents’ ability to reduce uncertainty. To reduce 
uncertainty, agents need to perceive relevant environmental signals, extract useful information, 
and incorporate it into their knowledge and behavior. This is not a trivial task for two reasons. 
First, the environment is full of sensory stimuli, but most of them are irrelevant. Agents need to 
evaluate relevance of signals so that they can prioritize perception and processing of the most 
relevant ones. Second, perceived signals can be analyzed in countless ways, but most of them do 
not provide useful information. Agents need to be selective in how to process perceived signals 
before trying to make use of them in behavior. 
 
This thesis reports three attempts to understand neurocognitive mechanisms of uncertainty 
reduction in value-based decision making. It is relatively well understood how human brain 
produces decision-making behavior under uncertainty. It is also well understood how human brain 
perceives and processes sensory stimuli. However, little is known how these systems cooperate to 
enable adaptive uncertainty reduction. Three chapters in this thesis try to fill this gap by behavioral 
experiments, functional magnetic resonance imaging (fMRI) experiments, and computational 
modeling. 
 
Chapter 1 examines the way human brain processes perceived signals under conditions of 
reducible and irreducible uncertainty. Because not all uncertainty can be reduced in the same way, 
agents should take into account the nature of uncertainty they are facing. This challenges a 
widespread idea that uncertainty reduction is driven by the extent to which signals violate prior 
expectancy. It is behaviorally shown that subjects are sensitive to reducibility of uncertainty, and 
it can be quantitative characterized by a Bayesian model where agents ignore expectancy violations 
that do not update beliefs or values. Furthermore, fMRI results reveal that neural processes 
underlying belief and value updating are separable from responses to expectancy violation, and 
that reducibility of uncertainty in value modulates connection from belief- to value-updating 
regions. These results illustrate how human brain uses knowledge on uncertainty to process signals 
adaptively. 
 
Chapters 2 and 3 examine the way human brain evaluates incoming signals’ relevance to economic 
choices. Human often seeks for information that is irrelevant to the task at hand. Although this 



 2 

challenges a normative account in which agents assign positive value only to instrumental 
information, it has been unclear how general and important such preference is in decision-making 
settings. Chapter 2 reveals that, behaviorally, subjective value of information exceeds the 
normative prediction not only when information is non-instrumental but also when it is 
instrumental. Overvaluation depends on outcomes at stake, rejecting a popular theory of internal 
drive for entropy reduction. Observed valuation bias can be explained by introducing recursive 
utility, which penalizes choices under the lack of information, to the normative account. Using this 
novel model and fMRI, Chapter 3 reports that activation in striatum represents value of 
information, unifying information’s relevance to the task and penalty for uninformed choice. These 
results propose a new neurocognitive account on how human brain acquires information with 
various degrees of uncertainty reduction. 
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Chapter 1 
Neural mechanisms of updating under reducible and 
irreducible uncertainty 
 
Introduction 
Adaptive decision-making in the real world depends critically on agents’ ability to constantly make 
use of environmental signals to reduce uncertainty. Agents should take into account not only physical 
properties of signals but also the nature of uncertainty, as not all kinds of uncertainty can be reduced 
in the same way. In particular, two types of uncertainty, risk and ambiguity, have received widespread 
emphasis in the decision-making literature (Camerer & Weber, 1992; Ellsberg, 1961; Keynes, 
1921; Knight, 1921). While ambiguity can be reduced by signals that carry new information and 
supplement agents’ prior knowledge about the environment, risk cannot be reduced by any signals. 
 

To illustrate the implication of these types of uncertainty for decision-making, consider a 
variation on the classic example of gambler’s fallacy (Tversky & Kahneman, 1974). You are playing 
a gamble that depends on tosses of two coins, A and B. You know that coin A is fair (risk), but you 
do not know whether coin B is biased or fair (ambiguity). If you observe ten consecutive “head” 
tosses of B, it would suggest that B is biased, but observing the same sequence of A does not provide 
any new information. Although these two environmental signals are similar to each other and both 
surprising, appropriate decision-making requires agents to use them differently because of the 
different natures of uncertainty. 
 

This, however, poses a challenge for theoretical frameworks such as reinforcement learning 
(RL), which do not incorporate explicit notions of uncertainty. Under RL, values of actions are 
updated to the extent that an observed outcome violates prior expectancy, such that agents cannot 
ignore merely expectancy-violating outcomes under risk (Sutton & Barto, 1998). One solution to 
this problem, which is possible under normative Bayesian and more recent model-based RL 
accounts, is to posit that agents construct internal models or beliefs about the environment, which 
may be sensitive to the nature of uncertainty (Behrens, Woolrich, Walton, & Rushworth, 2007; Itti 
& Baldi, 2009; Ma & Jazayeri, 2014; Nassar, Wilson, Heasly, & Gold, 2010; O’Reilly et al., 2013; 
Payzan-LeNestour & Bossaerts, 2011). This allows agents to update beliefs based on observed 
signals under ambiguity, but not under risk, and use these new beliefs in turn to update values. 
 

Although there is growing evidence that the human brain constructs and makes use of beliefs 
to guide behavior, we know surprisingly little about how neural processes of updating take into 
account the prior knowledge about the reducibility of uncertainty. In particular, the presence of 
beliefs at the neural level (Behrens et al., 2007; Behrens, Hunt, Woolrich, & Rushworth, 2008; 
Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Gläscher, Daw, Dayan, & O'Doherty, 2010) is 
not sufficient for distinguishing between reducible and irreducible uncertainty, which previous 
studies have not empirically tested by manipulating reducibility of uncertainty.  
  

To bridge this gap, we adapted the classic Ellsberg three-color urn problem, which 
manipulates reducibility of uncertainty. In this paradigm, if neural processes of belief updating and 
value updating are sensitive to the nature of uncertainty, they would be dissociated from neural 
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responses to expectancy violation (Itti & Baldi, 2009; O’Reilly et al., 2013). Our fMRI results 
revealed that neural correlates of belief updating and value updating are indeed distinct from 
expectancy violation. Furthermore, our connectivity analysis suggested that reducibility of 
uncertainty also modulates how neural processes of belief updating contribute to value updating. 

 
In our paradigm, subjects are presented with a gamble involving a number of balls in an urn. 

They know the exact number of balls in one color (hereafter the risky color), but not in the other two 
colors (the ambiguous colors). For example, an urn contains four balls, two balls in yellow and two 
in either red or green; it could contain two red balls, one red and one green, or two green (Fig. 1a). 
Monetary outcome of a gamble is determined by a resolution draw from the urn; subjects win $10 if 
the resolution draw matches a pre-determined color (the winning color), and nothing otherwise (Fig. 
1b). We hereafter call a gamble ambiguous when its winning color is one of the ambiguous colors, 
and risky when it is the risky color. 

 
We introduced environmental signals to this gamble in the form of an observed draw; prior 

to the resolution, a ball is drawn from the urn, reveals its color, and is returned back. We postulated 
that the observed draw first updates the prior belief about the urn content (belief updating, Fig. 1c) 
and then the value of the gamble (value updating, Fig. 1d). 

 
This paradigm specifies and manipulates reducibility of uncertainty in beliefs and value as 

follows. First, because composition of ambiguous-color balls is unknown, belief should be updated 
by an ambiguous-color draw, but not by a risky-color draw. In our exemplar urn, a red draw updates 
belief because it demonstrates at least one red ball in the urn, increasing probability of a future draw 
in red (!"($) 	> 	0) (Fig. 1c). On the other hand, a yellow draw does not carry any information, 
because it is already known that the urn contains two yellow balls (!"()) 	= 	0). 

 
Second, value should be updated as a consequence of belief updating only in ambiguous 

gambles, but not in risky gambles. This is because the chance to win $10 is not perfectly specified 
when the winning color is an ambiguous color. In our exemplar urn, a red draw increases the 
probability of a red resolution draw and decreases that of a green draw (Fig. 1d). As a consequence, 
the value of the gamble is increased if the winning color is red ($10 ∙ !"($) 	> 	0) and decreased if 
the winning color is green ($10 ∙ !" . < 0). On the other hand, if the winning color is yellow, a 
red draw does not update its value, because probability of a yellow draw is unaffected ($10 ∙
!" ) = 0). 

 
Therefore, if subjects can rationally combine the prior knowledge about uncertainty with the 

color of the observed draw, they would update belief only after ambiguous-color draws, and update 
value only in ambiguous gambles (Fig. 1e). Such sensitivity would not be observed if updating is 
primarily driven by expectancy violation; since the draw’s color is unpredictable, any draw in any 
gamble is associated with some level of expectancy violation, measured as 1 – P(draw) (since 
P(draw) < 1, 1 – P(draw) > 0 for any draw; Fig. 1c). To decouple updating from expectancy violation 
more clearly, we manipulated the urn composition across gambles (Table 1). For instance, increasing 
yellow balls in our exemplar urn would increase expectancy violation of a red draw, but decrease 
the magnitudes of belief updating and value updating. The manipulation of the urn composition 
therefore allowed us to look for neural correlates of belief updating and value updating while 
statistically controlling for expectancy violation, and vice versa, in fMRI analysis. 
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Results 
Behavioral sensitivity to the nature of uncertainty. First, we tested the extent to which value 
updating is sensitive to the nature of uncertainty at the behavioral level. Subjective values of gambles 
were elicited via a BDM bidding procedure (see Methods), before and after the draw (Fig. 2a). If 
agents are sensitive to the nature of uncertainty as normatively predicted, they would update value 
only when they observe ambiguous-color draws in ambiguous gambles. On the other hand, if 
updating process is driven by expectancy violation, value would be also updated by risky-color 
draws or in risky gambles. We tested these predictions by classifying trials according to whether 
positive, negative, or zero value updating was normatively predicted given the draw color (Fig. 2b, 
Supplementary Table 1). Distribution of observed value updating indeed varied consistently with the 
normative prediction (chi-square test of independence, χ2(4) = 1493.432, P < 10-5). 
 
Quantitative modeling of updating. To quantitatively relate updating processes to BOLD 
responses in the following fMRI analysis, we next sought to provide a quantitative model of updating 
(Table 1). We postulated that agents first construct and update belief about probability of a future 
draw from the urn, and then use it to determine the expected value of the gamble ($10 × the 
probability of winning). We further assumed that, in belief, probability over all possible urn contents 
is considered and updated according to Bayes' rule (see Methods, Supplementary Text and 
Supplementary Fig. 1 for modeling details; note that this formalization instantiates so-called second-
order probability, one of the most widely used approach to ambiguity in decision theory (Camerer 
& Weber, 1992; Ergin & Gul, 2009; Klibanoff, Marinacci, & Mukerji, 2005; Nau, 2006; Seo, 
2009)). More specifically, prior probability over urn contents is assumed to follow a binomial 
distribution (we also used a uniform distribution to confirm robustness of our behavioral and fMRI 
findings; Supplementary Text and Supplementary Fig. 2). 
 

We found that this model was able to explain subjective values of gambles well (Fig. 2c). 
Pre- and post-draw subjective values were consistent with model predictions in both ambiguous and 
risky gambles (log-likelihood ratio test, P < 10-4, respectively; Fig. 2c, left and middle). More 
importantly, our model successfully predicted significant value updating after ambiguous-color 
draws in ambiguous gambles (P < 10-4; Fig. 2c, top right), as well as negligible value updating in 
the other cases (+$0.068 after risky-color draws in ambiguous gambles, P > .10; 	$0.228 after risky-
color draws in risky gambles, P > .10; but 	$0.143 after ambiguous-color draws in risky gambles, P 
< .05; Fig. 2c, right). We also noted that subjects exhibited ambiguity aversion (Ellsberg, 1961); 
while neither over- nor undervaluation was observed in risky gambles (	$0.063 before draws, 	
$0.234 after draws, P > .10 respectively), ambiguous gambles exhibited small undervaluation (	
$0.252 before draws, P < .10; 	$0.292 after ambiguous-color draws, P < .05; but 	$0.184 after risky-
color draws, P > .10). Overall, even though our model did not aim to account for ambiguity aversion, 
it is a successful first-order approximation of updating. 
 
Neural correlates of belief updating. After establishing subjects’ behavioral sensitivity to the 
reducibility of uncertainty, we examined how the brain processes environmental signals according 
to uncertainty in an fMRI experiment with a separate group of subjects. Specifically, we looked for 
neural correlates of belief updating and value updating, and tested whether they were dissociable 
from expectancy violation. During scanning, subjects observed a series of gambles (Fig. 3a); each 
trial started with presentation of the gamble’s winning color, followed by the urn content and the 
observed draw. The gambles were resolved only after the scanning. This observational task was 
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adopted in order to isolate processes related to updating as opposed to choices. To ensure that subjects 
paid enough attention to the task, we elicited subjective assessment of the directionality of value 
updating and memory on the urn contents using auxiliary tasks (see Methods).  
 

We first looked for brain regions where activation was correlated with belief updating. We 
quantified belief updating as the absolute difference between pre- and post-draw probability of 
ambiguous-color draws under our Bayesian model (Table 1). Even though our paradigm 
quantitatively dissociates belief updating from expectancy violation (measured as 1 – prior 
probability of the draw), their correlation is still not negligible in our parameter space (r = 0.70; 
Supplementary Fig. 3). Thus, we included both trial-wise belief updating and expectancy violation 
as parametric modulators in a single GLM and looked for regions where significant amount of 
variance could be explained uniquely by belief updating (i.e., adjusting for expectancy violation 
(Mumford, Poline, & Poldrack, 2015); see Methods). We found bilateral clusters in posterior middle 
frontal gyrus and superior frontal sulcus, bilateral clusters in intraparietal sulcus (IPS), and a cluster 
in precuneus (Fig. 3b, Supplementary Fig. 4; cluster-forming voxel-level threshold P < .001, 
uncorrected, and cluster-size threshold k > 20; see Table 2 for cluster-level P values corrected for 
whole-brain family-wise error). The clusters in frontal cortex may correspond to premotor region or 
frontal eye field (Vernet, Quentin, Chanes, Mitsumasu, & Valero-Cabre, 2014). 
 
Neural correlates of value updating. We then examined neural correlates of value updating. While 
value should be updated only in ambiguous gambles, belief can be updated both in ambiguous and 
risky gambles. Given this difference, we expected that neural correlates of value updating are 
anatomically distinct from belief updating. We looked for brain regions which activation was 
correlated with value updating (quantified as the signed difference between pre- and post-draw 
expected values, see Table 1; this parametric modulator is orthogonal to belief updating and 
expectancy violation by design, see Supplementary Fig. 3). We found clusters in ventromedial 
prefrontal cortex, anterior and middle cingulate cortices, and left superior temporal gyrus (Fig. 3b, 
Supplementary Fig. 4, Table 2). These clusters did not overlap with the neural correlates of belief 
updating.  
 
Neural correlates of expectancy violation. Next, we tested whether these updating regions 
responded to expectancy violation. Responses to expectancy violation, salience, or surprise has been 
long studied in cognitive neuroscience (Courchesne, Hillyard, & Galambos, 1975; Sokolov, 1963; 
N. K. Squires, Squires, & Hillyard, 1975). However, those studies have been motivated by the 
assumption that surprising signals tend to be relevant for agents, and dissociation between 
expectancy violation and uncertainty reduction has not been well studied. We found that activation 
in bilateral anterior insula (AI) was correlated with expectancy violation (adjusted for belief 
updating) (Fig. 3b, Supplementary Fig. 4, Table 2). Importantly, these clusters did not overlap with 
the neural correlates of either belief updating or value updating. This localization of expectancy 
violation is consistent with previous reports that AI responds to salient events in various domains 
(Corbetta, Patel, & Shulman, 2008; Menon & Uddin, 2010; Singer, Critchley, & Preuschoff, 2009).  
 
ROI analysis of separable neural correlates. To further illustrate the dissociation among neural 
correlates of belief updating, value updating, and expectancy violation, we conducted region-of-
interest (ROI) analysis, where ROIs were defined in a leave-one-subject-out fashion (see Methods).  
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We found that BOLD activation in belief-updating ROIs was correlated with belief updating 
as expected (P < 10-4), but not with expectancy violation (P > .10) or value updating (P > .05; Fig 
3c; see Supplementary Fig. 5 for ROI-wise results). Similarly, activation in value-updating ROIs was 
correlated with value updating (P < 10-4), but not with belief updating or expectancy violation (P > 
.10). More critically, activation in expectancy-violation ROIs was correlated with expectancy 
violation (P < 10-3), but not with belief updating or value updating (P > .10). These results show that 
neural processes of uncertainty reduction are anatomically dissociable from expectancy violation. 
We would have not found the dissociation between belief updating and expectancy violation if we 
had not adjusted for the correlation between their parametric regressors (Supplementary Fig. 6). 
 
Interaction between updating regions. Lastly, we explored how these regions interact to drive 
appropriate value updating. Based on our results, we made two predictions about interregional 
interactions. First, we hypothesized that connections from belief-updating regions to value-updating 
regions would be modulated by the type of gamble. Since belief updating should contribute to value 
computation only in ambiguous gambles, interregional connections would be temporarily enhanced 
under ambiguous gambles (or temporarily weakened under risky gambles).  Second, we 
hypothesized that connections from expectancy-violation regions to value-updating regions would 
not show such modulation as much, since expectancy violation does not drive value updating 
irrespective of the type of gamble, both theoretically and behaviorally. To test these predictions, we 
conducted dynamic causal modeling (DCM) analysis. It is appropriate for our purpose because it 
seeks to explain BOLD time-series from more than two ROIs simultaneously and can include 
directional connections modulated by experimental manipulations (Friston, Harrison, & Penny, 
2003). 
 

We compared three different scenarios: 1) belief-updating ROIs contribute to value updating, 
2) expectancy-violation ROIs contribute to value updating, and 3) neither of them contributes (Fig. 
4a; see Methods for details). To implement the first scenario, we constructed a family of models that 
instantiated every possible set of modulated connections from belief-updating ROIs to value-
updating ROIs (Family I). Similarly, to implement the second scenario, another family of models 
instantiated every possible set of modulated connections from expectancy-violation ROIs to value-
updating ROIs (Family II). The last scenario was implemented as a single model with no modulation 
in connections (Family III). We included four belief-updating ROIs from lateral frontal and parietal 
regions, two value-updating ROIs in medial prefrontal cortex, and two expectancy-violation ROIs 
from AI in DCM. 
 

If neural processes of belief updating contribute to value updating in the way we 
hypothesized, our fMRI data should be best explained by Family I. This prediction was supported 
by the results of Bayesian model selection procedure (Penny et al., 2010; Stephan, Penny, 
Daunizeau, Moran, & Friston, 2009) (Fig. 4b). Probability that Family I outperformed both Families 
II and III (“exceedance probability”) was over 80%, while that of Family II was around 10% and 
Family III below 5%. These results suggest that sensitivity to uncertainty reducibility is reflected in 
interaction from belief-updating regions, rather than expectancy-violation regions, to value-updating 
regions. 
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Discussion 
In order to make adaptive decisions, we ubiquitously make use of environmental signals to reduce 
uncertainty. For appropriate uncertainty reduction, it is critical to understand whether current 
uncertainty is reducible, and by which signals it can be reduced. Specifically, we should not rely 
solely on signals’ expectancy violation to determine whether and how much we can reduce 
uncertainty (Itti & Baldi, 2009; O’Reilly et al., 2013). Distinction between uncertainty reduction 
and expectancy violation is not clear in some traditionally prevalent frameworks such as 
reinforcement learning (RL) and Pearce-Hall (Pearce & Bouton, 2001; Pearce & Hall, 1980; 
Rescorla & Wagner, 1972; Roesch, Esber, Li, Daw, & Schoenbaum, 2012; Sutton & Barto, 1998). 
In both, learning is driven by the degree to which prior expectancy about an event (e.g., the timing 
and amount of reward delivery) is violated. As a result, these theories do not explicitly state how 
agents can successfully ignore surprising, yet irrelevant, signals widespread in natural environments 
(Itti & Baldi, 2009). 
 

In this study, we showed that the human brain is sensitive to the nature of uncertainty by 
demonstrating dissociation between uncertainty reduction and expectancy violation at behavioral 
and neural levels. This is related to two important lines of decision-making studies. First, model-
based RL and Bayesian theories postulate that agents construct and update beliefs about the 
environment. Such agents may possess representation of the nature of uncertainty, by which 
uncertainty reduction could be decoupled from expectancy violation (Behrens et al., 2007; Itti & 
Baldi, 2009; Ma & Jazayeri, 2014; Nassar et al., 2010; O’Reilly et al., 2013; Payzan-LeNestour & 
Bossaerts, 2011). Unlike our study, however, most neuroimaging studies to date have examined the 
forms of learning that could be driven by expectancy violation, not manipulating reducibility of 
uncertainty (Daw et al., 2011; Gläscher et al., 2010). 
 

Second, decision theory has long emphasized distinction between reducible and irreducible 
uncertainty, often referred to as ambiguity and risk respectively (Camerer & Weber, 1992; Ellsberg, 
1961; Keynes, 1921; Knight, 1921). Past studies have mainly investigated influence of these types 
of uncertainty on choice and its neural basis (Bach, Hulme, Penny, & Dolan, 2011; Hsu, Bhatt, 
Adolphs, & Tranel, 2005; Huettel, Stowe, Gordon, Warner, & Platt, 2006), and these concepts have 
been applied to the problem of uncertainty reduction only recently (Chumbley et al., 2012). Our 
findings show that these types of uncertainty are not only modulators of value-based choices, but 
also determinants of neural processing and behavioral consequences of environmental signals. 
 

Behaviorally, we found evidence that value updating is sensitive to the nature of uncertainty. 
Specifically, value was updated only under reducible uncertainty, irrespective of signals’ expectancy 
violation (Fig. 2b), and could be quantitatively characterized by a Bayesian model (Fig. 2c). 
Similarly in the scanner, we found that subjects’ responses to the auxiliary task on directionality of 
value updating conformed to the normative prediction, showing that surprising but irrelevant signals 
were successfully ignored (see Methods). Existence of representation of uncertainty in human has 
been shown in Bayesian sensory and sensorimotor literature (Ernst & Banks, 2002; Körding & 
Wolpert, 2004; Ma & Jazayeri, 2014; Pouget, Beck, Ma, & Latham, 2013), and our results extends 
it to value-based decision-making domains. At the same time, however, given the relatively simple 
nature of our task, it is also possible that our subjects did not carry out optimal full-Bayesian 
computation and instead used simpler heuristics. One possible heuristic approach is to consider a 
single “effective” urn composition, in which an ambiguous-color ball is treated as a pair of half balls 
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(Supplementary Fig. 1; see Supplementary Text for proof of its mathematical equivalence to full-
Bayesian approach in our task). Thus, even if the actual computational processes of updating may 
not be fully Bayesian, subjects appear capable of incorporating relevant prior knowledge about 
uncertainty into updating. 
 

At the neural level, we found that neural processes associated with belief updating and 
expectancy violation were anatomically separable, which have frequently been confounded with 
each other in past studies. Indeed, to our knowledge, there exist only two studies that explicitly 
decouple these two variables (O’Reilly et al., 2013; Schwartenbeck, FitzGerald, & Dolan, 2016). 
Interestingly, despite important differences in task design, these studies all found dissociation 
between belief updating and expectancy violation regions, and in particular representation of belief 
updating in lateral frontoparietal regions. This also accords well with results from Gläscher et al. 
(Gläscher et al., 2010), which used a Markov decision task to capture the degree to which a state 
prediction error (SPE) that updated the belief on state-action-state transition probabilities. Even 
though SPE was formally equivalent to expectancy violation in their particular task, our results make 
it unlikely that their results reflected expectancy violation alone.  
 

However, a number of important differences exist between these findings in terms of the 
precise localization within frontoparietal regions, as well as recruitment of other regions. This may 
relate to more fine-grained task-level differences between studies. In O’Reilly et al.’s saccadic 
planning task, which did not include a reward-based component, the authors found both belief 
updating and expectancy violation responses in frontoparietal regions (O’Reilly et al., 2013); they 
reported belief-updating responses in pre-supplementary motor area and area 7a, and expectancy 
violation responses in IPS. Schwartenbeck & Dolan dissociated updating in belief about valid cue 
modality from expectancy violation by introducing trials where both cues predicted the same 
valence, such that even surprising outcomes could not discriminate their validity. While they mapped 
belief updating onto putative dopaminergic midbrain, inferior frontal gyrus, posterior parietal cortex, 
and ACC, and expectancy violation onto pre-supplementary motor area and dorsal ACC, it is 
possible that these mappings reflect reward-related processes to a certain extent.  
 
 Such task differences may well also explain differences in localization of expectancy 
violation across these studies. One particularly important nature of our task is the fact that it involves 
the presence of “mere” expectancy violation, which may not have consequences on subsequent 
behavior or valuation. Our localization of expectancy violation in AI is consistent with previous 
reports that AI responds to abrupt or rare stimuli in various domains (Menon & Uddin, 2010; Singer 
et al., 2009) and is involved in reorienting attention to surprising events (Corbetta et al., 2008; 
Sokolov, 1963). Our results raise the possibility that AI is primarily involved in detecting and rapidly 
broadcasting expectancy violation, which is not necessarily relevant for the ongoing tasks but may 
well still be important for agents’ survival, through distinctly large bipolar neurons called Von 
Economo neurons (Allman et al., 2010; Evrard, Forro, & Logothetis, 2012).  
 
 In contrast, in O’Reilly et al’s task, a saccadic target with high expectancy violation required 
subjects to reprogram their preprogrammed saccade, even if it did not update belief. Therefore, their 
localization of expectancy violation in IPS likely reflects saccade programming processes. Similarly, 
in the Schwartenbeck et al’s task, expectancy violation was defined with respect to monetary 
outcome (specifically its valence), and thus their localization may reflect some reward processing, 
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including learning. Given the small number of studies that explicitly separate belief updating, 
expectancy violation, and value updating, future studies are necessary to more fully assess the 
functional mapping of belief updating and expectancy violation under different task demands. 
 

We also dissociated neural correlates of value updating from expectancy violation; value 
updating was correlated with activation in medial prefrontal cortex (MPFC) and cingulate cortex, 
not AI (Fig. 3). It has been established that these regions are involved in value-related processing, 
such as valuation of choices or reward-based reinforcement (Bartra, McGuire, & Kable, 2013). 
Particularly, value updating in the current study is conceptually close to model-based reward 
prediction error (RPE), which has been associated with these regions (Behrens et al., 2008; Daw et 
al., 2011). Our results provide evidence that value-related computation in these regions may not be 
driven solely by expectancy violation. Interestingly, we did not find any evidence of value-updating 
representation in striatum, even at a liberal threshold, which has been also associated with model-
based RPE in the past (Behrens et al., 2008; Daw et al., 2011; Gläscher et al., 2010). This 
discrepancy could be because, unlike past studies, we did not provide reward feedback to prevent 
learning over trials. Thus, while MPFC and cingulate cortex may be involved in reduction of value 
uncertainty irrespective of feedback existence (or independent of the task specifics in general), 
striatum might primarily respond to reward feedback. An alternative account is that striatum could 
be more involved in learning over time rather than one-shot updating, particularly through 
corticostriatal loops (Balleine, Delgado, & Hikosaka, 2007). These possibilities could be tested by 
providing trial-wise outcome (i.e., the resolution draw) in our task.  
 

Although we found that belief- and value-updating regions were anatomically distinct, their 
computational processes should not be independent under a Bayesian framework of decision-
making. However, in the extreme, activations in putative belief-updating regions (premotor/FEF and 
IPS) could be an epiphenomenal reflection of more general cognitive processes, such as working 
memory (Mohr, Goebel, & Linden, 2006; Reinhart et al., 2012), and irrelevant to updating 
processes. Using DCM, we found that processes in belief-updating ROIs in premotor/FEF and IPS 
contribute to MPFC regions involved in value computation via interregional interaction modulated 
by the nature of uncertainty (Fig. 4). Such modulation in connections might be biologically efficient; 
when value uncertainty is irreducible and valuation system can safely ignore incoming signals, 
energies to maintain synaptic transmission from belief-updating regions can be temporarily saved. 
Additionally, we did not find evidence for modulation in connections from expectancy-violation 
regions (AI) to value-updating regions. Even though interpretation of negative results requires 
caution, this suggests that reducibility-based modulation is not a general feature of connections 
across the cortex. It also further emphasizes the difference between functional roles of AI and lateral 
frontoparietal regions. 
 

It is worth noting that, in general, the DCM results do not necessarily quantify or assume 
monosynaptic connections. In our case, although previous studies have found anatomical 
connections from premotor/FEF and IPS to cingulate motor area, connections to more anterior 
portion of MPFC, where we found value-updating representation, have not been reported 
(Beckmann, Johansen-Berg, & Rushworth, 2009; Eradath et al., 2015; Mars et al., 2011; Neubert, 
Mars, Sallet, & Rushworth, 2015; Tomassini et al., 2007). We speculate that modulated connections 
from premotor/FEF and IPS to MPFC could be mediated by anterior-posterior connections within 
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cingulate cortex (Margulies et al., 2007) or corticostriatal connections (Balleine et al., 2007; Di 
Martino et al., 2008). 
 

Taken together, our findings suggest that the nature of uncertainty influences the way the 
human brain processes environmental signals. In order to understand the neural mechanisms of 
uncertainty reduction more comprehensively, future studies can expand this study’s approach in a 
number of directions. For instance, while our paradigm delivered one environmental signal at a time, 
real world scenarios typically involve a multitude of signals. In these cases, prior knowledge about 
reducibility of uncertainty may in addition be crucial in determining how the brain allocates 
attentional resources, as it may not be possible for all signals to be attended to at all times (Gottlieb 
& Balan, 2010). Additionally, future studies are necessary to clarify the encoding scheme used by 
the brain to represent belief updating. In particular, due to the relatively small urn sizes used in the 
experiment, which constricts the range of belief updating values, we were unable to distinguish 
between different operationalizations of belief updating, e.g., between binomial or uniform priors 
over urn contents. Importantly, this includes the possibility that putative belief updating regions in 
fact categorically classify ambiguous or risky draw, which is akin to a median split of belief updating 
values in our model. Although our DCM results argue against the possibility that responses in these 
regions were driven solely by the draw type without contribution to updating processes, studies that 
use richer parameterization of urn sizes would be useful to more directly address this question, albeit 
at a cost of substantially increasing task complexity. Finally, unlike our paradigm, the prior 
knowledge about uncertainty reducibility in the real world is often far from complete and accurate. 
It is an open question how agents estimate uncertainty reducibility, particularly under non-stationary 
environments (Behrens et al., 2007; Payzan-LeNestour & Bossaerts, 2011; Yu & Dayan, 2005). 
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Methods 
Behavioral experiment.  
Subjects. 10 undergraduate students in University of California, Berkeley (6 women) participated. 
They provided written informed consents and all procedures were approved by UC Berkeley 
Committee for the Protection of Human Subjects. The experiment was conducted individually in a 
self-paced manner, in an isolated cubicle. The experiment program was written on Matlab 
(Mathworks) and Psychtoolbox (Brainard, 1997; Pelli, 1997), run on a laptop, and interacted with 
via its keyboard.  
 
Task. Subjects were presented with gambles, each of which consisted of a winning color and an urn 
containing a number of balls in red, green, or yellow (Fig. 2a). One of the gambles was randomly 
selected and resolved at the end of the experiment; a ball was randomly drawn from the urn, and 
subjects received $10 only if it matched the winning color (in addition to the baseline payment for 
task completion). Subjective values of these gambles, both pre-draw and post-draw, were elicited as 
willingness to sell (WTS), i.e., the amount of money subjects were willing to give up the opportunity 
to play the gamble for, through a standard BDM bidding procedure (Becker & Brownson, 1964). In 
total, 18 gambles were presented in a randomized order (6 urn contents × 3 winning colors). 
 

Each trial started with presentation of urn content and the winning color.  Subjects were 
informed of the number of balls in one color (risky color) and the total number of balls in the other 
two colors (ambiguous colors), but not of the exact composition in the latter. Each ball in risky color 
was visually represented as a full circle, and each ball in ambiguous colors as a pair of half circles. 
The winning color was shown above the urn contents. After subjects indicated pre-draw WTS, the 
three possible colors of observed draw were presented in a randomized order, after each of which 
post-draw WTS was indicated. Thus, four WTSs in total were obtained in each gamble. Upon the 
resolution of the gamble, the experiment program randomly determined whether subjects observed 
the draw or not (50%), and which color the observed draw had (probability following the urn 
composition). 
 
Data analysis. To examine value updating in a model-free manner, trial-wise difference between 
pre- and post-draw subjective values (WTSs) were calculated and categorized according to 
normatively prediction of directionality (Fig. 2b). To more quantitatively characterize subjective 
values, predictions from our quantitative Bayesian model (see below) were fitted to the observation 
in mixed-effect modeling implemented on R software and lmer package, with subjects as a random 
effect (Fig. 2c). To test one-sided deviation, the fixed-effect constant term (intercept) was compared 
against zero.  
 
Bayesian modeling. Our quantitative Bayesian model consists of two stages, belief and valuation. 
The belief stage concerns probability distribution on a future draw’s color. In order to generate unique 
point estimates of probability of ambiguous colors, all possible urn contents are considered, weighted 
according to their binomially distributed probability, and averaged (Supplementary Text, 
Supplementary Fig. 1). After the observed draw, probability over urn contents is updated according 
to Bayes’ rule. In the valuation stage, pre- and post-draw values of gambles are calculated as expected 
outcome, i.e., $10 × probability of winning. 
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Note that this modeling is mathematically equivalent to a heuristic account, which only 
considers “effective” urn content (Supplementary Text). We also conducted behavioral and fMRI 
analyses using uniform prior distribution over urn contents (Supplementary Text, Supplementary 
Fig. 2).  
 
fMRI experiment. 
Subjects. 20 subjects (mean age = 21.7 years old, 11 women) participated after being screened for 
standard MRI contraindications. They provided written informed consents and all procedures were 
approved by UC Berkeley Committee for the Protection of Human Subjects. Among them, 1 subject 
declined the participation after the task instructions but before the scanning, and 2 subjects were 
discarded from analysis due to unsatisfactory performance in auxiliary tasks (see below), resulting 
in data from 17 subjects analyzed. During scanning, the experiment program was run on Matlab and 
Psychtoolbox, with which subjects interacted via an MRI-compatible button box. 
 
Main task. During scanning, subjects observed gambles in a randomized order (Fig. 3a), one of 
which was randomly selected and resolved at the end of the experiment. 30 gambles were presented 
in each of the three EPI runs (90 in total), and the winning color was changed across runs (remained 
the same within each run). They covered all combination of the six urn content. Six urn contents 
(Table 1) was presented 15 times each, 5 times for risky gambles and 10 for ambiguous gambles (6 
× 15 = 90). Probability of the observed draw’s color across gambles approximately followed the urn 
composition. 
 

Each trial started with the fixation cross in the winning color (2s), followed by the urn content 
presentation (visual representation similar to the behavioral experiment). The urn content was 
presented for 5–12s. (After a variable delay of 4–6s, the urn opened its lid in a 0.5s animation, on 
which subjects were asked to press a button within 5s. Upon their button press, the balls moved into 
the urn in another 0.5s animation. This process was introduced to keep subjects’ alertness, and is not 
shown in the Fig. 3a for simplicity.) After a variable interval (3–6s), a gray ball moved out of the urn 
in a 0.5s animation, and revealed its color after another variable interval (1–3s). After 3s, the drawn 
ball was returned back to the urn in a 0.5s animation, followed by a variable inter-trial interval (2.5–
4.5s). 
 
Auxiliary tasks. In order to verify subjects’ engagement and understanding throughout the main 
observation task, we asked them to respond to three types of auxiliary tasks. Tasks was presented 
immediately after randomly selected 27 gambles (9 for each task type). In memory task, subjects 
were asked to choose the correct description of the previous gamble (the winning color, the urn 
content, and the observed draw) from two options. In value-updating judgment task, subjects were 
asked to indicate whether it is 1) less likely, 2) equally likely, or 3) more likely to win the gamble 
after the draw. In surprise rating task, subjects were asked to rate their surprise of the observed draw 
in 3-point scale. Since the surprise rating task was purely subjective, we used the memory task and 
the value-updating judgment task to test subjects’ engagement and understanding; two subjects were 
excluded from the subsequent analyses because of their unsatisfactory performance (more than 2 
wrong responses or more than 2 trials without responses within 10 seconds in either task). Subjects 
received up to $10 based on their performance in these two tasks. 
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fMRI data acquisition. MR images were acquired by a 3T Siemens Trio scanner and a 12-channel 
head coil. Functional images were obtained using T2*-weighted gradient-echo echo-planar imaging 
(EPI) pulse sequence (TR = 2000ms, TE = 30ms, voxel size = 3mm × 3mm × 3mm, inter-slice gap 
= 0.3mm, in-plane resolution = 64 × 64, 32 oblique axial slices). Slices were tilted by 30 degrees 
from AC-PC line to alleviate signal dropout from orbitofrontal cortex (Weiskopf, Hutton, Josephs, 
& Deichmann, 2006). T1-weighted structural images (1mm × 1mm × 1mm) were also obtained 
using magnetization-prepared rapid-acquisition gradient-echo (MPRAGE) pulse sequence. 
 
Preprocessing. Motion correction, slice-time correction, normalization to MNI EPI template, and 
smoothing with a Gaussian kernel of 8-mm FWHM were applied to functional images using SPM8 
(Wellcome Dept. of Cognitive Neurology, London, UK).  
 
Whole-brain univariate analysis. Whole-brain analysis (Fig. 3b, Supplementary Fig. 4, Table 2) 
used general linear modeling (GLM) of BOLD time-series and group-level random-effect models 
on SPM8. To quantitatively relate BOLD signals to belief updating, value updating, and expectancy 
violation, these variables were parametrically defined under the Bayesian model: belief updating as 
the absolute difference between pre- and post-draw probability of ambiguous colors, value updating 
as signed difference between pre- and post-draw expected value of gambles, and expectancy 
violation as (1 – pre-draw probability of the observed draw). See Table 1 for their variations as 
functions of urn contents. 
 

The three variables of interest, belief updating, value updating, and expectancy violation, 
were included as parametric modulators of a regressor modeling the events of the observed draws. 
In order to adjust for the correlation between belief updating and expectancy violation 
(Supplementary Fig. 3), we included both variables in a single GLM so that coefficient estimates 
captured only variance that were uniquely explained by each of them, removing shared variance 
(Mumford et al., 2015). Since SPM8 orthogonalizes the second parametric modulator against the 
first one by default, we actually implemented two GLMs: one in which the first parametric modulator 
was expectancy violation and the second was belief updating (GLM 1), and another one in which 
the order was reversed (GLM 2). GLM 1 was used to reveal neural correlates of belief updating 
adjusted for expectancy violation, and GLM 2 was used to reveal neural correlates of expectancy 
violation adjusted for belief updating. To illustrate how results are affected in cases where shared 
variance is not removed, we also reported coefficient estimates for expectancy violation in GLM 1 
and belief updating in GLM 2 in Supplementary Fig. 6. GLM 3 included value updating as a sole 
parametric modulator.  
 

All GLMs also included regressors that modeled events of gamble presentation, button press, 
question presentation, and question response, six movement parameters estimated in the motion 
correction procedure, 128s high-pass filtering, and AR(1) model of serial autocorrelation. All of the 
event-related regressors were convolved with the SPM’s double-gamma canonical hemodynamic 
response function. Coefficient estimates of the parametric modulators of interest were then entered 
into group-level analysis. For clusters defined by voxel-level threshold P < .001, uncorrected, 
cluster-level P values with whole-brain correction for family-wise error (FWE) were calculated 
using nonparametric permutation in SnPM13 package (Hayasaka & Nichols, 2003; Nichols & 
Holmes, 2001; Woo, Krishnan, & Wager, 2014) (Table 2).  
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Regions-of-interest (ROI) analysis. Activations in ROIs were examined (Fig. 3c, Supplementary 
Fig. 5) using Marsbar package (Brett, Anton, Valabregue, & Poline, 2002) in the following steps. 
First, the ROIs were determined based on the group-level whole-brain analysis at the cluster-level 
threshold of k > 20 (Table 2). Second, subject-specific ROIs were defined from group-level 
activation maps based on the other 16 subjects’ data (leave-one-subject-out) (Boorman, Rushworth, 
& Behrens, 2013; Hunt, Dolan, & Behrens, 2014). Clusters that survived uncorrected voxel-level P 
< .001, k ≥ 10, with the local maxima located within 16 mm from all-subject group-level peaks were 
used (one cingulate value-updating ROI was discarded from ROI analysis because it could not be 
robustly identified in some iterations at this threshold). Third, mean BOLD time-series from each 
ROI was extracted from the hold-out subject’s data, on which GLMs 1, 2, and 3 were fitted. Their 
coefficient estimates were normalized according to baseline of time-series, similarly to conventional 
calculation of percent signal change (although our coefficients are derived from parametric 
modulators and thus cannot be interpreted as percent signal change per se). Fourth, estimates were 
entered into mixed-effect modeling with subjects as a random effect, conducted on R and lmer 
package. 
 

Please note that, although the circularity problem in ROI definition (Kriegeskorte, Simmons, 
Bellgowan, & Baker, 2009) is slightly alleviated by the leave-one-subject-out procedure, it is not 
totally eliminated. This is because the sets of ROIs (Table 2) were determined based on data from all 
subjects, including the hold-out one. As a consequence, for belief-updating ROIs, coefficient 
estimates for belief updating (GLM 1) may be slightly positively biased, and estimates for 
expectancy violation (GLM 2) may be negatively biased; vice versa for expectancy-violation ROIs. 
(Since value updating is orthogonal to belief updating and expectancy violation by design, there is 
no bias in any coefficient estimates from value-updating ROIs, as well as coefficients estimates for 
value updating from any ROIs.) 
 

Also note that statistical inference in ROI analysis did not compare coefficients of different 
parametric modulators (belief updating, value updating, and expectancy violation); it only concerned 
whether each coefficient was different from zero, not whether one coefficient was higher than others. 
The parametric modulators in GLMs are not in the same unit, and their coefficient estimates are not 
directly comparable. 
 
Dynamic causal modeling (DCM). DCM analysis (Fig. 4) was conducted on SPM8. DCM is a 
generative model of BOLD time-series from multiple ROIs, and includes three types of factors: 
direct regional input, stationary interregional connections, and importantly for our purpose, temporal 
modulations in interregional connections (Friston et al., 2003). DCM is agnostic about whether 
connections are monosynaptic or not. 
 

Since SPM8’s DCM module can model up to 8 ROIs, we included four belief-updating ROIs 
(bilateral frontal and parietal cortex), two value-updating ROIs (MPFC and right VMPFC), and two 
expectancy-violation ROIs (bilateral AI) (Table 2) in our models. We hand-picked these ROIs 
primarily because we could identify these ROIs for every subject (see below), and secondly because 
these ROIs make the interpretation easier (we included belief-updating clusters in frontoparietal 
regions instead of precuneus, and value-updating clusters in MPFC instead of cingulate and STG). 
It is possible that the DCM results (Fig. 4) depend on this selection of ROIs; since conducting DCM 
with a huge model space such as ours takes long time even on multi-node multi-core computing 
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clusters, it is not feasible for us to conduct the same analysis with different sets of ROIs. However, 
as we did not select these ROIs based on DCM results, type-I error has not been affected by this ROI 
selection procedure. 
 

The ROIs were defined in a subject-specific manner. From subject-wise activation maps 
(GLMs 1–3), ROIs that survived uncorrected voxel-wise threshold P < .20 with local maxima 
located within 16mm from all-subject group-level peaks were selected (Smith, Stephan, Rugg, & 
Dolan, 2006). 3 subjects were discarded from DCM analysis because some ROIs could not be 
identified (1 subject for left frontal belief-updating cluster, 1 for MPFC value-updating cluster, and 
1 for left AI expectancy-violation cluster). Next, principle eigenvariate of BOLD time-series from 
4mm-radius spheres centered on the local maxima were extracted. 
 

To test modulation of interregional connections based on the type of gambles (ambiguous or 
risky), we constructed and compared three families of DCMs (Fig. 4a). We instantiated all possible 
sets of modulated connections from belief-updating ROIs to value-updating ROIs in Family 1 (28 − 
1 = 255 models), and all possible sets of modulated connections from two expectancy-violation ROIs 
to two value-updating ROIs in Family 2 (24 − 1 = 15 models). Family 3 included only one model 
with no modulation. We adopted this family-wise approach because, while we were interested in 
testing existence of modulation in connections among the three sets of ROIs, we were not interested 
in discriminating contribution of specific ROIs. Particularly, we aimed to allow the possibility that 
ROIs that exhibit modulation in connections are heterogeneous across individuals (e.g., handedness 
might affect laterality). In all models, modulation in connections were implemented as differential 
strength of connections during ambiguous and risky gambles (boxcar functions from gambles’ 
presentations to the trials’ termination). 
 

In addition to modulated connections, DCMs included regional inputs and stationary 
interregional connections, which were identical across all models. Regional inputs modeled the 
events of the observed draws. To explain away intraregional computational processes that were 
captured in univariate analysis, we included parametric modulator of value updating to inputs to 
value-updating ROIs, and parametric modulators of belief updating and expectancy violation to both 
belief-updating and expectancy-violation ROIs. Stationary interregional connections modeled 
bidirectionally influence among ROIs from the other category (belief-updating, value-updating, and 
expectancy-violation), but not within the same category.  
 

Group-level, random-effect, family-level inference was conducted to compare the three 
families of models (Fig. 4b). Family comparison procedure takes into account both goodness of fit 
and model complexity, aggregates performance across all models in each family, and calculates 
exceedance probability, i.e., probability in which each family was better than the other families 
(Penny et al., 2010; Stephan et al., 2009).  
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Tables 
Table 1. The list of the urn contents used in the behavioral and fMRI experiments, and the 
quantitative measurement of belief updating, value updating, and expectancy violation (derived 
under the Bayesian model with binomial prior probability distribution over urn contents; see 
Supplementary Text and Supplementary Fig. 1 for modeling details). See Supplementary Figure 
3 for correlation among these variables. 
 

Urn contents Ambiguous-color draw Risky-color draw 

Balls in 
ambiguous 

colors 

Balls in 
risky 
color 

Belief 
updating 

Value updating 
Expectancy 

violation 
Belief 

updating 

Value updating 
Expectancy 

violation 
Ambiguous 

gamble 
Risky 

gamble 
Ambiguous 

gamble 
Risky 

gamble 
1 1 0.250 �2.50 

0 

0.750 

0 0 0 

0.500 
1 2 0.167 �1.67 0.833 0.333 
2 1 0.167 �1.67 0.667 0.667 
1 3 0.125 �1.25 0.875 0.250 
2 2 0.125 �1.25 0.750 0.500 
3 1 0.125 �1.25 0.625 0.750 
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Table 2 Clusters associated with belief updating, value updating, and expectancy violation. 
Clusters were formed at voxel-wise threshold P < .001, uncorrected. All clusters larger than 20 
voxels are reported here. Shown are cluster sizes, cluster-level P values (based on permutation, 
corrected for whole-brain family-wise error), MNI coordinates of the peaks, voxel-level effect 
sizes, and voxel-level P values (uncorrected).  
 

 
 

Region # voxel Cluster-level 
P  

Peaks 

x y z T(16) Voxel-level  P 

Belief updating  

 R middle frontal gyrus / superior frontal sulcus 61 0.0568 27 2 55 5.77  0.000014 

    27 14 46 4.30 0.000275 

 Precuneus 96 0.0280 6 -61 31 5.61 0.000020 

    -6 -61 40 4.81 0.000096 

    -6 -58 28 4.40 0.000224 

 R intraparietal sulcus 146 0.0128 30 -40 49 5.54 0.000022 

    45 -31 46 5.06 0.000058 

    27 -52 46 4.64 0.000136 

 L intraparietal sulcus 51 0.0724 -24 -43 46 5.18 0.000046 

    -42 -37 40 4.66 0.000131 

 L middle frontal gyrus / superior frontal sulcus 39 0.1000 -30 11 58 4.67 0.000128 

Value updating 

 R ventromedial prefrontal cortex 39 0.0966 15 29 -14 6.36 0.000005 

    15 38 -11 4.68 0.000125 

    24 26 -11 4.13 0.000393 

 L superior temporal gyrus 43 0.0868 -48 -7 -2 5.75 0.000015 

 Medial prefrontal cortex 210 0.0118 -15 53 7 5.66 0.000018 

    15 53 4 4.77 0.000104 

    -12 41 4 4.66 0.000131 

 Cingulate cortex 107 0.0302 -9 -22 43 5.55 0.000022 

    -18 -22 40 5.16 0.000047 

    -6 -10 37 4.47 0.000193 

 Subgenual area 31 0.1194 9 26 7 5.53 0.000023 

 Cingulate cortex 29 0.1284 -6 -1 52 4.40 0.000224 

    3 2 46 4.20 0.000339 

Expectancy violation 

 R insula 45 0.0660 30 20 -8 6.22 0.000003 

 L insula 27 0.1060 -30 26 -2 5.05 0.000059 

    -42 20 -2 4.13 0.000393 
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Supplementary Materials 
Supplementary Text: Bayesian modeling of updating and its alternatives.  
In our Bayesian modeling, we postulated that point estimates of a future draw’s color probability are 
calculated in belief. We specifically assumed that all possible urn contents are considered, weighted 
according to their “second-order” probability, and averaged. Second-order probability over urn 
contents is updated in a full Bayesian manner, and its prior is binomially distributed. 
 
1. Heuristic account 
Even though our behavioral (Fig. 2) and fMRI (Fig. 3) results were derived based on the Bayesian 
modeling, they are not dependent on specifics of this model. Specifically, predictions of this model 
are mathematically equivalent to another, more heuristic account, which considers only one 
“effective” urn content. In this account, each ambiguous ball in the urn (the ball which color could 
be one of the two ambiguous colors) is treated as a pair of half (0.5) balls in ambiguous colors. When 
an ambiguous-color draw is observed, one of such pairs is replaced with a full ball in the draw’s 
color. Importantly, this heuristic account does not necessarily require that updating processes are 
full-Bayesian. Below is the proof of their mathematical equivalence. 
 
Let 1, 2, and	3 be the numbers of green, yellow, and red balls in the urn respectively. Assume that 
the ambiguous colors are green and yellow, and the risky color is red. Thus, although subjects do not 
know 1 and 2, they know	 1 + 2	(= 5	) and 3 (the total number of the balls in the urn is 5 + 3). Let 
g (G), y (Y), and r (R) be the event of the observed (resolution) draw in green, yellow, and red, 
respectively.  
 
Prior. In the Bayesian model, prior second-order probability over urn contents 1, 2, 3   = 
1, 5 − 1, 3  follows a binomial distribution: 

  

" 1, 2, 3 =
1
28

5
1
	for	all		1		s. t.		0 ≤ 1 ≤ 5. 

 
Prior probability of a future draw in green is, using binomial theorem, 
  

" B = " B 1, 2, 3 ∙ " 1, 2, 3
C

=
1

5 + 3
∙
1
28

5
1

C

=
5

5 + 3
∙
1
28

5 − 1
1 − 1

C

=
5

2 5 + 3
1

28DE
5 − 1
1 − 1

C

=
5

2 5 + 3
	. 

 
It is obvious that  
 

" . = " F = " ) = " B =
5

2 5 + 3
	. 

 
Since "(G│1, 2, 3) = 3/(5 + 3) does not depend on 1 (and 2), it is also obvious that 
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" G = " $ = " G 1, 2, 3 ∙ " 1, 2, 3
C

=
3

5 + 3
" 1, 2, 3

C

=
3

5 + 3
	. 

 
One can easily see that this prior probability distribution over a future draw derived from the 
Bayesian model is equivalent to the heuristic model, in which prior “effective” urn content is 
(1, 2, 3) = (5 2 , 5 2 , 3) . 
 
Posterior. In the Bayesian model, second-order probability is updated following Bayes’ rule. After 
an observed draw in green B, 
  

" 1, 2, 3|B =
" B 1, 2, 3 ∙ " 1, 2, 3
" B 1, 2, 3 ∙ " 1, 2, 3C

=
" B 1, 2, 3 ∙ " 1, 2, 3

" B

=
1

5 + 3
∙
1
28

5
1
∙
2 5 + 3

5
=

1
28DE

5 − 1
1 − 1

	. 

 
Thus, posterior probability of a future draw in green after B is updated as 
 

" .|B = " . 1, 2, 3 ∙ " 1, 2, 3|B
C

=
1

5 + 3
∙
1

28DE
5 − 1
1 − 1

C

=
1 − 1
5 + 3

∙
1

28DE
5 − 1
1 − 1

C

+
1

5 + 3
∙
1

28DE
5 − 1
1 − 1

C

=
5 − 1

2(5 + 3)
1

28DK
5 − 2
1 − 2

C

+
1

5 + 3
1

28DE
5 − 1
1 − 1

C

=
5 − 1

2(5 + 3)
+

1
5 + 3

=
5 + 1

2(5 + 3)
 

 
(binomial theorem was used twice). Similarly, 
 

" )|B = " ) 1, 2, 3 ∙ " 1, 2, 3|B
C

=
5 − 1
5 + 3

∙
1

28DE
5 − 1
1 − 1

C

=
5 − 1

2 5 + 3
1

28DK
5 − 2
1 − 1

C

=
5 − 1

2 5 + 3
	. 

 
" $|B = " $ 1, 2, 3 ∙ " 1, 2, 3|B

C

=
3

5 + 3
" 1, 2, 3|B

C

=
3

5 + 3
	. 

 
It is obvious that the posterior probability is equivalent to the heuristic account, in which posterior 
“effective” urn content after B is 1, 2, 3 B) = (5 2 + 1 2 , 5 2 − 1 2 , 3). The same applies to 
the posterior to F. 
 
Lastly, a red (risky) draw G does not update the belief. In the Bayesian model, since "(G│1, 2, 3) =
3/(5 + 3) is constant, 
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" 1, 2, 3|G =
" G 1, 2, 3 ∙ " 1, 2, 3
" G 1, 2, 3 ∙ " 1, 2, 3C

=
" 1, 2, 3
" 1, 2, 3C

= " 1, 2, 3  

 
while in the heuristic account, 1, 2, 3 G) = (5 2 , 5 2 , 3) = 	 (1, 2, 3) . Thus, " .|G =
" . , " )|G = " ) , " $ G) = " $  in both models.  ∎ 
 
 
2. Uniform second-order prior 
We also noted that similar behavioral and fMRI results could be yielded when we used uniform prior, 
another natural choice of second-order probability. In this case, 
 

" 1, 2, 3 =
1

5 + 1
	for	all		1		s. t.		0 ≤ 1 ≤ 5. 

 
Prior probability in this model is actually identical to the model with binomial prior: 
 

" B = " . = " F = " ) = " B 1, 2, 3 ∙ " 1, 2, 3
C

=
1

5 + 3
∙

1
5 + 1

C

=
5

2 5 + 3
	. 

 
" G = " $ = " G 1, 2, 3 ∙ " 1, 2, 3

C

=
3

5 + 3
" 1, 2, 3

C

=
3

5 + 3
	. 

 
It is obvious that a risky draw G does not update the belief irrespective of the prior. Thus, the only 
difference between predictions of the binomial and uniform prior lies in posterior probability after 
ambiguous-color draws: 
  

" 1, 2, 3|B =
" B 1, 2, 3 ∙ " 1, 2, 3
" B 1, 2, 3 ∙ " 1, 2, 3C

=
" B 1, 2, 3 ∙ " 1, 2, 3

" B
=

1
5 + 3

∙
1

5 + 1
∙
2 5 + 3

5

=
21

5 5 + 1
	 

 

" .|B = " . 1, 2, 3 ∙ " 1, 2, 3|B
C

=
1

5 + 3
∙

21
5 5 + 1

C

=
25 + 1
3 5 + 3

 

 
 

" )|B = " ) 1, 2, 3 ∙ " 1, 2, 3|B
C

=
5 − 1
5 + 3

∙
21

5 5 + 1
C

=
5 − 1

3 5 + 3
 

 
while " $|B 	remains the same as the prior " $ . 
 
Note that equivalence to the heuristic account does not hold when the Bayesian model adopts 
uniform prior (or any non-binomial prior). 
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Behaviorally, this uniform-prior model successfully predicted values of ambiguous gambles after 
ambiguous-color draws (P < .05; Supplementary Fig. 2a), but we noted that it was outperformed by 
the original binomial (residual sum of squares, 109727 vs. 158925). Prediction of value updating 
based using the uniform model was also successful (P < .05), but was outperformed by binomial 
prior (residual sum of squares, 97861 vs. 147059). In fMRI analyses, activation maps under the 
uniform model were overall quite similar to the original results under the binomial model 
(Supplementary Fig. 2b). 
 
Together, these show that our conclusions are overall robust with respect to the specifics of our 
original Bayesian modeling. 
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Supplementary Table 1. Distribution of observed value updating in the behavioral experiment. 
Shaded cells conform to normative prediction (Fig. 1e). See Fig. 2b for histograms. 
 

 > +¢50 (0, +¢50] 0 [-¢50,0) < -¢50 

ambiguous 
gambles 

Ambiguous-
color draws: 

positive 
56.11% 26.94% 9.17% 0.28% 7.50% 

Ambiguous-
color draws: 

negative 
3.89% 1.94% 11.67% 22.78% 59.72% 

Risky-color 
draws 6.39% 6.67% 71.39% 10.83% 4.72% 

risky gambles 

Ambiguous-
color draws 2.50% 2.78% 79.17% 7.50% 8.06% 

Risky-color 
draws 2.22% 3.33% 79.44% 3.89% 11.11% 
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Chapter 2 
Unified account on preference for instrumental and non-
instrumental information 
 
Introduction 
Human ubiquitously attempts to acquire information relevant to their decisions and goals. By 
acquiring information about the state of the environment and incorporating it into their choices, 
agents can increase their chance to obtain rewards and avoid punishments. However, information is 
often associated with various forms of costs, such as time, effort, or money, and agents need to 
consider if a piece of information is worth its cost. Moreover, there are often multiple sources of 
information in the environment, and agents need to pick up one that would be the most useful. 
Therefore, while adaptive acquisition of information is a part of value-based decision-making, it 
constitutes a class of challenging decision-making problems by itself. 
 

Information acquisition has been studied in various forms, in various fields, and in various 
conceptual schemes (Fig. 1). Most notably, economists have postulated a normative theory on how 
rational agents should acquire information to maximize expected utility (EU) (Bandyopadhyay, 
1977; Edwards, 1965; Howard, 1966; 1967; Marschak, 1971; 1973; Medlin, 1979; Schepanski & 
Uecker, 1984; Wendt, 1969). The theory prescribes that agents compute value of information (VoI) 
and acquires the information only if its value exceeds its cost (or values of alternative information 
pieces). It further states that information is valued only to the extent to which it improves agents’ 
choices and their EU.  
 

An important tenet of this normative theory is that information should be positively valued 
only if it is instrumental, i.e., only if it would affect agents’ future choices. For instance, if an agent 
considers what to do this weekend, the weather forecast may directly affect its decision (e.g., it may 
go hiking if it is predicted to be sunny, but it may instead go to a theater if it is expected to be rainy). 
The weather forecast is valuable in this case because it will influence the agent’s choice and improve 
overall expected utility. On the other hand, if the agent has already decided to go to a theater and 
purchased a ticket, the weather forecast will not affect the agent’s choice anymore and thus is of little 
value. Such non-instrumental information should not be acquired when associated with non-zero 
costs. 
 

This normative theory on instrumental VoI provides precise predictions on information 
acquisition behavior, and it has achieved a certain degree of descriptive validity (Medlin, 1979; 
Schepanski & Uecker, 1984; Shanteau & Anderson, 1972; Wendt, 1969). Particularly, because the 
theory assumes EU-maximizing agents, it explains the influence of agents’ risk attitudes on their 
information acquisition (Abbas, Bakir, Klutke, & Sun, 2013; Bakır & Klutke, 2011; Berg & 
Eisenberger, 1996; Blair & Romano, 1988; Mehrez, 1985; Nadiminti, Mukhopadhyay, & Kriebel, 
1996). However, the theory has three major drawbacks that have limited its influence. First, precise 
calculation of instrumental VoI requires agents to simulate their choices and utilities under all 
possible information states, which is a computationally demanding process and particularly 
problematic in the artificial intelligence (AI) field. Second, the theory does not provide any 
predictions when the utility function is not available. The idea of EU maximization is not widely 
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used by psychologists studying curiosity, i.e., people’s tendency to acquire information for its own 
sake. Third, studies in economics and animal psychology have reported that that human and animal 
exhibit consistent preference for information that resolves uncertainty earlier than later, even if it is 
not instrumental (Ahlbrecht & Weber, 1996; Beierholm & Dayan, 2010; Bennett, Bode, Brydevall, 
Warren, & Murawski, 2016; Blanchard, Hayden, & Bromberg-Martin, 2015; Bromberg-Martin & 
Hikosaka, 2009; 2011; Chew & Ho, 1994; Eliaz & Schotter, 2007; Kreps & Porteus, 1978; 
McDevitt, Dunn, Spetch, & Ludvig, 2016; Wu, 1999). Such preference has been observed even 
when the information is costly, violating the tenet of the normative theory. 
 

Instead of the normative theory, various fields have proposed their own theoretical accounts 
for information acquisition. Some of them attribute information acquisition to a non-EU-maximizing 
drive for information that human is endowed with. For instance, AI literature has proposed a bonus 
utility term added to actions that might lead to information acquisition (Dayan & Sejnowski, 1996; 
Ishii, Yoshida, & Yoshimoto, 2002; Moore & Atkeson, 1993; Sutton & Barto, 1998; Yoshida & 
Ishii, 2005). In its most basic form, the bonus is constant across all actions or those that have not 
been taken in the recent past. Moreover, studies on curiosity postulate a drive to reduce the gap 
between what is already known and what could be potentially known, called information gap 
(Loewenstein, 1994). Although quantitative modeling of curiosity has not been established, 
information gap is often assumed to be the difference in entropy. Agents with the constant 
information bonus or the entropy reduction drive would obtain information more often than rational 
EU-maximizing agents, while not necessarily taking into account specific future choices and 
outcomes. 
 

Economists, on the other hand, have proposed penalty for states or choices in which agents 
could have obtained, but have not obtained, some information(Kreps & Porteus, 1978; Wu, 1999). 
It was originally proposed by studies on temporal lotteries, in which majority of subjects preferred 
lotteries resolved earlier to those resolved later, even if they were otherwise identical (i.e., timing of 
resolution was non-instrumental), and even if earlier resolution was costly (Ahlbrecht & Weber, 
1996; Bennett et al., 2016). Although such preference is inconsistent with the normative theory, it 
could be explained by introducing penalty for being uninformed; agents prefer earlier resolution 
because they are averse to being uninformed for a longer time. Importantly, it has been observed that 
preference on timing of uncertainty resolution is dependent on outcomes at stake; most subjects 
prefer earlier resolution when a large positive outcome is at stake (e.g., big monetary prizes), but 
some prefer later resolution when a large negative outcome is at stake (e.g., cancer diagnosis) 
(Ahlbrecht & Weber, 1996; Chew & Ho, 1994; Eliaz & Schotter, 2007). Such sensitivity to 
outcomes cannot be explained by the constant information bonus or the drive for entropy reduction. 
 

Therefore, a number of conceptual schemes on information acquisition have been proposed 
in related fields. So far, however, these concepts have been studied largely separately. For instance, 
because studies on temporal lotteries have focused on non-instrumental information, it remains 
unclear whether and how much preference for earlier resolution affects behavior in cases under the 
presence of instrumental VoI (Beierholm & Dayan, 2010). Similarly, it has not been well 
investigated how curiosity is sensitive to decision-related variables, such as possible future 
outcomes, and to what extent it is prioritized over EU-maximizing information acquisition. 
Literature on the instrumental VoI theory, on the other hand, has largely ignored preference for non-
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instrumental information, leaving the theory normative rather than descriptive. More 
problematically, most existing accounts are either qualitative or axiomatic and thus difficult to falsify. 

 
Intuitively, human information acquisition may be driven by more than one factors, and 

instrumental VoI (or some form of its approximation) may be one of them. To understand information 
acquisition, therefore, we need to examine what non-normative factors additionally contribute to 
behavior and to what extent. From the theoretical perspective, this requires falsifiable models that 
unify instrumental VoI and one or more non-normative accounts. From the empirical perspective, 
we need tasks that include instances of instrumental information and rich parameterization of 
decision-related variables, such that the contribution of a non-normative factor could be quantified 
and compared against normative and other non-normative factors. These approaches have rarely 
been taken in the past. 

 
This current study aims to address these issues by adopting a new experimental paradigm on 

information purchase and postulating quantitative, yet descriptive, modeling of subjective VoI. The 
normative model of instrumental VoI is used as a standard (baseline) model, to which the non-
normative accounts from AI, psychology, and economics are added and tested against the empirical 
data.  

  
Results 
This study adopted a new task paradigm to quantify information acquisition behavior (Fig. 2a). 
Subjects’ primary decision in the task was to choose whether they would accept or reject a monetary 
gamble with two possible outcomes NE, NK . The gamble was visually presented as a roulette wheel, 
and when it was played, a dot appeared on the perimeter and its side determined the outcome. 
Because the dot’s location followed uniform distribution across the perimeter, the two outcomes 
were equally likely at this point: "uninfo NE = "uninfo NK = 0.5. 
 

After making the choice on the gamble with "uninfo  (hereafter an uninformed choice), 
subjects were presented with a piece of information and indicated whether, or how much, they were 
willing to purchase it. The information, if purchased, would update the outcome’s probability 
distribution and improve its predictability. Visually, the information was presented as a partition line 
on the wheel, and if subjects paid the information cost, the side of the partition line in which the dot 
would appear was revealed. This means that the information revealed the true outcome probability 
among two possible distributions: "info NE = 1 − "info NK = P	or	1 − P , where P	(≤ 0.5) 
corresponds to the angle of the partition line. The lower P was, the more diagnostic the information 
was; the diagnosticity was the highest when P = 0 (vertical partition line) and the lowest when P =
0.5 (horizontal partition line). Being informed of the true probability distribution "info, subjects made 
the choice on the gamble again (hereafter an informed choice), overriding their prior uninformed 
choice. This opportunity for subjects to change their choices is exactly the source of instrumental 
VoI. 

 
Two independent dataset were analyzed, one during fMRI scanning and one from a purely 

behavioral experiment. Paradigms adopted in these datasets were almost identical. They differed in 
the ways subjects elicited their preference on information purchase; fMRI subjects made a binary 
choice on whether to purchase information at a given monetary cost (variable across trials), while 
behavioral subjects reported their willingness-to-pay for information in BDM bidding procedure 



 35 

(Becker & Brownson, 1964). They also differed in the gamble outcomes and partition line angles 
(see Methods and Fig. 3c, d). Findings on neural representation of VoI from the fMRI experiment 
are reported in Chapter 3. 

 
Estimation of utility function. 
First, the descriptive validity of the normative theory on instrumental VoI was evaluated. This model 
yields prediction of VoI, hereafter Q, based on the agent’s utility function R. To obtain Q, group-
level utility function was first estimated based on subjects’ uninformed choices on gambles. Subjects 
exhibited risk aversion in both behavioral and fMRI experiments, which was successfully captured 
by asymmetric power utility functions (Supplementary Fig. 1). 
 
Standard model of instrumental VoI. 
VoI prediction Q under the normative, standard model can be derived using a decision tree (Fig. 2b). 
The first branches in the decision tree concern the informed choice (Fig. 2b, right) and the 
uninformed choice (left), or in other words, whether the information should be purchased at the cost 
S  or not. When the cost is equal to the normative prediction of VoI (S = Q ), agents should be 
indifferent to information purchase, i.e., EU of the uninformed choice TUuninfo	should be equal to 
the informed choice TUinfo. 
 

Assuming that EU-maximizing policy is fully deterministic (i.e., agents always choose the 
action with the highest EU), TUuninfo is given as 
 

TUuninfo NE, NK = max 0.5 ∙ R NE + 0.5 ∙ R NK , 0 1  
 
where utility of rejecting the gamble is 0 as agents do not gain or lose anything. 
 

When the information is purchased, its content would be stochastic; "info NE  could turn out 
to be either P or 1 − P (P ≤ 0.5) at the equal likelihood. Hereafter the former information state is 
called XE , and the latter XK . Overall EU of the informed choice TUinfo  is the average of EU-
maximizing choices under the two information states: 
 

TUinfo NE, NK, P, S = 0.5 ∙ TUinfo NE, NK, P, S XE + 0.5 ∙ TUinfo NE, NK, P, S XK 2  
 
where EU under each information state is  
 

TUinfo NE, NK, P, S XE = max P ∙ R NE − S + 1 − P ∙ R NK − S , R −S 3 	
TUinfo NE, NK, P, S XK = max 1 − P ∙ R NE − S + P ∙ R NK − S , R −S 4  

 
because agents need to pay the sunk cost of information purchase	S even if they end up rejecting the 
gamble. 
 

EU-maximizing agents are supposed to purchase the information when TUinfo is higher than 
TUuninfo, and forgo otherwise. This prediction was supported by fMRI experiment dataset, in which 
subjects indicated their preference for information purchase in binary choices. They purchased 
information more frequently when the difference between TUinfo and TUuninfo was larger, which was 
successfully modeled by the logit (softmax) function of the EU difference (negative log-likelihood 
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= 2889.7; p < .0005, permutation; Fig. 3a). This means that the amount to which subjects chose to 
pay for the information was overall sensitive to NE, NK, and P, as predicted by Eqs. 1-4 (Fig. 3c). 
 

When S = Q, EU-maximizing agents are supposed to be indifferent to information purchase. 
Therefore, the normative prediction of VoI Q is the solution of  
 

TUuninfo NE, NK = TUinfo NE, NK, P, Q 5  
 

The solution Q, indeed, successfully explained willingness-to-pay reported by subjects in the 
behavioral experiment’s (mean squared error = 2.2116, p < .0005, permutation; Fig. 3b). Again, this 
indicates that willingness-to-pay exhibited dependence on NE , NK , and P  that was approximately 
consistent with Eq. 5 (Fig. 3d). 
 

Another important feature of the standard model is its sensitivity to agents’ risk attitude. To 
test this, it was examined whether the information purchase behavior could be modeled under the 
assumption of expected-value (EV) maximization (i.e., linear	R ) equally well. Even though EV-
based predictions also performed decently well, they were outperformed by EU-based predictions in 
both fMRI and behavior experiments (Fig. 3e, f). Note that this was not due to overfitting; the utility 
functions were obtained from uninformed choices on gambles, not from the information purchase 
behavior per se. This illustrates the importance of taking risk attitude into account, which is rarely 
done outside behavioral economics and decision-making studies. 
 
Violation of the standard model’s prediction. 
Analysis so far has shown that the standard model provides a decent approximation of information 
acquisition. To test the standard model more critically, we next examined its most important 
prediction; when information is non-instrumental, i.e., when the informed choices under XE or XK	are 
the same to the uninformed choice, its value Q should be zero (see Appendix for proof). This is an 
important tenet of the normative theory, which sees information acquisition as nothing more than a 
part of EU maximization. No other existing accounts on information acquisition make the same 
claim that value of non-instrumental information is always zero. 
 

To test this key prediction that non-instrumental information’s value is zero, let us consider 
an exemplar gamble in which one of the two outcomes was 0 (such gambles were included only in 
the behavioral experiment). It is obvious that any information in such a gamble is non-instrumental, 
because the gamble should be always accepted if the other outcome is positive, and rejected if the 
other outcome is negative. Contrary to this prediction, observed willingness-to-play was 
significantly higher than zero in the ($10, $0) gamble (t(95) = 7.2955, p < 10-10; Fig. 4a). This cannot 
be explained by subjects’ misunderstanding of the gamble, because most subjects accepted to play it 
as expected (Fig. 4b). This evidences that non-standard preference for non-instrumental information 
does indeed exist. More interestingly, however, while willingness-to-play in the ($0, −$10) gamble 
was also larger than zero (t(95) = 3.1238, p < .01; Fig. 4a), it was significantly smaller than ($10, 
$0) (t(95) = 6.8185, p < 10-9). This illustrates that the preference for non-instrumental information is 
sensitive to outcomes at stake. 
 
 Preference for non-instrumental information itself has been already documented by previous 
studies. However, it has not been well established how important such preference is under the 
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presence of the instrumental VoI. Most past studies adopted tasks in which subjects never acquire 
instrumental information, and as pointed out in (Beierholm & Dayan, 2010), it would be possible 
that the behavioral effect of such preference disappears when information could be instrumental; 
subjects may value information no more than the normative predictions under such circumstances. 
If this is the case, subjects in the current task would not indicate higher willingness-to-pay than the 
normative prediction Q when the latter is non-zero. On the other hand, if some non-standard factors 
indeed contribute to the behavior even when information is instrumental, subjects would exhibit 
consistent overvaluation. 
 
 To test these possibilities, the difference between willingness-to-pay and the standard 
predictions Q  (or overvaluation) was examined across all gambles (Fig. 4c, d). Indeed, subjects 
consistently exhibited overvaluation (t(95) = 10.7569, p < 10-10), evidencing the general behavioral 
effect of non-standard preference. Furthermore, overvaluation was larger in the gambles with 
positive EU than the ones with negative EU (t(95) = 6.4501, p < 10-8), and was an inverted-U function 
of P (Fig. 4c). Sensitivity to EU and P was consistently observed over the majority of trials (Fig. 4d). 
These results show that the non-standard factor’s contribution is dependent on outcomes at stake and 
information diagnosticity. 
  

These conclusions were also supported by the independent dataset from fMRI experiment. 
Subjects purchased information more often than normatively predicted (t(36) = 5.2996, p < 10-5; Fig. 
4e, f), and such overpurchase was even higher among the gambles with positive EU than negative 
EU (t(36) = 7.1152, p < 10-7). Even though the fMRI experiment had only three levels of P, non-
monotonic relationship between the overpurchase and P  was observed (Fig. 4e), more or less 
consistently over gambles (Fig. 4f). 
 
 Taken together, these results show that the standard model is not enough to account for 
information purchase behavior. Its descriptive validity could be improved by combining it with some 
non-standard accounts, which would allow overvaluation and its sensitive to outcomes and 
information diagnosticity.  
 
Non-standard models of VoI. 
To account for the observed violation of the standard prediction, we next examined alternative 
accounts on information acquisition. All of the examined accounts allow preference for non-
instrumental information and overvaluation of instrumental information. The current study does not 
aim to compare these accounts against the standard model alone; rather, it aims to explore how to 
improve the standard model by combining it with the alternative accounts. Therefore, each account 
was implemented as a modification of the standard model; the size of its influence was controlled 
by a free parameter. 
 

To our knowledge, little to no attempt has been made to combine the non-standard accounts 
with the normative theory on instrumental VoI to develop quantitative, concrete, and falsifiable 
models. Therefore, before describing the results of formal modeling analysis, the way each account 
could be implemented into the standard model is first described below. The examined accounts were: 
1) constant information bonus, which has no systematic sensitivity to decision-related variables (NE, 
NK, P), 2) drive for entropy reduction, which is sensitive to P but not to outcomes at stake (NE, NK), 
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and 3) a class of economic models on penalty for uninformativeness, which are sensitive to outcomes 
at stake (NE, NK), and some of which are also sensitive to	P (Fig. 4).  
 
1. Constant information bonus 
AI literature has long studied how to design agents that acquire information efficiently. A problem 
of particular interest is the conflict between exploration and exploitation; even when agents already 
know that some actions lead to rewards, they should not keep taking those actions (exploitation), and 
instead examine other actions’ outcomes from time to time (exploration), because some of them 
might be better the known associations. One common solution to this conflict, which is not 
necessarily optimal but excels at computational efficiency, is “exploration bonus,” which is a 
constant term added to utility of non-exploiting actions (Dayan & Sejnowski, 1996; Ishii et al., 
2002; Moore & Atkeson, 1993; Sutton & Barto, 1998; Yoshida & Ishii, 2005). This idea has also 
been used by neuroscience studies due to its simplicity, but its descriptive validity has been 
questioned (Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006). 
 

In our paradigm, this account assumes that a constant term is added the utility of informed 
choice (Eq. 2): 
 

TUinfo
∗ NE, NK, P, S = 0.5 ∙ TUinfo NE, NK, P, S XE + 0.5 ∙ TUinfo NE, NK, P, S XK + [bonus  

 
where [bonus  is a free parameter. VoI prediction under this model Q∗  satisfies TUuninfo NE, NK =
TUinfo

∗ NE, NK, P, Q∗ . 
 

A key prediction of this model is that agents are more willing to purchase information than 
the standard model (i.e., Q∗ ≥ Q). However, it also predicts that the overvaluation (Q∗ − Q) is not 
distinguishable between gambles with positive and negative EUs, and is not sensitive to P (Fig. 5). 
Thus, this model fails to characterize the behavioral overvaluation, which was larger in gambles with 
positive EU and ones with negative EU. 
 
2. Entropy reduction  
In psychology, information acquisition is often seen as a manifestation of curiosity, or an internal 
drive to obtain information for its own sake. One widespread idea is that curious agents attempt to 
reduce the gap between the amount of information they currently possess and the amount of 
information they could potentially possess, and that such information gap could be measureable as 
the difference of entropy (Berlyne, 1957; 1966; Loewenstein, 1994). 
 

In the current task, the information updates outcome probability from "uninfo NE = 0.5 to 
"]^_` NE = P or	1 − P. Thus, entropy reduction is zero when P = 0.5, and it grows as P decreases. 
To implement this account, a bonus term of entropy reduction can be added to the utility of informed 
choice (Eq. 2): 
 

TUinfo
∗ NE, NK, P, S = 0.5 ∙ TUinfo NE, NK, P, S XE + 0.5 ∙ TUinfo NE, NK, P, S XK  

+[ent −∆entropy  
 
where [ent is a free parameter. 
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As the constant bonus model, this model also predicts overvaluation that is not systematically 
dependent on outcomes (Fig. 5). One critical difference from the constant bonus model is that this 
model predicts overvaluation’s sensitivity to P. However, since the entropy reduction is a decreasing 
function of P, so is the predicted overvaluation, which is inconsistent with the observed inverted-U 
relationship. 
  
3. Economic models: penalty for uninformed choices  
Analyses so far highlighted the need for models that allow sensitivity to outcomes at stake. This has 
been addressed by theoretical accounts proposed from economic studies on temporal lotteries, 
namely subjects’ preference for earlier resolution of uncertainty. Evidence has shown that such 
preference is prominent when the lottery involves a big positive outcome, but not necessarily when 
it involves a big negative outcome (Ahlbrecht & Weber, 1996; Berns et al., 2006; Chew & Ho, 
1994). 
 

Theoretical accounts for such preference have been proposed by Kreps & Porteus (1978) 
(Kreps & Porteus, 1978) and Wu (Wu, 1999). Both theories introduce penalties for making 
uninformed choice; utility is reduced when agents could have obtained, but did not obtain, a piece 
of information. Kreps & Porteus reduce EU of uninformed choices or states via recursive utility, 
while Wu does so by introducing non-linear probability weighting function. These accounts were 
originally proposed only axiomatically, and subsequent studies that empirically tested them remained 
largely qualitative. Moreover, to our knowledge, they have not been applied to settings where 
information could be instrumental. Therefore, the current study marks the first attempt to quantify 
penalty for uninformed choices in the presence of instrumental information. 
 
3-1. Recursive utility 
In Kreps & Porteus, informed and uninformed choices are evaluated based not on utility R but on 
recursive utility b R . Furthermore, while first-order utility is averaged over outcomes or states in 
informed choice (b R ), recursive utility for each outcome or state is first obtained and then averaged 
in uninformed choice (b R ). Therefore, concavity of b explains preference for informed choice, 
even when the information is non-instrumental. The original theory does not specify whether 
recursive utility should be averaged over outcomes (NE, NK) or information states (XE, XK); this study 
considers both formulations due to the lack of empirical evidence for either one.  
 

Under the outcome-recursive-utility model, Eqs. 1 and 2 should be rewritten as 
 

TUuninfo
∗ NE, NK = max 0.5 ∙ b R NE + 0.5 ∙ b R NK , 0 	

TUinfo
∗ NE, NK, P, S = 0.5 ∙ b TUinfo NE, NK, P, S XE + 0.5 ∙ b TUinfo NE, NK, P, S XK  

 
and Q∗ satisfies TUuninfo

∗ NE, NK = TUinfo
∗ NE, NK, P, Q∗  . Concavity of b  is captured by a free 

parameter [KP  in a power function		b = R EDcKP  . (Note that the power function is adopted only 
because of its simplicity; there has been no attempt to empirically specify the form of underlying b 
to our knowledge.) 
 

To construct the state-recursive-utility model, we first need to rewrite Eq. 1 to separate EU 
of the uninformed acceptance under the information states (XE and XK): 
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0.5 ∙ R NE + 0.5 ∙ R NK = 0.5 P ∙ R NE + (1 − P) ∙ R NK + 0.5 (1 − P) ∙ R NE + P ∙ R NK  
 
and then apply recursive utility: 
 
TUuninfo

∗

=
0.5 ∙ b P ∙ R NE + 1 − P ∙ R NK + 0.5 ∙ b 1 − P ∙ R NE + P ∙ R NK 			if	TUuninfo > 0

0			if	TUuninfo ≤ 0
 

 
TUinfo

∗ NE, NK, P, S  is the same as the outcome-recursive-utility model above.  
 

Under these models with concave b (i.e., positive [KP), overvaluation would occur (Q∗ ≥
Q) only when TUuninfo > 0 (Fig. 5). This is qualitatively consistent with the behaviorally observed 
overvaluation. An important difference between the outcome model and the state model lies in 
predicted overvaluation’s sensitivity to P; while the outcome model predicts constant overvaluation 
over P, the state model predicts that overvaluation decreases with P. However, even though subjects 
indeed exhibited overvaluation that was sensitive to P, it was not a monotonic decreasing function 
as predicted by the state model; it showed inverted-U relationship. The fact that the state model 
allows sensitivity to P, therefore, does not necessarily make it attractive compared to the outcome 
model. 
 
3-2 Probability weighting  
According to Wu’s theory, EU of uninformed choices is calculated based on probability weighting 
function. Probability weighting could be applied to outcomes or states. In general, predictions of this 
model critically depend on the form or weighting function, which has not been empirically specified. 
However, since the two outcomes (NE, NK ) or two states (XE, XK ) are equiprobable in the current 
paradigm, we only need one free parameter that encodes weight of probability 0.5 ([w below). 
 

In the outcome-probability-weighting model, predicted VoI	Q∗ satisfies TUuninfo
∗ NE, NK =

TUuninfo NE, NK, P, Q∗ , where 
 

TUuninfo
∗ NE, NK = max 0.5 − [w ∙ R NE + 0.5 + [w ∙ R NK , 0  

 
assuming NE > NK. TUuninfo

∗ 	under the state-probability-weighting model is derived similarly to the 
state-recursive-utility model: 
 
TUuninfo

∗ =
0.5 + [w ∙ P ∙ R NE + 1 − P ∙ R NK + (0.5 − [w) ∙ 1 − P ∙ R NE + P ∙ R NK 			if	TUuninfo > 0

0			if	TUuninfo ≤ 0
 

 
These models’ predictions are quantitatively similar to the recursive utility models (Fig. 5), 

even though they are conceptually different. The main difference between them lies in quantitative 
sensitivity of overvaluation to outcomes, but it also critically depends on the form of underlying 
recursive utility function or weighting function, rigorous specification of which is beyond the scope 
of the current study. If goodness-of-fit drastically differs among these economic models, it would 
suggest that empirical specification of the underlying functions, rather than axiomatic derivation, is 
important in the future modeling effort. 
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Non-standard model evaluation – fMRI experiment dataset. 
Model-free analysis suggested that the standard model could be improved by allowing overvaluation, 
or contribution of non-standard factors. Accounts from economics seem particularly promising 
because they predict that overvaluation is sensitive to outcomes at stake. To formally test these 
observations, the modified models were formally evaluated based on the information purchase 
behavior from fMRI experiment. 
 

Subjects’ behavior supported the non-standard accounts. All modified models achieved 
lower AICs than the standard model (Fig. 6a). Estimates of the free parameters ([bonus, [ent,	[KP, 
and	[w) were all significantly higher from zero, which is the standard model’s assumption (p < .001, 
bootstrap, Fig. 6b), confirming their contributions to the model fit. These echo the earlier observation 
that the standard model can be improved by allowing overvaluation.  
 

To statistically evaluate the difference in model fit while addressing the issue of overfitting, 
10-fold cross-validation (200 iterations) was conducted. As a result, all of the four economic models 
outperformed the standard model (p < .05, Bonferroni corrected). To the contrary, the constant bonus 
or the entropy reduction did not improve the standard model. These confirm that overvaluation is 
sensitive to outcomes at stake, which cannot be explained by constant bonus or entropy reduction 
alone. 
 

The economic models’ advantage over the constant bonus and entropy reduction models was, 
however, not clear in the direct model comparison. AICs of the former were overall lower than the 
latter (Fig. 6a). However, statistical testing using 10-fold cross-validation revealed that, while three 
of the four economics models (outcome-recursive-utility, state-recursive-utility, and outcome-
probability-weighting) outperformed the entropy reduction model (Table 1; p < .05, Bonferroni 
corrected), none of them outperformed the constant bonus model (p > .05). The difference among 
the economics models’ goodness-of-fit was also minor (p > .05, uncorrected). Experiment designs 
with higher power would be needed to specify the form of functions underlying the economics 
models and to discriminate them against alternatives rigorously. 
 
Non-standard model evaluation – behavioral experiment dataset. 
The modified models were also evaluated and compared based on willingness-to-pay in the 
behavioral experiment. In this analysis, goodness-of-fit was measured as mean squared error (MSE), 
and statistical significance of its difference was calculated by 10-fold cross-validation procedure 
(200 iterations). 
 

The behavioral experiment dataset also supported some non-standard accounts. All modified 
models, except for entropy reduction and state-probability-weighting, yielded statistically better 
goodness-of-fit than the standard model (p < .05, Bonferroni corrected; Fig. 6c). Estimates of the 
free parameters in all models except for entropy reduction were significantly higher than zero (p < 
.001, bootstrap, Fig. 6d). Even though those estimates quantitatively differed from the fMRI 
experiment (Fig. 6b), their valence was consistent. These results reconfirm the earlier observation 
that the information purchase behavior can be explained better by combining the standard 
instrumental VoI and non-standard factors. 
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Unlike the fMRI experiment dataset, however, the behavioral experiment dataset strongly 
preferred the constant bonus model to the economic models. The constant bonus model fitted the 
behavior significantly better than probability weighting models (p < .05, Bonferroni corrected; Fig. 
4d, Table 2) and indistinguishable from recursive utility models (p > .05, Bonferroni corrected). This 
indicates that behavioral subjects showed overvaluation irrespective of outcomes and information 
diagnosticity. The difference between the two datasets might be attributable to the elicitation 
methods; sensitivity of BDM bidding procedure to underlying subjective values might be imperfect, 
possibly yielding overbidding when the actual subjective value is low (Medlin, 1979; Wendt, 1969). 
Alternatively, the task design in the fMRI experiment might not be statistically powerful enough to 
detect the contribution of the constant bonus. 
 

Even though the constant bonus model was well supported by behavioral experiment data, it 
is still possible that its model fit could be improved even further by incorporating the 
uninformativeness penalty. While variance explained by the constant bonus may be larger than 
variance explained by recursive utility or probability weighting, the latter may still be innegligible. 
To test this, the free parameters from the economics models ([KP or [w) were added to the modified 
model that already included the constant bonus ([bonus ), resulting in models with two free 
parameters. If the constant bonus is enough to explain willingness-to-pay, goodness-of-fit of these 
two-free-parameter models would not be better than constant-bonus-alone model. 
 

The results of model fitting revealed that state-recursive-utility indeed significantly improved 
the goodness-of-fit of the constant-bonus-only model (p < .05, Bonferroni corrected; Fig. 6e). 
Outcome-recursive-utility also yielded mild improvement (p < .10, Bonferroni corrected). In both 
models, parameter estimates were higher than zero (p < .05, bootstrap; Fig. 6f), confirming the 
contribution of uninformativeness penalty above and beyond the constant bonus. Therefore, to 
account for the observed overvaluation as much as we could in the current scheme, we need a model 
that unifies three factors; instrumental VoI, constant bonus, and recursive utility. 
 

On the other hand, probability weighting did not significantly improve goodness-of-fit of the 
constant-bonus-only model (p > .05, uncorrected; Fig. 6e). This result is noteworthy given that 
predictions of the recursive utility models and the probability weighting models are quantitatively 
similar (Fig. 5). This highlights the importance of specifying the economics models and underlying 
utility or weighting functions more accurately and rigorously based on the empirical data. 
 

Together, the formal model evaluation and comparison have revealed that 1) the non-standard 
portion of subjective VoI exists on top of instrumental VoI, and 2) it is sensitive to the outcomes at 
stake, which can be explained by penalty for uninformed choice due to concavity of recursive utility. 
 
Discussion 
Value-based decision-making is primarily defined by choices and their outcomes. Most studies in 
the field have focused on choices which outcomes are immediate delivery of reward or punishment. 
However, the modern world is full of choices about information that is not rewarding or punishing 
by itself. The biggest challenge in studying information acquisition lies in quantification of utility or 
value of information (VoI); it is much more difficult to measure or manipulate than value of reward 
or punishment. Even though the classic economics theory provides the normative predictions of VoI, 
it is fairly complex, makes a number of assumptions, and is applicable only to the settings where 
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decision-related variables are clearly well defined. Because of these limitations, the normative model 
has not been influential, and instead, various conceptual accounts have been proposed in respective 
fields. However, there has been little attempt to unify or relate these accounts with each other or with 
the normative model, either theoretically or empirically, hindering establishment of a general and 
falsifiable modeling scheme. 
 

The current study aimed to propose descriptive, yet quantitative, modeling of information 
acquisition. The normative model of instrumental VoI was used as a standard model, to which the 
alternative accounts were implemented as modifications. This approach allowed us to provide 
concrete, parametric, and falsifiable predictions on how information acquisition depends on 
decision-related variables. To test them empirically, the current study adopted a new task paradigm, 
which was able to capture the behavioral effect of both instrumental VoI and preference for non-
instrumental information simultaneously. It was richly parameterized so that we could statistically 
compare descriptive validity of the standard and modified models. 
 

The normative theory indeed explained subjects’ behavior to a certain extent, which showed 
that it was an acceptable standard or baseline model. At the same time, however, subjects’ behavior 
systematically deviated from its prediction; subjects exhibited overvaluation of information, both 
instrumental and non-instrumental, which indicated the contribution of non-standard factors. 
Critically, although preference for non-instrumental information has been long documented in 
various literature, it has not yet been established to what extent such preference contributes to 
behavior above and beyond instrumental VoI. Our results show that such preference indeed exists 
and affects behavior even under the presence of instrumental information, illustrating the limitation 
of the normative theory. 
 

Observed overvaluation had two prominent features; first, it was sensitive to outcomes at 
stake (higher when EU of uninformed choice was positive), and second, it was an inverted-U 
function of information’s diagnosticity (P ). Sensitivity to outcomes was consistent with existing 
accounts proposed in economics, which penalizes choices or states in which agents could have 
obtained, but did not obtain, an additional piece of information. Such penalty for uninformativeness 
was theoretically introduced by recursive utility or probability weighting, rather than uniform 
discounting, which explained the sensitivity to outcomes. These accounts have been used almost 
exclusively by “temporal lotteries” studies, which have largely focused on situations where timing 
of uncertainty resolution is non-instrumental; subjects typically cannot choose whether to accept or 
reject a given lottery, but just whether to see uncertainty resolved earlier or later. Such a task design 
may be well-suited for detecting (possibly subtle) preference for earlier uncertainty resolution, but it 
has left the possibility that such preference would not be generalizable to situations where 
information may be instrumental (Beierholm & Dayan, 2010). Our results reject this possibility and 
show that these accounts are applicable to a wider range of information acquisition problems. 
 

On the other hand, overvaluation’s non-monotonic sensitivity to P cannot be explained by 
any of the examined accounts. Although it might seem superficially similar to a classic notion that 
curiosity is an inverted-U function of information gap (Berlyne, 1966), a careful examination reveals 
a subtle but important conceptual distinction. In the information gap theory, the inverted-U function 
is usually interpreted as the lack of curiosity when agents feel that they currently possess too little, 
or too much, knowledge. This idea is not directly applicable to the current paradigm where subjects 
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had the same amount of prior knowledge (two equiprobable outcomes), irrespective of P . More 
importantly, even if information gap theory could be modified to explain the inverted-U function, it 
is unclear how it could also explain sensitivity to outcomes, unless it takes the principle of EU 
maximization into account seriously. 
 

While the reason behind the non-monotonic sensitivity to P is unclear, one straightforward 
interpretation is that subjects’ representation of P was biased; while they were accurate in estimating 
diagnosticity when it is the highest (P = 0.5 ) or the lowest (P = 0 ), they overestimated the 
intermediate levels of diagnosticity. This could be explained by probability weighting function as 
presumed in prospect theory (Kahneman & Tversky, 1979). (It is not to be confused with probability 
weighting in Wu (1999); the inverted-U function could be ascribed to weighting within TUinfo X1  
and TUinfo X2 , while Wu introduced weighting to averaging over them.) Another possibility is that 
subjects’ perception of the partition line’s angle itself was biased, known as oblique effect (Appelle, 
1972). These hypotheses could be tested by future studies that manipulate diagnosticity more finely 
and present it to subjects differently. If neither of them is supported empirically, we need to consider 
how existing accounts, particularly recursive utility or probability weighting, should be modified.  
 

Importantly, the sensitivity of overvaluation to outcomes could not be explained by the non-
economics accounts. Formal modeling analysis confirmed this, preferring the economic models to 
non-economic ones. This finding particularly poses a challenge to curiosity studies, most of which 
examine situations where decision-related variables (especially outcomes at stake) and agents’ utility 
are not well defined, and thus the economic models are not directly applicable. Although adoption 
of simplistic accounts such as entropy reduction may be justifiable in such settings, it might be more 
promising to make reasonable assumptions about underlying utilities or to infer them from external 
evidence (e.g., from subjects’ own choices, from independent subjects’ choices, or from some other 
measures such as decoding of eye movement or neural activity). Such approaches are important in 
two ways; first, it would allow us to explore how to approximate complicated situations in a tractable 
way, and second, it would shed light on what kind of strategy or heuristics human brain might use 
when it is too demanding to compute EU under different actions and information states. 

 
The current study analyzed two independent datasets, one fMRI and one behavioral. 

Although they painted largely similar pictures, formal modeling analysis revealed one difference; 
the behavioral study dataset, but not fMRI, preferred the constant bonus model to the alternative 
accounts. This difference may be attributable to empirical paradigms. For instance, fMRI and 
behavioral experiments used different sets of decision-related variables, and fMRI experiment design 
might lack statistical power to detect the contribution of the constant bonus. Another, perhaps more 
important, difference lies in the elicitation methods; the behavioral experiment adopted BDM 
bidding, and while it is a de facto standard in decision-making literature, it might have imperfect 
sensitivity to variation of underlying subjective values (Medlin, 1979; Wendt, 1969). In particular, 
it may be susceptible to overbidding with low subjective values, which could explain a positive 
constant bonus. This issue could be clarified by future studies that use alternative elicitation methods, 
including choices between multiple pieces of information (rather than between information and 
monetary costs). Nonetheless, the economic notion of uninformativeness penalty, particularly in the 
form of recursive utility, improved the model fit above and beyond the constant bonus. The support 
for the economics models is thus by and large consistent between the two independent datasets. 
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 This study examined two non-standard economic accounts, recursive utility (Ahlbrecht & 
Weber, 1996; Kreps & Porteus, 1978) and probability weighting (Wu, 1999). Although a small 
difference was found between their goodness-of-fit, it is worth emphasizing that their performance 
may critically depend on underlying recursive utility or probability weighting function’s form. Little 
to no attempt has been made to specify them based on empirical data, and our dataset may not be 
large and thorough enough to do so either. Empirical studies with richer parametric designs are 
definitely needed to characterize the underlying function forms rigorously. That said, the fact that 
our results supported these economic models, even though they are only prematurely constructed, 
would suggest that these approaches are promising. 
 
 There are several ways to position these economic models within larger conceptual schemes. 
First, attempts to explain non-canonical preference using curvature of utility function or non-linear 
probability weighting function are akin to traditional approaches to risk preference; non-neutral risk 
attitude has been explained by either concavity of utility function (Pratt, 1964) or probability 
weighting (Kahneman & Tversky, 1979). Second, the idea of recursive utility has also been adopted 
by studies on decision-making under ambiguity, raising a possibility that ambiguity attitudes and 
information acquisition behavior might be linked (Berg & Eisenberger, 1996; Camerer & Weber, 
1992; Snow, 2010). Third, as a possible psychological basis of non-linear probability weighting, Wu 
proposed that people tend to pay more attention to the worst outcomes or states than others (Wu, 
1999; Yechiam & Hochman, 2013). Relationships among these concepts could be empirically 
explored by characterizing individual differences using the current task and comparing them against 
other measures. 
 

The task paradigm in this study was designed such that decision-related variables, 
particularly prior and posterior outcome probability distributions, were graphically and intuitively 
presented. Although this was necessary to reliably elicit subjective VoI, the task design had a few 
limitations because of such consideration, and future studies may need to address them. First, the 
outcomes were always equally likely in uninformed choices. Manipulation of prior probability would 
be critical in order to test not only instrumental VoI theory but also the modified models with 
recursive utility or probability weighting (Wendt, 1969). Second, each trial contained only two 
outcomes, two information states, and two possible choices. Computation of instrumental VoI 
becomes complex quite easily once any of these constraints is relaxed, and it is not known how 
subjective VoI keeps up with such complexity. Third, subjects were endowed with the ability to 
choose whether to accept or reject gambles in all trials. In the real world, however, we are often faced 
with a mixture of choices to be made and choices that are already made, and it has not been well 
studied how people prioritize information about the former (could be instrumental) to the latter 
(never instrumental).  
 

In conclusion, we presented a new way to conceptualize multiple factors behind information 
acquisition behavior in a unified, quantitative, and falsifiable, modeling scheme. Empirically we 
found that, although the standard model of instrumental VoI could serve as a good baseline model, 
subjects exhibited overvaluation that was systematically sensitive to outcomes at stake. We further 
found that such overvaluation could be explained by economic accounts on penalty for 
uninformative choices. This is the first evidence that such penalty affects behavior in tandem with 
instrumental VoI. More generally, our findings would have implications on how to acquire and 
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distribute information adaptively in the digital age, and particularly, how to help people focus on 
important information while ignoring unimportant, but psychologically attractive, information. 
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Methods 
fMRI experiment 
Subjects. 47 healthy, naïve subjects participated in the experiment. 10 were removed from the 
analysis due to excessive motion during scanning, resulting in 37 subjects used in the data analysis. 
 
Procedure. The choice phase of the task (Fig. 2a) was conducted during the scanning, followed by 
the outcome phase outside the scanner. Subjects received instructions and practiced the task prior to 
the scanning. Subjects interacted with the experiment program via a MR-compatible button box in 
the scanner and a keyboard outside. The program was run by Matlab and Psychtoolbox (Brainard, 
1997; Pelli, 1997) on a Windows PC. See Chapter 3 for acquisition and analysis of MR signal. 
 
Task. Each subject’s scanning consisted of five sessions, each of which included 30 trials in a 
randomized order (150 trials in total). In each trial, one gamble with two outcomes was visually 
presented as a roulette wheel partitioned by a vertical while line at the middle. Ten combination of 
outcomes were used: (+$12, −$9), (+$9, −$12), (+$9, −$9), (+$12, −$6), (+$6, −$12), (+$9, −$6), 
(+$6, −$9), (+$6, −$6), (+$12, −$3), and (+$3, −$12). Subjects chose whether to play the gamble or 
not (two-alternative-forced choice; “uninformed choice”). In the outcome phase after the scanning, 
five trials were randomly selected by the experiment program and implemented into the actual 
monetary payment. If they had chosen to play a selected gamble, a green dot appeared on the 
perimeter of the roulette and its side on the wheel determined the outcome. Without the information 
delivery, the green dot’s location followed uniform distribution over the perimeter, making the two 
possible outcomes equally likely. 
 

The choice on gamble during scanning was followed by information presentation. 
Information was visually represented as a magenta partition line on the roulette wheel running 
through its center. The information display was followed by presentation of monetary cost, and 
subjects chose whether to purchase the information or not (two-alternative-forced choice). The 
information line was either vertical, slanted by 30°, or slanted by 60°. Each angle was presented once 
per each pair of outcomes in each session (3 angle × 10 outcomes = 30 trials). The monetary cost 
was variable across trials and determined independently from the outcomes and partition angle. Five 
costs were used: ¢5 (3 trials per run), $1 (8 trials), $2 (8 trials), $3 (8 trials), and $9 (3 trials). Subjects 
were instructed to make uninformed choice on gamble and information purchase choice within 2 
seconds. The trials in which they failed to respond were discarded from the analysis. 
 

In the outcome phase, subjects received the actual content of information in the trials selected 
for payment, but only if subjects had chosen to purchase it. The delivered information revealed the 
side of the magenta partition the green dot would appear by brightening it. This changed the outcome 
probability distribution from (0.5, 0.5) to either (1, 0) or (0, 1) (vertical line), (5/6, 1/6) or (1/6, 5/6) 
(30°-slanted line), or (2/3, 1/3) or (1/3,2/3) (60°-slanted line). The brighter side was chosen 
randomly. Subjects made the decision on whether to play the gamble or not based on the delivered 
information (“informed choice”), disregarding their own uninformed choice during the scanning. If 
subjects had chosen not to purchase the information, the brighter side was not presented, and their 
uninformed choice was implemented. 
 
Analysis. Group-level utility function was estimated based on subjects’ uninformed choices on 
gambles (Supplementary Fig. 1). Utility function estimation had four free parameters: the powers on 
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the positive and negative domains, a multiplicative term on the negative domain (capturing loss 
aversion), and the temperature parameter in the logit (softmax) function that maps expected utility 
onto binary choices. Parameter estimates were obtained by maximum likelihood estimation 
procedure (MLE) on Matlab.  
  

To analyze information purchase behavior under the standard and modified models, subjects’ 
binary choices were fitted to the logit function of difference between informed choice’s EU and 
uninformed choice’s EU using MLE (Eqs. 1 and 2, and their variants). Analysis under the standard 
model (Fig. 3) contained only one free parameter (logit temperature). Goodness-of-fit of the standard 
model, measured by negative log-likelihood, was statistically evaluated by permutation, shuffling 
the outcome labels within each subject dataset (1999 iterations). Fitting of the modified models (Fig. 
6) involved two free parameters, the logit temperature and a parameter calibrating non-instrumental 
VoI ([bonus, [ent,	[KP, or	[w). 95% CI of parameter estimates was obtained by bootstrap, sampling 
subjects with replacement (1999 iterations). 
 

To statistically test the difference in goodness-of-fit while addressing the issue of overfitting 
(Fig. 6, Table 1), 10-fold cross-validation was conducted. First, choices from each subject were split 
into ten datasets, and nine of them was collated over subjects and used as the training dataset to 
estimate the parameter ([bonus, [ent,	[KP, or	[w). Second, goodness-of-fit (negative log-likelihood) 
in the hold-out dataset was obtained by logit function with the non-instrumental VoI parameter fixed 
at the training estimate (one free parameter remaining: logit temperature), as well as with the 
instrumental-VoI-only standard model. This was repeated for every hold-out dataset (10 times). 
Third, the whole procedure was repeated 200 times, resulting in 2000 goodness-of-fit measurements 
for each model. Fourth, those measures were compared between models in a pairwise manner to 
compute statistical significance.   
 

The behavior was compared with the standard model’s predictions in a model-free manner 
as well (Fig. 3c, Fig. 4e, f). The rational EU-maximizing choices on information purchase were 
derived on a trial-by-trial basis as a function of monetary costs, and then aggregated over trials to 
obtain the total amount of money each subject should have agreed to pay throughout the entire 
sessions (Fig. 3c). The degree to which subjects “overpurchased” information was measured as the 
difference between these predictions and the total amount each subject actually agreed to pay (Fig. 
4e, f). Note that, since only five gambles were selected for actual monetary payment, subjects did 
not actually pay the total costs of all information they agreed to purchase. 
 
Behavioral experiment 
Subjects. 119 healthy, naïve subjects participated in the experiment. 23 were removed from the 
analysis because they showed misunderstanding or were unable to complete the task within allotted 
time, resulting in 96 subjects in the data analysis. 
 
Procedure. A group of subjects (five to eighteen) participated simultaneously. Subjects received 
instructions and practiced the task prior to the experiment. Subjects interacted with the experiment 
program running on Matlab and Psychtoolbox via keyboards of Windows laptops on partitioned 
desks. An online survey of personality measures was conducted prior to the day of the experiment 
(data not analyzed in this study). 
  



 49 

Task. The task was almost identical to the fMRI experiment. The choice phase consisted of 100 trials 
in a randomized order. 20 outcomes were used, 16 of which were combinations of one gain (+$12, 
+$10, +$8, or +$6) and one loss (−$12, −$10, −$8, or −$6), and the remaining four were (+$10, 0), 
(+$6, 0), (−$10, 0), and (−$6, 0). The information line was either slanted by 0° (vertical), 22.5°, 45°, 
67.5°, or 90° (horizontal). Each angle was presented once per each pair of outcomes (5 angle × 20 
outcomes = 100 trials). In each trial, after the information presentation, subjects indicated their 
willingness-to-pay for the information in BDM bidding procedure. Whether they purchased the 
information or not in the trials selected for payment (i.e., the outcome of bidding) was determined in 
the outcome phase. 
 
Analysis. Group-level utility function was estimated in the same way as fMRI experiment 
(Supplementary Fig. 1). To analyze subjects’ information purchase behavior under the standard and 
modified models, VoI predictions were obtained (Eq. 5 and their variants) and compared against 
willingness-to-pay. Since Eq. 5 does not have an analytical solution due to maximum operations and 
non-linear utility function, VoI predictions were numerically obtained by minimizing the sum of 
squared difference between RHS and LHS on Matlab (fminsearch).  
 

Analysis under the standard model (Figs. 3, 4) contained no free parameter. Goodness-of-fit 
of the standard model, measured by mean squared error (MSE), was statistically evaluated by 
permutation (1999 iterations). Overvaluation (Fig. 4a-d) was obtained as the difference between 
willingness-to-pay and the normative VoI predictions, averaged over subjects. Free parameters in the 
modified models ([bonus, [ent,	[KP, or	[w; Fig. 6) were estimated using grid search; at each level of 
the free parameters, VoI predictions were obtained by fminsearch and its MSE against willingness-
to-pay were calculated. The parameter value that minimized MSE was then obtained. 95% CI of 
parameter estimates was similarly obtained by bootstrap, sampling subjects with replacement (1999 
iterations). MSEs were compared between models by cross-validation (2000 iterations) as described 
in the fMRI experiment’s analysis section above. 
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Appendix 
Derivation of the standard model’s prediction that non-instrumental information is valueless. 
The standard, normative theory prescribes that value of non-instrumental information should be zero. 
This can be easily derived from the Eqs. 1-5. Consider a gamble which EU is positive irrespective 
of the information states: 
 

TUuninfo NE, NK = 0.5 ∙ R NE + 0.5 ∙ R NK 	
TUinfo NE, NK, P, S XE = P ∙ R NE − S + 1 − P ∙ R NK − S 	
TUinfo NE, NK, P, S XK = (1 − P) ∙ R NE − S + P ∙ R NK − S  

 
According to Eq. 5, Q in this gamble satisfies: 
 

0.5 ∙ R NE + 0.5 ∙ R NK = 0.5 ∙ R NE − Q + 0.5 ∙ R(NK − Q) 
 
Since R is a strictly increasing function, the only solution to this equation is Q = 0. 
Similarly, in a gamble which EU is negative irrespective of the information states, 
 

TUuninfo NE, NK = 0	
TUinfo NE, NK, P, S	 	XE = TUinfo NE, NK, P, S	 	XK = R −S  

 
Again, using Eq. 5 and the fact that R is a strictly increasing function, the only solution in this case 
is Q = 0. 
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Tables 
Table 1. Comparison between economic and non-economic models in fMRI experiment. Show are 
uncorrected p-values evaluated by 10-fold cross-validation (2000 iterations total). See Fig. 6a for 
effect sizes. Bold: p < .05 after Bonferroni correction. 
 

 Recursive utility Probability weighting 
Outcome State Outcome State 

Information bonus .0245 .0340 .0160 .0430 
Entropy reduction .0015 .0025 .0030 .0095 

 
 
Table 2. Comparison between economic and non-economic models in behavioral experiment. Show 
are uncorrected p-values evaluated by 10-fold cross-validation (2000 iterations total). See Fig. 6c for 
effect sizes. Bold: p < .05 after Bonferroni correction. 
  

 Recursive utility Probability weighting 
Outcome State Outcome State 

Information bonus .2305 .0510 <.0005 <.0005 
Entropy reduction .0030 <.0005 .0050 .1210 
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Chapter 3 
Neural representation of value of economic information 
 
Introduction 
To make adaptive decisions under uncertainty, we often seek for information about the state of the 
world. Because it is rare that all information relevant to a decision is available at once, acquiring 
information from the environment over time is a critical part of decision-making. For instance, 
scholars would read a scientific paper’s abstract and a couple of first paragraphs to evaluate 
whether it is relevant enough for themselves to keep reading. In the modern world, where a 
tremendous amount of information is available at our fingertips, adaptive evaluation and 
acquisition of information is more ubiquitous and important than ever. 
 

Adaptive acquisition of information is, at the same time, a challenging decision-making 
problem by itself. Information is usually associated with costs, such as money, time, or effort, and 
agents need to judge if information’s utility is worth its cost. For instance, people with health 
problems would consider consulting with doctors based not only on how serious their issues are 
but also on how much they need to pay. Furthermore, agents often need to choose an information 
source and abandon the other sources; people usually consult with only one or two doctors, even 
if other doctors might be more trustworthy. How do people solve these problems and acquire 
information adaptively? 
 

One well-established normative solution from economics is value of information (VoI) 
(Edwards, 1965; Howard, 1966; Marschak, 1971; Wendt, 1969). The normative theory of VoI sees 
information acquisition as a form of expected-utility-maximizing behavior. Agents first compute 
value of a piece of information, and acquire it only if its value exceeds the cost. Similarly, to select 
an information source, agents compute VoIs of all sources available and pick the best one. 
 

An important assumption in this theory is that information is not intrinsically valuable. 
Instead, information is valuable only to the extent to which it helps agents obtain future rewards 
and avoid punishments, or in other words, the extent to which it is instrumental. For instance, the 
value of a weather forecast could be measured by how much it helps the agent make a plan for a 
weekend; the agent can go hiking when it is expected to be sunny, and go to a theater when a 
rainfall is predicted. According to this theory, VoI is non-zero only if information is instrumental, 
and non-instrumental information should not be acquired when associated with costs. 
 

This normative theory not only provides specific predictions of information acquisition 
behavior but also proposes underlying neurocognitive processes. Most notably, it raises the 
possibility that VoI is represented in human brain and guides behavior, which is a concrete and 
falsifiable hypothesis on neural basis of information acquisition. However, the normative theory 
has rarely been used in neuroscience literature; instead, most neuroscience studies, particularly 
human fMRI, have focused on specific forms of information acquisition such as exploration-
exploitation dilemma (Badre, Doll, Long, & Frank, 2012; Boorman, Behrens, Woolrich, & 
Rushworth, 2009; Daw et al., 2006; Kolling, Behrens, Mars, & Rushworth, 2012; Quilodran, 
Rothé, & Procyk, 2008; Shenhav, Straccia, Cohen, & Botvinick, 2014). While these studies have 
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provided important insights on neural mechanisms behind specific actions, it is not yet clear how 
their findings are generalizable to other information acquisition problems. 
 

This chapter reports a new fMRI study that takes an alternative approach; it aims to find 
neural representation of VoI. Since VoI itself is a versatile concept and applicable to various 
situations, finding VoI representation would form a basis for a more general neuroscientific theory 
of information acquisition. Moreover, it would be directly relatable to other types of value-based 
decision-making. In particular, although there are abundant studies on brain regions involved in 
valuation of objects or services, such as an apple or a dinner at a restaurant (Gross et al., 2014; 
Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; Lau & Glimcher, 2008; McNamee, Rangel, 
& O'Doherty, 2013; Padoa-Schioppa & Assad, 2006; 2007; Plassmann, O'Doherty, & Rangel, 
2007; Rangel, Camerer, & Montague, 2008; Rudebeck et al., 2008; M. F. S. Rushworth & Behrens, 
2008; M. Rushworth, Noonan, & Boorman, 2011; Tremblay & Schultz, 1999), it is not clear if the 
same regions are involved in VoI. It is possible that VoI recruits totally different brain regions 
because of the unique underlying processes; the normative theory predicts that, upon calculating 
VoI, agents need to simulate their own choices with and without the information and compare their 
expected utilities. Furthermore, since the content of information is not perfectly predictable, agents 
need to simulate their choices under all possible information contents (e.g., what to do when a 
sunny, windy, rainy, or snowy weekend is expected). Due to such computational processes, 
valuation of information may recruit different brain regions from other types of valuation. 

 
One important reason why the normative theory has not gained popularity in neuroscience 

is its limited descriptive validity. It is widely accepted that human ubiquitously acquires non-
instrumental information, even if it is costly, violating the most important tenet of the normative 
theory. This observation has led to a common conception that information is actually intrinsically 
valuable to human; human may have non-economic, psychological internal drive to acquire 
information for its own sake (Berlyne, 1966; Loewenstein, 1994). However, this does not 
necessarily mean that the normative theory needs to be entirely abandoned. Empirically, it has not 
been established how important the preference for non-instrumental information is when agents 
could also obtain instrumental information; empirical studies on preference for non-instrumental 
information have mostly focused on settings where information is never instrumental. 
Theoretically, little to no attempt has been made to modify the normative theory to improve its 
descriptive power. It is entirely possible that the preference for non-instrumental information could 
be accounted for by modifying the normative theory, rather than replacing it with alternative 
psychological theories such as curiosity. 
 

The behavioral study reported in Chapter 2, indeed, has proposed a specific way in which 
the normative model could be modified and improved. The study found that subjects deviated from 
the normative model’s prediction by showing consistent overvaluation, suggesting that the non-
normative preference for information operates even when information could be instrumental. 
Moreover, we found that such overvaluation was sensitive to outcomes at stake, which was 
consistent with an existing economic account on penalty for the lack of information (hereafter 
uninformativeness penalty) via recursive utility (Ahlbrecht & Weber, 1996; Eliaz & Schotter, 
2007; Kreps & Porteus, 1978). When recursive utility was introduced to the standard model, it 
significantly improved the goodness of fit. 
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Critically, this newly proposed model (hereafter “modified model”) provides a quantitative 
yet descriptive prediction of VoI. Moreover, it explains preference for both instrumental and non-
instrumental information in a unified way under the principle of expected utility maximization. 
This enables us to look for neural representation of VoI without relying on the assumption of 
rationality. Furthermore, since the modified model still uses the normative model as a baseline, it 
is possible to divide the predicted VoI into two components; the standard component, which is 
identical to the normative model’s prediction, and the non-standard component, which is 
introduced by uninformativeness penalty. This raises two hypotheses on how VoI could be 
computed; first, one mechanism calculates the standard VoI, which output is combined with 
uninformativeness penalty calculated by another mechanism; and second, the modified VoI is 
computed as a whole by a single mechanism without clear segregation.  
 

In this chapter, the new model of VoI proposed in Chapter 2 and human fMRI were used 
to uncover neural representation of VoI. Specifically, two possible scenarios were tested; first, the 
standard and non-standard components are represented in distinct brain regions, and second, the 
whole modified VoI is represented without clear segregation. The results supported the second 
scenario; while no convincing evidence for representation of the standard or non-standard 
component alone was discovered, it was found that striatum represented the modified VoI as a 
whole. As striatum has been long associated with valuation processes in literature, our results 
suggest that VoI recruits neural machinery that is at least partly overlapped with other types of 
valuation, in spite of the stark conceptual difference. 
 
Results 
This study adopted a newly designed task of value-based information acquisition (Fig. 1a). During 
scanning, 37 subjects were presented with monetary gambles and asked to decide whether to play 
them or not. Each gamble had two possible monetary outcomes, one gain and one loss (e.g., $12 
gain and $6 loss, variable across trials).  Gambles were visually presented as a roulette wheel. 
When subjects accepted to play the gamble, a dot appeared at a random location on the perimeter, 
and its side (left or right) determined the monetary outcome. Thus, the two outcomes were equally 
likely at this point. 
 

After subjects made their initial decisions on gambles (“uninformed choice”), an additional 
piece of information was presented, and subjects chose whether to buy the information at a given 
monetary cost (variable across trials) or not. This information was visually represented as a 
magenta partition line running through the wheel’s center (vertical, slanted by 30 degrees, or 
slanted by 60 degrees; angle was variable across trials). If purchased, the information revealed 
which side with respect to the partition line the dot would appear. This disclosed the true 
probability distribution out of the two symmetrical ones (e.g., if the line was slanted by 60 degrees, 
probability of gain could be either 1/3 or 2/3). It is important to note that subjects knew the two 
possible distributions beforehand based on the partition line’s angle. Subjects who purchased the 
information could change their uninformed choices after seeing the delivered information 
(“informed choice”; this took place after the scanning). 
 

Subjects’ information purchase behavior was compared against the normative model’s 
prediction (see Chapter 2 for details). Under the normative model, information should be 
purchased only in trials where expected utility of the choice would be improved when information 
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was purchased, even after taking the information cost into account. Consistently with this 
prediction, probability of information purchase increased with the difference between expected 
utility of informed and uninformed choices, the former of which involved the sunk cost of 
information purchase (Fig. 1b). 
 

Although the normative model made a decent success in explaining the observed behavior, 
subjects violated its prediction systematically by overvaluing the information. This was 
successfully explained by a modification of the normative model, in which expected utility of 
uninformed choice was reduced (compared to informed choice) via concave recursive utility 
function (Fig. 1b; p < .00005, 10-fold cross-validation iterated for 2000 times). This finding was 
confirmed by an independent dataset, in which 96 subjects reported their subjective VoI as 
willingness-to-pay (Chapter 2, Fig. 6c). 
 
Neural representation of the standard component of VoI 
Neural representation of VoI was examined based on the modified model obtained in the 
behavioral analysis. BOLD responses during presentation of the information were analyzed. The 
modified model provides a numeric prediction of VoI as a function of the gamble’s outcomes and 
the information diagnosticity (i.e., the partition line’s angle). One notable difference between the 
predictions of the modified and normative models is that, under the modified model, non-
instrumental information’s value could be non-zero due to uninformativeness penalty. Importantly, 
the modified VoI can be devided into two parts, the standard component (the same as the normative 
model’s predictions) and the non-standard component (the modification due to uninformativeness 
penalty). 
 

Based on this feature of the modified model, two possible scenarios about neural 
representation of VoI were examined. The first scenario is that VoI is computed according to the 
normative model in some region(s), while uninformativeness penalty is introduced somewhere 
else. This scenario is conceived based on a widespread idea that information acquisition is driven 
by multiple distinct factors, one of which is the improvement in economic utility and the others 
are some intrinsic, psychological drive for information. The second scenario is that some region(s) 
incorporates both the standard and non-standard components of VoI in a unified manner, or in 
other words, represents VoI as predicted by the modified model as a whole. This scenario would 
suggest that the neural processes of information valuation are not necessarily separable into 
multiple factors, at least at the spatio-temporal scale of fMRI. 
 

To test the first scenario, representation of the standard component of VoI was examined. 
Representational similarity analysis (RSA) and searchlight approach was used for this purpose 
(Kriegeskorte & Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 2008). RSA examines association 
between local patterns of BOLD signals and the variables of interest (VoI in this case) by 
comparing their distances among instances, or more formally, representational dissimilarity matrix 
(RDM). An important advantage of RSA compared to the conventional fMRI analysis using 
general linear model (GLM) is its sensitivity. GLM-based analysis makes an assumption that VoI 
is encoded by neighboring voxels in a consistent manner, but such an assumption has not yet been 
empirically verified. It is possible that voxels that encode positively are spatially intermingled with 
voxels that encode VoI negatively, and even though these voxels certainly contain information 
about VoI, it cannot be reliably detected by GLM-based analysis due to spatial smoothing (Kahnt, 
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Heinzle, Park, & Haynes, 2011). RSA, on the other hand, may be sensitive even when such a 
representational scheme was used in the brain. 
  

In RSA, RDM was constructed based on the standard component of VoI (Fig. 2a, left) and 
compared against RDM of BOLD signals within a spherical searchlight (8mm radius, moved 
across the whole brain). Their similarity was measured as Spearman’s ρ, which was then z-
transformed and averaged over 37 subjects, yielding a group-level, whole-brain correlation map 
(Fib. 2b). This analysis revealed significant association between the standard VoI and BOLD 
signals from bilateral superior frontal sulcus (SFS), bilateral postcentral sulcus (PCS), right 
superior occipital gyrus (SOG), and bilateral lingual gyrus (LG) (Fig. 2b, Table 1; voxel-wise 
threshold p < .05, corrected for whole-brain family wise error evaluated by nonparametric 
permutation, and cluster size threshold k > 10). 
 

However, this analysis suffers from a serious coufound. By design, the standard VoI is 
highly correlated with information’s diagnosticity, which was visually represented as the partition 
line’s angle (Spearman’s ρ = 0.84, Fig. 3a, top). For instance, the vertical line provided perfect 
prediction of the outcome, and hence higher VoI, while the 60°-slanted line provided lower 
predictability and hence lower VoI. Since the partition line was a very salient visual feature during 
scanning, it is critical to account for its effect on neural responses, particularly in parietal and 
occipital cortices. 
 

Another RSA was conducted to control for this confound. In this analysis, the similarity 
between the standard VoI RDM and BOLD RDM were evaluated by partial correlation, removing 
the contribution of the partition line’s angle. This analysis, however, did not provide any evidence 
for association between the standard VoI and any clusters identified in the initial analysis 
(Wilcoxon signed rank test, p > .05; Fig. 3b, top). Therefore, we cannot reject the possibility that 
the initial RSA’s results reflect visually evoked responses rather than valuation processes. 
  
Neural representation of the non-standard component of VoI 
In addition to the standard component of VoI, representation of the non-standard component was 
also predicted in the first scenario. Searchlight RSA with RDM based on the non-standard 
component of VoI was conducted to test this (Fig. 2a, middle). However, there was no region in 
which activation pattern represented the non-standard VoI (voxel-wise p > .001, uncorrected). 
Together with the lack of compelling evidence for the standard VoI representation (Fig. 3b, top), 
the results so far did not support the first scenario, which predicted that the standard and non-
standard components of VoI were mapped onto distinct brain regions. 
 
Neural representation of the modified VoI 
Next, the second scenario was examined, which predicted that the modified VoI was represented 
as a whole, i.e., without clear segregation between the standard and non-standard components. To 
look for such representation, searchlight RSA was conducted with RDM based on the modified 
VoI (Fig. 2a right). This analysis revealed significant association between the modified VoI and 
BOLD signals from right SFS, left PCS, and right striatum (Fig. 2c, Table 2; p < .05, k > 10). 
While clusters in SFS and PCS were overlapped with those obtained in the RSA with the standard 
VoI (Fig. 2b), the striatum cluster was unique to this analysis. 
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 However, this analysis suffers from the same confound as the previous RSA with the 
standard VoI; the modified VoI was correlated with the partition angle, a salient visual feature 
(Spearman’s ρ = 0.71; Fig. 3a, bottom). To address this issue, partial correlation between the 
modified VoI RDMs and BOLD RDMs in each cluster was evaluated, removing the contribution 
of the partition angle. SFS and PCS did not exhibit significant partial correlation (p > .05; Fig. 3b, 
bottom), consistent with earlier results. Importantly, on the other hand, association between 
striatum and the modified RDM was still statistically significant (p < .05). Therefore, visually 
evoked responses could explain activation in SFS and PCS, but not activation in striatum. 
  
Model comparison: the standard versus modified VoI 
Results so far suggest that striatum computes VoI as predicted by the modified model as a whole, 
rather than its standard or non-standard component alone. In other words, striatum may evaluate 
information by taking into account both the degree to which the information is instrumental and 
the degree to which the uninformed choice is disliked.  
 
 To provide further evidence that the modified VoI is computed in the brain as a whole 
rather than the standard component, regions-of-interest (ROI) analysis was conducted, which 
examined whether BOLD RDM was more similar to the modified VoI’s RDM or to the standard 
VoI’s RDM. To define ROIs, all voxels that reached significance (p < .05, FWE corrected) in 
either of the two RSAs were included (i.e., the union of voxels in Fig. 2b and c). This procedure 
was adopted to alleviate the issue of circularity in statistical inference (Kriegeskorte et al., 2009); 
under the null hypothesis, ROIs defined by the union would favor either RDM at the equal chance. 
Eight ROIs were obtained in total: two SFS, two PCS, three occipital, and one striatum. 
 

As a result of this direct model comparison, striatum, but not any other ROIs, exhibited 
stronger association with the modified VoI than the standard VoI (Wilcoxon signed rank test, p 
> .05; Fig. 4). This provides further evidence that valuation processes in striatum calculate VoI as 
a whole, as predicted by the modified model. 
 
Discussions 
Information acquisition is a critical part of decision-making. Almost all decisions we make in daily 
life involve uncertainty and thus could be improved based on additional relevant information. 
However, it is challenging to acquire information adaptively, because information can be rarely 
obtained without cost. Although information acquisition is ubiquitous in the modern age, little is 
known about its neural basis, particularly the underlying valuation processes. 
 

The current fMRI study aimed to understand value of information (VoI) is computed in 
human brain. It found that VoI was represented by activation in striatum. More specifically, 
activation in striatum was associated with VoI predicted by a newly developed model, which 
combines the traditional notion of instrumental VoI (Edwards, 1965; Howard, 1966; Marschak, 
1971; Wendt, 1969) and recursive utility that penalizes uninformed choices or states (Ahlbrecht & 
Weber, 1996; Kreps & Porteus, 1978). While the former has been long regarded as a gold standard 
in economics, it has never been widely used in neuroscience due to its unsatisfactory descriptive 
validity. The current study addresses this issue by introducing uninformativeness penalty, which 
improved the modified model’s ability to predict behavior. This modified model allowed us to 
look for neural representation of VoI that was descriptively, rather than normatively, estimated. 
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 VoI in the modified model contains a non-standard component, namely penalty for 
uninformativeness introduced by recursive utility. This feature is relevant to a widespread notion 
that information could be acquired by reasons other than expected utility maximization, 
particularly curiosity (Berlyne, 1966; Loewenstein, 1994). Interestingly, the current study did not 
find any evidence for representation of the non-standard component alone. Although we need to 
be careful in interpreting negative results, this suggest that, at least at the spatiotemporal scale of 
fMRI, dichotomy between economic and non-economic drives, or rational and irrational 
mechanisms, might not be useful to understand neural basis of information acquisition. 
 

Striatum is one of the regions that have been the most robustly associated with valuation 
(Lau & Glimcher, 2008; Levy, Snell, Nelson, Rustichini, & Glimcher, 2010; Strait, Sleezer, & 
Hayden, 2015; Yamada et al., 2013). Valuation of information is conceptually quite different from 
other types of valuation; to compute VoI, agents need to stimulate choices under possible 
information states, evaluate their utilities, and combine them to determine how much information 
improves expected utility. Such processes are not necessary for other types of valuation. It is worth 
pointing out here that, in the real world, human may well learn value of information over time 
through trial and error. However, because the current task did not provide any feedback about 
usefulness of information to subjects, the findings in the current study cannot be explained by such 
learning. Our results therefore suggest that striatum may play a critical role in valuation even when 
it involves complex computational processes. 
 
 A series of studies particularly relevant to the current findings has been conducted by 
Bromberg-Martin and colleagues (Blanchard et al., 2015; Bromberg-Martin & Hikosaka, 2009; 
2011). They found that monkeys prefer to know the amount of juice they are going to receive 
earlier than later, even though that information does not affect juice amount itself, and such 
preference is reflected by activity of dopaminergic neurons in midbrain. Even though their studies 
did not involve instrumental information, an economic account on the preference for earlier 
uncertainty resolution, i.e., penalty for uninformativeness due to recursive utility, also explains the 
non-standard component of VoI in the current task. Since striatum receives direct dopaminergic 
inputs from midbrain (Morris, Arkadir, Nevet, Vaadia, & Bergman, 2004; Schultz, 1998), our 
results are consistent with their findings. Our results suggest that their results may not be explained 
by some biases in reinforcement learning alone (Beierholm & Dayan, 2010; Iigaya, Story, Kurth-
Nelson, Dolan, & Dayan, 2016), and raise the possibility that dopaminergic neurons also encode 
the standard (i.e., instrumental) component of VoI.  
   
 Interestingly, the current study did not find representation of VoI in cortical regions. In 
particular, even though anterior cingulate cortex (ACC), ventromedial prefrontal cortex (vmPFC), 
and orbitofrontal cortex (OFC) have been robustly associated with valuation along with striatum 
(Hare et al., 2008; Padoa-Schioppa & Assad, 2006; 2007; Plassmann et al., 2007; Rangel et al., 
2008; Rudebeck et al., 2008; M. Rushworth et al., 2011; M. F. S. Rushworth & Behrens, 2008; 
Tremblay & Schultz, 1999), none of them was found to be associated with VoI, at least at the 
stringent statistical criteria. These results, however, would not necessarily imply that these regions 
are not involved in information valuation; it is quite likely that these regions play critical roles in 
valuation, but in such a way that the current study’s approach (i.e., mapping of VoI) cannot detect 
it. One possibility is that striatum communicates with ACC, vmPFC, and/or OFC, and aggregates 
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these regions’ outputs in order to compute VoI (Balleine et al., 2007; Di Martino et al., 2008; 
Friedman et al., 2015). These cortical regions, on the other hand, may serve specific roles within 
the process, such as comparison of possible outcomes (Boorman et al., 2009; 2013), simulation of 
hypothetical actions (Fermin et al., 2016; Hayden, Pearson, & Platt, 2009), evaluation of status 
quo (Shenhav, Straccia, Botvinick, & Cohen, 2016), or action selection based on VoI calculated 
in striatum (Hayden, Pearson, & Platt, 2011; Quilodran et al., 2008). 
 
 The task design adopted in this study has a few limitations that need to be addressed by 
future studies. First, interpretability of RSA results was hindered by the confound of visually 
evoked responses; diagnosticity of information was presented as the angle of the partition line, 
which was a quite salient visual feature. Even though the effect of the partition angle was 
controlled for by RSAs based on partial correlation, this issue could be more directly addressed by 
improved task designs, e.g., the roulette wheel being rotated between trials. Second, all gambles 
in the current task had two outcomes and two information states that were equally likely. To 
provide more compelling evidence that striatum computes VoI, it is critical to examine how 
striatum responds to probability distributions over outcomes and states; both the normative theory 
(Medlin, 1979; Wendt, 1969) and the recursive utility theory (Ahlbrecht & Weber, 1996; Eliaz & 
Schotter, 2007) provide specific predictions on how VoI should be sensitive to probability 
distributions. 
 

In conclusion, the current study revealed, for the first time, that activation in striatum 
represents VoI. To represent VoI, striatum is suggested to combine two factors: the degree to which 
information is instrumental, and the degree to which the uninformative choice is penalized through 
recursive utility. This complements previous studies on specific information acquisition actions 
(e.g., exploration-exploitation dilemma) and sheds light on a general functional role of striatum in 
valuation process. Conceptually, the current study illustrates the advantage of combining multiple 
theoretical accounts into a unified model of information acquisition. 
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Methods 
Subjects. 47 subjects participated in the study after providing informed consent and being 
screened for standard MRI contraindications. 10 were removed from the analysis due to excessive 
motion during scanning, resulting in 37 subjects used in the data analysis (mean: 24.5 years old, 
SD: 5.2, 21 female).  
 
Task. Inside the scanner, subjects interacted with the experiment program on Matlab and 
Psychtoolbox (Brainard, 1997; Pelli, 1997) via an MRI-compatible button box. Each subject’s 
scanning consisted of five EPI runs, each of which included 30 trials in a randomized order (150 
in total). 
 
 Each trial started with presentation a gamble with two outcomes. The gamble was visually 
presented as a roulette wheel partitioned by a vertical while line at the middle (3 seconds). Ten 
outcome combinations were used: (+$12, −$9), (+$9, −$12), (+$9, −$9), (+$12, −$6), (+$6, −$12), 
(+$9, −$6), (+$6, −$9), (+$6, −$6), (+$12, −$3), and (+$3, −$12). After fixation screen (1–4 
seconds), subjects chose whether to play the gamble or not (two-alternative-forced choice; 
“uninformed choice”, within 2 seconds), followed by another presentation of the same gamble (1–
4 seconds). The information was then presented as a magenta partition line running through the 
wheel’s center (2 seconds). The information line was either slanted by 0° (vertical), 30°, or 60°. 
Each angle was presented once per each pair of outcomes in each EPI session (3 angle × 10 
outcomes = 30 trials). The information display was followed by presentation of monetary cost, and 
subjects decided whether to purchase the information or not (two-alternative-forced choice, within 
2 seconds). The monetary cost was variable across trials and determined independently from 
gambles and partition angle; it was either ¢5 (3 trials per session), $1 (8 trials), $2 (8 trials), $3 (8 
trials), or $9 (3 trials). The trials in which subjects failed to respond within 2 seconds were 
discarded from the analysis.  
 

After the scanning, five trials were randomly selected by the experiment program and 
implemented into the actual monetary payments. If they had chosen to play a selected gamble 
during scanning without purchasing the information, a green dot appeared on the perimeter of the 
roulette, which side on the wheel determined the outcome. Without the information delivery, the 
green dot’s location followed uniform distribution over the perimeter, making the two possible 
outcomes equally likely. If subjects had chosen to purchase the information during the scanning, 
subjects received its actual content of information; the side of the magenta partition the green dot 
would appear was revealed by being brightened. This changed the outcome probability distribution 
from (0.5, 0.5) to either (1, 0) or (0, 1) (vertical line), (5/6, 1/6) or (1/6, 5/6) (30°-slanted line), or 
(2/3, 1/3) or (1/3,2/3) (60°-slanted line). The brighter side was chosen randomly. Subjects then 
made the decision on whether to play the gamble based on the delivered information (“informed 
choice”), disregarding their own uninformed choice during the scanning. If they chose to buy the 
information, the green dot appeared randomly within the brightened area, which side determined 
the outcome. 
 
Behavioral analysis. All analyses below were conducted on Matlab, using maximum likelihood 
estimation procedure. Subjects’ uninformed choices on gambles during scanning were first 
analyzed to obtain the group-level utility function. Binary choices were predicted by softmax 
function of the expected utility (i.e., average of two outcomes’ utility), which temperature 
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parameter was estimated with the utility function simultaneously. The obtained utility function 
was U N = Ng.hi	 N > 0 , 1.74�Ng.kl N < 0 , indicating strong risk aversion and loss aversion.  
  

To model information purchase behavior by the normative theory, binary choices were 
predicted by another softmax function based on the difference between expected utility of 
informed and uninformed choices. Expected utilities were obtained on a trial-by-trial basis under 
the assumptions that 1) agents adopted a fully deterministic expected-utility-maximizing policy, 
and 2) the information cost was sunk in the informed choice: 
 

TUuninfo = max 0.5 ∙ R NE + 0.5 ∙ R NK , 0 	
TUinfo = 0.5 ∙ TUinfo1 + 0.5 ∙ TUinfo2	
TUinfo1 = max P ∙ R NE − S + 1 − P ∙ R NK − S , R −S 	
TUinfo2 = max 1 − P ∙ R NE − S + P ∙ R NK − S , R −S  

 
where NE, NK are the gamble’s outcomes, P is the posterior probability of an outcome after the 
information delivery, and S is the information cost. The goodness of fit of the softmax function, 
measured by negative log likelihood, was statistically evaluated by permutation over trials (1999 
iterations).  
 

The modified model included an additional free parameter, the concavity of recursive 
utility function b R , which controls the size of penalty for uninformed choice. Expected utilities 
under the modified model are: 
 

TUuninfo = max 0.5 ∙ b R NE + 0.5 ∙ b R NK , 0 	
TUinfo = 0.5 ∙ b TUinfo1 + 0.5 ∙ b TUinfo2 	

 
where TUinfo1, TUinfo2 are the same as above. A symmetric power function was used for b, and its 
concavity was estimated simultaneously with the softmax function’s temperature parameter. The 
estimated recursive utility was b R = Rg.km. 
 

To statistically compare the standard and the modified models, 10-fold cross-validation 
analysis was conducted. First, trials were split into ten datasets (10 trials per subject), and nine of 
them was collated as the training dataset. Second, b was estimated from the training dataset. Third, 
negative log-likelihood in the hold-out dataset was obtained with the standard model and the 
modified models respectively, the latter of which used b estimated in the previous step. This was 
repeated for every hold-out dataset (10 times), and then repeated 200 times, i.e., 2000 iterations in 
total. This procedure circumvented the problem of overfitting because the goodness of fit was 
compared only in the hold-out sample. 
 
fMRI data acquisition. MR images were acquired by a 3T Siemens Trio scanner and a 12-channel 
head coil. Functional images were obtained using T2*-weighted gradient-echo echo-planar 
imaging (EPI) pulse sequence (TR = 2000ms, TE = 30ms, voxel size = 3mm × 3mm × 3mm, inter-
slice gap = 0.3mm, in-plane resolution = 64 × 64, 32 oblique axial slices). Slices were tilted by 30 
degrees from AC-PC line to alleviate signal dropout from orbitofrontal cortex (Weiskopf et al., 
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2006). T1-weighted structural images (1mm × 1mm × 1mm) were also obtained using 
magnetization-prepared rapid-acquisition gradient-echo (MPRAGE) pulse sequence. 
 
Preprocessing. Motion correction and slice-time correction were applied to EPI images on SPM12 
(Wellcome Dept. of Cognitive Neurology, London, UK) prior to further analyses described below. 
 
General linear modeling (GLM). In order to obtain representational dissimilarity matrix (RDM) 
for searchlight RSA, voxel-wise signals for each type of information (30 in total) were first 
estimated by GLM on SPM12. All EPI runs from each subject were concatenated and analyzed by 
a single GLM. The GLM included 30 regressors modeling information presentation (2-second 
boxcar, up to 5 times, once per each EPI run), 30 regressors modeling information presentation (2-
second boxcar, up to 5 times), regressors modeling gamble presentation and information 
presentation in all trials in which subjects did not respond, and regressors modeling button press 
events (right-hand and left-hand responses separately). All of these event-related regressors were 
convolved with the SPM’s double-gamma canonical hemodynamic response function. The GLM 
also included dummy regressors modeling distinct EPI runs, movement parameters estimated in 
the motion-correction procedure, 128-sec high-pass filtering, and AR(1) model of serial 
autocorrelation. Coefficient estimates of the regressors modeling information presentation were 
used as the activation pattern in RSA. 
 
Representational similarity analysis (RSA). Association between the variables of interest (the 
standard VoI, the modified VoI, or their difference) and the BOLD activation pattern was 
examined by searchlight RSA implemented by a custom-made Matlab script. Each entry in VoI 
RDMs (Fig. 2a) was the absolute difference between predicted VoI among 30 instances. Each 
entry in BOLD RDM was Euclid distance of activation patterns within a spherical searchlight 
(8mm radius) among 30 instances. Spearman’s correlation between model-based RDM and 
searchlight BOLD RDM was calculated, z-transformed, and assigned to the voxel at the center of 
the searchlight. The searchlight was moved across the entire brain covered by EPI, resulting in 
subject-wise whole-brain correlation maps.  
  
 These subject-wise correlation maps were normalized to MNI template using SPM12’s 
DARTEL procedure, which consists of two steps: non-linear normalization to the average brain 
among 37 subjects and affine transformation to MNI template. Normalized maps were then 
smoothed with a Gaussian kernel (8-mm FWHM) and averaged over subjects. Statistical 
significance in these group-level correlation maps (Fig. 2b, Tables 1 and 2) was evaluated at the 
voxel-level threshold p < .05, corrected for whole-brain family-wise error (FWE) based on non-
parametric permutation, estimated by SnPM13 package (Nichols & Holmes, 2001).  
 
 To account for the confound of the partition line’s angle (Fig. 3), RSA was repeated in 
which partial correlation between VoI RDMs and searchlight BOLD RDMs was computed while 
controlling for RDM based on the line’s angle. To evaluate statistical significance within each 
cluster (ROI), z-transformed correlation coefficients were averaged over voxels that survived p 
< .05 in the initial analysis, and then compared against zero at the group level (Wilcoxon signed 
rank test).  
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Tables 
Table 1. Results of RSA with the standard VoI. Shown are the clusters that survived voxel-wise 
p < .05, whole-brain corrected for family wise error (FWE), and cluster size k > 10. Peak 
coordinates are in MNI space. SFS: superior frontal sulcus, PCS: postcentral sulcus, SOG: 
superior occipital gyrus, LG: lingual gyrus, L: left, R: right. See also Fig. 2b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Results of RSA with the modified VoI. Shown are the clusters that survived voxel-wise 
p < .05, whole-brain corrected for family wise error (FWE), and cluster size k > 10. Peak 
coordinates are in MNI space. SFS: superior frontal sulcus, PCS: postcentral sulcus, L: left, R: 
right. See also Fig. 2c. 
 
 
 
 
 
 
 
 
 
  

Region # voxel 
Peaks 

x y z T(36)  Corrected P 

L SFS 35 -18 0 60 5.62  0.0060 

R SFS 65 24 -6 54 5.20  0.0205 

L PCS 63 -36 -39 45 5.29  0.0140 

R PCS 94 30 -36 54 5.63  0.0060 

R SOG 42 27 -66 24 5.39  0.0105 

L LG 89 -15 -99 -9 5.37  0.0110 

R LG 81 9 -78 -3 5.49  0.0085 

Region # voxel 
Peaks 

x y z T(36)  Corrected P 

R SFS 34 24 -6 54 5.17  0.0240 

L PCS 33 -36 -39 42 5.15  0.0255 

Striatum 34 3 18 3 5.46  0.0130 
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