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Abstract

Fluid Mechanics Problems Motivated by Gravure Printing of Electronics

by

Umut Ceyhan

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Stephen Morris, Chair

During intaglio (gravure) printing, a blade wipes excess ink from the engraved plate with
the object of leaving ink–filled cells defining the image to be printed. That objective is not
completely attained. Capillarity draws some ink from the cell into a meniscus connecting
the blade to the substrate, and the continuing motion of the engraved plate smears that ink
over its surface. That smear behind the cell delivers a feature lacking in sharpness. Even
though the smear formation occurs at micron scale, it affects the functionality at the scale of
micron size printed electronics. By examining the limit of vanishing capillary number (Ca,
based on substrate speed), we reduce the problem of determining smear volume to one of
hydrostatics. Using numerical solutions of the corresponding free boundary problem for the
Stokes equations of motion, we show that the hydrostatic theory provides an upper bound to
smear volume for finite Ca; as Ca is decreased, smear volume increases. The theory explains
why polishing to reduce the tip radius of the blade is an effective way to control smearing. As
the motion continues, smear volume under the meniscus is printed as a tail behind the cell
extending back toward the blade. In the limit of vanishing Ca, an inner and outer analysis
of the meniscus printing problem shows that the meniscus rotates around the pinned contact
line at the trailing edge of the cell, and the volume under the meniscus is used to coat a
film of thickness decreasing linearly in time forming a tail shape. The tail lengthens with
decreasing Ca, owing to the concomitant increase in smear volume; the opposite is true as
Ca approaches O(1). For small Ca, it is computationally expensive to use the Stokes solver
to show that the physical mechanism of tail formation described by the analysis as Ca→ 0
is correct. Lubrication theory, on the other hand, predicts tail formation mechanism closely
for contact angles over the blade close to π/2, and this motivates us to use the lubrication
model for smaller Ca. With the continuing motion of substrate, we show the transition from
the tip region (squeeze film) to the Landau-Levich film in the form of a tail shape extending
back toward the bulk meniscus (static), and this agrees with the physical picture described
by the analysis as Ca→ 0. The results contribute to the control and understanding of smear
formation mechanism during gravure printing of electronics.
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Chapter 1

Introduction

1.1 Gravure printing and smear formation during

gravure printing of electronics

Gravure printing is a transfer printing method and is suitable for low-cost, large area and
high-throughput printing. Figure 1.1 shows a basic schematic of gravure printing method. A
gravure roll with engraved cells (generally engraved by chemical etching) translates beneath
a stationary blade. Liquid placed upstream of the blade fills the cells as they enter the gap
between the blade and substrate. The objective of the blade is to wipe the excess liquid
from the unengraved parts of the gravure roll leaving liquid-filled cells. The pattern defined
by those cells can then be printed onto another substrate by a transfer method.

Printing by gravure method is different than coating which has been studied to coat a
uniform film over a substrate (Ruschak, 1985). Coating a uniform film is a steady process.
Printing, on the other hand, is inherently an unsteady process due to existence of moving
boundaries, contact lines and moving interfaces; all are associated with the topographic
features of the gravure roll.

Femtoliter intaglio (gravure) printing is one of the printing methods which includes
transfer of ink to print electronics onto flexible substrates. A representative length scale
of the method is 3–orders of magnitude smaller than the conventional gravure printing used
for printing books, newspaper etc. In the conventional size printing, any defect smaller than
50µm cannot be recognized by human eye (Kumar, 2015). In printed electronics, on the other
hand, micron–sized defects degrade the printed features at this scale. For instance, organic
field-effect transistor (OFET) is an example of printed electronics. It consists of several
layers to be printed and the layer patterning should be precise, except the dielectric layer.
The precision of the printed source/drain electrodes layer determines the OFET’s function
(Kang et al., 2013). These electrodes are rectangular channels whose length and width affect
the function, therefore any defect in the pattern affects the performance. Smaller channel
length increases the operating speed of the transistor (Noh et al., 2007); however, as the
patterns become smaller, defects become more important throughout the printing process.
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Figure 1.1: Schematic of gravure printing.

Kitsomboonloha et al. (2012) describe the deposition of femtoliter drops by the gravure
method. In their experiments, the substrate (gravure plate) translates beneath a stationary
blade. In plan view, engraved cells are square with edge length ranging from 1 to 10 µm; cell
depth is half the edge length. Liquid placed on the substrate upstream of the blade fills the
cells as they enter the gap between the blade and substrate. Motion of the substrate beneath
the blade is intended to sweep excess liquid from the unengraved parts of the substrate,
leaving liquid–filled cells. The pattern so defined can then be printed onto another material.

The objective is not completely attained. As each cell leaves the blade, some liquid
is drawn from the cell (top magnified view in figure 1.1) and left behind as a tail on the
substrate later in time (bottom left magnified view in figure 1.1) and that tail smears the
printed feature (bottom right magnified view in figure 1.1).
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1.2 Fluid mechanics problems during wiping and

outline of the dissertation

The smear formation problem consists of two main problems to be addressed. The first
problem is the growth of a meniscus due to capillarity while the cell emerges from beneath
the wiper blade. The second problem is printing of that meniscus as a tail behind the cell.

Several dimensionless numbers are useful to determine the relative strength of forces in
the smear formation problem. Owing to the small size of the cell, the flow is not affected by
inertial and gravitational forces. Reynolds number (Re) is a dimensionless number giving the
ratio of inertial forces to viscous forces and Weber number (We) is another dimensionless
number giving the ratio of inertial forces to surface tension forces. Bond number (Bo)
determines the strength of gravitational forces over surface tension forces. Defined by fluid
density ρ, fluid dynamic viscosity η, surface tension γ, substrate speed U , characteristic cell
size L and gravitational acceleration g; all three, Reynolds number (Re = ρUL/η < 10−6),
Weber number (We = ρU2L/γ < 10−5) and Bond number (Bo = ρgL2/γ < 10−8), are small
compared with one. The flow is governed by the Stokes equations of motion which is the
linearization of the Navier–Stokes equations because the inertial forces are small compared
with the viscous forces. Capillary number (Ca = ηU/γ), on the other hand, is a dimensionless
number giving the strength of viscous forces over surface tension forces. Ca is used to
determine the flow characteristics in printed electronics.

While the cell emerges from beneath the blade, the liquid interface meets the blade surface
at a contact angle θ and it is in contact with solid surfaces and a gas (vapor). Assuming that
each interface has a well–defined surface energy (defined by surface tension γ) and atomically
smooth and chemically homogeneous substrates, the liquid–vapor interface may advance or
stay static depending on the force balance tangent to the blade surface. By the balance
of forces along the substrate direction, we can write a relation between surface tension and
contact angle θ as follows:

cosθ =
γSV − γSL

γLV
. (1.1)

In (1.1), γSV refers to the surface tension along the solid–vapor interface, γSL refers to the
surface tension along the solid–liquid interface and γLV refers to the surface tension along
the liquid–vapor interface. This equation is defined by Young (1805) and is known as ‘Young
condition’.

A spreading parameter S can be defined as the difference between energies per unit area
of the unwetted and wetted substrates (Marangoni, 1871) by

S = γSV − (γSL + γLV ) . (1.2)

If S > 0, liquid spreads to cover the substrate and the phenomenon is defined as ‘complete
wetting ’. If S < 0, liquid–vapor interface forms a contact angle θ > 0 whose value depends
on the spreading parameter S and it is defined as ‘partial wetting ’. The same argument can
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be made by the sign of the right hand–side of (1.1). It must lie between -1 and 1. One
extreme case occurs when θ = 0. When the right hand side of (1.1) is one, liquid wets the
surface perfectly. When 0 < θ < π/2, the liquid wets the surface partially. When θ ↑ π/2,
the liquid wets the surface marginally and when θ ≥ π/2 the liquid cannot spread over the
surface and the liquid is defined as ‘non–wetting ’.

The surface tension γ exerts a resultant force per unit area on the interface and it is
given by

f =

[
∇γ − n∂γ

∂n

]
− n (∇ · n) . (1.3)

In (1.3), n is the outward unit normal to the interface. The first term on the right hand
side of (1.3) is due to variation in γ and it is tangent to the interface. This contribution is
known as Marangoni traction. The second term describes the contribution due to normal
component of the resultant force and this term is non–zero if the surface curvature ∇ · n
is non–zero. In this study we do not treat the Marangoni traction by assuming the surface
tension to be uniform along the interface.

In reality, the assumption of clean surface is not valid and this results with contact angle
hysteresis. Throughout the wiping process, the contact line over the blade first advances
and then retreats and the static contact angle is in between the advancing contact angle θA
and receding contact angle θR due to hysteresis: θR < θ < θA. When the contact line moves
over the blade, the viscous stress near the contact line distorts the interface. Due to small
size of this region, the local flow is also governed by the Stokes equations of motion. Because
the viscous stress in this region scales as ∼ ηU/r, r being the radial distance away from the
contact line, shear stress diverges as r → 0. The molecular processes, however, regularizes
this stress singularity. The apparent contact angle (at the macroscopic scale) differs from the
static (equilibrium) contact angle. Hoffman (1975), Voinov (1976), Tanner (1979), Hocking
(1983), Cox (1986) discuss the relation between the two. Moving with the advancing contact
line and matching the outer meniscus to the inner viscous solution, the apparent contact line
varies logarithmically with the distance to the contact line showing the viscous bending of
the interface and this relation is given by

θ3
ap = θ3 − 9Ca ln

(
y

li

)
. (1.4)

In (1.4), we use y to emphasize that the contact line motion occurs over the blade; li is
the inner length scale. In the limit as Ca → 0, the difference between dynamic and static
contact angles vanishes.

One way of releasing the stress singularity at the moving contact line is to allow the
contact line to slip over a distance l away from the wall using the Navier–slip condition.
Though, in this study, the application of the Navier–slip boundary conditions along a certain
length releases the shear stress singularity, the pressure is still logarithmically divergent.

Throughout the wiping process, the contact line first advances over the blade and a
meniscus grows. After the cell has emerged fully from beneath the blade, the drag introduced
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by the gravure land pulls that meniscus; the contact line retreats and the meniscus is printed
as a tail behind the cell extending back toward the blade. Over the range of capillary numbers
(Ca, based on substrate velocity) studied by Kitsomboonloha et al. (2012), tails were always
present; tail length is comparable with the cell length for Ca O(1), and increases as Ca is
reduced. Maximum tail width (dimension normal to substrate velocity) is comparable with
cell width. As shown by Kitsomboonloha et al. (2012, figure 13), tails are manifested as
smearing of printed features. Similar behavior is described by Nguyen et al. (2014) and by
Secor et al. (2014).

Kitsomboonloha et al. (2012) propose that tails form owing to lateral wicking along the
apparent line between the blade and substrate (when the substrate motion is in the x–
direction, lateral wicking refers to wicking of liquid in the z–direction which is out of page
considering figure 1.1; a cross–section in the x–y plane).

The value of the advancing contact angle determines the smear volume. For Ca fixed,
it attains its maximum value for a perfectly wetting fluid. Because wicking requires liquid
to wet the blade, tails could, therefore, be eliminated by making the blade non–wetting. By
verifying experimentally that tails do not occur if the blade is non–wetting, Kitsomboonloha
et al. (2012) demonstrate a connection between wettability and tail formation.

It can not be concluded that wicking causes tail formation, however. Owing to small size
of the cell, the flow is governed by the Stokes equations of motion. For a small slope interface,
when the pressure gradient along the substrate balances the shear stress and pressure across
the streamlines is uniform, the Stokes equations of motion can be reduced to lubrication
equations. If the blade is assumed to be perpendicular to the substrate, lubrication theory
holds throughout the entire liquid film if the cell is shallow, and the contact angle θ on the
blade is only slightly less than π/2. By numerically solving the evolution equation describing
the unsteady film, we show that tails form in plane flow (where wicking can not occur). We
conclude that tail formation is a problem in plane Stokes flow. This conclusion leads us to
the mechanism being analyzed here.

To be able to integrate the Stokes equations of motion corresponding to the smear
formation problem, we wrote a finite element based solver and have validated our solver
by solving several Stokes problems and by making comparison of a lubrication model of
smear formation problem and numerical solutions of the Stokes equations of motion for the
corresponding problem. We give the details of the numerical method and validation problems
in chapter 2.

As the leading edge of a liquid–filled cell emerges from beneath the blade, liquid rises on
the blade to satisfy the Young condition (now, of course, with θ arbitrary). From our studies
using lubrication theory, we know that the meniscus can be taken as being pinned to the
leading edge of the cell. As the cell moves away from the blade, its trailing edge eventually
approaches the meniscus, isolating a certain volume of liquid from the cell. This isolated
meniscus is then deformed by the drag exerted by the moving substrate. As far as the
quality of the printing application is concerned, we believe the solution involves minimizing
the quantity of liquid drawn into the meniscus. The evolution of the isolated meniscus into a
tail is, however, of considerable hydrodynamic interest. In § 3.2, we give a geometric analysis
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of meniscus growth; this (hydrostatic) analysis describes the limit of vanishing Ca based on
substrate speed U . The radius of curvature of the blade tip is 7.5-75 times larger than a
typical cell size (Kitsomboonloha et al., 2012, Table 1). During wiping stage, the blade tip
entirely fills the top of the cell acting as a lid. To avoid detail, we approximate the blade
tip as horizontal to the substrate with its trailing edge face, initially, to be perpendicular
to the substrate. Evidently the hydrostatic theory would be of limited interest if viscous
(normal) stresses exerted by the blade caused even more liquid to be removed from the
cell. In § 3.3, numerical solutions of the free boundary problem, a problem in which flow
variables and the flow domain are unknown, for the Stokes equations of motion are used
to show that the hydrostatic theory closely describes the process of meniscus formation if
Ca < 10−2; moreover, as Ca is increased, less liquid is removed from the cell. Because we
show that hydrostatics provides an upper bound to the volume removed, the problem of
controlling tail formation now reduces to the conceptually simpler problem of reducing the
size of the meniscus. In § 3.4, we use the hydrostatic theory to explain why Kitsomboonloha
and Subramanian (2014) were able to minimize smearing by polishing the blade to reduce
its tip radius.

Tail formation extending back toward the blade occurring later in stage is also of
considerable hydrodynamic interest. The meniscus drawn from the cell is printed as a tail
behind the cell, and this smear formation degrades the printed features at the scale of micron
size printed features. In chapter 4, we analyze the mechanism of tail formation. Meniscus
drawn from the cell is separated from the cell in the limit as Ca → 0, and that meniscus
sitting between blade and the trailing edge of the cell is printed as a tail: the mechanism
occurs between these two points, the cell is irrelevant.

This limit shows that the second fluid mechanics problem can be connected to two other
real life problems. The first one is is the deposition of the tear film when we blink. Wong
et al. (1996) study the deposition and thinning of the human tear film. This film covers the
exposed part of the eyeball by the rise of a meniscus of the upper lid during a blink and that
meniscus is used to coat the tear film. The second problem is the liquid entrainment from
the meniscus of a liquid wedge during coating (Gutenev et al., 2002, Reznik et al., 2009).
A film of tail shape is printed onto a horizontal substrate to be used in the deposition of
micro–nano particle suspensions such as blood smears for histological analysis. The problem
differs from the film drawing problem first shown by Landau and Levich (1942) because of the
finite volume meniscus. As the coating film is drawn from this meniscus, the changes in the
volume of the meniscus must be considered throughout the process. In the Landau-Levich
problem, on the other hand, a steady film of constant thickness of 1.34rCa2/3 is coated on the
substrate far from an infinite bath where r is the radius of curvature of the static meniscus
forming on the bath surface. Capillary pressure gradient and substrate motion (convection)
balance to produce, asymptotically, a uniform film thickness.

Though we reduce the problem to the entrainment of a film from the meniscus of liquid
wedge, this reduction is valid for the limiting case of Ca → 0 in the printed electronics
problem. Gutenev et al. (2002) analyze the problem of film entrainment in the low capillary
regime. Reznik et al. (2009) extend it to finite Ca regime using boundary integral method.
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Even in the finite Ca regime, they take the contact lines both on the blade and substrate
to be pinned at all times. According to our analysis in chapter 3, even for Ca = 0.0025, the
contact line on the blade retreats due to the increased effect of drag (horizontal substrate
motion). In the current problem of interest, the contact line at the trailing edge of the cell
can only be taken as pinned for Ca→ 0, and the volume under the meniscus is not arbitrary.
As Ca is increased, there is leakage from meniscus into the cell; the existence of cell should
also be considered.

With this motivation, we analyze the problem in two different regimes. In the limit as
Ca → 0, the meniscus is separated from the cell and the problem has an inner and outer
structure: in the neighborhood of pinned contact line, the viscous forces are important (inner
structure); away from this inner region, viscous forces are irrelevant and this inner region
connects to a bulk meniscus (outer structure). By solving the outer problem (§ 4.1), we first
predict the meniscus shape in the static regime; we formulate the inner problem (§ 4.2) by
making a local analysis near the tip (where the contact line is pinned at the trailing edge of
the cell), and then we form the composite expansion (§ 4.3) of the inner and outer problem
to show that the interface is rotated around the pinned contact line by viscosity and connects
to the static bulk meniscus away from the tip. In § 4.4, we predict that the thickness of the
film coated away from the bulk meniscus decreases linearly in time forming a tail shape.

By matching the outer limit of the inner problem to the inner limit of the outer problem,
we form a composite expansion. A comparison of composite expansion with the Stokes
solution requires Ca to be small. It is computationally expensive to solve the Stokes problem
at this low Ca. The computations required for the surface force integration include a factor
of Ca−1 and as Ca is decreased, any numerical error in the computations multiplied by
Ca−1 and this requires the use of extremely small time step due to the explicit time step
integration of the solver and this results with computationally expensive method.

In § 4.5, we solve the corresponding problem in Stokes regime for Ca = 10−3, and show
that as the angle of the interface at the tip decreases, inner viscous solution given in § 4.2
agrees with the numerical solution of the Stokes problem within a region which scales as
∼ 0.1 away from the tip. In §4.6, we include the cell into the computations of the Stokes
problem of tail formation.

A tail forms faster as Ca is increased. As the smear volume drawn from the cell is less
for higher Ca regime, the tail length shortens. As Ca is reduced, however, the tail formation
process takes longer and tail length increases with decreasing Ca first because the meniscus
volume increases as Ca is reduced, as shown in chapter 3: the limit Ca → 0 sets an upper
bound to the smear volume, as a result tail formation takes longer; second the coated film
thickness scales like rCa2/3 as Ca gets smaller.

Solver’s being computationally expensive for small Ca motivates us to model the cor-
responding problem in the lubrication regime. The earlier analyses are valid for arbitrary
contact angles on the blade; 0 ≤ θ < π/2. For small slope interface, on the other hand,
lubrication theory is appropriate to analyze the tail formation mechanism.

In § 4.7, lubrication theory is used to model the tail formation problem. Comparison
between the Stokes solution and lubrication model shows that, for contact angle θ = π/3
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and Ca = 10−2, the lubrication theory closely predicts the interface evolution. Because
the contact line on the blade moves freely in the lubrication model, it over–predicts the
meniscus growth stage resulting with longer tail behind the cell. As θ approaches π/2 and
Ca is decreased, on the other hand, the Stokes solution and lubrication model agree for the
meniscus printing problem. This motivates us to analyze the smear formation mechanism by
using lubrication theory for Ca < 10−3. When Ca is O(10−8), the slope of the linear decrease
observed in the thickness of coated film computed from the numerical solution approaches
the slope predicted in § 4.4. The composite expansion predicts the interface profile closely
when Ca = 10−8. We also observe the inner and outer structure; the meniscus rotates
around the tip at the trailing edge of the cell by the squeeze film flow, the film of decreasing
thickness connects to a thin film region of thickness ∼ rCa2/3 (Landau-Levich film) which is
coated away from the static outer meniscus.

Finally, in §4.7.3, we consider the effect of a sequence of cells in the tail formation
mechanism. We show that although smear formation is reduced between cells as the gap
between cells is reduced, the liquid drawn from the cells accumulates under the meniscus
resulting with tail formation behind the last cell in the sequence.
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Chapter 2

Development and Testing of a
Numerical Method for the Stokes
Problem

In gravure printing of electronics, the flow is not affected by inertial and gravitational
forces: the Reynolds number (Re = ρUL/µ) based on substrate length L < 10µm, substrate
speed U < 1 mm/s and viscosity µ=29Pa.s is less than 10−6 and Weber number (We =
ρUL2/γ) based on corresponding cell length, substrate speed and surface tension γ of 0.0269
N/m is less than 10−5. The flow is governed by the Stokes equations of motion.

Our objective here is to analyze the smear formation problem without any complications.
Because the radius of curvature r of the blade tip is large compared with a representative
length scale of the cell such as its length L, we model the blade as horizontal to the substrate
and its trailing edge face, at the first attempt, to be perpendicular to the substrate motion
as shown in figure 2.1. We assume the blade covers the top of the cell acting as a lid and the
cell is assumed to be full of liquid when it enters under the gap between the blade and the
substrate. As we analyze the problem in the following chapters by using the Stokes equations
of motion, in this chapter, we first formulate the corresponding Stokes problem in §2.1, and
then, give the details of the numerical method to solve the free-boundary problem in §2.2
and validate the solver in §2.3.
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Figure 2.1: Flow domain Ω for the Stokes problem of smearing: S1, wiper blade; S2, cell
boundary; S3, free surface. Coordinate axis is fixed on wiper blade which is stationary, cell
translates with velocity Ui. T is the trailing edge, B is the leading edge of the cell and the
contact line is at H. The aspect ratio of the cell is set to L/d = 2 where L is the length of
the cell, d is the depth of the cell.

2.1 Problem formulation

The flow domain is shown in figure 2.1: the coordinate is fixed on the exit of the stationary
blade; x-axis lies along the substrate, y-axis along the wiper blade. Nondimensionalized by
the cell length L, substrate speed U and pressure µU/L, non–dimensional stress field is
divergenceless:

∇ · σ = 0 in Ω (2.1)

where the dimensionless Newtonian stress tensor is defined by

σ = −pI +
(
∇u+∇uT

)
. (2.2)

In (2.2), p is the dimensionless pressure and u is the dimensionless velocity field. The
continuity equation requires that velocity field is divergenceless:

∇ · u = 0. (2.3)

The boundary of the domain Ω is S = S1∪S2∪S3 where S1 is the wiper blade surface, S2

is the moving cell boundary, S3 is the free surface which is unknown a priori. On the wiper
blade surface and cell boundary; no-slip, no penetration boundary conditions are applied,
except where the free surface and trailing edge of the cell meets the wiper blade:
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u = 0 on S1, (2.4a)

u = i on S2. (2.4b)

On the interface the normal n is the outward pointing unit normal vector, and the corre-
sponding unit tangent vector t along the interface is given by t = k × n (k is the unit
normal in z-direction which is out of page). Free surface boundary conditions are obtained
by balance of interfacial mass and momentum. Neglecting the traction on the interface due
to outside fluid (e.g. low viscosity gas) and neglecting the Marangoni traction, there is only
normal component of the stress on the interface which is given by

n · (σ · n) = − 1

Ca
∇ · n. (2.5)

In (2.5), Ca is defined by Ca = µU/γ which is a dimensionless number showing the strength
of viscous forces over surface tension forces. The contact line where the free surface meets
the wiper blade is free to move (Point H in figure 2.1). The stress singularity at the contact
line is released by applying the Navier-slip condition (Silliman and Scriven, 1978) given by

twiper · (σ · nwiper) =
1

s
twiper · (uslip − uwiper) (2.6)

where s is the dimensionless slip coefficient with s→ 0 recovering no-slip, s→∞ recovering
perfect–slip conditions.

We assume that the contact line is pinned at the leading edge of the cell and the moving
contact line at H meets the blade at Young angle:

tinterface · twiper = cosθ. (2.7)

If there is an effect of dynamic contact angle, it will emerge from the solution. We use the
static solution given in § 3.2 for the free surface profile when the leading edge of the cell
(point B in figure 2.1) has emerged 0.1d from the wiper blade as initial condition.
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2.2 Numerical method

To integrate the initial boundary value problem given in § 2.1, we wrote a finite element
method (FEM) based solver for the Stokes equations of motion on unstructured triangular
meshes. In this section, we first give the variational formulation of the Stokes problem
(Johnson, 2009, p. 232), and then discretize the governing equations and finally give the
details of the time integration.

2.2.1 Galerkin formulation

A Galerkin formulation is obtained first by multiplying the Stokes equations of motion
with the virtual velocities ū, v̄ and virtual pressure p̄ (Johnson, 2009, p. 232). Virtual
velocity components and pressure are functions (test functions) chosen from the spaces V
and H, respectively, defined by

V =
[
H1
o (Ω)

]2
=
{
ūi = (ū, v̄) : ūi ∈ H1

0 (Ω), i = 1, 2
}
,

H =

{
p̄ ∈ L2(Ω) :

∫
Ω

p̄dx ≡ 0

}
.

Here, H1
0 Ω and L2(Ω) are Hilbert spaces (Johnson, 2009, p. 33, p. 232). After multiplying

the Stokes equation by the virtual velocities and pressure, we integrate over the domain Ω
to obtain: ∫

Ω

∂σij
∂xj

ūidΩ = 0, (2.8)∫
Ω

∂ui
∂xi

p̄dΩ = 0. (2.9)

In (2.8), ūi is not a vector and summation over i is not implied; it is the corresponding virtual
velocity component: for the x–component of (2.8) it refers to ū and for the y–component of
(2.8) it refers to v̄. We apply divergence theorem on the diffusion term:∫

Ω

(
∂σijūi
∂xj

− σij
∂ūi
∂xj

)
dΩ = −

∫
Ω

σij
∂ūi
∂xj

dΩ +

∫
S

ūiσijnjdS = 0, (2.10)

and we use the interfacial boundary condition (2.5) along S3 to obtain∫
Ω

σij
∂ūi
∂xj

dΩ = −
∫
S3

1

Ca
ūini

∂nj
∂xj

dS +

∫
S1∪S2

ūiσijnjdS. (2.11)

We evaluate the surface integral in (2.11) by using integration by parts (Ruschak, 1980). To
do so, we rewrite the surface integral in vectorial notation:
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∫
S3

1

Ca
ūi (∇ · n)ndS =

∫
S3

1

Ca
ūi
dt

ds
ds (2.12)

where t is the unit tangent vector in the increasing s direction. Integrating by parts, we
obtain: ∫

S3

1

Ca
ūi
dt

ds
ds =

[
1

Ca
ūit

]B
H

−
∫ B

H

1

Ca
t
dūi
ds
ds, (2.13)

where H and B are the positions of the contact lines on the solid boundaries as shown in
figure 2.1. As the model problem lies in the plane, we rewrite x and y components of the
momentum equation using the stress tensor definition given in (2.2):

x :

∫
Ω

−p∂ū
∂x
dΩ+

∫
Ω

2
∂ū

∂x

∂u

∂x
dΩ+

∫
Ω

∂ū

∂y

∂u

∂y
+

∫
Ω

∂ū

∂y

∂v

∂x
dΩ+

[
1

Ca
ūtx

]B
H

−
∫ B

H

1

Ca
tx
dū

ds
ds = 0,

(2.14)

y :

∫
Ω

−p∂v̄
∂y
dΩ +

∫
Ω

2
∂v̄

∂y

∂v

∂y
dΩ +

∫
Ω

∂v̄

∂x

∂v

∂x
+

∫
Ω

∂v̄

∂x

∂u

∂y
dΩ +

[
1

Ca
v̄ty

]B
H

−
∫ B

H

1

Ca
ty
dv̄

ds
ds = 0,

(2.15)

and the continuity equation: ∫
Ω

(
∂u

∂x
+
∂v

∂y

)
p̄dΩ = 0. (2.16)

At the moving contact line, tx and ty are computed by the use of (2.7) to set the contact
angle. We should note that the last term in (2.11) is zero when Dirichlet boundary condition
is applied along the boundary because the virtual velocities are set to zero at corresponding
nodes. However, when we apply the slip boundary condition along the distance l, we add
that integral to the corresponding x, y component of the equation (2.14),(2.15) with the use
of slip boundary condition. In the model geometry shown in figure 2.1, this occurs at the free
surface and blade intersection (point H), and at the intersection of blade and trailing edge
of the cell (point T ) and blade and substrate intersection (point O) after the cell emerges
fully from beneath the blade. With the use of (2.6), we add these two surface integrals to
(2.14) and (2.15), respectively:

x : +

∫
S1(slip)

1

s
ūudS, (2.17)

y : +

∫
S1(slip)

1

s
v̄vdS. (2.18)

This ends the Galerkin formulation of the problem.
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2.2.2 Discretization

We use P2 − P1 isoparametric triangular elements (Bathe, 1996, figure 5.11) for the
solution variables: Figure 2.2 shows a representative element in the isoparametric domain
with the numbers of the nodes. The velocity components are represented by the values at
the six nodes per element (1 to 6 in figure 2.2) and interpolated using quadratic polynomials
(P2 element), pressure is represented by the three corner nodes (1 to 3 in figure 2.2) and
interpolated using linear polynomial (P1 element). This choice of element satisfies the
Ladyzhenskaya-Babushka-Brezzi stability condition (Johnson, 2009, p. 232).

1

2

3

4

56

s

r

Figure 2.2: Nodal points in the isoparametric plane: 1 to 6 is used for P2 element, 1 to 3 is
used for P1 element.

The quadratic interpolation for the velocity components are defined as follows (with r
and s defined in figure 2.2):

hq1(r, s) = 1− 3r − 3s+ 2r2 + 4rs+ 2s2, (2.19a)

hq2(r, s) = −r + 2r2, (2.19b)

hq3(r, s) = −s+ 2s2, (2.19c)

hq4(r, s) = 4r − 4rs− 4r2, (2.19d)

hq5(r, s) = 4rs, (2.19e)

hq6(r, s) = 4s− 4rs− 4s2. (2.19f)

Similarly, the linear functions used for the pressure are given by

hl1(r, s) = 1− r − s, (2.20a)

hl2(r, s) = r, (2.20b)

hl3(r, s) = s. (2.20c)
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We approximate the velocity components and pressure in the isoparametric plane as
follows:

u(r, s) =
6∑
i=1

hqiui, (2.21)

v(r, s) =
6∑
i=1

hqivi, (2.22)

p(r, s) =
3∑
i=1

hlipi. (2.23)

Here hqi , h
l
i are quadratic and linear interpolations; ui, vi and pi are the corresponding nodal

values. Subscripts denote the nodal points shown in figure 2.2.
The unit tangent vector in the xOy is computed by

t =

∑3
i=1 si

dhqi
ds∥∥∥∑3

i=1 si
dhqi
ds

∥∥∥ (2.24)

with si being nodal position vector and dhqi/ds being scalar corresponding to the element
edge over which the computation is carried out. The normal component is found simply by
n = k × t.

The coordinates are interpolated with the quadratic interpolation functions:

x(r, s) =
6∑
i=1

hqixi, (2.25)

y(r, s) =
6∑
i=1

hqiyi, (2.26)

where xi and yi are the coordinates of the node points in the element and hqi is defined
in (2.19). Because the computations are performed in the isoparametric domain, we need
to express the mapping for the derivatives from the xOy plane to the isoparametric plane,
which is given by  ∂

∂x

∂
∂y

 = J−1

 ∂
∂r

∂
∂s

 . (2.27)

Jacobian (J) of the transformation in (2.27) is given by
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J =

∂x∂r ∂y
∂r

∂x
∂s

∂y
∂s

 . (2.28)

We use Gauss quadrature to carry out the integrations. Plane integrations are evaluated
over triangles using 7–point Gauss integration rule (Bathe, 1996, §5.5.4 and 5.5.5). r and
s are evaluated at the Gauss points of integration over triangles. Boundary integrals are
evaluated using 3–point Gauss integration rule (Bathe, 1996, §5.5.3). In both cases, the
Gauss quadrature integrates exactly polynomials of order at most 5. The highest order
polynomial in the integrations is 4, therefore the integrations are exact throughout the
numerical method.

After forming the element matrix Ak and right hand side vector Rk over each element
ek for the unknowns by using (2.14) to (2.16), we form a global stiffness matrix A, and
right hand side vector R. We impose constraints on certain solution variables with the
use of Lagrange multiplier method: we extend the solution vector by adding the Lagrange
multipliers λ for the constraints and extending the system of equations toA nTi

ni 0

u
λ

 =

R
u∗i

 (2.29)

where ni is a vector with all entries equal to zero, but its ith entry which is equal to 1, u∗i
is the imposed constraint at node i. The unstructured mesh is generated using the methods
explained by Persson (2004), Persson and Strang (2004).

2.2.3 Time integration

The Stokes equations are quasi-steady, it is the moving boundaries that introduce time
dependence.

Mass conservation along the interface requires that no fluid can cross it and the condition
is given by the kinematic boundary condition:

n · (u− ṡ) = 0, (2.30)

where ṡ is the velocity of a material point along the free surface.
Time integration is performed explicitly: at time t, the linear Stokes problem is solved

using the boundaries determined at the previous time t−∆t; boundaries are then displaced
in the normal direction to the interface using the velocity field from the same time t −∆t.
Because this method is explicit, we restrict the magnitude of ∆t using a Courant condition:
∆t < c∆x/u where ∆x is the minimum edge length in the mesh and u is the maximum
velocity. We take c < 1/4. To maintain resolution, the quality of the mesh was checked
regularly to refine the mesh; between refinements, the mesh was simply displaced from one
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time step to the next using the local fluid velocity. The mesh is dynamic so the number of
elements varies throughout the integration. Generally, we use approximately 1000 elements
distributed non-uniformly over the domain. During mesh movement and remeshing, the
mass of liquid must remain constant in the model problem for smear formation. In the
corresponding computations, mass is conserved to within an error of 0.01%.

2.3 Validation of the solver

Before solving model problem for smear formation in chapters 3 and 4, the method was
tested against problems in plane Stokes flow having explicit solutions: biharmonic problems
such as flow through a slit (Green, 1944), the problem of over–damped capillary-wave, and
stick–slip problem (Richardson, 1970) describing a free jet emerging from a slit in a thick
wall. Apart form these problems, we also compare the numerical solution of the Stokes
equations of motion for the smear formation problem with the corresponding lubrication
model in chapter 4.

2.3.1 Flow through a slit

x

y

a/2-a/2

S4

S2S1 S3

ν
=
π
/2

μ=1

μ=2

μ=0 ν=0

ν=2π

Figure 2.3: Geometry for the flow through a slit.

We consider the Stokes flow through a slit of width a in an infinite plane. Figure 2.3
shows the problem domain; the coordinate axis is fixed at the middle of slit. The incoming
flow in the positive y–direction with flow rate Q at the slit is given by

vy =
4Q

πa

{
1−

(
2x

a

)2
}1/2

. (2.31)

The boundary conditions at the edges of the slit (S1 and S3) are no-slip and no penetration
boundary conditions. Far away from the slit, the pressure drops to zero.
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According Green (1944), solution to the boundary value problem is that the streamlines
are hyperbolas with foci at x = ±1/2a. We first introduce the elliptic cylindrical coordinates
(µ, ν) that we have used. Note that in this subsection (µ, ν) are unrelated to viscosity. The
curve µ=const. is the ellipse

x2

a2cosh2µ
+

y2

a2sinh2µ
=

1

4
. (2.32)

The curve ν=const. is the hyperbola

x2

a2cos2ν
− y2

a2sin2ν
=

1

4
. (2.33)

The mapping from elliptic coordinates to Cartesian coordinates is given by

x =
a

2
coshµ cosν, (2.34a)

y =
a

2
sinhµ sinν. (2.34b)

We use the mapping (2.34a,b) in the numerical solution because the solver is written in
Cartesian coordinates. According to Green (1944), the velocity filed is given by

vµ =
4Q

πa

sin2ν(
sinh2µ+ sin2ν

)1/2
, vν = 0, (2.35)

and the pressure distribution is given by

p =
8ηQ

πa2

(
2− sinh2µ

sinh2µ+ sin2ν

)
, (2.36)

where η is the dynamic viscosity, Q is the flow rate through the slit. Note that p → 0 as
µ→∞. As shown in figure 2.3, through the slit, µ = 0 and ν varies between 0 and π.

We solve the corresponding Stokes problem on the domain shown in figure 2.3. For the
outer boundary S4 we choose the ellipse with µ = 2: on this surface we impose as boundary
conditions the velocity and pressure given by the exact solution (2.35), (2.36), by setting
a = 1 and µ = 2. On the slit (S2), vertical velocity is set to (2.31) and u = 0 and we
apply no–slip, no penetration boundary conditions on the walls (S1 and S3). We use 2300
triangular elements.

Figure 2.4 compares the velocity and pressure distribution at x = 0. The numerical
solution and exact solution agree. In figure 2.5, we also plot the streamlines from our
numerical solution and they overlie the streamlines from the exact solution.
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Figure 2.4: Comparison of the numerical solution of the Stokes problem with exact solution
of flow through a slit at x = 0.

Figure 2.5: Streamlines of the flow through a slit, corresponding to figure 2.3.

2.3.2 Overdamped capillary wave problem

A capillary wave problem allows us to check the mesh movement algorithm in the solver.
Lamb (1975, p.625–627) gives the decay of viscous water–waves by taking the effect of inertia
and surface tension into account. In the limit density ρ → 0, the flow is governed by the
Stokes equations of motion, and we recover the solution of the overdamped capillary wave
problem. To do so, we expand Lamb’s solution into first order in ρ, keep the coefficients
of ρ and then cancel ρ’s. The coordinate is fixed on the unperturbed interface at y = 0
with y decreasing downwards. When a flat interface at y = 0 is perturbed from its base
state in which there is no motion in the fluid, the flow decays with a dispersion relation
n = −γk/(2η). Here, γ is the surface tension, k is the wave number which is given by
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Figure 2.6: Overdamped capillary wave problem: solution domain; streamlines are obtained
from the numerical solution corresponding to the interface perturbed with amplitude a=0.01
at t = 0.

k = 2π/λ with λ being the wavelength of the perturbation and η is the dynamic viscosity.
Because n ∝ k, the short waves are removed first; the opposite is true for viscous gravity
waves as n ∝ 1/k. Note that in this subsection k is unrelated to a unit vector.

The position of the free surface ζ is defined from y = 0, and the interface profile is given
by

ζ(x, t) = Aeikx+nt, (2.37)

where A is the amplitude of the wave. The velocity field is found to be

u(x, y, t) =
γ

2η
ik2Ayekyeikx+nt, (2.38)

v(x, y, t) =
γ

2η
kA (−1 + ky) ekyeikx+nt. (2.39)

Integrating the momentum equations, pressure distribution is found to be

p(x, y, t) = γk2Aekyeikx+nt. (2.40)

We non-dimensionalize the equations using the scales ls = λ, us = γ/η, ps = γ/λ,
ts = λη/γ. For the following, all variables are dimensionless. We take A to be real and the
perturbation solution as the real part of the solution with a = A/λ, then the dimensionless
interface profile is given by

ζ(x, t) = acos(2πx)e−πt, (2.41)

and the dimensioneless velocity components are given by
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Figure 2.7: Comparison of numerical solution of the Stokes problem with the exact solution
of overdamped capillary–wave problem: (a) v–velocity on free surface at t = 0, 2–norm of
the difference is 3.0525e-6, (b) Comparison of the Stokes solution and perturbation solution:
u–velocity on free surface at t = 0, 2–norm of the difference is 2.3769e-05. See text for
the discussion on the discrepancy in u-velocity and the definition of the 2–norm is given in
(2.35).

u(x, y, t) = −2π2aye2πysin(2πx)e−πt, (2.42)

v(x, y, t) = πa(−1 + 2πy)e2πycos(2πx)e−πt. (2.43)

The corresponding dimensionless pressure distribution is given by

p(x, y, t) = 4π2ae2πycos(2πx)e−πt. (2.44)

To test the solver, we use the problem domain shown in figure 2.6. We set the wavelength to
unity and depth to 0.5. We use non–uniform mesh with finer mesh close to the free surface
with a total of 994 triangular elements. We set the velocity distribution along the boundary
except the free surface from the perturbation solution as boundary condition. Initially, for
a small amplitude perturbation, we set a to 10−3. In figure 2.7a,b we compare, on the free
surface, the v and u–velocities respectively. The two norm of the error (defined in (2.45)) is
order 10−5. The discrepancy observed in the u–velocity, although the solution predicts the
correct wave pattern, is due to the perturbation analysis in which zero shear stress condition
is applied at y=0. A rough computation of the shear stress from the perturbation solution
at the interface gives that shear is of order 10−4 for the maximum amplitude. Therefore, any
error of order 10−4 or smaller in the resulting solution is expected.
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Figure 2.8: Comparison of the numerical solution of the Stokes problem and perturbation
solution of the overdamped capillary–wave problem: x and y–velocity at the mid of the
domain at t = 0; 2-norm of the difference in u is 1.0259e-5 and in v is 1.1537e-05.

We also compare the solutions at the middle of the domain, y=-.25 in figure 2.8 which
shows good agreement with the perturbation solution.

We now increase the amplitude of the perturbation 10 times and check the time evolution
by plotting the free surface profiles at various times for a = 10−2 and compare with the
perturbation solution in figure 2.9, plot the pressure distribution in figure 2.10. All results
agree with the perturbation solution.
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CHAPTER 2. DEVELOPMENT AND TESTING OF A NUMERICAL METHOD FOR
THE STOKES PROBLEM 24

x

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

p
(ζ
,
t
=

0
.1
)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

FEM

Perturbation

Figure 2.10: Comparison of the numerical solution of the Stokes problem and perturbation
solution of the overdamped capillary–wave problem: pressure on interface at t = 0.1.



CHAPTER 2. DEVELOPMENT AND TESTING OF A NUMERICAL METHOD FOR
THE STOKES PROBLEM 25

2.3.3 Stick–slip problem

Richardson (1970) gives the exact solution of the stick–slip problem which is a flow of a
Newtonian fluid emerging between parallel plates in plane. The problem includes a stress
singularity at the exit of the top plate (x=0,y=1) as shown in figure 2.11. The singularity
arises from the change from a no-slip boundary condition to a perfect slip boundary condition.
The velocity around the singularity varies like r1/2, r being the radial distance from the
singular point, therefore the stress varies like ∼ r−1/2.

x

y

u=v=0

t(σn)=0,v=0

t(σn)=0,v=0

n(σn)=0

v=0
u=1.5(1-y2)

v=0

-3 3

1

0

Figure 2.11: Stick–slip problem domain.

Though we do not resolve singularity there, by solving this problem, we show that our
solver predicts the velocity distribution on the free surface correctly.

The free surface for x > 0 is replaced by a plane on which the shear stress vanishes. We
solve the problem for the half domain; symmetry boundary conditions are imposed on the
centerline. At the inlet, parabolic velocity profile; at the outlet plug flow are imposed. For
x < 0, y = 1 no–slip, no penetration; for x > 0, y = 1 slip boundary conditions are imposed.
Figure 2.12 compares the centerline and slip plane velocity with Richardson solution. Figure
2.13 shows comparison of the centerline pressure as well.

Lastly, we show the convergence of the method for two different error definitions: L2 and
L∞ norm errors. L2 norm of a vector u is defined by

||u||2 =

√∑
i

|ui|2, (2.45)

and L∞ norm of a vector u is defined by

||u||∞ = max (|ui|) . (2.46)

We note that u in (2.45) and (2.46) is unrelates to the velocity field. The convergence of
the method is shown in figure 2.14. With h being the largest edge of the element, the errors
in u and in p scale respectively as h3 and h2. This is expected because pressure is interpolated
using a polynomial with one degree less than the velocity integration polynomial.

After validating the Stokes solver, we use it to analyze the smear formation problem in
Chapters 3 and 4.
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Figure 2.12: Comparison of the numerical solution of the Stokes problem and Richardson
solution for stick–slip problem: centerline and slip plane u-velocity.
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Chapter 3

Meniscus Growth During Wiping

Cells filled with ink upstream are wiped by doctor blade to remove the excess ink from
the land. As a cell translates beneath the wiper blade, some liquid is drawn from the cell
and rises over the blade to satisfy the contact angle condition. In the experiments, the wiper
is a carbon steel blade having roughness comparable with the cell depth (Kitsomboonloha
and Subramanian, 2014, Kitsomboonloha et al., 2012). The radius of curvature of blade tip
is 7.5 to 75 times larger than a typical cell size of length 1-10µm. Figure 3.1 shows the
geometry of the model. In the model, we have left out certain complications. For example,
all surfaces are depicted as planes, except where cells have been etched. The blade covers
upper left quadrant of x − y plane, the coordinate axis is fixed at the trailing edge of the
stationary blade. We assume that the cell is filled fully with ink, we also do not explicitly
account for liquid flow in the thin gap between the stationary wiper blade and the moving
substrate. According to Kitsomboonloha and Subramanian (2014), at low speeds, liquid in
the gap contributes only about 1% of the total volume flow rate Ud at the trailing edge of
the cell where U is the substrate speed, d is the cell depth. This simplification allows us to
model the problem without including the thin coating film downstream: the contact line is
pinned at the leading edge of the cell.

The flow is not affected by inertial and gravitational forces: the Reynolds number (Re =
ρUL/µ) is less than 10−6, the Weber number (We = ρU2L/γ) is less than 10−5 and the Bond
number (Bo = ρgL2/γ) is less than 10−8. The flow is governed by the Stokes equations of
motion.

In this chapter, we first analyze the problem in the limit of vanishing capillary number
(Ca based on substrate speed U) to predict the smear volume. We, then, solve corresponding
Stokes problem by using the methods of chapter 2 for a range of Ca numbers and show that
hydrostatics sets an upper bound on the smear volume. Finally, we investigate the effect of
blade orientation.
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Figure 3.1: Flow domain Ω for the Stokes problem of smearing: S1, wiper blade; S2, cell
boundary; S3, free surface. Wiper blade is stationary, cell translates with velocity Ui.

3.1 Analysis as Ca→ 0

In this section we make an analysis in the limit as Ca → 0 to show that the interface
grows as circular arc while emerging from beneath the wiper blade. Non-dimensionalized by
the length scale ls = d, pressure scale ps = γ/d and velocity scale us = U where d is the
cell depth, γ is the surface tension and U is the substrate speed; dimensionless stress field is
divergenceless:

∇ · σ = 0. (3.1)

Non-dimensional Newtonian stress-tensor is given by

σ = −pI + Ca
(
∇u+∇uT

)
. (3.2)

In equation (3.2), capillary number is defined as Ca = ηU/γ with η being dynamic viscosity.
p is the dimensionless pressure field and u is the dimensionless velocity field. Continuity
equation requires that velocity field is divergenceless:

∇ · u = 0. (3.3)

Boundary conditions are given in § 2.1. The scales used in this section differs from § 2.1,
though. Therefore, the normal component of the stress on the interface is different from
(2.5). The interfacial boundary condition, now, is given by
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n · (σ · n) = −∇ · n. (3.4)

By defining the interface height as ζ(x) measured from substrate level, we can write the
outwatd unit normal on the interface by

n =
∇ (y − ζ(x))

|∇ (y − ζ(x)) |
=
ey − exζx
(1 + ζ2

x)1/2
, (3.5)

and the curvature term is found to be

∇ · n =
1− ζxx
(1 + ζ2

x)
. (3.6)

By using (3.2) and (3.6), we can rewrite the interfacial boundary condition (3.4) as

p+ 2Ca

(
∂u

∂y
+
∂v

∂x

)
ζx

1 + ζ2
x

+ 2Ca
∂u

∂x

1− ζ2
x

1 + ζ2
x

= − ζxx

(1 + ζ2
x)3/2

. (3.7)

The contact line is pinned at the leading edge of the cell, and free to move where the free
surface meets the wiper blade. Although, as discussed by Cox (1986), when the contact line
advances over the wiper blade, the apparent contact angle is a flow property, the difference
between the apparent contact angle and static (advancing) angle vanishes as the cube root
of the Ca based on the contact line velocity, so we assume contact angle at the moving line
over the wiper blade remains at its pre-defined static value given by

tinterface · twiper = cosθ. (3.8)

In the limit as Ca → 0, dp/dx = 0 from (3.2). By taking the x–derivative of (3.7) and
integrating for the free surface profile, we find the free surface profile ζ(x), to a first
approximation, to be a circular arc which is pinned at the leading edge of the cell and
satisfying the contact angle condition (3.8) on the wiper blade. The shape of the interface
is decoupled from the flow beneath itself; the meniscus grows as a circular arc. Now, we
discuss the hydrostatic stage.

3.2 Hydrostatic limit when Ca→ 0

After showing that the interface grows as a circular arc while emerging from beneath the
blade, in this section we analyze the hydrostatic limit, show that the contact line rises over
the blade with a constant speed and predict the smear volume at the end of meniscus growth
stage.
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Figure 3.2: Cell translating rightwards beneath a stationary blade occupying the second
quadrant of the xOy plane: (a) cell emerging; (b) cell fully emerged. See text for discussion.

Figure 3.2 shows the geometry of the model; emerging and fully emerged cells are shown
to emphasize that the analysis covers the evolution from the first state to the second. The
coordinate system xOy is orthogonal, with x–axis along the surface of the substrate; β
denotes the angle between the blade and the y–axis. Except in § 3.4, β = π/2. We assume
the meniscus to be pinned at the leading edge B of the cell.

In the limit as Ca → 0, viscous stress is negligibly small until the interface approaches
the substrate at T . Until that occurs, liquid pressure is uniform, and the meniscus is a
circular arc HMB. Point A is the intersection of this arc with OB; CM is perpendicular to
OB. Arc HMB has three degrees of freedom: its radius r, and the coordinates of its centre
C. These variables are determined by the following conditions: because liquid that has risen
above line OB has been removed from the cell, the areas shaded in figure 3.2a are equal; the
arc passes through B; and it cuts the y–axis at a given angle θ (Young angle).

The area of the shaded curvilinear triangle OAH is given by

|OAH| = 1
4
r2{4 cosα cos θ − sin 2α− sin 2θ − π + 2(α + θ)} ; (3.9)

as shown in figure 3.2a, α is the angle at which arc AMB cuts the x–axis at A. The area of
the shaded lens AMB formed by the chord AB and the circular arc below AB is given by

|AMB| = 1
2
r2(2α− sin 2α). (3.10)

Equating areas, then simplifying, we obtain

4 cosα cos θ + sin 2α = sin 2θ + π + 2(α− θ). (3.11)

Equation (3.11) holds until the trailing edge (point T in figure 3.2a) approaches the interface.
From (3.11), we see that α is uniquely determined by the value of θ and so does not vary

as the cell emerges. As θ is increased from zero to π/2, α decreases monotonically from 0.568
(about 33◦) to zero. In particular, (3.11) admits the solution α = θ = 0.482 (about 28◦).
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From the geometry of figure 3.2, the arc radius r is given in terms of |OB| = b, α and θ
by

b = r(cos θ + sinα). (3.12)

Further, because |OH| = h = r(cosα− sin θ),

h = b
cosα− sin θ

cos θ + sinα
. (3.13)

Because α is fixed by (3.11), both the radius r of the meniscus, and its height h, are
proportional to distance b of the leading edge of the cell from the blade. In particular,
the meniscus rises with constant velocity until the interface approaches the substrate. We
note that, although viscosity is locally important near the advancing contact line, its effect
there is, merely, to distort the interface locally, and so to produce the dynamic contact angle.
That effect is irrelevant here; we are assuming that, in the limit as Ca → 0, the difference
between the dynamic and static angles vanishes, as discussed by Hoffman (1975).

Viscous stress becomes essential to the process when the interface approaches the sub-
strate. This can occur either if the trailing edge T of the cell approaches the interface (points
A and T coincide), or at the bottom of the cell (point M approaches the cell bottom). In
the first case, the hydrostatic stage ends when |AB| is equal to the cell length L. Because,
from the geometry of figure 3.2a, |AB| = 2r sinα, the radius r1 at the end of hydrostatic
stage is given by r1 = L/(2 sinα). In the second case, the hydrostatic stage ends when the
distance of point M to OB is equal to the cell depth d: r − r cosα = d. The corresponding
value r2 of the radius is r2 = d/(1− cosα).

Cell aspect ratio L/d determines which case is relevant. As the cell emerges, r increases
from zero and the hydrostatic stage ends when r is equal to the smaller of r1 and r2.
Comparing the expressions for r1 and r2, we find that r1 < r2 if

L/d < 2 cot(1
2
α). (3.14)

For perfect wetting (θ = 0), (3.14) corresponds to L/d < 6.84. For marginal wetting (θ →
π/2), and α → 0: for this system, the hydrostatic stage ends when the trailing edge of the
cell approaches the interface, even for a very long shallow cell. In the Kitsomboonloha et al.
(2012) experiments, the cells are square in planform, with L/d = 2. Because this is within
the range defined by (3.14), we now consider only the first case.

As a result of the trailing edge approaching the interface, liquid between O and A is
isolated from the cell. We conclude that the amount of liquid removed from the cell is
determined by hydrostatics, whereas viscosity will be important in determining how that
fixed amount of liquid is smeared over the substrate. The mechanism producing tails operates
solely between points O and A; the cell plays no further part.

The area A∗ removed from the cell of length L is given by (3.10), with r = r1:

A∗ = L2 2α− sin 2α

8 sin2 α
. (3.15)
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As θ is increased from 0 to π/2, A∗/L
2 decreases from 0.099 to zero: for θ = π/2, there is no

meniscus, and no liquid is lost from the cell. Further, because the cell area is Ld, the ratio
A∗/(Ld) increases linearly with cell aspect ratio L/d.

3.3 Viscous effects

We have shown in §3.1 and 3.2 that the meniscus grows as a circular arc in the hydrostatic
limit. Now, by using numerical solutions of the free–boundary problem for the Stokes
equations of motion developed in chapter 2, we demonstrate that the hydrostatic analysis
of §3.2 provides an upper bound for the amount of liquid removed from the cell. The
solution domain is as shown in figure 3.2, except, of course, that interface shape is now to be
determined as part of the numerical solution. As shown in figure 3.2, the interface is pinned
at the leading edge B of the cell.

As initial state, we take the leading edge B of the cell to be at x/L = 0.05. For the initial
configuration of the interface, we use the hydrostatic solution. The governing equations
are the continuity equation and Stokes equations for a Newtonian liquid: in the process of
interest, body force and inertia are negligibly small. At the interface, the shear stress (within
the liquid) vanishes, and the normal viscous stress balances the resultant stress exerted by
uniform surface tension. At the solid, the no–penetration condition is imposed and the
no–slip condition is imposed with two exceptions: within a given distance ` of the moving
contact line; and within distance ` of the intersection between the blade and substrate.
Within those regions, the Navier–slip condition is imposed with slip length `; all results are
for `/L = 0.01, static contact angle θ = π/6, and L/d = 2. For the element at the moving
contact line, the length of the shortest edge was set equal to 0.1`.

Of course, viscous stress near the moving contact line distorts the interface and, if the
calculation were inadequately resolved, the interface slope would vary abruptly near the
blade. For results given here, the angle computed from the solution is always within 1◦ of
the imposed value of π/6. This accuracy is consistent with the condition given by Sprittles
and Shikmurzaev (2012) for the minimum edge length of elements near a moving contact
line.

To solve the initial boundary value problem, we use the finite element method explained
in Chapter 2.

Figure 3.3 shows the interface height ζ/L at the instant t = 0.95 the trailing edge of the
cell leaves the blade, corresponding to point T in figure 3.2 coinciding with point O. For
Ca = 1 (curve (f)) and Ca = 2 (curve (g)), the interface slope is small (∼ 0.1) everywhere,
except very near the blade where the contact angle condition requires the slope to be of the
order of unity. As Ca is decreased from curve (g) to curve (b) (Ca = 0.025), the interface
approaches the static shape shown by curve (a). For clarity, curves for Ca = 0.01, 0.005 and
0.0025 are omitted from the figure; they are almost identical with curve (a).

The inset shows the velocity of the contact line. According to the hydrostatic solution
(3.13), the contact line rises with uniform speed until the trailing edge of the cell touches
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Figure 3.3: Interface shape at the instant t = 0.95 the trailing edge of the cell leaves the
blade; L/d=2, θ = π/6. Curve (a) hydrostatic; curves (b) to (g), computed for Ca =
0.025, 0.1, 0.25, 0.5, 1 and 2. Inset, ratio v0/U of contact line velocity to substrate velocity.

(a) (b) (c)

Figure 3.4: Streamlines corresponding to curves (b) to (d) in figure 3.3. Region 0 < x/L <
0.5, −0.125 < y/L < 0.25 and (a), Ca= 0.025; (b), 0.10 and (c) 0.25.
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Figure 3.5: Interface shape at the instant t = 1.35 the trailing edge of the cell is at x/L = 0.4.
For θ and L/d, see caption to figure 3.3. Curve (a), hydrostatic; curves (b) to (e), computed
for Ca = 0.0025, 0.005, 0.01 and 0.025. Inset, ratio v0/U of contact line velocity to substrate
velocity.

the interface; for θ = π/6, v0/U = 0.298. The numerical solutions show that v0 decreases
markedly as Ca is increased. To explain that effect, we show streamlines in the next figure.

Figure 3.4 shows, in particular, the behaviour of the streamline that divides liquid rising
along the blade from that moving rightwards with the substrate. In all three cases, the
contact line is rising over the blade but, as the viscous pressure increases relative to capillary
pressure (increasing Ca), an increasing fraction of the liquid is pulled to the right. As a
result, the dividing streamline moves leftwards along the interface; this is consistent with
the flattening of the interface seen in figure 3.3.

Figure 3.5 shows the interface height at a later time (t = 1.35). The trailing edge T
of the cell has now advanced to x/L = 0.4; this value of x/L is slightly less than that
(0.460) at which the hydrostatic analysis predicts that T reaches the interface. Curve (e)
for Ca = 0.025 shows the later stage of the solution given as curve (b) in figure 3.3: there,
viscosity has only a modest effect on interface shape. By contrast, the inflection on curve (e)
shows that viscosity now has a significant effect: for the larger values of Ca, the meniscus is
beginning to be printed as a tail.

The pronounced effect of viscosity is also apparent in the inset showing the ratio v0/U :
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Figure 3.6: Flow rate at the trailing edge of the cell; configuration as in figure 3.5.

even for the smallest value of Ca = 0.0025, the contact line is retreating (v0/U ' −0.08),
whereas in the hydrostatic solution, the contact line advances with uniform speed (v0/U =
0.298) until the trailing edge of the cell touches the interface.

We note that the retreating meniscus deposits no film on the blade x = 0. Two
explanations offer themselves. First, the geometry differs from that in dip coating. Viscous
stress here plays a double role; shear stress near the contact line promotes film deposition
but substrate drag opposes it. Second, even if that effect were absent, as in dip coating or
bubble flow in a tube, no film is deposited if the capillary number Ca0, based on contact line
velocity v0, is less than a critical value: Ca′ depends on static contact angle θ and, weakly,
on slip length ` and on the radius r of curvature of the outer meniscus (Quéré 1991, equation
5; Eggers 2005, equation 41). Because Ca′ is an increasing function of `/r, the relatively
large value of `/r ∼ 10−2 used here would inhibit coating.

The preceding figures show clearly that the area under the meniscus is a decreasing
function of Ca. It remains to show that, with decreasing Ca, liquid is increasingly trapped
as the trailing edge of the cell approaches the interface.

From figure 3.6, we see that, for the configuration shown in figure 3.5, the flow rate
Q =

∫ ζ
0
vx dy through the restriction between the interface and trailing edge of the cell is

∼ 1% of the characteristic flow rate UL within the cell itself. The ratio Q/(UL) decreases
with decreasing Ca. We conclude that hydrostatics provides an upper bound to the volume
left behind on the substrate. The problem of minimizing smearing simplifies to one of
reducing that upper bound.
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3.4 Blade geometry

The smears shown in Kitsomboonloha et al. (2012, figure 7) were observed in experiments
in which the cell length L = 7.5µm, and the radius of the blade tip, 75 µm. Kitsomboonloha
and Subramanian (2014, figure 8) show that printed features become more sharply when the
blade is polished to reduce the tip radius to 3 µm. In this section, we use hydrostatic theory
to suggest why polishing is effective.

In the first case, the tip radius is 10L, and a careful sketch shows that the curved surface
of the blade can be modeled, at the scale of the cell, by a flat blade making an acute angle β
with the x–axis. (Though in figure 1b of Kitsomboonloha et al. (2012), the blade as a whole
is shown as making an obtuse angle with the x–axis, we are concerned here the local angle
where the cell leaves the blade; that angle is acute.)

Assuming now that the angle made by the blade with the x–axis is now β, rather than π/2,
the angle made by the interface with the vertical at the contact line H is θ′ = θ + β − π/2.
The effect of tilting the blade is to create additional area beneath it. To illustrate this
effect, we consider the case θ′ ≥ 0 in which the area A of the meniscus can be calculated
using results already given: to obtain the area AC of the curvilinear triangle formed by the
interface, x–axis, and abscissa passing through H, we need only replace θ in (3.9) by θ′. The
other contribution is the area AT of the right triangle formed by that same abscissa, the
blade, and x–axis: AT = (r2/2)(cosα− sin θ′)2 cot β. As β is reduced, AT increases without
bound. As far as the cell is concerned, tilting a flat blade creates a large volume sink.

Equating the total area A = AC + AT to the area |AMB| removed from the cell, then
simplifying, we find that α, β and χ = β + θ satisfy the relation

4 cosα sinχ+ sin 2χ+ sin 2α + 2(cosα + cosχ)2 cot β = 2(π + α− χ). (3.16)

This equation holds for χ ≥ π/2.
For a system that is only marginally wetting, so that θ ↑ π/2, the condition χ ≥ π/2 is

satisfied even for β � 1. To obtain the solution of (3.16) in that case, we note that arc AH
in figure 3.2 then approximates to chord AH. From the geometry of the triangle formed by
the blade, chord AH and the x–axis, β+ θ+α = π, whence α→ π− θ as β → 0. To obtain
the next term in this approximation, we substitute the series

α ∼ π− θ + cβ1/2, (3.17)

into (3.16), and find that c = −(2π + sin 2θ − 2θ)1/2/ sin θ. Together, (3.15) and (3.16)
determine the area A∗ that has been removed from the cell when its trailing edge reaches
the interface.

Figure 3.7 shows A∗/(Ld) as a function of blade angle β for contact angle θ ↑ π/2.
According to the results in §3.2, for this value of θ, and blade angle β = π/2, a negligibly
small amount of liquid is removed: A∗ → 0 at the right end of the figure. At the other
extreme, β → 0; in this case, α → π/2. The inset shows the corresponding meniscus: it is
a semi–circle spanning the cell and having a little finger that reaches up to touch the blade,
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Figure 3.7: Relation defined by (3.15) and (3.16) for L/d=2, and contact angle θ ↑ π/2.
Solid curve, equation (3.16); dotted curve, small–β asymptote (3.17).

thereby completing the right triangle whose area is the very AT described above. It remains
to verify that this extreme situation is not an artefact of assuming a flat blade.

Figure 3.8 shows the corresponding situation for the parabolic blade y = (x+ x0)2/(2ρ),
and cell aspect ratio L/d = 2. The coordinate origin O is at the centre of the top of the
cell; the ends of the cell are at x = ±d. The sketch is drawn to scale for ε = L/ρ = 0.1; it
suggests that the following assumptions hold in the limit as ε→ 0: (a) the contact line is at
x = −L/2; (b) when the trailing edge reaches the meniscus, as shown in the figure, the cell
has emerged a distance x0 � L; and (c) the slope of the parabola at the contact line H is
vanishingly small. We assume, then verify, these properties.

First, by assumption (a), the area of the meniscus is given by A2 =
∫ −L/2
−x0 y dx. Equating

that area to the area A1 = 1/2L2(1− π/4) removed from the cell, then using (b) to neglect
a small term of the order of L/x0, we find that in the limit as ε→ 0,

x0/L ∼ 0.863/ε1/3; (3.18)

this justifies assumption (b). Next, the contact line H is located at the intersection of the
parabola y = (x + x0)2/(2ρ) with the circular arc x2 + y2 = L2/4. Eliminating y between
these equations, then using (b) to neglect terms of the order of L/x0, we find that

xc ∼ −(L/2)(1− 0.373ε4/3); (3.19)
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Figure 3.8: Meniscus of a marginally wetting liquid beneath a parabolic blade.

this justifies assumption (a). Lastly, because x0 � |xc|, the slope of the parabola at H is
given by x0/ρ ∼ 0.863ε2/3 showing that the slope of the parabola is vanishingly small at H;
this justifies the assumption (c). We conclude that if the tip radius of the blade is large
compared with the cell length, most of cell volume is drawn into the meniscus even for a
marginally wetting system.

By examining the limit Ca→ 0, we have shown that the phenomenon of ‘drag–out’ during
the wiping stage of gravure printing effect phenomenon in gravure printing is caused by the
growth of a meniscus on the wiping blade. For Ca → 0, viscosity only enters significantly
when the trailing edge of the cell approaches the interface, thereby isolating the meniscus
from the cell. The problem of tail formation now reduces to that of the coating of a substrate
by the meniscus extending from the blade to the trailing edge of the cell. We treat that
problem in the following chapter.
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Chapter 4

Tail Formation

We show in chapter 3 that liquid is drawn from a cell passing beneath the wiper blade.
In the limit of vanishing Ca, that liquid becomes isolated from the cell. In this chapter, we
first analyze printing of the resulting meniscus in this limit. As Ca is increased, however,
we consider the existence of the cell due to the leakage from meniscus into the cell as shown
in figure 3.6 of chapter 3.

4.1 Outer problem: static prediction

From the hydrostatic analysis in §3.2, the meniscus is separated from the cell as shown
in figure 4.1, the contact line is pinned at the trailing edge T of the cell. As a result, the
angle α, the angle at which the interface makes with the horizontal as shown in figure 4.1,
is no longer fixed but, instead, decreases as the distance xT = |OT | increases. Because the
area under the meniscus is now constant, and equal to A∗ given in (3.15), equation (3.10)
determines radius of curvature r of the circular arc meniscus as a function of α. Solving the

TO

H

θ

xα

BLADE

substrate

y

Figure 4.1: Meniscus sitting between blade and trailing edge (T ) of the cell.
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resulting expression for r, we find that

r

A
1/2
∗

=
2

{4cosα cosθ − sin2α− sin2θ − π + 2(α + θ)}1/2
. (4.1)

Further by geometry xT = |OT | = r(cosθ − sinα). Substituting for r from (4.1), we obtain

xT

A
1/2
∗

=
2(cosθ − sinα)

{4cosα cosθ − sin2α− sin2θ − π + 2(α + θ)}1/2
. (4.2)

In parametric form, (4.1) and (4.2) determine r as a function of the distance xT from the

blade to the trailing edge of the cell. Because (4.1) and (4.2) contain the scale A
1/2
∗ , the

meniscus is not geometrically self–similar.
For later use, we note that in the limit as α→ 0,

xT = r0 (cosθ − α) +O(α2), (4.3)

r = r0 +
r3
ocosθ

4A∗
α2 +O(α3), (4.4)

so

r = r0 +
r0cosθ

4A∗
(r0cosθ − xT )2 +O(α3). (4.5)

Here, r0 is obtained by setting α = 0 in (4.1).
Figure 4.2 shows radius r as a function of distance xT for θ = 0 and θ = π/6. For a

given value of θ, the curve begins at a point corresponding to the value of α appropriate to
the end of meniscus growth stage, and terminates at the value xT = r0cosθ given by (4.3).
According to (4.5), for arbitrary θ, the slope dr/dxT vanishes at the terminus. Lastly we
note that, for θ = 0 and θ = π/6, r decreases by about less than one–third during this stage.

We have shown that, in the limit of vanishing capillary number, the meniscus develops
in two stages. As the cell emerges during meniscus growth stage, the radius r of the arc
increases from zero to a maximum r1 = L/(2sinα) when the interface pins on the trailing
edge of the cell. As a result, in the meniscus printing stage, r decreases as the cell continues
to translate. This decrease continues until α→ 0. We now discuss the effect of viscosity.
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Figure 4.2: Relation between r and distance xT = |OT | for θ = 0 (solid line), θ = π/6
(dashed line).
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4.2 Inner problem: viscous effect

As shown by the static analysis, in the limit as Ca → 0, the meniscus is a circular arc
until the effect of viscosity first becomes important; this occurs at the trailing edge of the
cell. We now make the analysis in the neighborhood of the trailing edge of the cell. Figure
4.3 shows near the trailing edge of the cell. The effects of viscosity are important here rather
than the blade.

~r

~r Ca

Into the bulk 

meniscus

x
Tφ

1/3

~r Ca
2/3

0

0

0

Figure 4.3: Inner problem: meniscus pinned at the trailing edge T of the cell, x grows into
the meniscus.

In the limit of vanishing Ca, there exists an inner and outer structure. Outer problem is
given in §4.1. We now formulate the inner problem by making a local analysis as Ca → 0
around the pinned contact line.

φ being the apparent contact angle, a lubrication analysis is appropriate for φ << 1. Here
φ is a parameter replacing α and it is going to be determined by matching the inner and
outer problems. Moving with the reference frame fixed at T , with x now chosen to increase
toward the meniscus as shown in figure 4.3; the evolution of the interface ζ measured from
horizontal is given by

∂ζ

∂t
+

γ

3η

∂

∂x

(
ζ3 ∂

3ζ

∂x3

)
= 0. (4.6)

As in the Landau-Levich coating problem, the boundary condition is that pressure must
match that in the static meniscus. To impose this, for small slope interface, we set

ζ = φx+
1

2r
x2 + ζ̂ , (4.7)

where φ is the slope of the interface at x = 0 and r is the radius of curvature of the circular
arc meniscus and ζ̂ is the difference between the inner solution and parabolic interface.
Although φ is to be determined, r has to be the same as the bulk meniscus: r is specified.
(4.7) holds near x = 0 provided φ << 1; ζ̂ is not assumed to be small. Note that provided



CHAPTER 4. TAIL FORMATION 45

ζ̂ is o(x2) for large x, (4.7) ensures that pressure is matched to the static solution. We put
(4.7) into the evolution equation (4.6) to obtain:

φ̇x+
1

2

d

dt

(
r−1
)
x2 +

∂ζ̂

∂t
+

γ

3η

∂

∂x

{(
φx+

1

2r
x2 + ζ̂

)3
∂3ζ̂

∂x3

}
= 0. (4.8)

From the static analysis, φ̇x/( ˙r−1x2) ∼ (φr)/(xTx) << 1, (xT denotes the distance from
trailing edge to the blade). To O(φ2), r = r0 from (4.4), therefore the second term in (4.8) is
small compared with the first term. Eliminating the second term in (4.8) and rescaling to the
inner region by using the scales x = r0Ca

1/3x̂, φ = Ca1/3φ̂, ζ̂ = r0Ca
2/3ŷ and t = r0/UCa

1/3t̂
with φ̇ = −U/r0, r = r0, we obtain the evolution equation of the inner problem:

∂ŷ

∂t̂
+ f = 0, (4.9)

where

f = −x̂+
1

3

∂

∂x̂

{(
φ̂x+

1

2
x̂2 + ŷ

)3
∂3ŷ

∂x̂3

}
, (4.10a)

φ̂ = Ca−1/3φ0 − t̂. (4.10b)

Equation (4.2-4.10) is valid for 0 ≤ x̂ <∞. Boundary conditions are:

ŷ(0, t̂)
∂3ŷ(0, t̂)

∂x̂3
= 0, (4.11a)

∂ŷ(∞, t̂)
∂x̂

= 0. (4.11b)

Boundary condition (4.11a) is no flux condition at T , (4.11b) is the growth condition. The
initial condition is

ŷ(x̂, 0) = 0. (4.12)

We integrate (4.9-4.12) implicitly and map the domain 0 < x̂ < ∞ onto interval [0,1] by
introducing new coordinate defined by z = x̂/(1 + x̂)(Appendices A and B give the details
of the numerical method).

We have verified by using 3 different initial φ (φ0) that, the solution is, asymptotically,
independent of φ0 for φ << φ0; therefore we use the small slope analysis here even though φ0

is not necessarily small. In figure 4.4, we plot the difference between the actual and parabolic
interface. We take the initial value of φ corresponding to the problem with contact angle on
the blade is θ = π/6 and α when the interface touches the trailing edge of the cell at the end
of hydrostatic stage. φ → 0 before the evolution converges to steady state. To be able to
see how close we are to the steady state solution when φ vanishes, we continue integrating
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Figure 4.4: Inner viscous solution for the meniscus printing problem, (a) φ = 0, (b) steady
state solution. φ0 = 0.468 is taken to be corresponding to the problem with contact angle on
the blade is θ = π/6. Inset: the neighborhood of the contact line in linear scale corresponding
to curve (a).

in time by setting φ = 0 after that point (when ŷ ∼ 1.7). ŷ converges to 2.136 as x̂→∞ as
1/x̂.

As shown by the inset in figure 4.4, the ζ̂ is concave down, approaches a constant very
slowly like 1/x̂. The curvature is positive everywhere, highest at T ; pressure perturbation is
produced by a squeeze film flow.

Because ζ̂ approaches to limiting value at infinity very slowly, separation of length scales
exists under one of the two conditions: if π/2−θ >> Ca1/3 or if the mass under the meniscus
is infinite. The second condition is not valid for the meniscus printing problem because the
mass under the meniscus is limited by the meniscus growth stage. First condition, on the
other hand, is observable. Though it is not practical to solve the corresponding Stokes
problem of meniscus printing for too small Ca numbers, lubrication analysis is valid when
the interface slope is small and we treat this problem in §4.7. We, of course, compare the
inner viscous solution with the Stokes solution even though the separation of length scales
does not exist for the Ca values of order 10−3 studied.
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4.3 Composite expansion

In this section we form the composite expansion of meniscus printing problem by matching
the outer limit of the inner problem to the inner limit of the outer problem.

For φ << φ0, at a fixed instant, the overall effect of viscous flow (squeeze film) near T , is
to displace the interface upwards by an amount δ = limx̂→∞ ŷ. This value varies with time
t, but since φ = fn(t), δ can also be considered to be a function of the single variable φ. The
displacement thickness δ is as shown in figure 4.5. To ensure mass conservation, radius r and
angle α are defined as the solutions of (4.1) and (4.2). However, the quantity xA is no longer
exactly equal to the distance |OT | = xT to the trailing edge of the cell. Instead xA now refers
to the distance |OA| to the point A at which the static meniscus extrapolates to the x–axis,
an apparent point. From the rotating meniscus solution, the displacement |TG| = r0Ca

2/3

(to within a constant factor); from the geometry of 4TAG, |TA| = |TG|/α = r0Ca
1/3/α̂

where the scaling α = Ca1/3α̂ has been used. The area under the actual interface (solid
curve), differs from that A∗ under the circular arc meniscus by an amount of the order of
the area of triangle TAG; that area is of the order of r2

0Ca/α̂. Mass is, therefore, conserved
to within an error of the order of Ca; this error is of the same order as that made in taking
the outer meniscus to be a circular arc.

Into the bulk 

meniscus

x
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Aδ
α

δ  ~r Ca
2/3

0

G

α

Figure 4.5: Effect of viscosity: meniscus is displaced by an amount δ as the trailing edge T
advances.

Figure 4.6 shows the geometry of the whole meniscus. We let xT be the abscissa at the
trailing edge of the cell and xA be the abscissa at an apparent point where the outer meniscus
cuts the x–axis.

The outer region is defined by the limit Ca → 0 (x 6= xT ) as given in § 4.1. To O(Ca),
the pressure in the outer region meniscus is uniform and the interface is a circular arc. The
area A∗ beneath the arc is defined by the initial condition (for meniscus printing stage).

We let the radius of this arc be r and the angle at which the arc cuts the x–axis be α.
Expressed in terms of r, α and the contact angle θ, the coordinates of the centre C of the
circular arc are {r cos θ, r cosα}. The equation of the circle is
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Figure 4.6: Geometry for the composite expansion.

(x− r cos θ)2 + (y − r cosα)2 = r2. (4.13)

The area A∗ under the interface is imposed by the initial condition: this constraint
means that r is a known function of the parameter α. Consequently, the abscissa a of the
point A at which the arc cuts the x–axis is also a known function of α: setting y = 0 in
(4.13), then solving for x = xA, we obtain xA = r(cos θ − sinα). In particular, for α → 0,
r ∼ r0{1 +O(α2)}, and

xA = r0(cos θ − α) +O(α2). (4.14)

Matching to inner viscous solution gives the remaining condition needed to determine
the interface. Expressing (4.13) in terms of x− xA, then solving for yO, the ordinate of the
outer meniscus, we obtain:

yO = r cosα− r cosα
[
1 + 2(x− xA)r−1 tanα secα− (x− xA)2r−2 sec2 α

]1/2
. (4.15)

We find the inner limit of the outer solution by expanding (4.15) to O([x− xA]2):

yO ∼ (xA − x) tanα +
1

2r
(x− xA)2 sec3 α. (4.16)
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Equation (4.16) can also be obtained by forming the Taylor expansion about x = xA,
using y′ = − tanα and y′′(1 + y′2)−3/2 = r−1.

The inner solution is defined by the limit Ca → 0 (fixed [xT − x]/Ca1/3). The function
yI vanishes at xT . The outer limit of the inner solution is defined by Ca → 0 (x 6= xT ). In
this limit

yI ∼ φ(xT − x) +
1

2r0

(xT − x)2 + r0Ca
2/3δ. (4.17)

In (4.17), the coefficient of (xT − x)2 must equal limα→0 r, because matching of the
pressure requires the outer limit of the (inner) curvature to equal the uniform curvature of
the outer interface. The apparent contact angle φ is to be determined by matching. Because
φ appears as a parameter (replacing α) in the statement of the inner viscous problem, the
displacement thickness δ is a function of φ.

We now perform the matching: for xT − x = O(r0Ca
1/3), the second and third terms in

(4.16) are O(r0Ca
2/3). Matching consists of making the difference yO − yI = o

(
r0Ca

2/3
)

;

the difference is then small compared with either yO or yI .
Using the identity xA − x = (xA − xT ) + (xT − x) to express yO in terms of x− xT , then

rearranging, we obtain

yO ∼ α(xA − xT ) + 1
2r0

(xA − xT )2 + (xT − x)[α + 1
r0

(xA − xT )] + 1
2r0

(xT − x)2;

yI ∼ r0Ca
2/3δ + (xT − x)φ + 1

2r0
(xT − x)2.

(4.17a,b)
Equating coefficients in (4.17a,b), we obtain

r0φ = r0α + (xA − xT ), (4.18a)

α(xA − xT ) + (xA − xT )2/(2r0) = r0Ca
2/3δ. (4.18b)

In this system, δ is computed as a function of φ as part of the inner viscous solution.
The unknowns are therefore φ, α and xA. Equation (4.14) provides the remaining relation
needed to determine the three unknowns. Eliminating xA + r0α between (4.18a) and (4.14),
we find that

φ = (cos θ − xT/r0). (4.19)

This equation determines the coefficient entering into the inner viscous problem. Solving the
inner problem then determines δ.

With δ determined, α is found by eliminating xA− xT between (4.18a) and (4.18b): this
gives

α =
[
φ2 − 2Ca2/3δ

]1/2
. (4.20)
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Lastly, according to (4.18a), xA − xT = r0(φ− α):

xA − xT = r0

{
φ−

[
φ2 − 2Ca2/3δ

]1/2
. (4.21)

The quantities xA, α and φ have been determined; mass is conserved; and the inner and
outer solutions have been matched.

The composite solution is

yC ∼ yO + r0Ca
2/3{ynum − δ} ; (4.22)

In (4.22), yO is given by (4.15), and ynum denotes the numerical solution of the inner viscous
problem, specifically the component that approaches δ far from xT . In the outer limit,
yC ∼ yO. Using (4.17a,b), in the inner limit

yO ∼ r0Ca
2/3δ + (xT − x)φ+

1

2r0

(xT − x)2; (4.23)

so that

yC ∼ (xT − x)φ+
1

2r0

(xT − x)2 + r0Ca
2/3 ynum. (4.24)

The matching allows for the variation in slope that occurs between xT and xA as the
viscous effect becomes stronger.

To show the meniscus rotation, we form the composite solution for θ = 5π/12. The
composite solution is for fixed time, the corresponding static solution at the same time is
found from (4.1) and (4.2) and the parabolic approximation is computed at the corresponding
time by using (4.25).

Figure 4.7 shows the composite expansion for Ca = 10−7 and Ca = 10−8 and θ = 5π/12.
The matching is valid provided φ2 > 2r0Ca

2/3δ. In figure 4.7; α = 0.0030, φ = 0.0065,
|xA − xT | = 0.0095 for Ca = 10−7; α = 0.0012, φ = 0.0030, |xA − xT | = 0.0049 for
Ca = 10−8. To be able to show the structure at the tip, we subtract the parabolic interface
which given by

yP = (xT − x)φ+
1

2r0

(xT − x)2 (4.25)

from the actual interface yO. As shown by the insets, the rotation of meniscus is visible at
the tip region and as Ca is decreased separation of length scales is also visible close to the
tip (T ).
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Figure 4.7: Composite expansion (yC − yP )/L for θ = 5π/12; (top) Ca = 10−7,(bottom)
Ca = 10−8; we have subtracted parabolic interface to be able to see the structure at the tip.
The inset scale is the same as the main figure axes. See text for the values of α and φ.
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4.4 Later stage of tail formation in the limit Ca→ 0

Figure 4.8 shows the film to be coated with continuing motion of the substrate at a
later stage. As shown in the control volume (C.V.), the mass exiting the C.V. is Uh∞.
When the radius of curvature of the meniscus is r, h∞ is the film thickness to be coated at
this instant; that film thickness is at a distance r away from the blade (assuming perfectly
wetting case) where the interface slope is zero. The corresponding film thickness is given by
h∞ = 1.34rCa2/3 (Landau and Levich, 1942). As the tip advances, however, the thickness
of the film decreases with time because the volume of the meniscus is finite.

O x

BLADE

substrate

y

C.V.

h∞

r

Figure 4.8: Coating of a Landau–Levich film.

Figure 4.9 shows the expected tail shape. From T to M , we expect the film thickness
to increase from the inner analysis. To the left of M , the film thickness is controlled by the
volume under the meniscus because the meniscus is coating the substrate.

Assume that at time t, the radius of curvature of the meniscus from which a thin film is
coated be r. Here, r is not constant in time. The volume constraint, for arbitrary contact
angle θ on the vertical blade, requires that

d

dt
r2

{
cosθ

(
1− 1

2
sinθ

)
+
θ

2
− π

4

}
= −Uh∞ = −1.34UrCa2/3. (4.26)

Using (4.26), time rate of change of the film thickness away from the bulk meniscus is found
to be

dh∞
dt

=
(1.34)2UCa4/3

2
{

cosθ
(
1− 1

2
sinθ

)
+ θ

2
− π

4

} . (4.27)

As the radius of curvature of the bulk meniscus decreases linearly in time, so does the coated
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Figure 4.9: For a fixed point on substrate, expected tail formation.

film thickness. (4.27) is valid, in the limit as Ca→ 0, and when r changes slowly compared
with either of the terms, h∞ or Ca2/3, in Landau–Levich equation. Gutenev et al. (2002)
makes a similar analysis for liquid entrainment from the meniscus of a liquid wedge in the
limit as Ca→ 0, but they do not consider the viscous effects.

The draining time of the mass scales as td ∼ rU−1Ca−2/3; therefore the corresponding
tail length scales like ∼ Utd ∼ rCa−2/3.
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4.5 Tail formation studied using numerical solution of

Stokes equations with no cell

In the previous sections, we have demonstrated the physical picture. We now demonstrate
using numerical solution that the physical picture is correct.

As shown in §3.3, for vanishing capillary number, there is no leakage into the cell: the
interface touches the trailing edge of the cell and pins at the trailing edge of the cell. The
meniscus is separated from the cell and printed with the continuing motion of the substrate.

TO

H

θ

xα

BLADE

substrate

y

Figure 4.10: Geometry of the meniscus sitting between blade and trailing edge (T ) of the
cell.

Figure 4.10 shows the geometry of the meniscus printing problem. In this section we
assume that the contact line is pinned at T and free to move atH. We solve the corresponding
Stokes problem between points O and T with initial free surface profile predicted at the end
of meniscus growth stage with Ca = 0.001, θ = π/6 which is given in chapter 3.

Figure 4.11 shows the interface evolution with continuing motion of substrate for θ = π/6.
The interface rotates around the pinning point T at the trailing edge of the cell and starts
coating a thin film downstream.

The static solution given by (4.1) and (4.2) predicts the meniscus printing problem closely
until the trailing edge of the cell has advanced to about 0.1L from its initial location (at
x0 = 0.4596L). At the time when the trailing edge of the cell advances x/L = 0.2 from its
initial position, the difference between static prediction and Stokes solution is visible close
to the tip region with maximum absolute error of 0.004.

Figure 4.12 shows the tip region for the tip locations (xT − x0)/L = 0.05, 0.1, 0.2. The
difference between Stokes solution and static prediction grows as the tip advances.

According to static prediction, α vanishes when the trailing edge of the cell has advanced
by a distance of 0.2323L from its initial position. At this position, the maximum absolute
error is 0.006. We plot the difference between the Stokes solution and the static prediction
when the trailing edge of the cell advances x/L = 0.23 from its initial position, and compare
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Figure 4.11: Time evolution of meniscus printing computed using Stokes equations, Ca =
0.001, θ = π/6.

it with the inner viscous solution in figure 4.12. From static prediction, α = 0.0029 and
r = 0.799. Inner solution predicts the solution closely for x/L up to 0.02. As the contact
angle θ over the blade is decreased, the difference between the two reduces. Figure 4.13
shows the corresponding comparison for θ = 5π/12. In this case, α0 = 0.13011, and α
vanishes when T advances x/L = 0.20877 away from its initial position, therefore we give
the results for the time when T advances x/L = 0.2 away from its initial position. The
inner prediction approaches the Stokes solution as θ is increased. For θ = π/6, the inner
solution predicts Stokes solution closely up to x/L = 0.03 away from the tip, on the other
hand, for θ = 5π/12, the corresponding value of x/L is approximately 0.1. It is expected
that as θ → π/2, and α→ 0, this range is going to increase because the parabolic interface
approximates the circular arc interface closely away from the tip as θ → π/2. From figures
4.12,4.13 and 4.14, we observe that the interface is pushed upwards as predicted from the
inner analysis in §4.2.
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Figure 4.12: Comparison of the static prediction and Stokes solution of meniscus printing
problem, Ca = 0.001, θ = π/6: (a) x/L = 0.5096, (b) x/L = 0.5596, (c) x/L = 0.6596; (—)
Stokes solution, (- - -) static prediction.
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Figure 4.13: Comparison of the inner viscous solution and Stokes solution. - - -: inner
solution solution, —: the difference u/L between Stokes solution and static prediction at
the corresponding time. Inner solution is obtained using α and x/L corresponding to Stokes
problem solved for Ca = 0.001, θ = π/6, x/L = x0/L+ 0.23.
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Figure 4.14: Comparison of the inner viscous solution and Stokes solution. - - -: inner
solution, —: the difference u/L between Stokes solution and static prediction at the
corresponding time. Inner solution solution is obtained using α and x/L corresponding
to Stokes problem solved for Ca = 0.001, θ = 5π/12, x/L = x0/L+ 0.2.
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4.6 Tail formation studied using numerical solution of

Stokes equations with cell

As Ca increases, the no–leakage back into the cell assumption is not valid. Now we
include the cell: The difference from the meniscus printing problem is that the flow domain
includes the cell as well because the interface does not touch the trailing edge of the cell at
the location predicted in the hydrostatic analysis (§3.2) and the leakage is shown in §3.3.
Figure 4.15 shows the domain of the problem. The interface shape is determined as part of
the solution. We continue integrating the problem from the point when the cell has emerged
fully beneath the blade (figure 4.15a) by taking the interface shapes given in chapter 3.

T T

O

A B

H

y y

x x
B

θ

α

θ

O

(a) (b)

β

Figure 4.15: Geometry of the domain for tail formation problem, cell translating rightwards
beneath a stationary blade occupying the second quadrant of the xOy plane: (a) cell fully
emerged; (b) cell is away from the blade.

In figure 4.16, the evolution of the interface into a tail shape for Ca = 0.1 is plotted. For
each time step, each curve is overlaid relative to the horizontal distance of the leading edge
of the cell to the blade. The history of the interface profiles are plotted starting from t = 1
to t = 1.7 with ∆t = 0.1 increments. As shown by the inset in figure 4.16, the contact line
on the blade retreats while evolving into a tail shape. The drag due to substrate motion
pulls the meniscus down as shown with the corresponding streamlines for xT/L=0.2,0.4 and
0.6 in figure 4.17; the free surface evolves into a tail shape.

For relatively large Ca numbers, tail formation occurs faster. In figure 4.18, we show
the interface profiles for Ca numbers of 0.1, 0.5 and 1. We show the interfaces at the times
when the minimum film thickness behind the tail is 0.01. This occurs when the trailing edge
of the cell is 0.091, 0.219 and 0.85 away from the blade for Ca=1, 0.5 and 0.1, respectively.
The horizontal is scaled with the horizontal distance of the leading edge of the cell to the
blade. The tail forms faster as Ca is increased and tail length grows as Ca is reduced. This
is consistent with the analysis given in chapter 3 because less liquid is trapped under the
meniscus as Ca increases.
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Figure 4.16: Interface evolution into tail shape for Ca = 0.1, θ = π/6. The history of the
interface profiles are plotted starting from xT/L=0.05 to xT/L=0.75 with 0.1 increments.
Each curve is overlaid relative to the distance of leading edge of the cell to the blade.
Solid circles along ξ axis show the corresponding location of the trailing edge of the cell:
ξ = 0.0476, 0.1304, 0.2, 0.2593, 0.3103, 0.3548, 0.3939, 0.4286, respectively.

As Ca is decreased below Ca = 0.1, on the other hand, the interface approaches the
trailing edge of the cell as it translates further away. This slows down the computations in
terms of meshing of the domain and computational effort spent within the cell. When the
interface is almost touching the trailing edge of the cell, we cut the cell from computational
domain, pin the interface at T and continue integrating in time. After this point, we can
treat the problem as meniscus printing which occurs between points O and T as shown in
figure 4.10. In figures 4.19 and 4.20, comparison of the interface profiles for Ca = 0.025, 0.01
and 0.005 at t = 1.773 and t = 2.368 shows that tail formation takes longer for smaller Ca.
As Ca is increased, the interface rotates faster and the interface slope away from the pinned
contact line reaches zero and after this point maximum formation occurs. In all three cases,
maximum formation is visible in figure 4.20. We should note that tail thickness decreases
linearly as predicted in (4.27); the mass under the meniscus is used to coat the tail. In figure
4.21, for a fixed point away from the blade, we plot the change of film thickness with time
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Figure 4.17: Streamlines corresponding to figure 4.16, xT/L=0.2,0.4 and 0.6.

for Ca = 0.025, 0.005. The slope of the line for Ca = 0.025 is -0.0196. According to (4.27),
corresponding slope is -0.0521. The corresponding slope for Ca = 0.005 is -0.0043; (4.27)
predicts the corresponding slope to be -0.0061. Though (4.27) over–predicts the slope, as
Ca is decreased, the prediction approaches the numerical solution.
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Figure 4.18: Interface shape at the instant the minimum film thickness behind the tail is 0.01.
Curves are for Ca=1,0.5 and 0.1. Each curve is overlaid relative to the distance of leading
edge of the cell to the blade. Solid circles along ξ axis show the corresponding location of
the trailing edge of the cell: ξ = 0.0834, 0.1797, 0.4595, respectively.
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Figure 4.19: Comparison of interface profiles computed from the Stokes equations for Ca =
0.025, 0.01 and 0.005 at t = 1.773.
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Figure 4.20: See caption for figure 4.19, t = 2.368.
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Figure 4.21: Change of film thickness with time at (left)x = 0.5L away from the blade,
Ca=0.025, (right)x = 0.6L away from the blade, Ca=0.005; s is the slope of the line;
θ = π/6.
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4.7 Lubrication analysis

The analysis made in § 4.1, 4.2, 4.3 and 4.4 requires Ca to be small. The comparison
of this analysis with small Ca Stokes solution is difficult because any numerical error on
the interfacial force computations given by the last term in (2.13) is multiplied by Ca−1;
when Ca is small, this computations require the time step to be extremely small as the
time integration is made explicitly. This results in a computationally expensive method. If
the lubrication model of the problem, however, captured the smearing problem, the use of
this model for small slope interface would be computationally much cheaper than solving
the corresponding Stokes problem. With this motivation, in this section, we formulate a
lubrication model of tail formation problem.

When the interface slope is small, lubrication theory holds throughout the entire liquid
film. By deriving the Reynolds equation for the film evolution, in § 4.7.1, we compare the
lubrication model of tail formation with the corresponding Stokes problem. In §4.7.2, we
formulate a lubrication model of meniscus printing problem to be able to show that as Ca
is decreased, inner and outer structures exist. Lastly, in § 4.7.3, we consider the effect of a
sequence of cells.

4.7.1 A model for smear formation including the cell

Figure 4.22 shows the geometry of the model. The coordinate axes are fixed in the
stationary blade; the substrate velocity is Uex and y–axis is perpendicular to the plane of
the substrate, with y = 0 on the base of the cell. On the free surface y = ζ(x, t); on the
solid–liquid interface y = g(x, t).

B

O

θ

y

x
C.V.

ζ(x,t)

0<x<Ut

T

Figure 4.22: Schematic of a cell emerging beneath the stationary blade used in the lubrication
analysis of tail formation.

As shown in figure 4.22, the cell emerges from beneath the wiper blade. Because liquid
wets the blade, the meniscus rises over the blade surface; the necessary liquid is supplied
by the cell. Mass conservation requires the free surface to rearrange itself: the contact line
at x = 0 rises over the blade, whilst the film thins over the cell during meniscus growth
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process. After the cell has emerged fully from beneath the blade, drag is introduced due to
the change in topography. The substrate motion pulls the meniscus down on the blade. The
liquid retained in the meniscus is printed as a tail later in time.

We allow the contact line on the blade to move freely with a predefined static contact
angle θ. We are assuming that, because the capillary number based on substrate velocity is
small, so too is that based on the contact line velocity. We show in Chapter 3, figure 3.3
that as Ca is reduced, the contact line velocity approaches the hydrostatic prediction. The
contact line on the leading edge of the cell is pinned at the corner of the cell.

The volume flow rate

q =

∫ ζ

g

(vxex + vyey) dy (4.28)

is related to the film thickness (ζ − g) by the mass balance:

∂(ζ − g)

∂t
+∇ · q = 0. (4.29)

The gradient operator in the xOy plane is defined by ∇ = ex
∂
∂x

+ ey
∂
∂y

.
In the lubrication approximation, q is related to dynamic viscosity η. liquid pressure p

and film thickness ζ − g by

q = − 1

2η
(ζ − g)3∇p+ U (ζ − g) ex. (4.30)

This relation holds provided no–slip condition holds at the substrate liquid interface, and
the shear stress vanishes on an interfacial element: provided the interface slope is small,

−p = γ∇2ζ. (4.31)

Our point here is to describe the tail formation mechanism without complication. Because
of this reason, we do not include disjoining pressure. Eliminating p and q and then using
the identity ∂g

∂t
+ U ∂g

∂x
= 0, we obtain the Reynolds equation for ζ:

∂ζ

∂t
+ U

∂ζ

∂x
+

γ

3η
∇ ·

{
(ζ − g)3∇∇2ζ

}
= 0. (4.32)

The film is parametrically forced by the cell; in (4.32), this effect is represented by the
function g in the third term. We define the cell function by arctan as in Stillwagon and
Larson (1988), but moving with speed U ;

g(x, t) = d

{
1

2
+

1

π
arctan

(
−x− L+ Ut

Lε

)}
(4.33)

where L is the length, d is the depth of the cell, and ε is the edge smoothness parameter.
In the model problem, (4.32) holds in the domain 0 < x < Ut; in that domain g

varies between zero and d according to its definition. The initial condition for the interface
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shape is determined by the power series expansion of the governing equation which holds for
arbitrarily small length Ut → 0. For t > 0, two boundary conditions are applied at x = 0.
First, we allow the contact line to move freely with a predefined contact angle at x = 0:

∂ζ

∂x
= −cotθ. (4.34)

The second boundary condition at x = 0 is obtained by a mass balance on the control
volume shown in figure 4.22. This is the key boundary condition that allows us to determine
the location of the meniscus on the blade as part of the initial boundary value problem.
Because the trailing edge of the cell acts as a piston displacing to the right, the incoming
flow to the control volume is U(d− g); and this inflow rate is equal to the axial flux across
the interface at x = 0:

U(d− g) = U(ζ − g) +
γ

3η

{
(ζ − g)3 ∂

3ζ

∂x3

}
, (4.35)

simplifying, we find that at x = 0

∂3ζ

∂x3
= −3Ca

ζ − d
(ζ − g)3 . (4.36)

Equation (4.36) holds throughout the process. When g jumps from zero to d, the incoming
flux is zero and same equation applies after the cell has emerged fully from beneath the blade.
At x = Ut, we pin the contact line the upper corner of the leading edge of the cell:

ζ = d, (4.37)

and continuity of volume flow rate requires pressure gradient to vanish there:

∂3ζ

∂x3
= 0. (4.38)

This ends the problem statement.
Because the cell is moving, we solve the problem using a stretched domain which is fixed.

To do so, we define new variables: ζ = df(ξ, t′) where ξ = x/(Ut) and t′ = Ut/dCa1/3. The
dimensionless Reynolds equation (4.32) in terms of the new variables is valid for 0 < ξ < 1
and given by

3t′
{
t′
∂f

∂t′
+ (1− ξ)∂f

∂ξ

}
+

∂

∂ξ

{
(f − g′)3∂

3f

∂ξ3

}
= 0. (4.39)

The corresponding boundary conditions at ξ = 0 are

∂f

∂ξ
= −t′Ca−1/3cotθ, (4.40)
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∂3f

∂ξ3
= −3t′3

f − 1

(f − g′)3
. (4.41)

At ξ = 1:

f = 1, (4.42)

∂3f

∂ξ3
= 0. (4.43)

The dependent variable f can be expanded as a power series in t′ whose coefficients are
functions of ξ only. Initially f = 1 and (4.40) requires the next term in the expansion to
vary as t′, so f = 1 + A(ξ)t′ + .... Then (4.41) requires the next term to vary as t′4:

f = 1 + A(ξ)t′ +B(ξ)t′4 + ... (4.44)

Substituting the power series (4.44) into (4.39), then equating to zero the coefficients of
successive powers of t′, we obtain boundary value problems for the coefficients A and B.
Solving for A and B, we obtain

A(ξ) =
1

4
Ca−1/3cotθ (3ξ − 1) (ξ − 1) , (4.45)

B(ξ) = Ca−1/3cotθ

(
1

160
ξ6 − 9

240
ξ5 +

9

96
ξ4 − 1

8
ξ3 +

15

224
ξ2 − 1

224

)
. (4.46)

At O(t′), the meniscus rises linearly in time in order to satisfy contact angle condition (4.40),
and the volume constraint requires A to change sign within the interval 0 < ξ < 1. This is
explicitly shown in (4.45). Growth slows when the dimensional time t ∼ d

5U
Ca−1/3; for times

of this order, the two terms in the expansion (4.44) are comparable.
Here, we should be careful about the influx boundary condition at x = 0 which is applied

to the lubrication region downstream. The existence of blade at x = 0 requires the Stoke’s
solution within a region of O(d) to impose the impermeability on the blade. However, the
lubrication approximation computes the axial component of the velocity, so the motion of
the contact line on the blade is determined by the continuity equation, and it does not
see the no–slip condition on the blade. With small slope assumption, however, the vertical
velocity is small compared with horizontal velocity; so it is expected that this Stokes region
is small compared with horizontal scale within which the lubrication equation is solved. The
power series expansion is a useful tool to prove this claim. The expansion to O(t′4) is good
approximation up to t′ ∼ 2, at that time the contact line is at O(d), whereas the film length
is ∼ 2dCa−1/3 >> d. Imposing the inflow condition to the inlet of the lubrication model is
self–consistent.
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Figure 4.23: Comparison of lubrication model and the numerical solution of the Stokes
problem, Ca = 0.01, θ = π/3. The power series expansion uses two terms in (4.44). The
bottom of the cell is at y = 0.

We integrate the equations in time implicitly and employ a positivity preserving scheme
for the diffusion coefficient (Zhornitskaya and Bertozzi, 2000). Details of the numerical
method is given in Appendix A. We set Ca = 0.01, θ = π/3, ε = 0.0001, L/d = 2. In figure
4.23, we compare the interface profiles at two different times. Figure 4.23a is at the time
when the cell emerges fully from beneath the blade. Lubrication theory closely captures the
interface profile. As shown by the Stokes solution, the lag in contact line velocity compared
to the hydrostatic prediction causes the meniscus to rise below the lubrication prediction as
expected. Tail formation is shown in figure 4.23b. The competition between convection and
capillary pressure determines the axial flux gradient. Depending on the sign of this gradient,
the interface evolves into a tail shape. Lubrication theory over–predicts tail formation for
the reasons stated above.

4.7.2 Model for meniscus printing

As contact angle approaches π/2, the lubrication model predicts the meniscus printing
problem very closely. This provides us to solve the problem at low Ca, to compare the results
with the composite expansion given in § 4.3 and to show that the film thickness coated away
from the bulk meniscus is consistent with the Landau-Levich film thickness. In this section,
we first formulate the lubrication model of the meniscus printing problem and show that
lubrication model captures the solution very closely compared with the corresponding Stokes
solution. We then use the lubrication model for smaller Ca.

In the lubrication regime, we solve the evolution equation now between points O and T .
Figure 4.24 shows the geometry of the model. Coordinate is fixed on the wiper blade; the
substrate velocity is Uex and y-axis is perpendicular to the plane of substrate, with y = 0
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Figure 4.24: Geometry of meniscus printing problem

on the land and the trailing edge of the cell is at x0 + Ut. On the free surface, y = ζ(x, t)
and it is initially a circular arc profile, obtained using the relations given in Chapter 3. The
interface evolution is governed by (4.32), however because we have no longer a cell, g = 0;
the corresponding Reynolds equation is given by,

∂ζ

∂t
+ U

∂ζ

∂x
+

γ

3η
∇ ·

{
ζ3∇∇2ζ

}
= 0. (4.47)

The slope condition at x = 0 is the same as in (4.34). The flux condition at x = 0 differs
from (4.35) and it is given by

Uζ +
γ

3η

{
ζ3 ∂

3ζ

∂x3

}
= 0, (4.48)

simplifying, we find that at x = 0

∂3ζ

∂x3
= −3Caζ−2. (4.49)

At x = x0 + Ut, we pin the contact line to the upper corner of the trailing edge of the cell:

ζ = 0, (4.50)

and the continuity of volume flow rate requires the pressure gradient to vanish there:

∂3ζ

∂x3
= 0. (4.51)

We integrate the meniscus printing problem over a fixed domain by defining the following
variables: ζ = x0f(ξ, t′), ξ = x/(x0 +Ut) and t′ = (x0 +Ut)/x0Ca

1/3. The numerical method
of integration is same as used for (4.39) to (4.43).

In figure 4.25, we compare the lubrication solution and Stokes solution of the meniscus
printing problem for a case in which we set Ca = 10−3, θ = 5π/12. The interface profiles are
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Figure 4.25: Comparison of the meniscus printing problem obtained from lubrication model
and Stokes solution, Ca=0.001, θ = 5π/12, (a) tip advanced x/L = 0.2 away from its
initial position (solid line), (b) tip advanced x/L = 0.4 away from its initial position, (c) tip
advanced x/L = 0.8 away from its initial position.

graphically the same when the trailing edge of the cell advances x/L = 0.2, x/L = 0.4 and
x/L = 0.8 away from its initial position. The pressure distributions under the film along
the interface agree as well. The pressure gradient close to the blade is not zero because
separation of length scales does not exist at this capillary number; the film thickness is
comparable to the meniscus height. Solving the corresponding Stokes problem for lower
capillary numbers is not practical, at least with the current version of our solver. However,
because the lubrication model agrees with the Stokes solution as shown in figure 4.25, we
are able to solve (practically) a corresponding lubrication problem for lower Ca numbers.

With this motivation, we solve the lubrication model for Ca = 10−8, θ = 5π/12. In
figure 4.26, we compare the lubrication solution of meniscus printing problem with composite
expansion given in § 4.3 at the time when α drops to 0.00327. Within the inner region when
x << 1, the ratio ζ̂/(αx) scales like ∼ αCa−1/3. For Ca = 10−8, this corresponds to
αCa−1/3 ∼ 1.5, therefore ŷ is not small. As shown in figure 4.26, the composite expansion
agrees with the interface profile obtained from the lubrication model.
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Figure 4.26: Comparison of lubrication solution of meniscus printing problem with composite
expansion, Ca = 10−8. This comparisons are made at the time when α drops to 0.00327.

Finally in this section, we solve a meniscus printing problem for Ca = 10−5, θ = π/12 and
integrate the Reynolds equation in time until the trailing edge of the cell advances x/x0 = 1
away from its initial position. Figure 4.27 shows the interface profile and the corresponding
pressure distribution under the film. The pressure gradient drops to zero towards the blade
showing that the outer profile remains a circular arc. The pressure distribution is different
from Landau–Levich; in that case the pressure goes to zero away from the meniscus, but here
the pressure is positive and highest at the tip due to squeeze film flow. Pressure ranges from
∼ −7×104 (static meniscus) to 1.6×104(squeeze film). The radius of curvature of the outer
problem is r0 = 2.728. The maximum thickness of the film away from the bulk meniscus is
0.00154. This thickness is consistent with the Landau–Levich coating film thickness which
scales like 1.34r0Ca

2/3.
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Figure 4.27: Interface profile when the tip advances x/x0 = 1 away from its initial position,
Ca = 10−5, θ = 5π/12, (solid line) interface profile, (dashed line) corresponding pressure
distribution.
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4.7.3 Effect of a sequence of cells on tail formation

One way of reducing the tail formation could be by adding sequence of cells. To show the
effect of multiple cells, we add a second cell into the domain by modifying the cell function
in the stretched domain as follows:

g′(ξ, t′) = 1 +
1

π

(
atan

(
−ξ − L

dt′
+ 1

L/dε
t′

)
+ atan

(
ξ − 1

L/dε
t′
))

+
1

π

(
atan

(
−ξ − L

dt′
− sL

dt′
+ 1

L/dε
t′

)
+ atan

(
ξ + sL

dt′
− 1

L/dε
t′

))
. (4.52)

In figure 4.28, we plot the film shape at t′ = 20 for cell spacings L/2 and L. A cell spacing
of cell length produces a film of almost the same thickness as the tail thickness behind the
second cell. However, when the cell spacing is halved, i.e., L/2, the thickness of the film
above the spacing is small compared with the the tail thickness behind the second cell, ∼
1/5 th of the thickness. For L/4, the film almost follows the pattern of the land in between.
We should note that the drag–out is the same from both of the cells.

As we add more cell in the sequence, the liquid accumulates under the meniscus as the
cells translates away from the blade (see figure 4.29) and as there must be an end to the
sequence of cells, smearing still exists behind the last cell in the sequence in this configuration.
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Figure 4.28: Film shape at t′=20 with two cells, Ca=0.01, θ = 55o, ε = 0.01, cell spacing
(top) L/2, (bottom) L.
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Figure 4.29: Film shape at t′=20 with three cells, Ca=0.01, θ = 55o, ε = 0.01, cell spacing
L/4.
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Chapter 5

Conclusions

Smear formation during gravure printing of organic electronics degrades the printed
features and it forms throughout the wiping stage of the process. The fluid mechanics
problems motivated from this have been analyzed showing that smear formation mechanism
occurs in a plane flow approximation, also.

We have reduced the problem into two canonical problems: meniscus growth and tail
formation. The fluid mechanics of the problem is governed by the Stokes equations of motion
owing to the small size of the cell, and to be able to solve corresponding Stokes problems,
we wrote a finite element based solver using an unstructured moving mesh.

In the first stage, we have shown that liquid is drawn from the cell as it translates
beneath the stationary blade; the limit Ca → 0 sets an upper bound for the smear volume
to be printed as tail later in time. This volume is function of Ca number, contact angle θ
between liquid and blade and blade angle β. It be decreased by increasing θ, contact angle
hysteresis, Ca and/or β.

We have shown that, for vanishing Ca, as the substrate continues translating, the
meniscus is separated from the cell; the mechanism forming the tail operates solely between
the blade and the trailing edge of the cell. Viscosity enters when the interface touches the
trailing edge of the cell. An inner and outer analysis of the meniscus printing problem in
the limit of Ca → 0 shows that viscosity rotates the meniscus around the trailing edge of
the cell by a squeeze film flow.

By solving the corresponding Stokes problem of meniscus printing, we have observed the
predicted meniscus rotation. As Ca is decreased, tail length increases. As Ca approaches
order unity, however, tail formation occurs on a shorter length scale, because the meniscus
growth stage is limited by the viscous effects as Ca is increased.

As the Stokes solution of the problem is computationally expensive for small Ca, we
formulated corresponding problem in the lubrication regime and showed that there exists
an inner (squeeze film) and outer (static) structure as Ca → 0. The Stokes solver should
be improved to be able to integrate Stokes equations of motions for small Ca, as well as to
increase the resolution in the neighborhood of the moving contact line.

By adding a sequence of cells into the model, we concluded that tail formation still exists
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behind the last cell in the sequence because of the accumulation of liquid under the meniscus
which is contributed from each individual cell.

There are two key intellectual contributions of the dissertation. The first contribution is
that we have reduced the problem of minimizing the smear volume formation during wiping
stage of gravure printing of electronics to one of reducing the upper bound set by the analysis
as Ca→ 0. We showed that this volume can be decreased by increasing θ, Ca and β either
independently or together. The second contribution is that the inner and outer analysis of
printing a meniscus set the foundation of understanding the effect of viscosity which enters
first from the contact line when the interface touches the trailing edge of the cell. There
is one analytic problem still open: the connection between the two dynamic regions, from
squeeze film flow to the Landau–Levich film, as the substrate translates further away.
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Appendix A

Numerical Method for Lubrication
Analysis

In this section, we give the numerical method used to integrate the free initial boundary
value problem used in the lubrication models. We give the method as general and modify it
according to the model problem in a stretched domain.

We employ a finite difference method. We first discretize the equations in space, and
then in time and employ Newton’s method because the evolution equation is a fourth order
non–linear diffusion equation.

We approximate the solution ζ at a grid point xi and time tn by ui, i.e.

ui ≈ ζ(xi, tn), (A.1)

and we let fi represent the discretization of the terms in space. Then at every node xi, we
define an ODE in the form:

dui
dt

+ fi = 0. (A.2)

The components of fi include the space discretization of the convective and diffusion terms.
The convective term can be discretized using a second order finite difference as follows:(

∂ζ

∂x

)
i

≈ 1

2∆x
(ui+1 − ui−1) . (A.3)

The diffusion term:
We first define the diffusion coefficient as

d(ζ) = (ζ − g)3, (A.4)
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and then rewrite the diffusion term and approximate by

∂

∂x

(
d(ζ)

∂3ζ

∂x3

)
=

∂

∂x
(D(ζ)) ≈ 1

∆x

(
Di+1/2(u)−Di−1/2(u)

)
, (A.5)

Di+1/2 = di+1/2

(
∂3u

∂x3

)
i+1/2

, (A.6)

Di−1/2 = di−1/2

(
∂3u

∂x3

)
i−1/2

. (A.7)

To discretize the third order derivative, we employ a second order central difference scheme
which is given by

∂3u

∂x3
=

1

∆x3
(−ui−1 + 3ui − 3ui+1 + ui+2) . (A.8)

The approximation of the diffusion coefficient should be second order as well to get a second
order scheme. We employ the Positivity Preserving Scheme of Zhornitskaya and Bertozzi
(2000) as follows:

di+1/2 =

{
2(ui+1−gi+1)2(ui−gi)2
(ui+1−gi+1)+(ui−gi) (ui+1 − gi+1) 6= (ui − gi)

(ui − gi)3 (ui+1 − gi+1) = (ui − gi)
, (A.9)

di−1/2 =

{
2(ui−gi)2(ui−1−gi−1)2

(ui−gi)+(ui−1−gi−1)
(ui − gi) 6= (ui−1 − gi−1)

(ui − gi)3 (ui − gi) = (ui−1 − gi−1)
. (A.10)

We use a standard implicit θ–scheme to integrate the ODE set given by

un+1
i − uni

∆t
+ θfni + (1− θ)fn+1

i = 0, i = 1, ..., N + 1, (A.11)

where 0 < θ < 1 and N is the number of elements used in the discretization. When θ = 1, the
scheme is explicit, when θ = 0, the scheme is implicit and first order backward Euler scheme,
when θ = 1/2 the scheme is a second order Crank–Nicholson scheme. The resulting system
is a system of N + 1 nonlinear algebraic equations for the unknown un+1

i for i=1,...,N+1;
therefore we employ Newton’s method.

To do so, we linearize the system of equations around a guess of the solution, u∗, then
solve the resulting linear system for the correction, c. We then correct the guess and continue
the iteration until we reach to a predefined convergence criteria. The solution at time n+ 1
in terms of guess and correction is given by

un+1
i = u∗i + ci, i = 1, ..., N + 1. (A.12)
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A possible guess is the solution from the previous time step, uni . fi includes the non–linear
terms. We linearize it by expanding into a Taylor series around u∗i :

fn+1
i = f ∗i +

∂fi
∂cj

∣∣∣∣
∗
cj, i = 1, ..., N + 1. (A.13)

We now rewrite (A.11):

un+1
i − uni + ∆tθfni + ∆t(1− θ)fn+1

i = 0, (A.14)

and by using (A.12) and (A.13), we obtain

u∗i + ci − uni + ∆tθfni + ∆t(1− θ)
(
f ∗i +

∂fi
∂cj

∣∣∣∣
∗
cj

)
= 0. (A.15)

By rearranging (A.15), we obtain(
δij + ∆t(1− θ) ∂fi

∂cj

∣∣∣∣
∗

)
cj = uni − u∗i −∆tθfni −∆t(1− θ)f ∗i = Ri. (A.16)

Here, ∂fi
∂cj

is the Jacobian matrix which is evaluated using the guess u∗i . Solve for the correction

cj and correct the guess to reach the tolerance.
Finally, we form the linear system for the correction evaluating (A.16) at the discretization

points as
A c = R. (A.17)

The matrix A and the residual vector R are modified for the boundary conditions, generally,
first and last two nodes.
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Appendix B

Numerical Integration of Inner
Viscous Problem over Semi–Infinite
Domain

The inner viscous problem is of the form

∂ŷ

∂t̂
+ f = 0, (B.1)

where

f = −x̂+
1

3

∂

∂x̂

{(
φ̂x̂+

1

2
x̂2 + ŷ

)3

+
∂3ŷ

∂x̂3

}
, (B.2)

which is valid for 0 ≤ x̂ < ∞. The implicit solver is as in Appendix A. The only difference
here is that we map the semi–infinite region 0 ≤ x̂ < ∞ onto a finite region 0 ≤ z < 1
using a uniform grid. This mapping helps in a way that the boundary conditions at infinity
become boundary conditions at a finite location, therefore catching the correct behavior as
x̂→∞ and better resolution as x̂→ 0. We consider a general mapping of the form

z = m(x̂), (B.3)

and we use an algebraic mapping of the form

z =
x̂

x̂+ 1
or

(
x̂ =

z

1− z

)
. (B.4)

The solution is now given in terms of ŷ(z) and the third derivative of ŷ is given by

∂3ŷ

∂x̂3
=

(
∂z

∂x̂

)3
∂3ŷ

∂z3
+ 3

∂z

∂x̂

∂2z

∂x̂2

∂2ŷ

∂z2
+
∂3z

∂x̂3

∂ŷ

∂z
. (B.5)
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with the derivatives of mapping:

dz

dx̂
= (1− z)2, (B.6)

d2z

dx̂2
= −2(1− z)3, (B.7)

d3z

dx̂3
= 6(1− z)4. (B.8)
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