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ARTICLE OPEN

Data analysis strategies for the Accelerating Medicines
Partnership® Schizophrenia Program
Nora Penzel 1,2,51, Pablo Polosecki3,51, Jean Addington 4, Celso Arango 5, Ameneh Asgari-Targhi6, Tashrif Billah2, Sylvain Bouix 2,7,
Monica E. Calkins8, Dylan E. Campbell 2, Tyrone D. Cannon9, Eduardo Castro 3, Kang Ik K. Cho 2, Michael J. Coleman2,
Cheryl M. Corcoran 10, Dominic Dwyer 11,12, Sophia Frangou 10,13, Paolo Fusar-Poli14,15, Robert J. Glynn16,17, Anastasia Haidar2,
Michael P. Harms 18, Grace R. Jacobs 2, Joseph Kambeitz 19, Tina Kapur6, Sinead M. Kelly2, Nikolaos Koutsouleris 14,20,
K. R. Abhinandan21, Saryet Kucukemiroglu22, Jun Soo Kwon 23,24, Kathryn E. Lewandowski 25,26, Qingqin S. Li27, Valentina Mantua28,
Daniel H. Mathalon29,30, Vijay A. Mittal 31, Spero Nicholas30,32, Gahan J. Pandina33, Diana O. Perkins 34, Andrew Potter35,
Abraham Reichenberg10, Jenna Reinen3, Michael S. Sand36, Johanna Seitz-Holland 1,2, Jai L. Shah37,38, Vairavan Srinivasan33,39,
Agrima Srivastava10, William S. Stone40, John Torous 40, Mark G. Vangel41,42, Jijun Wang 43, Phillip Wolff44, Beier Yao25,26,
Alan Anticevic45, Daniel H. Wolf 8, Hao Zhu35, Carrie E. Bearden 46,47, Patrick D. McGorry11,12, Barnaby Nelson11,12, John M. Kane48,49,
Scott W. Woods 45,50, René S. Kahn 10, Martha E. Shenton 1,2,6, Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ)*,
Guillermo Cecchi 3,52 and Ofer Pasternak1,2,6,52✉

The Accelerating Medicines Partnership® Schizophrenia (AMP® SCZ) project assesses a large sample of individuals at clinical high-risk for
developing psychosis (CHR) and community controls. Subjects are enrolled in 43 sites across 5 continents. The assessments include
domains similar to those acquired in previous CHR studies along with novel domains that are collected longitudinally across a period of
2 years. In parallel with the data acquisition, multidisciplinary teams of experts have been working to formulate the data analysis
strategy for the AMP SCZ project. Here, we describe the key principles for the data analysis. The primary AMP SCZ analysis aim is to use
baseline clinical assessments and multimodal biomarkers to predict clinical endpoints of CHR individuals. These endpoints are defined
for the AMP SCZ study as transition to psychosis (i.e., conversion), remission from CHR syndrome, and persistent CHR syndrome (non-
conversion/non-remission) obtained at one year and two years after baseline assessment. The secondary aim is to use longitudinal
clinical assessments and multimodal biomarkers from all time points to identify clinical trajectories that differentiate subgroups of CHR
individuals. The design of the analysis plan is informed by reviewing legacy data and the analytic approaches from similar international
CHR studies. In addition, we consider properties of the newly acquired data that are distinct from the available legacy data. Legacy data
are used to assist analysis pipeline building, perform benchmark experiments, quantify clinical concepts and to make design decisions
meant to overcome the challenges encountered in previous studies. We present the analytic design of the AMP SCZ project, mitigation
strategies to address challenges related to the analysis plan, provide rationales for key decisions, and present examples of how the
legacy data have been used to support design decisions for the analysis of the multimodal and longitudinal data. Watch Prof. Ofer
Pasternak discuss his work and this article: https://vimeo.com/1023394132?share=copy#t=0.

Schizophrenia           (2025) 11:53 ; https://doi.org/10.1038/s41537-025-00561-w

INTRODUCTION
Individuals at clinical high-risk for psychosis (CHR) (see Addington,
J et al.1, within this special issue for definition of CHR criteria) show
variable clinical trajectories, resulting in a variety of short- and
long-term outcomes2. Based on a recent meta-analysis3, the rate
of CHR individuals who develop psychosis (also termed ‘con-
verters’) is about 0.15 (95% confidence interval [CI], 0.13–0.15;
n= 3408) within one year and 0.19 (95% CI, 0.17–0.22, n= 7351)
within two years of assessment. From the group of those who do
not develop psychosis (also termed ‘non-converters’) about 50%
remit, with positive symptoms reducing below CHR threshold4.
The remaining non-converters continue to experience subthres-
hold psychotic symptoms5 along with psychosocial impairments
and compromised quality of life6,7. Group-based analyses have
provided important insights into the patterns and abnormalities
within CHR populations compared to control groups, such as
community controls. However, actionable and reliable quantitative
models are needed for capturing unique variations among

individuals at CHR and for predicting clinical outcomes. Such
models could offer improved prognosis and treatment planning
(see Fig. 1) and are important to improve the design of clinical
trials to test interventions aiming to improve symptoms, prevent
further deterioration, and potentially prevent psychosis onset8. For
example, trial efficiency and efficacy can be enhanced by
enriching cohorts to include participants who are more likely to
develop psychosis. In addition, modeling the various trajectories
leading to the clinical outcomes could identify subgroups of CHR
individuals with similar pathologies, and would potentially provide
a better mechanistic understanding of the transition from CHR to
remission, psychosis, and other disorders. In turn, a better
mechanistic understanding might facilitate future treatment
development9.
The Accelerating Medicines Partnership® Schizophrenia (AMP®

SCZ) study10,11 is a large project aimed to generate quantitative
models for the prediction of outcomes and the identification of
clinical subgroups in individuals at CHR (see Fig. 1). This
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publication outlines the rationale and general principles guiding
the analytic approach for AMP SCZ. We first describe the state-of-
the-art of quantitative modeling in CHR research, highlight
complexities of the expected AMP SCZ dataset and present the
analytic aims of the AMP SCZ study, emphasizing the applications
of quantitative modeling. We then lay out the analysis plan,
including the main statistical tools to be used, and a validation
plan. With examples of two analyses, we demonstrate how legacy
data from previous CHR studies informs decisions made for the
AMP SCZ project. Specifically, we present a plan to integrate
multimodal and longitudinal measurements into our analyses. We
also discuss the technical challenges expected in our analyses and
present a variety of mitigation strategies. By transparently
outlining the analytic design of AMP SCZ and its rationale, we
hope to provide a roadmap for other researchers in the scientific
community interested in conducting similar studies.

State-of-the-art quantitative models in CHR research
Studies of quantitative models in CHR research have mostly
focused on prediction models, forecasting who will develop
psychosis12–14. However, recognizing that most individuals at CHR
will not develop psychosis, more recent studies also aim to predict
who will remit and who will develop more broadly defined
adverse outcomes including persistent CHR syndrome8, non-
psychotic disorders and functional deficits15,16. Prediction in these
studies is typically facilitated with survival analyses (e.g., Cox
proportional hazard regression12) and/or machine-learning-based
prediction algorithms (e.g., support vector machine17, random
forest18,19, regularized regression20). Predictive value has been
found for sociodemographic data, clinical characteristics, cognitive
data, structural and functional neuroimaging, and electrophysiol-
ogy (see review, ref. 21), as well as language processing22 and
genetic and fluid biomarkers17,23–31. Multimodal models combin-
ing several data modalities have outperformed unimodal predic-
tions17,32,33. Overall, the predictive power across studies is
moderate, with a recent meta-analysis34 showing limited pre-
dictive power with an average of 67% sensitivity and 78%
specificity for the prediction of psychosis. Small datasets might
contribute to this limited predictive power. In addition, the
reported predictive power is likely overestimated, since the
suggested models have limited generalizability where studies

typically investigate individuals that are from similar geographical
catchment areas35 and are not appropriately validated. Strict
validation calls for a replication using external data, while less
strict, yet still robust approaches require internal cross-validation
approaches36. However, many of the reported studies lack these
validation approaches, leading to higher risk of overfitting. Indeed,
when testing the applicability of models on new data, a sizable
decrease in predictive power is almost always observed14.
Large multi-site studies have addressed the urgent need to

increase sample sizes and to broaden catchment areas including
different countries from the respective continents to develop
more generalizable prediction models with stronger predictive
power. Consortia such as the European Network of Gene-
Environment Interactions in Schizophrenia (EU-GEI)37, the North
American Prodrome Longitudinal Study (NAPLS)38, the Shanghai
At Risk for Psychosis (SHARP) project39, and the Personalized
Prognostic Tools for Early Psychosis Management study (PRO-
NIA)15 have significantly advanced the field, while revealing
important multi-site related complications that stem from hetero-
geneities across sites, such as heterogeneity in sociodemographic
characteristics and imaging measures.
The Harmonization of At-Risk Multisite Observational Networks

for Youth (HARMONY) project was established to enable joint
analyses with the ability to validate results across projects13 and
continents. However, differences across consortia, including
variable criteria defining CHR status and inconsistent acquisition
and processing procedures13, impede retrospective data
harmonization.
One of the main advantages of the AMP SCZ project is the pre-

harmonization efforts to reduce heterogeneity of assessment
across sites (harmonized protocols can be found in the following
Methods papers [Addington, J et al.1; Mathalon, D et al.40; Harms,
M et al.41; Allott, K et al.42; Perkins, D et al.43; Wigman, J et al.44,
Bilgrami, Z et al.45]. Nevertheless, and as we show below, we use
legacy data from some of the aforementioned studies to inform
decisions made for AMP SCZ.

METHODS
In the following section, we describe the data modalities acquired
in the AMP SCZ project, highlighting properties of the data that
might challenge data analyses. Detailed acquisition protocols and

Fig. 1 Potential utility of individual-level inference models for the AMP SCZ study. A central goal of AMP SCZ analyses is the development
and validation of quantitative models with straightforward translatability to clinically useful applications. Group-based statistical approaches
quantify group differences in observed variables to make statements about the distribution of those variables in a target population99. In
contrast, models for individual-level inferences combine observations at baseline, or over time, to make statements about previously unseen
individuals48. Here, several applications of individual-level inference models relevant to the AMP SCZ study are shown.
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standard operating procedures for each data domain are available
in other publications within this special issue and on the AMP SCZ
website (https://www.ampscz.org).

AMP SCZ data
Overall, the AMP SCZ study will include 1977 individuals at CHR for
psychosis and 640 community controls at baseline, across 43
recruitment sites, spanning 13 countries across 5 continents, while
using harmonized CHR inclusion criteria and operating proce-
dures11. All participants undergo a comprehensive baseline
assessment and major follow-up assessments after 1, 2, 3, 6, 12,
18, and 24 months. In addition, CHR individuals and a part of the
control group undergo monthly follow-up assessments during the

first year after study inclusion. Each site follows specified
recruitment targets that consider balanced recruitment of
minority groups, and sociodemographic variables. The protocol
consists of interview-based measurements [Addington, J et al.1,
within this special issue], cognitive assessments [Allott, K et al.42,
within this special issue], magnetic resonance imaging (MRI)
[Harms, M et al.41, within this special issue], electroencephalo-
graphy (EEG) [Mathalon, D et al.40, within this special issue], blood
and saliva samples [Perkins, D et al.43, within this special issue],
audio-visual recordings and speech transcriptions [Bilgrami, Z
et al.45, within this special issue], actigraphy, and smartphone-
based assessments including active and passive sensing [Wigman,
J et al.44, within this special issue].

Fig. 2 Feature dimensionality and frequency in the AMP SCZ study. The figure captures the dimensionality and the frequency of the
different data domains within the AMP SCZ study for raw data (left) and after preprocessing and feature extraction (right). Measurement
frequency and number of dimensions are presented on a logarithmic scale for clarity. Abbreviations: magnetic resonance imaging (MRI),
electroencephalography (EEG), ecological momentary assessment (EMA), Positive SYmptoms and Diagnostic Criteria for the CAARMS
Harmonized with the SIPS (PSYCHS).

Table 1. Legacy data: sample size and basic demographics of legacy datasets analyzed.

Group PRONIA NAPLS-3 SHARP NYSPI

CHR HC CHR HC CHR HC CHR

Number of individuals at clinical high-risk for
psychosis

173 334 698 96 147 97 102

Number of individuals at clinical high-risk for
psychosis who developed a psychotic disorder (% of
whole sample)

23 (13%) – 71 (10%) – 29 (20%) – 27 (26%)

Number of females at birth (%) 88 (51%) 185 (55%) 319 (46%) 48 (50%) 72 (49%) 47 (50%) 24 (24%)

Age in years (Mean [Standard deviation]) 23.6 (5.1) 25.7 (6.1) 18.7 (4.1) 19.1 (4.2) 18.9 (5.0) 18.6 (4.5) 20.1 (3.8)

Time to conversion in days (Mean [Standard
deviation])

237 (36.4) – 262 (280) – 395 (342) – 381 (383)

Latest assessment timepoint after baseline
assessment in years/months

~2 years/1
month

– ~4 years/3
months

~1 year/1
month

~5 years/2
months

~4 years ~4 years/6
months

Assessment period 02/2014-06/2017 01/2015-01/2019 08/2012-01/2016 05/2003-12/2012

Number of sites for recruitment 7 9 1 1

Abbreviations: CHR clinical high-risk for developing psychosis, HC healthy controls, NAPLS North American Prodrome Longitudinal Study, NYSPI Columbia
University/New York State Psychiatric Institute, PRONIA Personalized Prognostic Tools for Early Psychosis Management, SHARP Shanghai At Risk for Psychosis.
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Some models will rely on minimally processed data (Fig. 2: “Raw
data”), whereas others will be built from preselected variables
based on a priori knowledge (Fig. 2: “Processed data”). However,
as depicted in Fig. 2 there is a high variability in the measurement
frequency (timescale) and in the number of features (dimension-
ality) across both the raw and the processed data domains used in
AMP SCZ.
To inform the design of AMP SCZ analyses, while data from AMP

SCZ is still being collected, we utilized legacy data with properties
similar to the data expected in AMP SCZ. Specifically, the legacy
data assists analysis pipeline building, performing benchmark
experiments, quantifying clinical concepts, testing new cutting-
edge approaches, and making design decisions meant to over-
come the challenges encountered in previous studies. The legacy
data for the AMP SCZ observational study include data from the
PRONIA15, the NAPLS-338 and the SHARP39 studies, and a study
that acquired data from CHR individuals at Columbia University/
New York State Psychiatric Institute (NYSPI; Table 1)46. A thorough
description of these studies and the included samples can be
found in their primary publications. All studies were approved at
the respective recruiting sites by the Institutional Review Board
committees and all participants provided written, informed
consent (personally or through a legal guardian if below age of
18 years).

Analysis aims of AMP SCZ
While the overall aims and the general approach of the AMP SCZ
study have been described in detail elsewhere10,11, in this paper
we focus particularly on the analytic aims, design, and associated
challenges. The primary analytic aim is to use a set of clinical
assessments and multimodal biomarkers obtained during the first
two months of assessments to predict clinical endpoints of CHR
individuals at one and two years (see selection of endpoints
below). Achieving the primary analytic aim will enable the

development of tools for the selection of enriched patient
populations in clinical trials for individuals at CHR for psychosis.
The secondary analytic aim is to use the longitudinal clinical
assessments and multimodal biomarkers from all time points to
characterize trajectories of CHR individuals towards different
clinical outcomes. Upon achieving the secondary analytic aim,
we will be able to identify trajectories of clinical outcome
measures, digital measures, and potential biomarkers that are
associated with the endpoints so they can inform future clinical
trials, help to construct risk calculators, act as intermediate
endpoints in shorter study designs and provide some mechanistic
understanding as to how individuals evolve to reach a particular
clinical endpoint. Importantly, the developed models will focus on
single subject-level predictions rather than inferring information at
the population/group level (see Fig. 1).

Technical considerations and challenges
As part of the analytic design for the AMP SCZ study, we outlined
several technical considerations and challenges based on
experience from previous studies, and on some unique aspects
of the AMP SCZ study. See Fig. 3 for an overview of the different
steps involved in the analytic planning and some of the main
decisions that were required. In Table 2 we summarize some of
the most important challenges identified and present different
possible mitigation strategies along with their advantages and
disadvantages. In the remainder of this paper, we focus on the
following main challenges towards accomplishing our analytic
aims:

(1) The need to define and to quantify endpoints that go
beyond conversion to psychosis and are clinically mean-
ingful for the CHR population. Several clinical endpoints
could be of importance for individuals at CHR, such as the
remission from CHR status, poor global functioning, or
cognitive deficits. While the definitions of these endpoints
are important and widely recognized, they vary across
studies and their stability over longer time-courses is not yet
well defined.

(2) The methods to be developed need to be generalizable.
This means that appropriate validation procedures need to
be in place such that when the developed models are
applied to new data, they should maintain the accuracy
obtained using the original training data, i.e., AMP SCZ data.

(3) The high number of assessments produces a large number
of features with different relevance that require feature
engineering for dimensionality reduction.

(4) The methods to be developed should accommodate fusing
multiple modalities. Previous studies have already high-
lighted that multimodal algorithms perform better than
unimodal algorithms in predicting transition to psychosis and
global functioning15,17,32,33. Employing multimodal models
for the large AMP SCZ assessment battery is promising since
AMP SCZ includes a broader number of domains than most
previous studies. However, the large variety among domains
(e.g., in the number of features per domain, see Fig. 2)
demands appropriate data fusion techniques.

(5) The methods to be developed should accommodate long-
itudinal measures to leverage the rich longitudinal measure-
ments in AMP SCZ. This is complicated by the fact that the
different domains have a different frequency of sampling
(Fig. 2). Longitudinal information collected within a short
period of time close to baseline may aid prediction models.
Also, including the complete longitudinal data may help to
characterize clinical trajectories and their relationship with
clinical endpoints, which could provide enhanced mechan-
istic understanding, as well as establish a naturalistic baseline
which can then inform change with treatment in clinical
trials.

Fig. 3 Key considerations in making an analysis pipeline. A typical
analysis pipeline involves several different steps. Each step depends
on key considerations and requires optimization of performance
that is specific for the study needs.
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Table 2. Technical considerations and challenges.

Examples of challenges Mitigation strategies Additional information; Advantages (+) and
Disadvantages (−)

AMP-SCZ acquires several different data
domains that might be combined for predictive
modeling

Stacking or meta-learning (see e.g., Koutsouleris
et al.17)

Late fusion techniques which combines unimodal
outputs using a weighted voting scheme
+ simple
+ accommodates missing modalities
+ allows step-wise combination useful for clinical
implementation
− doesn’t capture relationships between
modalities

Multiple kernel learning33,49,50 See example in section “Design of multimodal
approaches”
+ simple and interpretable
+ allows modalities to inform each other
− less powerful than neural networks

Early fusion12,67 Concatenates matrices of different domains
before model building
+ simple
− works for preselected features, difficult to
balance different modalities

Neural Network Learns the relevant features by successive
application of non-linear transformations
+ flexibility
− complex implementation and training
− low model interpretability
− requires very large training data

AMP-SCZ study combines measures with
several (different) time points

Joint-modeling71–73 Integrates change of measurements via linear
mixed-effects models into survival analysis to
predict outcome
+ integrates modeling of longitudinal measures
− relatively simplified approach that mainly
measures linear relationships
− difficulties with high numbers of longitudinal
variables

Dynamic time warping79–82 See example in section “Design of longitudinal
approaches”
+ accommodates different sampling frequencies
+ accommodates trajectories of different lengths
+ accommodates multiple longitudinal variables
− not predictive in itself

Mere combining (concatenating) data from
different time points

Include mere baseline and longitudinal data in
the feature space
+ very simple approach
− loss of temporal order information

Latent trajectory analysis (e.g., latent growth
curve modeling2, Bayesian nonparametric
trajectory mixture modeling approach75)

Identifies underlying patterns or latent classes
within longitudinal data to uncover distinct
trajectories or patterns of change over time
+modeling longitudinal trajectories as endpoints
might provide more stable and clinically relevant
outcomes
− large sample sizes and sufficient number of
time points needed for reliable estimates

The high number of assessments produces
many features with different relevance

Model Regularization65 Several algorithms integrate feature selection
mechanisms within the learning phase of the
model
+ supervised selection of features that might
reflect associations between features
− there are several regularization approaches,
each with their own assumptions.

Dimensionality reduction such as independent
component analysis62, principal component
analysis61, non-negative matrix factorization63

Project data into a lower-dimensional space,
capturing essential components
+ enables simpler prediction models
+ eliminates redundancies
− unsupervised; might discard predictive
information
− might sacrifice interpretability

Uniform manifold approximation and
projection95
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Table 2 continued

Examples of challenges Mitigation strategies Additional information; Advantages (+) and
Disadvantages (−)

Hypothesis-driven feature selection12 Researchers preselect features that should be
included in the models
+ might reduce the number of spurious findings
+ increase interpretability
− high researcher degree of freedom
− previously unexplored features will not be
included

Wrapper-based feature selection66 Integration of feature selection in the model
building process. Features are added to the
feature space stepwise and evaluated based on
their predictive performance until either a specific
number of features has been tested or stop-
criterion defined by the researcher has been
fulfilled.
+ has proven high predictive accuracies in
previous studies
− high computational demand
− might easily lead to overfitting

Expected missing data in several data
modalities

Prediction algorithms that allow for missing
data in their input (e.g., random forest)

Some algorithms treat missing data as
informative data itself
+ no additional imputation required
+ missingness itself might be informative for
outcome predictions
− several algorithms that require complete data
cannot be used (e.g., support vector machine)

Imputation methods, e.g., mean/median
imputation, k-Nearest Neighbor imputation96,
Multiple Imputation by Chained Equations
(MICE)97

Missing values are replaced with best estimates
based on different methods
+ increases sample size
+ enables the use of algorithms not adapted for
missing data
− assumes a model for imputation that may bias
the prediction

Variables might be confounded with the
outcomes of interest, e.g., age, sex, race,
ethnicity, socio-economic status, intelligence
quotient

Including potential confounds as features As several of the potentially confounding
variables might carry predictive power for the
outcome, they can directly be integrated in the
models
+ if appropriately testing their predictive power,
we can learn about their contribution to the
outcome prediction
− might reflect cohort specific associations
− may require a control sample

Regressing out their effect Statistically removing the influence of
confounding variables
+ applicable to all domains
− potential non-linear effects will not be captured
− might also remove effects relevant for the
disorder, e.g., if males are more likely to transition
to psychosis

Training models on subgroups of individuals Segmenting the dataset based on specific
characteristics or criteria
+ captures subgroup specific association
− sample sizes might become too small for
complex modeling

Propensity scores and confound-isolating cross-
validation

Systematically leaving out specific subgroups
+ allows quantification of performance without
confounds
− equivalent to discarding certain samples

AMP-SCZ is a world-wide study and models
should perform across countries and diverse
clinical/research facilities (generalizability)

Split sample based on a predefined cut-off in
discovery and replication sample

See section “Selection of a validation plan” for
description of validation in AMP-SCZ study
+ unbiased test of model performance
− reduction in sample size, which is especially
relevant for model training

Leave-site out cross validation48 See section “Selection of a validation plan” for
description of validation in AMP-SCZ study
+ training across different sites and direct testing
whether model performs in left-out site
−might lead to high variance of estimated model
performance due to site-specific characteristics

N. Penzel et al.
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RESULTS
Analysis design for AMP SCZ
To achieve its analysis aims, AMP SCZ is intending to use
quantitative models based on state-of-the-art machine learning
(ML) approaches for individual-level inferences47 and risk
monitoring. Specifically, we are selecting ML methods that
address some of the aforementioned challenges, following three
principles: (1) Robustness—includes reliable cross-validation and
independent replication48; (2) Flexibility—capable of handling
diverse features from different domains that may be indepen-
dent or non-linearly related, including missing and unmatched
entries49,50; and (3) Methods that are clinically informed—that
can be guided by informative features preselected by experts,
and the predictions can be mapped back to individual
features12. Importantly, we prioritize tools that will balance
optimizing accuracies with providing interpretable models
(instead of “black box” analyses). Therefore, we will make use
of explainable artificial intelligence51 that identifies which
features and potential biomarkers contribute to the individual-
level inferences.
This section describes the design decisions taken for AMP SCZ

along with examples of benchmark experiments performed on
legacy data supporting the decisions.

Selection and quantification of clinical endpoints. The primary
endpoint of the AMP SCZ study is the development of a
psychotic disorder (conversion), assessed by the Positive
SYmptoms and Diagnostic Criteria for the CAARMS Harmonized
with the SIPS (PSYCHS)52 within 12 and 24 months after initial
assessment. Secondary endpoints of AMP SCZ are sustained
remission from the CHR syndrome and persistent CHR
syndrome (non-conversion/non-remission). Sustained remission
is defined as the absence of CHR criteria for at least six months
and until the last available follow-up4. Persistent CHR syndrome
is defined as individuals with absence of conversion or
sustained remission at 12 and 24 months after the initial
assessment. These endpoints were selected from several other
clinical outcomes that could serve as endpoints (see [Adding-
ton, J et al.1, within this special issue] for detailed description of
these other clinical outcomes). We selected the primary and
secondary endpoints based on their relevance for the classifica-
tion of the CHR population and robust quantification. The
definition of conversion is robust and reliable across studies,
whereas the criteria for the definition of remission are more
heterogenous across studies, with variable definitions of the
type of remission (clinical or clinical and functional) and the

period required for the definition of sustained remission. The
definition of remission for AMP SCZ was therefore based on
comparing the rate and stability of various remission definitions
in legacy data (NAPLS-3).

Selection of a validation plan. Generalizability is crucial to assure
robustness of quantitative models applicable for drug develop-
ment, clinical research, and clinical practice. Generalizable models
will maintain their performance when applied to individuals who
have not been involved in the model building phase, like those
from new studies or clinical trial populations48. Achieving
generalizability requires appropriate validation. Diversity in the
training sample is also important to assure that the model will
perform well on diverse ethnic and racial groups, and geographi-
cal locations. Through its large size and international coverage, the
AMP SCZ study uniquely offers the opportunity to implement an
extensive validation plan—an unmet need of most preceding
studies.
The AMP SCZ model validation plan involves several layers. The

ultimate test of model robustness will be performed on an
independent sample of N= 200 individuals at CHR entirely
excluded from the model building step. The size of this leave-
out sample was determined using a sample size analysis that
replaces standard power analyses, which cannot be directly
applied to prediction model problems. Here, we set the class
imbalance ratio (fraction of converters) and a desired performance
level using area under the ROC curve (AUC) as a metric of model
performance (analogous to an effect size). By varying the sample
size, we found the smallest sample size needed for a statistically
significant AUC at a selected significance level (p-value). The
significance level is calculated for rejecting the null hypothesis H0:
AUC= 0.5, i.e., that the AUC of the predictor is at chance level53,54.
We considered several combinations of AUC levels and imbalance
ratios (Fig. 4), and focused on a combination of a conversion rate
of 0.1 and AUC of 0.7, which reflects worse than average results
reported in the literature55. The sample size analysis determined
that for these values a held-out set of N= 100 would be
statistically significant at the p= 0.05 level, and N= 200 (see Fig.
4) would be statistically significant with p= 0.003. This sample size
analysis result matches that of a standard power analysis for
AUC56 yielding a required sample of N= 202 for AUC of 0.75,
power of 0.8, and 0.003 significance level. To allow room for
redundancy and to account for possible attrition within the held
out sample we decided on N= 200, where any predictive models
with AUC better than 0.7 or higher ratio of converters than 10%
would be statistically significant at more stringent significance
thresholds (Fig. 4). Accordingly, in our study, an AUC of 0.7 is

Table 2 continued

Examples of challenges Mitigation strategies Additional information; Advantages (+) and
Disadvantages (−)

Pre-harmonization by standardization of
operating procedures such as protocols for MRI
or clinical assessments52

Protocols are harmonized across sites
+ better comparability of the data across sites
+ assuring that differences across sites are related
with the catchment area and not based on
protocol differences
− translation of findings to cohorts with deviating
protocols is more difficult

Post-harmonization using statistical tools (e.g.,
harmonization of diffusion weighted imaging
data98, mean-centering of clinical variables13)

Statistically harmonize the data
+ modeling differences across sites allows model
application in diverse settings relying on post-
harmonization procedures
+ enhances integration of consortium-level data
− most approaches require adequate sample
sizes of controls to adjust for disorder-specific
effects
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designated as the minimal goal or acceptance criteria for model
performance. With a randomly left-out sample there is always the
chance that it does not represent well the heterogeneities of the
sample from which it was drawn. To mitigate this chance, the left-
out sample will be across all sites, maintaining a distribution of
positive symptoms similar to the expected distribution across the
entire sample, and includes samples collected throughout the
entire study term. Note that the left-out sample will not be shared
via the NIMH Data Archives (NDA) until the analysis stage of the
study is completed.
Prior to external validation, we will apply internal validation

approaches during the model building steps. For hyperparameter
optimization, when the number of hyperparameters is low relative
to training sample size, we plan to use repeated nested k-fold
cross-validation to estimate their optimal combination without
information leakage between training and testing phases17,48.
Instead of randomly dividing individuals into folds, a systematic
cross-validation design will inspect the transportability of learned
models by separating individuals into different folds based on
specified characteristics of interest. Previous studies have, for
example, explored whether models generalize across sites17,57, i.e.,
whether models trained on some sites generalize to a completely
held-out site, which represents an important step towards
potential model implementation into clinical practice. Similarly,
in AMP SCZ, we plan folds that include testing for model
transferability across ethnic or racial groups, sex and gender, and
countries. We also plan to use bootstrapping techniques to
estimate confidence intervals of model performance in the
population sample, and for finding patterns in the data58.

Feature engineering and selection for unimodal models. Feature
selection and other dimensionality reduction strategies of the
input data are important to simplify the analysis tasks. We plan to
use a combination of different strategies to reduce dimensionality
at varying analysis stages. One such strategy is to select
hypothesis-driven features based on a priori expert knowledge12.
Features of interest in the AMP SCZ study have been identified by
dedicated domain specific AMP SCZ workgroups and many can be
found in the domain specific manuscripts in this special issue.

Deriving composite scores is another domain specific approach,
where based on previous studies and expert knowledge we will
combine several scores into meaningful overall scores. Examples
include composite scores for interview-based features (see
[Addington, J et al.1, within this special issue]), and for cognitive
measures (see [Allott, K et al.42 within this special issue]). In
neuroimaging, hypothesis-driven feature selection includes
extracting information across anatomical regions of interest, for
example gray matter regions59 or specific white matter tracts60.
Additional data-driven analytical approaches for dimensionality
reduction such as principal component analysis (PCA)61, indepen-
dent component analysis62, non-negative matrix factorization63

and multidimensional scaling64 aim to represent the original data
in a new feature space, thereby uncovering the underlying data
structure. Several of the ML algorithms we plan to use integrate a
feature selection mechanism within their model learning phase.
For example, the elastic net65 is a stable regularization method
that reduces dimensionality by encouraging sparsity as in the
LASSO regularization. Another example we plan to use during the
model optimization stage, when model complexity allows it, is
wrapper-based feature selection66, where the optimization is
performed while individual features are added or removed
consecutively to the feature space. In each step, the predictive
performance of the model is evaluated and only features that
improve model performance are included, until a pre-set number
of features or other pre-set stop-criteria have been fulfilled.

Design of multimodal approaches. Multimodal prediction models
combine information obtained from different data sources which
may be complementary or display higher-order relationships. In
previous studies, multimodal prediction models have outper-
formed unimodal prediction models in forecasting long-term
outcomes in individuals at CHR17,32,33. However, technical difficul-
ties limit the construction of multimodal models, thus, most studies
still focus on a single data domain or on a small number of
domains34. Several fusion approaches exist and can roughly be
categorized by when in the analysis stream (early, intermediate,
late) data is integrated or fused across modalities (see Table 2 for a
non-exhaustive overview). Early fusion is a simple fusion approach
that concatenates features from all modalities and uses them as
input for a multivariate model. The approach is effective for small
feature sets from a limited number of modalities12,67 but less so for
varying dimensionalities across modalities as expected in AMP SCZ
(Fig. 2). In the case of varying dimensionalities, modalities with
many features will contribute more than those with a small
number of features. Late fusion trains unimodal models for each
modality and then combines their output using a weighted voting
scheme. This approach is effective for correlated modalities, in
which case averaging across modalities can reduce noise and
improve accuracy15,17. However, this approach is less effective
when modalities contain complementary information (i.e., higher-
order relationships) with synergies (and redundancies) that can be
exploited during learning, which late fusion ignores. Finally,
intermediate fusion approaches apply unimodal layers on each
modality to represent it with a small and set number of composite
variables (similar to late fusion). Then, it combines the composite
variables across modalities (similar to early fusion)49,68. During
learning, signals from all modalities inform each other even at the
first unimodal layer. Given the large number of domains in AMP
SCZ, the large variability in dimensionality across domains, and the
expected complementary aspects across domains, intermediate
fusion was deemed most suitable.
AMP SCZ plans to utilize multiple kernel learning (MKL), which is

an intermediate fusion approach, as the main data fusion
approach, drawing from our experience using MKL in previous
psychosis prediction tasks33, and on legacy data.
MKL extends other popular kernel-based classification algo-

rithms such as support vector machines (SVMs)69. Kernels define a

Fig. 4 Sample size analysis for predictive models. The curves in
the figure show the dependency of significance on sample size for 4
model scenarios differing by AUC value and conversion rate.
Significance, quantified by a z-score, represents the test with a null
hypothesis that the AUC is the same as chance level AUC (0.5). The
associated significant levels of p= 0.05 and p= 10−3 are marked.
The model scenarios are characterized by a minimal AUC (analogous
to the effect size in traditional power calculations) and by a minimal
conversion rate. For example, the red line describes a model with an
AUC of 0.7, and conversion rate of 10%.
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similarity score for any pair of samples. Once a kernel is defined, a
similarity matrix is calculated for all pairs of samples and is then
used to perform classification. For example, SVM uses the similarity
matrix to identify support vectors that define a separation plane
between two classes. MKL extends SVM by learning a multimodal
kernel as a weighted sum of unimodal kernels49,50. The use of a
similarity score to perform classification in the multimodal kernel
approach ensures no bias towards any modality (even in the
presence of differing dimensionalities) while incorporating infor-
mation from all modalities during model training. Here we present,
by way of example, results from the application of MKL on the
SHARP dataset (Table 1) to predict conversion to psychosis (Fig. 5).
We tested MKL by fusing four modalities from the SHARP data

(N= 69, converters: N= 14, 20%) and compared the results with

unimodal predictions. First, we ran unimodal models based on
baseline data and selected demographic information (age, sex,
education, and marital status) along with 3 modalities showing at
least moderate (AUC > 0.6) predictive power for predicting
conversion: cognition, skeletonized mean diffusivity maps from
diffusion weighted MRI (mean diffusivity, DWI-MD) and EEG
(Oddball task event-related potential, ERP) (Fig. 5A). Comparing
the AUC using 25 repetitions of 4-fold validation, MKL (AUC 0.73)
outperformed the best unimodal model (Cognitive scores; logistic
regression with elastic net, AUC 0.69; Fig. 5B). We further
investigated stability and information content. MKL provides a
characteristic feature weight vector for each modality, indicating
the importance/contribution of each feature. We quantified
stability by the variability in the feature weight vector across 100

Fig. 5 Multimodal fusion of four modalities to predict development of psychosis. A We used multiple kernel learning (MKL) to combine
signals from four modalities, to predict development of psychosis from baseline data in individuals at CHR from the SHARP study. Our analysis
fused demographic information with EEG, cognitive scores, and mean diffusivity maps obtained from diffusion weighted imaging (DWI-MD).
B Using 25 repetitions of 4-fold validation we observed an advantage of MKL (AUC= 0.73) over individual modalities (logistic regression with
elastic net, AUC= 0.69 for the best modality, which was Cognition). C Linear MKL provides a characteristic feature weight vector for each
modality that is used to project individual samples. Stability is quantified by the variability in the feature weight vector across 100 training
folds. D Weight vectors for DWI-MD from MKL show more stability (vary less) and additional information (less overlap) compared with weight
vectors from DWI-MD unimodal models, and DWI-MD t-statistics vectors derived from univariate group comparisons. E Visualization of the
correlation between prediction signals from different modalities (within converters). F Visualization of DWI-MD weight feature vectors derived
from MKL provides interpretability (e.g., locations on the brain). Units are z-scores across training folds.
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training folds (Fig. 5C). Using DWI-MD as an example, we compared
the variability of the weight vectors obtained for MKL with those
obtained for the unimodal model and with the variability of a
t-statistics vector obtained by performing a univariate group
comparison for each feature. We used the two principal
components obtained from PCA to visualize the variability in 2D.
MKL had less variability compared with unimodal models and with
t-statistics, indicating that the inclusion of more modalities
stabilizes the fit. Also, the unimodal variability and the t-statistics
variability were overlapping, while the MKL variability was less
overlapping, indicating that MKL injects additional information to
learned patterns. MKL also allows us to study the redundancy of
predictive information across modalities by computing the
correlation across samples between the projection to feature
maps of each modality (i.e., how correlated the decision signal
picked from each modality is in test samples). Focusing only on
individuals who developed psychosis, we observed a positive
correlation between predictive signals coming from the EEG and
DWI-MD measures, as well as between cognitive scores and
demographics (see red lines in Fig. 5E), whereas the predictive
signals of EEG and demographics were anticorrelated. Another
advantage of the MKL approach is that the prediction patterns
themselves can be interpreted. For instance, in DWI-MD, the
prediction is driven by increased MD around the corpus callosum,
especially in the forceps major (Fig. 5F), consistent with previous
findings in CHR studies70. Together, our proof-of-concept analysis
showcases how MKL can increase predictive power while
maintaining robustness (internal cross-validation), flexibility
(accommodates any kind of modality) and interpretability (pro-
vides unique insights about predictive signals).

Design of longitudinal approaches. As outlined in the “Analysis
aims of AMP SCZ” section, longitudinal analyses serve two main
purposes, leveraging domains with varying timescales throughout
the two-year study protocol. First, the prediction of endpoints by
analyzing data from the first two months of assessments
longitudinally. Second, longitudinal analysis of all time points to
identify subgroups based on characterizing trajectories of CHR
individuals and their association with the endpoints.
Recent important efforts to accommodate longitudinal data in

psychosis prediction rely on joint modeling71–73. This technique
extends Cox regression survival analyses on baseline data to
include additional variables derived from time-varying predictors
using linear mixed effect modeling. However, current implemen-
tations of joint modeling are limited regarding the amount of
longitudinal information that can be added to the model,
requiring pre-selection of the most useful longitudinal parameters.
This complicates cross-validation approaches, and limits general-
izability. As a result, inconsistent findings are reported when
applied on CHR data71–74, and in the largest study joint modeling
did not improve prediction accuracy74.
The identification of longitudinal subtypes typically relies on

various clustering algorithms, aiming to uncover latent homo-
geneous subgroups. Identification of such subgroups holds
potential for informing drug development and for enrollment
selection in future clinical trials. A key challenge lies in finding
clustering approaches adept at capturing information embedded
in longitudinal clinical trajectories with multiple assessments at
varying intervals. Latent growth models and variations of it2, and
Bayesian Nonparametric Model for Disease Subtyping75,76 are
examples of such approaches.
The AMP SCZ team identified two main challenges regarding

the inclusion of longitudinal data: integrating longitudinal data
with baseline data in prediction models and combining signals
from asynchronously measured domains (e.g., visit-based assess-
ments and phone-based reports). More broadly, synchronization
becomes a concern when participants are sampled longitudinally
at different stages of illness development, thereby impacting

techniques that are not designed to accommodate such temporal
differences.
Our team identified several techniques to address the

synchronization issue, including dynamic time warping (DTW),
cross-correlation analyses77, and hidden Markov models78. Below
we focus on DTW79–82 since it seamlessly extends the MKL
approach to longitudinal analyses. DTW measures the distance
between two time series samples (uni- or multivariate) based on
the shape of trajectories, accounting for time delays and
assessment frequency differences through a “stretching” and
“compressing” mechanism (Fig. 6A). The matrix of pairwise DTW
distances across subjects/samples can then be included in
prediction algorithms, or in clustering approaches to identify
trajectory-based subtypes.
To assess the effectiveness of DTW, we applied it to the five

Structured Interview for Prodromal Syndromes (SIPS)-based
positive symptoms of all NAPLS-3 CHR participants (N= 621) with
at least two visits, comparing it with baseline data. Using DTW to
incorporate longitudinal information from the baseline and
2-months follow-up, we generated a pairwise similarity matrix,
followed by multidimensional scaling (MDS) to visualize under-
lying structures and Kolmogorov-Smirnov test to compare
individuals who develop psychosis and those who did not. While
SIPS symptom distribution differentiated groups significantly at
baseline (D= 0.26, p < 0.001), inclusion of follow-up data via DTW
enhanced this distinction (D= 0.37, p < 0.001) (Fig. 6C versus Fig.
6B). In addition, applying DTW and MDS to the entire longitudinal
trajectories of the 5 SIPS positive symptom dimensions, excluding
conversion or post-conversion time-points, which is possible since

Fig. 6 Longitudinal analyses. An example using dynamic time
warping in the NAPLS-3 dataset. A Dynamic time warping (DTW) is a
method that quantifies the dissimilarity (distance) of pairs of time
series. Here, we provide a schematic diagram about DTW: Its key
feature is that it is sensitive to the overall shape of trajectories,
accommodating temporal delays between them or differences in
number of time points. It uses a “stretching” and “compressing”
mechanism to match corresponding time points across time series.
Given a list of time courses, DTW produces a matrix of pairwise
distances. B Multidimensional scaling (MDS) representation, a
dimensionality reduction method based on preservation of pairwise
distances, for individuals at CHR (blue: non-converters within years,
red: converters) of SIPS-based positive symptoms at the baseline
visit in NAPLS. C MDS representations of SIPS at baseline and month
2 visits in the same individuals, showing nascent differentiation
between the groups, with converters away from the center. D MDS
representation of whole SIPS trajectories using DTW shows most
pronounced grouping of converters.
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DTW can accommodate samples with different lengths of follow-
up assessments, further improved the separability of the two
groups (D= 0.39, p < 0.001) (Fig. 6D versus Fig. 6C). These results
underscore the value of longitudinal information, even at two
months from baseline, in predicting psychosis development.
This benchmark analysis demonstrates the value of DTW in

generating embeddings from longitudinal signals and is the basis
for the selection of DTW as a main tool in the AMP SCZ
longitudinal analysis. We plan to extend DTW to all longitudinal
domains and use the DTW embeddings to create kernels that
could be included in methods like MKL (Fig. 5) to combine
longitudinal and baseline data.
In addition, we will consider state space models to integrate

multimodal longitudinal information. For example, the Kalman
Filter (KF)83 dynamically estimates system states to, for instance,
estimate whether or not an individual belongs to a particular
family of trajectories, by optimally combining noisy measurements
iteratively over time with predictions based on a model of the
system’s dynamics. KF was historically used in the Apollo space
program by National Aeronautics and Space Administration
(NASA) and in Global Positioning System (GPS) systems, but has
also been used in clinical contexts to estimate clinical
trajectories84–86.

DISCUSSION
AMP SCZ, with its ongoing recruitment, has grown to be the
largest and most diverse dataset in CHR research, providing
unparalleled depth of information and countless analysis pro-
spects. The analysis plan for AMP SCZ described here aims to
facilitate the unique opportunity of this observational study to
generate a platform that could improve quantitative modeling,
facilitate clinical trials, and potentially improve the clinical
outcomes of affected individuals.
An important aspect in the design of the analysis plan is the

inclusion of multidisciplinary experts from academia, people with
lived experiences, industry, drug companies, funding agencies,
and other stakeholders. These collaborative efforts have been
directing the analysis plan towards a need to establish a
transformative impact on individual treatment paths through
clinical trials. As a result, the analytical approaches selected for the
AMP SCZ observational study establish a foundation for future
clinical trials in several important ways: (1) Predictors developed
through AMP SCZ will aid in population enrichment for clinical
high-risk studies87. This would be particularly beneficial for trials
aimed at addressing the onset of psychosis. Given the compara-
tively low conversion rate, conducting a clinical trial would
necessitate a substantial number of CHR participants. However,
population enrichment strategies, such as pre-screening subjects
and excluding individuals more likely to remit, could elevate the
conversion rate among the remaining subjects, thereby reducing
the required number of study participants. (2) Once developed,
the multimodal predictive models and associated risk calculators
can be disseminated for validation and application across various
clinical populations88,89. (3) By characterizing the trajectories of
individuals at CHR and exploring their association with endpoints,
we can pinpoint outcome measures more likely to be observed
within the shorter timeframe of a clinical trial5,8,11. For example,
several relevant indicators could be considered, based on the
findings within AMP SCZ, including additional outcomes such as
persistent cognitive or functional impairments, as well as
persistent positive/negative symptoms. (4) Identifying CHR sub-
groups based on their assessment trajectories over time2,75 can
enhance our mechanistic understanding, and may identify
individuals more likely to benefit from specific treatments. (5)
Incorporating longitudinal data into prediction models will enable
dynamic modeling approaches90,91 that could inform clinical
decisions at each evaluation point in future clinical trials. (6)

Selecting the MKL approach as our primary prediction algorithm
will allow us to explore the association between domains and the
endpoints. This facilitates the identification of key measures
crucial for prediction, while also identifying redundancy between
measures. Such insights are invaluable for designing a more cost-
effective assessment protocol for future trials. Exemplifying this,
we show insightful associations across the different domains,
included within the model, such as the correlation between
predictive signal from EEG or DWI-MD. While derived from a
relatively small sample, these findings can illustrate how multi-
modal modeling that integrates complementary data types can
improve predictive accuracies, thus improving the probability to
identify those at highest risk for developing poor mental health
outcomes early, and further, how these models can provide
mechanistic insight.
Another important aspect is the addition of novel smartphone

and actigraphy-based assessments. Incorporating these newly
available assessments into AMP SCZ required developing new
data aggregation and analysis pipelines [Wigman, J et al.44, within
this special issue]. These assessments operate on different
timescales compared to traditional measures, necessitating
adjustments in our analysis plans. While the current literature
lacks approaches for the integration of such data, the importance
of dynamic predictions is acknowledged in the field92. To address
this, we introduced dynamic time warping to handle the diverse
assessment time points of different modalities, demonstrating its
potential to enhance predictive performance. However, the field
of digital biomarkers, including smartphone-based assessments,
natural language processing and audio-video material, is rapidly
evolving. We anticipate that through collaborative efforts within
AMP SCZ we will develop additional novel analysis approaches for
generating informative summary scores and predictors. We
believe that our developments will benefit the wider community
by establishing analysis pipelines for these innovative measures. In
addition, we remain adaptable to incorporate other emerging
analyses in this dynamic field. We recognize the significance of
these new measures in tracking dynamic changes in symptoma-
tology, well-being, and behavior in real-time. This is especially
relevant in the context of planned future clinical trials, where such
real-time tracking can offer valuable insight into treatment effects,
including multiple treatment trajectories/outcomes, and adverse
events.
The algorithms developed for AMP SCZ will utilize features from

a wide array of assessment tools. For optimal application of these
algorithms in future data, consistency in assessment tools is
crucial. However, once prediction algorithms are established and
trajectories are characterized, we aim to assess the contribution of
different assessment tools to identify redundancy and calculate
the cost-benefit tradeoff of including or excluding certain
assessments. Such analysis is crucial not only for alleviating the
burden on participants caused by intensive assesments93, which
could improve attrition rates94, but also for making the AMP SCZ
protocol more accessible to the broader community. For instance,
by prioritizing more accessible measures to clinicians in the
community or in lower-income countries, we can optimize the
inclusion of assessments, enhancing accessibility and making
them more applicable and beneficial to regions with limited
resources.
A particular strength of the AMP SCZ project lies in its world-

wide participant recruitment, encompassing various cultures,
ethnicities, healthcare systems, and environments, with represen-
tation of minority groups and different socio-economic back-
grounds. This recruitment strategy will contribute to a broader
transferability of the newly developed predictors. In addition,
models will be assessed for potential biases, and for their potential
transferability across key subgroups, e.g., across sex, race, or
ethnicity. By integrating these important aspects, AMP SCZ
hopefully contributes not only to the development of models
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able to forecast important mental health outcomes in individuals
at clinical high-risk for psychosis but which also are appliable to a
wider population, fostering equity in mental health research
and care.
In summary, this paper outlines the analytic aims of AMP SCZ,

its core analysis principles, and addresses several key challenges.
These analyses are set to establish an important infrastructure for
future studies involving individuals at CHR and will support the
initiation of clinical trials. Many additional analyses, supporting the
primary and secondary aims, or capitalizing on the comprehensive
data of the AMP SCZ study, are planned among various
investigators within the AMP SCZ consortium. Furthermore, it is
important to note that the data collected in the AMP SCZ study is
made available through the NDA, and the developed algorithms
will be made available through the AMP SCZ website. Conse-
quently, we anticipate that the broader research community will
utilize this unique contribution to implement novel analyses, thus
further advancing research and potentially lead to transformative
impact on individual treatment paths.

DATA AVAILABILITY
The data collected for the AMP SCZ study are available via scheduled releases at the
NIMH Data Archive (NDA) AMP SCZ Data Repository (https://nda.nih.gov/ampscz).
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