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Cancer genomes harbor numerous genomic alterations and many cancers accumulate
thousands of nucleotide sequence variations. A prominent fraction of these mutations
arises as a consequence of the off-target activity of DNA/RNA editing cytosine
deaminases followed by the replication/repair of edited sites by DNA polymerases
(pol), as deduced from the analysis of the DNA sequence context of mutations in
different tumor tissues. We have used the weight matrix (sequence profile) approach to
analyze mutagenesis due to Activation Induced Deaminase (AID) and two error-prone
DNA polymerases. Control experiments using shuffled weight matrices and somatic
mutations in immunoglobulin genes confirmed the power of this method. Analysis of
somatic mutations in various cancers suggested that AID and DNA polymerases η and
θ contribute to mutagenesis in contexts that almost universally correlate with the context
of mutations in A:T and G:C sites during the affinity maturation of immunoglobulin genes.
Previously, we demonstrated that AID contributes to mutagenesis in (de)methylated
genomic DNA in various cancers. Our current analysis of methylation data from
malignant lymphomas suggests that driver genes are subject to different (de)methylation
processes than non-driver genes and, in addition to AID, the activity of pols η and θ

Frontiers in Genetics | www.frontiersin.org 1 May 2021 | Volume 12 | Article 671866

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.671866
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2021.671866
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.671866&domain=pdf&date_stamp=2021-05-19
https://www.frontiersin.org/articles/10.3389/fgene.2021.671866/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-671866 May 12, 2021 Time: 17:49 # 2

Rogozin et al. Molecular Footprints in Cancer

contributes to the establishment of methylation-dependent mutation profiles. This may
reflect the functional importance of interplay between mutagenesis in cancer and
(de)methylation processes in different groups of genes. The resulting changes in CpG
methylation levels and chromatin modifications are likely to cause changes in the
expression levels of driver genes that may affect cancer initiation and/or progression.

Keywords: tumor cells, frequency matrices, database, computational biology, somatic hypermutation,
immunoglobulin genes, gene expression

INTRODUCTION

Epigenetic reprogramming in cancer genomes creates a distinct
DNA methylation landscape encompassing clustered sites of
hypermethylation at regulatory regions and protein-coding genes
separated by long intergenic tracks of hypomethylated regions.
Such changes in DNA methylation landscape are displayed by
most cancer types, and hence have the potential to serve as a
universal cancer biomarker (Sina et al., 2018; Oliver et al., 2021).
Previous research has focused on the biological consequences
of DNA methylation changes in genomes, whereas its impact
on the structure and flexibility of DNA, and its vulnerability
to modifications/repair/replication in cancer, have remained
largely unexplored.

Other prominent features of cancer initiation and progression
are genomic alterations. Cancer genomes harbor numerous
genomic alterations, including hundreds/thousands of
nucleotide sequence variations (Stratton et al., 2009; Roberts and
Gordenin, 2014; Rogozin et al., 2018c). A prominent fraction
of these mutations arises as a consequence of the off-target
activity of enzymes participating in somatic hypermutation
(SHM) in immunoglobulin (Ig) genes: DNA/RNA editing
cytosine deaminases of the Activation Induced Deaminase
(AID)/APOBEC family and the replication/repair of edited
sites by DNA polymerases (pols), as deduced by the analysis
of the DNA sequence context of mutations in different cancer
tissues (Alexandrov et al., 2013; Roberts and Gordenin,
2014; Swanton et al., 2015; Granadillo Rodriguez et al.,
2020). Analyses of various types of cancer by means of
this technique has yielded a set of 30–50 distinct mutation
signatures implying many mechanisms of hypermutation in
cancer cells (Alexandrov and Stratton, 2014; Goncearenco
et al., 2017; Rogozin et al., 2018c; Islam and Alexandrov,
2021).

There is a well-established association between DNA
methylation and genomic alteration. Early studies revealed that
methylated cytosines explain mutation hotspots in bacteria
(Coulondre et al., 1978). In eukaryotic genomes, CpG sites
are known to be vulnerable to mutation in both cancer and
normal cells (Cooper and Youssoufian, 1988; Alsøe et al., 2017;
Goncearenco et al., 2017; Rogozin et al., 2018c; Brinkman et al.,
2019). We recently detected a substantial excess of mutations in
CpG sites that overlap with AID mutable motifs (WRC/GYW,
W = A or T, R = A or G, Y = T or C, the mutable position is
underlined) forming “hybrid” mutable motifs (WRCG/CGYW)
whereas the opposite trend was observed in SHM (Rogozin and
Diaz, 2004; Rogozin et al., 2016). This finding implies that in
many cancers the SHM machinery acts aberrantly at genomic

sites containing methylated cytosine. The discovery of abundant
mutations in WRCG/CGYW motifs in many types of human
cancer suggests that AID-mediated, CpG methylation-dependent
mutagenesis is a common feature of tumorigenesis connecting
methylation and hypermutation (Rogozin et al., 2016).

A prominent feature of carcinogenesis is the presence of
cancer driver and passenger mutations. A driver mutation
directly or indirectly confers a selective advantage upon cancer
cells, whilst a passenger mutation does not (Stratton et al.,
2009). In this context, it should be appreciated that there is a
difference between a driver gene and a driver gene mutation:
a driver gene may accumulate recurrent driver mutations but
may also harbor passenger mutations. Some genes contain only
recurrent passenger mutations with frequencies comparable to
driver genes (hotspots related to the intrinsic properties of the
processes of mutagenesis), which complicates the identification
of cancer driver mutations (Rogozin et al., 2018c). In this study,
we operationally define a non-driver gene as a gene that contains
numerous mutations that do not cause cancer and are classified as
passenger mutations according to the MutaGene (Goncearenco
et al., 2017; Brown et al., 2019) and CHASMplus (Tokheim and
Karchin, 2019) computational tools.

We studied the association of mutable motifs produced
by AID and two error-prone DNA pols ultimately associated
with cancer, and the methylation status of sets of driver
and non-driver genes. Our null hypothesis was that driver
and non-driver genes would have contrasting methylation
and mutation profiles, which could be studied using mutable
motifs (Rogozin et al., 2016). The conventional method
for the analysis of mutable DNA motifs is the consensus
approach (Alexandrov and Stratton, 2014), for example, 5′WRC
for the AID enzyme (Pham et al., 2011; Rogozin et al., 2018c)
or 5′WA for DNA pol η (Rogozin et al., 2001, 2018b). Here,
we applied the weight matrix (sequence profile) approach
that is frequently used in the analysis of biological processes
(Rogozin et al., 2019) to the analysis of methylation profiles and
mutagenesis generated by AID and error-prone DNA pols η

and θ in CpG dinucleotides. Control experiments, using shuffled
sites and SHM in immunoglobulin genes, suggested that the
weight matrix method adds power to the study of mutagenesis.
Analysis of mutations in various cancers indicated that AID and
DNA pol η mutable motifs almost universally correlate with
SHM in G:C sites. Analysis of mutations and motifs in A:T sites
yielded a similar correlation for pol θ. Analysis of methylation
data in malignant lymphomas (the MALY-DE dataset) suggested
that the methylation status of driver genes differs from that of
non-driver genes and this may be one reason for the differences
in distribution of mutations in the two groups of genes.
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MATERIALS AND METHODS

Mutable Motif Construction Using
Weight Matrices
Several approaches have been developed for the analysis of a
set of mutated genomic sequences (Staden, 1984; Rogozin et al.,
2018b, 2019). A mononucleotide weight matrix is a simple and
straightforward way to present the structure of a functional signal
and to calculate weights for the signal sequence (Gelfand, 1995).
Each matrix W(b,j) (nucleotide b = A, T, G, or C in a position j)
includes information on a normalized frequency of A, T, G, and
C bases in each of the six positions surrounding detected sites of
mutation (3 bases downstream and 3 bases upstream; Figure 1;
corresponding raw numbers are shown in the Supplementary
Figure 1). We calculated the weight matrices for the two studied
DNA polymerases and used a collection of mutations generated
by classic gap-filling DNA synthesis in vitro by human pols η and
θ (Matsuda et al., 2001; Rogozin et al., 2001; Arana et al., 2008)
(Supplementary Figures 2, 3).

The following formula for W(b,j) was used for data analysis:
W(b,j) = log2 [f(b,j) / e(b)], where f(b,j) is the observed frequency
of the nucleotide b in position j and e(b) is the expected frequency
of the nucleotide b calculated as the mean nucleotide frequencies
of positions –5,–4, +4, +5 for the sites of mutation in the target
sequence; the resulting W(b,j) matrices are shown in Figure 1.

The matching score S(b1,...,bL) of a sequence b1,...,bL is:

S(b1,...,bL) =

L∑
j=1

W(b, j)

The matching score between sequence b1,...,bL and a weight
matrix can be further expressed as a percentage:

%matching score = 100×
(
S(b1,...,bL) − Smin

)
/ (Smax − Smin)

S(min) =

L∑
j=1

MIN
b

(W(b, j))

S(max) =

L∑
j=1

MAX
b

(W(b, j))

Hereafter, we use the term “weight” instead of “% matching
score.” We used positions –3 :+3 to estimate the weights of sites.

ICGC/TCGA Mutation Datasets
Somatic mutation data from the ICGC and TCGA cancer
genome projects were extracted from the Sanger COSMIC Whole
Genome Project v75.1 The ICGC/TCGA datasets are almost
exclusively passenger mutations and, as such, they are unlikely
to be subject to selection in the context of promoting cellular
proliferation. Indeed, they are much more likely to reflect
unselected mutational spectra (Goncearenco et al., 2017; Rogozin
et al., 2018c). The tissues and cancer types were defined according

1https://cancer.sanger.ac.uk

to the primary tumor site and the cancer project in question.
This dataset is included in the MutaGene package, where it is
described in detail (Goncearenco et al., 2017; Brown et al., 2019).
We also used collections of mutations obtained by means of
in vitro experiments for human pol η (Matsuda et al., 2001) and
pol θ (Arana et al., 2008; Supplementary Figures 2, 3) to build
weight matrices.

Methylation and Expression Data
For the analysis of the association between somatic mutations,
mRNA expression, mutable motifs and methylation, datasets
for 26 patients with malignant lymphoma2 were used. In
the analyzed datasets, the methylation data for all patients
were pooled together. Each position was characterized by the
methylated/unmethylated read count and the methylation ratio
(the number of methylated reads divided by the total number
of reads overlapping this position and multiplied by 100). Only
positions with more than nine associated reads were included in
the analysis. The major methodological problem inherent in the
analysis of methylation across CpG’s is the absence of control sets.
Therefore, we compared methylation values below and above
threshold values (25 and 75%). The mean weight of mutable
motifs (Figure 1) in the positions of methylated CpG’s (the group
1 with the size S1, Figure 2) was compared to the mean weight
of the same motifs in a contrasting dataset (the group 2 with
the size S2, Figure 2) using the t-test (2-tailed test) and Monte
Carlo test (MC, 1-tailed test) similar to the consensus method
as previously described (Rogozin et al., 2018b). Expression of
mRNA was measured using the FPKM values (Howe et al., 2011).
The mean and variance for each gene were calculated across 26
studied samples.

Analysis of Mutations
DNA sequences surrounding the mutated nucleotides represent
the mutation context. We compared the frequency of known
mutable motifs for somatic mutations with the frequency of these
motifs in the vicinity of the mutated nucleotide. Specifically,
for each base substitution, the 121 bp sequence centered at
the mutation was extracted (the DNA neighborhood). We used
only the nucleotides immediately flanking the mutations because
DNA repair/replication enzymes are thought to scan a very
limited region of DNA (Roberts et al., 2013; Goncearenco et al.,
2017; Rogozin et al., 2018c). This approach does not exclude
any specific area of the genome, but rather uses the areas within
each sample where mutagenesis has occurred (considering the
variability in the mutation rate across the human genome)
(Roberts et al., 2013; Rogozin et al., 2018b). A schematic
representation of this procedure for CpG dinucleotides is shown
in Supplementary Figure 4). Here, the mean weight of mutable
motifs (represented by weight matrices; Figure 1) in the positions
of each somatic mutation (in C/G or A/T positions) was
compared to the mean weight of mutable motifs in C/G or
A/T positions without mutations in the DNA neighborhood
(Supplementary Figure 4) using the t-test (2-tailed test) and
Monte Carlo test (MC, 1-tailed test) similar to the consensus

2https://dcc.icgc.org/projects/MALY-DE
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C 0.28 0.34 0.19 0.00 0.27 0.32 0.24
Y    W    A   H

    -3   -2   -1    0   +1   +2   +3
A 0.21 0.24 0.47 1.00 0.25 0.12 0.15
T 0.19 0.31 0.09 0.00 0.27 0.25 0.32
G 0.45 0.29 0.22 0.00 0.26 0.30 0.26
C 0.15 0.16 0.22 0.00 0.22 0.32 0.27
               A    A 

    -3   -2   -1    0   +1   +2   +3
A 0.22 0.28 0.10 0.00 0.16 0.12 0.33
T 0.36 0.35 0.12 0.00 0.20 0.38 0.23
G 0.29 0.29 0.20 1.00 0.22 0.22 0.16
C 0.13 0.09 0.58 0.00 0.42 0.29 0.28

D    C   G

    -3   -2   -1    0   +1   +2   +3
A 0.26 0.16 0.23 0.00 0.19 0.14 0.25
T 0.17 0.31 0.25 0.00 0.26 0.23 0.38
G 0.23 0.19 0.18 1.00 0.13 0.26 0.22
C 0.33 0.34 0.34 0.00 0.43 0.37 0.15

G    C 

 

    -3   -2   -1    0   +1   +2   +3
A 0.28 0.21 0.32 1.00 0.29 0.16 0.31
T 0.14 0.29 0.28 0.00 0.34 0.26 0.22
G 0.30 0.17 0.21 0.00 0.11 0.26 0.23

A

B

C

D

FIGURE 1 | Nucleotide frequency matrices for mutations at A:T sites [(A) DNA pol η; (B) pol θ] and G:C sites [(C) pol θ; (D) DNA pol η]. Known mutable motifs
(consensus sequences) (Matsuda et al., 2001; Rogozin et al., 2001) are shown below each matrix in bold, whereas mutable positions are underlined. Putative
(previously unobserved) parts of mutable motifs and potentially informative positions are italicized, W = A or T; Y = T or C; B = A, T or G; D = A, T, or G. Source of
data: Supplementary Figures 2, 3.

method, as previously described (Rogozin et al., 2018b). The MC
test is based on the random sampling from the group 2. In total,
10,000 groups with size S1 have been generated. The fraction of
generated groups with mean weights larger or equal to the mean
value of the sample 1 is the P value.

In addition to analyses of the derived mutable motifs in cancer
genomes, we performed a control experiment: we randomly
shuffled a dataset of sequences surrounding the mutations in the
studied target sequences (Supplementary Figures 2, 3) keeping
position 6 (the position of mutations) intact. Each sequence
was shuffled separately; thus, the overall base composition and

the base compositions of each sequence were the same. Weight
matrices were derived from these shuffled sequences, and the
sampling procedure was repeated 1,000 times.

Detection of Driver and Non-driver
Genes
In this study, we used two independent methods to predict
the driver status of cancer mutations: the MutaGene
(Goncearenco et al., 2017; Brown et al., 2019) and Chasmplus
(Tokheim and Karchin, 2019). These methods showed top
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FIGURE 2 | Schematic representation of the procedure used for construction of Table 3. Each circle represents a methylated CpG site, with its size reflecting the
methylation level. Red “X” denotes CpG sites that overlap with known mutable motifs. The left and right panels correspond to thresholds 25% and 75%. The left
panel: The set “1” (the methylation levels are smaller than 25%) is compared to set “2” (the methylation levels are larger than 25%). The right panel: The set “1” (the
methylation levels are larger than 75%) is compared to set “2” (the methylation levels are smaller than 75%).

performance on a recent benchmarking set (Brown et al., 2019).
MutaGene is a probabilistic approach which adjusts the number
of mutation recurrences in patients by means of a cancer-type
specific background mutation model. The MutaGene driver
mutation prediction method has not been explicitly trained
on any particular set of mutations. The background models
estimate the probability of obtaining a codon substitution
from the underlying processes of mutagenesis. We used two
MutaGene background models: one was derived from pan-
cancer mutational data (“Pancancer” model in MutaGene)
whereas the other was constructed directly from the MALY-DE
mutational data since this cancer-specific model was not present
in the MutaGene database of background models. As a result,
two ranking lists of driver mutations were produced for three
types of mutation: missense, nonsense and silent. Chasmplus
is a machine learning method that was trained using somatic
mutations from TCGA. Since no cancer-specific model was
available for MALY-DE, we used pan-cancer predictions while
running Chasmplus. Then we merged the predictions produced
by the three different models/methods and reported only those
mutations as drivers which were predicted to be “drivers” or
“potential drivers” by MutaGene and had a Chasmplus score
cutoff larger than 0.5. Supplementary File 1 shows recurrent
driver and passenger mutations.

Predicted driver mutations satisfy at least two of the
above-mentioned criteria of driver mutations (Supplementary
File 2). Predicted passenger mutations must satisfy all criteria
of passenger mutations. Since Chasmplus does not generate
predictions for nonsense and silent mutations, only predictions

for missense mutations were reported. In addition, some
mutations/genes were not reported by Chasmplus because it
excluded them from the list of potential cancer driver genes.
In this study, we defined driver genes in the following way: a
driver gene must have at least one recurrent driver mutation but
may also possess recurrent passenger mutations (Supplementary
Table 1). Some genes contain only recurrent passenger mutations
with frequencies comparable to driver genes. In this study, we
defined a non-driver gene operationally as a gene that only
contains recurrent mutations that are not associated with the
process of tumorigenesis and hence are classified as passenger
mutations (Supplementary Table 2).

RESULTS

Weight Matrices Are Powerful
Descriptors of Mutable Motifs
Weight matrices constitutes a novel technique when applied to
the description of preferential mutable motifs. It was shown to
be a robust and precise technique to describe AID/APOBEC
mutable motifs in cancer cells (Rogozin et al., 2019). The weight
matrices include information on the frequency of A, T, G, and
C bases in each of the ten positions surrounding the sites of
mutation (5 bases downstream and 5 bases upstream). AID,
DNA pol η and pol θ are involved in SHM in immunoglobulin
genes (Revy et al., 2000; Matsuda et al., 2001; Pavlov et al., 2002;
Zan et al., 2005; Neuberger and Rada, 2007; Arana et al., 2008;
Bhattacharya et al., 2008), although this role for both polymerases
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has been questioned (Dörner and Lipsky, 2001; Martomo et al.,
2008).

In this study, we started from the construction of weight
matrices for both DNA pols. It should be noted that we previously
derived weight matrices using collections of mutations induced
by AID/APOBEC deaminases in yeast genomes (Rogozin et al.,
2019). For human DNA pols η and θ, such collections are not
available. Therefore, we used a collection of mutations generated
by human pols η and θ during classic gap-filling DNA synthesis
in vitro (Matsuda et al., 2001; Rogozin et al., 2001; Pavlov et al.,
2002) (Supplementary Figures 2, 3). Constructed matrices of
nucleotide frequencies are shown in Figure 1A-D (corresponding
raw numbers are shown in the Supplementary Figure 1). Pols
η and θ exhibit known DNA context features for mutations in
A:T sites. W (A or T) or A in the position -1 (Figures 1A,B) was
the most prominent feature of A:T mutations produced by pol
η and pol θ, accordingly. We cannot exclude the possibility that
some other previously undetected positions may contribute to the
mutable motifs, for example, a higher frequency of Y (T or C) in
position -2 or a lower frequency of G may be additional features
of the pol η mutable motif (Figure 1A).

By contrast, pols η and θ exhibit dissimilar DNA context
features for mutations at G:C sites. A characteristic feature of
pol θ is an elevated frequency of C at position –1 and a lower
frequency of C at position –2 (Figure 1C). Thus, pol θ tends
to produce more errors in the DCG nucleotide context (D = A
or T or G). Pol η appears to have a different DNA mutational
context with an excess of C in position +1 (Figure 1D). In
general, it is hard to confidently delineate mutable motifs of
either DNA polymerase using the consensus approach owing
to the lack of objective inclusion criteria for position-specific
context features to mutable motifs (Figure 1). Thus, the weight
matrix approach, which utilizes information contained in all
studied positions, is likely to be a more straightforward way
to describe the polymerase η and θ mutable motifs than the
consensus approach.

We also compared the nucleotide composition of sequences
surrounding positions of mutations (Supplementary Figure 1)
for pols η and θ using the χ2 test. We found that these pols were
significantly different with respect to the DNA sequence context
of mutation sites expressed in the form of nucleotide frequency
matrices (A:T sites: χ2 = 155.0, df = 40, P = 1.9 × 10−15; G:C
sites: χ2 = 82.2, df = 40, P = 0.00007). Thus, DNA pol η and pol θ
differ significantly in terms of the features of the DNA sequence
context of mutations. This result is consistent with the different
context properties of pols η and θ (Figure 1).

Footprints of pol η and pol θ Correlate
With the Somatic Mutational Spectrum in
Many Cancer Types
Previously, we demonstrated using the consensus approach that
mutagenesis by AID is likely modulated by the (de)methylation
and/or translesion synthesis (TLS) of CpG dinucleotides in
follicular lymphomas and many other cancers (Rogozin et al.,
2016). Based on analyses of mutations in CpG dinucleotides in
skin cancer cells and normal cells, it was also suggested that pol

η mutagenesis might also correlate with the methylation of CpG
dinucleotides in cancer cells (Rogozin et al., 2018b). The weight
matrix approach and the MALY-DE datasets (CpG methylation
spectra and somatic mutations, see Materials and Methods) allow
us to perform further analyses of the role of AID and error-
prone polymerases in mutagenesis, and to see how it is affected
by (de)methylation.

We examined the correlation between the nucleotide sequence
context of somatic mutations in cancers and pol η and pol θ

mutable motifs found after in vitro DNA synthesis. A correlation
was inferred when the results of two statistical tests (Monte Carlo
test and t-test) were significant at P < 0.05. AID has already
been studied using the consensus motif WRC/GYW and weight
matrices and has been shown to be one of the most ubiquitous
contributors to mutations in various cancer types according
to its characteristic mutable motif (the AID weight matrix)
(Rogozin et al., 2019). Analysis of pol-generated mutations in G:C
sites revealed that both mutation motifs are almost universally
correlated with the nucleotide context of somatic mutations in
G:C sites (Figure 3). Similar analysis of A:T site mutations also
revealed correlations for pol η. A significant correlation with pol
θ was documented only for a few cancer cases. This difference
may reflect a more specialized role for pol θ in DNA transactions
on methylated CpG’s (Wood and Doublié, 2016; Brambati et al.,
2020). It is also possible that pol θ is expressed in only a few
cancers. Pol η probably plays a more widespread, although not
particularly pronounced, role in causing mutations in cancer
according to its characteristic weight matrix in various cancer
types; this is consistent with our previous study where we used
the consensus sequence WA (Rogozin et al., 2018b).

Control Experiments
The in vitro collections of mutations that were used to reconstruct
weight matrices for pol η and pol θ (Matsuda et al., 2001; Arana
et al., 2008) are relatively small (Supplementary Figures 2, 3).
Thus, control experiments were important to analyze the quality
of the derived weight matrices. We previously demonstrated that
analyses of the association between the matrices of shuffled sites
of mutation and the nucleotide context of somatic mutation
in various cancer cell types is a reliable approach to estimate
the impact of the accuracy of association prediction (Rogozin
et al., 2019). Analysis of 16 types of cancer (Supplementary
Table 5) suggested that the AID weight matrix is less prone to
errors of prediction compared to pol η/pol θ (Supplementary
Table 5). Only a few types of cancer have a low level of
prediction errors. Fortunately, for our study of MALY-DE sets,
“Blood” tissue, GCB lymphomas (from the COSMIC database)
and MALY_DE malignant lymphomas have extremely low rates
of false prediction (Supplementary Table 5). Therefore, we opted
to use the derived matrices for further analysis of the MALY-
DE datasets.

Analysis of somatic mutations in immunoglobulin genes
can be used to estimate the prediction accuracy because the
context of mutations in human immunoglobulin genes is known
to correlate strongly with AID and pol η mutable motifs
(Matsuda et al., 2001). Thus, these mutations can be used as a
control dataset as performed previously (Rogozin et al., 2019).
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FIGURE 3 | Correlation of pol η (eta) and θ (theta) mutable motifs and the sequence context of somatic mutations. For the actual data, see Supplementary
Tables 3, 4. The intensities of the gray color correspond to the t-test values (Supplementary Tables 3, 4). The unweighted pair group method, with arithmetic
mean (UPGMA) clustering of ratio values for the pol η and θ footprints and tissues, is shown to the left and top. The upper left panel shows the distribution of the
studied t-test values and correspondence of the t-test values and color intensity (the darker colors correspond to the higher correlation values). A similar plot of ratio
values (the ratio being the mean weight of mutated sites divided by the mean weight of non-mutated sites) is shown in the Supplementary Figure 5.

TABLE 1 | Correlation between the sequence context of somatic mutations and mutable motifs in fragments of human immunoglobulin genes.

Locus Test Number of Mutations AID/G:C Pol η/G:C Pol θ/G:C Number of Mutations Pol η/A:T Pol θ/A:T

VH26 Ratio 583 1.208 1.027 1.091 351 1.082 0.979

t-test 13.1* NSE 5.9* 5.3* NSE

MC test <0.001 0.004 <0.001 <0.001 0.699

JH4 intron, control individuals Ratio 177 1.341 1.05 1.029 95 1.041 1.032

t-test 12.3* 2.8* NSE 2.4* 2.2*

MC test <0.001 0.002 0.106 0.004 0.011

JH4 intron, XP-V patients Ratio 227 1.278 1.009 1.011 25 0.957 0.98

t-test 9.9* NSE NSE NSE NSE

MC test <0.001 0.329 0.061 0.776 0.67

“Ratio” is the mean weight of mutated sites divided by the mean weight of non-mutated sites. NSE (no significant excess) indicates the absence of a significant excess
of mutations in mutable motifs, suggesting there to be no association between mutagenesis and mutable motifs. The significance of any excess was measured using the
Student t and Monte Carlo (MC) tests. The asterisk (*) denotes that the corresponding P < 0.01; this is a conservative estimate of the critical overall value of the t-test
having allowed for multiple testing by means of the Bonferroni correction (5 comparisons).

A significant association between the AID mutable motif and
mutations was found in all three studied somatic mutation
datasets (Milstein et al., 1998; Mayorov et al., 2005; Table 1),
confirming that the AID weight matrix is a reliable descriptor of
AID-induced mutagenesis. The pol η weight matrices revealed
a significant association for all studied cases except xeroderma
pigmentosum variant (XPV) patients where pol η is inactive
(Table 1; Mayorov et al., 2005). Pol θ matrices yielded significant
results for some studied cases (Table 1). This is consistent with
the hypothesis that pol θ is also involved in SHM (Arana et al.,
2008). The results of both control experiments suggested that
the weight matrix technique approach is adequate to study the
mutational spectra of DNA polymerases.

Analysis of Driver and Non-driver Genes
Analysis of driver/passenger mutations is known to be powerful
approach in cancer genomics and can even be diagnostic of
various cancers (Goncearenco et al., 2017; Brown et al., 2019;

Tokheim and Karchin, 2019; Dietlein et al., 2020). We
derived lists of recurrent driver and non-driver mutations
using three computational approaches (see section “Materials
and Methods”). We define driver genes as those genes,
which accumulate recurrent driver mutations, but which may
also possess recurrent passenger mutations (Supplementary
Tables 1). Some genes contain only recurrent passenger
mutations with frequencies comparable to driver genes; in
this study, we defined a non-driver gene operationally as
a gene that only contains recurrent passenger mutations
(Supplementary Table 2).

Final lists of operationally defined driver and non-driver
genes are shown in Supplementary Tables 1, 2 (we used the
ENSEMBL IDs, as recommended by the DAVID Bioinformatics
Resources web site, https://david.ncifcrf.gov/). The total numbers
of driver and non-driver genes are 134 and 210, respectively.
We performed pathway/keyword enrichment analyses (Luque-
Baena et al., 2014; Wang et al., 2014; Soldatos et al., 2015)
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TABLE 2 | Correlation between mutable motifs and the sequence context of somatic mutations in driver and non-driver genes.

Group of genes Test Number of G:C mutations AID/G:C Pol η/G:C Pol θ/G:C Number of A:T mutations Pol η/A:T Pol θ/A:T

All genes Ratio 137,775 1.021 1.005 1.091 145,768 0.992 1.011

t-test 23.4* 7.2* 23.0* NSE 15.8*

MC test <0.001 <0.001 <0.001 1 <0.001

Drivers Ratio 4,246 1.107 1.001 1.007 3,918 0.98 1.032

t-test 20.0* NSE NSE NSE 7.8*

MC test <0.001 0.346 0.037 1 <0.001

Non-drivers Ratio 3,553 1.079 1.059 1.057 2,793 0.995 1.045

t-test 14.2* 13.8* 11.7* NSE 8.9*

MC test <0.001 <0.001 <0.001 0.874 <0.001

“Ratio” is the mean weight of mutated sites divided by the mean weight of non-mutated sites.
NSE (no significant excess) indicates the absence of a significant excess of mutations in mutable motifs suggesting there to be no association between mutagenesis and
mutable motifs. The significance of any excess was measured using the Student t and Monte Carlo (MC) tests. The asterisk (*) denotes that the corresponding P < 0.01;
this is a conservative estimate of the critical overall value of the t-test having allowed for multiple testing by means of the Bonferroni correction (5 comparisons).

using the DAVID web site (Jiao et al., 2012). Results are
shown in the Supplementary Table 6. Keywords “methylation,”
“nuclear chromatin,” and numerous pathways/terms associated
with various types of cancer are consistent with properties of
GCB lymphomas (Green et al., 2015; Rogozin et al., 2016). The
KEGG pathway “pathways in cancer” (P = 0.025) is another
important descriptor of the driver gene list (Supplementary
Table 6). In general, the driver gene set appears to be highly
informative and contains many features expected for cancer-
related genes (Green et al., 2015) (Supplementary Table 6).
By contrast, analysis of non-driver genes yielded only a few
significant results with no obvious functional associations with
cancer (Supplementary Table 6).

There is a significant association of the AID mutable motif
with somatic mutations in all genes, as well as in driver and non-
driver genes (Table 2) suggesting that AID plays an important
role in mutagenesis in cancer genomes; there are several pathways
that can explain this process (Figure 4). Analysis of association
between pols η and θ mutable motifs and somatic mutations
detected a difference between driver and non-driver genes:
mutable motifs in G:C pairs of pols η and θ correlate with
somatic mutations in non-driver genes only. There was no
correlation with pol η mutations at A:T pairs, whereas the pattern
of somatic mutation correlated with pol θ at A:T sites both
in driver and non-driver genes (Table 2). These observations
indicate that the contribution of different pathways of generation
of mutations in cancers (Figure 4) is distinct for AID, pols η

and pol θ.
Another important feature of driver genes is a higher

frequency of mutations at G:C nucleotides (4,246 and 3,918 in
G:C and A:T, accordingly) compared to all other genes (137,775 –
4,246 = 133,529 and 145,786 – 3,918 = 141,868 in G:C and A:T,
accordingly, Table 2) (P < 0.0001 according to the two-tailed
Fisher’s exact test).3 A similar trend was observed for non-driver
genes (Table 2, P < 0.0001). This may be explained by a leading
role for AID/APOBEC enzyme(s) that preferentially participate
in mutagenesis pathways in G:C nucleotides; AID is one such
enzyme (Figure 4).

3www.graphpad.com/quickcalcs/contingency1.cfm

Patient-Specific Analysis of Somatic
Mutations and Methylation
We analyzed the significance of association between AID/pol
mutable motifs and the sequence context of somatic mutations
for each sample (Supplementary Table 7). The results suggested
that all studied samples have a significant association between
AID/pols mutable motifs and mutation (Supplementary
Table 7). The t-test values were similar to those in the merged
dataset (Supplementary Table 7 and Table 2). For example,
t-test values for AID vary from 4.2 to 35.8 (Supplementary
Table 7), this value for the merged dataset was estimated as
23.4 (Table 2).

We also analyzed the level of methylation in CpG sites for
driver and non-driver genes for each sample separately. We
derived profiles of methylation (methylation levels, positions, and
chromosomes) across driver and non-driver genes separately.
After that, pairwise correlation coefficients (Pearson’s linear
correlation coefficients CC) were estimated across all studied
samples. All correlation coefficients were larger than 0.9 (the
significance level < 0.001). Plots of pairwise CC values are
shown in the Supplementary Figures 6, 7; these plots appear
homogeneous (no blocks of “high” and “low” CC values that are
adjacent in data matrices) (Supplementary Figures 6, 7).

These results suggest that studied patient-specific associations
of mutable motifs with somatic mutations as well as patterns of
methylation are homogeneous for driver and non-driver genes.
Thus, we pooled patient-specific samples into merged datasets
of somatic mutations and methylation profiles. This procedure
is especially important for the analysis of small datasets that will
be described below.

Analysis of DNA Methylation Patterns of
Driver and Non-driver Genes Using
Weight Matrices
The average methylation level of driver and non-driver genes
was found to be approximately the same: ∼78% for both sets of
genes (all CpG dinucleotides in driver and non-driver genes were
computationally analyzed using the MALY-DE dataset). Analysis
of methylation in mutable motifs was performed using the
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FIGURE 4 | Putative mechanism of an interplay between AID and TLS polymerases.

threshold methylation values 25 and 75%. These two values were
chosen arbitrarily, values of 75 (close to the average methylation
level) and higher correspond to heavily methylated CpG sites.
The value 25% and smaller correspond to CpG sites that are
close to the unmethylated state. Thus, values 25 and 75% reflect
a dramatically different methylation status for CpG sites in the
studied sets of genes (Figure 2).

Let us illustrate the logic of combined analysis of methylation
in mutable motifs using an example from Table 3A. For the
set of driver genes and the threshold methylation value = 25%,
average weights of AID mutable motifs for subsets of CpG
sites with methylation values smaller than and greater than the
threshold = 25% were 57.8 and 56.4, respectively. The ratio of

these values is 1.025 (57.8/56.4 = 1.025) and is shown in Table 3A.
This difference is statistically significant, albeit not dramatically
so (Table 3). Average weights of AID mutable motifs for non-
driver genes below and above the threshold = 25% are 57.7 and
56.2, accordingly. The ratio is 1.027, and this difference is also
statistically significant (Table 3). These results suggest that a
high frequency of AID-mutable motifs is associated with lower
methylation levels in driver and non-driver genes. For pol η

and θ, no significant differences were detected for both driver
and non-driver genes (Table 3A), suggesting that the global level
of methylation of CpG sites of driver and non-driver genes for
the threshold methylation level = 25% may not interfere with
mutagenesis by pols η and θ.
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TABLE 3 | Analysis of methylation in CpG sites that overlap with pols η and
θ mutable motifs.

Group of
genes

Number of CpG
sites below and

above the
threshold

Tests AID Pol η Pol θ

A. Levels of methylation in CpG sites that overlap with mutable motifs,

with the threshold value = 25%

Driver Ratio 1.025 0.997 0.994

2,867 t-test 3.2* NSE NSE

149,480 MC test <0.001 0.772 0.95

Non-driver Ratio 1.027 0.993 0.985

5,558 t-test 5.4* NSE NSE

239,220 MC test <0.001 0.989 0.989

B. Levels of methylation in CpG sites that overlap with mutable motifs,

with the threshold value = 75%

Driver Ratio 1.004 1.009 1.021

96,917 t-test NSE 7.9* 20.4*

51,290 MC test 0.433 <0.001 <0.001

Non-driver Ratio 1.007 1.009 1.023

155,205 t-test 4.5* 9.8* 28.6*

89,573 MC test <0.001 <0.001 <0.001

“Ratio” is the mean weight of mutable motifs in CpG sites with methylation
values below (or above) the threshold divided by the mean weight of mutable
motifs in CpG sites with methylation values above (or below) the threshold (25
or 75%, respectively) (a schematic representation of this analysis is shown in
Figure 2. NSE (no significant excess) indicates the absence of any significant
excess suggesting there to be no association between methylation and mutable
motifs. The significance of an excess was measured using the Student t and Monte
Carlo (MC) tests. The asterisk (*) denotes that the corresponding P < 0.01; this is
a conservative estimate of the critical overall value of the t-test having allowed for
multiple testing by means of the Bonferroni correction (3 comparisons).

For the threshold methylation value = 75%, we observed
to some extent the opposite trend. For example, the average
weights of AID-mutable motifs for driver genes greater and
smaller than 75% were 56.9 and 56.7, respectively. The ratio
of these values is 1.004 (56.9/56.7 = 1.004) (Table 3B). This
difference is not statistically significant (Table 3B). The ratio
is also relatively low for the non-driver gene set although it is
significant (Table 3B). Mutable motifs for both studied DNA
polymerases appear to be associated with the methylation level
for this threshold (heavily methylated CpG sites). These results
suggest that the global level of methylation in driver genes for
the heavily methylated positions may be affected by pol η and
pol θ transactions on methylated CpG’s but not AID transactions.
The methylation levels of non-driver genes may be affected by all
studied enzymes (Table 3B).

Analysis of Somatic Mutations in CpG
Sites in Driver and Non-driver Genes
We analyzed the level of methylation in CpG sites that coincide
with positions of somatic mutation. This dataset is much smaller
compared to all methylated CpG’s (the previous section). It
should be noted that the studied sets are small. However, they
are still amenable to statistical analysis using the threshold = 75%
(Table 4, heavily methylated CpG sites). Unfortunately, the
number of mutations for the threshold = 25% (CpG sites

TABLE 4 | Levels of methylation in positions of somatic mutation in CpG sites, the
threshold value = 75%.

Group of
genes

Number of
mutations in

CpGs sites above
and below the

threshold

Tests AID Pol η Pol θ

Driver Ratio 1.111 1.136 1.046

249 t-test 2.9* 7.8* NSE

52 MC test 0.004 <0.001 0.009

Non-driver Ratio 1.015 1.125 1.061

390 t-test NSE 7.3* 3.7*

264 MC test 0.222 <0.001 <0.001

“Ratio” is the mean weight of mutated CpG sites above the methylation threshold
divided by the mean weight of mutated sites below the threshold (a schematic
representation of this analysis is shown in the Supplementary Figure 8). NSE (no
significant excess) indicates the absence of any significant differences between
these sets suggesting there to be no association between mutagenesis and motifs
in the CpG sites. The significance of any excess was measured using the Student
t and Monte Carlo (MC) tests. The asterisk (*) denotes that the corresponding
P < 0.01; this is a conservative estimate of the critical overall value of the
t-test having allowed for multiple testing by means of the Bonferroni correction
(3 comparisons).

that are close to the unmethylated state) was too small for
statistical analysis: the number of mutated sites with methylation
levels below 25% is 0 and 3 for driver and non-driver genes,
accordingly. Thus, we did not use the threshold value 25% but
instead used the threshold value 75% only.

The first result obtained is that the fraction of mutated
CpG sites with methylation values below the threshold 75%
is dramatically different for driver genes (52/(52+249) = 0.17,
Table 4, the second column) and non-driver genes (0.40, Table 4,
the second column). This difference is statistically significant
(P < 0.0001 according to the two-tailed Fisher’s exact test). Thus,
CpG sites with somatic mutations in driver genes tend to have
higher methylation values compared to non-driver genes.

The second interesting result is the significant correlation of
AID, pol η and pol θ with mutation positions having a lower
methylation level (below 75%) (Table 4). The correlation of the
AID motif presence and mutation is more pronounced for driver
genes, indicating that AID-induced mutagenesis is likely to be
associated with heavily methylated CpG dinucleotides. Pol η has
a role in CpG mutagenesis for both sets of genes whereas pol
θ is likely to be largely involved in the mutagenesis of non-
driver genes (Table 4). Thus, it is likely that methylation levels
influence mutagenesis pathways in CpG sites through the action
of all the studied enzymes, although the individual impact of
studied enzymes may be different for driver and non-driver
genes (for example, AID, Table 4). It is likely to depend on
various factors including gene expression. This will be discussed
in the next section.

Analysis of Expression of Driver and
Non-driver Genes
We analyzed the expression levels (FPMK values) for both
sets of genes (Supplementary Tables 1, 2). Analysis of mean
and variance (Figure 5 and Supplementary Table 8) suggested
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FIGURE 5 | Violin plot of mRNA expression (FPKM values) for sets of driver
and non-driver genes. Log2 transformation was used.

that mean values were not substantially different. However,
the variance of expression values observed in the set of driver
genes was larger as compared to the set of non-driver genes
(Supplementary Table 8). The difference between mean values
(Supplementary Table 8) was not statistically significant (t-
test P value = 0.086), whereas the difference between variance
values (Supplementary Table 8) was statistically significant (F-
test P value = 0.007).

DISCUSSION

Some results of this study seem to be counterintuitive. For
example, the AID mutable motif would appear to correlate with
the context of somatic mutations in heavily methylated CpG’s for
driver genes only (Table 4). It is hard to determine the factors that
are responsible for this difference. For example, variability of gene
expression is significantly higher for driver genes (Figure 5). This
may be associated with the differential regulation of expression
of driver genes in different patients or methylation levels. Copy
number variation of driver genes (Loohuis et al., 2014; Cheng
et al., 2016) may cause problems for precise estimates of CpG
methylation levels.

AID and DNA polymerases η/θ are known to participate in
somatic hypermutation of immunoglobulin genes (Matsuda et al.,
2001; Casali et al., 2006; Neuberger and Rada, 2007; Bhattacharya
et al., 2008). In addition, it has been suggested that AID and pol η
are likely to contribute to a lowering methylation levels of CpG
dinucleotides in cancer cells (Rogozin et al., 2018b). Thus, we
focused this study on AID and pols η/θ employing the weight
matrix technique and mutation/methylation profiles. Our results
suggest that AID and pols η/θ combine to generate footprint
mutations in B-cell derived lymphomas and other cancers. It
was reported that methylation substantially reduces the rate of

APOBEC-induced mutations in CpG dinucleotides (Seplyarskiy
et al., 2016). For this reason, we did not include other members
of the AID/APOBEC superfamily in the current study.

The advantage of the weight matrix approach is that it is
a unified computational technique that allows an accurate and
objective comparison of the mutational contribution of various
mutator enzymes under the same experimental conditions and
for the same datasets. We confirm that while the mutational
footprints of DNA polymerases η and θ are prominent in some
cancers, mutable motifs characteristic of the humoral immune
response somatic hypermutation machine, AID, is likely to be the
most widespread feature of somatic mutational spectra attributed
to any enzyme in cancer genomes (Rogozin et al., 2018b, 2019).
It is important to note that the suggested technique does not
depend on expert opinion as to the exact consensus sequences,
and therefore objectively represents mutable motifs.

We derived matrices for A:T and G:C residues. However,
the ratio of A:T to G:C mutations is variable (Supplementary
Figure 1). For example, it known that Pol η mutates G residues
at a lower frequency than A residues. However, two matrices
(G:C and A:T residues, Figure 1) for the two motifs were
used independently (Figure 3). We would like to develop a
probabilistic model that integrates two matrices in one model.
However, this approach has never been attempted before in this
context and would require further investigation.

It is not possible to delineate the exact mechanism of
the interplay between AID and DNA polymerases. It may be
replication of the deaminated strand, separate pathways of U
vs. T removal by glycosylases generating abasic sites followed
by TLS by pol η or pol θ, and/or specialized mismatch repair
with gap filling by pol η or pol θ (Figure 4) (Pilzecker and
Jacobs, 2019). Unfortunately, precise mechanisms have not been
clearly defined even for mutagenesis of immunoglobulin genes,
with attempts to define those mechanisms having been ongoing
for over 20 years.

A high rate of prediction errors for many types of cancer
(Supplementary Table 5) is likely to be due to the small
mutational spectra available for DNA polymerase η and θ

(Supplementary Figures 2, 3). Larger sets of mutations are
likely to improve the quality of prediction. We can nevertheless
infer that some types of cancer, including GCB lymphomas, do
not have a noticeable rate of false positives (Supplementary
Table 5). We applied all weight matrices to study mutable motifs
and methylation in the MALY-DE datasets and demonstrated
that mutable motifs correlate with CpG dinucleotides and their
methylation status. Another methodological problem is the small
number of MALY-DE samples (26 samples) which may cause
problems for the prediction of driver and passenger mutations.
These problems are one of several possible explanations as
to why differences between driver and non-driver genes are
subtle (albeit significant) (Tables 2-4). However, it is likely
that these differences are responsible for the major difference
observed between the expression of driver and non-driver genes
(Figure 5). The much large variance observed for driver genes
may be the result of greater (de)methylation of driver gene
sequences causing substantial variability of mRNA expression
across patients (Figure 5).
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Sophisticated classification approaches (prediction of
mutational signatures) have been developed to extract the
most prominent signatures from a complex mix of mutational
spectra resulting from the action of a variety of mutagens, both
exogenous and endogenous, operating during tumor evolution
(Petljak and Alexandrov, 2016; Rahbari et al., 2016; Goncearenco
et al., 2017; Rogozin et al., 2018c; Alexandrov et al., 2020). Both
driver and passenger mutations have been used in the analysis
without any attempt to analyze them separately. In this study,
we analyzed driver and non-driver genes separately and detected
significant differences in the relationship between mutable motifs
and mutations with the methylation/demethylation status of
driver and non-driver genes (Tables 3 and 4). It is not that easy
to interpret these differences because the role of methylated CpG
dinucleotides in exons is not yet fully understood (Neri et al.,
2017). It has been suggested that changes in intragenic DNA
methylation is important in several human diseases including
syndromic and sporadic forms of various neurological disorders
that involve methylation defects, including Rett syndrome,
Prader–Willi and Angelman syndromes, and others, suggesting
that the differential (de)methylation of genes may underpin
one aspect of various neurological disorders (Dunaway et al.,
2016; Rogozin et al., 2018a; Scandaglia and Barco, 2019).
Such differential methylation may be caused by differences in
(de)methylation processes in somatic/germ cells (Shanak and
Helms, 2020). Moreover, several studies of likely deleterious
mutations have observed that genes controlling methylation
status, chromatin accessibility or remodeling (and hence gene
expression) are enriched for genes with recurrent mutations
(Geschwind and State, 2015; Sanders et al., 2015; Geisheker et al.,
2017).

The difference in AID and polymerase properties (Tables 3, 4)
for driver and non-driver genes is consistent with the
participation of different mechanisms of mutagenesis and
(de)methylation processes (Figure 4) on non-methylated and
methylated DNA. The observed differences between driver and
non-driver genes associated with somatic mutations in driver
genes (Tables 3, 4) are likely to cause changes in gene expression
(Figure 5) that then trigger cancer initiation and/or progression.
This is not surprising if we consider that chromatin modification
pathways (Supplementary Table 6) as well as the observed
changes in CpG methylation levels (Tables 3, 4) are likely to cause
changes in the expression levels of driver genes that could affect
both cancer initiation and/or progression.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://dcc.icgc.org/projects/MALY-DE; https:
//cancer.sanger.ac.uk.

AUTHOR CONTRIBUTIONS

IBR, AR-L, KT, KC-C, AL, LP, and ES: formal analysis. All
authors: investigation.

FUNDING

This work was supported by the Intramural Research Program
of the National Library of Medicine at the National Institutes of
Health (IBR), RCMI grant U54 MD007600 (National Institute
on Minority Health and Health Disparities) from the National
Institutes of Health (AR-L), NE DHHS LB506, grant 2017-
48 (YIP) and Qiagen, Inc. through a License Agreement with
Cardiff University (DNC). YIP was also partially supported by the
Russian Science Foundation grant 20-15-00081, and the Fred &
Pamela Buffett Cancer Center Support Grant from the National
Cancer Institute under award number P30 CA072720. The
content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes
of Health. ARP and KT were supported by the Department of
Pathology and Molecular Medicine, Queen’s University, Canada.
ARP is the recipient of a Senior Canada Research Chair in
Computational Biology and Biophysics and a Senior Investigator
Award from the Ontario Institute of Cancer Research, Canada.

ACKNOWLEDGMENTS

ARP and KT thank Alexander Goncearenco and Jiaying You for
help with data acquisition.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2021.671866/full#supplementary-material

REFERENCES
Alexandrov, L. B., Kim, J., Haradhvala, N. J., Huang, M. N., Tian Ng, A. W., Wu, Y.,

et al. (2020). The repertoire of mutational signatures in human cancer. Nature
578, 94–101.

Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin,
A. V., et al. (2013). Signatures of mutational processes in human cancer. Nature
500, 415–421.

Alexandrov, L. B., and Stratton, M. R. (2014). Mutational signatures: the patterns
of somatic mutations hidden in cancer genomes. Curr. Opin. Genet. Dev. 24,
52–60. doi: 10.1016/j.gde.2013.11.014

Alsøe, L., Sarno, A., Carracedo, S., Domanska, D., Dingler, F., Lirussi, L.,
et al. (2017). Uracil accumulation and mutagenesis dominated by cytosine
deamination in CpG dinucleotides in mice lacking UNG and SMUG1. Sci. Rep.
7:7199.

Arana, M. E., Seki, M., Wood, R. D., Rogozin, I. B., and Kunkel, T. A. (2008). Low-
fidelity DNA synthesis by human DNA polymerase theta. Nucleic Acids Res. 36,
3847–3856. doi: 10.1093/nar/gkn310

Bhattacharya, P., Grigera, F., Rogozin, I. B., McCarty, T., Morse, H. C. III, and
Kenter, A. L. (2008). Identification of murine B cell lines that undergo somatic
hypermutation focused to A:T and G:C residues. Eur. J. Immunol. 38, 227–239.
doi: 10.1002/eji.200737664

Frontiers in Genetics | www.frontiersin.org 12 May 2021 | Volume 12 | Article 671866

https://dcc.icgc.org/projects/MALY-DE
https://cancer.sanger.ac.uk
https://cancer.sanger.ac.uk
https://www.frontiersin.org/articles/10.3389/fgene.2021.671866/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.671866/full#supplementary-material
https://doi.org/10.1016/j.gde.2013.11.014
https://doi.org/10.1093/nar/gkn310
https://doi.org/10.1002/eji.200737664
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-671866 May 12, 2021 Time: 17:49 # 13

Rogozin et al. Molecular Footprints in Cancer

Brambati, A., Barry, R. M., and Sfeir, A. (2020). DNA polymerase theta (Polθ) - an
error-prone polymerase necessary for genome stability. Curr. Opin. Genet. Dev.
60, 119–126. doi: 10.1016/j.gde.2020.02.017

Brinkman, A. B., Nik-Zainal, S., Simmer, F., Rodriguez-Gonzalez, F. G., Smid, M.,
Alexandrov, L. B., et al. (2019). Partially methylated domains are hypervariable
in breast cancer and fuel widespread CpG island hypermethylation. Nat.
Commun. 10:1749.

Brown, A. L., Li, M., Goncearenco, A., and Panchenko, A. R. (2019). Finding
driver mutations in cancer: elucidating the role of background mutational
processes. PLoS Comput. Biol. 15:e1006981. doi: 10.1371/journal.pcbi.100
6981

Casali, P., Pal, Z., Xu, Z., and Zan, H. (2006). DNA repair in antibody somatic
hypermutation. Trends Immunol. 27, 313–321. doi: 10.1016/j.it.2006.05.001

Cheng, F., Zhao, J., and Zhao, Z. (2016). Advances in computational approaches
for prioritizing driver mutations and significantly mutated genes in cancer
genomes. Brief. Bioinform. 17, 642–656. doi: 10.1093/bib/bbv068

Cooper, D. N., and Youssoufian, H. (1988). The CpG dinucleotide and human
genetic disease. Hum Genet 78, 151–155. doi: 10.1007/bf00278187

Coulondre, C., Miller, J. H., Farabaugh, P. J., and Gilbert, W. (1978). Molecular
basis of base substitution hotspots in Escherichia coli. Nature 274, 775–780.
doi: 10.1038/274775a0

Dietlein, F., Weghorn, D., Taylor-Weiner, A., Richters, A., Reardon, B., Liu, D.,
et al. (2020). Identification of cancer driver genes based on nucleotide context.
Nat. Genet. 52, 208–218. doi: 10.1038/s41588-019-0572-y

Dörner, T., and Lipsky, P. E. (2001). Smaller role for pol η? Nat. Immunol. 2,
982–984. doi: 10.1038/ni1101-982

Dunaway, K. W., Islam, M. S., Coulson, R. L., Lopez, S. J., Vogel Ciernia, A., Chu,
R. G., et al. (2016). Cumulative impact of polychlorinated biphenyl and large
chromosomal duplications on DNA methylation, chromatin, and expression of
autism candidate genes. Cell Rep. 17, 3035–3048. doi: 10.1016/j.celrep.2016.11.
058

Geisheker, M. R., Heymann, G., Wang, T., Coe, B. P., Turner, T. N.,
Stessman, H. A. F., et al. (2017). Hotspots of missense mutation identify
neurodevelopmental disorder genes and functional domains. Nat. Neurosci. 20,
1043–1051. doi: 10.1038/nn.4589

Gelfand, M. S. (1995). Prediction of function in DNA sequence analysis. J. Comput.
Biol. 2, 87–115. doi: 10.1089/cmb.1995.2.87

Geschwind, D. H., and State, M. W. (2015). Gene hunting in autism spectrum
disorder: on the path to precision medicine. Lancet. Neurol. 14, 1109–1120.
doi: 10.1016/s1474-4422(15)00044-7

Goncearenco, A., Rager, S. L., Li, M., Sang, Q. X., Rogozin, I. B., and Panchenko,
A. R. (2017). Exploring background mutational processes to decipher cancer
genetic heterogeneity. Nucleic Acids Res. 45, W514–W522.

Granadillo Rodriguez, M., Flath, B., and Chelico, L. (2020). The interesting
relationship between APOBEC3 deoxycytidine deaminases and cancer: a long
road ahead. Open Biol. 10:200188. doi: 10.1098/rsob.200188

Green, M. R., Kihira, S., Liu, C. L., Nair, R. V., Salari, R., Gentles, A. J., et al.
(2015). Mutations in early follicular lymphoma progenitors are associated with
suppressed antigen presentation. Proc. Natl. Acad. Sci. U.S.A. 112, E1116–
E1125.

Howe, E. A., Sinha, R., Schlauch, D., and Quackenbush, J. (2011). RNA-Seq analysis
in MeV. Bioinformatics 27, 3209–3210. doi: 10.1093/bioinformatics/btr490

Islam, S. M. A., and Alexandrov, L. B. (2021). Bioinformatic methods to identify
mutational signatures in cancer. Methods Mol. Biol. 2185, 447–473. doi: 10.
1007/978-1-0716-0810-4_28

Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R., Baseler, M. W., Lane, H. C.,
et al. (2012). DAVID-WS: a stateful web service to facilitate gene/protein list
analysis. Bioinformatics 28, 1805–1806. doi: 10.1093/bioinformatics/bts251

Loohuis, L. O., Witzel, A., and Mishra, B. (2014). Improving detection of driver
genes: power-law null model of copy number variation in cancer. IEEE/ACM
Trans. Comput. Biol. Bioinform. 11, 1260–1263. doi: 10.1109/tcbb.2014.
2351805

Luque-Baena, R. M., Urda, D., Gonzalo Claros, M., Franco, L., and Jerez, J. M.
(2014). Robust gene signatures from microarray data using genetic algorithms
enriched with biological pathway keywords. J. Biomed. Inform. 49, 32–44. doi:
10.1016/j.jbi.2014.01.006

Martomo, S. A., Saribasak, H., Yokoi, M., Hanaoka, F., and Gearhart, P. J. (2008).
Reevaluation of the role of DNA polymerase θ in somatic hypermutation of

immunoglobulin genes. DNA Repair 7, 1603–1608. doi: 10.1016/j.dnarep.2008.
04.002

Matsuda, T., Bebenek, K., Masutani, C., Rogozin, I. B., Hanaoka, F., and Kunkel,
T. A. (2001). Error rate and specificity of human and murine DNA polymerase
eta. J. Mol. Biol. 312, 335–346.

Mayorov, V. I., Rogozin, I. B., Adkison, L. R., and Gearhart, P. J. (2005). DNA
polymerase eta contributes to strand bias of mutations of A versus T in
immunoglobulin genes. J. Immunol. 174, 7781–7786. doi: 10.4049/jimmunol.
174.12.7781

Milstein, C., Neuberger, M. S., and Staden, R. (1998). Both DNA strands of antibody
genes are hypermutation targets. Proc. Natl. Acad. Sci. U.S.A. 95, 8791–8794.
doi: 10.1073/pnas.95.15.8791

Neri, F., Rapelli, S., Krepelova, A., Incarnato, D., Parlato, C., Basile, G., et al. (2017).
Intragenic DNA methylation prevents spurious transcription initiation. Nature
543, 72–77. doi: 10.1038/nature21373

Neuberger, M. S., and Rada, C. (2007). Somatic hypermutation: activation-induced
deaminase for C/G followed by polymerase η for A/T. J. Exp. Med. 204, 7–10.
doi: 10.1084/jem.20062409

Oliver, J., Garcia-Aranda, M., Chaves, P., Alba, E., Cobo-Dols, M., Onieva,
J. L., et al. (2021). Emerging noninvasive methylation biomarkers of cancer
prognosis and drug response prediction. Semin. Cancer. Biol. doi: 10.1016/j.
semcancer.2021.03.012

Pavlov, Y. I., Rogozin, I. B., Galkin, A. P., Aksenova, A. Y., Hanaoka, F., Rada, C.,
et al. (2002). Correlation of somatic hypermutation specificity and A-T base
pair substitution errors by DNA polymerase η during copying of a mouse
immunoglobulin κ light chain transgene. Proc. Natl. Acad. Sci. U.S.A. 99,
9954–9959. doi: 10.1073/pnas.152126799

Petljak, M., and Alexandrov, L. B. (2016). Understanding mutagenesis through
delineation of mutational signatures in human cancer. Carcinogenesis 37, 531–
540. doi: 10.1093/carcin/bgw055

Pham, P., Calabrese, P., Park, S. J., and Goodman, M. F. (2011). Analysis of a single-
stranded DNA-scanning process in which activation-induced deoxycytidine
deaminase (AID) deaminates C to U haphazardly and inefficiently to ensure
mutational diversity. J. Biol. Chem. 286, 24931–24942. doi: 10.1074/jbc.m111.
241208

Pilzecker, B., and Jacobs, H. (2019). Mutating for good: DNA damage responses
during somatic hypermutation. Front. Immunol. 10:438. doi: 10.3389/fimmu.
2019.00438

Rahbari, R., Wuster, A., Lindsay, S. J., Hardwick, R. J., Alexandrov, L. B., Turki,
S. A., et al. (2016). Timing, rates and spectra of human germline mutation. Nat.
Genet. 48, 126–133. doi: 10.1038/ng.3469

Revy, P., Muto, T., Levy, Y., Geissmann, F., Plebani, A., Sanal, O., et al. (2000).
Activation-induced cytidine deaminase (AID) deficiency causes the autosomal
recessive form of the hyper-IgM syndrome (HIGM2). Cell 102, 565–575. doi:
10.1016/s0092-8674(00)00079-9

Roberts, S. A., and Gordenin, D. A. (2014). Hypermutation in human cancer
genomes: footprints and mechanisms. Nat. Rev. Cancer 14, 786–800. doi:
10.1038/nrc3816

Roberts, S. A., Lawrence, M. S., Klimczak, L. J., Grimm, S. A., Fargo, D., Stojanov,
P., et al. (2013). An APOBEC cytidine deaminase mutagenesis pattern is
widespread in human cancers. Nat. Genet. 45, 970–976. doi: 10.1038/ng.
2702

Rogozin, I. B., and Diaz, M. (2004). Cutting edge: DGYW/WRCH is a better
predictor of mutability at G:C bases in Ig hypermutation than the widely
accepted RGYW/WRCY motif and probably reflects a two-step activation-
induced cytidine deaminase-triggered process. J. Immunol. 172, 3382–3384.
doi: 10.4049/jimmunol.172.6.3382

Rogozin, I. B., Gertz, E. M., Baranov, P. V., Poliakov, E., and Schaffer, A. A.
(2018a). Genome-wide changes in protein translation efficiency are associated
with autism. Genome Biol. Evol. 10, 1902–1919. doi: 10.1093/gbe/evy146

Rogozin, I. B., Goncearenco, A., Lada, A. G., De, S., Yurchenko, V., Nudelman, G.,
et al. (2018b). DNA polymerase η mutational signatures are found in a variety of
different types of cancer. Cell Cycle 17, 348–355. doi: 10.1080/15384101.2017.
1404208

Rogozin, I. B., Lada, A. G., Goncearenco, A., Green, M. R., De, S., Nudelman,
G., et al. (2016). Activation induced deaminase mutational signature overlaps
with CpG methylation sites in follicular lymphoma and other cancers. Sci. Rep.
6:38133.

Frontiers in Genetics | www.frontiersin.org 13 May 2021 | Volume 12 | Article 671866

https://doi.org/10.1016/j.gde.2020.02.017
https://doi.org/10.1371/journal.pcbi.1006981
https://doi.org/10.1371/journal.pcbi.1006981
https://doi.org/10.1016/j.it.2006.05.001
https://doi.org/10.1093/bib/bbv068
https://doi.org/10.1007/bf00278187
https://doi.org/10.1038/274775a0
https://doi.org/10.1038/s41588-019-0572-y
https://doi.org/10.1038/ni1101-982
https://doi.org/10.1016/j.celrep.2016.11.058
https://doi.org/10.1016/j.celrep.2016.11.058
https://doi.org/10.1038/nn.4589
https://doi.org/10.1089/cmb.1995.2.87
https://doi.org/10.1016/s1474-4422(15)00044-7
https://doi.org/10.1098/rsob.200188
https://doi.org/10.1093/bioinformatics/btr490
https://doi.org/10.1007/978-1-0716-0810-4_28
https://doi.org/10.1007/978-1-0716-0810-4_28
https://doi.org/10.1093/bioinformatics/bts251
https://doi.org/10.1109/tcbb.2014.2351805
https://doi.org/10.1109/tcbb.2014.2351805
https://doi.org/10.1016/j.jbi.2014.01.006
https://doi.org/10.1016/j.jbi.2014.01.006
https://doi.org/10.1016/j.dnarep.2008.04.002
https://doi.org/10.1016/j.dnarep.2008.04.002
https://doi.org/10.4049/jimmunol.174.12.7781
https://doi.org/10.4049/jimmunol.174.12.7781
https://doi.org/10.1073/pnas.95.15.8791
https://doi.org/10.1038/nature21373
https://doi.org/10.1084/jem.20062409
https://doi.org/10.1016/j.semcancer.2021.03.012
https://doi.org/10.1016/j.semcancer.2021.03.012
https://doi.org/10.1073/pnas.152126799
https://doi.org/10.1093/carcin/bgw055
https://doi.org/10.1074/jbc.m111.241208
https://doi.org/10.1074/jbc.m111.241208
https://doi.org/10.3389/fimmu.2019.00438
https://doi.org/10.3389/fimmu.2019.00438
https://doi.org/10.1038/ng.3469
https://doi.org/10.1016/s0092-8674(00)00079-9
https://doi.org/10.1016/s0092-8674(00)00079-9
https://doi.org/10.1038/nrc3816
https://doi.org/10.1038/nrc3816
https://doi.org/10.1038/ng.2702
https://doi.org/10.1038/ng.2702
https://doi.org/10.4049/jimmunol.172.6.3382
https://doi.org/10.1093/gbe/evy146
https://doi.org/10.1080/15384101.2017.1404208
https://doi.org/10.1080/15384101.2017.1404208
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-671866 May 12, 2021 Time: 17:49 # 14

Rogozin et al. Molecular Footprints in Cancer

Rogozin, I. B., Pavlov, Y. I., Bebenek, K., Matsuda, T., and Kunkel, T. A. (2001).
Somatic mutation hotspots correlate with DNA polymerase eta error spectrum.
Nat. Immunol. 2, 530–536. doi: 10.1038/88732

Rogozin, I. B., Pavlov, Y. I., Goncearenco, A., De, S., Lada, A. G., Poliakov, E., et al.
(2018c). Mutational signatures and mutable motifs in cancer genomes. Brief.
Bioinform. 19, 1085–1101.

Rogozin, I. B., Roche-Lima, A., Lada, A. G., Belinky, F., Sidorenko, I. A., Glazko,
G. V., et al. (2019). Nucleotide weight matrices reveal ubiquitous mutational
footprints of AID/APOBEC deaminases in human cancer genomes. Cancers
11:211. doi: 10.3390/cancers11020211

Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek,
A. E., et al. (2015). Insights into autism spectrum disorder genomic architecture
and biology from 71 risk loci. Neuron 87, 1215–1233.

Scandaglia, M., and Barco, A. (2019). Contribution of spurious transcription to
intellectual disability disorders. J. Med. Genet. 56, 491–498. doi: 10.1136/
jmedgenet-2018-105668

Seplyarskiy, V. B., Soldatov, R. A., Popadin, K. Y., Antonarakis, S. E., Bazykin, G. A.,
and Nikolaev, S. I. (2016). APOBEC-induced mutations in human cancers are
strongly enriched on the lagging DNA strand during replication. Genome Res.
26, 174–182. doi: 10.1101/gr.197046.115

Shanak, S., and Helms, V. (2020). DNA methylation and the core
pluripotency network. Dev. Biol. 464, 145–160. doi: 10.1016/j.ydbio.2020.
06.001

Sina, A. A., Carrascosa, L. G., Liang, Z., Grewal, Y. S., Wardiana, A., Shiddiky,
M. J. A., et al. (2018). Epigenetically reprogrammed methylation landscape
drives the DNA self-assembly and serves as a universal cancer biomarker. Nat.
Commun. 9:4915.

Soldatos, T. G., Perdigao, N., Brown, N. P., Sabir, K. S., and O’Donoghue, S. I.
(2015). How to learn about gene function: text-mining or ontologies? Methods
74, 3–15. doi: 10.1016/j.ymeth.2014.07.004

Staden, R. (1984). Computer methods to locate signals in nucleic acid sequences.
Nucleic Acids Res. 12, 505–519. doi: 10.1093/nar/12.1part2.505

Stratton, M. R., Campbell, P. J., and Futreal, P. A. (2009). The cancer genome.
Nature 458, 719–724.

Swanton, C., McGranahan, N., Starrett, G. J., and Harris, R. S. (2015). APOBEC
enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov.
5, 704–712. doi: 10.1158/2159-8290.cd-15-0344

Tokheim, C., and Karchin, R. (2019). CHASMplus reveals the scope of somatic
missense mutations driving human cancers. Cell Syst. 9, 9–23. doi: 10.1016/j.
cels.2019.05.005

Wang, J. H., Zhao, L. F., Lin, P., Su, X. R., Chen, S. J., Huang, L. Q., et al. (2014).
GenCLiP 2.0: a web server for functional clustering of genes and construction
of molecular networks based on free terms. Bioinformatics 30, 2534–2536. doi:
10.1093/bioinformatics/btu241

Wood, R. D., and Doublié, S. (2016). DNA polymerase θ (POLQ), double-strand
break repair, and cancer. DNA Repair 44, 22–32. doi: 10.1016/j.dnarep.2016.05.
003

Zan, H., Shima, N., Xu, Z., Al-Qahtani, A., Evinger Iii, A. J., Zhong, Y., et al. (2005).
The translesion DNA polymerase θ plays a dominant role in immunoglobulin
gene somatic hypermutation. EMBO J. 24, 3757–3769. doi: 10.1038/sj.emboj.
7600833

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Rogozin, Roche-Lima, Tyryshkin, Carrasquillo-Carrión, Lada,
Poliakov, Schwartz, Saura, Yurchenko, Cooper, Panchenko and Pavlov. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Genetics | www.frontiersin.org 14 May 2021 | Volume 12 | Article 671866

https://doi.org/10.1038/88732
https://doi.org/10.3390/cancers11020211
https://doi.org/10.1136/jmedgenet-2018-105668
https://doi.org/10.1136/jmedgenet-2018-105668
https://doi.org/10.1101/gr.197046.115
https://doi.org/10.1016/j.ydbio.2020.06.001
https://doi.org/10.1016/j.ydbio.2020.06.001
https://doi.org/10.1016/j.ymeth.2014.07.004
https://doi.org/10.1093/nar/12.1part2.505
https://doi.org/10.1158/2159-8290.cd-15-0344
https://doi.org/10.1016/j.cels.2019.05.005
https://doi.org/10.1016/j.cels.2019.05.005
https://doi.org/10.1093/bioinformatics/btu241
https://doi.org/10.1093/bioinformatics/btu241
https://doi.org/10.1016/j.dnarep.2016.05.003
https://doi.org/10.1016/j.dnarep.2016.05.003
https://doi.org/10.1038/sj.emboj.7600833
https://doi.org/10.1038/sj.emboj.7600833
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	DNA Methylation, Deamination, and Translesion Synthesis Combine to Generate Footprint Mutations in Cancer Driver Genes in B-Cell Derived Lymphomas and Other Cancers
	Introduction
	Materials and Methods
	Mutable Motif Construction Using Weight Matrices
	ICGC/TCGA Mutation Datasets
	Methylation and Expression Data
	Analysis of Mutations
	Detection of Driver and Non-driver Genes

	Results
	Weight Matrices Are Powerful Descriptors of Mutable Motifs
	Footprints of pol  and pol  Correlate With the Somatic Mutational Spectrum in Many Cancer Types
	Control Experiments
	Analysis of Driver and Non-driver Genes
	Patient-Specific Analysis of Somatic Mutations and Methylation
	Analysis of DNA Methylation Patterns of Driver and Non-driver Genes Using Weight Matrices
	Analysis of Somatic Mutations in CpG Sites in Driver and Non-driver Genes
	Analysis of Expression of Driver and Non-driver Genes

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References




