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Abstract

Traditional fluorescence microscopy is constrained by inherent trade-offs among resolution, 

field of view, and system complexity. To navigate these challenges, we introduce a simple 

and low-cost computational multi-aperture miniature microscope, utilizing a microlens array for 

single-shot wide-field, high-resolution imaging. Addressing the challenges posed by extensive 

view multiplexing and non-local, shift-variant aberrations in this device, we present SV-

FourierNet, a multi-channel Fourier neural network. SV-FourierNet facilitates high-resolution 

image reconstruction across the entire imaging field through its learned global receptive field. We 

establish a close relationship between the physical spatially varying point-spread functions and 

the network’s learned effective receptive field. This ensures that SV-FourierNet has effectively 

encapsulated the spatially varying aberrations in our system and learned a physically meaningful 

function for image reconstruction. Training of SV-FourierNet is conducted entirely on a physics-

based simulator. We showcase wide-field, high-resolution video reconstructions on colonies 

of freely moving C. elegans and imaging of a mouse brain section. Our computational multi-

aperture miniature microscope, augmented with SV-FourierNet, represents a major advancement 

in computational microscopy and may find broad applications in biomedical research and other 

fields requiring compact microscopy solutions.

1. INTRODUCTION

Wide-field, high-resolution imaging plays a critical role across diverse scientific disciplines. 

Yet, traditional microscopy, which relies on single-objective lenses, is encumbered by a 

fundamental trade-off between field of view (FOV) and resolution [1]. To circumvent these 

constraints, array microscopes have been developed, facilitating rapid, wide-FOV image 
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acquisition [2–4]. These systems utilize an ensemble of microscopes, each having its own 

lens and image sensor, to expand the FOV without sacrificing resolution. Despite these 

advancements, the scalability and miniaturization of array microscopes are limited by their 

dependence on bulky, specialized image sensor arrays, which pose significant challenges 

in applications demanding portability and compactness, such as endoscopy [5], on-chip 

microscopy [6], and in vivo neural imaging [7]. Recently, lensless imaging techniques have 

emerged as a compact alternative by employing a phase mask [8,9] placed directly in front 

of a CMOS sensor. However, the removal of focusing optics leads to reduced contrast and 

signal-to-noise ratio (SNR), which restricts their sensitivity for imaging weak fluorescent 

signals [10,11].

To address these challenges, we introduce a computational multi-aperture miniature 

microscope (miniscope) that delivers wide FOV and micrometer resolution on a compact 

and lightweight device. Drawing inspiration from array microscopes, our design employs 

a microlens array (MLA) as the sole imaging component. Leveraging principles from 

lightfield and integral imaging techniques [12], our previous work has demonstrated single-

shot 3D imaging capability using such a design [13,14]. This work aims to provide a new 

perspective of this multi-aperture imaging system in order to address the challenges related 

to FOV and uneven resolution. Our approach is based on the premise that each lens within 

the MLA can capture a high-quality image of a distinct, albeit limited, sub-FOV [Fig. 

1(a)]. While individual lenses yield images that suffer from spatially varying aberrations and 

contrast loss towards the edges of their respective sub-FOVs, combining information from 

various microlenses enables the reconstruction of a high-resolution image over an extended 

FOV, as illustrated in Figs. 1(a) and 1(c).

Departing from conventional array microscopes, our system utilizes a single image sensor 

to enhance device miniaturization and portability. Unlike other MLA-based multi-aperture 

imaging designs [15–17] that employ physical barriers to isolate sub-images captured by 

individual microlenses, our system opts for an unobstructed arrangement to maximize the 

effective imaging FOV [13]. This design, however, introduces severe cross-talk between 

adjacent sub-images on the sensor, i.e., view multiplexing. Furthermore, the single-element 

MLA generates point-spread functions (PSFs) that contain widely separated array foci and 

exhibit considerable spatial variability, i.e., non-local and spatially varying PSFs. These 

complexities pose substantial challenges to achieving high-quality image reconstruction 

across the extended FOV.

Our solution to simultaneously tackle view multiplexing and non-local, spatially varying 

aberrations is to employ a deconvolution algorithm. Traditional model-based methods rely 

on iterative algorithms [18–20], which are computationally intensive and time-consuming. 

Additionally, the reconstruction quality is greatly affected by manually tuned regularization 

terms.

Recent progress in deep-learning-based spatially varying deconvolution methods have 

shown improvements in image quality and reconstruction speed [21,22], emerging as 

a promising alternative to model-based methods. However, deep-learning methods often 

suffer from two major limitations in terms of scalability and locality bias. Specifically, the 
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computational complexity and memory demands of convolutional neural networks (CNNs) 

increase with the input size. Thus, the direct application of CNNs to raw measurements 

containing tens of millions of pixels is impractical due to limited computational resources. 

The common workaround involves dividing raw images into smaller patches to make CNN 

training manageable. This method, however, assumes uniformity in the data distribution, 

and thus invariance in the PSFs for all image patches, overlooking the nuances due 

to spatially varying aberrations. Consequently, such CNN-based methods often exhibit 

degraded resolution at FOV periphery, where aberrations diverge from those in central 

regions [14].

A second challenge in using CNNs for handling non-local, spatially varying PSFs is the 

networks’ inherent locality bias [23,24], a result of the small filter sizes in convolution 

layers that restrict CNNs from capturing global information. Although increasing the CNN’s 

depth can broaden the “receptive field,” this approach escalates computational costs and 

complicates network training. The recently proposed MultiWienerNet and MultiFlatNet 

[21,22] address these issues by initially applying deconvolution with multiple Wiener filters 

informed by a set of pre-calibrated, spatially varying PSFs, followed by refinement through 

a CNN. Yet, this type of technique heavily depends on the choice of these initial PSFs 

that need to be sufficiently representative of the underlying spatially varying aberrations 

across the FOV. Our study also shows that this spatial domain learning approach cannot 

efficiently reconstruct high-resolution information due to the implicit bias towards low-

frequency features induced by the Wiener filtering process. An alternative approach is the 

Fourier domain neural network (FourierNet), which overcomes locality bias by applying 

filters directly in the Fourier domain [25–28]. This strategy explicitly takes advantage of 

the global processing capabilities of the Fourier transform, allowing FourierNet to achieve 

a global receptive field with minimal layers, thus efficiently sidestepping the limitations 

faced by traditional CNNs. While FourierNet has been successfully applied in spatially 

invariant imaging systems [26–28], its ability to address spatially varying systems remains 

unexplored.

In this work, we introduce spatially varying FourierNet (SV-FourierNet) to facilitate wide-

field, high-resolution reconstruction within our computational multi-aperture miniscope. We 

show that SV-FourierNet can be applied directly on full-FOV measurements containing 12 

million pixels, circumventing the uneven resolution constraints typically associated with 

patch-based training methods. Furthermore, by employing multiple learnable Fourier filters 

[Fig. 1(b)], SV-FourierNet is effective in addressing the view multiplexing and highly non-

local and spatially varying array PSFs in our multi-aperture miniscope. The multi-channel 

Fourier layer in SV-FourierNet effectively performs a blind deconvolution, based on a 

low-rank imaging model, to process the input measurement. The resulting multi-channel 

deconvolved outputs are then fused and refined by an enhancement network, yielding the 

final reconstructed image. Our study shows that this Fourier domain learning approach 

can more efficiently capture high-resolution information as compared to the spatial domain 

learning methods.

To elucidate the working principle of SV-FourierNet, we employ a gradient-based method to 

probe the network’s “effective receptive field (ERF)” [29]. This method identifies the points 
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in the measurement that most significantly affect the prediction of a specific point on the 

reconstructed object, closely resembling the PSF of our imaging system at the corresponding 

location. We show a close correspondence between SV-FourierNet’s ERFs and the physical 

PSFs at various field positions. This underscores that SV-FourierNet has encapsulated the 

spatially varying aberrations in our system and learned a physically meaningful function for 

image reconstruction.

Compared to current existing state-of-the-art model-based and deep-learning-based methods 

[14,21,22], SV-FourierNet demonstrates superior reconstruction quality, consistently higher 

resolution across the FOV, and enhanced inference speed. Trained entirely on a physics-

based simulator, we show experimentally that SV-FourierNet attains a uniform resolution 

of 7.8 μm across a 6.5 mm FOV. The network also provides consistent reconstruction 

quality across an extended depth of field (EDOF) over a 100 μm depth range. Additionally, 

we present wide-field, high-resolution video reconstructions of freely moving C. elegans 
colonies and imaging of a weakly scattering mouse brain section.

Our computational multi-aperture miniature microscope augmented with SV-FourierNet 

represents a significant advancement in computational microscopy, promising wide-ranging 

applications in biomedical research and other areas requiring compact imaging solutions.

2. METHODS

A. Multi-Aperture Miniscope

The multi-aperture miniscope is built with off-the-shelf and 3D-printed components. It uses 

an off-the-shelf plastic 3 × 3 MLA (1 mm pitch, No. 630, Fresnel Technologies Inc.), 

forming a finite conjugate imaging geometry with a working distance of ~7.5 mm and 

an MLA-sensor distance of ~4.5 mm. Each lens within the MLA captures an image of a 

distinct and limited sub-FOV, while the whole array covers an extended FOV (see more 

details in Section 1 in Supplement 1). For green fluorescence imaging, a hybrid filter set 

is incorporated, combining an interference filter (No. 535/50, Chroma Technology) placed 

in front of the MLA and a long-pass absorption filter (Wratten color filter No. 12, Edmund 

Optics) placed after the MLA. It uses a backside-illuminated (BSI) CMOS sensor (IM226, 

IDS Imaging) with 12 million pixels and 1.85 μm pixel size, achieving an effective pixel size 

of 2.8 μm. To validate the reconstruction results from our system, we set up a wide-field 

microscope to record fluorescence simultaneously with our miniscope. See more details in 

Section 9A–B in Supplement 1.

B. Spatially Varying Imaging Model

To bypass the need for extensive experimental data collection, we develop a highly efficient 

and accurate simulator to generate a comprehensive training dataset in silico. Building upon 

our previous work [14], this simulator incorporates a low-rank spatially varying imaging 

model, improved with insights from a ray-tracing model, as detailed below.

We first collect a set of calibrated PSFs by scanning a single fluorescent bead across a 7 mm 

× 7 mm FOV with a uniform step size of 250 μm. To showcase the strong spatial variance of 

the PSFs, we calculate the Pearson coefficient correlation (PCC) map on the calibrated PSFs 
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with respect to the on axis PSF, as shown in Fig. 2(a). The PCC map exhibits a rapid radial 

decay due to the limited angular response of the system and spatially varying aberrations 

from the MLA. The central line profile shows that the PCC decreases to 0.2 with a 3.5 mm 

displacement.

Next, we develop a low-rank model in three steps. To enhance computational efficiency, we 

first exploit the sparsity in the array PSF generated by the MLA and perform a cropping 

operation based on a ray tracing model to isolate each focal region (240 × 240 pixels) 

from the raw PSF measurement [Fig. 2(b)]. This method relies on the calibration of the 

chief ray of each microlens (ML) i, j  from an on-axis point source, which establishes the 

“anchor” coordinates in both the image space px0
i, j, qy0

i, j  and the object space x0, y0 . Given 

the depth z and the point source’s lateral coordinates x, y , the corresponding PSF centroids 

for each ML i, j px
i, j, qy

i, j  are linearly proportional to the magnification Mz and the object 

displacement:

px
i, j = px0

i, j − Mz ⋅ x − x0 ,
qy

i, j = qy0
i, j − Mz ⋅ y − y0 .

(1)

Contrasting with cross-correlation methods typically employed to locate centroids of 

calibrated PSFs [14,30], our ray tracing model embeds the image distortion information into 

the PSF patches. The distortion is characterized by the subsequent decomposition process 

and corrected during the reconstruction phase.

Second, to approximate the system’s spatial variance, we implement truncated singular 

value decomposition (TSVD) on the cropped foci for each individual ML, denoted as 

Hi, j p, q; x, y . Unlike our previous work [14] that performs a global decomposition on the 

array PSFs, our new method decomposes the foci of each ML independently. This is based 

on the observation that aberrations tend to be more consistent within a single ML but vary 

across MLs, largely due to the manufacturing variations, as shown in Fig. 2(b). Exploiting 

these distinct aberrations, our single-ML decomposition method effectively reduces the rank 

of the imaging model and computational complexity by 2× without compromising the model 

accuracy [Fig. 2(c)]. The decomposition process can be written as

Hi, j p, q; x, y ≈ ∑
k = 1

K
Mk

i, j x, y Bk
i, j p, q ,

(2)

where Mk
i, j x, y  and Bk

i, j p, q  denote the kth coefficient map and basis PSF for ML i, j , 

respectively. We select K = 32, achieving an approximation error of ~2.5% on the calibration 

set.

Finally, the spatially varying model is implemented in two steps, as shown in Fig. 2(d). First, 

the object is element-wise multiplied with a coefficient map and then convolved with the 
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corresponding basis PSF for each ML. The K weighted convolutions are summed to form a 

single-ML measurement. Next, all the single ML measurements are “placed back” according 

to the pre-calibrated anchor location px0
i, j, qy0

i, j , and then summed together to construct the 

final multiplexed measurement. This process is described as

g p, q =
i, j = 1

3

k = 1

K
Mk

i, j p, q ⊙ O p, q ⊛p, q Bk
i, j p, q ,

(3)

where O p, q  is the object’s fluorescence distribution, and the image space coordinates p, q
are related to the object space coordinates x, y  by Eq. (1).

To expedite the simulation process, sub-images from individual MLs are computed in 

parallel, allowing the model to generate a measurement within 30 s. The sensor noise is 

sampled from a pre-calibrated mixed Poisson–Gaussian noise model. The noise is added to 

the measurements in the data loader as a form of “online” data augmentation during the 

training process, which ensures that the synthetic measurements closely approximate real 

imaging conditions (see details in Section 3.B in Supplement 1).

The spatially varying imaging model is validated by comparing the simulated and 

experimental measurements on the same object containing randomly distributed particles, 

shown in Fig. 2(e) (see details in Section 3.A in Supplement 1). The agreement between 

simulation and experiment, measured by PCC, achieves 0.92, indicating our model’s 

accuracy. Furthermore, two zoomed-in regions show that the model accurately reproduces 

the aberrations present in the physical measurement.

To promote generalization of SV-FourierNet, we simulate training data by applying our low-

rank model to a diverse set of biological images collected from online repositories [31–35], 

including cells, vasculature, and brain sections, as well as synthetically generated fluorescent 

particles with random size, brightness, and locations, yielding around 5000 training images 

(see details in Section 3.C in Supplement 1).

C. SV-FourierNet Design

SV-FourierNet features high scalability and effective processing of global spatial 

information, enabling the direct processing of raw measurements containing 12 million 

pixels. This capability allows it to simultaneously address the challenges of view 

multiplexing and non-local, spatially varying aberrations in our system.

SV-FourierNet comprises two core modules, including a blind Fourier deconvolution module 

and an enhancement module, as shown in Fig. 3. The measurement is first Fourier 

transformed into the frequency domain, followed by element-wise multiplication with 

multiple learnable complex Fourier filters, whose weights are initialized with a uniform 

distribution U 0,1 . The filtered results are then inverse Fourier transformed back to the 

spatial domain, resulting in the initial multi-channel reconstructions.
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The Fourier-domain blind deconvolution approach in SV-FourierNet, in contrast to 

MultiWienerNet/MultiFlatNet [21,22], bypasses the need for pre-selecting PSFs and 

facilitates the efficient learning of a low-rank Fourier basis. Additionally, by leveraging the 

conjugate symmetry of the Fourier transform, SV-FourierNet halves the number of training 

parameters required compared to those needed for learning directly in the spatial domain 

[21,22]. SV-FourierNet employs nine Fourier filters to collectively account for the spatial 

variance in our system. The number of filters is crucial as it dictates the network’s capacity 

for nonlinearity. We have conducted an ablation study on the number of Fourier filters, 

which revealed that increasing the number of filters improves resolution and reconstruction 

quality but at the cost of memory consumption. Given the trade-off between network 

performance and computational cost, we have opted for nine channels to facilitate the 

spatially varying reconstruction (see details in Section 4.C in Supplement 1).

The enhancement module employs a modified residual channel attention network (RCAN) 

[36], which includes a down-scaling module, a residual in residual (RIR) block, and an up-

scaling module. Each RIR block connects two residual groups with a long skip connection, 

facilitating information fusion across different scales. Channel attention modules embedded 

within the residual groups dynamically adjust the channel-wise feature weights, essential 

for synthesizing information from different Fourier channels. To prevent overfitting and 

to improve generalizability, the enhancement module is designed to be lightweight, with 

approximately 0.18 million parameters. Additional details about the network implementation 

are in Section 4.B in Supplement 1. In addition, cropping and padding operations are 

implemented in the data loader to address the periodic ambiguity characteristic of array 

PSFs (see details in Section 4.A in Supplement 1).

The loss function is a sum of binary cross entropy (BCE) and mean squared error (MSE):

Ltotal = LBCE + LMSE,

(4)

LBCE = 1
n ∑

i = 1

n
yilog ŷi + 1 − yi log 1 − ŷi ,

(5)

LMSE = 1
n ∑

i = 1

n
yi − ŷi

2,

(6)

where yi and ŷi represent the true and predicted values, respectively, i indexes the pixel, 

and n is the total number of pixels. This dual-loss approach leverages BCE for enhancing 

the reconstruction of sharp features and MSE for capturing intensity variations, guiding 

the model towards accurate reconstructions in both structure and intensity. Gradient 

Yang et al. Page 7

Optica. Author manuscript; available in PMC 2025 January 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



backpropagation from this loss updates the weights of both the Fourier filters and the 

enhancement module in an end-to-end manner.

We implement SV-FourierNet in PyTorch on an Nvidia A40 GPU. Training is conducted 

entirely on a simulated dataset with a batch size of 4. Optimization employs the Adam 

optimizer alongside a cosine annealing scheduler, with the entire training process spanning 

approximately 48 h. (See detailed loss curve in Section 4.D in Supplement 1).

D. Computation of the ERF

To assess SV-FourierNet’s ability to encapsulate non-local, spatially varying aberrations and 

learn a physically meaningful inverse mapping, we calculate its ERF after the network is 

trained. This involves gradient backpropagation from a pixel on the reconstructed object 

to the input measurement [29], effectively measuring the influence of the measurement on 

a specific object pixel and generating a localized heatmap. In practice, this heatmap not 

only depends on the network’s trained weights, but also varies with different input objects, 

making it input-dependent. The ERF is the ensemble average of the heatmaps across a large 

dataset, effectively making it input-independent. The SV-FourierNet’s ERF is computed 

using a set of 520 test images. (See detailed implementation in Section 5.A in Supplement 

1).

We emphasize that the ERF-based method of visualizing the network’s response offers 

more insights into the network’s learned functional mapping compared to other techniques 

such as the saliency map [37] and Grad-CAM [38], which often produce more ambiguous 

heatmaps and are designed to operate on an individual input basis. The strength of our 

ERF-based analysis lies in its capacity to calculate a statistically averaged response, making 

the resulting heatmaps agnostic to the input. If the network fails to learn a meaningful 

mapping, the most likely ERF is a feature-less blur across a substantial portion of the input 

field, a consequence of the averaging process [29]. The highly localized ERFs suggests that 

SV-FourierNet has learned to generalize across different objects, and the learned mapping 

function aligns closely with the underlying imaging model.

E. Model-Based Reconstruction Algorithms

We derive and implement an LSV model-based algorithm based on solving a regularized 

least-squares problem using the alternating direction method of multiplier (ADMM) 

algorithm, as detailed in Section 2 in Supplement 1.

3. RESULTS

A. SV-FourierNet’s Learned ERF Aligns with Physical PSFs

We observe that the ERFs of the network closely resemble the definition of the PSFs of 

the physical imaging system. To discern whether SV-FourierNet has learned a meaningful 

reconstruction function beyond mere image feature recognition, we directly compare SV-

FourierNet’s ERFs with the system’s PSFs across different field locations.

SV-FourierNet’s ERFs contain both positive and negative components. The positive ERF 

components indicate that specific pixels in the measurement lead to an increase in intensity 
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at the reconstructed pixel by SV-FourierNet. Given that PSFs in fluorescence imaging 

are inherently positive, it is the positive ERF components that parallel the physical PSFs 

function. As shown in Fig. 4, SV-FourierNet’s ERFs are highly localized and closely match 

the physically measured PSFs across the field. At the FOV center, the ERF aligns with 

the physical PSF, containing a widely distributed 3 × 3 foci array, as shown in Fig. 4(a). 

This demonstrates that SV-FourierNet has learned a global receptive field to synthesize 

information across the entire measurement and the network’s effective response agrees with 

the physical response of the imaging system. Near the FOV edges, due to the sensor’s finite 

size and the system’s limited angular response, the physical PSFs are truncated to 2 × 3 

or 3 × 2 foci array, respectively, as shown in Figs. 4(b) and 4(c). Nevertheless, the ERFs 

precisely localize the physical foci. This showcases SV-FourierNet’s capability to learn 

the severe spatial variance in the imaging model, including handling image truncation—a 

case that often induces numerical artifacts in model-based methods [39]. In addition, when 

assessing a point outside the SV-FourierNet’s trained FOV, the physical PSF appears as 

a truncated 2 × 2 foci array with noticeable contrast loss [Fig. 4(d)]. However, the ERF 

aligns precisely with this pattern, underscoring SV-FourierNet’s ability to learn a physically 

accurate inverse mapping. This ensures model generalization even beyond the trained FOV 

boundaries. Zoomed-in views of the foci regions further elucidate the severe aberrations and 

spatial variability of the PSFs, along with the precise co-localization between the ERFs and 

the physical PSFs. A detailed quantitative analysis and the evolution of ERF throughout the 

training process are provided in Section 5B–C in Supplement 1.

The negative ERF components demonstrate SV-FourierNet’s capability to suppress 

aberrations and demultiplex overlapping views in the measurement. These negative 

components, as detailed in Section 5.D in Supplement 1, either surround the positive ERF 

to enhance resolution or create an additional periodic array foci pattern that corresponds 

to the MLA’s periodicity. This pattern arises from the measurement’s ambiguity caused 

by the MLA’s periodic structure, where displacement by a distance equal to the foci 

array’s period results in nearly identical measurements. The differences are only due to 

unique aberrations of the individual microlenses and the image truncation by the system. 

SV-FourierNet navigates this complexity by leveraging distinct aberration patterns across 

microlenses, accentuating the accurate object components through positive ERF components 

while suppressing contributions from ambiguous components via negative ERF components.

Finally, to elucidate the physical mapping function learned by the blind deconvolution 

module of SV-FourierNet, excluding the nonlinearity induced by the enhancement network 

module, we compute and visualize the equivalent spatial domain filters by transforming the 

learned Fourier filters to the real space, as detailed in Section 6.A of Supplement 1. Notably, 

the visualization reveals that almost all the spatial domain filters exhibit 3 × 5 foci, which 

contrasts with the physical PSFs that contain 3 × 3 (or fewer) foci. To further understand this 

result, we compute the pseudo-inverse of the first nine basis PSFs derived via TSVD from 

experimentally calibrated PSFs, as detailed in Section 6.B of Supplement 1. These basis 

filters from our physical model show a high degree of similarity to the filters learned by 

SV-FourierNet, each also displaying a 3 × 5 array of foci. Thus, our physical interpretation 

of the learned Fourier filters is a low-rank approximation of the pseudo-inverse of the LSV 

imaging model.
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B. Demonstration of Consistent Resolution Across a Wide FOV and an EDOF

To showcase our system’s capability to achieve uniform resolution across a wide FOV, we 

characterize the resolution at both the FOV center and edges by imaging a fluorescence 

resolution target, as shown in Fig. 5(a). We also compare the reconstructions with the 

raw measurements from the central lens, which underscores the resolution enhancement 

and FOV expansion enabled by SV-FourierNet. In the central FOV, SV-FourierNet’s 

reconstruction surpasses those from the central lens in both resolution and contrast, 

illustrating the network’s efficiency in effectively synthesizing information from multiple 

lenses for high-resolution reconstructions. At the FOV periphery, where the central lens 

exhibits pronounced aberration and vignetting artifacts, SV-FourierNet robustly reconstructs 

the target with high resolution, showcasing the network’s capability to account for strong 

spatially varying aberrations. The line profiles further affirm SV-FourierNet’s capacity to 

achieve a consistent 7.8 μm resolution vertically and horizontally at both central and 

peripheral FOV regions. (See resolution characterization at additional FOV positions in 

Section 8.C in Supplement 1).

In addition, we characterize the reconstructed resolution of SV-FourierNet by computing 

the power spectral density (PSD). This analysis is performed on patches at different 

radial displacements and across various experimental samples. The PSD exhibits minimal 

variation, indicating that SV-FourierNet achieves consistent resolution across the FOV and 

demonstrates robustness to different experimental samples. (See details in Section 8.D of 

Supplement 1).

Furthermore, we show that the system achieves consistent resolution across an EDOF. We 

characterize the system resolution across the depth by axially scanning the fluorescent 

resolution target with 10 μm step size, as shown in Fig. 5(b). SV-FourierNet maintains 

consistent resolution within the [−50 μm, 50 μm] depth range, as indicated in the zoomed-in 

regions labeled by a white box. Beyond this depth range, the resolution begins to gradually 

degrade, and the background exhibits ghosting artifacts, as marked by the red arrow. (See 

additional resolution characterization across an EDOF on FOV edges in Section 8.B in 

Supplement 1). These results demonstrate that SV-FourierNet, although trained at a single 

depth, can effectively generalize to an EDOF, providing robustness against depth variations 

and tilt during experiments.

C. SV-FourierNet Achieves State-of-the-Art Reconstruction Quality and Speed

To demonstrate the superior performance of SV-FourierNet, we compare the reconstructions 

from our network with the LSV-model-based ADMM algorithm and the existing state-of-

the-art reconstruction networks, including CM2Net [14] and MultiWienerNet [21]. We 

demonstrate that SV-FourierNet achieves the best reconstruction quality with the fastest 

inference speed on diverse types of samples in simulation and experiments.

To ensure a fair comparison between the deep learning models, we employ the same 

loss function and training strategy across all models. Each model is first trained on the 

same dataset for 48 h. The optimal models achieving the highest SSIM are then chosen 

for the benchmark comparison (see details in Section 7 in Supplement 1). Moreover, the 
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architecture of the enhancement network within MultiWienerNet is modified to be the same 

as that of SV-FourierNet. The detailed architecture of the benchmark networks can be found 

in Section 7 in Supplement 1.

We compare the reconstruction results from CM2Net, MultiWienerNet, SV-FourierNet and 

the LSV ADMM algorithm on both simulated testing data and experimental measurements, 

shown in Fig. 6. From metrics evaluation, SV-FourierNet achieves the best PSNR and 

image quality. (Additional quantitative analysis on simulated testing data is provided 

in Section 7 in Supplement 1). From the resolution target reconstruction results, SV-

FourierNet demonstrates superior resolution compared to CM2Net, and MultiWienerNet 

and is comparable to the LSV ADMM algorithm. Notably, at the edge of the FOV, 

SV-FourierNet maintains consistently high resolution, whereas other techniques exhibit 

degraded resolution, as detailed in Section 8.A of Supplement 1. By visual inspection, 

CM2Net suffers from severe ghosting artifacts and a degradation in performance at the 

FOV’s peripheral regions. This is attributed to CM2Net’s patch-based training strategy, 

which neglects the strong shift variance between patches. Similar artifacts are observed in 

reconstructions from the model-based deconvolution algorithm using a spatially invariant 

model (see details in Section 2.A in Supplement 1), demonstrating the importance of 

accounting for spatially varying degradation in the reconstruction process.

MultiWienerNet improves reconstruction performance at the FOV edge through multiple 

initial Wiener deconvolutions. However, it fails to preserve high-resolution details and 

suffers from pronounced background artifacts compared to SV-FourierNet. In addition 

to superior image quality, SV-FourierNet outperforms other methods with its enhanced 

reconstruction speed and less computational load. By leveraging the fast Fourier transform’s 

computational efficiency, SV-FourierNet achieves a 20× speedup compared to CM2Net. 

Furthermore, by utilizing the Fourier transform’s symmetry property for real-valued signals 

and avoiding the additional computational costs associated with Wiener deconvolution, 

SV-FourierNet reduces 2× memory consumption and achieves a 2× speedup over 

MultiWienerNet. (See additional comparisons for experimental and simulation results in 

Section 7 in Supplement 1).

To understand the superior performance of SV-FourierNet and our training strategy, we 

conducted extensive ablation studies, leading to two main insights: the impact of PSF/filter 

initialization and the choice of learning domain (spatial versus Fourier). First, initializing 

with physical PSFs, regardless of the learning domain, results in reduced resolution and 

pronounced noisy artifacts (see Section 6.D in Supplement 1). This is because physical 

PSF initialization introduces unwanted locality biases and inherent noise in the PSF 

measurements. Inspecting the learned filters in MultiWienerNet initialized with physical 

PSFs (Section 6.C in Supplement 1) reveals that the learning process primarily adds non-

interpretable noisy features to the filters, similar to those reported in [21]. This argument is 

further corroborated by the ERF of MultiWienerNet (Section 5.B in Supplement 1), which 

shows severe noisy artifacts in the learned functions. Similar artifacts are observed when 

SV-FourierNet is trained with the same physical PSF initialization, instead of the random 

initialization used in our method. Replacing the physical PSF initialization with the same 

random initialization allows MultiWienerNet to converge to more physically meaningful 
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filters, similar to those learned by SV-FourierNet, but with reduced resolution. These results 

lead to our second insight: learning in the spatial domain generally results in inferior 

resolution compared to learning in the Fourier domain. This can be explained by two factors: 

the smooth PSF spectrum improves the conditioning of the learning problem, and Fourier 

domain learning eliminates an unnecessary Fourier transform operation in the spatial domain 

approach, reducing noise and error propagation.

D. Experimental Demonstration on a Colony of Freely Moving C. elegans

To showcase our system’s capability in imaging large-scale dynamic biological processes, 

we image colonies of freely moving C. elegans. Details about the sample preparation are 

provided in Section 9.D in Supplement 1. The SV-FourierNet reconstruction [Fig. 7(a)] and 

concurrent wide-field measurements [Fig. 7(b)] are compared.

We compare the full-FOV reconstruction of a single frame from SV-FourierNet with 

the corresponding wide-field measurement. The reconstruction accurately recovers all 

the C. elegans, including those in central and edge FOV regions, showcasing consistent 

performance across the extensive FOV. To further demonstrate that our system is robust to 

dynamic movements and varying local contrast, we compare sequences of SV-FourierNet 

reconstructions and wide-field measurements for the area marked by the white box. These 

comparisons demonstrate that SV-FourierNet is capable of accurately recovering not only 

the larger, high-contrast C. elegans but also the younger specimens with faint fluorescence 

signals, as indicated by the yellow dashed box. Additionally, our system effectively recovers 

the dynamic movements of the C. elegans population, with a video shown in Visualization 1.

E. Experimental Demonstration on Fixed Brain Section

To demonstrate our system’s capability for high-quality imaging of complex biological 

tissues, we image a 75 μm thick, weakly scattering brain section containing GFP-expressing 

neurons in the bed nucleus of the stria terminalis (BNST). The BNST, crucial in 

regulating emotional and stress responses, is bilaterally located on either side of the brain, 

approximately 2.5 mm apart, with each region extending about 2 mm. These regions are 

characterized by their intricate spatial structure and varying neuron density levels. (Detailed 

sample information is in Section 9.C in Supplement 1).

First, we evaluate the full-FOV SV-FourierNet reconstruction by comparing it with a 2× 

wide-field measurement. Upon visual inspection, SV-FourierNet reliably reconstructs the 

bilateral structure of the labeled brain regions, as shown in Fig. 8(a). We then compare 

the reconstructions of four zoomed-in regions from both sides of the brain section with 

10× wide-field measurements [shown in Fig. 8(b)]. SV-FourierNet accurately reconstructs 

neuronal structures from both densely and sparsely populated areas. (An additional overlay 

comparison between SV-FourierNet reconstruction and 2× wide-field measurement is 

provided in Section 9.E of Supplement 1). These results demonstrate that SV-FourierNet, 

trained entirely on simulated data, can generalize to complex brain tissues, provide cellular 

resolutions across the entire brain section, and is robust against weak tissue scattering.
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4. CONCLUSION

We present a computational multi-aperture miniscope augmented with SV-FourierNet that 

performs single-shot high-resolution wide-FOV imaging. Our system is simple and compact, 

using only a single MLA for imaging. Unlike studies focusing on exploiting the 3D 

imaging capability with an MLA [13], we introduce a novel computational framework to 

expand the FOV while ensuring uniform high resolution throughout. Our main innovation is 

SV-FourierNet, which employs multiple learnable Fourier filters to synthesize information 

over an extended FOV, addressing spatially varying aberrations and view multiplexing 

inherent to our system. Furthermore, we demonstrate a novel utility of the network’s ERF in 

elucidating the mapping function it learns. We show that SV-FourierNet learns a physically 

meaningful reconstruction function for the spatially varying imaging model, achieving 

uniform resolution throughout the extended FOV. Trained exclusively on simulated data, SV-

FourierNet exhibits robust generalization to diverse experimental samples, as demonstrated 

on resolution targets, fluorescent beads, live C. elegans, and brain tissue sections. This 

underscores SV-FourierNet’s potential for a wide array of applications within biomedical 

research and beyond.

We show SV-FourierNet’s superior capability to demultiplex cross-talks between regular 

MLAs and tackle severe spatially varying degradation in 2D imaging scenarios. This 

principle also holds promise for expanding the FOV in 3D imaging applications. For 

example, the Fourier lightfield microscope employs a field stop to prevent view multiplexing 

between lenses, which inevitably reduces the FOV in proportion to the lens count, thus 

limiting its imaging capacity for large-scale biological processes [40]. Our strategy suggests 

the possibility of removing the field stop and harnessing view multiplexing to increase the 

FOV without compromising spatial resolution. In 3D multi-aperture microscopes with view 

multiplexing, such as CM2, existing 3D reconstruction algorithms suffer from resolution 

degradation near the FOV edges [14]. Extending SV-FourierNet to 3D imaging may 

substantially improve the imaging volume with uniform 3D resolution. Thus, we anticipate 

that SV-FourierNet could offer a novel paradigm for single-shot wide-FOV high-resolution 

volumetric imaging.

SV-FourierNet effectively learns global shift-variant inverse filters in the frequency domain, 

which not only significantly enhances image quality with higher spatial resolution but also 

substantially reduces the computational burden compared to spatial domain learning. This 

reduction is crucial for model scalability, especially when handling large volumes of data. 

To further decrease model size and computational load, a promising direction involves 

exploring the sparse nature of the system’s PSFs. Such reduction in the model size will 

enable SV-FourierNet to be adapted to more challenging applications, such as volumetric 

shift-variant deconvolution.

For the first time to our knowledge, we establish a connection between the ERF of 

a deconvolution network and the underlying physical imaging model. This enables a 

straightforward visualization of the function learned by the network, alleviating the “black 

box” aspect often associated with the deep learning networks. Furthermore, the ERF 

can offer a promising tool to inform network design and allow for assessing network 
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performance and alignment between the trained deconvolution model and the physical 

optical system by visualizing deviations of the ERFs from the physical PSFs.

Our accurate and efficient physics simulator eliminates the need for extensive and laborious 

physical data collection, facilitating a broad data distribution, which is particularly impactful 

when ground truth is difficult to obtain. These simulated training data are crucial for the 

network’s ability to generalize robustly across different experimental data types. To broaden 

the platform’s application to more complex scattering biological tissues, it is possible to 

integrate the scattering process into the imaging model [41]. With training data derived 

from this enhanced imaging model, we anticipate the platform’s utility to more challenging 

biomedical imaging applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
System overview. (a) Illustrations of the capability of individual lenses within the MLA, 

each focusing on a specific sub-FOV, with noticeable aberrations and diminishing contrast at 

the periphery. (b) Process of SV-FourierNet, where the captured image is first transformed 

into the Fourier domain and processed by multiple learnable filters for initial deconvolution, 

followed by information fusion and enhancement by a network to yield the final output. (c) 

The SV-FourierNet reconstruction achieves enhanced image quality and uniform resolution 

across an expanded FOV.
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Fig. 2. 
Spatially varying imaging model. (a) Spatial variance is quantified by the PCC map and the 

central line profile, which both exhibit a marked decline as the point source shifts away from 

the FOV center. (b) The low-rank model is computed on calibrated PSFs, which are cropped 

around each ML’s foci to enhance computational efficiency. The foci captured at different 

point source locations under the same ML show similar aberrations. TSVD is performed 

to compute the basis PSFs and coefficient maps for each ML. (c) Compared to the array 

decomposition method, the single-ML decomposition method reduces the model’s rank by 

2× while maintaining accuracy. (d) The final imaging model involves computing K weighted 

convolutions between the object and the basis PSFs for each ML and a superposition of all 

MLs to yield the multiplexed measurement. (e) The model is validated by comparing the 

simulated and physical measurements from the same object containing randomly distributed 

10 μm fluorescent particles.
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Fig. 3. 
SV-FourierNet structure. The full measurement is first sent to the Fourier blind 

deconvolution module to perform initial reconstructions, followed by the enhancement 

module to form the final reconstruction.
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Fig. 4. 
SV-FourierNet’s ERFs closely match the physically measured PSFs. The figures show the 

overlay between SV-FourierNet’s positive ERF components (in magenta) and the physical 

PSFs (in cyan) at various locations: (a) the FOV center; (b), (c) near the FOV edges; and (d) 

beyond the training FOV. For the insets, the gray region represents a quarter of the circular 

FOV, marked by a grid with 1 mm intervals. The yellow marker denotes the specific position 

of the object point.
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Fig. 5. 
Resolution characterization. (a) SV-FourierNet reconstruction of fluorescent resolution 

target at the FOV center and edges, compared with measurements from the central lens to 

highlight the enhanced resolution and extended FOV achieved by our system. Line profiles 

confirm the system achieves a consistent 7.8 μm resolution both vertically and horizontally, 

at both FOV center and edges. (b) SV-FourierNet maintains a consistent resolution within 

a 100 μm depth range. Beyond this range, resolution begins to degrade, and background 

artifacts appear, as indicated by the red arrow.
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Fig. 6. 
Comparison of SV-FourierNet with existing state-of-the-art networks and LSV model-based 

algorithm (ADMM) on simulated and experimental datasets. (a) Reconstruction results 

from simulated cell measurement. SV-FourierNet achieves the best PSNR and SSIM. (b) 

Reconstruction result from experimental measurement on a resolution target. SV-FourierNet 

provides the best spatial resolution (highest spatial resolution achieved by each method is 

marked by the yellow box) and the fastest inference speed.
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Fig. 7. 
Imaging of a freely moving C. elegans colony. (a) SV-FourierNet’s reconstruction captures 

the rapid movement of the C. elegans across a 6.5 mm FOV. (b) The reconstructions 

agree well with the concurrent wide-field measurements across the entire FOV and zoomed-

in regions, demonstrating our system’s capacity to robustly image complex biological 

dynamics on a large scale.
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Fig. 8. 
Imaging of a 75 μm thick brain section. (a) SV-FourierNet reconstruction (with the raw 

measurement as an inset) aligns with the wide-field measurement from a 2× 0.1NA 

objective, showcasing the network’s ability for accurate reconstruction across an entire 6.5 

mm brain section. (b) In the zoomed-in regions, SV-FourierNet reconstructions (with yellow 

image borders) agree with wide-field measurements from a 10× 0.25NA objective (with red 

image borders), demonstrating our network’s capacity to achieve reconstruction at cellular 

resolution.
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Imaging of dynamic movements of the C. elegans population over a wide FOV.
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