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Abstract

Increased demand for agricultural produce for food, fiber, feed, and energy generates a

tradeoff between high prices and environmentally costly land conversion. Genetically engi-

neered (GE) seeds can potentially increase supply without recruiting new lands to production.

We develop a simple adoption model to show how first-generation GE increases yield per

hectare. We identify yield increases from cross country time series variation in GE adoption

share within the main GE crops- cotton, corn, and soybeans. We find that GE increased yields

34% for cotton, 32% for corn, but only 2% for soybeans. The model also predicts that GE

extends the range of lands that can be farmed profitably. If the output on these lands are

attributed to GE technology, then overall supply effects are larger than previously understood.

Considering this extensive margin effect, the supply effect of GE increases from 10% to 16%

for corn, 15% to 20% for cotton, and 2% to 39% for soybeans, generating significant downward

pressure on prices. Finally, we compute “saved” lands and greenhouse gasses as the differ-

ence between observed hectarage per crop and counterfactual hectarage needed to generate

the same output without the yield boost from GE. We find that all together, GE saved 21

million Ha of land from conversion to agriculture in 2010, or 0.41 Gt of CO2 emissions (using

a constant CO2/land conversion factor). These averted emissions are equivalent to roughly

1/3 the annual emissions from driving in the US.
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1 Introduction

Meeting growing agricultural demand amid severe resource constraints is among the greatest

challenges of the 21st century. New evidence on the environmental cost of land-use change has

raised the stakes, suggesting that externalities associated with cropland expansion are more

costly than previously understood (Searchinger et al., 2008). Stagnating crop yield and in-

creasing demand from growing populations, rising meat demand in transition economies, and

increasing biofuel production generate tradeoffs between environmentally costly land conver-

sion and higher food prices (Rajagopal et al., 2007). Like manna from heaven, any technology

that boosts yield per hectare helps navigate this neo-Malthusian dilemma by increasing supply

without converting lands to agriculture.

Agricultural biotechnology, or genetically engineered seeds (GE), has been promoted as

a new source of yield growth at a time when traditional means of growth have been largely

exhausted (Qaim, 2009). A sizable empirical literature documents the yield gains associated

with GE seeds, mostly from farm-level estimates of the yield gains from switching to GE

from traditional seed technology (Qaim, 2009). To the extent the GE gene increases yield per

hectare, the technology increases supply, lowers prices, and reduces demand for new cropland.

Without GE technology, greater agricultural land-base would be needed to meet demand. In

this sense, GE can be said to have preserved lands and “saved” greenhouse gas emissions

(GHG) associated with land-use change.

Recent studies explain yield per hectare gains from first-generation GE within the damage

control framework of Lichtenberg and Zilberman (1986).1 In the model, improved damage

control traits from GE raises the marginal product of complementary inputs, thus increasing

yield per hectare. However, the model also predicts that marginal lands on which pest pressure

is too high to profitably farm without the GE technology will be brought into production

once GE becomes available (Qaim and Zilberman, 2003). That is, the model predicts supply

increases on both the intensive margin (from plots switching from traditional seeds to GE)

and the extensive margin (from new lands entering production). The extensive margin has

important implications for supply and commodity prices: if GE technology enables production

on extensive margin lands, then the change in supply caused by GE includes not only the

yield gain on the intensive margin, but all of the production on the extensive margin as well.

Thus, taking the extensive margin into account, the supply and price effects of GE technology

is larger than previously realized.

In this paper, we estimate the supply, price, and land-use savings effect of GE technology

taking the extensive margin into account. We first provide new estimates of the yield effect

of GE using a cross-country panel of annual hectarage and output. Our approach builds on

1See Qaim and Zilberman (2003), Qaim (2009), Sexton and Zilberman (2011)
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the work of Sexton and Zilberman (2011), which also estimates the yield, price, and land-

use-saving effects of different GE crops from a country-level panel. The novel features of our

work here is that we use a longer panel and estimate a different specification from Sexton and

Zilberman (2011) that controls for intertemporal variation in crop area and land devoted to GE

technology. Next, we derive an algorithm for quantifying the extensive margin based on the

adoption model from Khanna and Zilberman (1997) and decompose total GE hectarage into

intensive margin and extensive margin lands. We then compute the supply effect as the sum of

the intensive margin effect and the extensive margin effect. Following Sexton and Zilberman

(2011) and others (see De Gorter and Zilberman (1990)), we translate the supply effect into

a price effect conditional on assumptions of elasticities of supply and demand. Finally, we

compute the land-use savings associated with GE as the difference between observed hectarage

devoted to different crops in 2010, and those necessary to generate the same output absent the

supply effect of GE.

We estimate that in 2010, GE technology increased the world supply of corn between 10-

16%, cotton 15-20%, and soybeans 2-39%. Given a range of estimated elasticities of demand

and supply in the literature, these supply impacts translate into 13-27% lower corn prices,

19-33% lower cotton prices, and 2-65% lower soybean prices. Comparing our estimates to

others in the literature, we find somewhat higher impacts, which is to be expected since we

take complementary-input and extensive margin effects into account.

Furthermore, we find that absent the intensive margin yield effects, farmers would have

needed to convert another 13 million Ha, 6 million Ha, and 1 million Ha to corn, cotton, and

soybeans, respectively, to match observed 2010 output. Employing an average GHG release

figure from the land-use literature of 20 tonnes per ha per year, these hectarage conversions

translate into 0.41 Gt of averted GHG emissions, which is, for comparison, equivalent to about

1/3 the annual emissions from vehicle miles traveled in the US.

Together, these results suggest that the first generation of GE technology significantly

increased crop production, lowered crop prices, and preserved natural land. We argue that

these effects imply the poor in particular benefit from GE technology, because they spend a

relatively large share of their incomes on food and because they are expected to suffer relatively

large damages from climate change.

2 Model

The first generation of agricultural biotechnology introduced insect resistant (IR) and herbi-

cide tolerant (HT) traits into 3 principle row crops in order to mitigate crop damage from

insects and weeds, respectively. There have been several applications of the IR trait thus far,
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having been inserted into corn, cotton and soybean.2 The most notable trait causes plants

to produce the naturally occurring chemical Baccillus thuringiensis (Bt), which is toxic to

common agricultural pests, like the European corn borer, but harmless to humans and rela-

tively environmentally benign. In producing the toxin, which has been applied to plants for

nearly a century and is employed in modern organic farming, GE crop plants fend off pests

without chemical applications by farmers. HT crops express tolerance to glyphosates, a class

of broad-spectrum, low toxicity herbicides that includes Round-Up, a Monsanto product em-

ployed also in residential settings. Such tolerance, introduced into corn, soybeans and canola,

allows farmers to more easily control weeds. Absent HT varieties, farmers must rely more

heavily on pre-emergence weed control, like tilling operations, and on more toxic and narrow

spectrum chemicals that can target weeds without impacting the crop plant.

IR and HT seeds can be modeled as damage control agents which reduce the fraction

of crop lost to pests. The framework was first introduced by Lichtenberg and Zilberman

(1986) to model pesticide adoption, and subsequently applied to GE by Qaim and Zilberman

(2003). A wide range of applications followed and are reviewed by Qaim (2009). We apply

the generalized framework from Sexton and Zilberman (2011) to show how adoption boosts

supply on the intensive margin through both a gene effect and complementary-input effects,

and along the extensive margin by expanding the range of land that can be profitably farmed.

Farmers are assumed to use homogeneous constant returns to scale production technologies

on land that differs with respect to pest pressure n. Input and output markets are competitive.

Farmers have access to two seed technologies indexed by i, with i = 0 denoting traditional seed

varieties, and i = 1 denoting GE varieties. GE varieties are considered damage control inputs

that affect yields only indirectly by reducing the fraction of crops not lost to pests, g (i, xi, n),

which depends on the seed technology i, variable chemical pesticide application xi, and initial

pest conditions n. Seed technologies and pesticides are distinct from other inputs, like fertilizer

and water, denoted zi, that increase yields directly by expanding potential output f (zi). In

this framework, realized or effective yield is the product of potential output and the fraction

of crop not damaged by pests, y = g (i, xi, n) f (zi) The undamaged crop share, g(i, xi, n), lies

between 0 and 1 and is increasing in pesticide use and decreasing in pest pressure. For g = 1,

there is no pest damage and effective output is equal to potential output. For g = 0, the crop is

entirely destroyed by pests. Let P,w, and v denote exogenous prices of outputs, pesticides, and

productive inputs, respectively, and Ki denote the fixed cost of production with technology i.

Then per-hectare profits are given by:

Πi = max
xi,zi

Pg(i, xi, n)f(zi)− wxi − vzi −Ki (1)

2Another substantial feed crop that has adopted GM is rapeseed, but the hectarage and impact is much less

substantial and therefore it is not addressed in this paper
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Because seed companies assess technology fees for access to proprietary GE varieties, it is

assumed that the fixed costs of production are greater for GE-adopting farmers, i.e., K1 > K0.

We also assume the GE seeds do not worsen crop damage, i.e., g (1, x, n) ≥ g (0, x, n).

Producers adopt the technology that yields highest expected profits. Their problem is

solved recursively. First, conditional on seed technology choice and pest pressure, they choose

variable inputs (pesticides and fertilizer). Then they choose the seed that yields highest ex-

pected profits, conditional on optimal input use and provided expected profits are non-negative.

Given heterogeneity in pest conditions, adoption follows the threshold model (David, 1969)

(Feder et al., 1985), in which more vulnerable farmers who gain most from a new technology

adopt first and aggregate adoption increases over time as the technology improves or costs of

adoption fall.

The model suggest that on locations with low pest pressure, it is profitable to farm under

either seed technology, but the conventional technology yields higher profits because crop losses

are too small to compensate for the technology fee. Thus, below a threshold nl, farmers produce

using the traditional technology. For pest pressure greater than nl and less than a threshold

nm, it is profitable to use either technology, but higher crop losses from greater pest pressure

make damage abatement more valuable so that the new technology yields higher profits. Above

nm and below a higher threshold of pest pressure, nh, it is not profitable to produce under

the conventional technology, but it is profitable to produce under the new technology. Above

nh, it is not profitable to produce under any technology; such land is unfarmed. Between nm

and nh, however, farmers adopt the new technology and recruit into production land that was

too marginal to be profitably farmed under the old technology. These results are depicted in

Figure 1, where line segment AB depicts profit per hectare as a function of initial pest pressure

under the traditional technology and line segment CD depicts the same for the new technology.

The pest pressure levels nl, nm, nh determine the adoption decision, but the overall mag-

nitude of adoption depends on the amount of land associated with each level of pest damage.

If, for example, there is a small amount of hectarage between nl and nm and large amount of

land between nm and nh, then the intensive margin is small in magnitude while the extensive

margin is large. On the other hand, if there is no land with pest damage below n̄ in Figure 1

where nm > n̄ > nl, then there is no extensive margin and all the impact is intensive.

While much of the empirical estimation of the yield impact from GE adoption was con-

ducted via experiments that focused on the direct gene effect, GE technology likely stimulates

yield gains that exceed the pure effect of the seed trait on the intensive margin.3 The direct

effect tends to reduce pest damage and tends to reduce use of alternative control of the target

3The gene effect need not be positive. Adoption of GE tends to reduce damage of pests targeted by the GE trait.

On the other hand if the trait is not introduced in the best local variety there is a yield loss. We expect that if

adoption occurs the damage reduction effect is greater than the variety effect (Qaim and Zilberman, 2003).
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Figure 1: Adoption of GE Technology
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pest (NRC, 2010). By reducing damage, expected value of potential output, Pg(i, xi, n), is

increasing. Therefore, the value of the marginal product of complementary inputs zi - fertilizer

and water- will increase, which will tend to increase their use, resulting in higher potential and

effective yield. Thus, the introduction of GE results in a yield effect that is the sum of the

direct seed effect and the indirect effect of the increased complementary inputs.

In summary, a simple adoption model predicts that supply increases along the intensive

margin both from higher damage abatement through the gene effect and from the induced

increase in application of complementary inputs. Moreover, production expands to marginal

lands, further increasing supply along an extensive margin, depending on the distribution of

initial pest pressures.

3 Estimation

Our empirical strategy for estimating yield effects of GE adoption follows Sexton and Zilberman

(2011) in exploiting variation in adoption over time in different countries. First commercialized

in 1996, GE seeds were adopted quickly, though unevenly across crops and countries. For

example, the US quickly licensed Bt corn for animal feed production, and thus GE corn

hectarage in the US grew to 50% within 5 years; while Bt cotton was not approved in India until



7

2001, after which GE cotton hectarage share grew from 0 to 85% in less than 10 years. Overall,

17 years after the commercialization of GE technology, GE corn accounts for 42 million ha

worldwide across 16 countries, representing 25% of world corn hectarage, GE cotton accounts

for 19 million ha worldwide across 10 countries, representing 60% of total cotton hectarage,

and GE soybeans accounted for 72 million ha worldwide across 10 countries, representing 70%

of total soybean hectarage. GE hectarage of the three crops in 2010 are reported by country

in Figure 2 below.

Following Sexton and Zilberman (2011), the variation in GE hectarage share across coun-

tries and time can be used to identify structural yield per hectare parameters as follows. Let

Qit denote country-level production of a crop in country i in year t. We write total output

expressed as the sum of output of a crop produced with technology k

Qit =
K∑
k=1

Qitk

=

K∑
k=1

qitkLitk (2)

where qitk is the composite yield per hectare for technology k (GE or traditional) and Litk is

land planted to technology k in country i in time t. We model the deterministic component

of yield as the sum of a country effect αi, time effect γt, and technology effect βk:

qitk = βk + αi + γt (3)

Substituting for qitk, we have:

Qit =
K∑
k=1

[βk + αi + γt]Litk (4)

Dividing through by total hectarage and simplifying, we estimate

qit = β0s
NGE
it + β1s

GE
it + γt + φi + εit (5)

where qit is yield per hectare and sNGEit (“NGE” for “Non-GE”) and sGEit represent shares of

hectarage devoted to traditional and GE technology, respectively, and β0 and β1 correspond

directly with the structural parameters in (4). This empirical model is similar to Sexton and

Zilberman (2011), but is robust to correlation between intertemporal variation in crop area

and land devoted to GE technology.4

4Sexton and Zilberman (2011) estimate the technology parameters with a fixed effect model:

Qit = δ0Lit + δ1Lit1 + γtDt + αiDi + νit (6)

While the fixed-effect model (6) controls for country and time specific unobservables that correlate with adoption, it
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Figure 2: Adopters of GE Technology

Notes: horizontal bars represent total GE hectarage in millions of Ha
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For each GE crop ∈ {corn, cotton, soybeans}, we estimate equation (5) with the same data

sources as in Sexton and Zilberman (2011), though we extend the panel to include more years.

Output and hectarage by crop-country-year for 1990-2010 come from FAO Stat. hectarage

planted to GE varieties was provided by Graham Brookes, who compiled the data from the

International Service for the Acquisition of Agri-Biotech Applications (ISAAA). The panel for

each crop includes all GE adopters (see Figure 2) and all other 100 top-producing countries.

Summary statistics by crop are reported in Table 1.

As with any production function estimation, input levels (sGEit ) are endogenous choices,

and hence might be correlated with unobservable determinants of output in the error term.

However, while much of the literature on yield effects are based on micro (farm level) obser-

vation, and hence should be concerned with endogenous selection at the farmer level,5 we use

aggregate data and estimate share for different nations, so heterogeneity among farmers within

countries that seem to matter for micro studies will not affect our results. As long as the tim-

ing of GE licensing by individual countries is uncorrelated with yield trends, OLS estimation

of (5) identifies the structural yield parameters β0 and β1. Since the decision to license GE is

largely governed by political interests, this identification assumption is likely to hold(Sexton

and Zilberman, 2011). Given endogenous selection at the farm-level, our aggregate estimates

subsumes country-time specific hectarage deviations in the error term, and thus delivers based estimates of δk. To

see this, note that time and country dummies can be rescaled with time and country averages

Qit = δ0Lit + δ1L
GE
it + γtDtL̄t + αiDiL̄i + νit (7)

but that a direct derivation from (4) delivers

Qit = δ0L
NGE
it + δ1L

GE
it + γtDtLit + αiDiLit + εit (8)

The use of Lit instead of LNGEit does not matter, since it just alters the definition fo the excluded category. But

multiplying the time and country effects γtDt and αiDi by L̄t instead of Lit means that country-time specific

deviations appear in the error term multiplied by the time and country effects γt and αt:

Qit = δ0L
NGE
it + δ1L

GE
it + γtDtLit + φiDiLit + εit

= δ0L
NGE
it + δ1L

GE
it + γtDt

(
L̄t + Lit − L̄t

)
+ φiDi

(
L̄i + Lit − L̄i

)
+ εit

= δLNGEit + δ1L
GE
it + γtDtL̄t + +φiDiL̄i + γtDt

(
Lit − L̄t

)
+ φiDi

(
Lit − L̄i

)
+ εit︸ ︷︷ ︸

=νit

The country-time deviations from averages Lit− L̄t and Lit− L̄i in νit are obviously correlated with LNGEit and LGEit .

This correlation generates bias in the δk’s, as they are picking up some of the country and time specific effects, which

multiply the deviations in νit. The direction of the bias is ambiguous, but since bigger countries adopted GE more

heavily, it is likely that Sexton and Zilberman (2011) overestimate the technology effect.
5see Crost et al. (2007), Liu (2008)



10

Table 1: Summary Statistics of Adopters and Nonadopters

Non-­‐Adopters Adopters Non-­‐Adopters Adopters Non-­‐Adopters Adopters
1.37 2.11 3.23 5.13 1.45 2.10
(0.91) (1.06) (2.69) (2.62) (0.77) (0.53)

0.14 2.12 1.01 3.16 0.22 5.69
(0.37) (2.93) (3.00) (6.81) (1.15) (9.18)

0.00 0.59 0.00 0.69 0.00 2.89
(0.00) (1.50) (0.00) (3.31) (0.00) (6.73)

#	
  Countries 88 10 79 21 89 10

Cotton Corn Soybeans

Yield	
  	
  (Lbs/Ha)

Acreage	
  (Million	
  Ha)

GE	
  Acreage	
  (Million	
  Ha)

should be interpreted as average treatment on the treated (ATT) measures, but the ATT is

properly identified by our aggregate analysis, conditional on the assumption of exogenous GE

licensing.6

In Table 2 we report estimates of equation (5) by crop using the data described above.

In Table 2, the regression coefficients for traditional and GE technology correspond directly

with the structural yield parameters β0 and β1. The yield effect can be computed as β1
β0

. For

all crops, the coefficients for both traditional and GE yield are statistically significant at the

1% level. We find that the yield effect for cotton is 34%, maize is 32%, and soybeans is 2%.

By contrast, the yield effects from Sexton and Zilberman (2011) are 65% for cotton, 45% for

maize, and 13% for soybeans, again all significant at the 1% level. Our estimates here are

smaller than those from the Sexton and Zilberman (2011) specification, but still substantial

for cotton and maize. The yield effect from soybeans is no longer economically significant, but

as we show in latter sections, there can still be a role for GE in soybean yield effect through

the extensive margin.

4 Extensive Margin

The previous section estimates the increase in yields associated with switching from traditional

technology to GE (intensive margin switching). The adoption model also predicts that GE

brings more land into production by extending the range of land that can be profitably farmed.

6This approach of using macro data to identify productivity parameters has a long history in agricultural research

(Huffman and Evenson, 1992)
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Table 2: Yield Effects of GE Technology

(1) (2) (3)

Cotton Maize Soybean

Traditional 2.13∗∗∗ 4.08∗∗∗ 2.09∗∗∗

(0.00) (0.06) (0.02)

GE 2.85∗∗∗ 5.38∗∗∗ 2.13∗∗∗

(0.25) (0.19) (0.15)

Country Fixed Effects Yes Yes Yes

Year Fixed Effetcs Yes Yes Yes

Number of Observations 1868 1978 1831

R squared 0.96 0.98 0.96

Standard errors in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

If this relationship is causal, as the model predicts, then output on the extensive margin should

be credited to the GE technology, thereby increasing the supply effect of GE seeds. It is beyond

the scope of this paper to assess empirically whether GE seeds expand the productive land

base, but with aggregate data, we can estimate the quantity of new land converted to a given

crop since GE was introduced. That is, we can quantify the extensive margin, though we

cannot attribute the extensification to GE. Assessing the magnitude of the extensive margin

gives a sense of how important it could be for aggregate supply and price effects.

With plot-level data, the task of decomposing the supply effect into an intensive and

extensive margin effect is a simple matter of separating the plots that switched from traditional

to GE from those newly planted to GE and summing over the yield increases in each group.

Since our data is country-level, additional structure is needed to guide the calculation. We

appeal to the adoption model from Section 2 again to generate the necessary structure.

To illustrate the strategy, consider again Figure 1. In some base year- prior to GE entry- the

profit curve with traditional technology is given by line segment AB. In a future period, GE

becomes available and generates profit curve CD. Total hectareage expands between the two

periods by ∆L = D−B, and GE hectareage expands by ∆LG = D−X, where X indicates the

break-even point on GE technology. As described in Section 2, the extensive margin, denoted

extG, is given by nh − nm, or

extG = ∆L = D −B (9)
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Furthermore, the intensive margin, denoted intNG (“NG” for “switching from N to G”), is

given by nm − nl, or

intNG = ∆LN = B −X (10)

where ∆LN is the change in traditional technology hectareage (“N” for “Non GE”), given by

∆L−∆LG. Thus, in this case, all we need to compute the intensive and extensive margins are

the change in total hectareage ∆L and the change in traditional technology hectareage ∆LN ,

which are both data.

While this simple example illustrates how the adoption model generates enough structure

to calculate intensive and extensive hectareage from the aggregate data, the example is not

sufficiently general to handle all cases. In particular, we have assumed that the traditional

technology profit curve does not change over time. In this case, we have ∆LG > ∆L > 0,

and thus equations (6) and (7) yield the intensive and extensive margins. However, in reality,

prices, growing conditions, and policy all change from year to year, which shifts the traditional

technology profit curve. If this profit curve shifts concurrently with the entry of GE technology,

we could observe ∆L > ∆LG > 0, for example. In this case, the switchover point X would

exceed the x-intercept of the original traditional technology profit curve, implying that all

traditional technology hectares from the base year remain traditional technology hectares in the

future year. Ie, in such a case there is no intensive margin switching. All GE hectares should

be counted as extensive margin. Furthermore, it’s possible that the traditional technology

curve shifts in such that ∆L < 0. In this case, no new lands enter production in the future

year, so there can be no extensive margin. In this case, all GE lands should be considered

intensive margin.

The general structure for these three cases are presented in Table 3. The three cases are

distinguished by the ordering of ∆LG, ∆L, and 0. In the first case (which includes the first

example above), ∆LG > ∆L > 0, and there is adoption on both the extensive and intensive

margin.7 For this ordering to occur, it is possible that the traditional profit technology curve

shifts in or out, but it must be that X
′
, the observed break-even point in the future period,

lies to the left of the initial x-intercept, B. That is, in order for the change in GE hectarage to

exceed the change in total hectarage, there must be some intensive margin switching, which

implies the break-even point exceeds the initial marginal hectare. In Table 3, we illustrate

this case in the first row with a small outward shift of the line segment AB to A
′
B

′
. The

column labeled “Ordering” describes the case, and the columns “intNG” and “extG” give the

calculation of the intensive and extensive margins. We find that the intensive margin is readily

computed as the negative of the change in traditional technology hectarage (B − X ′
), while

7This will only occur if there is land available on the extensive margin and the land with the highest pest damage

has more pest damage than nh in Figure 1. See Section 2.
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Table 3: Computation of the Intensive Extensive margins

Ca
se

 1
 

Ca
se

 2
 

Ca
se

 3
 

ΔLG > Δ𝐿 > 0  
Ie 𝑋′ < 𝐵 

       Ordering         𝑖𝑖𝑡𝑁𝑁             𝑒𝑒𝑡𝐺  

−Δ𝐿𝑁 
= B − X′ 

Δ𝐿 
= D − B 

Δ𝐿 > ΔLG > 0  
Ie 𝑋′ > 𝐵 0 

Δ𝐿𝐺  
= D − X′ 

ΔLG > 0 > Δ𝐿 Δ𝐿𝐺  
= D − X′ 0 
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the extensive margin is computed as the change in total hectarage (D − B). In case 2, we

have a large outward shift in AB such that X
′
> B. In this case, the total extensive margin is

given by the change in total hectarage D−B, but these hectares are divided between extensive

margin traditional hectares, extN = X
′−B, and extensive margin GE hectares extG = D−X ′

.

There are no intensive margin hectares.8 In case 3, AB shifts in such that the total hectarage

decreases. With no new hectares entering production, extG = 0, and any GE hectare come

from the intensive margin intNG = ∆LG = D −X ′
.9

The three cases in Table 3 exhaust the possible outcomes when comparing any post-

adoption year to the pre-adoption base year.10 With the data described in Section 3, we

compute ∆L and ∆LG for every country-crop-year in the sample where ∆L = Lit − Lib and

∆LG = Lit1 for some pre-adoption base year b. In every case, the base year is defined as the

year immediately prior to the first positive value for GE hectarage for the given country-crop

observation. Given ∆L and ∆LG, we classify every country-crop-year as case1, case2, or case3

and compute the corresponding intensive and extensive margins according to the formulas in

Table 3.11 We then sum over the given year to generate world hectarage by crop divided

between traditional seed technology, GE intensive margin hectarage, and GE extensive margin

hectarage. We present results for corn, cotton and soybeans in Figure 3.

In Figure 3, we find that for corn, most adoption of GE occurred on the intensive margin,

with the extensive margin only accounting for 16% of total GE hectarage in 2010. The share

of GE corn hectarage in total corn hectarage is not very large (26%), but because total corn

hectarage is so large (the largest world hectarage of all crops) absolute extensification is still

substantial. In cotton, overall GE cotton adoption rates are much higher (57%), though

mostly still on the intensive margin (only 12% extensive margin). By contrast, adoption of

8Of course, extensification only occurs if there exists lands with pest damage that is greater than point B
9Note that the magnitude of both the extensive and intensive margins depends on the distribution of land at

various levels of pest infestation. The analysis above suggests that if all of the lands in a country have sufficiently

low levels of pests that allowed them to be utilized before GE was introduced, then the introduction of GE would

not result in an extensive margin effect.
10A fourth case corresponds to the possibility that AB shifts out so much that traditional technology profits

dominate GE profits for any initial pest pressure. In this case, GE hectarage equals 0, so trivially extG = intNG = 0.

We leave this case out of Figure 3 to reduce clutter, but we allow it in the empirical exercise.
11The model predicts extensification onto marginal lands that presumably were not used for anything before the

introduction of GE. In this sense, the extensive margin is extensive to agriculture overall. However, we want to

quantify the extensive margin to a given crop so that we can compute supply effects by crop. Defining the extensive

margin as crop-specific means that extensive margin lands might be coming from any previous employment other

than the production of the given crop, including the production of other crops. This definition of the extensive

margin is broader than the one proposed by the model, however, absent plot-level time-series data, it is impossible

to know from where the extensive margin is recruited. Thus, defining the extensive margin as all hectarage not

previously devoted to a specific crop is as precise as we can be given data constraints.
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GE soybeans has been high (70%) and more concentrated on the extensive margin than the

other crops (49%). Soybean hectarage grew more than 50% since the introduction of the GE

seed. Breaking down hectarage by country, we find that most of the extensive margin gains in

soybeans came from Brazil and Argentina.

The data shows that much of the potential of GE has been realized in cotton and soybean.

In the case of cotton, there is a relatively small extensive margin effect, and the adoption of

most of the GE has occurred on land previously in production. However, GE cotton is the only

GE crop that has been adopted globally, as it did not suffer from bans that apply to corn and

soybean. In the case of soybean, the high rate of adoption of GE is because it was associated

with an expansion of the hectarage of the crop (thus the large extensive margin effect), and

virtually all of the adoption of GE soybean occurs in the U.S., Brazil, and Argentina. In the

case of corn, a majority of corn in the world is located in countries in China, Europe, and

Africa that have banned the adoption of GE corn, and therefore overall adoption is below 30%

of global hectarage. Since according to Figure 3 yield per hectare of adopters is higher than of

non-adopters, the share of GE corn of total corn is about 43%. Nevertheless, there is a large

potential for increased adoption of GE corn if practical bans on the technology are removed.

As discussed above, absent plot-level data, it is difficult to determine from which uses

extensive margin lands are recruited. Extensive margin switching could come from other crops

or other nonagricultural purposes (such as forest or marginal lands). Because of the nature

of world agricultural land-use data, what is here included as extensive margin changes might

actually be second-season cropping on the same physical land, as opposed to new plots. In fact,

“double-cropping” is believed to account for a substantial share of increased soybean hectarage

(Trigo and Cap, 2006). When double-cropping, farmers produce in the shoulder seasons when

pest damage is typically too high for profitable production. It is consistent with our model

that GE technology permits double-cropping by extending the range of initial pest pressures

accommodated by profitable farm operations. For example, HT varieties permit control of

weeds after the crop plant has emerged from the ground, lessening demand for preemergence

weed control, which often induces sufficient delay to preclude maturation of a follow-on crop.12

5 Estimated Impacts

Equipped with estimated yield gains on the intensive margin and the hectarage of the exten-

sive margin, supply, price, and hectarage for the three primary GE crops are computed for

the counterfactual of no GE technology. The supply effect is computed as a range depending

12For example, Trigo and Cap (2006) estimate that GE technology induced a 9.9 million-hectare expansion of

soybean area in Argentina.
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Figure 3: World hectarage of GE Crops by Technology and Intensive/extensive Margins
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on the attribution of extensive margin lands to GE. The price effect is also computed as a

range depending both on the assumptions of the supply effect and the assumptions of elastic-

ities of supply and demand. Land-use savings effects are computed as the difference between

observed hectarage and counterfactual hectarage needed to generate the same output absent

GE technology.

5.1 Supply Effect

We compute the supply effect of GE technology for the three principle GE crops as the per-

centage difference between observed 2010 production and two different counterfactual supplies

corresponding to different assumptions about the extensive margin. Counterfactual supplies

are computed country by country and then aggregated to a world figure. We first compute

the implied traditional variety yield ˆqit0 by solving

Qit = qit0Lit0 + qit1Lit1

= qit0

(
Lit0 +

(
1 + β̂

)
Lit1

)
=⇒ ˆqit0 =

Qit

Lit0 +
(

1 + β̂
)
Lit1

(11)

where β̂ represents the estimated yield effect of the GE technology for the given crop. In

the estimated impacts that follow, we use both our own estimated yield impacts from section

3, and a range of other yield impacts from the literature. Assuming that production would

have occurred on extensive margin lands even without the use of GE technology, then the

counterfactual supply is given by

Qc1it = ˆqit0Lit (12)

We sum over country-specific counterfactual supplies to find the world total counterfactual

supply Qc1t and compute supply effect s1 =
Qt−Qc1

t
Qt

. If however, it is assumed that production

on the extensive margin would not have occurred without the GE technology, i.e., that GE

seeds cause the increase in hectarage, then the production on the extensive margin would have

to be subtracted from Qc1it to yield counterfactual supply 2:

Qc2it = ˆqit0
[
Lit − Lextit1

]
(13)

where Lextit1 denotes the extensive margin computed in Section 4. The corresponding supply

effects defined analogously as above.

In Figures 4 and 5, we report world supply effect for GE corn and cotton for the year

2010 conditional on yield effects from several different studies. Supply effects based on our

estimates from section 3 are denoted with large red triangles. Other markers correspond to
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Figure 4: Supply Effect of GE Corn
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Figure 5: Supply Effect of GE Cotton
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the supply effects based on yield effects from Sexton and Zilberman (2011) along with all the

studies reviewed in Qaim (2009). Estimates are reported according to the extensive margin

assumption. The left column, labeled “Without Extensive Margin Effect,” reports the resulting

supply effects when we assume that extensive margin lands could have been profitably farmed

with traditional seeds. The right column, labeled “With Extensive Margin Effect,” reports

supply effects after subtracting all production on extensive margin lands.

In Figures 4, we find that GE technology increased the supply of corn in 2010 between 10-

16% based on the yield effects from section 3, depending on how much of the extensive margin

is attributed to GE. Thus, even though extensive margin lands represent a small share of total

GE corn hectarage, accounting for the extensive margin can potentially make a large difference

for the supply effect. Compared to estimates from other studies, our supply effects are usually

larger, since our estimated yield effects were larger, but the supply effects computed from

other yield estimates still generate significant impacts. Estimates range from 2-4% without

the extensive margin, and 9-11% with the extensive margin. The notable exceptions are Sexton

and Zilberman (2011) and Yorobe and Quicoy (2006), which generates slightly larger supply

estimates than ours.

In Figure 5, our estimates imply that GE technology increased the supply of cotton between

15-20% in 2010, depending on the extensive margin. Again, these estimate are larger than

what would be implied from the yield effects in the Qaim (2009) review.

Finally, for soybeans, we find that because the estimated yield effect is small and the

estimated extensive margin effect is large, almost all of the supply effect comes from the

extensive margin. We estimate that the supply effect was only 2% without the extensive

margin, but as large as 39% with the full extensive margin.13

5.2 Price Effects

The supply effect from GE technology can be translated into price effects using a methodology

from De Gorter and Zilberman (1990). Suppose that without GE technology, the supply curve

shifts in by a factor of η, where η corresponds to the supply effect from the previous section.

In the new equilibrium:

(1− η)Qs (p) = Qd (p) (14)

13There are no similar studies with which to compare this result.
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where Qs (p) and Qd (p) represent quantities supplied and demanded, respectively, as a function

of output price p. Totally differentiating with respect to η and p, yields

(1− η)
∂Qs (p)

∂p
dp−Qsdη =

∂Qd (p)

∂p
dp

=⇒ dp

[
(1− η)

∂Qs (p)

∂p
− ∂Qd (p)

∂p

]
= Qsdη

=⇒ dp

p
=

∂η

εs − εd
(15)

where the last line follows from setting η = 0. Equation (15) states that the percentage

change in equilibrium price (the price effect) is equal to the supply effect divided by the

difference between price elasticity of supply and price elasticity of demand. Thus, estimation

of the price effect simply requires that the supply effect from the previous section is scaled

by parameters obtained from the literature. In our estimates, εs = 0.3 and a low elasticity

scenario is parameterized with εd = −0.3 and a high elasticity scenario uses εd = −0.5. For each

elasticity scenario, we also vary the assumption on the extensive margin as before. For each

of these 4 scenarios {low elasticity, no extensive margin ; low elasticity with extensive margin;

high elasticity, no extensive margin; high elasticity, with extensive margin} price effects are

computed conditional on yield estimates from each of the studies mentioned in section 5.1 and

plotted in Figure 6 for corn and Figure 7 for cotton.14

In Figure 6, we find that corn prices would have been between 13-27% higher, depending

on the assumption of elasticity and extensive margin effect. The price effects in Yorobe and

Quicoy (2006) and Sexton and Zilberman (2011) are higher than our estimates, while other

studies are roughly 10 percentage points lower. We find that in all cases, the estimates are more

sensitive to the inclusion of the extensive margin than the assumption of demand elasticity.

Cotton prices would have been 19-33% higher without GE technology, as shown in Figure 7.

Again, the estimates are higher using our yield impacts instead of others in the literature, but

even low yield estimates as in Traxler and Godoy-Avila (2004) and Falck-Zepeda et al. (2000)

predict that cotton prices would have been 7-19% higher.15 Finally, for soybeans, the price

effect depends heavily on the extensive margin assumption. Without the extensive margin,

the price effect is between 2-3%. Including the extensive margin, the price effect is between

49-65%.

14Roberts and Schlenker (2010) suggest that supply elasticities vary between 0.08 and 0.13 for supply of grain

calories and demand elasticities vary between -0.05 and -0.08. Thus, the magnitude of the price effect should be

greater than five times the magnitude of the supply effect, which are greater than the impacts estimated here.
15of course, the estimates from Fitt (2003) yield even lower price effects, but that is because Fitt estimate no yield

impact
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Figure 6: Price Effect of GE Corn
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Figure 7: Price Effect of GE Cotton
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Table 4: Land-Use Saving Effects

2010 Acreage Acreage Saved CO2 Saved 

Millions of Ha Millions of Ha Gt 

Cotton 32 6 0.12
Maize 161 13 0.26
Soybeans 102 1 0.03
Total 295 21 0.41

5.3 Land-Use Saving Effects

Lastly, we estimate land-use saving effects and the corresponding GHG emissions savings

due to GE technology. hectarage “saving” is computed as the difference between observed

hectarage in 2010 and counterfactual hectarage that would be needed to produce the same

output without the GE supply effects. Formally, counterfactual hectarage without considering

the extensive margin effect is computed as

Lc1it =
Qit
ˆqit0

(16)

Country-specific hectarages are aggregated to the world level and observed 2010 hectarage is

subtracted to compute world hectarage savings

Lc1t =
∑
i

(
Lc1it − Lit

)
(17)

These estimates are reported by crop in the second column of Table 4. We estimate the land

use savings associate with GE cotton are 6 million Ha, or roughly 20% of observed 2010 cotton

hectarage. Maize land-use savings equals 13 million Ha, or 8% of observed maize hectarage.

Finally, soybean land-use savings are negligible, at less than 1% of total soybean hectarage. In

the last column of Table 4, we translate land-use savings into Gt of averted CO2 emissions by

multiplying the hectarage savings by a constant CO2/Ha/year figure.16 We find that across

16we use a constant CO2/Ha/year of 20 Gt taken from the ILUC literature, See Renate Schubert, Future bioenergy

and Sustainable Land Use (2010), we convert hectarage savings into annual CO2 savings.
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all three crops, GE technology saved 0.41Gt of CO2 emissions in 2010. To put this figure in

perspective, the total emissions from all passenger cars in the US in 2010 was roughly 1.28 Gt

of CO2
17, which means the land-use savings effects of GE technology was roughly 1/3 the size

of all emissions from cars in the US.

The preceding analysis considers only landuse change effects, but a full GHG accounting

would consider other auxiliary effects of GE technology. In fact, the impact of GE on GHG

emissions is likely to be significantly greater than the land saving effect associated with the

intensive margin for several reasons. First, some of the extensive margin effect is associated

with double cropping, and providing the output of this hectarage would require expanding the

land footprint of agriculture and more GHG emissions. Secondly, much of the land utilizing

herbicide tolerant varieties has switched to low or no tillage, which contributes to soil carbon

sequestration that may add up to 7 tons per hectare per 10 years (Paustian et al., 2004). Third,

the reduction in agricultural footprint because of GM varieties also reduced other inputs that

complement land (i.e. fertilizer, pesticides, water, etc.) leading to reduced GHG emissions.

Finally, the environmental effect we are concerned with includes the impact on water and

chemical inputs of agriculture, and since adoption of GE tends to reduce hectarage needed to

produce a given volume of crop, it also tends to reduce water and use of other inputs.

6 Conclusion

Demand is growing for food, feed, fiber and energy, and unless new lands are recruited into

production of the staple crops from which these goods are made, prices must rise to equili-

brate the market, or new sources of intensive margin yield gains are needed. Rising prices

for these products have disastrous effects on the poor, while clearing lands for agriculture is

extremely expensive from a greenhouse gas perspective. Agricultural biotechnology can po-

tentially increase per hectare yields, thus boosting supply and preserving lands. In this paper,

we generate new estimates of the yield effect which takes account of complementary input use

and find larger impacts than most studies in the literature. We also develop a methodology

for decomposing observed hectarage into intensive and extensive margin. While we cannot say

if GE technology has caused the increase in the range of lands that can profitably be farmed,

we have found that hectarages have increased since the introduction of GE technology, and

counterfactual supply scenarios suggest that the extensive margin effect could make a large

difference in computing supply, price, and land-use saving effects. Future research using ex-

17The EPA calculates that the average passenger vehicle in the US generates 5.1 metric tons of CO2 per year, and

the National Transportation Statistics table 1-11 reports there were 250,272,812 passenger vehicles in the US in 2010,

which implies that total CO2 emissions from passenger vehicles equaled 5.1 ∗ 250, 272, 812 ∗ 1
1,000,000,000 = 1.28Gt.
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perimental variation to identify the causal link between GE adoption and the extensive margin

would constitute a significant contribution.

We found that adoption of GE has significant impact on the price of cotton, corn, and

soybeans. As corn and soybeans are used extensively in the production of food, these price

effects likely translate into significant impacts on the price of food consumed by the poor in

developing countries (Hochman et al., 2011). The analysis suggests that while there has been a

relatively high rate of adoption of GE cotton and soybean that has contributed to a significant

price reduction in these commodities, bans and other regulations limited the adoption of GE

corn to less than 30% of total corn hectarage, reducing its total price effect. If adoption of corn

is expanded globally, we expect much larger increases in supply both because of reduction in

pest damage as well the complementary input effect, resulting in further corn price reductions,

which will benefit the poor. The use of GE is practically banned everywhere for major food

grains like wheat and rice, even though existing traits could reduce pest damage in these two

crops. Our analysis suggests that developing new GE varieties in these crops has the potential

to reduce their prices as well as the environmental side effects from these crops.

Additionally, we find that even this first-generation of GE has had significant environmental

effects, preventing greenhouse gas emissions on the same order of magnitude as 1/3 the annual

GHG emissions caused by driving in the US.
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