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Inverse Design of Photonic Surfaces via High throughput
Femtosecond Laser Processing and Tandem Neural
Networks

Minok Park, Luka Grbčíc, Parham Motameni, Spencer Song, Alok Singh,
Dante Malagrino, Mahmoud Elzouka, Puya H. Vahabi, Alberto Todeschini, Wibe Albert de
Jong, Ravi Prasher,* Vassilia Zorba,* and Sean D. Lubner*

This work demonstrates a method to design photonic surfaces by combining
femtosecond laser processing with the inverse design capabilities of tandem
neural networks that directly link laser fabrication parameters to their resulting
textured substrate optical properties. High throughput fabrication and
characterization platforms are developed that generate a dataset comprising
35280 unique microtextured surfaces on stainless steel with corresponding
measured spectral emissivities. The trained model utilizes the nonlinear
one-to-many mapping between spectral emissivity and laser parameters.
Consequently, it generates predominantly novel designs, which reproduce the
full range of spectral emissivities (average root-mean-squared-error < 2.5%)
using only a compact region of laser parameter space 25 times smaller than
what is represented in the training data. Finally, the inverse design model is
experimentally validated on a thermophotovoltaic emitter design application.
By synergizing laser-matter interactions with neural network capabilities, the
approach offers insights into accelerating the discovery of photonic surfaces,
advancing energy harvesting technologies.
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1. Introduction

Optical metasurfaces, engineered for spe-
cific optical properties, enable manipula-
tion of electromagnetic radiation beyond
the capabilities of natural materials[1] and
have been utilized in diverse applica-
tions, including sensing,[2] negative re-
fractive indices,[3] and spectrally selective
light absorbers.[4] In particular, control-
ling light-matter interactions in the visi-
ble to infrared wavelength range is cru-
cial for renewable energy technologies such
as parabolic troughs[5] and next-generation
concentrated solar power towers,[6] pas-
sive radiative cooling,[7] and thermophoto-
voltaics (TPV).[8] This behavior is largely
governed by a material’s spectral emis-
sivity, which is the energy radiated from
a material’s surface at each wavelength
normalized to that of a perfect emitter
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(known as a blackbody), and ranges from 0 to 1.[9] Therefore, en-
hancing system performance requires photonic surfaces with tai-
lored spectral emissivity that selectively controls radiative energy
transport, a task that is increasingly being addressed through the
application of machine learning (ML).

Specifically, the inverse design of optical metasurfaces,[10] such
as high efficiency thermal emitter design,[11] has been enabled
by ML and deep neural network (DNN) models,[12] including
adversarial autoencoders (AAs),[13] generative adversarial net-
works (GANs),[14] and variation autoencoders (VAEs).[15] Trained
ML models suggest optimized structural parameters in a single
step to produce a design that exhibits the target optical proper-
ties. This circumvents the need for computationally expensive
iterative direct electrodynamic simulations. However, these ap-
proaches often fail to adequately handle and make use of one-to-
many mapping scenarios and nonlinear relationships between
the design input and output spaces that are common in real-
world manufacturing.[16] This challenge becomes particularly
pronounced when training data overly emphasizes specific cor-
relations over others. Furthermore, they frequently overlook the
practical constraints of real-world fabrication, scalability, and un-
certainties; they are often entirely computational, lacking experi-
mental validation of design predictions from the trained model,
particularly for novel situations. Consequently, the model’s ca-
pabilities are constrained, limiting its practicality in generating
functional devices and deepening understanding of these com-
plex relationships.

Laser ablation, the selective material removal from a surface
through interaction with a high power laser, has emerged as
a facile technique for precise yet scalable surface morphology
alteration and subsequent property enhancement.[17] Ultrafast
femtosecond (fs) lasers in particular, stand out for their abil-
ity to create diverse surface structures ranging from hundreds
of nanometers to micrometer scale through self-organization
or direct laser writing techniques.[18] These structures can pro-
duce a large diversity of optical properties over a broad range
of wavelengths, especially in metallic substrates.[18b,19] The re-
sulting spectral emissivity can change in significant ways when
manipulating incident laser parameters such as its power, the
speed at which it is rastered over the substrate for a fixed
pulse repetition rate, or the precise spacing between consec-
utive rastered scan lines. Nevertheless, the relationships be-
tween laser parameters and corresponding optical properties are
complex and difficult to model due to the multiphysics nature
of the ablation process.[17b,c] Therefore, elucidating the func-
tion that directly maps laser parameters to spectral emissivity
through a ML approach has the significant potential to enable
the inverse design of photonic surfaces by understanding such
relationships.

In this work, we demonstrate inverse design of photonic sur-
faces by developing high throughput fs laser fabrication and opti-
cal property characterization platforms combined with a tandem
neural network (TNN) framework. We fabricated 35280 distinct
surface geometries on stainless steel (SS) substrates and charac-
terized their optical properties to train and test the TNN model,
which integrates both forward and inverse DNNs. The trained
DNN models serve as a surrogate model to handle the complex
one-to-many mapping between optical properties and laser fab-
rication parameters at a level of detail beyond what either di-

rect simulations or optimized experiments can provide. Conse-
quently, the models can produce novel parameter designs not
found in the training data and generate the full range of desired
optical properties using only a specific, compact region within
laser parameter spaces. We experimentally validated the efficacy
of the TNN for the design of a spectral filter thermal emitter fab-
ricated out of SS for a lead selenide-based TPV. Our integrated
approach showcases the ability to accelerate the discovery and in-
verse design of photonic surfaces for various energy harvesting
and storage applications.

2. High throughput fs Laser Fabrication and
Optical Property Characterization

As shown in Figure 1a, the ablation dynamics involving the re-
structuring and ejection of material via melting and evaporation
during fs laser-material interactions can produce distinct surface
morphologies.[17a,20] The characteristics of these new morpholo-
gies are directly influenced by factors including laser power, scan-
ning speed, and spacing. Altered surface morphologies can pro-
duce diverse spectral emissivities highly distinct from the origi-
nal substrate optical properties. Understanding the direct influ-
ence of fabrication laser parameters on resulting spectral emis-
sivity can accelerate the attainment of target optical properties by
bypassing the need for iterative loops simulating the complicated
relationship between surface morphology and corresponding op-
tical characteristics. To construct datasets for the ML models, we
employed high throughput fs laser fabrication (< 2 seconds per
automated sample fabrication) and custom microscope Fourier
Transform Infrared spectrometer (FTIR) optical property charac-
terization, as outlined in Figure 1b (further details in Methods).

Specifically, an ultrafast fs laser (500 fs pulse duration,
1030 nm wavelength, and 30 μm focused beam diameter) was
used to produce unique photonic structures, each exhibiting a dif-
ferent spectral emissivity contingent upon distinct laser process-
ing conditions. For instance, altering only the spacing parameter
while maintaining other variables constant (0.9 W power and a
scanning speed of 100 mm s−1) results in more pronounced sur-
face structures with a fine spacing of 2 μm compared to 14 μm,
as observed through scanning electron microscopy (SEM) im-
ages in Figure 1c. We systematically adjusted laser power (0.2 W
to 1.3 W in 0.1 W increments; see Table S1 (Supporting Infor-
mation) for laser conditions in intensity and fluence), scanning
speed (10 mm s−1 to 700 mm s−1 in 10 mm s−1 increments), and
line spacing (1 μm to 42 μm in 1 μm increments) to fabricate a
total of 35280 unique structures (Figure S1, Supporting Informa-
tion). To expedite the fabrication process for all 35280 different
combinations, each distinct set of parameters within this three-
dimensional parameter space is applied to individual 1 mm2 ar-
eas on SS substrates (each fabrication process completes in less
than a couple of seconds). This approach enables high through-
put fabrication and corresponding data generation, as presented
in Figure 1d, Video S1 (Supporting Information).

Following the fabrication process we characterized the spec-
tral emissivities of all 35280 surfaces using our customized
automated microscope FTIR (Figure 1e; Figure S2, Supporting
Information). We targeted the spectral range from 2.5 μm to
12 μm wavelengths. This regime largely aligns with the scope
of our intended thermal emission for energy harvesting and
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Figure 1. High throughput fs laser fabrication and optical property characterization of photonic surfaces for training data. a) Schematic of three laser
parameters (scanning speed, spacing, and power) that govern surface morphology and corresponding spectral emissivity during laser fabrication. Laser
spot diameter is 30 μm. b) Layout for automated high throughput fs laser fabrication and optical property characterization using FTIR. c) SEM images
of two representative surface morphologies, fabricated using the same laser power (0.9 W) and scanning speed (100 mm s−1), but different laser
spacings (14 μm left image; 2 μm right image). The black scale bars are 10 μm. d) Example picture of fabricated surfaces on SS. The white scale bar is
10 mm. e) Measured spectral emissivity for all 35280 structures. f) Measured spectral emissivities of 5 different samples independently fabricated using
identical laser processing parameters (power: 1.1 W; speed: 152 mm s−1; spacing: 6.5 μm). The maximum standard deviation is 2.1%, demonstrating
reproducibility. g) Distribution of unweighted average emissivity for all 35280 structures as a function of laser power, spacing, and speed. h) Example of
one-to-many mapping; 5-different laser parameter sets produce similar optical properties.

storage applications operating at temperatures ranging from
241 K to 1159 K, in accordance with Wien’s displacement law.
For example, varying the laser power while maintaining a fixed
spacing of 16 μm and speed of 100 mm s−1 produces systematic
modifications to the spectral emissivity (Figure S3, Supporting
Information). To ensure the reproducibility of fabricated surfaces
and their corresponding properties, duplicate surfaces were gen-
erated on 5 different substrates using identical laser parameters

(power of 1.1 W, speed of 152 mm s−1, and spacing of 6.5 μm),
shown in Figure 1f, resulting in a maximum emissivity standard
deviation of only 2.1% over the entire observed spectral range.

The unweighted average (gray) emissivities of all 35280 sam-
ples are plotted in Figure 1g; Figures S4, and S5 (Supporting
Information) as a function of their corresponding location in
the laser parameter space. Average emissivity ranges from 0.23
to 0.99 (Figure S4, Supporting Information). Higher scanning
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Figure 2. Architecture and training of the TNN framework. a) Forward DNN training, and b) inverse DNN training integrated with fully trained forward
DNN. The laser power parameter is one-hot encoded to maintain its discreteness. The emissivity values are interpolated across 800 linearly distributed
wavelengths, ensuring consistent distribution of the spectral emissivity values. c) Structure of each of the 16 residual hidden layers within both the forward
and inverse DNN. The input x is passed through a linear transformation followed by the SELU activation function (both transformations denoted as F).
The transformed value, F(x), is then added to the original input x to produce the residual layer’s output F(x)+x. d) RMSE for three forward DNNs; 100%
model, 90% model, and 70% model. e) Loss functions associated with the TNN training process. The red line shows the validation loss, the blue line
represents the average training loss, and the gray band indicates the standard deviation of the training loss oscillations. The graphs are differentiated
into three models: 100% model, 90% model, and 70% model, regarding what fraction of total possible data is used for training.

speed and higher spacing tend to yield lower average emissiv-
ity values, approximating the original substrate’s average emis-
sivity of 0.18, due to the utilization of fewer laser pulses to tex-
ture the target surface resulting in less light trapping. While
the influence of laser power on optical property variation is less
pronounced, scanning speed primarily affects average emissiv-
ity (i.e., lower scanning speed provides higher spectral emissiv-
ity, indicating that more pulses are irradiated on the target sur-
face; Figure S5, Supporting Information). Notably, Figure 1g,h,
and Figure S5 (Supporting Information) demonstrate the pres-
ence of multiple parameter combinations capable of producing
the same average emissivity – an example of the one-to-many
mapping.

3. Architecture and Training of the TNN Framework

TNN frameworks combine forward and inverse DNNs and are
gaining prominence over alternatives such as AAs, VAEs, and
GANs for materials’ inverse design.[10,16,21] The TNN ensures in-
dependent optimization of forward and inverse models for easier
training and more precise results. This separation enhances in-
terpretability crucial for the complex nonlinear landscape of laser
parameter based photonic surfaces design. Figure 2 shows TNN’s
training procedure and individual components which allow for
managing the intricacies of inverse design, mitigating challenges
like mode collapse and non-uniqueness, and supporting a robust
mutual loss function for consistent input-output solutions. More
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specifically, the one-to-many mapping inherent in the inverse de-
sign of photonic surfaces (Figure 1h) makes training a stand-
alone DNN for predicting laser parameters challenging because
of the difficulty in effectively minimizing the loss function, as
elaborated in Figure S6 (Supporting Information). Therefore, the
forward DNN is trained first to accurately predict spectral emis-
sivity as a function of laser parameters (Figure 2a).

Once trained, the forward DNN, with fixed weights, serves as
a differentiable surrogate model to train the inverse DNN, as
shown in Figure 2b. Furthermore, the training loss for the in-
verse DNN is based directly on the difference between the in-
put target emissivity and the optical properties predicted by the
trained forward DNN for the laser parameters generated by the
inverse DNN. This training loss is blind to whether or not the
inverse DNN generates laser parameters that are different from
the actual laser parameters in the training data corresponding to
the input target emissivity under consideration. Consequently,
the inverse DNN is free to discover and learn entirely different
designs that may not even appear in the training data so long as
they still produce the desired target optical properties. This train-
ing architecture therefore allows the inverse DNN to leverage the
one-to-many mapping between optical properties and laser pa-
rameters.

The inverse DNN outputs 14 parameters, doubling as inputs
for the forward DNN. These parameters comprise of continu-
ous variables like scanning speed and spacing, with laser power
represented as a discrete, one-hot encoded variable. Emissivity
values, spanning 800 evenly spaced wavelengths from 2.5 μm to
12 μm, serve as the inverse DNN’s inputs and forward DNN’s
outputs. Both DNNs feature 16 hidden layers, as illustrated in
Figure 2a,b. The scaled exponential linear unit (SELU) activation
function is implemented in the initial linear layer and through-
out all hidden residual layers within both the inverse and forward
DNNs (Figure 2c). Each layer within the forward DNN encom-
passes 512 units, whereas the inverse DNN is structured with
1200 units per layer. Training was conducted for 350 epochs for
the forward DNN, and extended to 2500 epochs for the inverse
DNN, all within the TNN framework. Refer to the Methods sec-
tion for a thorough overview of the hyperparameters and detailed
inverse and forward DNNs architecture. The dataset for train-
ing both forward and inverse DNNs was randomly shuffled and
split into training, validation, and testing segments with initial
ratios of 80/10/10% (denoted as the 100% model). Also, in order
to evaluate model robustness, 90% and 70% of the total 30380
samples were considered for training and validation, while the
test set (3038 samples) was always the 10% of the whole dataset
for control. The 90% and 70% models are denoted as data-starved
models and both used a 90/10% split for training and validation.
The test versus predicted root mean squared error (RMSE) val-
ues for the 70%, 90% and 100% trained forward DNNs are 2.5%,
2.2%, and 2.3%, respectively (Figure 2d). Within the TNN frame-
work, the training and validation loss of the inverse DNN con-
verges to within 4% for all models (Figure 2e). Details on data
preprocessing, validation strategy, and data starvation procedure
are outlined in the Methods section.

4. Performance of the Trained TNN Model

Figure 3 shows performance metrics for both the forward DNN

and the inverse DNN, trained utilizing the TNN framework. We
employ two evaluative criteria: (i) RMSE (Equation 1) to assess
the disparity in spectral emissivity between model-predicted and
experimentally-observed emissivity curves, and (ii) normalized
Euclidean parameters distance (NEPD, Equation 2) to quantify
the normalized deviation between the inverse DNN-generated
laser parameters and those documented experimentally for the
same optical properties. NEPD indicates the design novelty of
generated laser parameters as compared to training data; 0 in-
dicates identical laser parameters and 1 corresponds to the max-
imum possible difference between two sets of laser parameters
(i.e., diagonally opposite corners of the 3D cube that is the full ex-
tent of the training data in laser parameter space). Figure 3a and
Figure S7 (Supporting Information) show the test dataset (laser
parameters and associated emissivity curves) used to evaluate the
forward and inverse DNNs. These data are not part of the training
dataset.

Figure 3b illustrates the laser parameters predicted by the
100% trained inverse DNN for the test set emissivities cor-
responding to the points in Figure 3a. Each parameter set is
color-coded based on its design novelty (NEPD) compared to
Figure 3a. Figure S8 (Supporting Information) shows NEPD
plots for all data-starved inverse DNNs. Surprisingly, the volume
of laser parameter space is reduced by a factor of 25, calculated as
the ratio of the convex hull volumes enclosing the experimental
and inverse DNN-predicted parameters. The inverse DNN iden-
tifies a distinct, precise, and efficient prediction region in the
parameter space, demonstrated by the clustering of accurately
predicted parameters versus the test parameters. Interestingly,
the design novelty (NEPD) is homogeneously distributed in this
region, suggesting that when the model collapses distant laser
parameter spaces into compact regions, it does not preserve the
relative ordering of those points. Rather, this collapsed region
is sufficiently expressive to reproduce all spectral emissivities
(Figure S7, Supporting Information) with a high prediction
accuracy (RMSE 2.26%). Small transitions within this subregion
tend to induce large changes in corresponding optical proper-
ties. This reaffirms that the inverse DNN was effectively trained
through the TNN approach (discussed in Figure 2) to utilize the
complex many-to-one mapping governing this system. Moreover,
parameter space compression can provide practical value for
real applications by enabling the achievement of desired optical
properties using hardware whose operation may be limited to
specific regions within parameter space, such as due to manu-
facturing constraints like cost, throughput, or safety concerns.
Additionally, this compression simplifies the inverse design
problem, which could enhance design transferability and enable
more optimized specialization of the manufacturing hardware.

Figure 3c shows the relationship between RMSE and NEPD,
assessed by using the inverse DNN to predict laser parameters
from test set emissivity curves and then feeding those predictions
into the forward DNN to reconstruct predicted target emissivi-
ties, as illustrated in Figure 2b. The average RMSE of 1.76% con-
firms the model’s inverse design accuracy for unobserved laser
parameter designs. The average NEPD of 0.305 shows that in
the majority of cases, the model biases towards designs consid-
erably different from the training data. Rather than simply in-
terpolating the training data, the model reproduces all optical
properties by favoring clustered, compact volumes of the laser
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Figure 3. Performance validation for the 100% trained inverse and forward DNNs with the experimental test set. a) The experimental test set’s laser
parameters (number of test samples N = 3038). b) The inverse DNN-generated laser parameters that map to the same emissivity curves as those in (a)
comprise a compact region of laser parameter space 25 times smaller than the original test set in (a). c) Design novelty (NEPD) versus prediction error
(RMSE) generated by the inverse DNN and validated by the forward DNN. NAPD results generated by the 100% inverse DNN for each laser parameter;
d) spacing, e) power, and f) speed. g) Representative volume of laser parameter space corresponding to a single measurement (centered on 3.0 μm
spacing, 30 mm s−1 speed, and 1.3 W of power) of emissivity at 12 μm wavelength, indicating sparsity of experimental data. h) Corresponding partial
dependence plot for the same parameter region in (g) produced by the 100% trained forward DNN. i) Examples of the 100% forward DNN model
predicted and experimental spectral emissivity. Corresponding RMSEs are listed as inset numbers.

parameter space. The limited maximum NEPD (0.708) implies
inherent physical limitations of the fabrication expressiveness;
it may not always be possible to produce the target emissiv-
ity using arbitrarily distinct laser parameters (i.e., NEPD = 1).
Figure 3d,e,f, and Figure S9 (Supporting Information) shows
this degree of design novelty, as quantified by the normalized-
absolute-parameter-distance (NAPD), broken down by individual
laser parameters generated by the inverse DNN and those ob-
served experimentally, defined in Equation 3.

Figure 3g,h shows the forward DNN’s continuous prediction
of emissivity over the laser parameter space region near a single

experimental observation. This demonstrates the model’s abil-
ity to learn the complicated relationship between laser parame-
ters and spectral emissivity, allowing for precise nonlinear inter-
polation. This is necessary to be able to explore and thus eluci-
date the functional relationships between laser parameters and
resulting spectral emissivity. Neither brute force experiments
nor numerical simulations are tractable approaches for gener-
ating a smooth plot such as in Figure 3g, thereby revealing de-
sign parameters worth further exploration with experiments or
numerical simulations. Figures S10 –S12 (Supporting Informa-
tion) provide more comprehensive visualizations of this learned
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Figure 4. Experimental TPV emitter design. a) The ideal emissivity for a lead selenide-based TPV emitter with a bandgap at 4.6 μm wavelength operating
at 1400 K. b) The same fully trained inverse DNN, whose characteristics are shown in Figures 2 and 3, predicts laser parameters based on the target
emissivity in (a). c) Inverse designed laser fabrication parameters using the 70%, 90%, and 100% models. d) Measured emissivities of substrates
fabricated using laser parameters shown in (c). e) SEM image shows representative surface morphologies fabricated under laser parameters predicted
by 100% model. The white scale bar is 1 μm. f) Figure of merits and in-band emission normalized to blackbody for photonic surfaces.

emissivity function across the entire laser parameter space.
Figure 3i displays representative spectral emissivity curves esti-
mated by the 100% trained forward DNN with the laser param-
eters test set as input (Figure 3b). Each predicted curve is juxta-
posed with its respective experimental counterpart, demonstrat-
ing a RMSE consistently measuring less than 3%.

5. Inverse Design of Photonic Surfaces via Inverse
DNN for TPV Emitter

Finally, we validate the efficacy of the inverse DNN experimen-
tally using the spectral emissivity of a thermal emitter that could
optimize the energy conversion efficiency of a TPV heat en-
gine. TPVs convert thermal radiation into electricity using pho-
tovoltaics and have seen a recent surge in research leading to
performances superior to some mature turbines.[8b] Performance
could be further enhanced by using a spectrally engineered ther-
mal emitter. The ideal emitter would have an emissivity of 1
for wavelengths falling below the bandgap (referred to as in-
band emission) to co-optimize heat-to-electricity conversion effi-
ciency with power density. For wavelengths extending beyond the
bandgap (out-of-band emission), the ideal emitter should have an
emissivity of 0 to minimize losses. This ideal step-shaped spec-
tral emissivity is shown in Figure 4a for a lead selenide-based

TPV that has a bandgap at 4.6 μm and converts heat at a temper-
ature of 1400 K. This target emissivity also challenges our model
as it is qualitatively different from all training data and it is not
physically possible to perfectly achieve using SS.

The predicted designs for this target emissivity are fabricated
onto SS plates using the laser parameters generated by the 100%,
90%, and 70% pretrained inverse DNNs (Figure 4b,c; specific
laser parameters given in Table S2, Supporting Information) and
their optical properties are measured using an FTIR spectrome-
ter (Figure 4d). The nanostructured surface morphology of a rep-
resentative TPV emitter fabricated using laser parameters pre-
dicted by the 100% inverse DNN is shown in Figure 4e. Collec-
tions of predictions (N = 14) were generated by perturbing the
target ideal step function emissivity by 1%. Surprisingly, each
model sourced predictions from separate compact regions of
laser parameter space, and all models selected designs not seen
during their training. The measured spectral range extends be-
yond the predictive scope of the TNN models and their training
data, demonstrating potential for extrapolation. Notably, the spec-
tral emissivity achieved through inverse design using the 100%
and 90% DNNs closely resembles the ideal emissivity step func-
tion within the limits of what is physically achievable using tex-
tured SS. Compared to the intrinsic emissivity of pristine SS, the
predicted designs’ emissivities are substantially elevated, from

Adv. Sci. 2024, 11, 2401951 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2401951 (7 of 10)

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

0.49 to 0.93 at 0.8 μm wavelength for the 100% model (in-band
spectral range), while maintaining a low spectral emissivity at
longer wavelengths (0.15 at 12 μm wavelength; out-of-band spec-
tral range).

To evaluate the practical utility of the experimentally character-
ized thermal emitter designs generated by our model, we define
a figure of merit (FOM) for spectrally engineered TPV thermal
emitters. This FOM is calculated as the ratio of in-band emis-
sive power (desirable) to out-of-band emissive power (undesir-
able) that would be produced by the emitter during operation
(Figure 4f; see derivations in Figure S13, Supporting Informa-
tion). Higher values of the FOM are better. The baseline FOM
value for a blackbody surface is 3.43. The FOMs from the mea-
sured properties of the emitters designed by the 70%, 90%, and
100% models are 8.83, 8.27, and 8.46, respectively, demonstrating
significant enhancements. Furthermore, the in-band emissive
power normalized with respect to blackbody (theoretical maxi-
mum) demonstrates considerable enhancements of 145%, 242%,
and 230% for the 70%, 90%, and 100% model, respectively, com-
pared to plain SS. Notably, while the inverse DNN model trained
on the 70% dataset produced similar validation RMSEs as the
90% and 100% models (Figure 2d,e; Figure S8, Supporting In-
formation), it performed considerably worse than the 90% and
100% models for the real life TPV emitter design task considering
in-band emissive power (Figure 4d,f). This result indicates the
70% model’s comparatively weaker ability to generalize beyond
the training datasets, and highlights the importance of experi-
mental validation beyond test data-based validations. In contrast,
the 90% model performs similarly to the 100% model, suggest-
ing that not all the training data may be necessary. In summary,
the experimentally fabricated model-generated photonic surfaces
significantly outperform both a blackbody and untextured SS on
measures of energy conversion efficiency and power density, re-
spectively. This experimental validation supports the ability of
the inverse DNN to interpolate, extrapolate, and handle spectral
emissivity targets qualitatively different from the training data.

6. Conclusion

The integration of high throughput fs laser fabrication tech-
niques with a TNN framework has enabled the automatic in-
verse design of novel photonic surfaces. The experimentally val-
idated trained TNN model utilizes the one-to-many mapping re-
lationship between laser parameters and corresponding optical
properties, generating novel designs not present within the train-
ing dataset and allowing the model to reproduce the full diver-
sity of spectral emissivities using only a highly expressive com-
pact region of laser parameter space 25 times smaller than re-
quired by the training data. While the current study focused on
three laser parameters and one specific material, the approach
can easily be generalized to encompass various materials, addi-
tional laser parameters (e.g., polarization, and repetition rate),
and other possible constraints. This adaptability enhances its ap-
plicability across a range of energy harvesting and storage de-
vices, including parabolic troughs, solar-water desalination, and
passive radiative cooling, where optimizing spectral emissivity
and understanding its complicated functional dependence on de-
vice design details is essential for elevating overall system effi-
ciency and performance. In the future, this approach could also

be extended to other laser processing fields with complex rela-
tionships between laser parameters and material or process prop-
erties, such as laser-based annealing and synthesis.[17b,c]

7. Experimental Section
Materials: SS substrates (AISI 301, GoodfellowUSA) with 0.5 mm

thickness were used as target specimens.
High throughput fs Laser Fabrication: The fundamental 1030 nm wave-

length of 500-fs laser operating at a 100 kHz (s-Pulse, Amplitude) repeti-
tion rate was focused via a galvano scanner (excelliSCAN 14, SCANLAB)
with a beam spot size (30 μm in diameter), which allows the fabrication
of different surface geometries under laser processing parameters on de-
mand. A total of 35280 surfaces were fabricated using three different laser
parameters (power, speed, and spacing) as shown in Figure S1 (Support-
ing Information), and each combination was made on 1 mm2 areas of SS
substrates. A raster scanning method was used because this method was
often employed in the field of fs laser fabrication technique.

High throughput Optical Property Characterization: A custom FTIR
spectrometer (Thermo Fisher Scientific, Nicolet iS50) microscope system
was established for direct high throughput optical properties measure-
ment of fabricated geometries (Figure S2, Supporting Information). The
module was designed around an optical microscope configuration with a
reflective objective lens (Thorlabs, LMM-15X-P01) and a liquid nitrogen
cooled Mercury-Cadmium-Telluride detector to measure spectral reflectiv-
ity and corresponding emissivity from 2.5 μm to 12 μm wavelength. The
system was synchronized with a set of motorized XY stages (KMTS50E,
Thorlabs) for automated and high throughput measurements.

DNN Architectures, Hyperparameters, Inputs and Outputs: The archi-
tecture of the forward DNN was composed of 16 hidden layers in total.
Of these, two were linear layers, commonly referred to as fully-connected
or dense layers, while the remaining 16 were residual (linear) layers or
blocks.[22] Each of these hidden layers within the forward DNN comprises
512 units. The linear layers occupy the positions of the initial and final
layers within the DNN structure, with the hidden residual layers inserted
between them. The key feature of a residual layer was the introduction of
a connection in which the original (untransformed) input of a layer was
added to the (transformed) output of the same layer thereby mitigating
the vanishing gradient problem which was usually specific to deeper net-
works like the one used in this study. The structure of the residual layers
used within the DNNs was presented in Figure 3c. Last, the sigmoid activa-
tion function was applied at the output layer since all the emissivity values
across the 800 wavelengths range from 0 to 1. In contrast, the inverse DNN
mirrors the forward DNN in terms of the quantity and sequence of hidden
layers. However, it differs in the unit count, hosting 1200 units within both
its linear and residual layers. The final linear layer of the inverse DNN maps
the 14 output parameters without an activation function. The laser power
variable was handled using a one-hot encoding technique, representing it
as 12 distinct values for each power level. In this schema, the active power
level was marked as 1, with all others set to 0. Considering this, and the
two continuous variables–scanning speed and spacing, a total of 14 vari-
ables were used as inputs for the forward DNN, and as outputs for the
inverse DNN.

The SELU activation function was uniformly applied across both
DNNs.[23] Specifically, it was utilized in the initial linear layer and all the
residual layers in both the forward and inverse DNNs. Among the vari-
ous hyperparameters configured, both the forward and inverse DNNs uti-
lized a batch size of 4, a gamma value of 0.1 for learning rate decay, and
a weight decay of 0.01. The initial learning rates were set to 10−4 for the
forward DNN and 10−6 for the inverse DNN. As for the training duration,
the forward DNN was trained for 350 epochs, while the inverse DNN un-
derwent 2500 epochs of training. The AdamW optimizer was employed for
optimizing both networks. The DNN architectures and hyperparameters
were determined through computational experimentation and a hyperpa-
rameter grid-search process. The deep learning module PyTorch 1.11.0 for
Python 3.10 was used to build and train the DNN models.[24]
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Dataset Preprocessing and TNN Validation Strategy: Of the 35280 data
samples obtained through experimental procedures, 30380 samples were
earmarked for training, validating, and testing the TNN model. The reason
for this selective inclusion lies in maintaining the consistency of the emis-
sivity curves across the wavelength domain. A subset of the data have to
be excluded because it requires minor extrapolation to align with the rest,
due to inconsistencies in the measurements. By discarding this portion,
it was ensured that the dataset retained its uniformity, thereby improving
the model’s potential for accurate and reliable performance.

The dataset underwent random shuffling and was partitioned into an
80/10/10% split for the training, validation, and testing phases, applica-
ble to both the inverse and forward DNNs. Additionally, a sensitivity and
robustness analysis was conducted on the models. In this procedure, re-
ferred to as “data starvation,” the volume of data allocated for training and
validation (80/10) was systematically scaled down. Specifically, the DNNs
were trained using the full dataset for training and validation, as well as
reduced subsets containing 90% and 70% of the original data.

Model Analysis: The RMSE and the NEPD were used to assess the per-
formance of the ML model in terms of accuracy and laser parameters de-
sign novelty, and were defined in Equation 1 and Equation 2, respectively.

The RMSE was selected as the metric for evaluating the discrepancy be-
tween the model-predicted and experimentally-observed emissivity curves,
primarily because of its intuitive interpretability.

RMSE = 100
𝜖max − 𝜖min

√√√√√ 1
N × M

N∑
i = 1

M∑
j = 1

(
𝜖

T
i,j − 𝜖

P
i,j

)2
(1)

In Equation 1, N represents the total number of test samples, while
M signifies the number of distinct wavelengths at which emissivity was
measured for each test sample. In the given context, each sample i in-
cludes 800 emissivity values corresponding to 800 different wavelengths.
T and P stand for the true (experimental) and predicted emissivity values
ϵ, respectively, at a specific wavelength j. The mean_squared_error function,
available in version 1.2.2 of the scikit-learn module for Python 3.10,[25] was
utilized to compute the RMSE value. Although this function intrinsically
calculates the mean squared error, the square root of the obtained value
was further computed to derive the RMSE. Subsequently, the RMSE was
normalized by the range of maximum and minimum theoretical emissiv-
ity (𝜖max, 𝜖min) values, which was equal to 1, and then multiplied by 100 to
express the relative RMSE value as a percentage.

To assess the design novelty of each predicted parameter as the NEPD
metric was introduced through the following equation:

NEPDi =
1√
3

×

√√√√ 3∑
k = 1

(
LTn

i,k
− LPn

i,k

)2
(2)

where LTn
i,k = LT

i,k − Lk
T

min

Lk
T

max− Lk
T

min
, LPn

i,k = LP
i,k − Lk

T
min

Lk
T

max− Lk
T

min

LTn
i, k denotes the normalized k-th parameter of the i-th true test sam-

ple while LPn
i, k was the normalized k-th parameter of the predicted test

sample. The value Li,k
T denotes the k-th parameter of the i-th true test

sample, while Li,k
P was the k-th parameter of the i-th predicted instance,

whereas Lk
T

max and Lk
T

min were each of the k parameters maximum and
minimum values. The parameter index k takes values 1, 2, or 3, indicat-
ing the three distinct laser manufacturing parameters being considered
for each instance i.

To ascertain the inverse DNN-predicted laser parameter set compres-
sion factor in juxtaposition with experimental test set parameter values,
the volume of the convex hull was computed within both the predicted
and actual parameter spaces. The compression factor, denoted as c, was
formulated through the expression c = Vch

exp / Vch
dnn, where Vch

exp rep-
resents the convex hull volume derived from the experimental test set,
whereas, Vch

dnn illustrates the convex hull volume emanating from the in-
verse DNN-predicted laser parameters. The normalized parameters, as
per Equation 2, were used to calculate the volume and the compression

factor. The ConvexHull function within scipy’s 1.11.1 spatial module for
spatial algorithms as a part of Python 3.10 was used for convex hull vol-
ume calculation.[26]

NAPD was employed to quantify the difference between individual laser
parameters generated by the inverse DNN and those observed experimen-
tally, defined in Equation 3.

NAPDi,k =
|||Li,k

T − Li,k
P|||

Lk
T

max − Lk
T

min
(3)

Data Availability: The data supporting the findings of this study were
available within this article and its Supporting Information files. Source
data were available in https://osf.io/79pa4/.
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