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An Extended Trajectory Mechanics Approach for Calculating
the Path of a Pressure Transient: Derivation and Illustration
D. W. Vasco1

1Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA, USA

Abstract Following an approach used in quantum dynamics, an exponential representation of the
hydraulic head transforms the diffusion equation governing pressure propagation into an equivalent set of
ordinary differential equations. Using a reservoir simulator to determine one set of dependent variables
leaves a reduced set of equations for the path of a pressure transient. Unlike the current approach for
computing the path of a transient, based on a high-frequency asymptotic solution, the trajectories resulting
from this new formulation are valid for arbitrary spatial variations in aquifer properties. For a medium
containing interfaces and layers with sharp boundaries, the trajectory mechanics approach produces paths
that are compatible with travel time fields produced by a numerical simulator, while the asymptotic solution
produces paths that bend too strongly into high permeability regions. The breakdown of the conventional
asymptotic solution, due to the presence of sharp boundaries, has implications for model parameter
sensitivity calculations and the solution of the inverse problem. For example, near an abrupt boundary,
trajectories based on the asymptotic approach deviate significantly from regions of high sensitivity
observed in numerical computations. In contrast, paths based on the new trajectory mechanics approach
coincide with regions of maximum sensitivity to permeability changes.

Plain Language Summary I present a new approach for computing the path of a pressure
transient in a highly heterogeneous porous medium. The approach utilizes methods developed in quantum
dynamics. The trajectories are useful for visualizing pressure propagation in complicated physical models
and may form the basis for an efficient tomographic imaging algorithm.

1. Introduction

The use of transient pressure and hydraulic head data to infer aquifer properties has a long and varied his-
tory (Bohling et al., 2002; Brauchler et al., 2003, 2010; Butler et al., 1999, 2003; Cardiff & Barrash, 2011; Cardiff
et al., 2013a, 2013b; Carrera & Neuman, 1986; He et al., 2006; Hsieh et al., 1985; Hu et al., 2011; Jacquard &
Jain, 1965; Karasaki et al., 2000; Oliver, 1993; Paillet, 1993; Vasco et al., 2000; Vasco & Karasaki, 2001; Yeh
et al., 2008; Yeh & Liu, 2000). One advantage of approaches based on pressure and hydraulic head is the
rapid propagation of pressure transients in comparison to methods such as tracer transport and multiphase
flow, leading to faster experiments and better turn-around times. Developments in experimental techni-
ques, such as crosswell slug tests and multiwell tomography, are providing ever larger sets of pressure and
hydraulic head observations for the imaging of flow properties. Technological advances, including fiber
optic cables, downhole pressure sensors, and slim hole drilling, may lead to the expansion of transient pres-
sure testing and time-lapse monitoring.

While one may use the full pressure or hydraulic head waveform in the interpretation of transient tests,
there are certain advantages associated with the use of the travel times of a transient disturbance. The
arrival of a pressure transient at an observation borehole typically occurs well before a steady state is
attained, greatly reducing the time required for an experiment. The interpretation of a travel time, particu-
larly for the high-frequency component of a pressure transient, is relatively straight forward in comparison
to the interpretation of its amplitude (Vasco, 2008; Vasco et al., 2000). Furthermore, it is possible to interpret
pressure-related geophysical observations, such as tiltmeter and Interferometric Synthetic Aperture Radar
(InSAR) data, in terms of transient pressure propagation, based on the concept of an onset time (Rucci et al.,
2010; Vasco, 2004; Vasco & Datta-Gupta, 2016; Vasco et al., 2014). Such an approach is primarily sensitive to
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the flow properties of the medium and not sensitive to the rock physics model used to describe the cou-
pling (Rucci et al., 2010; Vasco et al., 2014). As in elastic wave propagation, it has been shown that the
inverse problem for travel times is quasi-linear while that for amplitudes is strongly nonlinear (Cheng et al.,
2005). Therefore, the solution of a travel time inverse problem is much less sensitive to the starting or initial
model. Treating a single arrival time, rather than the entire transient pressure waveform, provides a signifi-
cant reduction in computational complexity and leads to efficient inversion algorithms. This is particularly
advantageous in a crosswell or multiwell setting. Taken together, these factors suggest that transient pres-
sure travel time inversion provides a robust and efficient approach for constructing an initial image of flow
properties, such as hydraulic diffusivity.

A useful formulation of transient pressure propagation is based on a high-frequency asymptotic solution
of the diffusion equation (Cohen & Lewis, 1967; Vasco et al., 2000; Virieux et al., 1994). The notion of
what constitutes a high frequency is referenced to the spatial variation of the corresponding pressure
transient and its length scale in comparison with the shortest length scale of the heterogeneity of the
medium. In fact, we can frame the asymptotic approach in terms of the ratio of these two length scales,
denoted by E (Vasco & Datta-Gupta, 2016). The approximate solution is a power series in this ratio, and
when E is small only the first one or two terms of the power series are significant. In this framework, the
modeling is partitioned into a nonlinear differential equation associated with the propagation time or
phase, the eikonal equation, and a transport equation describing the evolution of the amplitude. Effi-
cient numerical techniques for the solution of the eikonal equation, such as the Fast Marching method,
can be used to compute travel times for large forward problems (Fujita et al., 2015; Zhang et al., 2014). A
high-frequency solution may be defined along trajectories that are the bicharacteristics of the eikonal
equation (Chapman, 2004; Luneburg, 1966; Kline & Kay, 1965). The trajectory-based solution leads to
imaging algorithms that are akin to medical and geophysical tomography (Brauchler et al., 2003; Vasco,
2008; Vasco et al., 2000). However, the high-frequency asymptotic solution is based on rather severe
assumptions that break down in the presence of layering and fractures. Specifically, it is assumed that
either the frequencies contained in the transient disturbance are so high, or that the properties of the
medium vary so smoothly, that the length scale across the front of the transient disturbance is much
less than the length scale of any heterogeneity in the medium. A sharp interface can be included explic-
itly as a boundary condition, producing the equivalent of snell’s law of refraction (Chapman, 2004). How-
ever, when solving the inverse problem one does not typically know the location and nature of all
internal boundaries a priori.

It would be useful to have a generally valid approach that retains much of the efficiency of the high-
frequency asymptotic approach. In the work that follows, we present a trajectory-based technique for
modeling pressure propagation and travel times, making no assumptions regarding the smoothness of the
medium or regarding the magnitude of the variations in its properties. To be clear, we will require the regu-
larity necessary for the validity of the partial differential equation governing fluid flow, such as a piecewise
continuous medium. The technique is an adaptation of a method from quantum mechanics that is used as
a visualization and computational tool for studying larger chemical systems (Garashchuk, 2010; Garashchuk
et al., 2011; Garashchuk & Vazhappilly, 2010; Goldfarb et al., 2006; Liu & Makri, 2005; Wyatt, 2005). The imple-
mentation in quantum mechanics requires the solution of two coupled nonlinear partial differential equa-
tions, extended forms of the eikonal and transport equations. However, in our formulation, we take
advantage of existing reservoir simulators to solve for one of the variables in the coupled system. The out-
come is a single ordinary differential equation for the trajectory, xðtÞ, describing the path of a propagating
disturbance as a function of time t. Such trajectories provide insight into the nature of pressure propagation
in a medium containing abrupt layers and boundaries. We illustrate the approach using several examples
involving increasingly sharp boundaries.

2. Methodology

2.1. The Governing Equations for Hydraulic Head
Our starting point is the equation governing the evolution of hydraulid head hðx; tÞ in both space x5ðx; y; zÞ
and time t in a porous medium. The conservation of mass, in conjunction with Darcy’s law, provides the gov-
erning equation. We will adopt the version presented in de Marsily (1986, p. 109):
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r � K � rhð Þ5f
@h
@t
; (1)

where K is the hydraulic conductivity, a symmetric tensor, and f is the specific storage coefficient given by

f5qug bl1bs1
a
u

� �
: (2)

In this expression, q is the fluid density, u is the total porosity of the medium, g is the gravitational acceleration, bl is
isothermal compressibility of the liquid, bs is the compressibility of the solid constituents, and a is the compressibil-
ity of the porous matrix. For an incompressible fluid, the pressure is related to the hydraulic head according to

pðx; tÞ5qghðx; tÞ2z; (3)

where z is the height above a reference location.

2.2. An Equation for the Trajectories Associated With Transient Fluid Flow
As stated above, our goal is to introduce trajectories that may be used to visualize transient fluid flow and
to develop efficient crosswell tomographic algorithms for imaging flow properties. The trajectory may be
thought of as the path of a transient disturbance due to an impulsive pressure source, or, as shown in Vasco
et al. (2000), as the path of the most rapidly varying component of pressure or head, when the source is a
step function. We will denote the trajectory by xðtÞ where the position along the path depends on time.
Unlike the high-frequency asymptotic expressions developed previously for both trajectory and front calcu-
lations (Brauchler et al., 2003, 2011; Fujita et al., 2015; He et al., 2006; Vasco, 2008; Vasco & Datta-Gupta,
2016; Vasco et al., 2000; Zhang et al., 2014), our expressions for the trajectories will be valid under very gen-
eral conditions and for arbitrary distributions of KðxÞ and fðxÞ.

An expression for the trajectory associated with the propagation of a transient fluid front follows from
substituting the representation:

hðx; tÞ5e2Sðx;tÞ (4)

into the governing equation (1) for hydraulic head. Here we outline the approach, providing the details of
of the derivation in Appendix A. The resulting equation for Sðx; tÞ, known as the phase, may be written as

@S
@t

1v � rS5
1
f
r � K � pð Þ; (5)

where v is a velocity, given by

v5p � K
f
; (6)

and p is the spatial gradient of the phase:

p5rS: (7)

We can solve equation (4) for Sðx; tÞ and apply the gradient to arrive at an expression for p in terms of hðx; tÞ,

p52rln h: (8)

Now consider equation (5) in a moving coordinate system, in which the tangent vector of the coordinate
curves is denoted by v. Parameterize the position along each coordinate curve, xðtÞ, by the time t, and
therefore equation (5) becomes

dS
dt

5
@S
@t

1
dx
dt
� rS5

1
f
r � K � pð Þ: (9)

Because v is the tangent vector to the path xðtÞ, we can equate it to dx=dt and use equations (6) and (8) to
produce a differential equation for the trajectory,

dx
dt

5v52
K
f
� rln h: (10)
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Equation (10) also follows from an application of the method of characteristics to the scalar differential
equation (5) (Courant & Hilbert, 1962). Equation (10) clearly lays out the contributions of hðx; tÞ; KðxÞ, and f
ðxÞ to the trajectories. Note that, due to the presence of the logarithm, the sensitivity of the trajectories to
lateral variations of the hydraulic head is somewhat muted.

Ultimately, equation (10) will provide our fundamental expression for computing trajectories. However, as a
stand-alone equation, it is incomplete because we do not know hðx; tÞ. One could derive a complete set of
equations by combining equations (6) and (10) to form the first set of defining equations. The second set of
equations follows from applying the gradient operator to both sides of equation (9) and noting the defini-
tion of the slowness or phase gradient vector p given by equation (7). The resulting system of coupled ordi-
nary differential equations for x and p takes the form:

dx
dt

5
1
f

p � K; (11)

dp
dt

5r 1
f
r � K � pð Þ

� �
: (12)

We could solve equations (11) and (12) using numerical techniques for integrating ordinary differential
equations (Press et al., 1992). This is the approach most commonly adopted in quantum dynamics when
using trajectory-based methods to solve for the evolution of many particle systems (Garashchuk et al., 2011;
Garashchuk & Vazhappilly, 2010; Wyatt, 2005). The presence of the gradient operator in equation (12) com-
plicates the numerical approach and links adjacent trajectories, necessitating coupled calculations of the
field (Sx; tÞ and the paths. Still the approach is quite efficient and requires less time then fully numerical,
grid-based solutions of the diffusion-like equations encountered in quantum mechanics, forming the basis
for the treatment of complicated chemical systems (Wyatt, 2005).

Here we adopt an alternative approach in solving for the trajectories, taking advantage of the sophisticated
numerical simulators for modeling fluid flow and transport. Specifically, we utilize a simulator, such as
TOUGH2 (Pruess et al., 1999) to determine hðx; tÞ, and integrate equation (10) directly to find the path xðtÞ.
The ordinary differential equation (10) can be solved directly and simply using a numerical technique such
as a Runge-Kutta method (Cash & Karp, 1990; Press et al., 1992, p. 704). Because the field hðx; tÞ is known
from the reservoir simulation, one simply marches up the field in the direction of the head gradient from
the observation point to the source of the transient disturbance.

In order to gain some insight into the nature of the propagation of a pressure or head transient, let us con-
sider the expression (10) in greater detail. The coefficient K=f is the diffusivity, with units of L2=T , a quantity
related to the propagation of pressure in a porous medium. On first sight, equation (10) appears to lack the
correct dimensionality (units), but if we apply the gradient operator to the logarithm we arrive at

dx
dt

52
K
f
� rh

h
; (13)

which has units of velocity [L/T] because the gradient operator introduces a factor with dimensions of 1=L.
The factor containing hðx; tÞ results in a time-dependent propagation velocity. When considered in the fre-
quency domain, after applying the Fourier transform, this produces a frequency-dependent velocity, lead-
ing to dispersion. Dispersive propagation is characteristic of diffusive processes such as the evolution of a
pressure front, as illustrated in Figures 1 and 2. In Figure 1, the time derivatives of the pressure variation in
each grid block of a numerical simulation are plotted. The pressure derivatives are normalized by the peak
magnitude obtained in the grid block, to account for the decay of the pressure with distance from the
source. The simulation corresponds to injection in a small interval of a borehole, with a step-like rate
change. The outward propagation of the pressure disturbance is clear in this figure. The medium is charac-
terized by an abrupt jump in permeability at an elevation of 7.5 m. The permeability increases with depth
by almost an order of magnitude. The dispersion is evident as a broadening of the disturbance as it propa-
gates away from the source. The toe of the front appears to advance rapidly, particularly in the high perme-
ability half-space. The dispersion is clearly visible in the time series of pressure and pressure derivatives for
three locations within the grid (Figure 2). The observations points are at the same elevation (5.1 m) as the
source but at increasing distances. The form of the propagating disturbance changes dramatically as it
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moves away from the source. In Figure 3, we plot the trajectories, obtained from an integration of equation
(10), for propagation from the source to 10 observation points. The trajectories are displayed along with the
logarithm of the pressure field variation calculated to have occurred 6.0 s after the start of injection. The
influence of the permeability change on the pressure field is evident in the change in spacing of the pres-
sure contours near 7.5 m. The propagation paths bend due to presence of the higher permeability half-
space at depth and its effect on the head or pressure field, as indicated by equations (10) and (13).

2.3. A Comparison With a High-Frequency Asymptotic Approach and the Eikonal Equation
Previous calculations of trajectories and pressure fronts invoked a high-frequency asymptotic argument
(Brauchler et al., 2003; Fujita et al., 2015; Vasco, 2008; Vasco et al., 2000). In this section, we compare the
equations for the trajectories that result from the asymptotic approach to the trajectory mechanics expres-
sion (10). Though it would take us too far afield to reproduce the derivation of the high-frequency solution,
we can arrive at some results fairly quickly by starting with equation (5) and substituting in for the variables
v and p using equations (6) and (7), respectively,

Figure 1. Normalized time derivatives of the transient pressure variation due to a step-like injection at the point (5.2, 8.6 m). Three snapshots are plotted, corre-
sponding to 0.01, 0.05, and 0.20 s after the start of injection. The derivatives are normalized to unit peak amplitude by dividing by the largest derivative magnitude
obtained in each grid block.

Figure 2. Pressure changes and pressure derivatives as a function of time for three points at various distances from the
injection point. The curves are labeled by the distance from the pressure source.
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@S
@t

1rS � K
f
� rS5

1
f
r � K � rSð Þ: (14)

The high-frequency asymptotic derivation is based on the assump-
tion that the length-scale of the heterogeneity is much greater than
the length-scale across the high-frequency component of the fluid
front. Stated another way, the high-frequency component of the
pressure pulse, or of a jump in head, is assumed to be very sharp
in comparison to the spatial variation in medium properties such as
KðxÞ and fðxÞ. Note that this assumption does break down at interfa-
ces and in the presence of layering. But in such cases one can
include the boundaries explicitly as boundary conditions, extending
the reach of the algorithm at the cost of introducing considerably
more complexity.

Returning to equation (14), if we assume that K only varies smoothly
and correspondingly, the phase S also varies smoothly, then we can
neglect the divergence of K � rS on the right-hand side of this equa-
tion. Therefore, equation (14) reduces to a form of the eikonal equation:

@S
@t

1rS � K
f
� rS50: (15)

For a comparison with the previous results of Vasco et al. (2000), con-
sider a scalar hydraulic conductivity K in equation (15):

rS � rS1
f
K
@S
@t

50; (16)

an eikonal equation similar to that of Vasco et al. (2000) and Fujita
et al. (2015). The presence of the time derivative of S is due to the
fact that we are still in the time domain and have not applied the
Fourier transform. One can apply the method of characteristics to
this scalar, first-order, partial differential equation (Courant &
Hilbert, 1962) to derive a coupled set of ordinary differential equa-

tions for the trajectory x and the slowness gradient p. These equations, derived in Vasco et al. (2000),
are given by

dx
dt

5p; (17)

dp
dt

5r f
K

� �
(18)

and we repeat them here for completeness, and because they will help us understand some of the exam-
ples presented below. It is also possible to solve equation (15) directly using numerical techniques such as a
Fast Marching method (Sethian, 1999, p. 86) or methods for Hamilton-Jacobi equations such as level set
methods (Osher & Fedkiw, 2003, p. 47). Such methods can be extremely efficient, allowing for the solution
of large problems (Fujita et al., 2015; Zhang et al., 2014). The trajectories may also be determined in a hybrid
fashion, by solving the eikonal equation numerically for Sðx; tÞ and then using equation (17) to find the tra-
jectory xðtÞ. The important point is that equations (17) and (18), defining the trajectories under the assump-
tion of high-frequency propagation or smoothly varying properties, only depend on K and f and do not
depend on the head field hðx; tÞ. That is, for a medium with sufficiently smooth properties, the amplitude of
the pressure field decouples from the equation for the phase.

3. Applications

In this section, we compare the extended trajectories, calculated using equation (10), with the conventional
high-frequency asymptotic trajectories that follow from the eikonal equation (16) or from the equivalent

Figure 3. Trajectories associated with the propagation of pressure disturbances
from a source on the left to 10 receivers on the right. The color field indicates
the negative logarithm of the pressure variation 6 s after the start of injection,
calculated using the TOUGH2 numerical simulator (Pruess et al., 1999).
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ordinary differential equations (17) and (18). We consider two cases
that are commonly encountered, an interface of varying sharpness
and a layer containing sharp boundaries. We also compare the com-
patibility of the two approaches with numerical model parameter sen-
sitivity estimates.

3.1. First Illustration: A Single Interface
Perhaps the greatest challenge for high-frequency asymptotic methods
are the sharp boundaries associated with interfaces, layering, and frac-
ture zones. Such structures violate the assumption that the length scale
of the heterogeneity is large in comparison with the length scale of the
pressure front. While interfaces can be dealt with as explicit boundary
conditions, such an approach is not usually helpful when solving
inverse problems and attempting to image flow properties. When solv-
ing the inverse problem one does not typically know the locations of all
sharp interfaces and high permeability features such as fracture zones.

In this section, we compare trajectories computed using a conven-
tional high-frequency approach based on the eikonal equation (16)
with those calculated using our proposed approach based on equa-
tion (10). We begin by considering a single interface of varying
degrees of sharpness, as shown in Figure 4. The permeability is given
by KðzÞ5lðzÞKo, where lðzÞ is a scaling factor and Ko is the back-
ground permeability. The depth variation in the permeability modifier
lðzÞ is characterized by the function:

lðzÞ512
1
2

arctan r z2zið Þ½ �; (19)

where r is a parameter signifying the abruptness of the boundary, larger values of r correspond to sharper
interfaces. The position of the interface is specified by the parameter zi, which in these examples is near
7.5 m in elevation.

Figure 4. Depth variation of the permeability multipliers used in the three
transition zone examples. The multipliers scale the permeability as a function
of depth z, so that KðzÞ5lðzÞKo where Ko is the background value. The scale
factor varies with depth as lðzÞ512 1

2 arctan r z2zið Þ½ � where zi is the location
of the boundary and r is a parameter controlling the width of the transition
zone. Each curve is labeled by its respective parameter r.

Figure 5. The first transition zone example, where r50:1, the smoothest variation. (left) The spatial variation of the permeability multiplier. The filled squares
signify the locations of pressure sources. The open circles denote observations points. (middle) Trajectories calculated from a solution of the eikonal equation (16).
(right) Extended trajectories obtained by solving equation (10), where hðx; tÞ is calculated using the numerical simulator TOUGH2 (Pruess et al., 1999). The color
scale indicates the variation of the travel time field that is computed directly from the numerical simulation, by extracting the time associated with the most rapid
variation in pressure.
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The smoothest interface considered, when r50:1, does not display any sharp discontinuities (see Figures 4
and 5). First, consider the high-frequency asymptotic solution obtained by solving the eikonal equation. We
adopted the numerical solver proposed by Podvin and Lecomte (1991) for calculating the phase Seikonal. The
trajectories xðtÞ are found by solving

dx
dt

5rSeikonal (20)

using an improved Euler’s method known as Heun’s or Ralston’s method (Ascher & Petzold, 1998). The
travel time field from the eikonal equation and the high-frequency trajectories are shown in Figure 5. The
trajectories follow the gradient of the phase function from the eikonal equation, as indicated in equation
(20).

Next, we implemented the extended trajectory mechanics approach to compute the paths. The numerical
simulator TOUGH2 (Pruess et al., 1999) was used to calculate the evolution of the transient pressure and
hydraulic head due to injection at the specified source. It is evident from equation (10) that the extended
trajectories depend on the flow properties of the medium, in particular K and f, as well as the variation in
the logarithm of the head hðx; tÞ. In Figure 5, we also plot the travel time field for a transient disturbance,
calculated using the results from a TOUGH2 numerical simulation. Specifically, we use the transient pressure
variation in each grid block, and its temporal derivative, to determine the time at which the pressure is
changing most rapidly, as described in Vasco et al. (2000). In the examples, we will be neglecting the effects
of gravity. For this case, in which the properties of the medium are smoothly varying, the trajectories
derived using the eikonal equation and the trajectory mechanics approach are generally similar.

Now consider a transition in which the scale parameter r for the sharpness of the boundary is an order of
magnitude larger, taking a value of 1.0. This results in a notable interface (see Figures 4 and 6) and an
abrupt change from a permeability multiplier of 0.2 to one approaching 1.75. We now observe differences
in the trajectories computed using the high-frequency asymptotic approximation, based on the eikonal
equation (equations (16) and (20)), and those computed using equation (10). The high-frequency trajecto-
ries bend strongly into the higher permeability half-space, following the strong changes in the phase func-
tion Seikonal. The extended trajectory mechanics paths do bend somewhat due to the interface, but those for
the upper four observation points stay above the sharp transition zone. The differences are due to the fact

Figure 6. An example of a moderately sharp transition zone, where r51:0. (left) The spatial distribution of permeability used in the example. (middle) Trajectories
resulting from the ordinary differential equation (20), where Seikonal is the solution of the eikonal equation. The color scale and contours represent variations in
the travel time. (right) Trajectories that follow from conducting a reservoir simulation and then solving equation (10) using the head variation from the TOUGH2
simulator.
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that the eikonal equation only accounts for the kinematics of the head propagation, which are controlled
by K and f, and does not account for variations in head amplitude hðx; tÞ.

Increasing the sharpness parameter r by still another order of magnitude, to a value of 10.0, produces a
transition that truly resembles a boundary (see Figures 4 and 7). The depth variation is similar to the previ-
ous case though the rounded corners of the transition are replaced with an abrupt jump. As before, the tra-
jectories based on the eikonal equation bend sharply into the higher permeability half-space. The four
uppermost trajectories appear to merge into a narrow pathway passing just below the interface and then
bend sharply upward to their respective observation locations. These curves are determined by the phase
field obtained from the eikonal equation and the paths proceed down the gradient of Seikonal to the source.
Such paths minimize the travel time from the source to the receivers but ignore the coupling between the
head amplitude field and the slowness field that comes into play when the heterogeneity varies rapidly in
space. The extended trajectories are similar to those of the previous example, but the four uppermost paths
do bend more due to the strong vertical variation in permeability. As before, these paths remain in the
uppermost low permeability half-space, governed by the distribution of the logarithm of the head field.

3.2. Second Illustration: Layering
One might consider layering as simply the superposition of two interfaces, the upper and lower boundaries
of the layer. However, the thickness of the layer introduces another length scale and thin layers might be
expected to further violate any smoothness assumptions. In the example shown in Figure 8, we consider a
layer roughly one meter in thickness, with almost an order of magnitude variation in permeability. The
high-frequency trajectories, shown in the left of Figure 9, tend to propagate within the high permeability
layer. The sole exceptions are two paths associated with observation points that are so far above the layer
that they do not seem to be influenced by it. Note the strong distortion of the phase field within the layer
and the kink in the phase field in the region above the layer. The extended trajectories, obtained by solving
equation (10), all bend in response to the high permeability layer. The lowermost set of paths, those that
cross the layer, are bent the most strongly, demonstrating the refraction that such sharp variations produce.
The travel time field calculated from the output of the TOUGH2 numerical simulator appears to vary
smoothly over the region and does not display the kink seen in the eikonal phase field.

While an order of magnitude permeability contrast is sufficient to illustrate the differences between the
asymptotic and trajectory mechanics approaches, much larger variations can be expected in the subsurface.
In order to visualize the effects of larger contrasts, let us consider layers that have permeabilities that are

Figure 7. The sharpest transition zone with r510:0, similar to an interface. (left) Variation in permeability. (middle) Trajectories calculated using the eikonal equa-
tion. The contour lines represent the distribution of arrival times produced by the eikonal equation. (right) Extended trajectories that are the solutions of equation
(10). The travel time variation calculated using the numerical simulator is indicated by the color scale.
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100 and a 1,000 times greater than the background. When the permeability of the layer is two orders of
magnitude greater than the background, all of the trajectories computed using the eikonal equation travel
through its center (Figure 10). The extended trajectory mechanics paths are distributed above the layer,
near the top of the layer, in the center of the layer, and at the base of the layer. The paths appear to be
orthogonal to the contours of the simulator-based travel times, indicating propagation down the gradient
of the travel time field. For a permeability contrast of 1,000, the trajectories calculated using the eikonal
equation (Figure 11) do not differ much from the previous example. The trajectory mechanics paths are also
very similar to those in Figure 10. For example, they are again perpendicular to the contours of the travel
time field derived from the output of the reservoir simulator. The uppermost paths do appear to

Figure 8. (left) Spatial variation in permeability used to represent a layer with sharp boundaries. (right) Depth variation of
the permeability multiplier used to generate the layer.

Figure 9. (left) Travel time contours derived from a solution of the eikonal equation. The trajectories resulting from the
solution of equation (20) are also shown. (right) Extended trajectories determined by equation (10). These paths are
controlled by both the permeability distribution and the logarithm of the pressure or head field. The trajectories
are plotted on top of the arrival time field calculated using the output of the TOUGH2 numerical simulator.
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concentrate near the top of the layer, well above those produced by the eikonal equation. Thus, when the
permeability contrast is large enough the paths calculated by equation (10) bend significantly toward the
layer.

3.3. Implications for Model Parameter Sensitivity Calculations
The differences in the paths calculated by the asymptotic approach and the method described here has
implications for trajectory-based pressure tomography and the solution of the inverse problem. For

Figure 10. (left) An example of a sharp layer with a permeability 100 times greater than the background value. (middle) Trajectories resulting from the ordinary
differential equation (20), where Seikonal is the solution of the eikonal equation. The color scale and contours represent variations in the travel time. (right) Trajecto-
ries that follow from conducting a reservoir simulation and then solving equation (10) using the head variation from the simulator. The arrival time field, computed
from the numerical simulation results, is plotted as background color and contour variations.

Figure 11. (left) An example of a sharp layer with a permeability 1,000 times greater than the background value. (middle) Trajectories resulting from the ordinary
differential equation (20), where Seikonal is the solution of the eikonal equation. The color scale and contours represent variations in the travel time. (right) Trajecto-
ries that follow from conducting a reservoir simulation and then solving equation (10) using the head variation from the simulator. The arrival time field, computed
from the numerical simulation results, is plotted as background color and contour variations.
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example, iterative methods for updating reservoir models based on pressure travel time and waveform
data rely on model parameter sensitivities to relate perturbations in reservoir properties to small changes in
a calculated observable quantity (Carrera & Neuman, 1986; Jacquard & Jain, 1965; Oliver, 1993) Such sensi-
tivities may be approximated using semianalytic, trajectory-based solutions leading to an efficient
tomography-like solution to the inverse problem (Vasco et al., 2000). Let us consider how the presence of
large and sharp permeability contrasts will perturb the trajectories calculated by the asymptotic and trajec-
tory mechanics approaches, and how those trajectories compare with sensitivities obtained by a numerical
perturbation technique.

Sensitivities are partial derivatives of an observed quantity with respect to changes in a specific model
parameter. An observation may be a measurement of hydraulic head or pressure, or the arrival time of a
transient disturbance. One may compute sensitivities using a numerical simulation code by simply perturb-
ing the properties of a grid block, for example the grid block permeability, and calculating the resulting
change in an observable quantity. Since we are interested in determining how rapid variations in flow prop-
erties alter the trajectories, our background model will consist of a sharp jump in permeability from 10 to
90 mdarcy (Figure 12). A step change in flow rate is used to generate a pressure transient that propagates
from the source on the left, denoted by an open circle, to an observation point on the right (unfilled dia-
mond). The time derivative of the pressure at the observation point is also plotted in Figure 12. Two mea-
sures of propagation time will be examined, the arrival time of the peak at the observation point, and an
early time arrival, when the pressure exceeds 5% of the peak amplitude.

In order to get an idea of the spatial extent of the sensitivities and how that changes with time, we first
compute sensitivities associated with pressure amplitudes. The numerical sensitivities are computed by per-
turbing the permeability in each of the grid blocks of the model and comparing the changes in observed
pressure amplitudes. This requires N 1 1 reservoir simulations where N is the number of grid blocks, in our
case 962 simulator runs. The permeability sensitivities for an early time, 0.05 min after the start of injection,
and a time corresponding to the peak in the rate of change, 3.4 min, are shown in Figure 13. The area of sig-
nificant sensitivity generally broadens with time, as a larger region of the model can contribute to later pres-
sure changes.

The travel time sensitivities are computed in a similar fashion, by perturbing the permeability in each grid
block and calculating the changes in the travel time to the observation point. The permeability sensitivities
for the early arrival time are plotted in Figure 14, along with the trajectories computed using the asymptotic
approach, based on the eikonal equation, and the trajectory mechanics approach described here. The

Figure 12. (left) Permeability model used in the sensitivity and trajectory calculations. A high permeability half-space of
90 mdarcy is adjacent to a region with a lower permeability of 10 mdarcy. The fluid injection site is denoted by an open
circle. The observation point is indicated by an unfilled diamond. (right) The time derivative of the pressure trace calcu-
lated for the observation point.
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numerical sensitivities are concentrated in a narrow zone between the source and observation point, similar
to the early time amplitude sensitivities in Figure 13. The trajectory produced by the solution to the eikonal
equation deviates significantly from the area of peak permeability sensitivity. On the other hand, the path

Figure 14. Pressure travel time sensitivities associated with an early time. (left) The trajectory computed using the eikonal
equation following an asymptotic approximation. (right) The trajectory calculated using the trajectory mechanics
approach is superimposed over the sensitivity values.

Figure 13. (left) Numerical pressure amplitude sensitivities calculated using a reservoir simulator and a perturbation
technique. These sensitivities to permeability changes correspond to an early time of 0.05 min after the start of injection.
(right) Numerical pressure amplitude sensitivities associated with the time at which the pressure is changing most
rapidly (peak pressure time derivative in Figure 12), 3.4 min after the start of injection.
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computed by the trajectory mechanics approach follows the zone of peak sensitivity quite closely, traveling
directly from the source to the observation point. The strong deviation in the asymptotic trajectory due to
rapid variations in permeability was observed in the earlier illustrations of this section. This deviation reflects
the breakdown of the assumption of a smoothly varying medium that is explicit in the asymptotic approach
and techniques based on the eikonal equation.

Now consider the permeability sensitivities associated with the arrival time of the peak at the observation
point, plotted in Figure 15. There is some asymmetry due to the presence of the high permeability below
the source, but the peak sensitivity is still located in the region between the source and the observation
location. Again, the trajectory based on the eikonal equation curves down toward the high permeability
half-space and away from areas of high sensitivity. By contrast, the trajectory mechanics path, calculated
using equation (10), traverses the area of greatest permeability sensitivity.

The actual computation of arrival time sensitivities is complicated by the coupling between the propagation
time and the amplitude that is evident in equation (10). A direct perturbation of this expression, say with
respect to a change in permeability, needs to account for the change in hðx; tÞ due to the perturbation in K.
Such an effect might be small, but given the fact that abrupt and large changes in permeability are allowed
in the background model, one would need to verify this for a given model. An alternative approach, based
on cross-correlation arrival times and the Born approximation, does account for the coupling between prop-
agation time and amplitude (Luo & Schuster, 1991; Vasco & Majer, 1993). However, the technique is essen-
tially an adjoint-state computation and requires two complete forward calculations, one from the source
point and one from the observation point. Additional work will be required to determine the efficiency and
accuracy of the various methods for approximating arrival time sensitivities.

4. Conclusions

Using the trajectory mechanics it is possible to retain a semianalytic formulation, similar to that used in an
asymptotic approach, while extending the validity of the computed trajectories to media with arbitrary
property variations. The price that one must pay for this is a numerical pressure calculation for each distinct
pressure source. This can be done with any existing numerical simulator, the results are simply

Figure 15. Pressure travel time sensitivities associated with the peak in Figure 12, when the pressure is changing most
rapidly at the observation location. (left) The trajectory computed using the eikonal equation following an asymptotic
approximation. (right) The trajectory calculated using the trajectory mechanics approach is superimposed over the
sensitivity values.
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postprocessed to extract the necessary quantities for calculating the trajectories. The trajectories may form
the basis of an efficient inversion of pressure travel times for hydraulic diffusivity, akin to medical and geo-
physical tomography. The trajectories also provide insight on pressure propagation in highly heterogeneous
media and allows for the visualization of the paths of pressure transients.

Because the approach requires a reservoir simulation for each source, the technique is more computationally
intensive then a solution based solely on the eikonal equation. Similarly, the approach may require more com-
putation then methods that reduce the transient pressure equation so a simpler form, such as moment-based
methods (Li et al., 2005; Yin & Illman, 2009; Zhu & Yeh 2006) or the sinusoidal pumping tests (Bernabe et al.,
2005; Black & Kipp, 1981; Cardiff et al., 2013b; Kuo, 1972; Rasmussen et al., 2003; Renner & Messar 2006). It
may be possible to improve the efficiency through the use of simplified numerical simulators that are
designed solely to calculate pressure, particularly when a single fluid phase is present. Or to modify the
method to consider a periodic source and adopt the steady-periodic approach. Alternatively, it might be pos-
sible to adopt a hybrid approach in which the eikonal equation is used for the early iterations of an inversion,
when the heterogeneity is rather smooth, and then to switch to the trajectory mechanics approach for the
later iterations. In a companion paper we will consider the application of this technique to both synthetic and
field transient pressure arrival times, addressing the computational questions in more detail.

High-frequency and multiscale asymptotic methods also provide efficient modeling techniques but they are
based on the assumption of smoothly varying heterogeneity (Vasco, 2008; Vasco & Datta-Gupta, 2016; Vasco
et al., 2000; Zhang et al., 2014). By comparing such an approach with an extended trajectory-based technique
we find that, as predicted, the asymptotic method does indeed break down in the presence of rapid changes in
material properties. Thus, trajectories resulting from solving the eikonal equation, the product of an asymptotic
formulation, may deviate from the actual path of a transient pressure pulse. The deviations are particularly
severe for thin layers, a fairly common occurence in the subsurface. It appears that the amplitude-phase cou-
pling that is present in actual wavefields stabilizes the trajectories, at least in the case of the diffusion-like equa-
tion considered here. This has implications for the inverse problem, in which one is trying to image spatial
variations in flow properties. As the estimated heterogeneity grows in magnitude and rapid spatial variations
materialize, the high-frequency trajectories become increasingly inaccurate. As illustrated in the sensitivity calcu-
lations above, this may lead to incorrect model parameter sensitivities. In tomographic imaging, trajectories are
used to compute approximate model parameter sensitivities (Brauchler et al., 2003; Fujita et al., 2015; Vasco
et al., 2000). Therefore, the trajectories must reflect the main contribution to the model parameter sensitivities. If
the trajectories are in error, as due to the breakdown of the eikonal equation in the presence of rapidly varying
heterogeneity, then an iterative updating algorithm could put anomalies in incorrect locations.

Appendix A: Derivation of the Equations Defining the Trajectories

In this appendix, we derive the ordinary differential equations that determine the trajectories associated with a
propagating disturbance. The approach is similar to a derivation of the eikonal equation (Vasco & Datta-Gupta,
2016) though we make no assumptions concerning the smoothness of the medium parameters K and f, allow-
ing for arbitrary spatial distributions of properties. This results in a system of equations that is somewhat more
complicated than those associated with a high-frequency asymptotic solution. However, with the aid of a
numerical simulator we can solve for one set of variables and produce a direct equation for the trajectory.

Our derivation is based on the work of Garashchuk and Vazhappilly (2010) for the time-dependent
Schr€odinger equation in imaginary time, a form of the diffusion equation. We start with the equation gov-
erning the evolution of hydraulic head hðx; tÞ, a function of spatial variables x and time t,

r � K � rh5f
@h
@t
; (A1)

where K is a symmetric matrix (de Marsily, 1986). In order to derive equations for trajectories we substitute
the expression:

hðx; tÞ5e2Sðx;tÞ (A2)

into the governing equation (A1). The derivatives in equation (A1) may be rewritten in terms of the new var-
iable Sðx; tÞ, for example we have
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rh52rSe2S: (A3)

The modified spatial and temporal derivative terms may be used to write equation (A1) in terms of S:

r � K � rSð Þ2rS � K � rS5f
@S
@t
; (A4)

where we have factored out the exponential term in S, under the assumption that the pressure never van-
ishes nor does it become infinite. Defining the slowness vector, the spatial gradient of Sðx; tÞ:

p5rS (A5)

allows us to write equation (A4) as

f
@S
@t

1p � K � p5r � K � pð Þ: (A6)

Dividing through by f and defining

!5
K
f

(A7)

and

v5p � ! (A8)

allows us to write equation (A6) as

@S
@t

1v � rS5
1
f
r � K � pð Þ: (A9)

Considering the equation in a Lagrangian reference frame moving with velocity v, we can define the total
time derivative of S:

dS
dt

5
@S
@t

1v � rS5
@S
@t

1
dx
dt
� rS; (A10)

where xðtÞ is the trajectory traced out as a function of time due to the velocity field v. From the preceding
equation we note that

dx
dt

5v5p � ! (A11)

provides an ordinary differential equation for the trajectory xðtÞ. Writing this equation explicitly in terms of
K and f gives

dx
dt

5
1
f

p � K: (A12)

Writing equation (A9) in terms of the Lagrangian reference frame produces an ordinary differential equation
for Sðx; tÞ along the trajectory:

dS
dt

5
1
f
r � K � pð Þ: (A13)

In order to write this equation more succinctly, we define a variable Uðx; tÞ, representing the right-hand side

Uðx; tÞ5 1
f
r � K � pð Þ (A14)

so that equation (A13) becomes

dS
dt

5U: (A15)

Applying the gradient operator to both sides of equation (A15) produces an ordinary differential equation
for p,
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dp
dt

5rU5r 1
f
r � K � pð Þ

� �
: (A16)

Equations (A12) and (A16) define a coupled system of equations for the trajectory xðtÞ and p. Specifically,
the trajectory associated with a propagating pressure disturbance may be found by solving the coupled sys-
tem of ordinary differential equations

dx
dt

5
1
f

p � K;

dp
dt

5r 1
f
r � K � pð Þ

� �
:

Unsing numerical methods, one can solve these equation for the trajectory and the phase gradient (Press
et al., 1992; Wyatt, 2005). This is the approach taken in quantum mechanics to compute trajectories associ-
ated with Schr€odinger’s wave equation (Garashchuk, 2010; Garashchuk et al., 2011; Wyatt, 2005). However,
due to the presence of gradient operators in these ordinary differential equations, the numerical solution of
the coupled equations require involved algorithms in which the trajectories are coupled. The approach is
still very efficient in comparison to a fully numerical, grid-based solution of Schr€odinger’s wave equation
and has led to practical quantum mechanical calculations for complicated chemical systems (Wyatt, 2005).

Alternatively, one can use the results of a numerical simulator, such as TOUGH2 (Pruess et al., 1999) to calcu-
late the trajectories. We can go back to the definition of Sðx; tÞ, given by equation (A2), to write it in terms
of the hydraulic head:

Sðx; tÞ52ln hðx; tÞ (A17)

and to calculate p5rS. Therefore, we can write the equation for the trajectory xðtÞ directly in terms of the
hydraulic head:

dx
dt

52
K
f
� rln h: (A18)

Then the two equations (A12) and (A16) uncoupled and one only has to solve equation (A18) for the trajec-
tory. Alternatively, by taking advantage of existing numerical simulators, we can use the calculated values
of hðx; tÞ to determine Sðx; tÞ and p. In taking this approach, we lose some of the efficiency that is associ-
ated with solving the system of ordinary differential equations or the related eikonal equation. However, we
gain significantly in the range of applicability of our trajectory calculations. Furthermore, we still maintain
the trajectory-based formalism for tomographic inversion and all the efficiencies that are associated with
this approach to imaging. Finally, the trajectory calculations are no longer coupled and we can compute
the paths one at a time, which also allows for simple parallelization if necessary.

References
Ascher, U. M., & Petzold, L. R. (1998). Computer methods for ordinary differential equations and differential-algebraic equations. Philadelphia,

PA: Society for Industrial and Applied Mathematics.
Bernabe, Y., Mok, U., & Evans, B. (2005). A note on the oscillating flow method for measuring rock permeability. International Journal of

Rock Mechanics and Mining Science, 43, 311–316.
Black, J. H., & Kipp, K. L. (1981). Determination of hydrogeological parameters using sinusoidal pressure tests: A theoretical appraisal. Water

Resources Research, 17, 686–692.
Bohling, G. C., Zhan, X., Butler, J. J., & Zheng, L. (2002). Steady shape analysis of tomographic pumping tests for characterization of aquifer

heterogeneities. Water Resources Research, 38(12), 1324. https://doi.org/10.1029/2001WR001176
Brauchler, R., Hu, R., Dietrich, P., & Sauter, M. (2011). A field assessment of high-resolution aquifer characterization based on hydraulic travel

time and hydraulic attenuation tomography. Water Resources Research, 47, W03503. https://doi.org/10.1029/2010WR009635
Brauchler, R., Hu, R., Vogt, T., Al-Halbouni, D., Heinrichs, T., Ptak, T., et al. (2010). Cross-well slug interference tests: An effective characteriza-

tion method for resolving aquifer heterogeneity. Journal of Hydrology, 384, 33–45.
Brauchler, R., Liedl, R., & Dietrich, P. (2003). A travel time based hydraulic tomographic approach. Water Resources Research, 39(12), 1370.

https://doi.org/10.1029/2003WR002262
Butler, J. J., Garnett, E. J., & Healey, J. M. (2003). Analysis of slug tests in formations of high hydraulic conductivity. Ground Water, 41, 620–630.
Butler, J. J., McElwee, C. D., & Bohling, G. C. (1999). Pumping tests in networks of multilevel sampling wells: Motivation and methodology.

Water Resources Research, 35, 3553–3560.
Cardiff, M., Bakhos, T., Kitanidis, P. K., & Barrash, W. (2013b). Aquifer heterogeneity characterization with oscillatory pumping: Sensitivity

analysis and imaging potential. Water Resources Research, 49, 5395–5410. https://doi.org/10.1002/wrcr.20356
Cardiff, M., & Barrash, W. (2011). 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response. Water Resources

Research, 47, W12518. https://doi.org/10.1029/2010WR010367

Acknowledgments
Work performed at Lawrence Berkeley
National Laboratory was supported by
the US Department of Energy under
contract DE-AC02-05-CH11231, Office
of Basic Energy Sciences of the US
Department of Energy. The main
contributions of this work are the
expressions for the extended
trajectories, no new data or models are
presented in this paper. The pressure
fields were computed using the
iTough2 package that is available
through Lawrence Berkeley National
Laboratory, see esd1.lbl.gov/research/
projects/tough/licensing/itough2.html.

Water Resources Research 10.1002/2017WR021360

VASCO EXTENDED TRAJECTORY-BASED MODELING 17

https://doi.org/10.1029/2001WR001176
https://doi.org/10.1029/2010WR009635
https://doi.org/10.1029/2003WR002262
https://doi.org/10.1002/wrcr.20356
https://doi.org/10.1029/2010WR010367


Cardiff, M., Barrash, W., & Kitanidis, P. K. (2013a). Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pump-
ing/observation densities. Water Resources Research, 49, 7311–7326. https://doi.org/10.1002/wrcr.20519

Carrera, J., & Neuman, S. P. (1986). Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood
method incorporating prior information. Water Resources Research, 22, 199–210.

Cash, J. R., & Carp, A. H. (1990). A variable order Runge-Kutta method for initial value problems with rapidly varying right-hand sides. ACM
Transactions on Mathematical Software, 16, 201–222.

Chapman, C. H. (2004). Fundamentals of seismic wave propagation. Cambridge, UK: Cambridge University Press.
Cheng, H., He, Z., & Datta-Gupta, A. (2005). A comparison of travel-time and amplitude matching for field-scale production data integration:

Sensitivity, non-linearity, and practical implications. Society of Petroleum Engineering Journal, 10, 75–90.
Cohen, J. K., & Lewis, R. M. (1967). A ray method for the asymptotic solution of the diffusion equation. Journal of the Institute for Mathemat-

ics and Its Applications, 3, 266–290.
Courant, R., & Hilbert, D. (1962). Methods of mathematical physics. New York, NY: John Wiley.
de Marsily, G. (1986). Quantitative hydrogeology. San Diego, CA: Academic.
Fujita, Y., Datta-Gupta, A., & King, M. J. (2015). A comprehensive reservoir simulator for unconventional reservoirs that is based on the Fast

Marching method and diffusive time of flight. SPE Journal, 21, 2276–2288. https://doi.org/10.2118/173269-PA
Garashchuk, S. (2010). Quantum trajectory dynamics in imaginary time with the momentum-dependent quantum potential. Journal of

Chemical Physics, 132, 014112. https://doi.org/10.1063/1.3289728
Garashchuk, S., Mazzuca, J., & Vazhappilly, T. (2011). Efficient quantum trajectory representation of wavefunctions evolving in imaginary

time. Journal of Chemical Physics, 135, 034104. https://doi.org/10.1063/1.3610165
Garashchuk, S., & Vazhappilly, T. (2010). Multidimensional quantum trajectory dynamics in imaginary time with approximate quantum

potential. Journal of Physical Chemistry, 114, 20595–20602. https://doi.org/10.1021/jp1050244
Goldfarb, Y., Degani, I., & Tannor, D. J. (2006). Bohmian mechanics with complex action: A new trajectory-based formulation for quantum

mechanics. Journal of Chemical Physics, 125, 231103.
He, Z., Datta-Gupta, A., & Vasco, D. W. (2006). Rapid inverse modeling of pressure interference tests using trajectory-based traveltime and

amplitude sensitivities. Water Resources Research, 42, W03419. https://doi.org/10.1029/2004WR003783
Hsieh, P. A., Neuman, S. P., Stiles, G. K., & Simpson, E. S. (1985). Field determination of the three-dimensional hydraulic conductivity tensor

of anisotropic media: 2. Methodology and application to fractured rocks. Water Resources Research, 21, 1667–1676.
Hu, R., Brauchler, R., Herold, M., & Bayer, P. (2011). Hydraulic tomography analog outcrop study: Combining travel time and steady shape

inversion. Journal of Hydrology, 409, 350–362.
Jacquard, P., & Jain, C. (1965). Permeability distribution from field pressure data. Society of Petroleum Engineering Journal, 5,

281–294.
Karasaki, K., Freifeld, B., Cohen, A., Grossenbacher, K., Cook, P., & Vasco, D. (2000). A multidisciplinary fractured rock characterization study

at the Raymond field site, Raymond California. Journal of Hydrology, 236, 17–34.
Kline, M., & Kay, I. W. (1965). Electromagnetics theory and geometrical optics. New York, NY: Interscience.
Kuo, C. (1972). Determination of reservoir properties from sinusoidal and multirate flow tests in one or more wells. Society of Petroleum

Engineering Journal, 12, 499–507.
Li, W., Nowak, W., & Cirpka, O. A. (2005). Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown.

Water Resources Research, 41, W08403. https://doi.org/10.1029/2004WR003874
Liu, J., & Makri, N. (2005). Bohm’s formulation in imaginary time: Estimation of energy eigenvalues. Molecular Physics, 103, 1083–1090.

https://doi.org/10.1080/00268970512331339387
Luneburg, R. K. (1966). Mathematical theory of optics. Berkeley, CA: University of California Press.
Luo, Y., & Schuster, G. T. (1991). Wave-equation traveltime inversion. Geophysics, 56, 645–653. https://doi.org/10.1190/1.1443081
Oliver, D. W. (1993). The influence of nonuniform transmission and storativity on drawdown. Water Resources Research, 29, 169–178.
Osher, S., & Fedkiw, R. (2003). Level set methods and dynamic implicit surfaces. New York, NY: Springer.
Paillet, F. L. (1993). Using borehole geophysics and cross-borehole flow testing to define connections between fracture zones in bedrock

aquifers. Journal of Applied Geophysics, 30, 261–279.
Podvin, P., & Lecomte, I. (1991). Finite-difference computation of traveltimes in very contrasted velocity models: A massively parallel

approach and its associated tools. Geophysical Journal International, 105, 271–284.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992). Numerical recipes. Cambridge, UK: Cambridge University Press.
Pruess, K., Oldenburg, C., & Moridis, G. (1999). TOUGH2 user’s guide, version 2.0 (LBNL Rep. 43134). Berkeley.
Rasmussen, T. C., Haborak, K. G., & Young, M. H. (2003). Estimating aquifer hydraulic properties using sinusoidal pumping at the Savannah

River Site, South Carolina, USA. Hydrogeological Journal, 11, 466–482.
Renner, J., & Messar, M. (2006). Periodic pumping tests. Geophysical Journal International, 167, 479–493.
Rucci, A., Vasco, D. W., & Novali, F. (2010). Fluid pressure arrival-time tomography: Estimation and assessment in the presence of inequality

constraints with an application to production at the Krechba field, Algeria. Geophysics, 75, O39–O55. https://doi.org/10.1190/1.3493504
Sethian, J. A. (1999). Level set methods and Fast Marching methods. Cambridge, UK: Cambridge University Press.
Vasco, D. W. (2004). Estimation of flow properties using surface deformation and head data: A trajectory-based approach. Water Resources

Research, 40, W10104. https://doi.org/10.1029/2004WR003272
Vasco, D. W. (2008). Zeroth-order inversion of transient pressure observations. Inverse Problems, 24, 1–21. https://doi.org/10.1088/0266-

5611/24/2/025013
Vasco, D. W., Daley, T. M., & Bakulin, A. (2014). Utilizing the onset of time-lapse changes: A robust basis for reservoir monitoring and charac-

terization. Geophysical Journal International, 197, 542–556. https://doi.org/10.1093/gji/ggt526
Vasco, D. W., & Datta-Gupta, A. (2016). Subsurface fluid flow and imaging. Cambridge, UK: Cambridge University Press.
Vasco, D. W., & Karasaki, K. (2001). Inversion of pressure observations: An integral formulation. Journal of Hydrology, 253, 27–40.
Vasco, D. W., Keers, H., & Karasaki, K. (2000). Estimation of reservoir properties using transient pressure data: An asymptotic approach.

Water Resources Research, 36, 3447–3465.
Vasco, D. W., & Majer, E. L. (1993). Wavepath traveltime tomography. Geophysical Journal International, 115, 1055–1069. https://doi.org/10.

1111/j.1365-246X.1993.tb01509.x
Virieux, J., Flores-Luna, C., & Gibert, D. (1994). Asymptotic theory for diffusive electromagnetic imaging. Geophysical Journal International,

119, 857–868.
Wyatt, R. E. (2005). Quantum dynamics with trajectories. New York, NY: Springer.

Water Resources Research 10.1002/2017WR021360

VASCO EXTENDED TRAJECTORY-BASED MODELING 18

https://doi.org/10.1002/wrcr.20519
https://doi.org/10.2118/173269-PA
https://doi.org/10.1063/1.3289728
https://doi.org/10.1063/1.3610165
https://doi.org/10.1021/jp1050244
https://doi.org/10.1029/2004WR003783
https://doi.org/10.1029/2004WR003874
https://doi.org/10.1080/00268970512331339387
https://doi.org/10.1190/1.1443081
https://doi.org/10.1190/1.3493504
https://doi.org/10.1029/2004WR003272
https://doi.org/10.1088/0266-5611/24/2/025013
https://doi.org/10.1088/0266-5611/24/2/025013
https://doi.org/10.1093/gji/ggt526
https://doi.org/10.1111/j.1365-246X.1993.tb01509.x
https://doi.org/10.1111/j.1365-246X.1993.tb01509.x


Yeh, T.-C. J., Lee, C. H., Hsu, K. C., & Wen, J. C. (2008). Fusion of hydrologic and geophysical tomographic surveys. Geosciences Journal, 12,
159–167.

Yeh, T.-C. J., & Liu, S. (2000). Hydraulic tomography: Development of a new aquifer test method. Water Resources Research, 36, 2095–2105.
Yin, D., & Illman, W. (2009). Hydraulic tomography using temporal moments of drawdown recovery data: A laboratory sandbox study.

Water Resources Research, 45, W01502. https://doi.org/10.1029/2007WR006623
Zhang, Y., Bansal, N., Fujita, Y., Datta-Gupta, A., King, M. J., & Sankaran, S. (2014). From streamlines to Fast Marching: Rapid simulation and

performance assessment of shale-gas reservoirs by use of diffusive time of flight as a spatial coordinate. SPE Journal, 21, 1883–1898.
https://doi.org/10.2118/168997-PA

Zhu, J., & Yeh, J. T.-C. (2006). Analysis of hydraulic tomography using temporal moments of drawdown recovery data. Water Resources
Research, 42, W02403. https://doi.org/10.1029/2005WR004309

Water Resources Research 10.1002/2017WR021360

VASCO EXTENDED TRAJECTORY-BASED MODELING 19

https://doi.org/10.1029/2007WR006623
https://doi.org/10.2118/168997-PA
https://doi.org/10.1029/2005WR004309

	l
	l
	l
	l
	l
	l
	l
	l
	l
	l



