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 3	
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 5	

Abstract 6	

The effect of using time-averaged wave statistics in a simple empirical model for 7	

shoreline change is investigated.  The model was first calibrated with a six-year time 8	

series of hourly wave conditions and weekly shoreline position at the Gold Coast, 9	

Australia. The model was then recalibrated with the hourly waves averaged over 10	

intervals up to 1 year. With wave averaging up to 2 days, model performance was 11	

approximately constant (squared correlation r2~0.61-0.62), with only small changes in 12	

the values of empirical model parameters (e.g. the beach response coefficient c varied 13	

by less than 4%). With between 2 and 40 day averaging, individual storms are not 14	

resolved; model skill decreased only modestly (r2~ 0.55), but c varied erratically by 15	

up to 40% of the original value.  That is, optimal model coefficients depend on wave 16	

averaging, an undesirable result. With increased averaging (>40 days) seasonal 17	

variability in the wave field is not resolved well and model skill declined markedly. 18	

Thus, temporal averaging of wave conditions increases numerical efficiency, but 19	

over-averaging degrades model performance and distorts best-fit values of model free 20	

parameters. 21	

22	
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1. Introduction 23	

Coastal management would benefit from realistic prediction of long-term (multi-year) 24	

coastal variability and change.  However, such predictions are beyond the capability 25	

of processed-based, coastal evolution models [De Vriend et al., 1993; Van Rijn et al., 26	

2003].  Process models based on detailed physics of hydrodynamic and sediment 27	

transport processes (e.g., Mike21, Delft 3D and Telemac) are hindered at long time-28	

scales by both excessive computation time and poor model accuracy.  29	

To bypass these difficulties, empirical models with reduced computation loads have 30	

been developed recently for shoreline position [e.g., Miller and Dean, 2004, Yates et 31	

al., 2009], sandbar location [e.g., Plant et al. 2006, Pape et al 2010] and beach 32	

gradient [e.g., Madsen and Plant, 2001]. Computational speed is obtained through 33	

both drastic simplification of the underlying equations, and through larger model time 34	

steps.  35	

Accuracy is (hopefully) provided by extensive model calibration. However, the 36	

impact of using time-averaged wave parameters on shoreline model skill is unclear. 37	

Here, a six-year, highly temporally resolved (hourly waves and weekly shoreline 38	

position) data set is used to investigate the impact of wave-averaging on the 39	

performance of a simple empirical model for shoreline evolution [Davidson, Lewis 40	

and Turner (2010), hereafter DLT10].   41	

Yates et al. (2009) developed a shoreline model similar to DLT10, based on wave 42	

energy disequilibrium, and presented preliminary evidence that excessive wave 43	

averaging degrades model performance by blurring the time history of storm waves.  44	

For example, averaging wave parameters over the time period between sand level 45	

surveys (weekly to monthly) vastly simplified the numerics of calculating optimal 46	

values of model free parameter compared with hourly wave measurements, but model 47	

performance was reduced substantially.  Owing to the numerical complexity of 48	

finding optimal free parameters of this model, the tipping points for model 49	

degradation as functions of the degree of wave averaging were not established. This 50	

illustrates the need to ascertain limits on wave averaging, even with simple empirical 51	

models for coastal change. The DLT10 numerics for optimal free parameters are 52	

much simpler, and therefore allow straightforward investigation of the impact of wave 53	
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averaging on model performance over a broad range of time-scales.  DL10 is viewed 54	

here as a generic, fast, empirical model for shoreline evolution.   55	

The transfer functions for linear running average filters are well known. The cut-off 56	

characteristics are notoriously broad and are described well using the Dirichlet 57	

function. The (-3bB) cut-off frequency may be approximated by 0.433/Mdt, where dt 58	

is the sampling interval and M in the number of points in the averaging window.  59	

Thus, the impact of the filter stretches to frequencies that are considerably lower than 60	

the reciprocal averaging window duration (1/Mdt).  61	

The field site and observations are described in Section 2. Although the shoreline 62	

model itself is not the topic of the present paper, the model is briefly reviewed in 63	

section 3 for clarity, and the reader is referred to DLT10 for further information. The 64	

effect on model performance of increased temporal averaging of the wave field is 65	

presented in Section 4.  Conclusions and implications for further model development 66	

and application are summarised in Section 5. 67	

 68	

2. Observations 69	

A six-year record of wave and shoreline data from the Gold Coast, located on the SE 70	

Australian coastline is used (see Davidson and Turner, 2009, for details.)  Wave 71	

parameters are reported hourly from a wave-rider buoy located approximately 2 km 72	

offshore of the study site in 16 m of water. Mean sea level shoreline locations are 73	

extracted weekly from a coastal video system. The shoreline data are averaged over 74	

500 m of the coastline to remove small-scale variability. Waves are energetic with 75	

significant offshore wave heights exceeding 7 m, and annual shoreline displacements 76	

exceed 50 m. The comparative spectral distribution of variance in the shoreline and 77	

hydrodynamic (dimensionless fall velocity) time-series are shown in Figure 1. Here 78	

spectral estimates have been computed after de-trending the data and application of a 79	

Hanning window. The spectral estimates have 19 degrees of freedom and a bandwidth 80	

of 0.0028 Hz. Both the shoreline and hydrodynamic spectra are red in form, 81	

dominated by a seasonal peak at 0.0028 cycles/d. Variance of the shoreline 82	

displacement is roughly divided between seasonal/interannual, trend and storm as 83	

55%, 35% and 10% respectively (DLT10).  Note that the hydrodynamic spectrum of 84	

dimensionless fall velocity has significantly more high frequency (0.01 cycles/d to 0.1 85	
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cycles/d) content than the shoreline series. There is a small diurnal peak in the fall 86	

velocity spectrum at 1 cycle/d, but very little variance above this point. 87	

The tidal range is microtidal with spring tidal ranges of 1.8 m. The beach sediments 88	

have a median grain size and mean fall velocity of 0.25 mm and 0.03 m/s 89	

respectively.   90	

 91	

3. Model 92	

The 1-D scheme of DLT10 (building upon the earlier 2-D ‘behavioural-template’ 93	

scheme of Davidson and Turner, 2009) was used to investigate the impact of temporal 94	

wave-averaging on empirical shoreline evolution models. The cross-shore shoreline 95	

position x at time t is: 96	

        (1) 97	

where W is the time-varying dimensionless fall velocity  , w is the sediment 98	

fall velocity, T is the peak wave period and H is the significant offshore wave height. 99	

 is the time-averaged, equilibrium dimensionless fall velocity that causes no net 100	

shoreline change in equation 1, (DLT10).  A linear shoreline trend (if present) is 101	

given by b. The rate of shoreline change in response to time-varying wave forcing is 102	

governed by the reciprocal response time coefficient (c), wave steepness (H/T), and 103	

the disequilibrium magnitude .  Although other empirical schemes (refer 104	

Section 1) could have been chosen here, the model represented by Equation 1 is 105	

simple and transparent, computationally efficient, stable over long (decadal) model 106	

runs, and most importantly, skilfully hindcasts seasonal and multi-year shoreline 107	

change at the test case site (DLT10).  108	

 109	

Temporal analytical integration of Equation 1 includes antecedent conditions and 110	

enables an analytic solution for the least squares calibration of the three unknown 111	

coefficients; a constant shoreline offset a (units of m), a linear trend b (ms-1) and the 112	

shoreline response parameter c (ms-1) (DLT10).   113	

 114	

    

 

dx
dt

= b + c W0 -W( )W
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To isolate the affect of using different wave averaging times, the model time-step (dt) 115	

was held constant at 1 hour. The averaging period (D) for the forcing wave data (T 116	

and H) was progressively increased from hourly (as observed) up to 1 year. For each 117	

D, the model was re-calibrated yielding values for model coefficients a, b and c, and a 118	

hindcast of the 6-year shoreline position. Model performance relative to the observed 119	

weekly shoreline measurements was quantified by the squared correlation (r2 ). The 120	

transfer function for a 2 and 40 day moving average filter function is also included in 121	

Figure 1, so that the influence of the filter on model forcing parameters may be fully 122	

appreciated. Notice that the impact of the filter function encompasses much lower 123	

frequencies than one might intuitively expect. The temporal integration of ordinary 124	

differential equation (1) leads to downshifting of the frequency response, thus 125	

propagating the impact of time-averaging forcing parameters to still lower 126	

frequencies. Thus, it is unclear, without numerical experimentation such as this, what 127	

the impacts of frequency averaging on predictions of shoreline response will be. 128	

 129	

4. Results  130	

Using hourly waves and optimal values for free parameters, the model captures both 131	

the seasonal variability and the rapid shoreline retreat associated with energetic 132	

storms at the start of 2001, 2004 and 2006 (Figure 2).  However, the model fails to 133	

reproduce all the high frequency variability in the observed shoreline location and the 134	

squared model-data correlation r2 ~ 0.62. 135	

Model performance, and the value of optimal model free parameters, varies as wave 136	

averaging is increased from 1 hour to 1 year (Figure 3). With wave averaging up to 2 137	

days, model performance is approximately constant (squared correlation r2~0.6), with 138	

only small changes (< 4%) in the reciprocal response time, c.  Thus, the time step can 139	

be increased (from hourly) by a factor 50, without degrading model performance or 140	

substantially distorting free parameter values. With between 2 and 10 day averaging 141	

individual storms are not resolved; model skill decreased only modestly (r2~ 0.55), 142	

but c varies erratically by up to 45% of the hourly value. With further increases in 143	

averaging (> 40 days), seasonal variability in the wave field is not resolved and model 144	

skill declines markedly.  Brier skill scores, using the linear trend as the base 145	

prediction (not shown), are very similar to r2 .   146	
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Pape et al (2010) showed that a model for sand bar location, with structure similar to 147	

the present shoreline model (1), is sensitive to wave averaging that blurs storms. For 148	

both shoreline and sandbar location models, temporal averaging of wave conditions 149	

increases numerical efficiency, but over-averaging degrades model performance 150	

and/or distorts best-fit values of model free parameters (e.g. response time). 151	

 152	

5. Conclusion 153	

Time-averaging of the waves forcing morphologic change models must be done 154	

carefully. For the wave climate at the Gold Coast test site, model performance 155	

deteriorates with averaging between 2-10 days, as short-duration storm events become 156	

poorly resolved. The model skill again degrades with wave averaging greater than 157	

about 40 days, as seasonal variations are progressively smoothed. 158	

Declining model hindcast skill and variation in model optimal free parameter values 159	

resulting from time-averaging of the seasonal wave component is more significant 160	

than the impact of averaging over individual storms. This is consistent with the 161	

distribution of shoreline variance in this dataset:  seasonal/interannual band (55%) 162	

with relatively small contributions at storm frequency (10%).  163	

Another likely contributing factor was that, although the model when forced with 164	

hourly wave parameters successfully predicts the larger shoreline recession events 165	

associated with the major storms in this time-series (start of 2001, 2004 and 2006 - 166	

Figure 2), it does not reproduce all of the observed high frequency variability. With 167	

an alternative model that better predicts high-frequency shoreline variability; the 168	

impact of averaging over storm times-scales will be more significant. Similarly, 169	

smoothing over storms may be more detrimental at other coastal sites where storm 170	

frequency variance contributes a higher percentage of the total shoreline variance. 171	

Storms and seasonality are the two most important drivers of wave-forced shoreline 172	

change, so it is anticipated that the two key time-average thresholds (³2 days and ³40 173	

days) corresponding to the initial and further degradation of model skill and 174	

fluctuation in free parameter values, are likely more generically applicable to other 175	

models and sites.  This assertion warrants further investigation. 176	

 177	
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 207	

 208	

Figure 1. Spectral estimates of shoreline position and dimensionless fall velocity 209	

(omega) plotted together with moving average filter transfer functions with 210	

windows of 2 and 40 days. 211	
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 213	

 214	

Figure 2. (top) Observed hourly significant offshore wave height, and (bottom) 215	

shoreline positions observed (dotted) and modelled (solid). The dashed 216	

broken line is a linear trend.  217	
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 219	

 220	

 221	

  222	

Figure 3.  (left) Squared correlation (r2) between model and observed shoreline 223	

position and 95% confidence threshold (dotted). (right) Reciprocal response 224	

coefficient c, normalised by the value for no wave averaging (hourly 225	

sampled wave parameters), versus wave averaging time (days) used in the 226	

model. 227	
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