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ABSTRACT OF THE DISSERTATION

Mass Customization: Theories and Application

by

ALI FATTAHI

Management - PhD

University of California, Los Angeles, 2019

Professor Reza H Ahmadi, Chair

As a general trend, firms are moving towards mass customization by allowing customers to

configure products by selecting among options (features), e.g. automotive industry, con-

sumer electronics, computers, furniture, and aircraft. This dissertation is motivated by the

problems faced by a global auto manufacturer that offers 100-500 options for a car. These

options can be combined in different ways resulting in 1025-1040 different configurations (end-

products). Since it is impossible to forecast the demand for configurations, firms forecast

options’ demand.

In this dissertation, we study three major problems. First, the current forecasting ap-

proach ignores the relationships between options and, as a result, the forecasts are frequently

incorrect (inconsistent), which results in excess inventories, shortages, and customer dissat-

isfaction. We present an effective approach that verifies consistency of the forecast and finds

the best consistent forecast in the case of inconsistency. The second problem is to deter-

mine how many units of each part is required over the planning horizon, known as parts’

capacity planning problem. The firm signs contracts with parts’ suppliers based on the pre-

dicted parts’ capacities. We present a methodology for predicting parts’ capacities. Last,

we generalize and extend the methodology developed in the first problem and introduce a

ii



new variation of the Non-Negative Least-Squares (NNLS) problem that is defined as finding

the Euclidean distance to a convex cone generated by a set of discrete points. Our new

variation considers the cases where the discrete points are implicitly known and there are an

exponentially large number of them. We present an effective approach for solving this new

variation of NNLS, design a lower bound, and establish the convergence rate of the lower

and upper bounds.
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Chapter 1

Introduction

Firms in several industries including automotive, consumer electronics, aircraft, and furniture

allow customers to configure products by selecting options. This dissertation is motivated

by the problems faced by a global auto manufacturer (GAM) that offers 100-500 options

for a car. A configuration (end-product) is comprised of a collection of options that satisfy

engineering (technological) constrains—e.g., some options are mutually incompatible while,

in other instances, selection of an option may require selection of another option. There are

usually 1025 − 1040 different configurations for a car model.

Since it is impossible to forecast the demand at the level of configurations, firms forecast

options’ demand. In Chapter 2, we note that when firms forecast options’ demand, they

fail to consider all engineering constraints that define relationships between options, and as

a result, the forecasts are frequently inconsistent. This has resulted in significant excess

inventories, shortages, and customer dissatisfaction in the GAM. We study the problem of

finding the best consistent forecast. This is a new and important problem. We formulate

this problem as finding a point in the convex cone of feasible configurations that has the

minimum Euclidean distance to a given forecast. Finding feasible configurations is itself a

hard problem. We present an approach that sequentially constructs the convex cone and

stops when it finds the best consistent forecast. We analyze the theoretical properties of our

approach and establish its convergence rate. We apply our approach to a set of real instances

1



from the GAM and observe that it effectively identifies inconsistent forecasts and finds the

best consistent forecasts.

Firms use demand forecast to determine parts’ capacities—i.e., the number of units of

each part that is required over the planning horizon to satisfy demand. The GAM signs

contracts with suppliers based on parts requirements. The total parts’ cost in the GAM

is around $90 billion per year and hence errors in parts’ capacities can result in significant

wastage. As stated above, due to the very large number of end products, the firm can only

forecast demand at the option level. The challenge is that parts’ requirement cannot be

directly determined based on options’ forecast since a large number of parts’ requirements

(up to 60%) is based on the combinations of options selected. The problem of determining

parts’ requirement in the context of mass customization is new and challenging. In Chapter

3, we study this problem and show that the current approach used by the GAM has a

mean absolute percentage error of 35.9%. We develop an effective approach for solving large

industrial instances of this problem and compare our approach to that of the current practice.

In Chapter 4, we introduce a new variation of the Non-Negative Least-Squares (NNLS)

problem that is defined as finding the Euclidean distance to a convex cone generated by a

set of discrete points. Existing works in the literature assume that the set of discrete points

are explicitly known. In the new variation, the discrete points are implicitly known and

there are an exponentially large number of them—e.g., the feasible solutions of an integer

program. We design an effective solution approach for this new problem, present a lower

bound, and establish the convergence rate of the lower and upper bounds. Chapter 4 in

fact generalizes and extends the theory developed in Chapter 2 and it can have applications

in manufacturing, machine learning, clustering, pattern recognition, and high-dimensional

statistics.
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Chapter 2

Forecasting Options’ Penetration Rates Problem

2.1 Introduction

This chapter is based on the problems faced by large auto manufacturers (LAMs) that allow

customers to configure their cars on the Internet. Automobiles consist of a number of mod-

ules such as engines, interiors, and suspensions, and each module has a number of different

variants or options. A customer configures his or her product by choosing options that are

compatible. The number of valid configurations can be extremely large. For example, the

number of valid configurations for the Mercedes C-Class is in the order of 1021 (Kulber et al.,

2010). Manufacturers need demand forecasts at the level of configurations for production

planning, supplier contracts, and pricing decisions. Configurations drive the bill of materi-

als. Unfortunately, the number of potential configurations and the difficulty in enumerating

feasible configurations make it impossible to forecast configuration demand.

Most firms forecast at the option level. It is common practice to present this forecast in

terms of a penetration statistic (PS). A PS consists of an assigned penetration rate to each

option that is simply the fraction of cars that they believe will have that option over the

planning horizon. In other words, if the penetration rate of an engine is 0.2, it is forecast

that 20% of cars sold will have that engine. PSs are used to plan inventories and contract

with suppliers. Errors in PSs can be extremely costly since inaccurate PS forecasts can result
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in excess inventories, shortages, and customer dissatisfaction.

Valid configurations conform to several restrictions between options that are called rules

and represent marketing, manufacturing, process, and engineering constraints that allow

products to be producible. The total demand of configurations and hence the forecast PS

must satisfy these rules. A major drawback of forecasting PSs is the difficulty in ensuring

their consistency with the rules. As a consequence, forecast PSs are frequently infeasible.

LAMs face the major challenge of determining the feasibility of the forecast PS and modifying

it in the case of infeasibility.

Rules can be divided into two general categories: Family Cardinality Rules (FCRs),

which require selection of exactly/at most one option from a family of options, and Option

Implication Rules (OIRs), which consist of logical relationships among options from different

families. The following example illustrates these terms.

Example 1. Features and specifications of the 2016 Hyundai Tucson1 are grouped into

families such as mechanical, exterior, and interior features. The four trim packages of this car

are the SE, the Eco, the Sport, and the Limited. Fig. 2.1 compares the engine, transmission,

and wheels of these trims. The SE’s engine and transmission are ENG1 and TRN1, respectively,

while the Eco, Sport, and Limited’s engine and transmission are ENG2 and TRN2, respectively.

The wheels of the SE and Eco are WHL1, and the wheels of the Sport and Limited are WHL2.

Note that, in the Sport and Limited, the engine, transmission, and wheels are identical.

Assume for the sake of illustration that the 2016 Hyundai Tucson has only six options:

ENG1, ENG2, TRN1, TRN2, WHL1, and WHL2. As shown in Fig. 2.1, there exist three FCRs,

and two OIRs; exactly one option must be chosen from each family. According to the rule

ENG1⇐⇒TRN1, ENG1 is selected if and only if TRN1 is selected. Also, ENG1=⇒WHL1 means

that if ENG1 is chosen, then WHL1 must be chosen as well. Note that engine FCR is also

1See hyundaiusa/tucson website for complete details. Notations: ENG1 = Inline 4-cylinder, ENG2 =
Inline 4-cylinder turbocharged, TRN1 = 6-speed automatic transmission with SHIFTRONIC, TRN2 = 7-speed
EcoShift Dual Clutch Transmission, WHL1 = 17-inch alloy wheels with 225/60HR17 tires, and WHL2 = 19-inch
Sport alloy wheels with 245/45HR19 tires.

4
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2016 HYUNDAI TUCSON
FEATURES & SPECIFICATIONS

SE ECO SPORT/Limited

ENGINE ENG1 ENG2 ENG2

TRANSMISSION TRN1 TRN2 TRN2

WHEELS WHL1 WHL1 WHL2

FAMILIES: (exactly one option from each family)

Engine Family: {ENG1,ENG2}
Transmission Family: {TRN1,TRN2}
Wheels Family: {WHL1,WHL2}

OPTION IMPLICATION RULES:

ENG1⇐⇒TRN1

ENG1=⇒WHL1

Figure 2.1: A simplified version of the features and specifications of the 2016 Hyundai Tucson.

equivalent to ENG1⇐⇒ ¬ ENG2. The number of OIRs may vary based on the format—e.g.,

one could write ENG1⇐⇒TRN1 or as two OIRs ENG1⇐=TRN1 and ENG1=⇒TRN1.

Configurations that satisfy the FCRs and OIRs are: SE={ENG1, TRN1, WHL1}, ECO={ENG2,

TRN2, WHL1}, and SPORT/LIMITED={ENG2, TRN2, WHL2}. The number of candidates for

configurations is 26, while only three feasible configurations exist.

Suppose the rates of ENG1, ENG2, TRN1, TRN2, WHL1, and WHL2 are forecast as 0.6, 0.4,

0.6, 0.4, 0.3, and 0.7, respectively, meaning that 60% of 2016 Hyundai Tucson sales will have

ENG1, 40% will have ENG2, and so on. These rates satisfy the FCRs (e.g., the rates of ENG1

and ENG2 add up to 1) but they are infeasible as they do not satisfy the OIRs. Due to the

rule ENG1=⇒WHL1, any configuration that includes ENG1 must also include WHL1; however, a

configuration might have WHL1 but not ENG1. Thus, the rate of WHL1 must be greater than

or equal to the rate of ENG1.

Consider Table 2.1 and assume that Hyundai has forecast a total of 1000 Tucsons to be

sold in 2016 and procures engines, transmissions, and wheels accordingly (third row of Table

2.1). Although Hyundai has 600 ENG1 in inventory, they can use at most 300 ENG1 since

there are only 300 WHL1 available. Unused quantities are found by subtracting the fourth
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Table 2.1: Unused inventory and lost sales as a result of infeasible forecasting (total sale =
1000)

ENG1 ENG2 TRN1 TRN2 WHL1 WHL2

Forecast PS 0.6 0.4 0.6 0.4 0.3 0.7

Inventory 600 400 600 400 300 700

Maximum usable quantities 300 400 300 400 300 400

Unused quantities 300 0 300 0 0 300

Shortage (lost sale) 1000− (300 + 400) = 300

row from the third row, and shortages are calculated by noting that they can sell at most

300 SE and 400 SPORT/LIMITED. Therefore, Hyundai incurs significant inventory costs due

to unused inventory and lost profits as a result of lost sales.

Checking if a PS is feasible and finding the best feasible PS in the case of infeasibility is

very important not only in the auto industry but also in any company producing configurable

products. The LAM that we have been in contact with has around 400 options and 4000

rules for each car and the company’s production planning group currently employs a manual

process to detect some of the rule violations. Once a set of violations is detected, they send

an error report to the regional marketing analysts who then seek appropriate modifications

to the PS. These cycles are repeated until all evident violations are eliminated. However, this

approach does not ensure that the PS is feasible. The current approach is time-consuming

and fails to generate good alternatives when the forecast is infeasible.

In this chapter, we propose a formulation where the feasible region is the convex cone

of feasible configurations and the objective function minimizes the Euclidean distance to

the forecast PS. We develop an approach, by adapting the “fully corrective” variant of the

Frank-Wolfe method (see, for example, Bach (2013); Clarkson (2010), and Jaggi (2013)),

that sequentially constructs the feasible region. Our algorithm stops when it either finds

a set of feasible configurations that are consistent with the given PS or when it finds the

closest feasible PS, if the given PS is infeasible. Although we require solving an NP-hard

subproblem at each iteration, we show that the optimality gap after k iterations will decrease

with O(1/
√
k). We present an upper bound on the convergence rate, under some mild
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assumptions, and establish the tightness of the bound. In addition, we show the connection

between our subproblem and the maximum weighted satisfiability problem (Wahlstrom,

2008; Dahllof et al., 2005) and use existing heuristics to solve the subproblems. We test our

methodology on a set of industrial instances and obtain very good solutions in a short time.

The remainder of this chapter is organized as follows. Section 2.2 presents related litera-

ture. Section 2.3 introduces our mathematical model and an alternative format for presenting

rules. In section 2.4, we present our algorithm and discuss its theoretical properties. In sec-

tion 2.5, we test the effectiveness of our algorithm and show its sensitivity to the number of

options and rules. This is followed by conclusions.

2.2 Literature

In addition to the automotive industry, a number of others, including consumer electronics,

computers, furniture, and aircraft (Feitzinger and Lee, 1997; Fohn et al., 1995; Kristianto

et al., 2015; Rodriguez and Aydin, 2011) allow customers to configure products by selecting

among options. While the use of modular design techniques and option-based product archi-

tecture (Ulrich, 1994; Siddique et al., 1998; Sanchez and Mahoney, 1996) increases the variety

that can be made available, it also presents a number of challenges for customers (Franke

and Piller, 2004; Huffman and Kahn, 1998; Chen and Wang, 2010; Walker and Bright, 2013)

and producers (Woehler, 2011; Ostrosi et al., 2012).

Researchers have studied ways to price different options (Rodriguez and Aydin, 2011)

and present assortments to consumers to learn about demand (Caro and Gallien, 2007;

Balseiro et al., 2014; Kok et al., 2008). In the assortment planning literature, finished goods

are presented to consumers and their choices are used to infer the relative attractiveness of

different variants. Much of this literature is concerned with digital goods such as Internet

advertisements where inventory of goods is not an issue. Assortment planning models have

also been developed for retailers, but the focus is on the set of products to be presented
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to the customer. Our work is concerned with developing demand forecasts for configurable

products. In this setting, parts needed for the configurable products have to be produced

in advance or at least the production facilities and supply contracts have to be set up well

ahead of demand realization. As previously stated, these decisions are based on PSs and

not forecasts for individual configurations. We are concerned with determining whether

the forecast PS is consistent with the rules that bind options. We develop a mathematical

programming-based model, present an algorithm, and provide insights into its convergence

rate.

The current format of the rules used by the LAM has been set up to facilitate activities

such as design and manufacturing. Work by Barker et al. (1989); Roller and Kreuz (2003),

and Amilhastre et al. (2002) is representative of the studies on representing rules related to

configurable products. This literature is concerned with facilitating activities such as product

design, engineering of production lines, and managing knowledge while we are concerned with

exploring whether a forecast PS is consistent with the given rules. We represent rules in a

manner that is simpler and more intuitive to mathematical programming.

At the core of our problem is a variant of the well-studied probabilistic satisfiability

problem (PSAT) which is known to be NP-complete (Nilsson, 1994; Finger and De Bona,

2011; Georgakopoulos et al., 1988). PSAT consists of a set of clauses where each clause is

the disjunction of one or more literals. A literal is either a Boolean variable or its negation.

Given an assignment of probabilities to clauses, the question is to check the consistency

of the given probabilities. PSAT is typically solved using a column generation technique

(Kavvadias and Papadimitriou, 1990; Hansen et al., 1995) that converges slowly and there

is no theoretical convergence rate guarantee. In our problem, rules can be written as a set

of clauses and a penetration rate can be thought of as an assigned probability to a clause

with one literal. Moreover, in our case, rules are all assigned probability 1, which simplifies

the definition of the feasible set and allows us to design a specialized methodology to solve
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this problem. The approach we propose is similar to the Frank-Wolfe method that was

originally developed to maximize a smooth concave function over a polytope (Frank and

Wolfe, 1956) and then extended to more general problems (see, for example, Demyanov and

Rubinov (1970)). Freund and Grigas (2014) discuss computational guarantees for various

step-size rules within this algorithm. We apply this classical approach in a novel way to a

problem with a non-convex objective function and a non-compact domain. We show that

our algorithm has a faster running time on this more complicated problem. Additionally, we

provide a lower bound on the optimum objective function value allowing the procedure to

stop with a known optimality gap.

2.3 Problem Formulation

Given a set of options, N = {i|i = 1, · · · , n}, with associated forecast PS, p̂ = (p̂1, · · · , p̂n) ∈

Rn, and a set of rules, we have to determine whether p̂ satisfies the rules and, if not, find

the best feasible PS (for the complete list of notations, see Appendix 2.8).

We next argue that our problem can be formulated as minp∈A ‖p− p̂‖, where ‖.‖ denotes

the Euclidean norm, the feasible set A can be expressed as cone(P) := {λp|p ∈ P, λ ≥ 0},

and P is the convex hull of feasible configurations (0-1 vectors). In this chapter, we assume

P 6= {} and P 6= {0}—i.e., there exists a nonzero feasible configuration. A point in cone(P)

is producible (feasible) since it can be represented as a nonnegative combination of feasible

configurations. Therefore, a given penetration statistic p ∈ Rn is feasible if and only if

p ∈ cone(P). We note that, in comparison to PSAT, we use the simplification that all

rules must be satisfied with probability 1, and hence, P becomes the convex hull of feasible

configurations (i.e., we do not need to consider probabilities when characterizing P).

We next show that Euclidean distance is the right objective measure to be considered.

Let q1, · · · ,qM ∈ Rn denote a collection of forecasts from different entities within the LAM

(this can include historical data). We define function f : Rn → R as f(p) =
∑M

m=1(p −
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qm)T (p − qm), which returns sum of squared errors for a given p. The LAM’s forecast p̂

is obtained by minimizing f over all p ∈ Rn without requiring p ∈ cone(P). p̂ is viewed

as a consensus forecast among participating entities. We remark that p̂ is provided to us

by the LAM and can be infeasible because it has not been verified against the feasibility

constraints. We augment the LAM’s approach by incorporating the feasibility constraints.

The following lemma shows that finding the nearest point (Euclidean distance) to p̂ in the

set cone(P) solves the original problem minp∈cone(P) f(p).

Lemma 1. Problem minp∈cone(P) ‖p− p̂‖ is equivalent to minp∈cone(P) f(p).

The proof is given in Appendix 2.9.1. Therefore, if p̂ is infeasible, we have to find a

feasible PS such that it has the minimum Euclidean distance to p̂. The result validates

the LAM’s desire to find the closest feasible PS if the forecast p̂ is infeasible. In summary,

our problem can be formulated as minp∈P,λ≥0 ‖λp − p̂‖. In subsections 2.3.1 and 2.3.2, we

present a format for representing rules and an alternative formulation of P.

2.3.1 Rules for Selecting Options

The LAM’s current format for representing OIRs and FCRs consists of a set of well-defined

propositional formulas (for details, see Appendix 2.9.2). It is known that these rules can

be written as formulae in conjunctive (or disjunctive) normal form (CNF or DNF) (see, for

example, Tseitin (1968); Wilson (1990); Chandru and Hooker (1999), and Yan and Hooker

(1999)). The LAM’s format is quite complicated and not easily conducive to modeling and

theoretical analysis. Although our methodology for solving our problem (presented in section

2.4) can be applied to rules in any format, we develop a convenient format called ASR.

Format ASR: Each option, say option OP01, has rules either in the form of OP01=⇒RHS,

where RHS is the disjunction of some literals, or in the form of OP01⇐=RHS, where RHS is

the conjunction of some literals (a literal is an option or its negation).

The benefits of ASR compared to a CNF formula are as follows: (1) the ASR format
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is more intuitive because each rule defines the consequences of selecting an option in a

straightforward manner, (2) the simple structure of rules in ASR format makes it easier

for managers to understand the relationships among options, (3) rules that are written

in ASR format lend themselves to more intuitive LP formulations (see subsection 2.3.2).

The following lemma establishes the sufficiency of ASR (an illustrative example is given in

Appendix 2.9.3). The proof is given in Appendix 2.9.4

Lemma 2. Format ASR is sufficient to represent the LAM’s rules for selecting options.

2.3.2 Linear Programming Model Using ASR Format

We employ an approach similar to that of the probability consistency problem (Bertsimas

and Tsitsiklis, 1997) to present an alternative formulation of P as a linear program. Let S

denote a subset of options and define S := {S|S ⊆ N}; hence, |S| = 2n. We define variables

x(S) ∈ [0, 1] for all S ∈ S. Consider Fig. 2.2 for illustration. Options A, B, and C divide the

universal set into 8 mutually exclusive and collectively exhaustive regions with probability

values x(.). The probability of some intersecting options is equivalent to the sum of all x(S)’s

where S includes such options. With some abuse of notations, we denote by p(E) ∈ [0, 1]

the probability of event E.

The probabilities of intersections are modeled as follows:

p
(
∧
j∈S

j
)

=
∑
Ŝ:S⊂Ŝ

x(Ŝ), ∀S ∈ S, (2.1)

∑
S∈S

x(S) = 1, (2.2)

x(S) ≥ 0, ∀S ∈ S. (2.3)

Using ASR format, there are two types of rules that we need to model. For the ease of

presentation, in this subsection, we concentrate on cases where literals in ASR are options

(not negations of options). Our results can simply be extended to the general case. Consider
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x(S8)

x(S3) x(S4)
x(S7)

x(S2)

x(S5) x(S6)

x(S1)

A

B C

S1 = {}
S2 = {A}
S3 = {B}
S4 = {C}
S5 = {A,B}
S6 = {A,C}
S7 = {B,C}
S8 = {A,B,C}
p(A) = x2 + x5 + x6 + x8
p(B) = x3 + x5 + x7 + x8
p(C) = x4 + x6 + x7 + x8
p(A ∧B) = x5 + x8
p(A ∧ C) = x6 + x8
p(B ∧ C) = x7 + x8
p(A ∧B ∧ C) = x8

Figure 2.2: Graphical illustration: three options; eight subsets; probabilities of intersections.
Note: e.g., x2 := x(S2).

a rule in the form of i⇒ j1∨· · ·∨jl. This rule is formulated as p(j1∨· · ·∨jl|i) = 1—i.e., given

option i is selected, at least one of options j1, · · · , jl will be selected with probability 1. Using

Bayes theorem and the inclusion-exclusion principle, p(i) = p
(
(i∧ j1)∨ (i∧ j2) · · · ∨ (i∧ jl)

)
.

Expanding the right-hand-side, we obtain:

p(i)−
l∑

m=1

p(i ∧ jm) +
∑

1≤jm1<jm2≤l

p(i ∧ jm1 ∧ jm2)−
∑

1≤jm1<jm2<jm3≤l

p(i ∧ jm1 ∧ jm2 ∧ jm3)

+ · · ·+ (−1)(l−1)
∑

1≤jm1<···<jml−1
≤l

p(i ∧ jm1 ∧ · · · ∧ jml−1
)

+(−1)lp(i ∧ j1 ∧ · · · ∧ jl) = 0, ∀ rules : i⇒ j1 ∨ · · · ∨ jl. (2.4)

Now consider a rule in the form of i ⇐ j1 ∧ · · · ∧ jl. This rule is equivalent to p(i|j1 ∧

· · · ∧ jl) = 1. Again, using Bayes theorem, we obtain:

p(j1 ∧ · · · ∧ jl)− p(i ∧ j1 ∧ · · · ∧ jl) = 0, ∀ rules : i⇐ j1 ∧ · · · ∧ jl. (2.5)

Once rules are written using ASR format, Eqs. (2.4) and (2.5) are used to formulate them

in terms of probabilities of intersections that are modeled in Eqs. (2.1), (2.2), and (2.3).
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Thus, we formulate P as follows: P = {p ∈ Rn| p satisfies Eqs. (2.1), (2.2), (2.3), (2.4), and

(2.5)}, which is a polyhedron in the space of variables p. In fact, P is the projection of some

bigger polyhedron in the space of variables p and x.

This formulation of P is intuitive because it is based on basic probability rules and Venn

diagrams. Furthermore, due to the use of conditional probabilities, our formulation is easy

to interpret. In existing literature, a feasible point of PSAT is represented as a convex

combination of feasible configurations (for a detailed discussion, see Chandru and Hooker

(1999)). We now show that our formulation of P is consistent with the classical formulation

of PSAT. In particular, we show that there exists a 1-to-1 correspondence between the set of

vertices of P and the set of feasible configurations. We begin with reformulating Eqs. (2.4)

and (2.5).

Lemma 3. Eq. (2.4) is equivalent to
∑

S:i∈S,
{j1,··· ,jl}∩S=∅

x(S) = 0, for all rules i⇒ j1 ∨ · · · ∨ jl.

Eq. (2.5) is equivalent to
∑

S:{j1,··· ,jl}⊂S
,i/∈S

x(S) = 0, for all rules i⇐ j1 ∧ · · · ∧ jl.

The first part follows from combining Eqs. (2.1) and (2.4) and the second part follows

from combining Eqs. (2.1) and (2.5). We next show that the set P is a polyhedron with

integer vertices. Let VP be the set of vertices of P. We define:

S0 :=
{
S ∈ S :

(
∃ rule i⇐ j1 ∧ · · · ∧ jl s.t. {j1, · · · , jl} ⊂ S, i /∈ S

)
∨

(
∃ rule i⇒ j1 ∨ · · · ∨ jl s.t. i ∈ S, {j1, · · · , jl} ∩ S = ∅

)}
,

and let S1 := S\S0.

Proposition 1. The set P is a polyhedron with integer vertices and a one-to-one correspon-

dence exists between S1 and VP. Moreover, for all S ∈ S1, there exists p ∈ VP such that

pi = 1, for all i ∈ S, and pi = 0, for all i 6∈ S.

The proof is given in Appendix 2.9.5. Let Y denote the set of feasible configurations. We

formulate Y using binary variables and show that a one-to-one correspondence exists between
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Y, S1, and VP. Define binary variable yi, which is 1 if option i is chosen and 0 otherwise.

Hence, once rules are written using ASR format, they can be formulated as follows.2

yi ≤ yj1 + yj2 + · · ·+ yjl , ∀ rules : i⇒ j1 ∨ · · · ∨ jl, (2.6)

yi + l − 1 ≥ yj1 + yj2 + · · ·+ yjl , ∀ rules : i⇐ j1 ∧ · · · ∧ jl, (2.7)

yi ∈ {0, 1}, ∀i ∈ N. (2.8)

Hence, Y = {y = (y1, · · · , yn)|y satisfies Eqs. (2.6), (2.7), and (2.8)}.

Corollary 1.1. A one-to-one correspondence exists between Y and VP.

The proof follows from noting that S0 is in fact the set of infeasible configurations. Ap-

pendix 2.9.6 provides an illustration of Proposition 1 and Corollary 1.1. In summary, in

this subsection, we presented an alternative formulation of P as a linear program. Although

the objective function of our problem is convex for a fixed λ, and the feasible region is a

polyhedron, this problem is extremely difficult. In fact, it can be easily shown that our

problem is NP-hard. Eqs (2.1) and (2.3), as well as the variable x(.), are defined for all

S ∈ S where |S| = 2n; hence, P is defined by more than 2n variables and constraints. A

possible approach to solving this problem without explicitly enumerating all variables and

constraints is to use column generation (Kavvadias and Papadimitriou, 1990; Hansen et al.,

1995), which has been the most popular technique for solving PSAT. Column generation

consists of a master problem that is identical to the original problem but with only a small

number of columns and a subproblem for determining the entering column. The subproblem

can be expressed as optimizing a nonlinear 0-1 function and is solved using various tech-

niques including algebraic methods, cutting-plane algorithms, enumerative algorithms and

linearization methods (Hansen et al., 1993, 2000). An alternative is to use mixed integer

packages such as CPLEX MIP (Hansen et al., 1999). Heuristics such as Tabu search can also

2Formulating logical propositions as linear constraints is also discussed in Yan and Hooker (1999) and
Chandru and Hooker (1999).
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be used (Glover, 1997). Finger and De Bona (2011) use column generation to solve PSAT

problems with 200 variables, 100 probability assignments, and 800 disjunctive clauses, and

Finger et al. (2013) study optimizing an objective function over all feasible solutions.

In general, column generation converges slowly, and existing literature does not include

any theoretical bounds on the convergence rates. In the remainder, we present an algorithm

and show that the optimality gap after k iterations will decrease with O(1/
√
k). Each

iteration runs very fast and our proposed algorithm finds very good solutions after a small

number of iterations. We solve real instances of our problem that we have received from the

LAM that has 400 options and 4000 rules in a reasonable computing time. Our algorithm,

implemented on a personal computer, spends fewer than 5000 seconds to obtain solutions

with a 1% error for real instances.

2.4 Solution Methodology

We present our solution approach for solving our problem by adapting the Frank-Wolfe (FW)

method, also known as the conditional gradient method (Frank and Wolfe, 1956; Demyanov

and Rubinov, 1970). At each iteration, the basic FW evaluates the gradient of the objective

function at the current feasible point and maximizes the linear approximation of the objective

function to find the next feasible point. Depending on the step-size, the method moves

toward the obtained feasible point. The maximization subproblem at each iteration needs

to be simpler than the original problem. The FW produces a sequence of feasible solutions.

If the step-size is chosen appropriately, an O( 1
k
) rate of convergence can be obtained (see,

for example, Jaggi (2013) and Freund and Grigas (2014)).

Our approach adapts the “fully corrective” variant of the FW (FCFW) in which the

iterates of the algorithm are chosen to be the best point in the convex combination of the

points already found (Bach, 2013; Clarkson, 2010; Jaggi, 2013). The FCFW requires that

the problem of finding the best point at each iteration be easy (see Yuan and Yan (2012) for
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heuristic approaches). In our approach, this step is performed in polynomial time.

The FW method can directly be applied to solve an optimization problem with a convex

objective function over a compact convex domain (see, for example, Jaggi (2013)). Some

researchers have recently extended the FW method to solve nonconvex optimization problems

(Reddi et al., 2016; Lafond et al., 2015) and stochastic convex optimization problems (Hazan

and Kale, 2012). We extend the application of the FW to solve a problem with a nonconvex

objective function and noncompact domain (recall that our problem is minp∈P,λ≥0 ‖λp− p̂‖).

We do so by introducing a new problem with a convex objective function and show that

the solution of the new problem provides the optimum solution to the original problem (see

subsection 2.4.1).

The second complexity in our original problem is due to the unboundedness of the feasible

region. Direct application of the FW algorithm can result in an unbounded solution during

the maximization step. Although the feasible region continues to be unbounded in the new

problem, in subsection 2.4.3, we show that the maximization step always produces a bounded

solution.

In subsection 2.4.4 we derive a tight bound for the convergence rate when p̂ is feasible.

Finally, in subsection 2.4.5, we provide a lower bound on the optimal value at each iteration,

which helps us gauge the optimality gap.

2.4.1 Handling the Nonconvexity

Let Hp̂ = {p ∈ Rn|p̂Tp = p̂T p̂,p ≥ 0}—i.e., the nonnegative part of the hyperplane

generated by the normal vector p̂ and the point p̂. We denote by FHp̂ the intersection of

Hp̂ and cone(P)—i.e., FHp̂ = {p ∈ Hp̂|∃p̄ ∈ P, λ ≥ 0 : λp̄ = p}.

Let vectors y and θ denote feasible configurations and their images on Hp̂, respectively.

Note that, by “image,” we mean θ = λy ∈ Hp̂, for some λ ≥ 0. Fig. 2.3 provides an

illustration using two scenarios. In scenario 1, the point θ =“001” for instance, is the image

of y = (0, 0, 1). Although factually θ = (0, 0, 13
12

), for simplicity and demonstrating that this
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is the image of y = (0, 0, 1), we use the notation θ =“001.” An important difference between

these scenarios is the boundedness of Hp̂, which is a result of having/not having zero entries

in p̂; in scenario 1, Hp̂ is unbounded with an extreme direction e1, while Hp̂ in scenario 2 is

bounded. In the following lemmas, we present some of the interesting properties of the sets

Hp̂ and FHp̂ as well as the correspondence between the zero entries of p̂ and the extreme

directions of the set Hp̂. Define I∅ := {i ∈ N |p̂i = 0} and I1 := {i ∈ N |p̂i > 0}.

pA

pB

pC

p̂
“010”

“001”

“110”

“101”

“011”

“111”

Scenario 1: p̂ = (0, 1
2
, 1

3
)

Rules:

A⇒ B ∨ C
Feasible Configurations:

(0,0,0)
(0,0,1)
(0,1,0)
(0,1,1)
(1,0,1)
(1,1,0)
(1,1,1)

pA

pB

pC

p̂

“100”

“010”

“001”

“110”

“101”
“011”

“111”

Scenario 2: p̂ = ( 1
4
, 1

2
, 3

4
)

Rules:

A⇒ B ∨ C
¬A⇒ C
B ⇒ A

Feasible Configurations:

(0,0,1)
(1,0,1)
(1,1,0)
(1,1,1)

Figure 2.3: Graphical illustration of Hp̂ and FHp̂.

Lemma 4. If p̂ ∈ Rn
++, then Hp̂ is a (n-1)-simplex with vertices p̂T p̂

p̂i
ei, for all i ∈ N .

Lemma 5. If p̂ ∈ Rn
+\{0}, then the vertices of Hp̂ are p̂T p̂

p̂i
ei, for all i ∈ I1, and the extreme

directions of Hp̂ are ei, for all i ∈ I∅.

The proofs are given in Appendix 2.10.1-2.10.2. As a corollary, if p̂ ∈ Rn
+\{0} and

p ∈ Hp̂, then there exist γi ≥ 0, for all i ∈ I1, satisfying
∑

i∈I1 γi = 1, and ξi ≥ 0, for all

i ∈ I∅, such that p =
∑

i∈I1 γi
p̂T p̂
p̂i

ei +
∑

i∈I∅ ξie
i.

Remark 1.1. p̂ ∈ cone(P) if and only if p̂ ∈ FHp̂, for all p̂ ∈ Rn.

Proposition 2. Assume p̂ ∈ Rn
+\{0}. Let p̃ be the vector generated by eliminating zero

elements of p̂. Then, p̂ ∈ cone(P) if and only if p̃ ∈ FHp̃.
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The proofs are given in Appendix 2.10.3-2.10.4. Proposition 2 may be used to simplify

the problem if the objective is merely to determine feasibility and p̂ has 0 entries. In that

case, it permits us to fix the options with a penetration rate of 0. Such simplifications are

not possible in general since the objective is to determine the closest feasible solution. The

reason is that if the given PS is infeasible, then a 0 penetration rate is also subject to change

similar to all other penetration rates and the final value of such penetration rates could be

different than 0.

Next, we establish the equivalence between minp∈FHp̂
‖p− p̂‖ and minp∈cone(P) ‖p− p̂‖.

Theorem 1. Let p̂ ∈ Rn
+\{0}, p∗∗ = arg minp∈cone(P) ‖p− p̂‖2, and p∗ = arg minp∈FHp̂

‖p−

p̂‖2. Then:

(a) p∗∗ = 0 if and only if FHp̂ = {}, and

(b) if FHp̂ 6= {}, then p∗∗ = p̂T p̂
p∗Tp∗

p∗.

The proof is given in Appendix 2.10.5. Thus, we aim to solve minp∈FHp̂
‖p − p̂‖. The

FCFW has two main steps at each iteration: direction step and maximization step. At

iteration k, for all k ≥ 1, the direction step finds vector βk, and the maximization step

maximizes βkT θ over all θ ∈ FHp̂ and obtains an optimal solution θk+1. We assume θ1 ∈

FHp̂ is given before the algorithm starts. If FHp̂ = {}, then p∗∗ = 0; hence, assume in the

remainder that FHp̂ 6= {} and θ1 always exists. At iteration k = 1, the algorithm finds β1

and maximizes β1T θ to obtain θ2. Next, we present each step in detail.

2.4.2 Direction Step

The improving direction is in fact the direction of the gradient; hence, we use βk = p̂ −

p∗k, where p∗k is the nearest penetration statistic to p̂ in the convex hull of {θ1, · · · , θk}.

Then, p∗k =
∑k

i=1 α
∗
i θ
i, where α∗ = (α∗1, · · · , α∗k) is found by solving the following quadratic
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program.

α∗ = arg min
α

‖p̂−
k∑
i=1

αiθ
i‖ (2.9)

subject to:
k∑
i=1

αi = 1 (2.10)

αi ≥ 0, ∀i = 1, · · · , k. (2.11)

This quadratic problem can be converted into a system of linear equations using the KKT

conditions. Based on our experiment in section 2.5, solving this problem takes a negligible

amount of time.

The distance between p̂ and p∗k, which we refer to as feasibility gap, is denoted by Gk.

Then, Gk = ‖βk‖, and the feasibility of p̂ is ascertained if Gk = 0. In the following lemmas,

we formally state this result and comment on the monotonicity of Gk. The proofs are given

in Appendix 2.11.1-2.11.2.

Lemma 6. At iteration k of our algorithm, if Gk = 0, then p̂ ∈ cone(P).

Lemma 7. During the execution of our algorithm, Gk is non-increasing in k.

2.4.3 Maximization Step

In the maximization step at iteration k, we maximize βkT θ to obtain θk+1: M(βk) :=

maxθ∈FHp̂
βkT θ. We denote this problem by M(βk) since βk is the only parameter that

changes from one iteration to the next. Note that the feasible region of M(βk) can be

unbounded; hence, we must show that M(βk) has a bounded optimal solution, for all k.

Proposition 3. Problem M(βk) has a bounded optimal solution, for all k.

The proof is given in Appendix 2.12.1. Problem M(βk) is equivalent to the following
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MILP problem.

M(βk) = max
λ,θ,y

βkT θ (2.12)

subject to: p̂T θ = p̂T p̂, (2.13)

λ−M(1− yi) ≤ θi ≤ λ, ∀i ∈ N, (2.14)

0 ≤ θi ≤Myi, ∀i ∈ N, (2.15)

λ ≥ 0, (2.16)

λ ∈ R, θ ∈ Rn,y ∈ Y. (2.17)

Recall that y is a vector of zeros and ones that denotes a feasible configuration, and θ

is the image of y on Hp̂ through the coefficient λ ≥ 0; hence, θ = λy. Eq. (2.13) models

θ ∈ Hp̂. Consider θ = λy: if yi = 1, then θi = λ, and otherwise, if yi = 0, then θi = 0, for

all i ∈ N . Based on this logic, θ = λy is represented by Eqs. (2.14)-(2.16), where M is a

sufficiently large number. Finally, y must satisfy the rules for selecting options.

Proposition 4. M(βk) is NP-hard.

The proof follows from noting that Satisfiability problem is imbedded inM(βk). Clearly,

M(βk) is computationally complex; however, in the following, we show that this problem can

be solved easily if the maximum weighted satisfiability (MWSAT) can be solved in polynomial

time. MWSAT is defined as follows: given a CNF formula and a weight associated to each

literal, find a truth assignment that satisfies the formula and maximizes the summation of

weights for true literals (Wahlstrom, 2008; Dahllof et al., 2005). We show that solvingM(βk)

is equivalent to finding the maximum value of ω ∈ R for which the optimal value of MWSAT

with weight vector βk + ωp̂ is zero. This condition is denoted by MWSAT(βk + ωp̂) = 0.

Lemma 8. (a) MWSAT(βk+ωp̂) is continuous and convex in ω, (b) MWSAT(βk+ωp̂) −→

+∞ as ω −→ +∞, and (c) MWSAT(βk + ωp̂) ≤ 0 as ω −→ −∞.
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Proposition 5. M(βk) is equivalent to max
{
ω ∈ R|MWSAT(βk + ωp̂) = 0

}
.

See Appendix 2.12.2-2.12.3 for proofs. SolvingM(βk) is equivalent to finding the greatest

root of MWSAT(βk+ωp̂) that can be obtained by applying the well-known Newton’s method.

Hence, if MWSAT is easy, then M(βk) is also easy. Wahlstrom (2008) studies counting

MWSAT and presents effective algorithms with an upper bound on their running time. His

algorithm for formulae with maximum of two variables per clause runs with an upper bound

on its running time of O(1.2377n). Wahlstrom (2008) also proves that his algorithm runs in

polynomial time if, in addition, the degree of the formula is less than 3.

As a final remark, we note that we have to solve an NP-hard problem at each iteration of

the FCFW. To reduce the computational time, we could adopt a heuristic approach to solve

M(βk). However, the problem of finding a feasible solution to M(βk) is NP-complete and

a heuristic approach can not guarantee finding a feasible solution in polynomial time. At

iteration k, we solve M(βk) approximately by allowing ϕ√
k

relative optimality error, where

ϕ ≥ 0. If ϕ increases, the algorithm runs faster, but the amount of improvement at each

iteration may become smaller (see, for example, Jaggi (2013) for a similar approach). In

section 2.5, we test our algorithm with ϕ = 0, 1, 2, 3. The average running time ofM(βk) is

less than 100 seconds (on a personal computer) for all of the instances that we solve in this

chapter including the real problems we received from the LAM.

2.4.4 Convergence rate

In this section, we establish the convergence rate of our algorithm given that it finds the

worst possible point at each iteration. Recall that p∗ := arg minp∈FHp̂
‖p − p̂‖. It is well-

known that, for each k ≥ 2, the iterates p∗k satisfy ‖p∗k− p̂‖2−‖p∗− p̂‖2 ≤ 4D2

k+1
, where D is

the diameter of a subset of FHp̂ that contains the solutions ofM(βk) (Jaggi, 2013). In this

section, we present a tight convergence rate guarantee for the case when p̂ is feasible—i.e.,

‖p∗− p̂‖2 = 0. The existing convergence rate guarantee in the literature for this case implies
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that ‖p∗k− p̂‖2 ≤ 4D2

k+1
, for all k ≥ 2. Whereas we show ‖p∗k− p̂‖2 ≤ 1

2
D2

k
, for all k ≥ 2, and

prove its tightness. This is a stronger result than that in the literature. To gain insights, we

begin with a 3-dimensional example and then extend the result to the general case.

Example 2 (Fig. 2.4): Assumptions: (i) p̂ is feasible, (ii) FHp̂ is a 3-dimensional polyhe-

dron, and D =
√

2, and (iii) θ1 is located at 1 unit Euclidean distance from p̂. Consider a

3-dimensional Cartesian coordinate system, with origin at p̂ and axis lines z1, z2, and z3.

Let spr(†) denote the sphere with radius
√

2 which is centered at †. Because of assumption

(i), θ1 must belong to spr(p̂) (Fig. 2.4(a)). Let θkw denote the worst-case of θk, for all k ≥ 1,

such that it maximizes Gk. Then θ1
w must belong to the boundary of spr(p̂) that we denote

by bspr(p̂). According to assumption (iii), we let θ1 = (1, 0, 0). As shown in Fig. 2.4(b), we

obtain p∗1 = θ1 and G1 = 1.

Direction β1 is shown in Fig. 2.4(c). Because of assumptions (i) and (ii), θ2 must be

within
√

2 Euclidean distance from p̂ and θ1—i.e., θ2 ∈ spr(p̂)∩spr(θ1). In addition, because

of assumption (i), we must have β1T θ2 ≥ β1T p̂. Note that otherwise p̂ is separable from

all feasible θ’s and this contradicts assumption (i). We define half-space hsp(‡):={z ∈ R3 :

‡Tz ≥ ‡T p̂} and denote its boundary by bhsp(‡). Then θ2 ∈ spr(p̂) ∩ spr(θ1) ∩ hsp(β1).

It is easy to see that θ2
w ∈ bspr(θ1) ∩ bhsp(β1). Therefore, take without loss of generality,

θ2 = (0, 1, 0).

As shown in Fig. 2.4(d), p∗2 is the closest point in conv({θ1, θ2}) to p̂. We obtain

p∗2 = (1
2
, 1

2
, 0) and G2 = 1√

2
. Figs. 2.4(e) and 2.4(f) continue the analysis in a similar

manner.

Recall that G1 = 1, G2 = 1√
2
, and G3 = 1√

3
. This convergence rate can be achieved as

we show using the following example. Consider 4 options and assume that p̂ = (0, 0, 0, 1)

and there are two rules as follows: option 4 must always be chosen and at most one option

from the set {1, 2, 3} can be selected. There then exists 4 feasible configurations (1,0,0,1),

(0,1,0,1), (0,0,1,1), and (0,0,0,1). Note that Hp̂ = {p ∈ R4|p4 = 1,p ≥ 0} and all feasible
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spr(p̂)

p̂

√
2

θ1

θ1 ∈ spr(p̂)

θ1w ∈ bspr(θ1)

Assume θ1 = (1, 0, 0)

(a)

z1

θ1 = p∗1

p̂
1

p∗1 ∈ conv({θ1})
=⇒ p∗1 = (1, 0, 0)

=⇒ G1 = 1

(b)

spr(θ1)

spr(p̂)

z1

θ1

hsp(β1)

p̂

β1

θ2 ∈
(
spr(p̂) ∩ spr(θ1) ∩ hsp(β1)

)
θ2w ∈

(
bspr(θ1) ∩ bhsp(β1)

)
=⇒ Without loss of generality, θ2 = (0, 1, 0)

(c)

z1 z2

θ1 θ2

p̂

p∗2

p∗2 ∈ conv({θ1, θ2})
=⇒ p∗2 = ( 1

2
, 1
2
, 0)

=⇒ G∗2 = 1√
2

(d)

spr(θ2)spr(θ1)

spr(p̂)

z1 z2

θ1 θ2

hsp(β2)

p̂

β2

θ3 ∈
(
spr(p̂) ∩ spr(θ1) ∩ spr(θ2) ∩ hsp(β2)

)
θ3w ∈

(
bspr(θ1) ∩ bspr(θ2) ∩ bhsp(β2)

)
=⇒ θ3w = (0, 0, 1) or (0, 0,−1)

=⇒ Without loss of generality, θ3 = (0, 0, 1)

(e)

z1 z2

z3

θ1 θ2

θ3

p̂

p∗3

p∗3 ∈ conv({θ1, θ2, θ3})
=⇒ p∗3 = ( 1

3
, 1
3
, 1
3

)

=⇒ G∗3 = 1√
3

(f)

Figure 2.4: An illustrative example for the worst-case convergence of our algorithm.

configurations are in Hp̂; hence, FHp̂ is a 3-dimensional polyhedron and it is the set of all

convex combinations of (1,0,0,1), (0,1,0,1), (0,0,1,1), and (0,0,0,1). The diameter of FHp̂ is
√

2. Letting θ1 = (1, 0, 0, 1), one could verify that Gk = 1√
k

for 1 ≤ k ≤ 3.

In Example 2, if one moves θ1 further away from p̂, the convergence of our algorithm will

improve in the next iteration. For example, if θ1 ∈bspr(p̂), the algorithm converges in one

iteration.

This convergence rate can be rigorously proven for a more general case in which p̂ ∈

cone(P), G1 = D√
2
, and θk = θkw, for all k ≥ 2. We next provide a formal definition of θkw.
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Define Θk = {θ ∈ Rn : ‖θ − θi‖2 ≤ D2,∀i = 1, · · · , k, βkT (θ − p̂) ≥ 0} and Ak = {α ∈

Rk+1|α ≥ 0,1Tk+1α = 1}. The following remark presents a way to obtain θk+1
w .

Remark 5.1. If p̂ ∈ cone(P), then at iteration k of our algorithm, we have:

θk+1
w = arg max

θ∈Θk

{
min
α∈Ak

∥∥∥∥∥
k∑
i=1

αiθ
i + αk+1θ − p̂

∥∥∥∥∥
}
, ∀k ≥ 1.

The proof is given in Appendix 2.13.1. For the general case that does not require feasi-

bility of p̂, one needs to modify Θk as {θ ∈ Rn : ‖θ − θi‖2 ≤ D2,∀i = 1, · · · , k}.

Theorem 2. In our algorithm, if G1 = D√
2
, p̂ ∈ cone(P), and θk = θkw, for all k ≥ 2, then

Gk ≤ G1
√
k
, for all k = 1, 2, · · · . This is the tightest bound for 1 ≤ k < n.

The proof is given in Appendix 2.13.2. In the remainder, we present a lower bound on

Gk that we denote by LBk, for all k ≥ 1. If p̂ is infeasible, according to the convergence rate

of the FCFW, it is desirable to observe that (Gk −LBk) converges at a rate proportional to

1√
k
. In section 2.5, we show on a set of real instances that if p̂ is infeasible, this convergence

rate is observed for (Gk − LBk).

2.4.5 Lower Bound on Gk

Let Lk be a lower bound on the feasibility gap at iteration k and Uk be an upper bound

on the possible improvement in the feasibility gap at iteration k. An advantage of having a

lower bound is that by comparing it with Gk, we can decide to terminate the algorithm if

the difference is satisfactory.

Definition 1. Given Gk 6= 0, Uk := min
{
Gk, βkT (θk+1−p∗k)

Gk

}
, and Lk := Gk−Uk, k ≥ 1.

Since Gk 6= 0, then βk 6= 0. Let θk+1 be the optimal solution ofM(βk) at iteration k. The

orthogonal projection of (θk+1 − p∗k) on the vector βk is the vector βkT (θk+1−p∗k)
Gk2 βk and its

length is given by βkT (θk+1−p∗k)
Gk . The maximum improvement on Gk is βkT (θk+1−p∗k)

Gk and this

upper bound is useful if it is less than Gk. Thus, Uk = min
{
Gk, βkT (θk+1−p∗k)

Gk

}
. Obviously,
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once we have Uk, the lower bound on the feasibility gap is the difference between Uk and

Gk; hence, Lk = Gk − Uk. Appendix 2.14.1 provides a graphical explanation on how Gk,

Uk, and Lk are obtained at each iteration. In the following proposition, we show that the

infeasibility of p̂ is known once Lk > 0 and that the best penetration statistic is obtained

once Uk = 0, for some k.

Proposition 6. Given Gk 6= 0 at iteration k of our algorithm: (i) if Lk > 0, then p̂ /∈

cone(P), and (ii) if Uk = 0, then p∗k is the nearest p ∈ FHp̂ to p̂.

The proof is given in Appendix 2.14.2. Having shown how Uk and Lk are used in termi-

nating the algorithm, in the following, we investigate the monotonicity of Uk and Lk.

Lemma 9. Lk and Uk are not necessarily monotone in k.

The proof is given in Appendix 2.14.3. Since Lk is not monotone in k, one could use the

maximum of all Lk’s obtained. Let LBk := maxi=1,··· ,k {Li}. Obviously, LBk is monotone

non-decreasing in k, and Gk ≥ LBk, for all k ≥ 1.

Our algorithm is given in Algorithm 1. The accuracy of this algorithm is formally stated

in the following theorem. Our algorithm does not iterate forever but stops after a finite

number of iterations.

Theorem 3. Our algorithm finds the nearest p ∈ FHp̂ to p̂ and stops after finite iterations.

The proof is given in Appendix 2.14.4. In summary, in this section, we started with

a non-convex objective function and non-compact feasible region and showed how FCFW

method can be applied. We derived an improved convergence rate guarantee, established its

tightness, and provided a lower bound on the optimal value at each iteration.

2.5 Computational Experiments

We now report the results of our computational experiment for evaluating the effectiveness

of our methodology and the sensitivity of our findings to the number of options and rules.
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Algorithm 1

Input: Rules, p̂.
Output: Is p̂ ∈ cone(P)? If no, find the nearest p ∈ FHp̂ to p̂.

1: θ1 := an arbitrary point in FHp̂; . Assume FHp̂ 6= {}.
2: δ :=0; . δ = 1 means it is known p̂ /∈ cone(P), and δ = 0 means otherwise!

3: for k = 1, 2, 3, · · · do
4: p∗k :=

∑k
i=1 α

∗
i θ
i, where α∗ is obtained by solving Eqs. (2.9)-(2.11);

5: βk := p̂− p∗k; Gk := ‖βk‖;
6: if Gk = 0 then
7: Report “p̂ ∈ cone(P)”; Stop!
8: end if
9: Solve M(βk); θk+1 := the optimal value of θ;

10: Uk := min
{
Gk, βkT (θk+1−p∗k)

Gk

}
; Lk := Gk − Uk;

11: if Lk > 0 & δ = 0 then
12: Report “p̂ /∈ cone(P)”; . Continue to find the nearest p ∈ FHp̂ to p̂!
13: δ = 1; . To prevent reporting "p̂ /∈ cone(P)" in next iterations!

14: end if
15: if Uk = 0 then
16: Report “p∗k is the nearest p ∈ FHp̂ to p̂”; Stop!
17: end if
18: end for

We implement our algorithm in IBM ILOG CPLEX Optimization Studio 12.6.1 and use

a PC with Processor Intel(R) Core(TM) i5-2520M CPU 2.50GHz, 4.00 GB of RAM, and

64-bit Operating System. We define error as Ek = Gk − LBk. Because the largest possible

Euclidean distance in an n-dimensional unit hypercube is
√
n, we normalize Gk, LBk, and

Ek by dividing by
√
n, which also eliminates scaling issues.

The LAM offers three general categories of cars: economy sedans, luxury sedans, and

SUV/trucks. These products are offered in four regions of the world—North America (NA),

Latin America (LA), Europe (EU), and Asia (AS). For each car, the LAM has a master

problem that includes all options and rules. Depending on the region where the car is sold,

some of the options are fixed to 0 or 1, which results in elimination of some of the rules. For

example, typically a truck in Mexico has fewer options than it has in the U.S. The firm offers

fewer luxury options, engines, and colors in Mexico. Red trucks are very rarely purchased
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in Mexico. As another example, consider Vietnam where luxury cars are rarely purchased

and cars have few options. On the other hand, all options are available for the same car

in Europe. When all options are available, penetration rates can be very small. Table 2.2

presents the number of options for different car categories and across different regions.

Table 2.2: The approximate number of options for different products and regions.

NA LA EU AS

Economy sedans 200 100 200 100

Luxury sedans 300 250 300 250

Trucks/SUVs 400 300 400 300

The computational complexity of our problem is primarily a function of the number

of options. Generally, high variety leads to a large number of options with very small

penetration rates, which makes the problem very difficult and increases the possibility of

infeasibility of the forecast PS.

First, we focus on the impact of the number of options on the performance of our al-

gorithm. We perform a sensitivity analysis on the number of options that are offered by

the LAM, which ranges from 100 to 400. To show the performance of our algorithm in

an industrial setting, we create instances that resemble the real problems encountered by

the LAM. We use a master problem provided by the LAM that includes 410 options with

assigned penetration rates and 4056 rules. We randomly generate instances with 100, 200,

300, and 400 options. For each size, we create 10 instances. We ignore the penetration

rates of the options that are not included. Our method is applied to each instance for 1000

seconds and the average Ek is shown in Fig. 2.5 after 100, 500, and 1000 seconds. The

four curves in each figure represent the performance of the FCFW when the subproblems

are approximately solved. We consider exactly solving the subproblems and allowing an

optimality error of 1/
√
k, 2/

√
k, and 3/

√
k. Note that the range of the vertical axis varies

to show the change in Ek for the different number of options. The average running time per

iteration is shown in Fig. 2.6(a). Fig. 2.6(b) demonstrates the average number of iterations
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Figure 2.5: Normalized Ek for different number of options after 100, 500, and 1000 seconds.
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Figure 2.6: Average running time per iteration and average number of iterations.

that our method spends to determine the feasibility/infeasiblility of p̂. Using Figs. 2.5-2.6,

we make the following observations:

1. The average error after 1000 seconds is close to 0 for instances with 100 options and

small for other sizes. All four approaches appear to be very effective in solving large

instances that arise in a real industrial setting. The four approaches find very good

solutions in less than 1000 seconds. The exact approach almost always outperforms

the other approaches.

2. Average time per iteration increases as the number of options increases. This is mainly

due to M(βk), which becomes more difficult as the number of options increases.

3. An increased number of options negatively affects the performance of our algorithm.

The normalized Ek becomes larger as the number of options increases primarily due
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to the increased solution time of M(βk).

4. The infeasibility of p̂ is determined quite quickly. As expected, as the allowed optimal-

ity error of the heuristic increases, it takes more iterations to determine the infeasibility

of p̂.

In the remainder, we examine the effects of changing the number of rules on the perfor-

mance of our algorithm. The same master problem is used to generate instances with 1000,

2000, 3000, and 4000 rules. We create 10 instances for each size by randomly selecting the

associated rules and relaxing the remaining rules. All instances have 410 options. We solve

each instance for 1000 seconds, and the result is shown in Figs. 2.7-2.8. In Fig. 2.8(b),

the majority of the instances with 1000 and 2000 rules are still feasible after 1000 seconds;

hence, we use the total number of iterations in 1000 seconds. All of the instances with 3000

and 4000 rules are infeasible; hence, Fig. 2.8(b) shows the average number of iterations to

determine the feasibility/infeasibility of these instances. We observe the following.

1. Our method finds very good solutions with low errors in all instances in fewer than

1000 seconds. As shown in Fig. 2.7, as the optimality error increases, the heuristic

approach finds a smaller error for a small number of rules.

2. The average time per iteration decreases as the number of rules increases. In fact, rules

strengthen M(βk) by tightening the feasible region and help the CPLEX solver find

the optimal solution very quickly. Eliminating some of the rules weakens M(βk) and

results in increased running time per iteration.

3. An increased number of rules enhances the performance of our method. A stronger

M(βk) is the only reason for this phenomenon.

Therefore, our algorithm is very effective in solving real problems and an increased num-

ber of options and rules affect its performance negatively and positively, respectively.
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Figure 2.7: Normalized Ek for different numbers of rules after 100, 500, and 1000 seconds.
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Figure 2.8: Average running time per iteration and average number of iterations.

2.6 Experiment with Industrial Data

In this section, we present the results of solving three real instances that we received from

the LAM. The LAM has been one of the major companies in the global auto industry for

more than 100 years and delivers approximately 10 million vehicles per year to more than 100

countries. The LAM forecasts PS every few months and approximately three years ahead;

that is, PSs for 2019 model cars are forecast in 2016. Each car model is manufactured

on one of 10-12 platforms. Each assignment to platform is based on the chassis size—

e.g., subcompact sedans are manufactured on the same platform even though they are from

different brands. On a given platform, the rules are always the same and they are usually in

a simple and compact form.

The PSs are forecast by sales and marketing and sent to the engineering and finance

departments for approval where some modifications are made to simplify the manufacturing
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Table 2.3: The specifications of our industrial instances from the LAM.

Options OIRs FCRs

Instance 1 415 3703 85

Instance 2 200 428 72

Instance 3 395 2111 97

process, reduce the cost of unnecessary variety, and enhance the economies of scale. The

LAM has preprocessed the original set of options and rules to reduce them based on whether

they are equal, opposite, or symmetric options. Equal options always appear together while

for two opposite options, exactly one is always true. Options within a family that are

symmetric have the same rules and are referenced by other rules in the same exact manner.

For example, consider a vehicle’s colors of white and green; if these colors appear in exactly

the same rules, one could combine white and green into one color and decompose it later to

regenerate the original colors.

We received three instances from the LAM with specifications listed in Table 2.3. Our

exact method is applied to the three real instances, and normalized Gk, LBk, and Ek over

the running time of the algorithm and iterations are plotted in Fig. 2.9. Various ranges of

axes for different instances are used to clearly show the behavior of the algorithm during the

initial iterations. For example, while applying our method to instance 1, the big changes of

Gk and LBk occur from 0 to 5000 seconds; hence, we only show from 0 to 5000 seconds.

In all instances, the starting error is large and ranges from 30% in instance 1 to 60% in

instance 3. The error reduces significantly in a few iterations. In instances 2 and 3, the error

becomes approximately 1% after 10 iterations. The 1% error is observed in instance 1 after

about 40 iterations. The time per iteration varies across instances; it is big for instance 1

and small for instances 2 and 3. The number of options and rules in instance 2 are smaller

than in other instances, and our algorithm spends about 2 seconds per iteration. Instance 1

and 3 require approximately 100 and 10 seconds per iteration, respectively.

To show the implication of the convergence rate guarantee, we plot the function E1
√
k

and

31



compare it with Ek. It is seen that, in these instances, the convergence of our method is

significantly faster than E1
√
k
.

All three instances are infeasible, which is determined as soon as LBk becomes nonzero.

This happens after 12, 3, and 2 iterations in instances 1, 2, and 3, respectively. Our method

is then significantly fast in figuring out the infeasibility of p̂ in real instances.

Overall, the behavior of Gk, LBk, and Ek is almost the same in all instances, and it

can be seen that, especially in the initial iterations, the error decreases rapidly. Hence, our

algorithm is very effective in finding a very good solution in a short period of time.
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Figure 2.9: The performance of our exact method on real instances.
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2.7 Conclusions

We study the problem of determining the feasibility of a forecast PS and finding the best

feasible PS in the case of infeasibility. We present an approach that sequentially constructs

the feasible region and stops when it either verifies the feasibility of the forecast PS or it

finds the best feasible PS. We provide insights on the convergence rate of our algorithm

and present a lower bound that enables early termination of our algorithm with a known

optimality gap. We test our approach on a set of real instances and observe the following

results: (i) increasing the number of options and/or decreasing the number of rules add to

the difficulty of the problem, (ii) our approach finds very good solutions for real instances in

a reasonable time, and (iii) the convergence rate of our approach is significantly faster than

the worst-case that we prove in this chapter.
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2.8 Appendix: Notations

Abbreviations:

ASR Our new format for representing rules

CD Conjunction of disjunctive clauses

CNF Conjunctive normal form

DC Disjunction of conjunctive clauses

FCR Family cardinality rule

LAM Large auto manufacturer

MWSAT Maximum weighted satisfiability

OIR Option implication rule

PSAT Probabilistic satisfiability problem

PS Penetration statistic

Notations:

n Number of options

N Set of options N = {i|i = 1, · · · , n}

p(.) Penetration rate or probability value

pi Penetration rate of option i, ∀i ∈ N

p A PS, p = (p1, · · · , pn) ∈ Rn

P Convex hull of the set of feasible configurations

λ Scalar, λ ≥ 0

cone(P) The cone generated by P, cone(P) = {λp|p ∈ P, λ ≥ 0}

qm A forecast from an entity within the LAM, ∀m = 1, · · · ,M

f(.) A function that returns the sum of squared errors for a given PS

‖.‖ Euclidean norm
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p̂ The forecasted PS

p∗ The optimal solution of minp∈FHp̂
‖p− p̂‖2

S Set of all subsets of options, S := {S|S ⊆ N}

x(S) Variable for probability values, x(S) ∈ [0, 1],∀S ∈ S.

VP Set of vertices of P

S0 Defined as S0 :=
{
S ∈ S :

(
∃ rule i ⇐ j1 ∧ · · · ∧ jl s.t. {j1, · · · , jl} ⊂

S, i /∈ S
)
∨
(
∃ rule i⇒ j1 ∨ · · · ∨ jl s.t. i ∈ S, {j1, · · · , jl} ∩ S = ∅

)}
S1 Defined as S1 := S\S0

Y Set of feasible configurations

yi Binary variable which is 1 if option i is chosen, and 0 otherwise, ∀i ∈ N

y A vector of n binary variables, y = (y1, · · · , yn)

α A vector of coefficients in the convex combination
∑k

i=1 αiθ
i

α∗ The optimal value of α, or vector of coefficients to create p∗k, i.e. p∗k =∑k
i=1 α

∗
i θ
i

ω The dual variable associated with p̂T θ = p̂T p̂ in M(βk), ω ∈ R

Lk The lower bound on the feasibility gap at iteration k

Uk The upper bound on the possible improvement in the feasibility gap at

iteration k

LBk The best lower bound found till iteration k, i.e. LBk = maxi=1,··· ,k
{
Lk
}

δ 1 if the infeasibility of p̂ has been reported in previous iterations, and 0

otherwise

k Iteration counter, k = 1, 2, · · ·

ei The vector of all zeros except for ith entry which is 1

ϕ The coefficient in the optimality gap of the heuristic approach

D The diameter of a subset of FHp̂ that contains the solutions of M(βk)
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2.9 Appendix for Problem Formulation

2.9.1 Proof of Lemma 1

The function f is convex and differentiable, with minimum occurring at p̂. Using ∂f
∂p

= 0,

we obtain p̂ = 1
M

∑M
m=1 qm. We substitute p̂ by p̂ + ∆, and it follows that:

f(p̂ + ∆) =
M∑
m=1

(p̂− qm + ∆)T (p̂− qm + ∆)

=
M∑
m=1

(
(p̂− qm)T (p̂− qm) + 2∆T (p̂− qm) + ‖∆‖2

)
= f(p̂) + 2M∆T (p̂− 1

M

M∑
m=1

qm) +M‖∆‖2

= f(p̂) +M‖∆‖2

Then, minimizing f(p̂ + ∆) is equivalent to minimizing ‖∆‖2.

2.9.2 LAM’s Current Format for Representing Rules

In the LAM’s current format, each OIR consists of a left-hand-side option, a set of positive

right-hand-side options, and a set of negative right-hand-side options. The right-hand-side

of an OIR is true if and only if all positive right-hand-side options are true and all negative

right-hand-side options are false. There are 3 types of OIRs that we call A, B, and R. There

is no logical difference between types A and B. An OIR implies a rule in the form of =⇒,

regardless of its type; in addition, a type R rule implies a rule in the form of ⇐=. For a

left-hand-side option to be true, at least one of its associated right-hand-sides, regardless of

the rule type, must be true; hence, if all right-hand-sides associated with a left-hand-side

option are false, then the left-hand-side option must be false as well. If all right-hand-sides

from type R OIRs are true, then the left-hand-side option must be true. An FCR can be of
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type E or L; exactly one option must be chosen from each type E family and at most one

option can be selected from a type L family. We illustrate these rules using the following

example.

Example. A hypothetical example is provided in Fig. 2.10 and includes 5 OIRs and 2

FCRs to represent the relationships among 17 options termed OP01, OP02, ..., OP17. In

the first OIR, for instance, OP01 is the left-hand-side option, the rule type is A, the positive

right-hand-side options are OP02 and OP03, and the negative right-hand-side option is OP04.

The right-hand-side of the first OIR is true if and only if OP02 and OP03 are true and OP04

is false. The first 3 OIRs have the same left-hand-side option; hence, if OP01 is true then at

least one of its associated right-hand-sides must be true. This logic can be written as: OP01

=⇒ (OP02∧OP03∧¬OP4)∨(OP02∧OP03∧¬OP05∧¬OP06)∨(OP02∧OP03∧¬OP06∧¬OP07).

OIRs (Option Implication Rules):

OP01, A {OP02, OP03} {OP04}
OP01, B {OP02, OP03} {OP05, OP06}
OP01, R {OP02, OP03} {OP06, OP07}
OP08, R {OP09} {OP10, OP11}
OP08, R {OP09} {OP10, OP12}

FCRs (Family Cardinality Rules):

FM01, E {OP13, OP14, OP15}
FM02, L {OP16, OP17}

Figure 2.10: The LAM’s default format for representing option implication and family car-
dinality rules.

Consider the OIRs 4 and 5, which are type R with the same left-hand-side option; hence,

if both right-hand-sides in OIRs 4 and 5 are true, then option OP08 must be true. This

logic is written as OP08 ⇐= (OP09∧¬OP10∧¬OP11)∧(OP09∧¬OP10∧¬OP12), which can be

simplified as OP08 ⇐= OP09 ∧ ¬OP10 ∧ ¬OP11 ∧ ¬OP12.

The second column of Fig. 2.10 shows two families, termed FM01 and FM02, with types E

and L, respectively. Based on these FCRs, exactly one of the options OP13, OP14, or OP15,

and at most one of OP16 or OP17 must be chosen.
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2.9.3 Converting Rules to ASR Format

In the example of Appendix 2.9.2, two rules are written for option OP01 as follows: OP01 =⇒

(OP02∧OP03∧¬OP04)∨(OP02∧OP03∧¬OP05∧¬OP06)∨(OP02∧OP03∧¬OP06∧¬OP07) and OP01

⇐= OP02 ∧ OP03 ∧ ¬OP06 ∧ ¬OP07. The second rule is in ASR format. So, consider the

first rule and note that its right-hand-side is written as a disjunction of conjunctive clauses

(DC). Factoring out the greatest common factor—i.e., OP02∧OP03—and using the distribu-

tive property of union over intersection, we obtain:

OP01 =⇒ OP02 ∧ OP03 ∧ (¬OP04 ∨ ¬OP05 ∨ ¬OP06) ∧ (¬OP04 ∨ ¬OP05 ∨ ¬OP07) ∧

(¬OP04 ∨ ¬OP06) ∧ (¬OP04 ∨ ¬OP06 ∨ ¬OP07).

The right-hand-side is a conjunction of disjunctive clauses (CD); hence, this rule is equiv-

alent to rules 1-6 in Fig. 2.11. This reformatting is provable for the general case (see Lemma

2).

Format ASR:
OP01 =⇒ OP02
OP01 =⇒ OP03
OP01 =⇒ ¬OP04 ∨ ¬OP05 ∨ ¬OP06
OP01 =⇒ ¬OP04 ∨ ¬OP05 ∨ ¬OP07
OP01 =⇒ ¬OP04 ∨ ¬OP06
OP01 =⇒ ¬OP04 ∨ ¬OP06 ∨ ¬OP07
OP01 ⇐= OP02 ∧ OP03 ∧ ¬OP06 ∧ ¬OP07
OP08 =⇒ OP09

OP08 =⇒ ¬OP10
OP08 =⇒ ¬OP11 ∨ ¬OP12
OP08 ⇐= OP09 ∧ ¬OP10 ∧ ¬OP11 ∧ ¬OP12
OP13 =⇒ ¬OP14
OP13 =⇒ ¬OP15
OP13 ⇐= ¬OP14 ∧ ¬OP15
OP14 =⇒ ¬OP15
OP16 =⇒ ¬OP17

Figure 2.11: The equivalent representation of Fig. 2.10 using ASR format.

2.9.4 Proof of Lemma 2

Consider an option, say option i, with at least one OIR and assume that none of these OIRs

is of type R. Hence, by combining these OIRs (similar to Appendix 2.9.3), option i has exactly

one rule in the form of i =⇒RHS. If RHS is always true, then the rule is redundant and hence

is simply deleted. If RHS is always false, then option i must be false, and hence, the rule is

equivalent to the following two rules in ASR format: i =⇒ j and i =⇒ ¬j, for some option
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j 6= i. We note that RHS can be written as a conjunction of some disjunctive clauses, and

hence, it is easily seen that i =⇒RHS can be written as some rules in ASR format (similar

to Appendix 2.9.3).

Consider an option, say option i, with at least one OIR of type R. Hence, by combining

these OIRs (similar to Appendix 2.9.3), option i has exactly one rule in the form of i⇐=RHS.

If RHS is always false, then the rule is redundant and hence is simply deleted. If RHS is always

true, then option i must be true, and hence, the rule is equivalent to the following two rules

in ASR format: i ⇐= j and i ⇐= ¬j, for some option j 6= i. We note that RHS can be

written as a conjunctive clause, and hence, i⇐=RHS is in ASR format.

A FCR of type L with one option is redundant and hence is simply deleted. A FCR of

type E with one option, say option i, is equivalent to the following two rules in ASR format:

i⇐= j and i⇐= ¬j, for some option j 6= i. We next consider a FCR of type E that consists

of options i1, i2, . . . , iK where K ≥ 2. This FCR is equivalent to Eqs. (2.18)-(2.19):

ik =⇒ ¬ik′ , ∀k = 1, . . . , K − 1, k′ = k + 1, . . . , K, (2.18)

i1 ⇐= ¬i2 ∧ · · · ∧ ¬iK . (2.19)

If the FCR is of type L, then it is equivalent to Eq. (2.18). Then, FCRs can be written

in format ASR, and hence, the proof is complete.

2.9.5 Proof of Proportion 1

Using Lemma 3, Eq. (2.4) is equivalent to
∑

S:i∈S,
{j1,··· ,jl}∩S=∅

x(S) = 0, for all rules in the form

of i⇒ j1 ∨ · · · ∨ jl, which is equivalent to:

x(S) = 0, ∀ rules : i⇒ j1 ∨ · · · ∨ jl, and ∀S s.t. i ∈ S, {j1, · · · , jl} ∩ S = ∅. (2.20)
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Similarly, using Lemma 3, Eq. (2.5) is equivalent to:

x(S) = 0, ∀ rules : i⇐ j1 ∧ · · · ∧ jl, and ∀S s.t. {j1, · · · , jl} ⊂ S, i /∈ S. (2.21)

Using Eqs. (2.20) and (2.21), and the definition of S0, we have x(S) = 0, for all S ∈ S0.

Therefore, P = {p = (p1, · · · , pn)| p satisfies Eqs. (2.1), (2.2), (2.3), and x(S) = 0,∀S ∈

S0}. Eq. (2.1) does not impose any new constraint and is only used to calculate values

of pi’s. Hence, consider solving Eqs. (2.2), (2.3), and x(S) = 0, ∀S ∈ S0. This system of

equations include some nonnegative continuous variables of which some are fixed to zero and

the rest must add up to 1. Thus, at any vertex of this system of equations, exactly one x(.)

where the corresponding S belongs to S\S0 is 1 and the rest are zero. Hence, the number

of vertices are equivalent to |S\S0|. Moreover, using Eq. (2.1), we have pi = 0 or 1 for all

i ∈ N ; therefore, the vertices of P are integer points.

Let us consider a particular vertex where x(Ŝ) = 1 for exactly one Ŝ such that Ŝ ∈ S\S0

and x(S) = 0, for all S 6= Ŝ, S ∈ S. Using Eq. (2.1), we have:

pi = x(Ŝ)1(i ∈ Ŝ) +
∑

S:i∈S,S 6=Ŝ

x(S), ∀i ∈ N (2.22)

where 1(.) is an indicator function that returns 1 if its argument is true, and 0 otherwise.

But the second term in the right-hand-side of Eq. (2.22) is zero and the first term is 1(i ∈ Ŝ);

hence, pi = 1(i ∈ Ŝ), for all i ∈ N . Thus, the proof is complete.

2.9.6 Illustration of Proposition 1 and Corollary 1.1

Fig. 2.12 illustrates Proposition 1 and Corollary 1.1, using an example with three options:

A, B, and C. Three scenarios are considered: no rules, three rules, and five rules. The

set P and its vertices, sets S0 and S1, and the feasible configurations in each scenario are

illustrated. One can see the existence of a one-to-one correspondence between S1, Y, and VP.
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pA

pB

pC

Scenario 1: No rules; feasible
region is [0, 1]3

S0 = {}
S1 =

{
{}, {A}, {B}, {C}, {A,B}, {A,C}
, {B,C}, {A,B,C}

}

Feasible Configurations:

(0,0,0)
(0,0,1)
(0,1,0)
(0,1,1)
(1,0,0)
(1,0,1)
(1,1,0)
(1,1,1)

pA

pB

pC

Scenario 2: Rules:
1) A⇒ B ∨ C
2) ¬A⇒ C
3) B ⇒ A

S0 =
{
{}, {A}, {B}, {B,C}

}
S1 =

{
{C}, {A,B}, {A,C}, {A,B,C}

}

Feasible Configurations:

(0,0,1)
(1,0,1)
(1,1,0)
(1,1,1)

pA

pB

pC

Scenario 3: Rules:
1) A⇒ B ∨ C
2) ¬A⇒ C
3) B ⇒ A
4) C ⇒ B
5) A ∧B ⇒ C

S0 =
{
{}, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}

}
S1 =

{
{A,B,C}

}

Feasible Configurations:

(1,1,1)

Figure 2.12: Graphical illustration: existence of a one-to-one correspondence between S1, Y,
and VP.
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2.10 Appendix for Handling the Nonconvexity

2.10.1 Proof of Lemma 4

Hp̂ is defined by 1 equality and n inequalities; hence, the vertices of Hp̂ are obtained by

setting n−1 of inequalities to equalities and solving them together with the equation p̂Tp =

p̂T p̂. Since p̂i > 0, for all i ∈ N , this results in vertices p̂T p̂
p̂i

ei, for all i ∈ N . Moreover, since

there are n affinely independent vertices, then Hp̂ is a (n-1)-simplex.

2.10.2 Proof of Lemma 5

Hp̂ is defined by 1 equality and n inequalities; hence, the vertices of Hp̂ are obtained by

setting n−1 of inequalities to equalities and solving them together with the equation p̂Tp =

p̂T p̂. Consider i′ such that p̂i′ > 0. Setting pi = 0, for all i 6= i′, we obtain pi′ = p̂T p̂
p̂i′

; hence,

an extreme point p̂T p̂
p̂i′

ei
′

is found. Therefore, for each i ∈ I1, there exists an extreme point

p̂T p̂
p̂i

ei.

Extreme directions of Hp̂ are the extreme points of the set {d ∈ Rn|p̂Td = 0,d ≥

0,1Td = 1}, where 1 is the vector of appropriate size with all entries equal to 1. This results

in the extreme directions ei, for all i ∈ I∅.

2.10.3 Proof of Remark 1.1

Using the definition of FHp̂, we have p̂ ∈ FHp̂ if and only if the following two conditions

hold: (i) p̂ ∈ Hp̂, and (ii) ∃p̄ ∈ P, λ ≥ 0 s.t. λp̄ = p̂. Condition (i) is always satisfied and

condition (ii) holds if and only if p̂ ∈ cone(P). Hence, the proof is complete.

2.10.4 Proof of Proposition 2

Let P̃ denote the convex hull of all feasible configurations that do not contain options in I∅.

Using remark 1.1, it suffices to show p̂ ∈ cone(P) if and only if p̃ ∈ cone(P̃).
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If p̂ ∈ cone(P), then p̂ = λ′p′ for some λ′ > 0, p′ ∈ P. There exist feasible configurations

y1, . . . ,yl and strictly positive scalars α1, . . . , αl satisfying
∑l

l′=1 αl′ = 1 such that p′ =∑l
l′=1 αl′y

l′ . Observe that in y1, . . . ,yl, the values corresponding to options in I∅ must

be zero. Let ỹ1, . . . , ỹl be the vectors generated by eliminating elements corresponding to

options in I∅. Moreover, let p′′ =
∑l

l′=1 αl′ỹ
l′ . Note that p′′ ∈ P̃ and p̃ = λ′p′′; hence,

p̃ ∈ cone(P̃). The converse is proven in a similar fashion.

2.10.5 Proof of Theorem 1

(a, ⇒) We first prove if p∗∗ = 0, then FHp̂ = {}, using a contradiction. Suppose that

p∗∗ = 0 and FHp̂ 6= {}. Since FHp̂ is nonempty, then there exists p̄ ∈ FHp̂. Hence, using

the definition of FHp̂, we have p̄ ∈ Rn
+, p̂T p̄ = p̂T p̂ and p̄ ∈ cone(P). Moreover, because

p̂T p̂ > 0, then p̄ 6= 0.

Define ¯̄p := p̂T p̂
p̄T p̄

p̄. Since p̂T p̂
p̄T p̄

> 0 and p̄ ∈ cone(P), then ¯̄p ∈ cone(P) (because of

definition of cone). In order to contradict the optimality of p∗∗ = 0, we want to show the

objective value of ¯̄p is strictly better than that of 0. We have: ‖p̂− ¯̄p‖2 = ‖p̂‖2+‖¯̄p‖2−2p̂T ¯̄p.

Note that ‖¯̄p‖2−2p̂T ¯̄p = ( p̂
T p̂

p̄T p̄
)2p̄T p̄−2( p̂

T p̂
p̄T p̄

)p̂T p̄ = −( p̂
T p̂

p̄T p̄
)p̂T p̂ < 0 (because p̂T p̄ = p̂T p̂).

Therefore, ‖p̂− ¯̄p‖2 < ‖p̂‖2 = ‖p̂− 0‖2. This contradicts p∗∗ = 0 because ¯̄p is feasible and

has a strictly better objective value. Hence, FHp̂ = {}.

(a, ⇐) We prove that if FHp̂ = {}, then p∗∗ = 0. Recall that in this chapter we assume

P 6= {}, then 0 ∈ cone(P). We must show that 0 is optimal (0 has the smallest objective

value among all p ∈ cone(P)).

We claim that if p̄ ∈ cone(P), then p̂T p̄ ≤ 0. We prove this claim using a contradiction.

Let p̄ ∈ cone(P) such that p̂T p̄ > 0. Define ¯̄p := p̂T p̂
p̂T p̄

p̄. Because p̂T p̂
p̂T p̄

> 0 and p̄ ∈ cone(P),

then ¯̄p ∈ cone(P). Moreover, p̂T ¯̄p = p̂T ( p̂
T p̂

p̂T p̄
p̄) = p̂T p̂. Therefore, ¯̄p ∈ FHp̂, meaning that

FHp̂ 6= {}. This is a contradiction; hence, p̂T p̄ ≤ 0, for all p̄ ∈ cone(P).

Let p̄ ∈ cone(P). Define ṗ := (1 − p̂T p̄
p̂T p̂

)p̂ and p̈ := ( p̂
T p̄

p̂T p̂
p̂ − p̄). Note that ṗ and p̈ are

orthogonal because ṗT p̈ = (1− p̂T p̄
p̂T p̂

)( p̂
T p̄

p̂T p̂
p̂T p̂− p̂T p̄) = 0. Moreover, we have ‖ṗ‖2 ≥ ‖p̂‖2,
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because (1 − p̂T p̄
p̂T p̂

) ≥ 1 (because p̂T p̄ ≤ 0 and p̂T p̂ > 0). The objective value of p̄ is:

‖p̂− p̄‖2 = ‖p̂− p̂T p̄
p̂T p̂

p̂ + p̂T p̄
p̂T p̂

p̂− p̄‖2 = ‖ṗ− p̈‖2 = ‖ṗ‖2 + ‖p̈‖2 ≥ ‖ṗ‖2 ≥ ‖p̂‖2 = ‖p̂− 0‖2.

Therefore, we proved that ‖p̂ − p̄‖2 ≥ ‖p̂ − 0‖2, for all p̄ ∈ cone(P). Thus, p∗∗ = 0 is an

optimal solution.

(b) Since FHp̂ 6= {}, using part (a), we have p∗∗ 6= 0. We first claim that p∗∗T p̂ > 0.

Since p∗∗, p̂ ∈ Rn
+, then, p∗∗T p̂ ≥ 0. Suppose to the contrary that p∗∗T p̂ = 0 (meaning that

p∗∗ and p̂ are orthogonal). Hence, ‖p̂ − p∗∗‖2 = ‖p̂‖2 + ‖p∗∗‖2 > ‖p̂‖2 = ‖p̂ − 0‖2. Since

0 ∈ cone(P) (see part (a)), this contradicts the optimality of p∗∗, because 0 has a strictly

better objective value.

We next show that p∗∗ and p∗ are unique. We prove this for p∗∗ using a contradiction

(the proof for p∗ is similar). Suppose that ṗ, p̈ ∈ cone(P) such that ṗ 6= p̈ and both ṗ and

p̈ are optimal for problem minp∈cone(P) ‖p− p̂‖2; hence ‖ṗ− p̂‖2 = ‖p̈− p̂‖2 ≤ ‖p− p̂‖2, for

all p ∈ cone(P). Define p̃ := 1
2
(ṗ + p̈). Note that p̃ ∈ cone(P) because cone(P) is a convex

set. We show that the objective value of p̃ is strictly better than that of ṗ (or p̈). We have:

‖p̃ − p̂‖2 = ‖1
2
(ṗ + p̈) − p̂‖2 = 1

4
‖ṗ − p̂‖2 + 1

4
‖p̈ − p̂‖2 + 1

2
(ṗ − p̂)T (p̈ − p̂) ≤ ‖ṗ − p̂‖2.

The equality holds only if the angle between (ṗ − p̂) and (p̈ − p̂) is 0, in which case we

must have ṗ = p̈ (because the lengthes of vectors (ṗ− p̂) and (p̈− p̂) are equivalent). This

contradicts ṗ 6= p̈; hence p∗∗ is unique. As we use the convexity of the feasible region to

prove the uniqueness of p∗∗, the proof for p∗ is almost identical (because FHp̂ is a convex

set).

Define λ∗∗ := p̂T p̂
p∗∗T p̂

. Then, λ∗∗ > 0, because p̂T p̂ > 0 and p∗∗T p̂ > 0. Moreover,

λ∗∗p∗∗ ∈ FHp̂, because λ∗∗p∗∗ ∈ cone(P) and p̂T (λ∗∗p∗∗) = p̂T p̂
p∗∗T p̂

p̂Tp∗∗ = p̂T p̂. Moreover,

p∗

λ∗∗
∈ cone(P), because 1

λ∗∗
> 0 and p∗ ∈ cone(P). Hence, in summary, we have p∗, λ∗∗p∗∗ ∈

FHp̂ and p∗

λ∗∗
, p∗∗ ∈ cone(P).

Finally, we prove that p∗ = λ∗∗p∗∗ using a contradiction. Suppose to the contrary that
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p∗ 6= λ∗∗p∗∗ (or 1
λ∗∗

p∗ 6= p∗∗). Since p∗∗ is unique and 1
λ∗∗

p∗ ∈ cone(P), then we have:

‖p∗∗ − p̂‖2 < ‖ 1

λ∗∗
p∗ − p̂‖2

=⇒ ‖p∗∗ − 1

λ∗∗
p̂− (1− 1

λ∗∗
)p̂‖2 < ‖ 1

λ∗∗
p∗ − 1

λ∗∗
p̂− (1− 1

λ∗∗
)p̂‖2

=⇒ ‖p∗∗ − 1

λ∗∗
p̂‖2 + ‖(1− 1

λ∗∗
)p̂‖2 < ‖ 1

λ∗∗
p∗ − 1

λ∗∗
p̂‖2 + ‖(1− 1

λ∗∗
)p̂‖2

=⇒ ‖p∗∗ − 1

λ∗∗
p̂‖2 < ‖ 1

λ∗∗
p∗ − 1

λ∗∗
p̂‖2

=⇒ ‖λ∗∗p∗∗ − p̂‖2 < ‖p∗ − p̂‖2.

The third line follows from the fact that (p∗∗− 1
λ∗∗

p̂) and (1− 1
λ∗∗

)p̂ are orthogonal, and

( 1
λ∗∗

p∗ − 1
λ∗∗

p̂) and (1 − 1
λ∗∗

)p̂ are orthogonal. On the other hand, since p∗ is unique and

λ∗∗p∗∗ ∈ FHp̂, then we must have: ‖p∗−p̂‖2 < ‖λ∗∗p∗∗−p̂‖2. This is a contradiction; hence,

p∗ = λ∗∗p∗∗. Note that λ∗∗ = p̂T p̂
p∗∗T p̂

= p∗Tp∗

p̂T p̂
. Thus, we showed that p∗∗ = 1

λ∗∗
p∗ = p̂T p̂

p∗Tp∗
p∗,

and hence the proof is complete.

2.11 Appendix for Direction Step

2.11.1 Proof of Lemma 6

Gk = 0 if and only if βk = 0; hence, p̂− p∗k = 0 and it follows that p̂ =
∑k

i=1 α
∗
i θ
i for some

α∗i ≥ 0,∀i = 1, · · · , k, satisfying
∑k

i=1 α
∗
i = 1. Moreover, θi ∈ FHp̂,∀i = 1, · · · , k, and FHp̂

is a convex set. Thus, p̂ ∈ FHp̂, which is also equivalent to p̂ ∈ cone(P), once remark 1.1 is

applied.

2.11.2 Proof of Lemma 7

Note that Gk = ‖βk‖ = ‖p̂ − p∗k‖; hence, at iteration k, Gk is the optimal value of the

problem given in Eqs. (2.9)-(2.11). At iteration k + 1, fixing αk+1 = 0, reduces the feasible

region of the problem given in Eqs. (2.9)-(2.11), and the problem becomes identical to that
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at iteration k; hence, fixing αk+1 = 0, we find Gk, which is not smaller than Gk+1. Therefore,

Gk ≥ Gk+1, ∀k = 1, 2, · · · .

2.12 Appendix for Maximization Step

2.12.1 Proof of Proposition 3

Note that FHp̂ ⊆ Hp̂; hence, a direction for FHp̂ is also a direction for Hp̂. Then, as a

corollary of Lemma 5, a direction of FHp̂ can be represented as a non-negative combination

of the extreme directions of Hp̂.

We first show that M(βk) does not have unbounded optimal value. Suppose to the

contrary that the optimal value of M(βk) is unbounded. Let p̄ ∈ FHp̂ be arbitrary. There

must exist a direction d such that: (p̄ + ηd) ∈ FHp̂, for all η ∈ R+, and the objective value

of (p̄ + η′d) is strictly greater than that of (p̄ + η′′d), if η′ > η′′. Vector d can be written as

a non-negative combination of ei’s, i ∈ I∅; hence, there exist ξi ≥ 0, for all i ∈ I∅, such that:

d =
∑

i∈I∅ ξie
i. Let us compute the difference between the objective values of (p̄ + η′d) and

(p̄ + η′′d):

(p̂− p∗k)T ((p̄ + η′d)− (p̄ + η′′d)) = (η′ − η′′)(p̂− p∗k)Td

= (η′ − η′′)(p̂− p∗k)T
∑
i∈I∅

ξie
i

= −(η′ − η′′)
∑
i∈I∅

ξip
∗k
i ≤ 0,

where the last line follows from p̂i = 0, for all i ∈ I∅ (also note that η′ > η′′). This is a

contradiction because the objective value of (p̄ + η′d) is not strictly greater than that of

(p̄ + η′′d). Hence, M(βk) has a bounded optimal value.

Additionally, because FHp̂ is a nonempty polyhedron and FHp̂ ⊆ Rn
+, then FHp̂ does

not contain a line, and has some (at least one) extreme points. Therefore, since FHp̂ has
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at least one extreme point and does not contain lines, an extreme point of FHp̂ must be

optimal. This extreme point is in the form of λy, where 0 < λ < +∞ and y ∈ Y. Note that

there might be other alternative optimal solutions in the same form.

2.12.2 Proof of Lemma 8

(a) Note that MWSAT(βk + ωp̂) = maxy∈Y(βk + ωp̂)Ty = maxyrel∈conv(Y)(β
k + ωp̂)Tyrel

where yrel is a n-vector of continuous variables and conv(Y) is the convex hull of the feasible

configurations. For each yrel ∈ conv(Y), the objective function, (βk + ωp̂)Tyrel, is convex

in ω. Then, MWSAT(βk + ωp̂) is convex in ω (due to “pointwise maximum property”;

see, for example, section 3.2.3 of [Boyd S, Vandenberghe L (2004) Convex optimization.

Cambridge university press.]). In other words, for each yrel ∈ conv(Y), the objective function,

(βk + ωp̂)Tyrel, is linear in ω; hence, MWSAT(βk + ωp̂) is a piecewise linear, convex, and

continuous function in ω.

(b) Since FHp̂ 6= {}, then there exists y ∈ Y such that p̂Ty > 0. Hence, the proof is

complete.

(c) Note that:

MWSAT(βk + ωp̂) = max
y∈Y

(p̂− p∗k + ωp̂)Ty

= max
y∈Y

(−p∗k + (1 + ω)p̂)Ty

= max
y∈Y

−p∗kTy + (1 + ω)p̂Ty.

In addition, we have p̂Ty ≥ 0 and p∗kTy ≥ 0, for all y ∈ Y. Therefore, MWSAT(βk +

ωp̂) ≤ 0 if ω ≤ 1.
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2.12.3 Proof of Proposition 5

The proof consists of the following steps. First, we show that strong duality holds forM(βk).

Second, we derive the dual problem to show that M(βk) is equivalent to:

max
{
ω ∈ R|MWSAT(βk + ωp̂) ≤ 0

}
.

Finally, we use Lemma 8 to show that the condition holds as equality.

Step 1: Noting that Eqs. (2.14)-(2.16) are equivalent to θ = λy. We substitute λy for θ

in M(βk) and eliminate Eqs. (2.14)-(2.16). Hence,

M(βk) ⇐⇒ max
λ≥0,y∈Y

λβkTy s.t. λp̂Ty = p̂T p̂ (2.23)

⇐⇒ max
yλ∈cone(Y)

βkTyλ s.t. p̂Tyλ = p̂T p̂ (2.24)

⇐⇒ max
yλ,rel∈conv(cone(Y))

βkTyλ,rel s.t. p̂Tyλ,rel = p̂T p̂, (2.25)

where yλ,yλ,rel ∈ Rn are vectors of continuous variables, and cone(.) and conv(.) are respec-

tively the cone and convex hull generated by a given set. Eq. (2.24) is obtained by defining

variable yλ ∈ Rn and substituting it for λy; hence, yλ = λy ∈ cone(Y). The feasible region

of Eq. (2.24) consists of discrete points on hyperplane p̂Tyλ = p̂T p̂ and objective function

is linear in yλ; hence, Eq. (2.25) is obtained once we relax yλ and use the convex hull of

the feasible region. Since Eq. (2.25) is a convex optimization problem, then strong duality

holds for M(βk).

Step 2: Using Eq. (2.23), the dual of M(βk) is written as follows (one could start by
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writing the dual of Eq. (2.25) which leads to the same result):

min
ω

max
λ≥0,y∈Y

λβkTy + ωλp̂Ty − ωp̂T p̂ (2.26)

⇐⇒ min
ω

{
−ωp̂T p̂ + max

λ≥0

{
max
y∈Y

λ(βk + ωp̂)Ty

}}
(2.27)

⇐⇒ min
ω

{
−ωp̂T p̂ + max

λ≥0
λ

{
max
y∈Y

(βk + ωp̂)Ty

}}
(2.28)

⇐⇒ min
ω

{
−ωp̂T p̂ + max

λ≥0
λ
(
MWSAT(βk + ωp̂)

)}
(2.29)

⇐⇒ min
ω
−ωp̂T p̂ s.t. MWSAT(βk + ωp̂) ≤ 0 (2.30)

⇐⇒ max
ω

ω s.t. MWSAT(βk + ωp̂) ≤ 0. (2.31)

Eq. (2.27) is obtained by rearranging terms. Since λ ≥ 0, we take it outside of the

maximization to obtain Eq. (2.28). The maximization problem maxy∈Y(βk + ωp̂)Ty is in

fact MWSAT with weight vector βk + ωp̂. In Eq. (2.29), for a fixed ω, if the optimal value

of MWSAT is strictly positive, then the optimal value of the maximization problem becomes

+∞; hence, we are interested in the values of ω for which the optimal value of MWSAT

is non-positive (Eq. 2.30). Finally, note that p̂T p̂ > 0, which results in Eq. (2.31). Since

strong duality holds, M(βk) is equivalent to Eq. (2.31).

Step 3: Let ω∗max denote the greatest solution of MWSAT(βk +ωp̂) = 0. Using lemma 8,

ω∗max < +∞, and we have MWSAT(βk + ωp̂) > 0 for all ω > ω∗max. Therefore, M(βk) ⇐⇒

max
{
ω ∈ R|MWSAT(βk + ωp̂) = 0

}
.

2.13 Appendix for Convergence Rate

2.13.1 Proof of Remark 5.1

Once θ is fixed, the minimization problem is to find the closest point in the convex hull

of {θ1, · · · , θk, θ} to p̂. Since we are interested in the worst-case, we maximize over all

θ’s requiring that the following two constraints are satisfied. First, the Euclidean distance
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between any pair of feasible points must be less than or equal to the diameter of the set

FHp̂. Second, βkT (θ − p̂) ≥ 0, which is required to have p̂ ∈ cone(P) since otherwise a

hyperplane exists that separates p̂ and FHp̂, and hence p̂ is infeasible.

2.13.2 Proof of Theorem 2

This theorem is proven in two steps. First, we show if p̂ ∈ cone(P), G1 = D√
2
, and θk = θkw,

for all k ≥ 2, then: (1) Gk = G1
√
k
, for all 1 ≤ k ≤ n, and (2) Gk ≤ G1

√
k
, for all k > n. Second,

we provide an example for which we have: Gk = G1
√
k
, for all 1 ≤ k ≤ n− 1.

To prove the first step, we use an inductive argument to show if p̂ ∈ cone(P), G1 =

D√
2
, and θk = θkw, for all k ≥ 2, then, without loss of generality, θk = p̂ + G1ek, for all

k = 1, · · · , n, where ek is the vector with all 0’s except for a 1 in the kth coordinate—e.g.,

e1 = (1, 0, 0, · · · , 0).

Let k = 1 and θ1 be given as we previously discussed. Then, p∗1 = θ1 (since p∗k is

the closest point in the convex combination of the set {θ1, · · · , θk} to p̂). Thus, D√
2

=

G1 = ‖β1‖ = ‖p̂ − p∗1‖ = ‖p̂ − θ1‖; hence, the Euclidean distance between p̂ and θ1 is

G1. Therefore, let θ1 = p̂ + G1e1, which is without loss of generality since it can always be

achieved by a rotation about p̂.

For 1 ≤ k ≤ n− 1, assume that θi = p̂ + G1ei, for all i = 1, · · · , k. In the following, we

show θk+1 = θk+1
w = p̂ + G1ek+1. Substituting θi = p̂ + G1ei, for all i = 1, · · · , k, in Remark
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5.1, we have:

θk+1 = θk+1
w = arg max

θ∈Θk

{
min
α∈Ak

∥∥∥∥∥
k∑
i=1

αi(p̂ + G1ei) + αk+1θ − p̂

∥∥∥∥∥
}

= arg max
θ∈Θk

{
min
α∈Ak

∥∥∥∥∥G1

k∑
i=1

αie
i + αk+1(θ − p̂)

∥∥∥∥∥
}

= arg max
θ∈Θk

min
α∈Ak

1

2

(
G1

k∑
i=1

αie
i + αk+1(θ − p̂)

)T (
G1

k∑
i=1

αie
i + αk+1(θ − p̂)

)
= arg max

θ∈Θk

{
min
α∈Ak

1

2
αTQα

}
, (2.32)

where Θk = {θ ∈ Rn : ‖θ − p̂ − G1ei‖2 ≤ D2, for all i = 1, · · · , k,1(k)T (θ − p̂)(k) ≤ 0},

Ak = {α ∈ Rk+1 : α ≥ 0,1(k+1)Tα = 1}, and

Q =

 G12
Ik G1(θ − p̂)(k)

G1(θ − p̂)(k)T (θ − p̂)T (θ − p̂)


where Ik is a k × k identity matrix, (θ − p̂)(k) is a k-vector created by the first k entries of

the vector (θ − p̂), and Q is a (k + 1)× (k + 1) matrix.

Let S denote the Schur complement of the block G12
Ik of the matrix Q; hence, S =

(θ − p̂)T (θ − p̂) − G1(θ − p̂)(k)T (G12
Ik)
−1G1(θ − p̂)(k) =

∑n
i=k+1(θi − p̂i)2 ≥ 0. The matrix

Q is positive semi-definite, which can be shown by performing elementary row operations

on Q and converting it to an upper diagonal matrix where the diagonal entries, and hence

the eigenvalues, are G12
, · · · ,G12

,S . For this, one needs to multiply rows 1, · · · , k by (θi−p̂i)
G1

and subtract their sum from row k + 1. We have G12
> 0; then, if S > 0, Q is positive

definite, and hence invertible. For now, we assume S > 0, and hence Q is positive definite

and invertible, which is confirmed by the solution. We will analyze S = 0 later in this proof.

For a fixed θ, the problem minα∈Ak
1
2
αTQα is convex since Q is positive definite and Ak is

a convex set. The dual of this problem is maxϑ≥0,ν g(ϑ, ν), where g(ϑ, ν) = infα L (α, ϑ, ν),
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L (α, ϑ, ν) = 1
2
αTQα − (ϑ − ν1(k+1))Tα − ν, ϑ ∈ Rk+1, and ν ∈ R. Since Q is positive

definite, then L (α, ϑ, ν) is convex in α. Since L (α, ϑ, ν) is differentiable, the minimizer of

L (α, ϑ, ν) is found by ∇αL (α, ϑ, ν) = 0, which results in α∗ = Q−1(ϑ− ν1(k+1)), where:

Q−1 =

 G1−2
Ik 0

0 0

+
1

G12S

 (θ − p̂)(k)(θ − p̂)(k)T −G1(θ − p̂)(k)

−G1(θ − p̂)(k)T G12


Hence, using α∗, we obtain g(ϑ, ν) = infα L (α, ϑ, ν) = −1

2
(ϑ − ν1(k+1))TQ−1(ϑ −

ν1(k+1)) − ν. The function g(ϑ, ν) is concave in ϑ; hence, fixing ν, the maximum of

g(ϑ, ν) occurs in ∇ϑg(ϑ, ν) = Q−1(ϑ − ν1(k+1)) = 0 or at the boundary ϑ = 0. From

∇ϑg(ϑ, ν) = 0, it follows that ϑ = ν1(k+1), and maxϑ≥0,ν g(ϑ, ν) = maxν −ν = +∞,

with ν = −∞; hence, ϑ < 0 which is a contradiction. Therefore, optimal ϑ is 0; thus,

maxϑ≥0,ν g(ϑ, ν) = maxν −1
2
ν21(k+1)TQ−11(k+1) − ν. Since 1(k+1)TQ−11(k+1) > 0, then this

problem is maximized in ν = −1/(1(k+1)TQ−11(k+1)). Substituting optimal ν, we obtain

maxϑ≥0,ν g(ϑ, ν) = 1/(1(k+1)TQ−11(k+1)). Substituting this result in Eq. (2.32), we have

θk+1 = arg max
θ∈Θk

{1/(1(k+1)TQ−11(k+1))} = arg min
θ∈Θk

{1(k+1)TQ−11(k+1)}. Moreover, using the

definition of Q−1, we have 1(k+1)TQ−11(k+1) = 1
G12

(
k + 1

S

(
1(k)T (θ − p̂)(k) − G1

)2
)

; hence,

since G12
> 0 and k is constant, we have:

θk+1 = θk+1
w = arg min

θ∈Θk

1

S

(
1(k)T (θ − p̂)(k) − G1

)2
(2.33)

Consider the constraint ‖θ − p̂ − G1ei‖2 ≤ D2, for all i = 1, · · · , k. This inequality can

be written as (θ − p̂)T (θ − p̂)− 2G1eiT (θ − p̂) + G12 ≤ D2, for all i = 1, · · · , k. Noting that

(θ − p̂)T (θ − p̂) = S + (θ − p̂)(k)T (θ − p̂)(k), and D2 = 2G12
, we have S + (θ − p̂)(k)T (θ −
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p̂)(k) − 2G1eiT (θ − p̂) ≤ G12
, for all i = 1, · · · , k. Thus, using Eq. (2.33), we have:

θk+1 = θk+1
w = arg min

θ∈Rn
1

S

(
1(k)T (θ − p̂)(k) − G1

)2
(2.34)

s.t. S + (θ − p̂)(k)T (θ − p̂)(k)

−2G1eiT (θ − p̂) ≤ G12
,∀i = 1, · · · , k (2.35)

1(k)T (θ − p̂)(k) ≤ 0. (2.36)

Summing Eq. (2.35) over i = 1, · · · , k, and dividing by k, we have S + (θ − p̂)(k)T (θ −

p̂)(k) − 2
k
G11(k)T (θ − p̂)(k) ≤ G12

. Noting that S > 0, (θ − p̂)(k)T (θ − p̂)(k) ≥ 0, and

1(k)T (θ − p̂)(k) ≤ 0 (see Eq. 2.36), this problem is optimized if (θ − p̂)(k) = 0 and S = G12
.

Hence, the optimal θ must satisfy the following conditions: (i) the vector (θ − p̂) must be

orthogonal to (θ1 − p̂), · · · , (θk − p̂), and (ii) the Euclidean distance between the optimal

θ and p̂ is equal to G1. Thus, although the optimal solution might not be unique, we let

without loss of generality, θk+1 = p̂ + G1ek+1, which satisfies the above two conditions for

optimality.

Using θk+1 = p̂ + G1ek+1, we have Q = G12
Ik+1, Q−1 = G1−2

Ik+1, and ν = − G12

k+1
; hence,

α∗ = Q−1(ϑ− ν1(k+1)) = 1
k+1

1(k+1).

Thus, we showed that θk = p̂ + G1ek for all 1 ≤ k ≤ n, and α∗ at iteration k is 1
k
1(k);

hence, pk∗ = 1
k

∑k
i=1 θ

i = p̂ + G1

k
1(k). Then, we have βk = p̂− p∗k = −G1

k
1(k), and it follows

that Gk = ‖βk‖ = G1
√
k
.

Consider the case S = 0, which happens for k ≥ n as well. As we previously discussed,

the problem given in Eq. (2.32) is optimized if (θ− p̂) is orthogonal to (θ1− p̂), · · · , (θk− p̂);

however, if S = 0, then (θ − p̂) is in the linear combination of (θ1 − p̂), · · · , (θk − p̂).

Thus, S = 0 leads to suboptimal solutions. Hence, our earlier assumption S > 0 is valid.

Moreover, Gk ≤ G1
√
k

for k > n.

As the second step of the proof, we provide an example to show G1
√
k

is the tightest upper
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bound on Gk for 1 ≤ k ≤ n− 1.

Example: Consider options i = 1, · · · , n and assume that p̂ = en and two FCRs are

given as follows: (i) an E type family that consists of only option n, and (ii) an L type

family that consists of options 1, · · · , n − 1—i.e., option n must always be chosen and at

most one of options 1, · · · , n−1 can be selected. Then, there exists n feasible configurations

as follows: e1 + en, e2 + en, · · · , en−1 + en, en. Note that Hp̂ = {p ∈ Rn|pn = 1,p ≥ 0}, and

all feasible configurations are in Hp̂; hence, FHp̂ is the convex combination of the n feasible

configurations, which are the vertices of FHp̂. The diameter of FHp̂ is D =
√

2.

Let, without loss of generality, θ1 = e1 + en:

Iteration k, for 1 ≤ k ≤ n−1: p∗k = 1
k
(e1 +· · ·+ek)+en, βk = p̂−p∗k = − 1

k
(e1 +· · ·+ek),

and Gk = ‖βk‖ = 1√
k
. For 1 ≤ k ≤ n − 2, one could verify that all of the points in the

set {ek+1 + en, ek+2 + en, · · · , en−1 + en, en} are optimal for the problem M(βk); then, let,

without loss of generality, θk+1 = ek+1 + en. For k = n− 1, en is the only optimal solution

for M(βn−1); hence, let θn = en.

Iteration n: p∗n = en, βn = p̂ − p∗n = 0, and Gn = ‖βn‖ = 0. Then, our algorithm stops

and reports that p̂ ∈ cone(P).

Thus, since in this example, we have Gk = G1
√
k
, for all 1 ≤ k ≤ n− 1, we have proved that

G1
√
k

is the tightest upper bound on Gk for 1 ≤ k ≤ n− 1.

2.14 Appendix for Lower Bound

2.14.1 Illustration of Bounds

See Fig. 2.13. Consider 3 options A, B, and C, and assume there are only 3 feasible

configurations {A,C}, {B,C}, and {A,B,C}, and the forecast rates of options are given by

p̂ = (pA, pB, pC) = (0, 0, 1). The set FHp̂ is shown in Fig. 2.13(a). Let the algorithm

initialize at θ1 = (1, 1, 1).
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Iteration 1: p∗1 is the closest point to p̂ in the convex hull of {θ1}; hence, p∗1 = θ1. The

vector β1 = p̂− p∗1 is shown and solving M(β1) gives θ2 = (0, 1, 1). The length of β1

is G1 and the length of the projection of the vector (θ2 − p∗1) on the vector β1 is U1;

moreover, L1 = G1 − U1.

Iteration 2: p∗2 is the closest point to p̂ in the convex hull of {θ1, θ2}; hence, p∗2 = θ2.

Finding β2 and solvingM(β2), we obtain θ3 = (1, 0, 1). The vector (θ3−p∗2) is shown.

It is seen that G2 = U2, and L2 = 0.

Iteration 3: p∗3 = (0.5, 0.5, 1), and β3 are shown. Solving M(β3), we obtain θ4 = θ3.

In this example, we note that p∗3 is the closest point in FHp̂ to p̂; moreover, one could see

that continuing the execution of the algorithm, iteration 3 will be repeated in all iterations

k > 3; hence, a criteria is required to recognize this situation and terminate the algorithm.

2.14.2 Proof of Proposition 6

(i) Let Gk 6= 0 and Lk > 0. We have Lk = Gk − Uk = Gk − min
{
Gk, βkT (θk+1−p∗k)

Gk

}
=

Gk + max
{
−Gk,−βkT (θk+1−p∗k)

Gk

}
= max

{
0,Gk − βkT (θk+1−p∗k)

Gk

}
; hence, since Lk > 0, then

Gk − βkT (θk+1−p∗k)
Gk > 0, and it follows that βkT (θk+1 − p∗k) < Gk2 = βkTβk = βkT (p̂ − p∗k);

thus, βkT p̂ > βkT θk+1. On the other hand, since θk+1 is the maximizer of M(βk), then we

have βkTp ≤ βkT θk+1, for all p ∈ FHp̂. Therefore, we showed that βkTp = βkT θk+1 is a

hyperplane that separates p̂ and FHp̂; hence, p̂ /∈ FHp̂, and it follows that p̂ /∈ cone(P).

(ii) Let Gk 6= 0 and Uk = 0; by the definition of Uk, we have βkT θk+1 = βkTp∗k. Since θk+1

is the maximizer of M(βk), then we have βkTp ≤ βkT θk+1, for all p ∈ FHp̂. On the other

hand, we have 0 < Gk2 = βkTβk = βkT (p̂−p∗k), then βkT p̂ > βkTp∗k = βkT θk+1. Hence, we

showed that βkTp = βkT θk+1 is a hyperplane that separates p̂ and FHp̂. Moreover, since

p∗k belongs to FHp̂ and the separating hyperplane, and the vector (p̂− p∗k) is orthogonal

to the separating hyperplane, then p∗k is the nearest point in FHp̂ to p̂.
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pA

pB

pC“101”

θ1 =“111”
“011”

“001”
p̂

(a) Initialization step

pA

pB

pC

θ1 = p∗1
θ2

p̂

β1

θ2 − p∗1

U1

L1

G1

(b) Iteration k=1

pA

pB

pCθ3

θ1 θ2 = p∗2

p̂

β2

θ3 − p∗2
G2 = U2,

L2 = 0

(c) Iteration k=2

pA

pB

pCθ3 = θ4

θ1 θ2

p̂

p∗3

β3

θ4 − p∗3 G3 = L3,
U3 = 0

(d) Iteration k=3

Figure 2.13: An example to illustrate Lk and Uk. Note that Lk and Uk are not monotone in
k.

2.14.3 Proof of Lemma 9

Fig. 2.13 provides a counter example for the monotonicity of Lk and Uk. Note that L1 = 1√
2
,

L2 = 0, L3 = 1√
2
. Hence, Lk is not necessarily monotone in k. The same is true for Uk.

2.14.4 Proof of Theorem 3

The first part of the theorem follows from Lemma 6 and Proposition 6.

To prove our algorithm stops after finite iterations, note that if at iteration k, p∗k = p̂
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then Gk = 0 and the algorithm stops; hence, assume p∗k 6= p̂. We claim that: if solving

M(βk) returns θk+1 such that θk+1 ∈ {θ1, · · · , θk}, then the algorithm stops. To prove

this claim, note that at iteration k of our algorithm, the hyperplane βkTp = βkTp∗k sep-

arates p̂ and {θ1, · · · , θk}; moreover, p∗k and at least one of θ1, · · · , θk, say θj, belong

to this separating hyperplane. Suppose θk+1 ∈ {θ1, · · · , θk}, then it must also belong

to the separating hyperplane; hence, without loss of generality assume θk+1 = θj. Then,

βkT (θk+1 − p∗k) = βkT (θj − p∗k) = 0; hence, Uk = 0, and the algorithm stops.

Thus, we showed that our algorithm either finds a new θ at each iteration or stops.

Noting that the number of feasible configurations is finite, the algorithm stops after finite

iterations.
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Chapter 3

Parts Capacity-Planning Problem

3.1 Introduction

Our problem is motivated by a global auto manufacturer (GAM) that allows customers to

configure their cars online. Automobiles consist of a number of options such as engines,

transmissions, chassis, electronic systems, interior and exterior designs, and suspensions.

Customers configure end-products, also called producible configurations, by choosing options

that are compatible (see for example Ulrich (1994); Walker and Bright (2013); Feitzinger and

Lee (1997); Fohn et al. (1995)). For a general discussion on mass customization, configurable

products, and their literature reviews, see Pine (1993); Da Silveira et al. (2001); Heiskala

(2007); Sabin and Weigel (1998). The GAM offers 100-500 options for a car model, resulting

in 1025-1040 producible configurations (configurations that are engineering-wise producible).

Traditionally, manufacturers have relied on demand forecasts at the level of configurations

for parts-capacity planning, production planning, supplier contracts, and pricing decisions

(Hax and Candea, 1984; Orlicky, 1974; Whybark and Williams, 1976). In mass customiza-

tion, it is impossible to forecast configurations’ demand because of extremely large number of

configurations. Typically, firms first forecast the cumulative demand—i.e., the total number

of cars sold over the planning horizon. Second, they forecast options’ demand in the form of

an options-level penetration statistic (OPS). An OPS consists of a penetration rate for each
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of the options being offered (the penetration rate of an option represents the fraction of cars

that they believe will have that option).

Our analysis on the data received from the GAM indicates that 30-60% of the parts

required to produce a car model depend on the combination of options used (we refer to

parts, components, and subassemblies as parts). For example, a specific combination of an

engine and a transmission type generates a number of additional parts. For an industrial

instance that has 433 options, Fig. 3.1 shows how many parts are defined by how many

options. In this instance, 63% of parts’ requirement depend on a single option and 37% of

the parts’ requirement depend on multiple options.
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Figure 3.1: Percentage of parts that are defined based on different number of options.

In short, we need configurations-level forecast to estimate parts requirements. However,

the relationship between an OPS and a configurations-level demand is a point-to-set map-

ping, as shown in the following example.

Example 1. (Point-to-Set Mapping) Consider two options A′ and A′′ with penetration

rates of 0.5 for both. Assume that a car can have both or one or none of these two options.

This results in the following producible configurations: {}, {A′}, {A′′}, and {A′, A′′}. Ob-

serve that the following configurations-level demands are consistent with the given OPS: (i)

0.5{}+0.5{A′, A′′}, (ii) 0.5{A′}+0.5{A′′}, or (iii) 0.25{}+0.25{A′}+0.25{A′′}+0.25{A′, A′′}.
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2

Similar to OPS, we let a configurations-level penetration statistic (CPS) consist of a

penetration rate (fraction of the demand) for each producible configuration. A configuration

is producible if it satisfies engineering constraints. Note that a CPS is a convex combination

of producible configurations. A CPS is (marketing-wise) consistent if it satisfies the given

OPS. As shown in Example 1, a multitude of CPSs are consistent with the given OPS. Each

CPS maps to a specific quantity for a part’s requirement. Thus, a given OPS maps to a

range for a part’s requirement. In this chapter, we will also express a part’s requirement in

terms of a requirement rate. A part’s requirement is the ratio of the required quantity of

that part to the total demand over the planning horizon.1

The GAM procures parts from approximately 20,000 suppliers and it is estimated that

parts’ cost constitutes approximately two-thirds of the total cost, or about $90 billion per

year. An important element of the procurement contracts is the ranges of parts’ require-

ment. Inaccurate calculation of these ranges has resulted in significant excess inventory and

shortages of parts in the GAM. In addition, the wider the ranges, the costlier the parts’

capacity acquisition (Bassok and Anupindi, 2008). Therefore, it is essential to find these

ranges as precisely and as narrowly as possible.

In Example 1, we assumed that any combination of the two options can be selected.

However, in general, this is not the case. A set of engineering rules exists that determines

the compatibility of options. For example, some options are mutually incompatible while,

in other instances, selection of an option may require selection of another option. These

considerations result in a set of complex engineering constraints, which we refer to as rules

(see Chapter 2). The following example illustrates the rules and is referred to throughout

this chapter.

Example 2(a). (Fig. 3.2(a)) In this example, there are 10 options which we label as

1Note that, in a CPS, rates add up to 1; in an OPS, penetration rates are between 0 and 1 but they may
not add up to 1; and, a part’s requirement may be greater than 1, e.g. each car has 4 tiers.
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Figure 3.2(a):
Set of options:
{A1, A2, A3, A4, A5,

A6, A7, A8, A9, A10}.
Options with penetration rates:

p(A3) = 0.019
p(A4) = 0.861
p(A6) = 0.019
p(A7) = 0.050
p(A8) = 0.046
p(A10) = 0.385.

Rules for selecting options:
A1 ⇒ A2 ∨A5 ∨ ¬A10

A1 ⇒ A3 ∨ ¬A7 ∨ ¬A8

A1 ⇐ A7 ∧A6 ∧ ¬A4

A2 ⇒ A3 ∨A5 ∨A6 ∨ ¬A7 ∨ ¬A8

A2 ⇐ A4 ∧A5 ∧A6 ∧A7

A2 ⇐ ¬A8 ∧ ¬A9 ∧ ¬A10

A3 ⇒ A1 ∨A2 ∨ ¬A4 ∨ ¬A5

A4 ⇐ A1 ∧A2 ∧A3 ∧A5

A5 ⇒ A7 ∨A8

A5 ⇒ A1∨A2∨A3∨A4∨A6∨A9

A6 ⇒ A5

A7 ⇒ A1 ∨A5 ∨A4

A8 ⇒ A9 ∨A10

A8 ⇒ A1

A9 ⇒ A10

A9 ⇒ A10 ∨A7

A9 ⇐ A1 ∧A2

A10 ⇒ A1

A10 ⇒ A2 ∨A3 ∨A4 ∨A5

A10 ⇐ A1 ∧A2.

Figure 3.2(b):
Set of parts:
{R1, R2, R3}.

Condition codes:
A1 −→ 1×R1

(A2 ∧ ¬A3) ∨ (A2 ∧A4) −→ 2×R1

(¬A5 ∧A7) −→ 4×R1

(A3 ∧A4) ∨ (A3 ∧A6) −→ 1×R2

(A1 ∧ ¬A2 ∧A3) −→ 2×R3

A3 ∨ (A4 ∧¬A5 ∧¬A6) −→ 1×R3.

Figure 3.2: Inputs of our problem for Example 2.

A1, . . . , A10. These options can be engine types, transmissions, body types, sunroofs, audio

systems, and so forth. Six of these ten options have assigned penetration rates (denoted

by p(A3), p(A4), and so forth)—e.g, the penetration rate of A3 is 0.019 meaning that it

is believed that 1.9% of the planning horizon demand will have option A3. There are 20

rules. Notations “¬”, “∧”, “∨”, and “⇒” mean “negation,” “and,” “or,” and “implies,”

respectively. For example, the first rule (A1 ⇒ A2 ∨ A5 ∨ ¬A10) means that if option A1 is

selected, then either A2 must be selected or A5 must be selected, or A10 must not be selected.

2

A subset of options that satisfies all rules define a producible configuration. In the exam-

ple above, {A1, A4, A5, A6, A8, A10} and {A2, A4} are examples of producible configurations.

In general, finding a producible configuration is the well-known NP-complete Satisfiability

problem (Garey and Johnson, 2002).

The relationship between configurations and parts’ requirement is mediated by condition

codes. Condition codes are stated in terms of associated options. Observe that in Fig. 3.2(b),

there are 6 condition codes that define the requirement for parts R1, R2, and R3. Notation

“−→” means that if the left hand side is true for a given configuration, then the number of

parts specified on the right-hand side are required. For example, the third condition code

((¬A5 ∧ A7) −→ 4 × R1) means that if option A5 is not selected and option A7 is selected,
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then we require 4 units of part R1. The total part requirement is based on all condition

codes that hold.

For the producible configuration {A1, A4, A5, A6, A8, A10}, the requirement for part R1 is

computed based on the three condition codes (Fig. 3.2(b)), and since only one holds, then

one unit of R1 is needed. Similarly, for the other producible configuration {A2, A4}, we need

two units of R1.

We define parts capacity-planning problem (PCPP) as the problem of finding the ranges

for parts’ requirement. This problem consists of the following main inputs: (i) forecast OPS,

(ii) rules that define producible configurations, and (iii) condition codes that relate options

to the parts’ requirements. To the best of our knowledge, this problem is new and has not

been studied in the literature. Our contributions are as follows.

1. Traditionally, parts’ requirements have been computed using configurations-level de-

mand forecast and bill of materials. We present a new problem and develop a model that

finds ranges for parts’ requirements where instead of configurations-level forecast and bill of

materials, only options-level penetration rates, rules, and condition codes are available. Our

formulation is easy to understand, as it intuitively captures the rules and condition codes.

2. PCPP is a challenging large-scale NP-hard problem. We develop a methodology that

involves first reformulating PCPP with the following desirable properties: (i) the objective

function is convex, and (ii) the feasible set is only the convex hull of producible configurations.

Second, our methodology sequentially construct the feasible set until an optimal solution is

found. We show that our approach effectively solves large industrial instances.

3. We compare our approach to the one used in GAM. The proposed approach provides

accurate ranges for parts’ requirements while our experiments on an industrial instance

indicate that the existing practice has a mean absolute percentage error of 35.9%. This can

result in substantial shortage and/or excess inventory of parts.

4. The range for a part’s requirement, in principle, can be reduced if we can obtain
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additional information on demand. We address the following questions. What if the firm

can forecast the penetration rates for combination of options, which combination should it

forecast? And what will be the impact of additional information on the range?

5. Finally, we extend our approach to consider the following cases: (i) options’ pen-

etration rates are given as ranges, and (ii) the firm requires to find a range for the joint

requirement of multiple parts.

In short, we develop a new methodology that helps procurement managers in industries

with highly configurable products. Our approach provides accurate estimates of the ranges

of parts’ requirements, which results in substantial reduction in parts’ costs and wastage.

We finally note that this problem is not limited to the automotive industry. In fact, other

industries including, but not limited to, consumer electronics, aircraft, and computer in-

dustries offer configurable products (Feitzinger and Lee, 1997; Fohn et al., 1995; Kristianto

et al., 2015; Rodriguez and Aydin, 2011).

The remainder of this chapter is organized as follows. In Section 3.2, we develop a

simpler representation of condition codes and formulate the PCPP as a mixed-integer linear

programming (MILP) problem. Section 3.3 presents our methodology for solving industrial

instances in a reasonable amount of time and a lower bound on the optimal range. In

Section 3.4, we show how and which additional information regarding penetration rates of

single and joint options can assist in narrowing the ranges and then propose a heuristic

guideline for selecting which additional information to acquire. In Section 3.5, we apply our

methodology to an industrial instance given to us by the GAM, provide a detailed description

of the approach currently used by the GAM, and present a numerical comparative analysis.

Section 3.6 extends and generalizes our methodology to solve two important variations of

PCPP. Finally, Section 3.7 summarises the proposed methodology, discusses some of the

limitations, and provides directions for future research.
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3.2 Parts capacity-planning problem (PCPP) formulation

In this section, we formulate the PCPP as a mixed-integer linear programming (MILP)

problem that intuitively captures the engineering rules, options’ forecast, and condition

codes. As stated earlier, rules determine whether a potential configuration (a subset of

options) is producible. The problem of determining if there exists a producible configuration

is the well-known satisfiability problem. Therefore, it is not practical to explicitly compute

all producible configurations. Instead, we implicitly characterize the set of all CPSs that

satisfy the given OPS. We refer to CPSs that satisfy the given OPS as consistent CPSs. We

then map these consistent CPSs to the parts requirements through condition codes. Each

CPS maps to a value for each part’s requirement. Since there is a set of consistent CPSs

(as opposed to a single CPS), we obtain a range for each part’s requirement. To find the

minimum (respectively, maximum) value of the range, we formulate a problem that, among

the set of all consistent CPSs, finds a CPS that minimizes (respectively, maximizes) the

part’s requirement. In short, this problem has two sets of constraints: (i) configurations

have to be producible meaning that they have to satisfy the rules, which we refer to as

engineering constraints, and (ii) CPSs have to satisfy the given OPS, which we refer to as

marketing constraints.

We use letter A to denote options, letter R to denote parts, and letter F to denote

propositional formulas (propositional formulas are used in the representation of rules and

condition codes). Let N , R, and F denote the set of all options, parts, and propositional

formulas, respectively. We also use index i = 1, . . . , n for options, where n := |N |.

Condition codes determine part requirements for configurations and are stated in the form

of F −→ αR, meaning that if the propositional formula F is “true,” we then require α units

of part R. We define C (R) := {(F, α) ∈ F×Z++|F −→ αR}, as the set of all condition codes

for partR. For example, for partR2 in Fig. 3.2, we have: C (R2) = {((A3∧A4)∨(A3∧A6), 1)}.

Let y denote a generic producible configuration and Y denote the set of all producible
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configurations. We show how to determine a part’s requirement for configuration y using

the condition codes. Recall that associated with each configuration is a set of options. To

build configuration y, we require
∑

(F,α)∈C (R) αvy(F ) units of part R, where vy(F ) is the

value of formula F in configuration y, i.e., if y satisfies F , then vy(F ) = 1, and otherwise

vy(F ) = 0. For example in Fig. 3.2, the number of units of part R1 that is required to

produce configuration y is equal to: vy(A1) + 2vy((A2 ∧¬A3)∨ (A2 ∧A4)) + 4vy(¬A5 ∧A7).

Observe that the subset {A2, A4} is a producible configuration. Part R1’s requirement for

this configuration is equal to 0 + 2× 1 + 4× 0; hence, producing this configuration requires

2 units of part R1.

Let p(A) denote the penetration rate of option A and p(F ) denote the penetration rate

of formula F (note that penetration rates of formulas will be used in characterizing parts’

requirement). For example, if F = A1 ∧A2, then p(A1 ∧A2) is the joint penetration rate of

A1 ∧ A2 and it shows the fraction of cars sold over the planning horizon that include both

options A1 and A2. We sometimes use pA instead of p(A) for ease of notation.

Recall that a convex combination of producible configurations represents a CPS. Thus,

a CPS consists of a coefficient ay for each producible configuration y ∈ Y such that these

coefficients satisfy: ay ≥ 0, for all y ∈ Y, and
∑

y∈Y ay = 1. A CPS maps to a specific value

for a part’s requirement. Let QR denote the requirement of part R for a given CPS. We

have:

QR =
∑
y∈Y

ay
∑

(F,α)∈C (R)

αvy(F ) =
∑

(F,α)∈C (R)

α
∑
y∈Y

ayvy(F ) =
∑

(F,α)∈C (R)

αp(F ).

The first equality follows from the definition of QR. Note that
∑

y∈Y ayvy(F ) is the

fraction of cars that satisfy formula F ; hence, the last equality holds because p(F ) =∑
y∈Y ayvy(F ).

Since there are many consistent CPSs and each map into a specific value for part R’s

requirement, a range is obtained for QR. This range is determined by minimizing and
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maximizing QR over all consistent CPSs. Hence, we use QR =
∑

(F,α)∈C (R) αp(F ) as the

objective function of our MILP model. The difficulty, however, is that some of the F ’s in this

equation may be complex. Thus, we perform the following simplification. If (F, α) ∈ C (R)

and F is complex, then we define a new artificial option A′ and replace (F, α) with (A′, α) in

the set C (R), while adding F ⇔ A′ to the set of rules. For example, if (A3 ∧A4, 2) ∈ C (R),

then we introduce a new option A′, replace (A3 ∧A4, 2) with (A′, 2), and add A3 ∧A4 ⇔ A′

to the set of rules. Let C̃ (R) denote the simplified version of the set C (R). Hence, our

objective function becomes QR =
∑

(i,α)∈C̃ (R) αpi.

We next formulate the feasible region of our problem. We start by formulating the rules.

The GAM’s engineering rules are a set of well-defined propositional formulas and can be

written in conjunctive normal form (CNF) (see, for example, Tseitin (1968) and Wilson

(1990)). A CNF formula is in the form of C1 ∧ · · · ∧ C` where C1, . . . , C` are disjunctive

clauses. A clause is called “disjunctive” if it is the disjunction of some literals (a literal is

either an option or its negation). Although our methodology can be easily extended to rules

in any format, we assume rules are in CNF.

We write one constraint for each clause.2 As an example, consider clause A1∨¬A2. This

clause is formulated as yA1 + (1− yA2) ≥ 1, where binary variables y are defined as follows:

yA = 1 if option A is selected, and yA = 0 otherwise. This constraint means that either

yA1 = 1 or yA2 = 0 or both. Hence, we can formulate the set of all producible configurations

Y as follows:

Y := {y ∈ {0, 1}n|
∑
i∈POC

yi +
∑

i∈NOC

(1− yi) ≥ 1, ∀C},

where, y := (y1, . . . , yn), and POC (respectively, NOC) is the set of positive (respectively,

negative) options in clause C. For example, if C = ¬A3 ∨ A4, then POC = {A4} and

2Formulating logical propositions as linear constraints is also discussed in Yan and Hooker (1999) and
Chandru and Hooker (1999).
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NOC = {A3}. In this chapter, we assume 0 ∈ Y.

An OPS consists of a penetration rate pi ∈ [0, 1] for each option i = 1, . . . , n. Let

p = (p1, . . . , pn) denote an OPS. This OPS satisfies the engineering rules if there exists a

CPS, ay’s, such that
∑

y∈Y ayyi = pi, for all i. In other words, an OPS p satisfies the

engineering constraints if p ∈ conv(Y), where conv(Y) denotes the convex hull of Y. We

refer to the condition p ∈ conv(Y) as the engineering constraints. Finally, we note that the

marketing constraints (forecast OPS) are formulated as: pi = p̂i, for all i ∈ N1, where p̂i

denotes the forecast penetration rate of option i, and N1 denotes the set of options for which

forecast penetration rates exist. For example in Fig. 3.2, N1 = {A3, A4, A6, A7, A8, A10}.

Thus, we formulate our problem, which we refer to as (P1), as follows:

(P1): min /max QR =
∑

(i,α)∈C̃ (R)

αpi (3.1)

s.t. pi = p̂i, ∀i ∈ N1, (3.2)

p ∈ conv(Y). (3.3)

Let Q∗R,L and Q∗R,U respectively denote the optimal values of the minimization (P1min)

and maximization (P1max) problems. The detailed MILP formulation of (P1) along with

an example is given in Appendix 3.9.1. Last, we establish the NP-hardness of (P1).

Proposition 7 (NP-Hardness). Problem (P1) is NP-hard.

The proof simply follows from noting that satisfiability problem (known to be NP-

complete; see, e.g., Garey and Johnson (2002)) is imbedded in (P1).

3.3 Solution approach

PCPP is a large-scale optimization problem and existing approaches for solving the MILP

representation of this problem are not effective. Therefore, we need to develop a specialized

71



solution approach. In this section, we propose a methodology that involves “dualizing” the

marketing constraints so that the new formulation is equivalent to the original one and has the

following features: (i) the feasible region is only conv(Y), which is a polytope and its extreme

points are producible configurations, and (ii) the objective function is piecewise linear and

convex. We sequentially construct the feasible set until an optimal solution is found. This

feature of our solution approach is similar to a variant of the Frank-Wolfe method, which has

been shown to be effective for solving a class of large convex optimization problems (Bach,

2013; Clarkson, 2010; Jaggi, 2013). Finally, we present a procedure to find a bound on the

optimal range which can assist in obtaining an optimality gap for the early termination of

the algorithm.

3.3.1 An equivalent formulation of PCPP

Recall that (P1) minimizes (respectively, maximizes) QR =
∑

(i,α)∈C̃ (R) αpi subject to engi-

neering and marketing constraints. To work with a more manageable feasible region, we relax

the marketing constraints and add penalty terms for violation of these constraints to the ob-

jective function. This changes the objective function to
∑

(i,α)∈C̃ (R) αpi ±
∑

i∈N1
M |pi − p̂i|,

where M is a sufficiently large number. In this subsection, we show that this objective func-

tion for the minimization and maximization cases can be transformed to ‖Diag(wR)(p −

p̂R,L)‖1 and ‖Diag(wR)(p − p̂R,U)‖1, respectively, for carefully chosen vectors wR, p̂R,L,

and p̂R,U , where ‖.‖1 indicates the first norm, Diag(wR) is a diagonal matrix with wR as

the diagonal elements, and p is the vector of decision variables (all vectors are in Rn). One

could view p̂R,L and p̂R,U as the target points for p where the objective is to push p as close

as possible to these target points. Moreover, wR could be viewed as a weight vector that

determines proportional importance for different options—i.e., the larger the weight of an

option, the more effort should be made for matching the corresponding decision variable p

with its target value.

Define vector wR = (wR,1, . . . , wR,n) ∈ Rn as follows: for all i ∈ N , if i ∈ N1, then let
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wR,i := M ; otherwise, let wR,i :=
∑

(i,α)∈C̃ (R) α. Define vectors p̂R,L, p̂R,U ∈ Rn as follows:

for all i ∈ N , if i ∈ N1, then let p̂R,L,i := p̂i and p̂R,U,i := p̂i; otherwise, if i ∈ N\N1,

then let p̂R,L,i := 0 and p̂R,U,i := 1. For example, for part R1 in Example 2, we have: wR1 =

(1, 0,M,M, 0,M,M,M, 0,M, 2, 4), p̂R1,L = (0, 0, 0.019, 0.861, 0, 0.019, 0.050, 0.046, 0, 0.385, 0, 0),

and p̂R1,U = (1, 1, 0.019, 0.861, 1, 0.019, 0.050, 0.046, 1, 0.385, 1, 1).

Our equivalent formulation can be expressed as the following problems, referred to as

(P2L) and (P2U) (note that (P2) refers to both problems (P2L) and (P2U)):

(P2L) : min
p∈conv(Y)

‖Diag(wR)(p− p̂R,L)‖1,

(P2U) : min
p∈conv(Y)

‖Diag(wR)(p− p̂R,U)‖1.

Theorem 4 shows that solving (P2) provides an optimal solution to (P1).

Theorem 4 (Nonlinear Programming Equivalence). If M is sufficiently big, then an optimal

solution of problem (P2) is also an optimal solution for problem (P1).

Proof is given in Appendix 3.10.1. Problem (P2) has the following features: (i) the

feasible region is the convex hull of Y, (ii) the objective is to minimize the sum of weighted

absolute differences between pi’s and p̂R,L,i’s (or p̂R,U,i’s), and (iii) the objective functions

are piecewise linear and convex. Finally, we remark that our approach is different from the

classical Lagrangian Relaxation method in two aspects: (a) M is a scalar and not a vector of

Lagrange multipliers, and (b) this approach does not result in any optimality gap as shown

in Theorem 4. In the remainder, we propose an approach for solving problem (P2).

3.3.2 Applying Frank-Wolfe for solving problem (P2)

We now discuss how to solve problem (P2L), and the same approach can be used for solving

problem (P2U). Our approach is given in Algorithm 2, which is known as the “fully correc-

tive” variant of the Frank-Wolfe method (Bach, 2013; Clarkson, 2010; Jaggi, 2013). Note
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that the index for the parts (R) is dropped in the remainder of this subsection for ease of

notation.

At each iteration k ≥ 1, we find the best known solution p(k) by minimizing the objective

function over the convex hull of the set {y(0),y(1), . . . ,y(k−1)}, as shown in Line 3 of Algorithm

2. This is an easy optimization problem with linear constraints and a piecewise linear and

convex objective function.

Since the objective function of (P2L) is piecewise linear and convex, we use the subgra-

dient vector g(k) ∈ Rn at iteration k ≥ 1, which is defined as follows:

g
(k)
i :=


wi , if p

(k)
i > p̂L,i

−wi , if p
(k)
i < p̂L,i

∼ Uniform[−wi, wi] , if p
(k)
i = p̂L,i,

(3.4)

for all i ∈ N . Note that, if p
(k)
i = p̂L,i, we can set g

(k)
i to any value in [−wi, wi]; hence, we

generate a number using a uniform distribution to allow for finding new points in different

directions as the algorithm iterates.

In Line 5, we find a new extreme point of the feasible region conv(Y) by minimizing a

linear function g(k)Ty. We exclude the previously found solutions using no-good constraints

(Hooker, 2000). For example, if y(0) = (y
(0)
1 , . . . , y

(0)
n ), a no-good constraint to exclude y(0)

is: ∑
i:y

(0)
i =1

yi −
∑

i:y
(0)
i =0

yi ≤

 ∑
i:y

(0)
i =1

1

− 1.

Note that although y(0) is not feasible for this constraint, any y 6= y(0) is feasible. If

we generate exactly one extreme point of conv(Y) at each iteration, then the optimization

problem in Line 5 has exactly k no-good constraints at iteration k ≥ 1. Using no-good

constraints has the following advantages: (i) Algorithm 2 is guaranteed to generate a new
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extreme point at each iteration, and (ii) if |Y| is small, Algorithm 2 can explore all points in

Y, in which case the problem in Line 5 becomes infeasible and p(k) is a guaranteed optimal

solution of (P2L).

Algorithm 2 Solving problem (P2L)

Input: Rules, w, p̂L. . “Rules” characterize Y.
Output: p∗L. . p∗L is the optimal solution of (P2L).

1: Find y(0) ∈ Y; . A producible configuration for initialization.
2: for k = 1, 2, 3, · · · do
3: Solve p(k) := arg minp∈conv({y(0),y(1),...,y(k−1)}) ‖Diag(w)(p− p̂L)‖1;

4: Define g(k) as in Eq. (3.4);
5: Solve y(k) := arg miny∈Y\{y(0),y(1),...,y(k−1)} g

(k)Ty; if infeasible then let p∗L := p(k);
Stop!

6: end for.

The Frank-Wolfe algorithm converges with O(1/k) if the feasible region is a compact

convex subset of any vector space and the objective function is convex and continuously

differentiable (Dunn and Harshbarger, 1978; Jones, 1992; Patriksson, 1993; Clarkson, 2010;

Jaggi, 2013). This convergence rate exists because of the existence of a finite curvature

constant for the objective function (see for example Jaggi (2013)). However, the objective

function of problem (P2) does not have a finite curvature constant; hence, the convergence

rate of Algorithm 2 cannot be guaranteed. Nonetheless if problem (P2) is approximated by

using ‖.‖2
2 instead of ‖.‖1, the convergence rate O(1/k) is achieved. Note that using ‖.‖2

2

results in finding the optimal solution if p̂L and p̂U are the optimal solutions of (P2L) and

(P2U), respectively. However, this is not true in general.

Our algorithm starts with a producible configuration y(0) (see Line 1). Moreover, note

that any set of producible configurations can be used (instead of y(0)) for initialization.

Hence, as a warm start, we use the set of producible configurations that is found by applying

the algorithm of Chapter 2. That algorithm finds a set of producible configurations such

that the forecast OPS belongs to their convex cone. We will show the effectiveness of our

approach for solving industrial instances in section 3.5.
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3.3.3 Bound on the optimal parts’ requirement

Our problem, if solved to optimality, provides the tightest range for a part’s requirement. A

bound on the range may be needed when the algorithm is terminated prior to completion.

Recall that our problem has two sets of constraints: Engineering and Marketing. An intuitive

approach for obtaining a bound is to focus on the options that are present in the condition

codes of the part under consideration and drop the marketing constraints for the other

options. Since the number of options that are present in the condition codes of a part is

less than 10, we enumerate all producible scenarios for those options and develop a scenario

based formulation that can be solved in a negligible amount of time.

Let OPR denote the set of options that are present in the condition codes of part R,

e.g. in Fig. 3.2, OPR2 = {A3, A4, A6}. We enumerate all scenarios for the options in OPR

(this is possible since the size of OPR is usually less than 10, e.g. see Fig. 3.1). These

scenarios are denoted by 0-1 vectors, e.g., (1, 0, 1) means only A3 and A6 are selected. For

each scenario, we determine whether the rules are satisfiable (all rules and not only the rules

that are related to OPR). Let SCR denote the set of satisfiable scenarios, also referred to as

sub-configurations. With some abuse of notation, we denote sub-configurations by y ∈ SCR.

Let ˜̂p denote the vector of penetration rates for the options in OPR. For each sub-

configuration y ∈ SCR, let ςy denote the number of units of part R required to produce one

unit of that sub-configuration. We aim to find a convex combination of the sub-configurations

that satisfy the penetration rates for the options in OPR and minimize (respectively, maxi-

mize) the part R’s requirement. This is achieved by solving the following linear programming
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problem, referred to as (PB).

(PB): min /max Q◦R =
∑

y∈SCR

ayςy

s.t.
∑

y∈SCR

ayy = ˜̂p,∑
y∈SCR

ay = 1,

ay ≥ 0, ∀y ∈ SCR.

Let Q◦R,L and Q◦R,U denote the optimal values of the minimization and maximization cases

of problem (PB), respectively. In the following, we show Q◦R,L ≤ Q∗R,L and Q∗R,U ≤ Q◦R,U

(recall that Q∗R,L and Q∗R,U respectively denote the optimal values of (P1min) and (P1max)).

Proposition 8 (Bound on the Optimal Range). The optimal values of problems (P1) and

(PB) satisfy: Q◦R,L ≤ Q∗R,L and Q∗R,U ≤ Q◦R,U .

The proof is given in Appendix 3.10.2. We note that the quality of this bound can be

improved by incorporating additional options in OPR. The more options included in OPR the

closer the sub-configurations to full configurations.3 To determine which additional option

from N1\OPR to incorporate, a measure that captures the relative association (e.g. number

of times that they appear in the same rules) with the options that are already in OPR can

be used. In section 3.5, we show the performance of this bound and how it can be improved

by considering more options.

3.4 Value of additional marketing information

In mass customization, one of the major challenges in parts-capacity planning is the need for

narrow ranges for parts’ requirement. The GAM’s contracts with their suppliers are based

on these ranges, and the wider the ranges the costlier the parts-capacity acquisition.

3We note that the number of sub-configurations is exponential in the size of OPR and hence a limited
number of additional options can be incorporated.
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The ranges that we obtain for parts’ requirements in Section 3.3 are provably the tightest

ranges that one can find using the available information (forecast OPS, rules, and condition

codes). These ranges are sometimes wide mainly because the set of configurations-level

demand that satisfies the given options-level forecast is very large. Thus, we have to collect

additional information to narrow the obtained ranges. The additional information acts as

a new constraint that shrinks the feasible set and improves the ranges. We also note that

acquiring additional information is costly, and different information sets are obtained at

different costs. In this section, we propose an interactive approach that adds one (or more)

information at a time until the desired width of a range is obtained. Specifically, we aim

to answer the following questions. What is the impact of additional information (e.g., on

the penetration rates of single and joint options) on the ranges of parts’ requirement? And,

which information set is more likely to have the highest impact? For example, what is the

impact of the joint penetration rate of engine XYZ and transmission UVW on reducing the

range of a part’s requirement?

3.4.1 Incorporating new information in the PCPP

We present a method for incorporating new information and ensuring the consistency of

the new information with the rules and forecast OPS. We call the constraint p(F ) = γ

(penetration rate of formula F is equal to γ) an information set, where F is a propositional

formula and 0 ≤ γ ≤ 1. Note that p(F ) = γ is equivalent to pA′ = γ and A′ ⇔ F , where

A′ is an artificial option. In other words, to add the information set p(F ) = γ to PCPP, we

define a new artificial option A′, set the penetration rate of option A′ to γ, and add A′ ⇔ F

to the set of rules.

Note that, it is necessary for p(F ) = γ to be consistent with the engineering and mar-

keting constraints, meaning that adding this information to the PCPP does not make the

problem infeasible. In the following lemma, we determine a range for γ such that the new

information p(F ) = γ is consistent.
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Lemma 10 (Consistency of a New Information Set). Let aL,y and aU,y denote the optimal

coefficients of configuration y ∈ Y in (P1min) and (P1max), respectively. Define γL,F :=∑
y∈Y aL,yvy(F ) and γU,F :=

∑
y∈Y aU,yvy(F ). The information set p(F ) = γ is consistent if

min{γL,F , γU,F} ≤ γ ≤ max{γL,F , γU,F}.

The proof is in Appendix 3.11.1. The condition in Lemma 10 is sufficient but not nec-

essary. We next generalize this notion and present a method for ensuring the consistency of

adding a collection of new information sets.

Lemma 11 (Consistency of a Collection of New Information Sets). Let aL,y and aU,y denote

the optimal coefficients of configuration y ∈ Y in (P1min) and (P1max), respectively. Let

F̃ ⊆ F . Define γL,F :=
∑

y∈Y aL,yvy(F ) and γU,F :=
∑

y∈Y aU,yvy(F ), for all F ∈ F̃ . Let

0 ≤ γ̄ ≤ 1. The following set of constraints is consistent:

p(F ) = γL,F + γ̄(γU,F − γL,F ), ∀F ∈ F̃ .

We skip the proof as it is similar to the proof of Lemma 10. The condition of Lemma 11

is sufficient but not necessary. To illustrate the application of Lemma 11, assume that the

allowable ranges for the information on F ′ and F ′′, obtained using Lemma 10, are [0.2, 0.4]

and [0.5, 0.9], respectively. We can simultaneously add the following two information sets to

PCPP: p(F ′) = 0.3 and p(F ′′) = 0.7 (because these values are the midpoints of the allowable

ranges, these constraints are consistent).

3.4.2 Values of different information sets

Having new information sets on different formulas can result in different reductions in the

range of a part’s requirement. For example, is information set p(A1 ∧A2) better/worse than

p(A1 ∧ A2 ∧ A3)? What about p(A1 ∨ A2) versus p(A1 ∨ A2 ∨ A3)? In this subsection, we

show that, in general, it is not theoretically possible to establish ordering. Consequently, we

present a heuristic guideline for comparing the values of different information sets.
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Proposition 9 (Ordering Different Information Sets). Let F ′, F ′′ ∈ F and 0 ≤ γ ≤ 1 such

that each of the following information sets is consistent: p(F ′) = γ, p(F ′ ∧ F ′′) = γ, and

p(F ′ ∨ F ′′) = γ. Let Q∗
′
R,L and Q∗

′
R,U denote the optimal values of PCPP if p(F ′) = γ is

added, Q∗
′′
R,L and Q∗

′′
R,U denote the optimal values of PCPP if p(F ′ ∧ F ′′) = γ is added, and

Q∗
′′′
R,L and Q∗

′′′
R,U denote the optimal values of PCPP if p(F ′ ∨ F ′′) = γ is added. Then,

(a) if γ = 0, then Q∗
′′
R,L ≤ Q∗

′
R,L ≤ Q∗

′′′
R,L ≤ QR ≤ Q∗

′′′
R,L ≤ Q∗

′
R,L ≤ Q∗

′′
R,L,

(b) if γ = 1, then Q∗
′′′
R,L ≤ Q∗

′
R,L ≤ Q∗

′′
R,L ≤ QR ≤ Q∗

′′
R,L ≤ Q∗

′
R,L ≤ Q∗

′′′
R,L.

Proof is in Appendix 3.11.2. To illustrate Proposition 9, let F ′ = A1 ∧ A2 and F ′′ = A3.

Hence, we are interested in comparing the values of information sets p(A1 ∧ A2) = γ and

p(A1 ∧A2 ∧A3) = γ. Note that the former means 100γ% of the cars sold over the planning

horizon are forecast to have options A1 and A2, while the latter means 100γ% of the cars sold

are forecast to have options A1, A2, and A3. Dependent on the value of γ, one information

set can weakly dominate the other.

Proposition 9 implies that if γ = 0 (or small), then pooling of information (∨) is preferred,

while if γ = 1 (or close to 1), then refinement of information (∧) is preferred. However, the

value of γ is not known a priori, and hence, the ordering cannot be established in advance.

We next propose a heuristic guideline for comparing two information sets. We prefer F ′

over F ′′ if |γU,F ′ − γL,F ′ | > |γU,F ′′ − γL,F ′′ |, where γU,F ′ , γL,F ′ , γU,F ′′ , and γL,F ′′ are calculated

as described in Lemma 10.

Information Ordering Criteria. Information on F ′ is preferred to information on F ′′

if |γU,F ′ − γL,F ′| > |γU,F ′′ − γL,F ′′ |.

The intuition for this criteria is as follows: if p(F ′) changes more than p(F ′′), it can

imply a higher influence on the range, and hence, we expect to see a higher reduction in the

range by fixing the value of p(F ′) compared to p(F ′′). Our experimental analysis verifies the

effectiveness of this criteria. We use this criteria in the design of our interactive approach.
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3.4.3 Interactive approach for reducing the parts’ requirement ranges

We develop an interactive approach that consists of an “expert” and a “system.” See Ap-

pendix 3.11.3 for details and the flowchart. The system solves the PCPP and offers a list of

candidate propositional formulas to the expert who then selects one or more of the candi-

dates and determines their penetration rates. The system incorporates this information set

and solves the PCPP again. This cycle is repeated until a pre-defined criteria is met. For

example, a common criteria used in the GAM is that the width of the range should not be

bigger than 20% of the minimum value of the range. The justification is that the supplier can

plan for the minimum value of the range and increase the production by working overtime

at most 20% of the regular time. An illustrative example is provided in Appendix 3.11.3.

We will show how additional information helps narrowing the ranges for parts’ requirement

on an industrial instance in section 3.5.

3.5 Industrial Applications and Computational Experiment

In this section, we first show the computational effectiveness of our approach and the pro-

posed bound on an industrial instance provided by the GAM. Next, we describe the method

that is currently used in practice, compare our approach to that of the current practice, and

discuss the advantages of our proposed methodology. We finally show the value of additional

information on narrowing the parts’ requirement ranges.

3.5.1 Performance of our solution approach on an industrial instance

We show the performance of our algorithm on an industrial instance that we have received

from the GAM. This instance has 433 options and 171 rules.4 In our analysis, we focus on

three parts, which we denote by R̃1, R̃2, and R̃3.

4We note that, in real instances, some options exist without forecast penetration rates—options that are
not customer facing but are options available for internal operations.
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We apply Algorithm 1 for solving problem (P2) to obtain ranges on the requirement of

the three parts. We implement our algorithm in IBM ILOG CPLEX Optimization Studio

12.6.1 and use a PC with Processor Intel(R) Core(TM) i5-2520M CPU 2.50GHz, 4.00 GB

of RAM, and 64-bit Operating System. We run the algorithm for 10,000 seconds and report

the results in Fig. 3.3 for different parts.
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Figure 3.3: Computing the range using Algorithm 2 and performance of the proposed bound.

We note that major changes occur initially and then the minimum and maximum values

of the ranges become approximately flat (except for the minimum value of the range for part

R̃3 that demonstrates large changes around 7,000 seconds). The optimal ranges for parts

R̃1, R̃2, and R̃3 are respectively 12.47%, 9.67%, and 9.05% of the minimum values of the

optimal ranges (based on the results after 10,000 seconds).

We also apply our approach presented in subsection 3.3.3 to obtain bounds on the ranges.

This results in bounds (2.399,3.100), (0.650,0.800), and (0.800,1.000) for parts R̃1, R̃2, and

R̃3, respectively. Fig. 3.3 shows these bounds using thick dashed lines. The error associ-

ated with the minimum values of the bounds are 9.91%, 3.27%, and 12.76%, and with the

maximum values of the bounds are 3.5%, 8.55%, and 0%, respectively.

Improving bound on the range

As discussed in subsection 3.3.3, the bound on the ranges can be improved by incorporating

additional options in the set OPR. We next show how such options can be selected and how
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Figure 3.4: Improving bound by adding new options to OPR̃.

they impact the bound. We focus on a part R̃ that has 6 options in its condition codes, i.e.,

OPR̃ contains 6 options. We construct a graph of options-relations where the nodes are the

options and there exist an arc between two options if they appear in a same rule. Moreover,

the weight of an arc shows the number of times that two options appear in the same rules.

Fig. 3.4 shows a portion of this graph. The nodes with a star (in the left side of the graph:

options 25, 49, and 20) are the options that belong to OPR̃. Among the set of options that

are not included in OPR̃, we choose the one with highest incident weight. In this example,

options 26, 44, and 72 are sequentially added to OPR̃ (note that option 72 is not shown in

the graph). Fig. 3.4 shows improvements on the bound by these additions. The optimal

range for this part is also shown by the shaded area. The error of the minimum value of

the bound improves from 66.2% to 9.9% and the error of the maximum value improves from

63.6% to 3.5% by adding the three options.

3.5.2 Description and comparison to current practice

In this subsection, we describe, evaluate, and compare our results to that of the current

practice.
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Description of the current practice

The GAM’s approach for determining the requirement of a part R involves generating all

producible sub-configurations that include the options that are present in the condition codes

of that part. Then, a convex combination of these sub-configurations is found that is as close

as possible to the penetration rates of the associated options. This is used to find a point and

range estimates for the requirement of part R. Their approach can be formally presented as

follows.

Step 1: Generating sub-configurations. Let OPR and SCR be constructed as described in

subsection 3.3.3.

Step 2: Least-squares fit. Recall that ˜̂p denotes the vector of penetration rates for the

options in OPR. Determine the sub-configurations’ coefficients by solving the following

quadratic problem:

min
∥∥∥ ∑

y∈SCR

ayy − ˜̂p
∥∥∥2

2

s.t.
∑

y∈SCR

ay = 1,

ay ≥ 0, ∀y ∈ SCR.

Let a∗y’s denote the optimal solution. In fact, this problem finds a point in the convex hull

of SCR that has the minimum Euclidean distance to ˜̂p. The optimal point is
∑

y∈SCR
a∗yy

that is represented as a convex combination of the sub-configurations.

Step 3: Estimating part R’s requirement. Recall that ςy denotes the number of units

of part R required to produce one unit of sub-configuration y. A point estimate of part

R’s requirement is calculated as Q�R :=
∑

y∈SCR
a∗yςy. A range is then considered for the

requirement of part R with a center at Q�R and a pre-specified radius, e.g., if Q�R > 0, the

radius may be specified as 10% of Q�R.

In fact, the optimal point
∑

y∈SCR
a∗yy in step 2 represents a demand realization on sub-
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configurations, i.e., a∗y is the fraction of the total demand that includes sub-configuration

y. This demand realization maps to a point estimate for the part’s requirement using the

condition codes.

There are two major issues with this approach. First, it may find an infeasible point/range

estimate (Appendix 3.12.1 provides an example for this case). Second, it obtains a point

estimate using an arbitrary demand realization while there are usually many consistent

demand realizations (as alternative optimal solutions a∗y’s in step 2).

Comparison to current practice

Fig. 3.5 provides a comparison between our approach and the current practice using a smaller

instance that has 78 options’ penetration rates. We consider different number of penetration

rates denoted by n1 (varies from 10 to 78) and focus on three parts denoted by R̃1, R̃2, and

R̃3. For each n1, we find a point estimate by applying the current approach described in

subsection 3.5.2, and then, a range is created with 10% radius around the point estimate.

“Practice” and “New” indicate the ranges found by applying the current approach and our

method, respectively (the shaded area indicates the range found by our approach). We make

the following observations:

• For small and medium n1, the range found by their approach is usually a subset of the

optimal range found by our approach which may result in shortage/excess of parts.

• Their approach sometimes (for medium and large n1) finds a range that includes points

outside of the optimal range that is found by our approach. In such cases, their

approach suggests requirement that may never happen, i.e., they have excess capacity.

• For parts R̃1, R̃2, and R̃3, the mean absolute percentage errors (MAPE) for the mini-

mum values of the ranges obtained by their approach are respectively 30.95%, 17.13%,

and 13.78%, and for the maximum values of those ranges are 8.76%, 25.04%, and

12.04%, respectively (compared to the minimum and maximum values of the optimal
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ranges found by our approach). On the average, the minimum and maximum values of

the ranges found by their approach have MAPEs of 20.62% and 15.28%, respectively.

Consequently, the average total error of the ranges, which is the sum of these two

errors, is 35.9%.
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Figure 3.5: Our approach versus the current practice (the shaded areas have been determined
by our approach).

3.5.3 Impact of additional information on the obtained ranges

Recall that the joint penetration rates of options can be incorporated as an additional pene-

tration rate of a hypothetical option. Since we do not have the actual joint penetration rates,

we use a subset of the given penetration rates as surrogate for additional information. For

example, when we move from n1 = 10 to n1 = 20, the additional 10 penetration rates can

be considered as additional information. Fig. 3.5 shows the effects of additional information

on the obtained ranges by our method and the current approach.

• The width of the range found by our approach reduces as a result of incorporating new

penetration rates, and for large n1, the ranges are very tight for all parts. Whereas,

in the current approach, since the radius of the range is always pre-specified, adding

new information may not result in tightening the ranges. Furthermore, to obtain a

satisfactory range using our approach, one could start with the given set of penetration

rates and acquire new information as needed. For example, if 40 options initially have
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penetration rates, the range for parts R̃1 and R̃2 may be satisfactory while the range

for part R̃3 may be considered too wide. Hence, we may ask for more penetration

rates to tighten the range for part R̃3. Obviously, the cost for obtaining the additional

penetration rates must be taken into consideration.

• In our approach, the minimum (respectively, maximum) value of the range is non-

increasing (respectively, non-decreasing) in the information level n1. This indicates that

the obtained range for any information level n1 always include the actual value—by the

actual value we mean the requirement that correspond to the case of full information

on the penetration rates of all options and joint penetration rates of options. However,

the minimum and maximum values of the range produced by the current approach are

not necessarily monotone and the obtained ranges may exclude the actual value. For

example, for part R̃1, when n1 ≤ 50 the range does not include the actual value that is

found by our approach for large n1. Similar error happens for parts R̃2 and R̃3 when

n1 ≤ 30 and n1 ≤ 20, respectively.

• In the case of high information level (large n1), our approach finds very tight ranges,

and hence, we conclude that our approach is able to effectively absorb all available

information and provide the tightest possible range for any information level n1. In

contrast, the range obtained by the current practice approach is unnecessarily wide for

large n1 indicating that the current approach is unable to utilize the given information

and provides a range estimate based on a small subset of the penetration rates only.

In summary, the current approach may provide a range that excludes the actual value

or a range that is unnecessarily wide. Whereas, our approach always utilizes all available

information and finds the tightest possible range that includes the actual value.
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3.6 Extensions

In this section, we extend our methodology in the following directions. First, we consider

cases where options’ penetration rates are given as points, ranges, or a combination of both.

Second, based on the current practice in the GAM, usually a group of parts, with similar

manufacturing requirements, are contracted to a single supplier. In these cases, the contract

negotiation is also based on the total volume of the parts that are being subcontracted.

Hence, in addition to providing ranges on individual parts’ requirement, we provide a range

estimate on the group of parts.

3.6.1 When ranges on options’ penetration rates are given

Currently in the GAM, the forecast penetration rates of options are single values denoted

by p̂i’s. What if options’ penetration rates are given as ranges for some/all options or a

combination of points for some options and ranges for some other options? In this subsection,

we present a general approach that incorporates such scenarios. Let pL,i and pU,i denote the

given lower and upper bounds on the penetration rate of option i satisfying 0 ≤ pL,i ≤ pU,i ≤

1. Thus, if an option has a single value forecast, then, pL,i = pU,i, and if an option has not

been assigned any forecast, then, pL,i = 0 and pU,i = 1. This generalization of problem (P1)

is formulated as:

(PG): min /max QR =
∑

(i,α)∈C̃ (R)

αpi (3.5)

s.t. pL,i ≤ pi ≤ pU,i, ∀i ∈ N , (3.6)

p ∈ conv(Y). (3.7)

Problem (PG) can be formulated as a mixed-integer linear program similar to Appendix

3.9.1. To solve industrial instances of (PG), based on a similar motivation that we discussed
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in section 3.3, we present an equivalent nonlinear program:

(PG′): min /max
∑

(i,α)∈C̃ (R)

αpi ±M
n∑
i=1

max {pL,i − pi, 0, pi − pU,i} (3.8)

s.t. p ∈ conv(Y), (3.9)

where, for sufficiently large M , solving (PG′) provides an optimal solution to (PG). Theorem

5 states this equivalence.

Theorem 5 (Generalization of Nonlinear Programming Equivalence). An optimal solution

of problem (PG′) is an optimal solution to problem (PG) if

M >

 ∑
(i,α)∈C̃ (R)

α

(1 +
2n+ 1√
λmin(n)

)
,

where λmin(n) denotes the smallest eigenvalue of all matrices in the form of B>B where B is

an invertible matrix of size (2n+ 1)× (2n+ 1) with all entries being a member of {−1, 0, 1}.

The proof is given in Appendix 3.13.1. This theorem simply means that for sufficiently

large M , one can solve (PG′) to obtain an optimal solution to (PG). In addition, it specifies

a lower bound on M as a function of α’s, n, and λmin(n). An increase in the values of α’s

and/or n require using larger values for M . Note that λmin(n) is itself a function of n and

it exists for a fixed n (because there is a finite number of possibilities for matrix B and

the smallest eigenvalue for each possibility can be computed). Wolkowicz and Styan (1980)

and Merikoski and Virtanen (1997) present lower bounds on the smallest eigenvalue of a

symmetric positive definite matrix.

We remark that the minimization (respectively, maximization) case of problem (PG′) has

a piecewise linear convex (respectively, concave) objective function, and hence, its subgra-

dient vector can be determined at any given point. In addition, the feasible set of (PG′) is

similar to that of (P2) and therefore a similar algorithm presented in subsection 3.3.2 can
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be applied.

3.6.2 Obtaining a range for a group of parts

We characterize the requirement of a group of parts that require a similar manufacturing

processes and are contracted to the same supplier—i.e.,
∑

R∈R̃QR, for some R̃ ⊆ R. Clearly,

if we have unique values for QR’s (not ranges), we can then determine the sum by summing

up those values. However, finding a range for
∑

R∈R̃QR is complicated. Our approach is

based on creating a hypothetical part which incorporates all condition codes for the parts

that are included in the group. By finding a range on the requirement of this hypothetical

part, we obtain a range on the requirement of the group of parts. The following proposition

presents our approach.

Proposition 10 (Requirement for a Group of Parts). Let R̃ ⊆ R, R̃ 6= {}. Then,∑
R∈R̃QR = QR̂, where R̂ is a hypothetical part with the following set of condition codes:

C (R̂) = {(F, α′)|F ∈
⋃
R∈R̃

C F (R), α′ =
∑
R∈R̃

∑
α:(F,α)∈C (R)

α},

and C F (R) := {F |∃(F, α) ∈ C (R)}.

The proof is given in Appendix 3.13.2. Therefore, using proposition 10, the requirement

of the group of parts is given by QR̂ =
∑

(F,α)∈C (R̂) αp(F ). Appendix 3.13.3 provides an

illustration of Proposition 10.

Next, we extend our result to obtain a range on the requirement of a resource that

is used by the supplier (not the manufacturer) to produce a group of parts. A resource

consumption can be represented as a nonnegative combination of the parts’ requirement,

where the coefficients indicate the unit resource usage for producing parts. Let R̃X ⊆ R

denote the subset (group) of parts that require resource X. We focus on a single resource

and our analysis must be repeated for each resource. For ease of notation, in the remainder,
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we drop index X and refer to resource X simply as “the resource.” The following proposition

presents our approach.

Proposition 11 (Consumption Rate of a Resource). Let R̃ ⊆ R, R̃ 6= {}, and ηR ∈ R++,

for all R ∈ R̃, be given. Then,
∑

R∈R̃ ηRQR = QR̂, where R̂ is a hypothetical part with the

following set of condition codes:

C (R̂) = {(F, α′)|F ∈
⋃
R∈R̃

C F (R), α′ =
∑
R∈R̃

∑
α:(F,α)∈C (R)

αηR},

and C F (R) := {F |∃(F, α) ∈ C (R)}.

The proof is similar to Proposition 10 and hence is skipped. Thus, the resource consump-

tion rate is given by QR̂ =
∑

(F,α)∈C (R̂) αp(F ). We finally note that our approach generates

ranges for all resources that are used to produce a group of parts, which is useful for both

the supplier and manufacturer in contract negotiations.

3.7 Conclusions

We study a parts-capacity planning problem in the context of mass customization. We

develop a new methodology for finding the ranges on the parts’ requirement when the demand

forecast on configurations does not exist and the manufacturers forecast a demand on options.

We present a formulation that enables us to generate a range on the parts’ requirement

and propose an effective methodology to solve it. We show how additional information

on the joint options’ penetration rates impacts the parts’ requirement ranges and design

an interactive method for achieving a desired target range. We apply our method to an

industrial instance provided by the GAM and compare our results to the current approach.

We finally extend our methodology to the following cases: (i) when ranges on the options’

penetration rates are given, and (ii) finding a range on the requirement of a group of parts.
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Our algorithm for solving problem (P2) has the following shortcoming. First, since the

objective function is not smooth, the algorithm may converge slowly and lacks a convergence

rate guarantee. However, since we have a bound on the optimal range, we can assess the

optimality gap when the algorithm is terminated prior to completion. Further research on

improving the speed of our algorithm, obtaining a convergence rate guarantee, and designing

more effective bounds would be helpful.

Finally, we propose the following directions for future research. First, in parts’ capac-

ity management, range on a part’s requirement provides one dimension of the variability.

Another dimension of variability is the standard deviation which can be used to truncate

the ranges for parts’ requirements. Developing such measures would support parts’ capac-

ity management. Second, in this chapter, we consider an strategic parts’ capacity planning

that is performed prior to launching the product. This is an static model that determines

a range for each part’s requirement. Once the product is launched, parts’ requirement can

dynamically change based on demand evolution. The dynamic parts’ capacity planning is a

critical problem to be considered.

3.8 Appendix: Notations

Abbreviations:

CPS Configurations-level penetration statistic

GAM Global auto manufacturer

MILP Mixed-integer linear programming

OPS Options-level penetration statistic

P1, P1min, Our MILP problems

P1max

P2, P2L, P2U Our NLP problems

PCPP Parts capacity-planning problem (refers to (P1) and/or (P2))
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Notations:

A,A1, A2, · · · ∈ N Options (N is the set of all options)

R,R1, R2, · · · ∈ R Parts (R is the set of all parts)

F, F1, F2, · · · ∈ F Propositional formulas (F is the set of all propositional formulas)

C (R), C̃ (R) The set of original and simplified condition codes for part R,

respectively

vy(F ) The value of formula F in configuration y

p Penetration rate (defined for both formulas and options)

QR Requirement of part R

i = 1, . . . , n Index for options

y = (y1, . . . , yn) A producible configuration

ay Penetration rate of configuration y

Y, conv(Y) The set of all producible configurations and its convex hull

M A sufficiently big number

wR, Diag(wR) The weight vector and the corresponding diagonal matrix in (P2)

p̂R,L, p̂R,U Parameters defined and used in formulating (P2)

Q∗R,L, Q
∗
R,U Optimal values of the PCPP (min. and max., respectively)

k Iteration counter in our algorithm

y(k) The new extreme point of conv(Y) generated at iteration k

p(k) The best known solution at iteration k of our algorithm

g(k) The subgradient at iteration k of our algorithm

N1, n1 The set and the number of options with forecast penetration

rates, respectively

γ The right-hand-side value of an information p(F ) = γ
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3.9 Appendix for PCPP formulation

3.9.1 Mixed-integer linear programming formulation

Note that conv(Y) is bounded by a unit hypercube in Rn. Moreover, a point inside a

polytope (bounded polyhedron) in Rn can be represented as a convex combination of at

most n + 1 extreme points (Bertsimas and Tsitsiklis, 1997). Hence, if p ∈ conv(Y), then

p can be represented as a convex combination of at most n + 1 extreme points of conv(Y).

Therefore, there exist y1,y2, . . . ,yn,yn+1 ∈ Y and a = (a1, . . . , an, an+1) ∈ Rn+1
+ such that

p =
∑n+1

j=1 ajy
j and

∑n+1
j=1 aj = 1. Thus, p ∈ conv(Y) can be formulated as the problem of

finding, at most, n + 1 producible configurations such that p belongs to their convex hull.

Thus, we formulate our MILP problem as follows:

(P1): min /max QR =
∑

(i,α)∈C̃ (R)

αpi (3.10)

s.t. pi = p̂i, ∀i ∈ N1, (3.11)

zji ≤ yji , ∀i, j, (3.12)

yji − 1 ≤ zji − aj ≤ 1− yji , ∀i, j (3.13)

pi =
n+1∑
j=1

zji , ∀i, (3.14)

n+1∑
j=1

aj = 1, (3.15)

aj ≥ 0, zji ≥ 0, yj ∈ Y, ∀i, j. (3.16)

Eqs. (3.12)-(3.14) are equivalent to the constraints pi =
∑n+1

j=1 ajy
j
i , for all i = 1, . . . , n.

Note that these constraints are not linear because of the multiplication of variables aj and

yji . Eqs. (3.12)-(3.14) provide an approach to formulating these constraints using linear

(in)equalities. We discuss this in more detail. For all i, j, we define new variables zji ≥ 0

such that zji = ajy
j
i . If yji = 0, then zji = 0, and if yji = 1, then zji = aj. This is guaranteed by

94



Eqs. (3.12)-(3.14). Eq. (3.15) ensures that the coefficients of the producible configurations

in the convex combination add up to 1.

Fig. 3.6 shows the solution of our MILP problem for part R1 in Example 2. We obtain

the range 2.155 ≤ QR1 ≤ 2.585 and the width of this range is 0.43 (20% of the minimum

value). Note that some of the yj’s are equal; e.g., y8 = y11 in the minimization problem.

This means that the optimal solution can be represented as a convex combination of less

than n+ 1 extreme points of conv(Y).

Minimization problem:
Optimal value: 2.155
p = (0.385, 0.904, 0.019, 0.861,

0.096, 0.019, 0.05, 0.046,
0.289, 0.385, 0.885, 0)

a = (0, 0.024, 0.572, 0, 0.019, 0,
0.027, 0.019, 0.05, 0.289, 0, 0, 0)

y1 = (1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0)
y2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
y3 = (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0)
y4 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
y5 = (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
y6 = (0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0)
y7 = (1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0)
y8 = (1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0)

y9 = (1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0)
y10 = (1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0)
y11 = (1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0)
y12 = (1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0)
y13 = (1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0).

Maximization problem:
Optimal value: 2.585
p = (0.385, 1, 0.019, 0.861, 0.019,

0.019, 0.05, 0.046, 0.385,
0.385, 1, 0.05)

a = (0, 0, 0.05, 0, 0.227, 0.062,
0.027, 0, 0, 0, 0.615, 0.019, 0)

y1 = (1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1)
y2 = (1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1)
y3 = (1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1)

y4 = (1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1)
y5 = (1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0)
y6 = (1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0)
y7 = (1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0)
y8 = (1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0)
y9 = (1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0)
y10 = (1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0)
y11 = (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0)
y12 = (1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0)
y13 = (1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0).

Hence, the obtained range for QR1
is:

2.155 ≤ QR1 ≤ 2.585.
Similarly, for parts R2 and R3, we find:

0 ≤ QR2 ≤ 0.019
0.765 ≤ QR3

≤ 0.918.

Figure 3.6: The solution of our MILP problem for parts R1, R2, and R3 (also see Example
2, Fig. 3.2).

3.10 Appendix for solution approach

3.10.1 Proof of Theorem 4: Nonlinear Programming Equivalence

We need the following definitions in this proof. Let N3 denote the set of artificial options

defined to simplify the complex condition codes for part R, and define n3 := |N3|. Moreover,

define N2 := N\{N1 ∪ N3}, and n2 := |N2|. Define C1(R) := {(i, α) ∈ C (R)|i ∈ N1},

C2(R) := {(i, α) ∈ C (R)|i ∈ N2}, and C3(R) := {(i, α)|i ∈ N3,∃(F, α) ∈ C (R) : F ⇔ i}.

Hence, C̃ (R) = C1(R) ∪ C2(R) ∪ C3(R).

In the remainder of this proof, we sometimes drop index R for the ease of notation.
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Define vector β ∈ Rn as follows: for all i = 1, . . . , n, let βi :=
∑

(i,α)∈C̃ (R) α. Moreover, let

p∗L and p∗U denote the optimal solutions of (P2L) and (P2U), respectively.

Recall that the objective function of problem (P1) is QR =
∑

(i,α)∈C̃ (R) αpi. Since C̃ (R) =⋃3
`=1 C`(R) and C`(R)’s are mutually exclusive, then the objective function of problem (P1)

can be written as QR =
∑3

`=1

∑
(i,α)∈C`(R) αpi. Thus, problem (P1) is equivalent to:

min /max
3∑
`=1

∑
(i,α)∈C`(R)

αpi (3.17)

s.t. pi = p̂i, ∀i ∈ N1, p ∈ conv(Y). (3.18)

We propose a relaxation of this problem by relaxing the equality constraints pi = p̂i, for

all i ∈ N1, and adding (respectively, subtracting)
∑

i∈N1
M |pi− p̂i| to the objective function

of (P1min) (respectively, (P1max)). This results in the following problems:

(P1Rmin): min
p∈conv(Y)

{ 3∑
`=1

{ ∑
(i,α)∈C`(R)

αpi

}
+
∑
i∈N1

M |pi − p̂i|
}
,

(P1Rmax): max
p∈conv(Y)

{ 3∑
`=1

{ ∑
(i,α)∈C`(R)

αpi

}
−
∑
i∈N1

M |pi − p̂i|
}
.

By (P1R), we refer to both problems (P1Rmin) and (P1Rmax). In the following lemma,

we show that, if M is sufficiently big, then the optimal solution of the relaxation problem

(P1R) is also an optimal solution for (P1).

Lemma 12. For a fixed β, there exists M such that solving problem (P1R) provides an

optimal solution for (P1).

Proof. Note that this lemma is an special case of Theorem 5 that we will state and prove

in subsection 3.6.1 and Appendix 3.13.1. Theorem 5 proves the existence of M for the case

where the Marketing Constraints are replaced with:

pL,i ≤ pi ≤ pU,i, ∀i ∈ N ,
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where pL,i and pU,i are the forecast lower and upper bounds on the penetration rate of option

i. In other words, the forecast penetration rate of option i is given as a range [pL,i, pU,i] rather

than a single point. On the other hand, recall that the Marketing Constraints in (P1) are:

pi = p̂i, ∀i ∈ N1.

Since N1 ⊆ N , and each penetration rate is always between 0 and 1, then the Marketing

Constraints in (P1) can be equivalently written as:

p̂i ≤ pi ≤ p̂i, ∀i ∈ N1,

0 ≤ pi ≤ 1, ∀i ∈ N\N1.

Hence, by applying Theorem 5 the proof is complete. 2

Recall that Q∗R,L and Q∗R,U denote the optimal values of problems (P1min) and (P1max),

respectively. We first prove the theorem for problem (P1min) by showing Q∗R,L = βTp∗L.

Using the equivalence between (P1min) and (P1Rmin), we have:

Q∗R,L =
∑

(i,α)∈C1(R)

αp̂i + min
p∈conv(Y)

{ 3∑
`=2

{ ∑
(i,α)∈C`(R)

αpi

}
+
∑
i∈N1

M |pi − p̂i|
}
. (3.19)

Note that, based on the definition of β, we have:
∑

(i,α)∈C1(R) αp̂i =
∑

i∈N1
βip̂i. Moreover,

we have:
∑

(i,α)∈C`(R) αpi =
∑

i∈N` βipi, for all ` = 2, 3. Hence, Eq. (3.19) can be written as:

Q∗R,L =
∑
i∈N1

βip̂i + min
p∈conv(Y)

{ 3∑
`=2

{∑
i∈N`

βipi

}
+
∑
i∈N1

M |pi − p̂i|
}
. (3.20)

Since pi ≥ 0, for all i ∈ N , we have:
∑

i∈N` βipi =
∑

i∈N` βi|pi − 0|, for all ` = 2, 3.

Therefore, using the definition of w and p̂L, the objective function of the minimization
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problem in Eq. (3.20) is equal to
∑

i∈N wi|pi − p̂L,i|. Thus,

Q∗R,L =
∑
i∈N1

βip̂i + min
p∈conv(Y)

‖Diag(w)(p− p̂L)‖1. (3.21)

Define p∗L := arg minp∈conv(Y) ‖Diag(w)(p− p̂L)‖1. Using Lemma 12, we have p∗L,i = p̂i,

for all i ∈ N1. Therefore, using Eq. (3.20), we have:

Q∗R,L =
∑
i∈N1

βip
∗
L,i +

3∑
`=2

∑
i∈N`

βip
∗
L,i = βTp∗L,

and hence, the proof of Q∗R,L = βTp∗L is complete. The proof for Q∗R,U = βTp∗U has similar

steps that we summarize as follows:

Q∗R,U = max
p∈conv(Y)

{ 3∑
`=1

{ ∑
(i,α)∈C`(R)

αpi

}
−
∑
i∈N1

M |pi − p̂i|
}

=
∑

(i,α)∈C1(R)

αp̂i + max
p∈conv(Y)

{ 3∑
`=2

{ ∑
(i,α)∈C`(R)

αpi

}
−
∑
i∈N1

M |pi − p̂i|
}

=
∑
i∈N1

βip̂i + max
p∈conv(Y)

{ 3∑
`=2

∑
i∈N`

βipi −
∑
i∈N1

M |pi − p̂i|
}

=
∑
i∈N1

βip̂i +
3∑
`=2

∑
i∈N`

βi − min
p∈conv(Y)

{ 3∑
`=2

∑
i∈N`

βi(1− pi) +
∑
i∈N1

M |pi − p̂i|
}

=
∑
i∈N1

βip̂i +
3∑
`=2

∑
i∈N`

βi − min
p∈conv(Y)

‖Diag(w)(p− p̂U)‖1

= βTp∗U,

where, p∗U := arg minp∈conv(Y) ‖Diag(w)(p − p̂U)‖1. To obtain the fourth line, we add

and subtract
∑3

`=2

∑
i∈N` βi to the objective function of the maximization problem in the

third line. Then, since +
∑3

`=2

∑
i∈N` βi is constant, we bring it outside of the maximization

problem. Moreover, we multiply the objective function by -1, which results in a minimization

problem. To obtain the fifth line, we note that 1− pi ≥ 0, for all i; hence, 1− pi = |pi − 1|,
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for all i. We then apply the definition of p̂U . The last line follows by applying the optimal

solution p∗U to the third line and noting that
∑

i∈N1
M |p∗U,i− p̂i| = 0 (because of Lemma 12).

3.10.2 Proof of Proposition 8: Bound on the Optimal Range

Recall that problem (P1min) (respectively, (P1max)) finds a point in conv(Y) that satisfies

the marketing constrains and minimizes (respectively, maximizes) the requirement of part

R. Recall that ay denotes the coefficient of configuration y ∈ Y in a CPS. Moreover, with

some abuse of notation, let ςy denote the number of units of part R required to produce one

unit of configuration y ∈ Y. In fact, problem (P1) is equivalent to:

(P1′) : min /max QR =
∑
y∈Y

ayςy

s.t.
∑
y∈Y

ayyi = p̂i, ∀i ∈ N1,∑
y∈Y

ay = 1,

ay ≥ 0, ∀y ∈ Y.

Let us reorder the options such that y ∈ Y can be written in the form of y =
(
y1

y2

)
where

y1 contains the values of options in OPR and y2 contains the values of options not in OPR.

Observe that ςy1 = ςy, for all y =
(
y1

y2

)
∈ Y. Thus, the objective function of (P1′) can be

written as:

QR =
∑
y∈Y

ayςy =
∑

y1∈SCR

ςy1

∑
y=(y1

y2
)∈Y

ay.

Similarly, the marketing constraints can be written as:

∑
y1∈SCR

yi
∑

y=(y1
y2

)∈Y

ay = p̂i, ∀i ∈ N1 ∩OPR, (3.22)

∑
y∈Y

ayyi = p̂i, ∀i ∈ N1\OPR. (3.23)
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Consider a relaxation of (P1′) by dropping constraints (3.23):

(P1′′) : min /max Q′′R =
∑

y1∈SCR

ςy1

∑
y=(y1

y2
)∈Y

ay

s.t.
∑

y1∈SCR

yi
∑

y=(y1
y2

)∈Y

ay = p̂i, ∀i ∈ N1 ∩OPR,

∑
y1∈SCR

∑
y=(y1

y2
)∈Y

ay = 1,

ay ≥ 0, ∀y ∈ Y.

Let Q′′R,L and Q′′R,U denote the optimal values of the minimization and maximization

cases of problem (P1′′), respectively. We next show that given a feasible solution of (P1′′),

there exists a feasible solution of (PB) with the same objective value. Consider a feasible

solution ay’s of problem (P1′′). Define āy1 :=
∑

y=(y1
y2

)∈Y ay, for all y1 ∈ SCR. Note that

āy1 ’s satisfy all constraints of (PB) and the corresponding objective value is equal to that

of ay’s in problem (P1′′). This implies that: Q◦R,L ≤ Q′′R,L and Q′′R,U ≤ Q◦R,U . In addition,

since (P1′′) is a relaxation of (P1), we have: Q′′R,L ≤ Q∗R,L and Q∗R,U ≤ Q′′R,U . By combining

these inequalities, we obtain that the optimal values of problems (P1) and (PB) satisfy:

Q◦R,L ≤ Q∗R,L and Q∗R,U ≤ Q◦R,U . Hence, the proof is complete.

3.11 Appendix for value of additional Information

3.11.1 Proof of Lemma 10: Consistency of a New Information Set

Consider adding information p(F ) =
∑

y∈Y aL,yvy(F ). This is equivalent to adding pA′ =∑
y∈Y aL,yvy(F ) and A′ ⇔ F , where A′ is an artificial option. Note that the updated set of

producible configurations after adding option A′ is as follows:

Y′ :=
{(

y

yA′

)∣∣∣y ∈ Y, yA′ = vy(F )

}
.
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Moreover, define ãL,( y
yA′

) := aL,y, for all
(

y
yA′

)
∈ Y′. Note that ãL,( y

yA′
)’s are feasible

coefficients for the updated producible configurations in the new problem. Hence, we only

need to show that:

pA′ =
∑

( y
yA′

)∈Y′
ãL,( y

yA′
)yA′ =

∑
y∈Y

aL,yvy(F ).

Note that this equation holds because ãL,( y
yA′

) := aL,y, for all
(

y
yA′

)
∈ Y′, and yA′ = vy(F ).

Similarly, we can show that adding information p(F ) =
∑

y∈Y aU,yvy(F ) is also feasible.

Finally, since p(F ) = γL,F and p(F ) = γU,F are consistent, then p(F ) = γ is consistent for

all γ such that min{γL,F , γU,F} ≤ γ ≤ max{γL,F , γU,F}.

3.11.2 Proof of Proposition 9: Ordering Different Information Sets

Define A′ as a new artificial option, and consider the following three problems.

Problem (i): min /max
∑

(i,α)∈C̃ (R)

αpi

s.t. pi = p̂i, ∀i ∈ N1, p ∈ conv(Y),

pA′ = γ, A′ ⇔ F ′,

Problem (ii): min /max
∑

(i,α)∈C̃ (R)

αpi

s.t. pi = p̂i, ∀i ∈ N1, p ∈ conv(Y),

pA′ = γ, A′ ⇔ F ′ ∧ F ′′,

Problem (iii): min /max
∑

(i,α)∈C̃ (R)

αpi

s.t. pi = p̂i, ∀i ∈ N1, p ∈ conv(Y),

pA′ = γ, A′ ⇔ F ′ ∨ F ′′.

In all problems, there are n+1 binary variables that can be shown as a (n+1)-dimensional

binary vector ỹ =
(

y
yA′

)
. Moreover, let p̃ =

(
p
pA′

)
. Finally, note that a feasible p̃ can be
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written as a convex combination of some producible configurations. Consider the following

cases:

(a) γ = 0: In this case pA′ = 0, meaning that in all problems, we must have yA′ = 0 for

all producible configurations that have positive coefficients in the convex combination. In

other words, if p̃ =
(
p
0

)
, then p̃ can be written as a convex combination of some producible

configurations in the form of
(
y
0

)
. Hence, we can restrict ourselves to ỹ’s with the last entry

0. In this case, in problem (i), we must have (v(F ′), v(F ′′)) ∈ {(0, 0), (0, 1)}; in problem

(ii), we must have (v(F ′), v(F ′′)) ∈ {(0, 0), (0, 1), (1, 0)}; and in problem (iii), we must have

(v(F ′), v(F ′′)) ∈ {(0, 0)}. Thus, any
(
y
0

)
that is feasible for (iii) is also feasible for (i), and

any
(
y
0

)
that is feasible for (i) is also feasible for (ii). Thus, in this case, the optimal solution

of (iii) is feasible for (i) and the optimal solution of (i) is feasible for (ii), meaning that:

Q∗
′′

R,L ≤ Q∗
′

R,L ≤ Q∗
′′′

R,L ≤ QR ≤ Q∗
′′′

R,U ≤ Q∗
′

R,U ≤ Q∗
′′

R,U .

(b) γ = 1: In this case we can restrict ourselves to ỹ’s with the last entry equal to 1.

Hence, in problem (i), we must have (v(F ′), v(F ′′)) ∈ {(1, 0), (1, 1)}; in problem (ii), we

must have (v(F ′), v(F ′′)) ∈ {(1, 1)}; and in problem (iii), we must have (v(F ′), v(F ′′)) ∈

{(0, 1), (1, 0), (1, 1)}. Thus, any
(
y
1

)
that is feasible for (ii) is also feasible for (i), and any

(
y
1

)
that is feasible for (i) is also feasible for (iii). Thus, in this case, the optimal solution of (ii)

is feasible for (i), and the optimal solution of (i) is feasible for (iii), meaning that:

Q∗
′′′

R,L ≤ Q∗
′

R,L ≤ Q∗
′′

R,L ≤ QR ≤ Q∗
′′

R,U ≤ Q∗
′

R,U ≤ Q∗
′′′

R,U .

3.11.3 An interactive approach for reducing a part’s requirement range

Fig. 3.7 shows the flowchart of our proposed interactive method. The flowchart consists of

two components: the expert’s decisions and the system’s decisions. The “expert” provides

new information, and the “system” solves PCPP and performs some systematic operations.
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First, the expert determines a subset of formulas F̃ ⊆ F for which new information can be

found. The set F̃ is usually large but enumerable. For example, F̃ can be the set of all

conjunctions of one or two positive options.

Second, the system solves PCPP and checks whether the obtained range is acceptable.

This decision is made by a pre-defined criteria. For example, a common criteria is that the

width of the range should not be bigger than 20% of the minimum value.

Third, if the range is not acceptable, the system calculates |γU,F − γL,F | for all F ∈ F̃ ,

and creates a short list by choosing some of the formulas with the biggest nonzero values for

|γU,F − γL,F |. The number of formulas in the short list is usually pre-defined—e.g., the short

list consists of 10 formulas at most.

Last, the expert chooses a formula from the short list and determines its penetration

rate. The system adds this new information set to it and solves the problem again. This

process is repeated until an acceptable range is found.

Start

Determine
F̃ ⊆ F such that
new information

on F , for all
F ∈ F̃ , can

be found.

Solve PCPP.

Is the
range

acceptable?
End

Create a short
list by selecting

some F ∈ F̃
with the biggest
nonzero values

for |γU,F − γL,F |.
(Assume the list

is nonempty.)

Select F from
the short list and
determine γ s.t.

min{γL,F , γU,F } ≤
γ ≤

max{γL,F , γU,F }.

Add information
p(F ) = γ.

Expert’s Decisions System’s Decisions

Yes

No

Figure 3.7: An interactive method for obtaining an acceptable range for a part’s requirement.

Fig 3.8 illustrates our interactive method on part R1 that we introduced in Example

2. We assume that the obtained range is acceptable if the width of the range is less than

10% of the minimum value. The short list (in steps (4) and (8)) consists of 4-5 formulas,
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with the allowable interval for the formulas’ penetration rates. For example, in step (4),

0.246 ≤ p(A1 ∧ A4) ≤ 0.347 means that the expert can assign a value to the penetration

rate of formula A1 ∧ A4 in the interval [0.246, 0.347]. The short lists are sorted in the non-

increasing order of the width of the allowable intervals. We assume that the expert selects a

formula and assigns the midpoint of its allowable interval to its penetration rate. It is seen

that for part R1, after two rounds of adding new information set and resolving the problem,

the obtained range satisfies our criteria.

Step-by-step execution of our in-
teractive method for part R1

(1) The expert determines F̃ as the set
of all conjunctions of one or two posi-
tive options.
(2) Solving PCPP results in:

2.155 ≤ QR1 ≤ 2.585
The width of this range is 19.95% of
the minimum value.
(3) The range is not acceptable.
(4) Short list:

0.246 ≤ p(A1 ∧A4) ≤ 0.347
0.289 ≤ p(A1 ∧A2) ≤ 0.385
0.904 ≤ p(A2) ≤ 1
0.289 ≤ p(A2 ∧A9) ≤ 0.385.

(5) The expert adds the following in-
formation set:

p(A2) = 0.952.
(6) Solving PCPP results in:

2.251 ≤ QR1
≤ 2.481.

The width of this range is 10.21% of
the minimum value.
(7) The range is not acceptable.
(8) Short list:

0.021 ≤ p(A5 ∧A9) ≤ 0.096
0.027 ≤ p(A4 ∧A5) ≤ 0.077
0.048 ≤ p(A1 ∧A5) ≤ 0.096
0 ≤ p(A2 ∧A5) ≤ 0.048
0.048 ≤ p(A5) ≤ 0.096.

(9) The expert adds the following in-
formation set:

p(A5 ∧A9) = 0.0585.
In order to add this information set, we
define an artificial option A′ such that
pA′ = 0.0585. Moreover, we add the
following rule to the problem:

A′ ⇔ A5 ∧A9.
(10) Solving the PCPP results in:

2.251 ≤ QR1
≤ 2.439.

The width of this range is 8.35% of the
minimum value.
(11) The range is acceptable, and hence
we stop!

Figure 3.8: Illustrating our interactive method (also see Example 2 and Fig. 3.2).

3.12 Appendix for industrial applications

3.12.1 An example for the infeasibility of the point/range estimate found by

the current approach

Consider options: A′, A′′, and A′′′. Rules: A′′′ ⇒ A′ ∨ A′′, A′ ⇒ A′′′, A′′ ⇒ A′′′. Condition

code: A′ ∧ A′′ → R. Penetration rates: pA′ = 1
2
, pA′′ = 1

2
, and pA′′′ = 4

5
.

The options that are related to part R are A′ and A′′. Producible sub-configurations:

y = (yA′ , yA′′) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. The penetration rates (pA′ , pA′′) = (1
2
, 1

2
) map

into a set of points in the space of sub-configurations that has the following two extreme

points: (0, 1
2
, 1

2
, 0) and (1

2
, 0, 0, 1

2
). These extreme points map into requirement 0 and 1

2
,

104



respectively. Thus, the current approach finds a point estimate in [0, 1
2
] and then creates a

range estimate using the 10% rule.

We next show that the obtained range [0, 1
2
] contains only one feasible point as the

requirement of R and any other point in this range is infeasible. Note that the set of rules

can be summarized as A′′′ ⇔ A′∨A′′, which implies that pA′′′ = p(A′∨A′′) = 4
5
. On the other

hand, we have: QR = p(A′ ∧A′′) = pA′ + pA′′ − p(A′ ∨A′′) = 1
5
. Therefore, the only feasible

point in the range [0, 1
2
] is 1

5
. In addition, if the current approach determines, for example,

1
2

as the point estimate, then the range estimate using the 10% rule will be [0.45, 0.55]. It

is seen that the range estimate found by the current approach does not include the correct

requirement of 1
5
.

3.13 Appendix for extensions

3.13.1 Proof of Theorem 5: Generalization of Nonlinear Programming Equiv-

alence

Define vector β = (β1, . . . , βn) as follows: βi :=
∑

(i,α)∈C̃ (R) α, for all i = 1, . . . , n. Note that

β ∈ Rn
+ and recall that in this chapter we assume 0 ∈ Y. Note that our problem (PG) can

be equivalently formulated as follows:

(PG): min /max β>Y x (3.24)

s.t. pL ≤ Y x ≤ pU , (3.25)

1>x = 1, x ∈ Rm
+ , (3.26)

where Y := [y1|y2| . . . |ym], m := |Y|, pL := (pL,1, . . . , pL,n), and pU := (pU,1, . . . , pU,n).

We want to prove that, for sufficiently large M , solving the following problem provides an
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optimal solution to problem (PG).

(PG′): min /max β>Y x±M
n∑
i=1

max {pL,i − Yix, 0, Yix− pU,i} (3.27)

s.t. 1>x = 1, x ∈ Rm
+ , (3.28)

where Yi denotes the ith row of matrix Y .

Let λmin(n) denote the smallest eigenvalue of all matrices in the form of B>B where B is

an invertible matrix of size (2n+ 1)× (2n+ 1) with all entries being a member of {−1, 0, 1}.

Since B>B is symmetric and positive definite and there are a finite number of possibilities

for B (and, consequently, for B>B), then λmin(n) exists and λmin(n) > 0. Note that there

are at most 3(2n+1)2
possibilities for B (because B ∈ {−1, 0, 1}(2n+1)×(2n+1) and B must be

invertible); hence, one needs to find the eigenvalues of B>B for each possibility, which results

in at most (2n+ 1)3(2n+1)2
different values, and finally, select the smallest value.

We aim to prove that solving (PG′) provides an optimal solution to (PG) if:

M > ‖β‖1

(
1 +

2n+ 1√
λmin(n)

)
.

Our proof is based on analyzing the impact of changing pL and pU on the optimal value

of problem (PG). We only consider vectors pL and pU for which the feasible region of (PG) is

nonempty. Define P := {(pL,pU) ∈ [0, 1]2n| Problem (PG) has a feasible solution}. Hence,

for all (pL,pU) ∈ P, problem (PG) has a bounded optimal value since: 0 ≤ β>pL ≤ β>Y x ≤

β>pU ≤ ‖β‖1 (also because β ∈ Rn
+). Let the function z(pL,pU), with domain P, denote

the optimal value of (PG). Thus, we have:

0 ≤ z(pL,pU) ≤ ‖β‖1, ∀(pL,pU) ∈ P.

We first focus on the maximization case of problem (PG). Dual of the maximization
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problem is as follows:

(Dmax): min e1
>pU − e2

>pL + e3 (3.29)

s.t. Y >e1 − Y >e2 + e31 ≥ Y >β, (3.30)

e1, e2 ∈ Rn
+, (3.31)

where e1, e2, and e3 are the dual variables (note that e3 ∈ R). The following lemma presents

a characterization of the extreme points of the feasible set of the dual problem.

Lemma 13. Let E denote the set of extreme points of the feasible set of problem (Dmax).

Then, (a) 1 ≤ |E| <∞ and (b) ‖e‖1 ≤ ‖β‖1

(
1 + (2n+ 1)

√
1/λmin(n)

)
, for all e ∈ E.

Proof. (a) Eq. (3.30) consists of a constraint associated with each row of matrix Y >.

Thus, since 0 ∈ Y, there exists a constraint in the form of e3 ≥ 0. Therefore, all dual

variables are nonnegative. Define e := (e1, e2, e3) ∈ R2n+1
+ as the vector of dual variables.

Note that the feasible set of (Dmax) does not contain a line because it is a subset of R2n+1
+ .

Moreover, the feasible set of (Dmax) is nonempty because (PG) has a bounded optimal

value for all (pL,pU) ∈ P and P is nonempty (note that (0,1) ∈ P). Thus, the feasible set

of (Dmax) has at least one extreme point (due to Proposition 2.1.2 of Bertsekas (2009)).

Additionally, a polyhedron (with at least one extreme point) that is defined by a finite

number of (in)equalities have a finite number of extreme points.

(b) Note that the feasible set of (Dmax) is defined by 2n + 1 variables and 2n + m

inequalities. Hence, an extreme point corresponds to 2n + 1 linearly independent binding

(active) constraints. Therefore, an extreme point is obtained by finding 2n + 1 linearly

independent constraints, setting them as equality, and solving the 2n + 1 equations which

results in a unique solution e; if e is feasible for problem (Dmax), then it is an extreme point.

Let n′ denote the number of linearly independent rows (or columns) of [Y > − Y > 1] and

note that n′ ≤ n+ 1. Let us select 2n+ 1 linearly independent constraints and set them as
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equality. This includes n′′ constraints from Eq. (3.30), such that n′′ ≤ n′, and 2n + 1 − n′′

constraints from Eq. (3.31). Denote the resulting system as

 Ȳ1

Ȳ2

 e =

 Ȳ1

0

(β0) where

Ȳ1 and Ȳ2 are matrices of size n′′× (2n+ 1) and (2n+ 1− n′′)× (2n+ 1) that correspond to

the constraints that are selected from Eqs. (3.30) and (3.31), respectively, and 0 is a matrix

(or vector) of appropriate size with all entries equal to zero. Note that:

 Ȳ1

Ȳ2

 e =

 Ȳ1

0

(β
0

)
+

 Ȳ1

Ȳ2

(β
0

)
−

 Ȳ1

Ȳ2

(β
0

)
=

 Ȳ1

Ȳ2

(β
0

)
−

 0

Ȳ2

(β
0

)
.

Additionally, since

 Ȳ1

Ȳ2

 is invertible, we define ¯̄Y := −

 Ȳ1

Ȳ2


−1

; hence, we have:

e =

(
β

0

)
+ ¯̄Y

 0

Ȳ2

(
β
0

)


≤
(
β

0

)
+

∥∥∥∥∥∥∥ ¯̄Y

 0

Ȳ2

(
β
0

)

∥∥∥∥∥∥∥

2

1

=

(
β

0

)
+


 0

Ȳ2

(
β
0

)

>

¯̄Y > ¯̄Y

 0

Ȳ2

(
β
0

)



1/2

1

≤
(
β

0

)
+
√

1/λmin(n)

∥∥∥∥∥∥∥
 0

Ȳ2

(
β
0

)

∥∥∥∥∥∥∥

2

1

≤
(
β

0

)
+
√

1/λmin(n) ‖β‖1 1.

Note that the fourth line follows because 1/λmin(n) is an upper bound on the eigenvalues

of ¯̄Y > ¯̄Y . Additionally, since e ≥ 0, then we have:
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‖e‖1 ≤ ‖β‖1

(
1 + (2n+ 1)

√
1/λmin(n)

)
,

and hence the proof is complete. 2

Using Lemma 13, the feasible set of (Dmax) has at least one extreme point. Moreover,

since the optimal value of (Dmax) is attained for all (pL,pU) ∈ P, then an extreme point

of the feasible set of (Dmax) is optimal (due to Proposition 2.4.1 of Bertsekas (2009)).

Therefore,

z(pL,pU) = min
e∈E

e>(pU ,−pL, 1), ∀(pL,pU) ∈ P.

It is easy to see that z is a piecewise linear and concave function over P. Consider

changing (pL,pU) to (pL −∆1,pU + ∆2) ∈ P such that ∆1 and ∆2 are arbitrary vectors

in Rn
+. Since z is concave, then:

z(pL −∆1,pU + ∆2) ≤ z(pL,pU) +∇z(pL,pU)>(−∆1,∆2),

where ∇z denotes the subgradient of z, which is unique and equal to (−e2, e1) for some

e = (e1, e2, e3) ∈ E if z is linear at (pL,pU). Note that if there are more than one e ∈ E

that achieve minimum at (pL,pU), then z is not linear and its subgradient is the convex

hull of all such (−e2, e1)’s. In addition, the above inequality holds for all (−e2, e1) where

e = (e1, e2, e3) ∈ E achieves the minimum at (pL,pU). Thus, there exists e = (e1, e2, e3) ∈ E

such that:

z(pL −∆1,pU + ∆2) ≤ z(pL,pU) + (−e2, e1)>(−∆1,∆2)

≤ z(pL,pU) + ‖e‖1‖(∆1,∆2)‖1

≤ z(pL,pU) + ‖(∆1,∆2)‖1 ‖β‖1

(
1 + (2n+ 1)

√
1/λmin(n)

)
.
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Let x denote an arbitrary feasible solution of problem (PG′). Define ∆1,i := max{0, pL,i−

Yix} and ∆2,i := max{0, Yix − pU,i}, for all i, and let ∆1 := (∆1,1, . . . ,∆1,n) and ∆2 :=

(∆2,1, . . . ,∆2,n). In addition, assume that at least one of ∆1 or ∆2 is nonzero implying that

x is an infeasible point for problem (PG). We have:

z(pL −∆1,pU + ∆2)− ‖(∆1,∆2)‖1 ‖β‖1

(
1 + (2n+ 1)

√
1/λmin(n)

)
≤ z(pL,pU).

Let z′(x) denote the objective value of problem (PG′) for the feasible solution x. Let x∗

denote the optimal solution of problem (PG). Note that x∗ is feasible for problem (PG′).

We next show that z′(x) < z′(x∗), which implies that x∗ is an optimal solution of (PG′).

z′(x) = β>Y x−M
n∑
i=1

max {pL,i − Yix, 0, Yix− pU,i}

≤ z(pL −∆1,pU + ∆2)−M‖(∆1,∆2)‖1

< z(pL −∆1,pU + ∆2)− ‖β‖1

(
1 + (2n+ 1)

√
1/λmin(n)

)
‖(∆1,∆2)‖1

≤ z(pL,pU).

The second line follows because β>Y x ≤ z(pL − ∆1,pU + ∆2) (here, note that x is

a feasible solution of (PG) after we change (pL,pU) to (pL −∆1,pU + ∆2) while z(pL −

∆1,pU + ∆2) is the optimal value after this change). The third line follows because we

assume M > ‖β‖1

(
1 + (2n+ 1)

√
1/λmin(n)

)
. Finally, we observe that:

z′(x) < z(pL,pU) = z′(x∗),

which completes the proof for the maximization case of problem (PG). The proof for the
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minimization case is very similar. Dual of the minimization problem is as follows:

(Dmin): max −e1
>pU + e2

>pL − e3 (3.32)

s.t. −Y >e1 + Y >e2 − e31 ≤ Y >β, (3.33)

e1, e2 ∈ Rn
+, (3.34)

The following lemma presents a characterization of the extreme points of (Dmin).

Lemma 14. Let Emin denote the set of extreme points of the feasible set of problem (Dmin).

Then, (a) 1 ≤ |Emin| <∞ and (b) ‖e‖1 ≤ ‖β‖1

(
1 + (2n+ 1)

√
1/λmin(n)

)
, for all e ∈ Emin.

Proof. The proof follows the same steps as the proof of Lemma 13. The main difference

is that in part (b), when we select 2n + 1 linearly independent constraints, the resulting

system is denoted as

 Ȳ1

Ȳ2

 e =

 Ȳ1

0




0

β

0

. The rest of the proof is similar and hence

is skipped. 2

Using Lemma 14, we can formulate the minimization case of (PG) as:

zmin(pL,pU) = max
e∈Emin

e>(−pU ,pL,−1), ∀(pL,pU) ∈ P,

where zmin(pL,pU) denotes the optimal value of the minimization case of (PG) and is a

piecewise linear and convex function over P. Consider changing (pL,pU) to (pL −∆1,pU +

∆2) ∈ P such that ∆1 and ∆2 are arbitrary vectors in Rn
+. Since z is convex, then there

exists e = (e1, e2, e3) ∈ Emin such that:

z(pL −∆1,pU + ∆2) ≥ z(pL,pU) + (e2,−e1)>(−∆1,∆2)

≥ z(pL,pU)− ‖e‖1‖(∆1,∆2)‖1

≥ z(pL,pU)− ‖(∆1,∆2)‖1 ‖β‖1

(
1 + (2n+ 1)

√
1/λmin(n)

)
.
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The rest of the proof for the minimization case of (PG) is very similar to the maximization

case that we showed above, and hence, is skipped. Thus, the proof is complete.

3.13.2 Proof of Proposition 10: Requirement for a Group of Parts

We have:

∑
R∈R̃

QR =
∑
R∈R̃

∑
(F,α)∈C (R)

αp(F )

=
∑
R∈R̃

∑
F∈C F (R)

p(F )
∑

α:(F,α)∈C (R)

α

=
∑
R∈R̃

∑
F∈
⋃
R̄∈R̃ C F (R̄)

p(F )
∑

α:(F,α)∈C (R)

α

=
∑

F∈
⋃
R̄∈R̃ C F (R̄)

p(F )
∑
R∈R̃

∑
α:(F,α)∈C (R)

α

=
∑

F∈
⋃
R̄∈R̃ C F (R̄)

α′=
∑
R∈R̃

∑
α:(F,α)∈C(R) α

α′p(F )

=
∑

(F,α′)∈C (R̂)

α′p(F ),

where, C (R̂) = {(F, α′)|F ∈ ⋃R∈R̃ C F (R), α′ =
∑

R∈R̃
∑

α:(F,α)∈C (R) α}. Note that the

third line follows because if F 6∈ C F (R), then
∑

α:(F,α)∈C (R) α = 0. Hence, the proof is

complete.

3.13.3 Illustration of finding a range for a group of parts

We illustrate Proposition 10 on parts R1, R2, and R3, that we introduced in Example 2. Our

approach is graphically shown in Fig. 3.9.

To show the effectiveness of the range obtained using Proposition 10, we compare it to

a simple range on the requirement of a group of parts that is obtained by simply summing

the minimum and maximum values on the ranges for individual parts. This simple approach
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Figure 3.9: Graphical illustration of finding concurrent ranges for parts.

results in the following ranges:

2.155 ≤ QR1 +QR2 ≤ 2.604

2.92 ≤ QR1 +QR3 ≤ 3.503

0.765 ≤ QR2 +QR3 ≤ 0.937

2.92 ≤ QR1 +QR2 +QR3 ≤ 3.522.

We next obtain these ranges using Proposition 10. Consider finding a range for (QR1 +

QR2). Define a hypothetical part R̂ with the following set of condition codes:

C (R̂) = {(A1, 1), ((A2 ∧ ¬A3) ∨ (A2 ∧ A4), 2),

((¬A5 ∧ A7), 4), ((A3 ∧ A4) ∨ (A3 ∧ A6), 1)}.

Note that in this example, C (R̂) is simply the union of C (R1) and C (R2). We obtain

the following range for QR̂, which is in fact a range for (QR1 +QR2).

2.155 ≤ QR̂ ≤ 2.604.

Thus, by using Proposition 10, and by repeating the above procedure for other combina-
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tions, we obtain the following ranges:

2.155 ≤ QR1 +QR2 ≤ 2.604

2.939 ≤ QR1 +QR3 ≤ 3.465

0.784 ≤ QR2 +QR3 ≤ 0.937

2.939 ≤ QR1 +QR2 +QR3 ≤ 3.484.

In this example, the range on the group of parts is about 90% of the range obtained by

summing the ranges for individual parts.
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Chapter 4

The Weighted Non-Negative Least-Squares Problem

with Implicitly Characterized Points

4.1 Introduction

The non-negative least-squares (NNLS) problem is defined as finding the Euclidean distance

between a target point and a convex cone generated by a set of discrete points in Rn (Lawson

and Hanson, 1995; Franc et al., 2005). We study NNLS in which the set of discrete points

are not a priori given but are implicitly known (e.g., the set of integer feasible solutions of a

mixed-integer program). In particular, we are interested in the instances where the number

of discrete points is exponential in n—e.g., when the discrete points are the feasible solutions

of a binary program, the number of solutions is O(2n).

Our problem is primarily motivated by an application in a large auto manufacturer, in

which n represents the number of options (e.g., engine E1, engine E2, transmission T1, and

so on) that define the car configurations (end-products). In this setting, the configurations

have to satisfy a set of feasibility constraints and hence the number of feasible configurations

can be O(2n), which are only implicitly defined. The target point is an estimation of future

demand of options over the planning horizon—e.g., the number of cars sold over the planning

horizon with engine E1. The convex cone generated by the feasible configurations constitutes
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the set of feasible demand over the planning horizon (see Chapters 2 and 3). The problem is

to find a point in the convex cone that has the minimum weighted Euclidean distance to the

target point (weights may reflect the importance or the price of options). In addition, this

problem can generally be found in the manufacturing systems where products are configured

based on a set of options available for the customers. Other applications include variants

of classical clustering problems. In some clustering problems, the objective is to find the

Euclidean distance between a point and the convex hull of a set of points in Rn, called a

cluster, whereas our problem is to find the Euclidean distance between a target point and

the convex cone of a set of implicitly known points in Rn.

Although the NNLS is a convex optimization problem and solved efficiently (see, for

example, Boutsidis and Drineas (2009) and Potluru (2012)), NNLS with implicit points

cannot be solved using the existing approaches. Therefore, we first develop a surrogate

problem where by solving it we find the optimal solution to our problem. Our surrogate

problem enables us to design a Frank-Wolfe based approach (Frank and Wolfe, 1956) for

finding the optimal solution. We generate a feasible solution (upper bound) and a lower

bound at each iteration k of our proposed approach. We show that both the upper and lower

bounds converge to the optimal value atO(1/k). We numerically investigate the effectiveness

of our approach on a set of instances. Finally, we remark that the computational complexity

of our approach depends on the computational complexity of the subproblem that we solve

at each iteration. If the subproblem is polynomially solved, then the overall computational

complexity of our approach is polynomial in n.

We also note that a special case of this problem (non-weighted), where the discrete points

are the solutions of a satisfiability problem, is studied in Chapter 2. This Chapter extends

and generalizes those results by allowing the discrete points to be the integer solutions of a

mixed-integer program, providing a detailed convergence rate guarantee on the upper bound

and establishing the convergence rate of the lower bound.
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This chapter is organized as follows. Section 4.2 formally defines our problem. In section

4.3, we present the surrogate problem and propose our algorithm for solving it. We establish

the convergence rate of the upper and lower bounds in section 4.4. Section 4.5 presents our

numerical results. Section 4.6 concludes.

4.2 Problem Description

Consider a finite set Y = {y1,y2, . . . ,ym} ⊆ Rn, a target point ẑ ∈ Rn, and an n×n invertible

matrix W , satisfying the following assumptions: (i) y′TW TWy′′ ≥ 0, for all y′, y′′ ∈ Y,1

(ii) there exists y ∈ Y such that y 6= 0, and (iii) ẑ 6= 0 (note that assumptions (ii) and (iii)

are used to eliminate the trivial cases). A complete list of notations is available in Appendix

4.7.

In particular, we are interested in cases where Y is only implicitly known and m is

exponential in n. Let CC(Y) denote the convex cone generated by the set Y. In fact, CC(Y)

contains all points z such that z =
∑m

j=1 ξjy
j for some non-negative coefficients ξj’s. We are

interested in the problems of the form:

(P1): min h(z) = ‖W (z− ẑ)‖2
2

s.t. z ∈ CC(Y).

In fact, (P1) finds a point z∗ ∈ CC(Y) that has the closest weighted Euclidean distance

to ẑ. Fig. 4.1 provides an example in R3
+. For the ease of illustration, we assume Y contains

five points that are as shown in Fig. 4.1. Given vectors y1, . . . , y5, we want to find the

1We acknowledge that, in general, Assumption (i) is restrictive and difficult to check and guarantee. In
the application that motivated this chapter, all discrete points are in the same orthant and W is diagonal,
which satisfies Assumption (i). Furthermore, in many similar practical applications, this assumption is

simply satisfied. Theoretically, one needs to solve miny′,y′′∈Y y′TWTWy′′ in order to check Assumption (i).
We note that this problem has a nonlinear objective function because it contains components that are the
product of two discrete variables, e.g., y′i′y

′′
i′′ . Since y’s are discrete, then y′i′y

′′
i′′ can be linearized, which

increases the number of variables polynomially. The resulting problem may still be significantly difficult to
solve.
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Euclidean distance between ẑ and the convex cone generated by y1, . . . , y5. We assume, in

this example, W is a 3×3 identity matrix.

R3
+

y1

y2
y3

y4

y5

ẑ R3
+ẑ

CC(Y)

Figure 4.1: An illustrative example of (P1) where y1 = (1, 1, 2), y2 = (0, 2, 3), y3 =
(2, 1, 3), y4 = (3, 0, 2), y5 = (0, 0, 2), and ẑ = (1, 1, 0).

Problem (P1) has a strongly convex objective function. Appendix 4.8 presents two al-

ternative formulations of (P1) and discusses their drawbacks. Problem (P1) is very difficult,

and general purpose solvers cannot solve medium and large instances. In the remainder, we

propose an effective approach for solving (P1).

4.3 Solution Methodology

We are particularly interested in special cases of (P1) where Y is implicitly known, but

we can solve miny∈Y cTy in a reasonable time2 for a given coefficient vector c ∈ Rn.3 For

example, Y can be the set of feasible solutions of a satisfiability problem, binary program,

or mixed-integer program. Since we can solve miny∈Y cTy in a reasonable time, then we

can sequentially construct Y. We note that the optimal solution z∗ can be represented as

2“Reasonable time” does not imply polynomial time; rather, it means that the problem is solved fast.
3Note that we use miny∈Y cTy to motivate our approach since this problem has basically similar objective

function and constraints to the subproblem that we will introduce in subsection 4.3.2.
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a positive combination of at most n points in Y; hence, a cleverly designed algorithm may

find the optimal solution to (P1) by solving miny∈Y cTy at most O(n) times.

We design our solution approach based on this observation. Our approach belongs to

the class of methods that sequentially construct the feasible region and stop when a good

solution is found. One such approach is the well-known Frank-Wolfe algorithm (Frank and

Wolfe, 1956; Demyanov and Rubinov, 1970), also known as the conditional gradient method.

In the literature, the Frank-Wolfe algorithm is used to minimize a convex objective function

over a compact convex domain (Jaggi, 2013; Lacoste-Julien and Jaggi, 2015). Reddi et al.

(2016); Lafond et al. (2015); Hazan and Kale (2012) have recently extended the application of

the Frank-Wolfe to minimizing a non-convex objective function and stochastic optimization.

In subsection 4.3.1, we present our surrogate problem. We propose our Frank-Wolfe

based algorithm, discuss our lower bounding procedure, and provide an illustrative example

in subsection 4.3.2. We analyze the subproblem that has to be solved at each iteration of

the algorithm and present a modeling framework for it in subsection 4.3.3.

4.3.1 Surrogate Problem for Problem (P1)

We note that (P1) has a non-compact feasible region and the Frank-Wolfe type approaches

cannot be directly applied to it; hence, as a critical step of our approach, we first present a

surrogate problem (P2) that enables us to employ our solution method. We will show that

one can determine the optimal solution of (P1) in polynomial time if the optimal solution of

(P2) is known. Problem (P2) is given as follows:

(P2): min f(z) = ‖z−W ẑ‖2
2

s.t. z ∈ CC(Ỹ), ẑTW Tz = ẑTW TW ẑ,

where Ỹ := {Wy1, . . . ,Wym}. Define H := {z ∈ Rn|ẑTW Tz = ẑTW TW ẑ}. In fact, H is

the set of points in Rn that belong to the hyperplane ẑTW Tz = ẑTW TW ẑ. Moreover, let
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FH denote the set of feasible solutions to (P2)—i.e., FH := {z ∈ H|z ∈ CC(Ỹ)}.

We provide a brief intuition for forming our surrogate problem (P2). In fact, we aim to

generate a new problem that has a compact feasible region. Therefore, we concentrate on

the intersection of the cone CC(Ỹ) and the hyperplane H. Although the intersection is not

compact in general, we will show in subsection 4.3.3 that there exists a compact subset of

the intersection that contains the iterates of our algorithm.

The sets H and FH are illustrated in Fig. 4.2 for the example introduced in Fig. 4.1

(assuming that W is a 3× 3 identity matrix).

R3
+ẑ

H

FH

z1

z2

z3

z4

Figure 4.2: Illustration of H (entire shaded region) and FH (darker region) (assumption:
W is an identity matrix). Note that there is no z5 since y5 in Fig. 4.1 is orthogonal to ẑ.

The following theorem shows that by solving (P2), one can obtain an optimal solution

for (P1) in polynomial time.

Theorem 6. (a) z∗ = 0 solves (P1) if and only if (P2) is infeasible and (b) if (P2) has a

feasible solution, then (P1) and (P2) have unique optimal solutions, which we denote by z∗

and z∗∗, respectively, and z∗ = ẑTWTW ẑ
z∗∗T z∗∗

W−1z∗∗.

Proof. (a, ⇒) We use a contradiction to show if z∗ = 0, then FH = {}. Assume that

z∗ = 0 and FH 6= {}. Then, there exists z̄ ∈ FH. Note that z̄ 6= 0 (using the definition of
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FH, we have ẑTW T z̄ = ẑTW TW ẑ > 0 because W TW is a positive definite matrix (because

W is invertible) and ẑ 6= 0 (because of our assumption (iii) in section 4.2)).

Define ¯̄z := ẑTWTW ẑ
z̄T z̄

W−1z̄ 6= 0 (note that ¯̄z is well-defined because z̄ 6= 0). We show that

¯̄z is feasible for (P1) and has a strictly better objective value than z∗ = 0. To prove the

feasibility of ¯̄z, note the following. First, since z̄ ∈ CC(Ỹ), then W−1z̄ ∈ CC(Y). Second,

since ẑTWTW ẑ
z̄T z̄

> 0 and W−1z̄ ∈ CC(Y), then ¯̄z ∈ CC(Y) (because of the definition of cone).

Thus, ¯̄z is feasible for (P1). Next, note that:

−(ẑTW TW ẑ)2

z̄T z̄
< 0

⇒ (ẑTW TW ẑ)2

z̄T z̄
− 2

(ẑTW TW ẑ)2

z̄T z̄
< 0

⇒ (ẑTW TW ẑ)2

(z̄T z̄)2
z̄T z̄− 2

ẑTW TW ẑ

z̄T z̄
ẑTW TW ẑ < 0

⇒ (ẑTW TW ẑ)2

(z̄T z̄)2
z̄T z̄− 2

ẑTW TW ẑ

z̄T z̄
ẑTW T z̄ + ẑTW TW ẑ < ẑTW TW ẑ

⇒
( ẑTW TW ẑ

z̄T z̄
z̄−W ẑ

)T( ẑTW TW ẑ

z̄T z̄
z̄−W ẑ

)
< (W ẑ)T (W ẑ)

⇒ h(¯̄z) < h(0),

and hence ¯̄z has a strictly better objective value than z∗ = 0, which contradicts the optimality

of z∗ = 0. Thus, the proof of (a, ⇒) is complete.

(a, ⇐) We first show (using a contradiction) that if FH = {}, then ẑTW TW z̄ ≤ 0,

for all z̄ ∈ CC(Y). Assume that there exists z̄ ∈ CC(Y) such that ẑTW TW z̄ > 0. Define

¯̄z := ẑTWTW ẑ
ẑTWTW z̄

W z̄. Because ẑTWTW ẑ
ẑTWTW z̄

> 0 and W z̄ ∈ CC(Ỹ), then ¯̄z ∈ CC(Ỹ). Moreover,

ẑTW T ¯̄z = ẑTW T ( ẑ
TWTW ẑ

ẑTWTW z̄
W z̄) = ẑTW TW ẑ. Therefore, ¯̄z ∈ FH, meaning that FH 6= {}.

This is a contradiction, and hence, we proved that: if FH = {}, then ẑTW TW z̄ ≤ 0, for all

z̄ ∈ CC(Y).

Let z̄ ∈ CC(Y) be arbitrary. We show that the objective value of 0 is at least as good as
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the objective value of z̄. We note that:

h(z̄) = ‖W (ẑ− z̄)‖2
2

=
∥∥∥W(ẑ− ẑTW TW z̄

ẑTW TW ẑ
ẑ +

ẑTW TW z̄

ẑTW TW ẑ
ẑ− z̄

)∥∥∥2

2

=
∥∥∥(1− ẑTW TW z̄

ẑTW TW ẑ

)
W ẑ +

( ẑTW TW z̄

ẑTW TW ẑ
W ẑ−W z̄

)∥∥∥2

2

=
∥∥∥(1− ẑTW TW z̄

ẑTW TW ẑ

)
W ẑ
∥∥∥2

2
+
∥∥∥ ẑTW TW z̄

ẑTW TW ẑ
W ẑ−W z̄

∥∥∥2

2

≥
∥∥∥(1− ẑTW TW z̄

ẑTW TW ẑ

)
W ẑ
∥∥∥2

2

≥ ‖W (ẑ− 0)‖2
2

= h(0),

meaning that the objective value of z̄ is greater than or equal to the objective value of 0.

In the second line, we add and subtract ẑTWTW z̄
ẑTWTW ẑ

ẑ to the expression inside the parentheses.

To obtain the fourth line, we note that W ẑ and ( ẑ
TWTW z̄

ẑTWTW ẑ
W ẑ −W z̄) are orthogonal—i.e.,

(W ẑ)T ( ẑ
TWTW z̄

ẑTWTW ẑ
W ẑ−W z̄) = 0. To obtain the sixth line, we use the fact that ẑTW TW z̄ ≤ 0,

which we proved earlier in this part. Since z̄ is an arbitrary feasible solution of (P1), then

z∗ = 0 solves (P1). Thus, the proof of (a, ⇐) is complete.

(b) We first show (using a contradiction) that if FH 6= {}, then z∗TW TW ẑ > 0. Assume

that FH 6= {} and z∗TW TW ẑ ≤ 0. Then, we have: h(z∗) = ‖W (ẑ − z∗)‖2
2 = ‖W ẑ‖2

2 +

‖Wz∗‖2
2 − 2z∗TW TW ẑ ≥ ‖W ẑ‖2

2 + ‖Wz∗‖2
2 > ‖W ẑ‖2

2 = ‖W (ẑ − 0)‖2
2 = h(0) (note that

−2z∗TW TW ẑ ≥ 0, and Wz∗ 6= 0 because W is an invertible matrix, and, in part (a), we

showed that if FH 6= {}, then z∗ 6= 0). This contradicts the optimality of z∗ because 0 has

a strictly better objective value (note that, using part (a), we must have z∗ 6= 0 because we

assume FH 6= {}). Hence, we proved that: if FH 6= {}, then z∗TW TW ẑ > 0.

We note that in (P1) and (P2) the objective functions are strongly convex (due to invert-

ibility of W ) and the feasible regions are nonempty and convex sets; hence, (P1) and (P2)

have unique optimal solutions, which we denote by z∗ and z∗∗, respectively.
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Define λ := ẑTWTW ẑ
z∗TWTW ẑ

. Note that λWz∗ ∈ FH for the following reasons. First, λ > 0

because ẑTW TW ẑ > 0 and z∗TW TW ẑ > 0. Second, since Wz∗ ∈ CC(Ỹ), then λWz∗ ∈

CC(Ỹ). Finally, we note that:

ẑTW T (λWz∗) =
ẑTW TW ẑ

z∗TW TW ẑ
ẑTW TWz∗ = ẑTW TW ẑ,

and hence, we proved that λWz∗ ∈ FH.

We also note that 1
λ
W−1z∗∗ ∈ CC(Y) for the following reasons. First, 1

λ
> 0. Second,

W−1z∗∗ ∈ CC(Y). Hence, in summary, we have shown that: 1
λ
W−1z∗∗ and z∗ are feasible for

(P1), and z∗∗ and λWz∗ are feasible for (P2).

To complete the proof of part (b), we show that z∗∗ = λWz∗ using a contradiction.

Suppose to the contrary that z∗∗ 6= λWz∗ (or 1
λ
W−1z∗∗ 6= z∗). Since z∗ is unique and

1
λ
W−1z∗∗ is feasible for (P1), then we have:

h(z∗) < h(
1

λ
W−1z∗∗)

⇒
∥∥∥W(z∗ − 1

λ
ẑ
)
−
(

1− 1

λ

)
W ẑ
∥∥∥2

2
<
∥∥∥W(1

λ
W−1z∗∗ − 1

λ
ẑ
)
−
(

1− 1

λ

)
W ẑ
∥∥∥2

2

⇒
∥∥∥W(z∗ − 1

λ
ẑ
)∥∥∥2

2
+
∥∥∥(1− 1

λ

)
W ẑ
∥∥∥2

2
<
∥∥∥W(1

λ
W−1z∗∗ − 1

λ
ẑ
)∥∥∥2

2
+
∥∥∥(1− 1

λ

)
W ẑ
∥∥∥2

2

⇒
∥∥∥W(z∗ − 1

λ
ẑ
)∥∥∥2

2
<
∥∥∥W(1

λ
W−1z∗∗ − 1

λ
ẑ
)∥∥∥2

2

⇒ ‖W (λz∗ − ẑ)‖2
2 < ‖W (W−1z∗∗ − ẑ)‖2

2

⇒ f(λWz∗) < f(z∗∗).

The third line follows from the fact that W (z∗− 1
λ
ẑ) and (1− 1

λ
)W ẑ are orthogonal, and

W ( 1
λ
W−1z∗∗− 1

λ
ẑ) and (1− 1

λ
)W ẑ are orthogonal (by feasibility of z∗∗ on the hyperplane in

(P2)). In the last line, note that λWz∗ is feasible for (P2) and has a strictly better objective

value than z∗∗. This contradicts the optimality of z∗∗ for (P2). Hence, z∗∗ = λWz∗ or

z∗ = 1
λ
W−1z∗∗.
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So far, we have shown that z∗ = λ̂W−1z∗∗, where λ̂ := 1
λ
> 0. To complete the proof,

we have to determine λ̂ (note that we must show λ̂ = ẑTWTW ẑ
z∗∗T z∗∗

). We can find λ̂ by solving

the following optimization problem (because we already know that λ̂W−1z∗∗ is the optimal

solution of (P1)).

min
λ̄>0

h(λ̄W−1z∗∗) = ‖W (λ̄W−1z∗∗ − ẑ)‖2
2.

The objective function is convex in λ̄. Using first order conditions, we obtain λ̂ =

ẑTWTW ẑ
z∗∗T z∗∗

> 0. Therefore, we have:

z∗ = λ̂W−1z∗∗ =
ẑTW TW ẑ

z∗∗Tz∗∗
W−1z∗∗,

and hence the proof is complete. 2

Based on Theorem 6, we note the following. First, (P1) always has a finite optimal

solution, which we denote by z∗. Second, (P2) can be infeasible or it has a bounded optimal

solution, which we denote by z∗∗. Finally, if (P2) is infeasible, then z∗ = 0 solves (P1);

otherwise, the optimal solution of (P1) is found using equations z∗ = ẑTWTW ẑ
z∗∗T z∗∗

W−1z∗∗ in

polynomial time. Therefore, we need to solve problem (P2) to determine the optimal solution

to (P1).

4.3.2 An Algorithm for Solving the Surrogate Problem

We present our method for solving (P2), which is also shown in Algorithm 3 (assuming

FH 6= ∅). An initial feasible point is found that we denote by z(0) ∈ FH (note that since

FH 6= ∅, then there exists y◦ ∈ Y such that ẑTW TWy◦ > 0). We denote by L(k) a lower

bound on the optimal value of (P2) at iteration k. We will discuss determining L(k) later in

this subsection. This lower bound is initially set to 0. At each iteration k = 0, 1, 2, . . . , we

first determine the best known point, denoted by z∗(k), by minimizing the objective function

of (P2) over the convex hull of all feasible points known so far (Line (3) of Algorithm 3).
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Algorithm 3 Solving problem (P2) (Assumption: FH 6= ∅)
1: Let y◦ ∈ Y such that ẑTW TWy◦ > 0; Define z(0) := ẑTWTW ẑ

ẑTWTWy◦
Wy◦ ∈ FH; Define

L(0) := 0;
2: for k = 0, 1, 2, . . . do
3: Solve z∗(k) = arg minz∈CH({z(0),...,z(k)}) f(z);

4: if f(z∗(k)) ≤ L(k) + ε then4

5: Return z∗(k);
6: end if
7: Solve M(k) and denote the optimal solution by z(k+1);

8: Define L(k+1) := max
{
L(k),

(
max

{
0, (z(k+1)−W ẑ)T (z∗(k)−W ẑ)

‖z∗(k)−W ẑ‖2

})2}
;

9: if f(z∗(k)) ≤ L(k+1) + ε then
10: Return z∗(k);
11: end if
12: end for

If the difference between the objective value of z∗(k) and L(k) is less than or equal to an

acceptable error ε, we stop (Line (4) of Algorithm 3). Otherwise, we minimize the linear

approximation of the objective function at z∗(k) over the feasible region of (P2). In fact, we

solve the following minimization problem:

M(k) : min
z∈FH

zT (z∗(k) −W ẑ),

and denote the optimal solution by z(k+1) (see Line (7) of Algorithm 3).

An important feature of Algorithm 3 is the presentation of a lower bound at each iteration,

which is computed as:

L(k+1) := max
{
L(k),

(
max

{
0,

(z(k+1) −W ẑ)T (z∗(k) −W ẑ)

‖z∗(k) −W ẑ‖2

})2}
,

for all k ≥ 0. Note that our lower bound is always well-defined because the denominator is

non-zero (since if ‖z∗(k) −W ẑ‖2 = 0 then f(z∗(k)) = 0, and hence the algorithm must have

stopped in Line (4)). The validity of this lower bound is proven in the following proposition.

Proposition 12. In Algorithm 3, f(z∗∗) ≥ L(k), for all k ≥ 0.
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Proof. First, note that L(0) = 0, which is valid; hence, we focus on proving the validity of

L(k) for k ≥ 1. Note that we can represent the lower bound as:

L(k+1) := max
{

0, max
k′=0,1,...,k

(
max

{
0,

(z(k′+1) −W ẑ)T (z∗(k
′) −W ẑ)

‖z∗(k′) −W ẑ‖2

})2}
,

for all k ≥ 0. Thus, it suffices to prove:

f(z∗∗) ≥
(

max
{

0,
(z(k′+1) −W ẑ)T (z∗(k

′) −W ẑ)

‖z∗(k′) −W ẑ‖2

})2

,

for all k′ ≥ 0. We use a contradiction. Suppose that there exist k′ and z̄ ∈ FH such that:

f(z̄) <
(

max
{

0,
(z(k′+1) −W ẑ)T (z∗(k

′) −W ẑ)

‖z∗(k′) −W ẑ‖2

})2

.

Note that if
(
(z(k′+1) −W ẑ)T (z∗(k

′) −W ẑ)
)
/
(
‖z∗(k′) −W ẑ‖2

)
≤ 0, then we have f(z̄) <

0 which is a contradiction; hence, assume that
(
(z(k′+1) − W ẑ)T (z∗(k

′) − W ẑ)
)
/
(
‖z∗(k′) −

W ẑ‖2

)
> 0. Thus, we have:

f(z̄) <
((z(k′+1) −W ẑ)T (z∗(k

′) −W ẑ)

‖z∗(k′) −W ẑ‖2

)2

⇒ ‖z̄−W ẑ‖2 <
(z(k′+1) −W ẑ)T (z∗(k

′) −W ẑ)

‖z∗(k′) −W ẑ‖2

⇒ ‖z̄−W ẑ‖2‖z∗(k
′) −W ẑ‖2 < (z(k′+1) −W ẑ)T (z∗(k

′) −W ẑ)

⇒ (z̄−W ẑ)T (z∗(k
′) −W ẑ) ≤ ‖z̄−W ẑ‖2‖z∗(k

′) −W ẑ‖2 < (z(k′+1) −W ẑ)T (z∗(k
′) −W ẑ)

⇒ z̄T (z∗(k
′) −W ẑ) < z(k′+1)T (z∗(k

′) −W ẑ).

The fourth line follows from the Cauchy-Schwartz inequality. Note that the last line

contradicts the optimality of z(k′+1) for problem M(k′). Hence, the proof is complete. 2

We note that L(k) is nondecreasing in k due to the way it is defined. We stop Algorithm

3 if the difference between the current objective value and the lower bound is less than or
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equal to an acceptable error ε (see Lines (9)-(11) of Algorithm 3). Our experiment shows

that L(k) is significantly effective in terminating the execution of Algorithm 3.

We graphically show the steps of applying Algorithm 3 to the example presented in Figs.

4.1 and 4.2. Recall that this example assumes W is a 3× 3 identity matrix. For the ease of

illustration, we assume ε = 0. Let z(0) ∈ FH be as shown in Fig. 4.3(a), and L(0) = 0. In

iteration 0, we find z∗(0) = z(0). We then minimize zT (z∗(0) − ẑ) over the feasible region FH

and find z(1). Using the obtained z(1), we compute L(1), which is shown in Fig. 4.3(a). The

termination criteria is not satisfied because L(1) < f(z∗(0)) = ‖z∗(0)− ẑ‖2
2. Thus, we continue

to iteration k = 1 (see Fig. 4.3(b)). We first find z∗(1) as the closest point to ẑ in the convex

hull of {z(0), z(1)}. Then, solving M(1), we find z(1) (or z(0)). We then compute L(2) and

note that the termination criteria is met because L(2) = f(z∗(1)) = ‖z∗(1) − ẑ‖2
2. Thus, we

stop and z∗(1) is the optimal solution of (P2)—i.e., z∗∗ = z∗(1). We remark that if Algorithm

3 is not equipped with L(k), it iterates forever and cannot guarantee the optimality of z∗(1).

R3
+ẑ

FH

z(0) = z∗(0)

z(1) −(z∗(0) − ẑ)√
L(1)

(a) Iteration 0: z(1) minimizes M(0);
L(1) is found and L(1) < f(z∗(0)).

R3
+ẑ

FH

z(0)

z(1) −(z∗(1) − ẑ)

z∗(1)

√
L(2)

(b) Iteration 1: z(1) (or z(0)) minimizes M(1);
L(2) is found and L(2) = f(z∗(1)); Stop!

Figure 4.3: Graphical illustration of Algorithm 3 on the example presented in Figs. 4.1 and
4.2.
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4.3.3 Analysis of the Subproblem M(k)

The applicability of Algorithm 3 depends on finding a bounded optimal solution z(k+1) by

solving M(k). This is guaranteed if, for example, the feasible region of M(k) is compact.

We remark that FH is a closed and convex polyhedron, but not necessarily compact because

it can be unbounded (see, for example, Fig. 4.2). We must ensure there exists a nonempty

and compact polyhedron that contains the optimal solutions of M(k). This result is not

obvious as illustrated in Fig. 4.4. Suppose FH, W ẑ, and z∗(0) are as shown in Fig. 4.4,

and FH is unbounded with extreme directions d1 and d2. The objective value of M(0)

improves in the direction of −(z∗(0) −W ẑ). Hence, the objective value approaches to −∞

in the direction of d2, and there exists no optimal solution. If this case happens, we cannot

generate z(1) and hence cannot proceed. A situation similar to Fig. 4.4 never happens as we

show in the following theorem.

d1

d2

W ẑ

z∗(0)

FH

−(z∗(0) −W ẑ)

Figure 4.4: An example to highlight the importance of Theorem 7.

Theorem 7. If FH 6= {}, then, for all k ≥ 0, M(k) has a bounded optimal solution, which

is an extreme point of FH and in the form of λWy, where 0 < λ < +∞ and y ∈ Y.

Proof. Note that if for all Wy ∈ Ỹ, there exists 0 < λ < +∞ such that ẑTW T (λWy) =

ẑTW TW ẑ, then FH is a bounded set (also because Y has a finite number of elements). This
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case happens if ẑTW TWy > 0, for all y ∈ Y. On the other hand, if there exists y ∈ Y such

that ẑTW TWy ≤ 0, then FH can be unbounded.5

We first show that M(k) has a bounded optimal value. Note that for all z ∈ FH we

have: zTW ẑ = ẑTW TW ẑ = q, where q is a constant. Then, for all z ∈ FH, the objective

value of M(k) is equal to zTz∗(k) − q. On the other hand, since both z and z∗(k) are some

nonnegative combinations of Wy’s, by Assumption (i), the objective is lower bounded by

−q.

We next show that FH has at least one extreme point and does not contain lines (FH

contains a line if there exist z′, z′′ ∈ FH, z′ 6= z′′, such that θz′ + (1 − θ)z′′ ∈ FH, for all

θ ∈ R). First, FH is a nonempty polyhedron because of the assumption of the theorem.

Second, note that CC(Ỹ) does not contain lines because, for all z′, z′′ ∈ CC(Ỹ), we have:

z′
T
z′′ =

(
m∑
j1=1

ξ′j1Wyj1

)T ( m∑
j2=1

ξ′′j2Wyj2

)
=

m∑
j1=1

m∑
j2=1

ξ′j1ξ
′′
j2

yj1TW TWyj2 ≥ 0,

due to our assumption (i) in section 4.2; hence, FH does not contain lines because FH ⊆

CC(Ỹ). In addition, since FH is closed and nonempty, then FH has at least one extreme

point (due to Proposition 2.1.2 of Bertsekas (2009)).

Thus, since FH is a closed subset of Rn with at least one extreme point and since the

optimal value ofM(k) is attained over FH, then an extreme point of FH must be optimal

(due to Proposition 2.4.1 of Bertsekas (2009)). This extreme point is in the form of λWy,

where 0 < λ < +∞ and y ∈ Y (there might be other alternative optimal solutions). Let

CFH denote the convex hull of all λWy’s, where 0 < λ < +∞ and y ∈ Y. Thus, we proved

that the optimal solution of M(k) belongs to CFH. Moreover, CFH is a nonempty and

compact polyhedron. 2

The following important results are noted based on Theorem 7. First, M(k) has a

bounded optimal solution, which is an extreme point of FH, and hence we can limit our

5Note that if there exists y̌ ∈ Y such that ẑTWTW y̌ ≤ 0, then there exists no λ > 0 satisfying λW y̌ ∈ FH.
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search region to the extreme points of FH in the form of λWy where 0 < λ < +∞ and

y ∈ Y. Second, solving M(k) with the limited search region guarantees that an obtained

optimal solution is always bounded. Thus, we reformulate M(k) based on these results as

follows.

M(k) : min (λWy)T (z∗(k) −W ẑ)

s.t. y ∈ Y, λ ≥ 0

ẑTW T (λWy) = ẑTW TW ẑ.

Note that λ 6= 0 because ẑTW TW ẑ > 0. By M(k), we always refer to this new for-

mulation in the rest of this chapter. Moreover, we denote by z(k+1) the optimal value of

λWy.

We note that the effectiveness of Algorithm 3 depends on how the subproblem M(k) is

modeled and solved at each iteration. We present a general framework for formulatingM(k)

when Y is the set of integer feasible solutions of mixed-integer programs. Before we present

our framework, we remark that if Y is given explicitly, then the solution ofM(k) is obtained

by computing:

min
y∈Y:

ẑTWTWy>0

{((
ẑTW TW ẑ

ẑTW TWy

)
Wy

)T
(z∗(k) −W ẑ)

}
,

which can be performed in a time that is polynomial in m.

We next present our modeling framework. We assume that y ∈ Y is in the form of

y = (y1, . . . , yn) such that 1 − 2U ≤ yi ≤ 2U , for all i = 1, . . . , n, where (1 − 2U) and 2U

are known lower and upper bounds on the values of yi’s. For example, if U = 3, then it

is known that all integer variables are between −7 and 8. We note that U can be selected

sufficiently big so that the lower and upper bounds are valid for all yi’s, but for achieving

the most effective model, we must set U to the smallest possible integer value. We formulate
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M(k) as the following mixed-integer linear programming problem:

M(k) : min (Wx)T (z∗(k) −W ẑ) (4.1)

s.t. ẑTW TWx = ẑTW TW ẑ (4.2)

yi = (1− 2U) +
U∑
u=0

2uviu, ∀i (4.3)

xi = (1− 2U)λ+
U∑
u=0

2usiu, ∀i (4.4)

0 ≤ siu ≤Mviu, ∀i, u (4.5)

M(viu − 1) ≤ siu − λ ≤M(1− viu), ∀i, u (4.6)

y ∈ Y, viu ∈ {0, 1}, ∀i, u, λ ≥ 0 (4.7)

where xi, yi, viu, siu, and λ are decision variables, i = 1, . . . , n, u = 0, . . . , U , and M is a

sufficiently big number (an upper bound on the value of λ). For each yi, we define U + 1

binary variables viu. The values of viu’s are determined through Eq. (4.3). For each viu,

we define a continuous variable siu such that siu = λviu. Eqs. (4.5) and (4.6) ensure that

siu = λviu, for all i, u. Finally, we define continuous variables xi such that xi = λyi, which

is guaranteed by Eqs. (4.1), (4.2), and (4.4).

Our formulation ofM(k) requires n integer variables, n(U + 2) + 1 continuous variables,

and n(U + 1) binary variables. Note that this is a general formulation and, for example,

by setting U = 0, we achieve a model for cases where Y is the set of feasible solutions to

satisfiability problems and binary programs.

We finally remark that the computational complexity of Algorithm 1 is the product of

the number of iterations that it takes to find a solution with a pre-specified optimality gap

and the computational effort in each iteration. If the computational requirement of solving

M(k) is polynomially bounded, then the overall computational complexity of Algorithm 1

is polynomial in n. On the other hand, if M(k) is NP-hard, then the overall computational
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complexity is exponential in n. We also emphasize that the computational complexity of

M(k) is application-dependent.

4.4 Convergence Rate Guarantee

At each iteration k of Algorithm 3, we obtain a lower bound (L(k+1)) and an upper bound

(f(z∗(k))) on the optimal value (f(z∗∗)). In this section, we show that both f(z∗(k))− f(z∗∗)

and f(z∗∗)−L(k+1) are upper bounded by O(1/k)—i.e., both upper bound and lower bound

converge to the optimal value at O(1/k). This also shows that f(z∗(k)) − L(k+1) converges

to 0 at the same rate, which guarantees that the algorithm will stop after a finite number of

iterations for a given ε > 0.

4.4.1 Upper Bound Convergence

It is generally known that in the Frank-Wolfe methods, after k ≥ 1 iterations, f(z∗(k))−f(z∗∗)

is upper bounded by
2Cf
k+2

where Cf is the curvature constant of the objective function over

the domain (see, for example, Frank and Wolfe (1956), and Jaggi (2013)). As one of our

contributions, we further specify a detailed upper bound on Cf . The following theorem

states the convergence rate of our upper bound procedure.

Theorem 8 (Upper Bound Convergence). In Algorithm 3, for k ≥ 1, we have:

f(z∗(k))− f(z∗∗) ≤ 8

k + 2

(
ẑTW TW ẑ

)2
max

ẑTWTWy>0, y∈Y

yTW TWy

(ẑTW TWy)2
.

In addition, if W is an n×n identity matrix, Y ⊆ {0, 1}n, and 0 ≤ ẑi ≤ 1, for all i, then

we have:

f(z∗(k))− f(z∗∗) ≤ 8

k + 2

( ẑT ẑ

ẑmin,nz

)2
(1 + ∆),

where ẑmin,nz is the smallest nonzero entry of ẑ and ∆ is the number of zero entries of ẑ.
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Note that the upper bounds in Theorem 8 can be arbitrarily large since, for example

in the second result, one can construct an instance such that ẑmin,nz is arbitrarily small.

However, given that ẑmin,nz > 0, the upper bound always exists and is finite. The existence

of a finite value is all we need to establish the convergence rate of our algorithm.

In Theorem 7, we showed that if FH 6= {}, then the optimal solution of M(k) belongs

to CFH, which is a nonempty and compact polyhedron. Note that in this section, we

always assume FH 6= {} (which was also assumed in the presentation of Algorithm 3). Our

analysis of the convergence rate depends on the existence of a finite curvature constant,

which is defined as:

Cf := sup
z1,z2∈CFH,0≤γ≤1

2

γ2

(
f(z1 + γ(z2 − z1))− f(z1)− γ(z2 − z1)∇f(z1)

)
.

It is well-known that the curvature constant for 1
2
‖z‖2

2 is the squared Euclidean diameter

of the domain (see, for example, Jaggi (2013)). We provide a detailed upper bound on Cf

using the structure of our problem.

Lemma 15. In (P2), we have: Cf ≤ 4
(
ẑTW TW ẑ

)2
maxẑTWTWy>0, y∈Y

yTWTWy
(ẑTWTWy)2 .

Proof. Using Theorem 7, CFH is the convex hull of all λWy’s such that y ∈ Y,

ẑTW TWy > 0, and λ = ẑTWTW ẑ
ẑTWTWy

. Thus, noting that Cf is equal to 2 times the squared

Euclidean diameter of the domain CFH (this can be shown by substituting f and ∇f in the
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definition of Cf ), we have:

Cf = 2 max
z1,z2∈CFH

‖z1 − z2‖2
2

= 2 max
ẑTWT (λiWyi)=ẑTWTW ẑ, i=1,2,

0<λ1,λ2<+∞, y1,y2∈Y

‖λ1Wy1 − λ2Wy2‖2
2

= 2 max
ẑTWT (λiWyi)=ẑTWTW ẑ, i=1,2,

0<λ1,λ2<+∞, y1,y2∈Y

λ2
1y

1TW TWy1 + λ2
2y

2TW TWy2 − 2λ1λ2y
1TW TWy2

≤ 4 max
ẑTWT (λWy)=ẑTWTW ẑ,

0<λ<+∞, y∈Y

λ2yTW TWy

= 4 max
ẑTWTWy>0, y∈Y

( ẑTW TW ẑ

ẑTW TWy

)2

yTW TWy

= 4
(
ẑTW TW ẑ

)2
max

ẑTWTWy>0, y∈Y

yTW TWy

(ẑTW TWy)2
.

In the second line, we use the fact that z1 and z2 must be extreme points of CFH;

hence, they should be in the form of zi = λiWyi where 0 < λi < +∞, yi ∈ Y, and

λiWyi must belong to the hyperplane ẑTW Tz = ẑTW TW ẑ. In the third line, we eliminate

−2λ1λ2y
1TW TWy2 because it is always non-positive (see our assumption (i) in section 4.2).

As a result, the problem decomposes into two identical problems (fourth line). In the fifth

line, we substitute λ with ẑTWTW ẑ
ẑTWTWy

, but we have to ensure that the denominator is positive.

Hence, the proof is complete. 2

In Lemma 15, the upper bound is finite because for all y ∈ Y, the numerator (yTW TWy)

is finite and the denominator ((ẑTW TWy)2) is nonzero. This upper bound can be conve-

niently simplified for some special cases of our problem. We discuss an important special

case where W is an n× n identity matrix, Y ⊆ {0, 1}n, and 0 ≤ ẑi ≤ 1, for all i.

Lemma 16. In (P2), if W is an n× n identity matrix, Y ⊆ {0, 1}n, and 0 ≤ ẑi ≤ 1, for all

i, then we have: Cf ≤ 4
(

ẑT ẑ
ẑmin,nz

)2
(1 + ∆) where ẑmin,nz is the smallest nonzero entry of ẑ and

∆ is the number of zero entries of ẑ.

Proof. We first show the following result: Let 0 ≤ a1 ≤ a2 ≤ · · · ≤ 1. Then, for all ` ≥ 1,
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such that a` > 0, we have:

`

(a1 + · · ·+ a`)2
≥ `+ 1

(a1 + · · ·+ a`+1)2
.

To prove this result, we note that 1 ≤ `+1
`

, for all ` ≥ 1, and then:

(a1 + · · ·+ a`)
2

`
≤ (

`+ 1

`
)
(a1 + · · ·+ a`)

2

`

=
(`2 + 2`+ 1)(a1 + · · ·+ a`)

2

`2(`+ 1)

=
(`2 + 1)(a1 + · · ·+ a`)

2

`2(`+ 1)
+

(2`)(a1 + · · ·+ a`)
2

`2(`+ 1)

=
(a1 + · · ·+ a`)

2 + (a1+···+a`)2

`2

(`+ 1)
+

2(a1 + · · ·+ a`)(a1 + · · ·+ a`)

`(`+ 1)

≤ (a1 + · · ·+ a`)
2 + a2

`+1

(`+ 1)
+

2(a1 + · · ·+ a`)(a`+1)

(`+ 1)

=
(a1 + · · ·+ a`+1)2

`+ 1
,

noting that a1+···+a`
`

≤ a`+1.

On the other hand, using Lemma 15, and noting that Y ⊆ {0, 1}n, we have:

Cf ≤ 4
(
ẑT ẑ
)2

max
ẑTy>0, y∈{0,1}n

yTy

(ẑTy)2

≤ 4
( ẑT ẑ

ẑmin,nz

)2
(1 + ∆).

Note that yTy is the number of ones in y, and the denominator ẑTy must be positive.

Assume that ẑi’s are sorted in a non-decreasing order. Using the result that we showed

earlier in this proof, the fraction is maximized if we select all zero ẑi’s and exactly one

smallest nonzero (ẑmin,nz). Thus, the proof is complete. 2
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4.4.2 Lower Bound Convergence

Establishing that L(k+1) converges to f(z∗∗) is important since it guarantees that the algo-

rithm will stop after a finite number of iterations for a given ε > 0. The following theorem

states the convergence rate of our lower bounding procedure.

Theorem 9 (Lower Bound Convergence). In Algorithm 3, there exists K∗ such that, for

k ≥ K∗, we have:

f(z∗∗)− L(k+1) ≤ 8β

k + 2

(
ẑTW TW ẑ

)2
max

ẑTWTWy>0, y∈Y

yTW TWy

(ẑTW TWy)2
,

where β = 3.375. In addition, if W is an n×n identity matrix, Y ⊆ {0, 1}n, and 0 ≤ ẑi ≤ 1,

for all i, then, for k ≥ K∗, we have:

f(z∗∗)− L(k+1) ≤ 8β

k + 2

( ẑT ẑ

ẑmin,nz

)2
(1 + ∆),

where ẑmin,nz is the smallest nonzero entry of ẑ and ∆ is the number of zero entries of ẑ.

We first present three Lemmas 17-19 that show the steps of the proof. We will then show

how Theorem 9 is proven using these three lemmas.

Lemma 17. (z−W ẑ)T (z∗∗ −W ẑ) ≥ ‖z∗∗ −W ẑ‖2
2, for all z ∈ CFH.

Proof. First, note that if z∗∗ = W ẑ, then both sides of the inequality become 0; hence, we

assume z∗∗ 6= W ẑ. It is enough to show zT (z∗∗−W ẑ) ≥ z∗∗T (z∗∗−W ẑ), for all z ∈ CFH. We

use a contradiction. Assume there exists z̄ ∈ CFH such that z̄T (z∗∗−W ẑ) < z∗∗T (z∗∗−W ẑ).

Obviously, z̄ 6= z∗∗. Consider the following problem:

min
0≤α≤1

‖αz̄ + (1− α)z∗∗ −W ẑ‖2
2,

which has a strongly convex objective function in α; hence, this problem has a unique
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optimal solution. Using first order condition, the unique optimal value of α is equal to

− (z̄−z∗∗)T (z∗∗−W ẑ)
(z̄−z∗∗)T (z̄−z∗∗) > 0. Thus, there exists ¯̄z ∈ CFH such that ¯̄z 6= z∗∗ and ¯̄z has a strictly

better objective value than z∗∗. This contradicts the optimality of z∗∗. Hence, the proof is

complete. 2

Lemma 18. If z∗∗ 6= W ẑ, then there exists K such that (z−W ẑ)T (z∗(k)−W ẑ) > 0, for all

z ∈ CFH and k ≥ K.

Proof. We first show that: for ε > 0, there exists K such that if k ≥ K, then ‖z∗(k)−z∗∗‖2 <

ε. Let ε > 0 be given and define K := max
{

1,
⌈

2Cf
ε2
− 2
⌉

+ 1
}

. Note that because of the

definition of K, we have
2Cf
K+2

< ε2. Then, for k ≥ K we have:

‖z∗(k) − z∗∗‖2
2 = ‖(z∗(k) −W ẑ)− (z∗∗ −W ẑ)‖2

2

= ‖z∗(k) −W ẑ‖2
2 + ‖z∗∗ −W ẑ‖2

2 − 2(z∗(k) −W ẑ)T (z∗∗ −W ẑ)

≤ ‖z∗(k) −W ẑ‖2
2 − ‖z∗∗ −W ẑ‖2

2

= f(z∗(k))− f(z∗∗) ≤ 2Cf
k + 2

≤ 2Cf
K + 2

< ε2,

and hence ‖z∗(k)− z∗∗‖2 < ε, for k ≥ K. Note that we use the result of Lemma 17 to obtain

the third line, i.e., (z∗(k)−W ẑ)T (z∗∗−W ẑ) ≥ ‖z∗∗−W ẑ‖2
2. In the last line, we use the upper

bound convergence result that was discussed in subsection 4.4.1, i.e., f(z∗(k))−f(z∗∗) ≤ 2Cf
k+2

,

for k ≥ 1.

Define Q := maxz∈CFH ‖z − W ẑ‖2 and note that 0 < Q < ∞. Moreover, let ε :=

1
Q
‖z∗∗ −W ẑ‖2

2 > 0. Therefore, there exists K such that:

‖z∗(k) − z∗∗‖2 <
1

Q
‖z∗∗ −W ẑ‖2

2, ∀k ≥ K.
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Combining this result with Lemma 17, we obtain:

(z−W ẑ)T (z∗∗ −W ẑ) > Q‖z∗(k) − z∗∗‖2

⇒ (z−W ẑ)T (z∗∗ − z∗(k) + z∗(k) −W ẑ) > Q‖z∗(k) − z∗∗‖2

⇒ (z−W ẑ)T (z∗(k) −W ẑ) > (W ẑ− z)T (z∗∗ − z∗(k)) +Q‖z∗(k) − z∗∗‖2

≥ −‖W ẑ− z‖2‖z∗∗ − z∗(k)‖2 +Q‖z∗(k) − z∗∗‖2

⇒ (z−W ẑ)T (z∗(k) −W ẑ) > (Q− ‖W ẑ− z‖2)‖z∗∗ − z∗(k)‖2 ≥ 0

⇒ (z−W ẑ)T (z∗(k) −W ẑ) > 0,

for all z ∈ CFH and k ≥ K. Note that the fourth line follows because (W ẑ−z)T (z∗∗−z∗(k)) ≥

−‖W ẑ−z‖2‖z∗∗−z∗(k)‖2, and the fifth line follows because Q ≥ ‖W ẑ−z‖2, for all z ∈ CFH

(due to the definition of Q). Hence, the proof is complete. 2

Lemma 19. If z∗∗ 6= W ẑ, then:

f(z∗∗)− LB(k+1) = g(z∗(k))−
(
f(z∗(k))− f(z∗∗)

)
− 1

4

g2(z∗(k))

f(z∗(k))
,

for all k ≥ 0, where LB(k+1) :=
( (z(k+1)−W ẑ)T (z∗(k)−W ẑ)

‖z∗(k)−W ẑ‖2

)2
, and g(z) := maxz̄∈CFH(z −

z̄)T∇f(z).

Proof. Note that since z∗∗ 6= W ẑ, then z∗(k) 6= W ẑ, for all k ≥ 0. Thus, f(z∗(k)) > 0 and
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LB(k+1) is well-defined, for all k ≥ 0. We have:

LB(k+1) =
((z(k+1) −W ẑ)T (z∗(k) −W ẑ)

‖z∗(k) −W ẑ‖2

)2

=
((z(k+1) − z∗(k) + z∗(k) −W ẑ)T (z∗(k) −W ẑ)

‖z∗(k) −W ẑ‖2

)2

=
((z∗(k) −W ẑ)T (z∗(k) −W ẑ)

‖z∗(k) −W ẑ‖2

− (z∗(k) − z(k+1))T (z∗(k) −W ẑ)

‖z∗(k) −W ẑ‖2

)2

=
(√

f(z∗(k))− 1

2

g(z∗(k))√
f(z∗(k))

)2

= −g(z∗(k)) + f(z∗(k)) +
1

4

g2(z∗(k))

f(z∗(k))
.

To obtain the fourth line, we note that g(z∗(k)) = maxz̄∈CFH(z∗(k) − z̄)T∇f(z∗(k)) =

2(z∗(k)−z(k+1))T (z∗(k)−W ẑ). Finally, the result follows by multiplying the obtained equation

by -1 and adding f(z∗∗) to both sides. 2

Completing the Proof of Theorem 9. Using Lemma 18, if z∗∗ 6= W ẑ, then there

exists K such that (z(k+1)−W ẑ)T (z∗(k)−W ẑ) > 0, for all k ≥ K. Similar to our discussion

in the proof of Proposition 12, we have:

f(z∗∗)− L(k+1) = f(z∗∗)−max
{

0, max
k′=0,1,...,k

(
max

{
0,

(z(k′+1) −W ẑ)T (z∗(k
′) −W ẑ)

‖z∗(k′) −W ẑ‖2

})2}
≤ f(z∗∗)− max

k′=K,K+1,...,k

(
max

{
0,

(z(k′+1) −W ẑ)T (z∗(k
′) −W ẑ)

‖z∗(k′) −W ẑ‖2

})2

= f(z∗∗)− max
k′=K,K+1,...,k

((z(k′+1) −W ẑ)T (z∗(k
′) −W ẑ)

‖z∗(k′) −W ẑ‖2

)2

= min
k′=K,K+1,...,k

{
f(z∗∗)− LB(k′+1)

}
≤ min

k′=K,K+1,...,k
g(z∗(k

′)),

for all k ≥ K. The last line follows because of Lemma 19 and noting that f(z∗∗)−LB(k+1) ≤

g(z∗(k)), for all k ≥ 0 (because f(z∗(k)) − f(z∗∗) ≥ 0, g2(z∗(k)) ≥ 0, and f(z∗(k)) > 0, for all
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k ≥ 0). Jaggi (2013) shows that if k ≥ 2, then:

min
k′∈{d 2

3
(k+2)e−2,...,k}

g(z∗(k
′)) ≤ 2Cfβ

k + 2
,

where β = 3.375. Let K∗ be such that: (i) K∗ ≥ K, and (ii) if k ≥ K∗ then d2
3
(k+ 2)e−2 ≥

K. Thus, for k ≥ K∗, we have:

f(z∗∗)− L(k+1) ≤ min
k′=K,K+1,...,k

g(z∗(k
′))

≤ min
k′=d 2

3
(k+2)e−2,...,k

g(z∗(k
′))

≤ 2Cfβ

k + 2
.

We complete the proof by applying the results that we showed in Lemmas 15 and 16.

Moreover, note that our above proof is for the case z∗∗ 6= W ẑ; however, it can be easily

verified that if z∗∗ = W ẑ, then f(z∗∗) = 0 and hence the upper bounds of Theorem 9 hold.

2

We finally note that one can obtain the following lower bound on L(k+1) using Theorem

9 (and noting that L(k) ≥ 0, for all k ≥ 0). In Algorithm 3, there exists K∗ such that, for

k ≥ K∗, we have:

L(k+1) ≥ max

{
0, f(z∗∗)− 8β

k + 2

(
ẑTW TW ẑ

)2
max

ẑTWTWy>0, y∈Y

yTW TWy

(ẑTW TWy)2

}
.

In addition, if W is an n×n identity matrix, Y ⊆ {0, 1}n, and 0 ≤ ẑi ≤ 1, for all i, then,

for k ≥ K∗, we have:

L(k+1) ≥ max

{
0, f(z∗∗)− 8β

k + 2

( ẑT ẑ

ẑmin,nz

)2
(1 + ∆)

}
,

where ẑmin,nz is the smallest nonzero entry of ẑ and ∆ is the number of zero entries of ẑ.
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4.5 Numerical Results

In this section, we first present the result of testing our algorithm on a limited set of randomly

generated instances to generally show the quality of the upper and lower bounds and the

actual and theoretical convergence behavior.6 In these instances, the implicit points are

characterized by mixed-integer linear programs (MILPs). Second, we look at cases where

the discrete points are clustered and show how this impacts the performance of our algorithm.

Finally, we apply our algorithm to a set of industrial instances provided to us by a global

auto manufacturer.

4.5.1 When the Implicit Points are Characterized by MILPs

In our instances, we assume that Y is the set of integer feasible solutions of Ay + Bχ ≤ b

where y ∈ Zn+, χ ∈ Rq
+, A and B are n × p and q × p matrices, respectively, and b ∈ Rn.

Each entry of A and B is 0 with probability π and generated using a uniform distribution

between -10 and 10, with probability 1− π. Each entry of b is generated uniformly between

0 and 100. Each entry of ẑ is generated uniformly between 0 and 1. Matrix W is assumed

to be diagonal where each diagonal entry is generated uniformly between 0 and 10. Table

4.1 shows the parameter setting and results for 9 sets of problems solved. For each set, we

solve 10 instances and report the average statistics.

Fig. 4.5 shows the average convergence of the lower and upper bounds for the problem

sets 2, 5, and 8 as well as the theoretical lower and upper bounds. Note that the lower and

upper bounds converge in a reasonable number of iterations. Furthermore, we note that the

actual convergence rates are much faster than the theoretical ones. Moreover, although the

theoretical lower bounds are zero in the first 100 iterations, the actual lower bounds (dashed

red curves) rapidly converge to the optimal value. Table 4.1 summarizes the results of the 9

6Note that the existing approaches for solving NNLS cannot be applied for the NNLS with implicit
points since enumerating all feasible points is not practical. Therefore, our method cannot be compared to
the existing methods.
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Figure 4.5: Randomly generated instances.

Table 4.1: Summary statistic (The algorithm is implemented in IBM ILOG CPLEX Opti-
mization Studio 12.6.1 on a PC with Processor Intel(R) Core(TM) i5-2520M CPU 2.50GHz,
4.00 GB of RAM, and 64-bit Operating System.)

Problem Integers’ Avg. number Avg. time per
Set n p q π Upper Bounds of iterations iteration (seconds)
1 50 200 0 0.9 1 43.20 0.20
2 50 200 0 0.9 3 49.11 4.78
3 50 200 0 0.9 8 34.50 36.45
4 50 100 0 0.8 1 61.00 0.37
5 50 100 0 0.8 3 44.20 40.13
6 50 100 0 0.8 8 26.20 76.91
7 50 200 10 0.9 1 46.70 0.24
8 50 200 10 0.9 3 48.30 0.63
9 50 200 10 0.9 8 42.20 11.04

problem sets.

4.5.2 When the Implicit Points Form Clusters

In this experiment, we set the number of implicit points, |Y|, to 1000, and let n, the di-

mension of Rn, vary between 100 and 1000 with the increments of 100. For the ease of

experimentation, we let W be an identity matrix. We consider 1, 2, and 5 clusters for each

problem size. Let NC denote the number of clusters and CF denote cluster coefficient—a

measure of the closeness of the y’s in a cluster. If CF = 0, then all y’s are randomly
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Figure 4.6: Effect of n, number of clusters, and cluster coefficient (CF) on the number of
iterations.

distributed in Rn
+. In this case, we create each y by uniformly generating n nonnegative

numbers. If CF > 0, then we assume that the data points from ( (φ−1)|Y|
NC

+ 1) to (φ|Y|
NC

) are in

the φ’th cluster and the ( (φ−1)|Y|
NC

+ 1)’th data point is the center of the φ’th cluster, for all

φ = 1, . . . , NC. The center of cluster φ, denoted by ycφ, is created randomly. Then, a new

point is generated in cluster φ using the formula (CFycφ + y̌) where y̌ is generated randomly

in Rn
+. Obviously, if CF = 0, then there is no clustering, and as CF increases, the angle

between the points and the center of the cluster becomes smaller. Note that the lengths of

y’s are not important as we are interested in the rays generated by y’s.

Fig. 4.6 summarizes the result of applying our approach for 1, 2, and 5 clusters, where

the horizontal and vertical axis show the number of dimensions and the number of iterations.

Each point indicates the average of the results of 50 randomly generated instances. Fig. 4.6

shows that, as expected, the number of iterations (almost linearly) increases in n. As CF

increases, the number of iterations decreases. Finally, the number of iterations increases in

the number of clusters.

4.5.3 Industrial Instances

We next test our methodology on 2 industrial instances. In each of these instances, n is

the number of options (features, as we discuss in the introduction) and the constraint set
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Figure 4.7: Industrial instances.

for defining Y is similar to satisfiability constraints. These two instances have 200 and 395

options, and 500 and 2,208 constraints, respectively. Fig. 4.7 shows our results. Note that

the theoretical lower bounds become positive after about 100 iterations, and the actual lower

bounds are very effective.

In summary, our computational experiment verifies the performance of our proposed

methodology for solving problem (P1) and the effectiveness of the lower and upper bounding

procedures.

4.6 Conclusions

In this chapter, we present a new methodology for solving NNLS when the discrete points

are implicitly characterized. This class of problems are found in manufacturing systems,

clustering, machine learning, and statistics. We first define a surrogate problem that enables

us to apply our approach, which is similar to a variant of the Frank-Wolfe algorithm. At

each iteration, we find a lower bound and an upper bound and show that their difference

converges to 0 at a rate of O(1/k). We perform an experiment on a set of numerical examples

to illustrate the effectiveness of our approach when the discrete points are the solutions of

MILPs and when they form clusters. We finally show the results of applying our method to

two industrial instances.
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4.7 Appendix: Notations

Abbreviations:

NNLS Non-negative least squares problem

P1 Our formulation of NNLS with implicit points

P2 Our surrogate formulation of NNLS with implicit points

Notations:

Y = {y1, . . . ,ym} The set of discrete points in Rn.

m The number of points in Y.

n Dimension of Rn.

ẑ The target point.

CC(Y) The convex cone of the set Y.

CH(.) The convex hull of a given set.

ξ1, . . . , ξm The non-negative coefficients of y’s.

W An n× n invertible matrix.

h(z) = ‖W (z −

ẑ)‖2
2

The objective function of (P1).

f(z) = ‖z−W ẑ‖2
2 The objective function of (P2).

z∗, z∗∗ The optimal solutions of (P1) and (P2), respectively.

c A coefficient vector in Rn.

Ỹ The set {Wy1, . . . ,Wym}.

H The hyperplane defined as H := {z ∈ Rn|ẑTW Tz = ẑTW TW ẑ}.

FH The set of feasible solutions of (P2).

k The iteration counter in Algorithm 3.

M(k) The subproblem that has to be solved at each iteration of Algorithm 3.
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z(k+1) The new point found at iteration k ≥ 0, by solving M(k).

z∗(k) The best found solution at iteration k ≥ 0.

L(k+1) The lower bound that is determined at iteration k ≥ 0.

ε An acceptable error.

λ, xi, viu, siu The variables used in the formulation of M(k).

1− 2U , 2U The known lower and upper bounds on the values of yi’s.

CFH The compact subset of FH that includes the optimal solution of M(k).

Cf The curvature constant of f over the domain CFH.

∆ The number of zero entries of ẑ.

4.8 Appendix: Alternative Formulations of NNLS with Implicit

Points

A possible approach is to formulate the feasible region of (P1) as a set of mixed-discrete

nonlinear programming constraints, as we discuss below. The optimal solution z∗ may

be in the interior or boundary of CC(Y); hence, z∗ can be represented as a non-negative

combination of at most n points in Y. Thus, there exist ξ1, . . . , ξn ∈ R+ and y1, . . . ,yn ∈ Y

such that z∗ =
∑n

i=1 ξiy
i. Therefore, (P1) can be formulated as:

min h(z) = ‖W (z− ẑ)‖2
2

s.t. z =
n∑
i=1

ξiy
i, ξ1, . . . , ξn ∈ R+, y1, . . . ,yn ∈ Y,

which is a significantly difficult problem because of the nonlinearity in the objective function

and constraints, and the existence of O(n) continuous and O(n2) discrete variables (note

that nonlinearity is due to the fact that both ξ and y’s are decision variables). An special

case of our problem is when Y is the set of feasible solutions to a binary linear program.

In this special case, the feasible region of (P1) can be defined through linear constraints
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by using O(n2) continuous and O(n2) binary variables. This problem is still very difficult

because if, for example, n = 100, then (P1) is defined using 10,000 binary variables.

Another possible approach is to formulate (P1) as follows:

(P1′) : min h̃(z, λ) = ‖W (λz− ẑ)‖2
2

s.t. z ∈ CH(Y), λ ≥ 0,

where CH(Y) is the convex hull of Y. This alternative formulation is not advantageous

because the objective function is not necessarily convex. This is shown in the following

lemma.

Lemma 20. h̃(z, λ) = ‖W (λz−ẑ)‖2
2 is not necessarily convex over the domain z ∈ CH(Y), λ ≥

0.

Proof. Consider an instance of (P1′) with n = 1, Y = {0, 1}, ẑ = 0.5, and W = 1. For

this instance, (P1′) can be written as min0≤z≤1, λ≥0(λz − 0.5)2. Fig. 4.8 shows the graph of

(λz − 0.5)2 over the domain 0 ≤ z ≤ 1, 0 ≤ λ ≤ 1. Note that the objective function is not

convex (consider, for example, the diagonal from (0,0) to (1,1)). 2

z

λ

(λz − 0.5)2

Figure 4.8: The graph of (λz − 0.5)2 over the domain 0 ≤ z ≤ 1, 0 ≤ λ ≤ 1
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