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Bézier interpolation improves the inference of dynamical models 
from data
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Abstract

Many dynamical systems, from quantum many-body systems to evolving populations to financial 

markets, are described by stochastic processes. Parameters characterizing such processes can 

often be inferred using information integrated over stochastic paths. However, estimating time-

integrated quantities from real data with limited time resolution is challenging. Here, we propose 

a framework for accurately estimating time-integrated quantities using Bézier interpolation. We 

applied our approach to two dynamical inference problems: Determining fitness parameters for 

evolving populations and inferring forces driving Ornstein-Uhlenbeck processes. We found that 

Bézier interpolation reduces the estimation bias for both dynamical inference problems. This 

improvement was especially noticeable for data sets with limited time resolution. Our method 

could be broadly applied to improve accuracy for other dynamical inference problems using 

finitely sampled data.

I. INTRODUCTION

Stochastic processes are ubiquitous in nature. In biology, the evolution of genetic sequences 

can be formulated as a stochastic process. The Wright-Fisher (WF) model [1], a discrete-

time stochastic process, has been used to study the evolution of organisms from viruses 

[2–4] to humans [5]. Models such as the Ornstein-Uhlenbeck (OU) process [6,7] have been 

applied to describe a wide range of phenomena, from the fluctuation of currency exchange 

rates [8] and cell migration [9] to driven quantum many-body systems [10].

Appropriate model parameters are needed to accurately describe the behavior or real 

systems. To infer such parameters from data, it is often necessary to compute statistics over a 

path, i.e., a complete realization of the stochastic processes. For example, the restoring force 

of the OU process can be estimated by taking the ratio of the deviation from the equilibrium 

position and the magnitude of the intrinsic fluctuations, both integrated over a stochastic 

path [11,12].
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However, real data often consists of incomplete, occasional measurements of a system, 

which may also be limited by experimental constraints. This makes it more difficult to 

accurately estimate model parameters since statistics over the path must be estimated from 

incomplete information.

Here, we propose a tractable nonlinear interpolation framework using Bézier curves [13–

16]. In addition to incorporating nonlinearity, this approach has the added advantage 

of conserving sums of categorical variables. This property can be especially useful for 

conserved quantities such as probabilities.

We applied Bézier interpolation to two example problems: inferring natural selection in 

evolving populations through the WF model and inferring restoring forces for OU processes. 

Our method reduces estimation bias and improves the precision of model inferences. 

Furthermore, we show that the autocorrelation function of statistics over a path identifies 

time scales over which nonlinear interpolation is particularly effective, which is consistent 

with our observations in simulations. We show that Bézier interpolation can generically 

improve solutions of dynamical inference problems by accurately estimating statistics over 

stochastic paths. We expect that this nonlinear interpolation method can improve a wide 

range of dynamical inference problems beyond the specific examples we consider, such as 

parameter estimation for stochastic differential equations.

II. RESULTS

A. Bézier interpolation

Consider a function x(t) sampled at discrete times tk for k ∈ {0, 1, …, K}. Then the 

interpolated value of the function xB
(k)(t) between two successive discrete time points tk and 

tk+1 is given by

xB
(k)(t) = ∑

n = 0

P
βn

t − tk

tk + 1 − tk
ϕn

(k) x tk′ k′ = 0
K . (1)

Here, βn is the nth Bernstein basis polynomial of degree P, with βn(τ) = P
n τn(1 − τ)P − n ⩾ 0. 

The control points ϕn
(k) x tk′ k′ = 0

K  depend on the ensemble of data points x tk k = 0
K  and 

determine the outline of the interpolation curves.

For simplicity, we consider cubic (P = 3) interpolation, but our approach can be extended to 

polynomials of different degrees P. We impose the following conditions to ensure that the 

segment at each interval [tk, tk+1]∀k is seamlessly connected,

ϕ0
(k) x tk′ k′ = 0

K = x tk , ϕ3
(k) x tk′ k′ = 0

K = x tk + 1 .

Other internal pointsare ϕ1
(k), ϕ2

(k)
k = 0
K − 1 are obtained by solving an optimization problem that 

reflects continuity and smoothness constraints imposed on the curves (see Supplemental 

Material [17]) (Fig. 1).
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B. Wright-Fisher model of evolution

The WF model [1] is a classical model in evolutionary biology. In this model, a population 

of N individuals evolves over discrete generations under the influence of random mutations 

and natural selection. Each individual is represented by a genetic sequence of length L. For 

simplicity, we assume that each site in the genetic sequence is occupied by a mutant (1) or 

wild-type (0) nucleotide. There are thus M = 2L possible genotypes (i.e., genetic sequences) 

in the population.

The state of the population is described by a genotype frequency vector z(t) = za(t) a = 1
M , 

where za(t) represents the frequency of individuals with genotype a in the population at time 

t. In the WF model, the probability of obtaining a genotype frequency vector z′ in the next 

generation is multinomial, with the succession probability of genotype a

pa(z(t)) ∝ faza(t) + ∑
b b ≠ a

μbazb(t)fb − μabza(t)fa . (2)

In (2), fa denotes the fitness of genotype a. Individuals with higher fitness values reproduce 

more readily than those with lower fitness values. Here μab is the probability to mutate from 

genotype a to genotype b.

Fitness values can be estimated from data by identifying the fa that are most likely to 

generate the observed evolutionary history of a population, but this is challenging due to 

the enormous size of the genotype space. The problem can be simplified by assuming 

that fitness values are additive, fa = 1 + ∑i = 1
L σi

asi where σi
a = 1 if the nucleotide at site i in 

genotype a is a mutant and 0 otherwise. The si are referred to as selection coefficients, which 

are positive if the mutation at site i is beneficial for reproduction and negative if mutation 

at site i is deleterious. Similarly, the mutation rate μab can be simplified to a constant μ if 

genotypes a and b differ from one another by only a single mutation and zero otherwise.

Sohail et al. solved this problem analytically in the limit that the population size N → ∞, 

while the selection coefficients si and mutation rate μ scale as 1/N (Ref. [4]). In this case, the 

maximum a posteriori vector of selection coefficients s = s i i = 1
L  is

s = ∫
t0

tK

dtC(t) + γI
−1

× x tK − x t0 − μ∫
t0

tK

dt[1 − 2x(t)] , (3)

where the time of observation runs from t0 to tK. In (3), x(t) = xi(t) i = 1
L  is a vector of mutant 

frequencies (i.e., the number of individuals in the population with a mutation at site i at time 

t) and C(t) is the covariance matrix of mutant frequencies at time t. Here γ is the precision 

of a Gaussian prior distribution for the selection coefficients with mean zero and I is the 

identity matrix.

Extensive past work has also considered numerical solutions to this problem [3,5,18–22], 

though the analytical formula in (3) typically outperforms numerical approaches [4]. Sohail 

et al. referred to (3) as the marginal path likelihood (MPL) estimate for the selection 

coefficients, obtained by maximizing the posterior probability of an evolutionary history 
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with respect to the selection coefficients. The MPL approach has also been extended 

to consider more complex evolutionary models [23], missing covariance data [24], and 

epidemiological dynamics [25].

C. Bézier interpolation for WF model inference

In practice, Eq. (3) is not straightforward to evaluate because sequence data comes at 

discrete times tk k = 0
K . However, Bézier interpolation allows us to analytically integrate 

both mutant frequency trajectories x(t) and covariances C(t), obtained by interpolating 

frequencies and computing Cij(t) = xij(t) − xi(t)xj(t). Here xij(t) is the frequency of 

individuals in the population at time t that have mutations at both sites i and j.

To assess the performance of Bézier interpolation for inferring selection in the WF model, 

we generated a test data set by running 100 replicate simulations of WF evolution with 

identical parameters [Fig. 2(a)]. We then inferred selection coefficients from this data using 

MPL with linear and Bézier interpolation, applied to data sampled at discrete intervals Δt 
= 75 generations apart. While MPL with linear interpolation readily distinguishes between 

beneficial, neutral, and deleterious parameters, the inferred selection coefficients are shrunk 

towards zero. However, parameters inferred using Bézier interpolation are distributed 

around their true values [Fig. 2(b)]. Bézier interpolation reduces estimation bias due to 

long intervals between observation intervals by producing better estimates of underlying 

covariances (which we will quantify below). Here we used a regularization strength of γ 
= 0.1, but similar results are obtained with different choices for the regularization (see 

Supplemental Material [17]).

Next we studied how Bézier interpolation affects our ability to classify mutations 

as beneficial or deleterious, which we evaluated by ranking mutations according to 

their inferred selection coefficients. We quantified classification accuracy using positive 

predictive value (PPV), PPV = TP/(TP + FP), where TP and FP are the numbers of true 

positive and false positive predictions.

The PPV curves for beneficial or deleterious mutations estimated by MPL with Bézier 

interpolation are higher than those with linear interpolation, indicating more accurate 

classification [Figs. 3(a) and 3(b)]. This can be understood by observing reduced overlap 

between the distribution of inferred selection coefficients for beneficial, neutral, and 

deleterious mutations using Bézier interpolation [Fig. 3(c)].

D. Recovery of rapidly decaying correlations underlies improved accuracy

To understand why MPL with Bézier interpolation yields more accurate inferences, we 

studied errors between true and estimated parameters as a function of the time interval Δt 
between samples. For arbitrary matrices M we define an error function ℰ (Δt)= ∥ℐM(Δt) − 

ℐM(1)∥/∥ℐM(1)∥, normalizing by the matrix norm ∥ℐM(1)∥, which corresponds to perfect 

sampling for the WF model. Here, ℐM(Δt) is a time integral depending on the type of 

integration (piecewise constant, linear, and Bézier). For example, for piecewise constant 

integration, it will be ℐM(Δt) = ∑k = 1
T /Δt M(kΔt)Δt. In the discussion below we apply the L2 

norm, ∥ M ∥ = ∑i, j Mij
2 , but other conventions could also be considered.
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Using the metric defined above, we found that Bézier interpolation yields better estimates 

for both the diagonal and off-diagonal terms of the mutant frequency covariance matrix. 

However, the error for the off-diagonal covariances is larger and increases much more 

rapidly with increasing Δt than the error for the diagonal variances [Figs. 4(a) and 4(b)]. 

The reduction in error for Bézier interpolation is more substantial for off-diagonal terms 

compared to diagonal ones. Consistent with this observation, Bézier interpolation yields 

smaller improvements in performance for a simple version of MPL in which the off-diagonal 

terms of the integrated covariance matrix are ignored (see Supplemental Material [17]) 

[referred to as the single locus (SL) method in Ref. [4]].

To study the time scale τ on which nonlinear effects become important and Bézier 

interpolation is advantageous, we modeled the covariance elements using a simple Langevin 

equation, ż(t) = −λz(t) + ξ (t). Here z(t) represents an element of the covariance matrix, λ > 

0 is a damping coefficient, and ξ (t) is a standard white noise with 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t 
+ τ)〉 = 2δ(τ). Following this approach, a linear approximation should describe the evolution 

of z(t) accurately if λΔt ≪ 1; otherwise, nonlinear nature of the z(t) becomes significant and 

at this point the linear approximation cannot capture the actual evolution of z(t).

The damping coefficient λ can be estimated by computing the autocorrelation function 

(ACF) of the covariance matrix elements, which can be matched to expectations from the 

Langevin equation, 〈x(t)x(t + τ)〉 ∝ exp(−λτ). In our simulations, the exponents of the ACF 

for diagonal and off-diagonal terms are around λd ~ 1/325 and λo ~ 1/50, respectively 

[Fig. 4(c)]. When the time between sampling events is Δt = 75, where Bézier interpolation 

clearly has an advantage (Fig. 3), for diagonal and off-diagonal covariances we have λdΔt 
~ 0.23 and λoΔt = 1.5, respectively. At this point, λoΔt is O(1), indicating the onset 

of nonlinearity for off-diagonal terms. Consistent with this observation, for this value of 

Δt, Bézier interpolation has notably lower error for off-diagonal covariances than linear 

interpolation, while errors for the diagonal terms are comparable.

While we focused specifically on the WF model in this example, the principle of 

autocorrelations and transitioning between linear and nonlinear behavior is general. This 

can allow us to anticipate the benefit of nonlinear interpolation for a wide range of problems.

E. Inference of forces in Ornstein-Uhlenbeck processes

We further applied Bézier interpolation to accurately infer the collective forces in Ornstein-

Uhlenbeck (OU) processes, which plays important roles in various fields such as physics, 

biology, and mathematical finance [11,26–28]. Data has been used to infer the parameters 

of OU processes describing phenomena including cell migration [29], coevolution of species 

[30], and currency exchange rates [31], to name a few examples.

We consider the following multivariate OU process:

dXt = JXtdt + Σ1/2dW t . (4)

Here t is the time variable, L is the number of OU variables, Xt ∈ ℝL, J ∈ ℝL × L is a negative 

semidefinite matrix, ∑ is a time-independent noise covariance, and Wt is a Wiener process. 
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We assume that the noise covariance matrix is constant over the evolution and given. 

Therefore, the unknown variable in the SDE in (4) is only the drift term, the interaction 

matrix J.

One of the most commonly used approaches for inferring stochastic force in OU processes 

is maximizing the likelihood ratio or Radon-Nikodym derivative, which is the ratio of two 

probability measures [12,32] and is commonly employed in fields such as mathematical 

finance [11]. In our problem, the likelihood ratio is defined as the probability density 

obeying the dynamics of (4) with interactions divided by the probability density of a “null” 

model with no interactions. Here, we inferred OU interactions by directly maximizing the 

path likelihood, as described for the WF model. Interestingly, this leads to exactly the same 

solution as the one for the standard likelihood or Radon-Nikdym derivative methods (see 

Supplemental Material [17]).

The interaction matrix Ĵ that best describes the data is given by

J = ∑
k = 0

K − 1
Δx tk x tk

⊤ ∑
k = 0

K − 1
Δtkx tk x tk

⊤

−1

. (5)

Here x tk k = 0
K − 1 is the observed trajectory following the OU process, Δtk = tk+1 − tk is an 

observation interval, and Δx(tk) = x(tk+1) −x(tk) is the amount of change during the kth 

interval.

To generate test data, we simulated the OU process using negative definite interaction 

matrices (see Supplemental Material [17]), which follows the construction of a Hopfield 

network [33]. Hopfield networks were first constructed to study associative memory [33] 

and have since been applied to inference problems in biology [34–37].

Interaction parameters estimated using Bézier interpolation matched better with the true, 

underlying parameters than those inferred using linear interpolation or a piecewise-constant 

assumption for the x(t) [Fig. 5(a)]. In particular, large parameters inferred with linear 

interpolation or the piecewise-constant assumption tended to be underestimated. In addition, 

we found that the slope relating the true and inferred parameters decreases as the sampling 

interval Δt increases. However, the slope decreases more slowly for Bézier interpolation 

compared to linear interpolation [Figs. 5(b) and 5(c)]. Overall, OU interaction parameters 

inferred using Bézier interpolation more closely match the true, underlying parameters than 

those inferred with simpler interpolation approaches, with gains in performance that increase 

as data becomes more limited.

III. DISCUSSION

Here we developed a nonlinear interpolation method using Bézier curves that improves the 

inference of dynamical models from finite data. We applied our approach to two problems: 

The inference of natural selection in evolving populations and interactions in multivariate 

Ornstein-Uhlenbeck processes. Bézier interpolation makes inference more precise and 

reduces bias, especially for data sets that are more sparsely sampled.
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Because of its generality, Bézier interpolation could be broadly applied to give more reliable 

results for dynamic inference problems. For example, our approach could be combined 

with methods to learn forces from nonequilibrium dynamics [38,39] or ones used to learn 

parameters of stochastic differential equations from finitely sampled data [6,11,40].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Bézier interpolation generates smooth curves. Cubic Bézier curves smoothly interpolate 

between discretely sampled frequency trajectories generated from a Wright-Fisher model. 

Simulation parameters. L = 50 sites, population size N = 103, mutation rate μ = 10−3, with 

simulations over T = 300 generations. Data points are sampled every 50 generations and 

interpolated using cubic Bézier and linear interpolation.
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FIG. 2. 
Bézier interpolation reduces bias in estimated selection coefficients. (a) Wright-Fisher 

simulation with selection and mutation. Each trajectory drawn as a solid line is true 

complete data, and filled circles are a subset of the complete data, which is observed 

every Δt = 75 generations and used for selection coefficient prediction. (b) Selection 

coefficients for the frequency trajectories in (a) were estimated by MPL with Bézier and 

linear interpolation. MPL with Bézier interpolation greatly reduces estimation bias for 

inferred selection coefficients when the time interval between sampled observations is large. 

Simulation parameters. L = 50 sites with 10 beneficial, 10 deleterious, and 30 neutral 

mutations with selection coefficients of s = 0.03, s =−0.03, and s = 0, respectively. Other 

parameters of the WF models are the same as in Fig. 1.
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FIG. 3. 
MPL with Bézier interpolation improves prediction precision and reduces estimation bias. 

(a),(b) When the observation time interval is longer (Δt = 75), the PPV curve for Bézier 

interpolation is universally higher than the curve for linear interpolation for both deleterious 

and beneficial cases. (c) The selection coefficient distributions estimated by MPL with linear 

interpolation visibly shrank toward zero and were biased, while distributions estimated by 

MPL with Bézeir interpolation did not considerably shrink and have the mean values near 

the true selection values.
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FIG. 4. 
Bézier method suppresses interpolation error, especially for off-diagonal pairwise 

covariances. (a) Sampling time interval dependence for interpolation errors Ɛ(Δt) for 

diagonal covariances and (b) for off-diagonal pairwise covariances. We simulated WF 

dynamics using the model described in Fig. 2 and generated data sets that evolved to the 

300th generation for each trial. For example, when Δt = 100, results only use data from t = 0, 

100, 200, and 300. (c) The autocorrelation of off-diagonal covariance elements decays faster 

than diagonal ones. To simplify the analysis, we evaluated the autocorrelation function from 

generation t = 50. The diagonal autocorrelation shows nonmonotonic decay after long times 

due to mutant frequencies that approach the frequency boundaries (i.e., 0 and 1).

Shimagaki and Barton Page 13

Phys Rev E. Author manuscript; available in PMC 2023 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 5. 
Bézier interpolation can improve the inference accuracy of parameters in the OU process. 

(a) Comparison between true and inferred OU parameters using piecewise constant, linear, 

and Bézier interpolation. Linear regression slope values are included in each panel. Inferred 

interaction parameters using Bézier interpolation correspond most closely with the true 

parameters. (b) Dependence of the slope between true and inferred parameters on the 

time sampling interval Δt = 1, shown separately for the (b) diagonal and (c) off-diagonal 

interaction parameters of the J matrix. In both diagonal and off diagonal, the slope 

values decrease more gradually with increasing Δt for Bézier interpolation than for linear 

interpolation.
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