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ABSTRACT: Traditional σ, π, and δ types of covalent chemical bonding have been extensively
studied for nearly a century. In contrast, ϕ-type bonding involving nf (n = 4, 5) orbitals has
received less attention due to their high contraction and minimal orbital overlap. Herein, we
theoretically predict a singly occupied ϕ···ϕ bonding between two 5f orbitals, facilitated by B6
group orbitals in the hexa-boron diuranium inverse sandwich structure of U2B6. From ab initio
quantum chemical calculations, the global minimum structure has a septuplet state with D6h
symmetry. Chemical bonding analyses reveal that the 5f and 6d atomic orbitals of the two uranium
atoms interact with the ligand orbitals of the central B6 ring, exhibiting favorable energy matching and symmetry compatibility to
form delocalized σ-, π-, δ-, and ϕ-type bonding orbitals. Notably, even though the ϕ···ϕ bonding orbital is singly occupied, it still has
a significant role in stability and cannot be overlooked. Furthermore, the U2B6 cluster model can be viewed as a building block of
UB2 solid materials from both geometric and electronic perspectives. This work predicts the first example of ϕ···ϕ bonding,
highlighting the complexity and diversity of chemical bonds formed in actinide boride clusters.

1. INTRODUCTION
The concept of the chemical bond is a fundamental
cornerstone of modern chemical science.1−3 In 1931, Mulliken
and Urey established the connection between spectroscopic
symbolism and notation for various chemical bonds.4−6 Since
then, covalent chemical bonds in linear molecules can be
categorized based on their symmetry and the number of nodal
planes along the internuclear axis, including σ, π, δ, and ϕ
bonds, which correspond to angular momentum Λ = 0, ±1,
±2, and ±3, respectively.6,7 Among these, σ bonds, formed by
head-on overlapping of orbitals, are generally stronger than π
and δ bonds, commonly observed in compounds with multiple
bonds.8−14 In organic and main-group inorganic chemistry, σ
and π bonds are ubiquitous, while δ bonding was first
identified in 1965 by Cotton as part of the rhenium−rhenium
quadruple bond in [Re2Cl8]2−.

15

In 1981, Bursten and Ozin proposed the existence of ϕ-type
bonding between 5f orbitals in the U2 molecule, but
multireference ab initio calculations later revealed this to be
antiferromagnetic coupling rather than true ϕ bonding due to
minimal overlap of the contracted 5f orbitals.16,17 Since only 5f
orbitals can potentially form ϕ bonding interactions, locating
such bonds has been a significant challenge in chemical
bonding theory.
Actinide−ligand interactions provide fertile ground for

exploring novel bonding features. In Cp-supported uranium
metallacyclocumulene complexes, potential ϕ-type interactions
have been suggested through side-to-side interactions between
U (5f1) and Cp ligands.18,19 The U(C8H8)2 sandwich complex
has also shown subtle ϕ bonding interactions via side-to-head
patterns.20 Recent studies have reported head-to-head ϕ back-
bonding from uranium f-orbitals into allyl π* orbitals in allyl

uranium sandwich complexes.21 Despite these advances, direct
ϕ···ϕ bonding in diactinide compounds remains elusive.
Inverse sandwich complexes with aromatic central rings

connected to two metals often exhibit diverse delocalized
bonds between the metals and the central ring.22−30 In most of
these complexes, ring-coupled σ- and π-type bonding arises
from the matching energy levels between the group orbitals of
the central ring and the metal orbitals. The diffuse spatial
distribution of the metal orbitals allows them to interact with
zero- and one-node ring orbitals, forming delocalized σ- and π-
bonds, respectively. Cummins and co-workers identified a
special δ bond critical for the stability of diuranium inverse
sandwich complexes.31,32 Dilanthanide (Ln) inverse sandwich
complexes, such as Ln2B8, have been reported to exhibit δ
bonds formed by 5d δ and two-node antibonding π orbitals of
the B8 ring, enhancing Ln−B8−Ln interactions.33 Inspired by
these findings, we hypothesized that ϕ···ϕ bonding could be
facilitated in diactinide inverse sandwich structures by the
appropriate ligand orbitals in the central ring.
Here, we present a quantum chemical study of unique one-

electron ϕ···ϕ bonding mediated by delocalized orbitals of a B6
central ring in a diuranium inverse sandwich complex, U2B6.
Using both density functional theory (DFT) and wave
function theory (WFT), we demonstrate that the global
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minimum structure of U2B6 is indeed an inverse sandwich.
This structure features all four types of chemical bonds: σ, π, δ,
and ϕ. Although the ϕ···ϕ bonding orbital, formed by two U 5f
orbitals and three-node antibonding σs3 group orbitals of B6, is
singly occupied, it still contributes non-negligibly (1.7%) to the
total orbital interaction between U···U and B6. Furthermore,
the uranium diboride UB2 solid phase, which can be viewed as
“cluster-assembly materials”34 comprising U2B6 units, also
exhibits this ϕ bonding. This work provides theoretical insights
into identifying ϕ···ϕ bonding in f-element compounds.

2. COMPUTATIONAL METHODS AND DETAILS
2.1. Global Minimum Search. The global minimum searches of

U2B6 were carried out using a guaranteed escape strategy with
supervised seed generation. In this method, seeds are generated based
on point-group symmetry and covalent bonding distance criteria.35

The energy of each seed is calculated using ab initio methods, and
seeds are then sorted by energy. A geometry optimization is then
performed on the top seeds, and these structures are then added to a
stack. Until the stack is empty, each structure undergoes individual
displacement of atomic Cartesian coordinates in both positive and
negative directions. This process continues until an energy decrease is
observed, indicating that the local minimum well has been successfully
escaped. The optimized structure is then added to the stack. At each
step, the structure is evaluated based on three criteria. The first
ensures that no interatomic distance within the structure is shorter
than the minimum threshold determined by covalent bonding radii
data for each atom. The second criterion verifies that no atom has
dissociated from the molecule. The third criterion ensures that the
structure is unique relative to all previously evaluated structures. Ab
initio calculations are not performed on any structure that fails any of
the criteria. This method will be further detailed in an upcoming
publication from our group.
2.2. Electronic Structure Determination. During the global

minimum search, the energy of the structure is determined using
GGA Perdew−Burke−Ernzerhof (PBE) density functional36 with
double-ζ plus one polarization (DZP)37 slater type basis sets
generated from the ADF 2023.102 program.38,39 The relative energies
of the 30 lowest-lying isomers were then recalculated with triple-ζ
plus one polarization (TZP) basis set and examined using a hybrid
PBE0 functional.40 Different spin states (triplet, quintet, and
septuplet) were considered during the search using spin-unrestricted
calculations. It should be mentioned that the PBE functional has been
reported in prior work to be a reliable method for the chemical
bonding analyses of actinide compounds.41−43 We carried out the
scalar relativistic ZORA formalism44 in order to account for the
relativistic effect. The frozen core approximation was applied to B
[1s2] and [1s2−4f14] for the actinide elements. We further performed
SO relativistic effect ZORA calculations to examine the bonding
change influenced by the strong spin−orbit (SO) coupling effect for
actinide elements.
Among the generated isomers, the D6h (7A2g) inverse sandwich

structure was identified as the global minimum using the PBE and
PBE0 DFT methods. To achieve more accurate relative energies, we
performed single-point DLPNO-UCCSD(T) open-shell calculations
based on the unrestricted Hartree−Fock approach for the three
lowest-lying isomers using the ORCA 5.0.4 package.45,46 Herein, def2-
TZVP basis sets were used for B,47 utilizing the AutoAux generation
procedure. For the U element, the small-core scalar relativistic
effective core potential (SC-RECP) was employed in conjunction
with the [10s9p5d4f3g] basis set.48−50 Figure 1 displays the front and
top views of the global minimum of U2B6, and the coordinates are
listed in Table S1 in the Supporting Information. Alternative low-lying
isomers within 50 kcal/mol at the levels of PBE and PBE0 combined
with TZP basis sets are shown in Figure S1.
A complete-active-space self-consistent-field (CASSCF) calcula-

tion,51 using the same basis sets and effective core potentials (ECPs)
as implemented in ORCA 5.0.4, was performed to investigate the

multireference character. Based on the selection methods for bonding
and antibonding orbitals52 in the active space for the actinide-
containing compounds,53,54 and inspired by the study of Ln2B8
lanthanide species (Ln = La, Pr),33 we selected 20 orbitals with 10
electrons for the active space in this case. This chosen active space
comprises six bonding orbitals, their corresponding six antibonding
counterparts, and eight nonbonding 5f orbitals. Further details are
provided in the Section 3.
2.3. Chemical Bonding Analyses. In the bonding analysis of the

B6 ring, we used a right-handed local coordinate system (LCS) on
each boron atom where the z-axis points to the center of the hexagon,
with the x-axis lying in the plane and the y-axis perpendicular to the
plane.55 Energy decomposition analysis in conjunction with natural
orbitals for chemical valence (EDA-NOCV) analysis56−58 is an
essential method to decompose the total interaction energy into
different energy terms, which are electrostatic interaction, Pauli
repulsion, and orbital interaction. It can also analyze the contributions
of each orbital interaction to the total one, e.g., σ-, π-, δ-, and ϕ-
bonding in this case. To figure out the multicenter bonding behavior
of U2B6, we also carried out adaptive natural density partitioning
(AdNDP) analyses.59

Crystal orbital Hamilton populations (COHP)60 and the projected
local combination of atomic orbitals (LCAO) wave function in the
real space were calculated from the self-consistent PAW function by
VASP 5.4.4 software,61,62 as calculated by the LOBSTER package63,64

and presented in the conventional manner:65 we plotted −COHP (E)
figure so that bonding contributions lie to the right and antibonding
ones to the left. Fermi level was set to be zero in this work. We used a
Γ-centered γ k grid of sizes of 9 × 9 × 6 and 18 × 18 × 13 for
structural relaxation and static calculation, respectively. The cutoff
energy of the plane-wave basis sets was set to 500 eV.

3. RESULTS AND DISCUSSION
3.1. Ground State and Electronic Structure of U2B6. As

depicted in Figure S1, different spin states lead to distinct
structural configurations with varying chemical bonding
mechanisms. The results from both PBE0 and CCSD(T)
methods indicate the predominant stability of the D6h U2B6
(7A2g) inverse sandwich structure compared with other
isomers. The second-lowest energy isomer 2 (Cs, 5A″) with a
quintet spin state, referred to as the “quasi-borozene”
structure,66 is 15.56 kcal/mol higher at the CCSD(T) level
than the global minimum. The T1 diagnostic value of 0.03 for
this isomer indicates a minimal multireference effect.67 Similar
to the La−La bonding observed in the La2B6 system,66 this
structure exhibits U−U bonding characterized by σ and π
bonding patterns. Additionally, isomers 3 and 6 are also
identified as inverse sandwich structures but are significantly
higher in energy. The quintet isomer 3, featuring triply
occupied d−p−d δ bonding orbitals, undergoes a first-order
Jahn−Teller distortion from D6h to C2h. The triplet isomer 6
exhibits a shorter U···U distance due to fully occupied δ···δ
bonding orbitals. Isomer 12 exhibits a ribbon-like B6 moiety

Figure 1. Front and top views of the neutral D6h U2B6, where the
structures are optimized at the PBE/TZP level. The bond lengths are
in Å.
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coordinating with two U atoms, where the B6 structure
resembles the global minimum structure of the bare B6
cluster.68 Notably, the bowl-like C5v structure of B6, which is
another possible isomer of the B6 cluster, coordinates with the
two U atoms at significantly higher energy (>50 kcal/mol)
compared to the global minimum isomer 1.
The above single-configurational results are then examined

using the CASSCF method in a multiconfigurational frame-
work for the ground state of isomer 1. Contours of Löwdin

natural orbitals and the corresponding natural orbital
occupation numbers obtained from the CASSCF (10e, 20o)
method are depicted in Figure 2. As mentioned above, the
selection method for the active space is based on the bonding,
antibonding, and nonbonding characters for large systems.53,54

We selected six U−B6−U bonding orbitals, as depicted in the
bottom row of Figure 2 (two πu, two δu, one ϕg, and one ϕu),
of which the six corresponding antibonding counterparts are
shown in the second row from the bottom. The eight
nonbonding 5f orbitals (one 5fϕu, one 5fϕg, two 5fδg, two 5fπg,
one 5fσu, and one 5fσg) are illustrated in the first two rows.
CASSCF results show that the ground state of the U2B6
complex is dominated by a single configuration of
[···π4δ2ϕ1ϕ′1U(5fσ)1U(5fσ)1] with a CI weight of 84%,
indicating a subtle multireference character in this system,
reinforcing the reliability of bonding descriptions at both the
DFT and CCSD(T) levels. The effective bond order (EBO)69

of U···B6···U ϕ bonding interaction is calculated to be (0.97−
0.04)/2 = 0.47. Comparably, the EBO of δ-bond from
CASSCF (12e, 12o) calculation in [Re2Cl8]2− is reported to
be 0.54,70 further supporting the bonding effect of such ϕ
bonding in U2B6.
3.2. Rationality of the Construction of the ϕ···ϕ

Bonding. Next, we aimed to address the following question:
why was U2B6 selected for the investigation of ϕ···ϕ bonding
formation? As shown in Figure 3, we compared the reduced
orbitals with different numbers of nodal planes for both six-
membered and eight-membered rings to illustrate the
formation of various types of chemical bonds. The colored
orbitals in each row represent ligand group orbitals with
different phases, which can potentially interact with metal
orbitals of the same phase to form the corresponding bonding

Figure 2. Natural orbital contours (isosurface value = 0.03 au) of U2B6 along with the corresponding occupation numbers from CASSCF (10e,
20o) calculations. The first two rows depict the nonbonding 5f orbitals of uranium, while the bottom two rows show the bonding orbitals and their
antibonding counterparts, labeled with an asterisk (*).

Figure 3. Schematic orbital contours for six and eight-membered
boron/carbon rings with different number n of nodal planes, which
could participate in σ, π, or δ and ϕ interactions with metal-based
orbitals. Red and blue represent different orbital phases.
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interactions. σ- and π-types of bonding interactions have been
observed to dominate in inverse sandwich complexes.71,72 δ
character emerges when the central ring has a size n ≥ 6, such
as in the cases of uranium (E)-stilbene complexes32 bridged by
aromatic hydrocarbons, and lanthanide boron complexes33

with two lanthanide atoms sandwiching a B8 central ring.
Importantly, orbitals of central ligands with three nodal planes,
as shown in the first row of Figure 3, theoretically have the
potential to form “face-to-face” ϕ···ϕ bonding with appropriate

4f/5f metals through suitable symmetry and efficient overlap,
although this has not been extensively studied.
In order to interact with 5fϕ orbitals forming chemical

bonds, the orbitals of the sandwiched ring are supposed to
have comparable energy levels and be diffused enough over a
large space to allow the effective overlap and preferable energy
matching with 5fϕ orbitals.27,73−77 As depicted in Figure S2,
energy levels of the Bn ring lie higher than those of CnHn
analogous due to the low electronegativity of boron. Therefore,

Figure 4. B6 MOs in the local coordinate system (LCS) at the PBE0/TZP level. The valence MOs are divided into four subgroups: σs, σ(t)p, σ(r)p,
and πp. Herein, “t” and “r” denote “tangential” and “radial,” respectively, with regard to the plane of B6.

Figure 5. Orbital energy-level correlation diagram of U2B6 complex
from U and B6 fragments and the CMO contours (isovalue = 0.025
au) of U2B6. 1b2u is highlighted in red to show the ϕ···ϕ bonding.
HOMO − 9/5 (7a1g/5e1u), HOMO − 6 (4e1g), and HOMO − 4
(2e2u) correspond to σ, π, and δ-bonding, respectively.

Figure 6. Energies of the frontier CMOs of the neutral An2B6
molecules (An = Th−Am) at the PBE/TZP level. 1b2u highlighted
in red corresponds to the ϕ-type bonding.
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compared to the carbocyclic rings, boron rings are the more
rational candidates to promote the formation of ϕ···ϕ bonding
by means of tuning the antibonding orbital levels upon the
different ring sizes of Bn and forming more diffused ligand
group orbitals with the stronger 2s/2p hybridization than that
of hydrocarbon analogous.78−81

To test the existence of ϕ···ϕ bonding facilitated by the
boron ring, we first investigated the U2B8 system, inspired by
the La2B8 inverse sandwich cluster.

33 The contours of the
frontier orbitals of U2B8 are presented in Figure S3. However,
no ϕ···ϕ bonding was observed due to the mismatch between
the 5fϕ and σs3 orbitals, as referenced in Figure 3 of ref 33. We
then proceeded to investigate the U2B6 system by performing
LCS analyses of the B6 moiety at the PBE0/TZP level, as
shown in Figure 4. Twenty-four molecular orbitals (MOs)
formed with 2s and 2p atomic orbitals (AOs) are
representatively divided into four groups: σs, σ(t)p, σ(r)p,
and πp, where “t” and “r” represent “tangential” and “radial,”
respectively. Subscripts of each orbital correspond to the
number of the nodal planes. Consequently, in light of the
orbital shape of U···U bonding and phase congruence with B6
moiety, σ-, π-, and δ-types bonding are involved by the
symmetry-adapted group orbitals of B6 and the corresponding
U···U 5f/6d σ-, π-, and δ-orbitals, respectively. Interestingly,
benefiting from the appropriate size of the ring and the
preferable energies, σs3 of B6 with three nodes can perfectly
interact with 5fϕu orbitals of U···U to form an unprecedented
ϕ···ϕ bonding to stabilize further the inverse sandwich U2B6
(details are provided in Section 3.3).
3.3. ϕ···ϕ Bonding in U2B6 Facilitated by the B6 Ring.

Energy-level correlations and MOs of the global minimum
structure of U2B6 are depicted in Figure 5, constructed from U
and B6 fragments. From the MO contours shown in the

bottom part, we can visualize four different types of delocalized
chemical bonds modulated by the central B6 ring: σ (7a1g), π
(4e1g, 5e1u), δ (2e2u), and ϕ (1b2u). AO compositions of each
MO are shown in Table S2. Among the six unpaired electrons,
two (7a2u and 8a1g) are the 5fσ electrons with little 6d and 7s
hybridization, two come from the 5fϕ orbitals, and the rest two
are corresponding to the singly occupied δ bonding. 1b2u, as
highlighted in red in Figure 5, is the singly occupied ϕ···ϕ
bonding resulting from the interactions between U···U 5fϕu
and B6 σs3 group orbital (Figure 4), which is constituted by
80.5% U 5f, 16.4% B 2s, and 6.3% B 2p components. 1b1g
dominantly consisting of U2 5fϕg (96.8%) with little
contributions from B6 2p σr3 orbitals feature mainly non-
bonding character. The partially occupied 1e1g group orbital of
the B6 unit accepts two additional electrons from the U atoms,
forming the 4e1g MO in the U2B6 complex. Furthermore, four
electrons from the U atoms are transferred to the originally
unoccupied 2e1u orbital of the B6 moiety, resulting in the
formation of 2e2u with d−p−d δ bonding character. The
remaining singly occupied orbitals can be considered
dominated by the U 5f AOs. Consequently, the oxidation
state (OS) of uranium in U2B6 is proposed to be +III. This is
in contrast to the more common +IV OS observed in most
uranium sandwich complexes,82,83 a difference attributed to the
low electronegativity of boron clusters. It is worth mentioning
that isomer 6 with U (+IV) in Figure S1 lies 7.56 kcal/mol
higher than the global minimum at the CCSD(T) level.
Moreover, actinide compounds usually demonstrate a strong
SO coupling effect,43,84−86 which can influence the chemical
bonding patterns.87,88 Figure S4 illustrates the SO splitting of
the scalar relativistic Kohn−Sham MO levels. The results
indicate that despite the significant energy-level splitting in
orbitals predominantly composed of uranium, the SO coupling

Table 1. EDA-NOCV Results for U2B6 at the PBE/TZP Level, Where ΔEint = ΔEPauli + ΔEelstat + ΔEorb
a

aThe major orbital components (ΔEorbi ) of the total orbital interaction ΔEorb are presented. Insert plots are the deformation densities Δρ
(isosurface = 0.03 au) of the pairwise orbital interactions between U···U (dπu4dδu2fπg2fϕg1fϕu1fσg1fσu1) and B6 (σr02 π12σr10 ) fragments and the associated
interaction energies ΔEorb (in kcal/mol). The value in parentheses gives the percentage contribution to the total orbital interaction ΔEorb. The
direction of the charge flow is from red to blue.
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effect does not significantly impact the understanding of the
chemical bonding in U2B6.
We also examined other An2B6 (An = Th−Am) inverse

sandwiches to search for similar ϕ···ϕ bonding with U2B6.
Optimized Cartesian coordinates of each species are listed in
Table S3. Correlation diagrams of energy levels and the
corresponding orbital compositions are depicted in Figure 6
and Table S4, respectively. Unfortunately, 1b2u orbitals with
ϕ···ϕ bonding character in D6h Th2B6 and Pa2B6 are virtual in
their ground states due to the relatively higher energies of the
5fϕ orbitals compared to those in U2B6. In the later actinide
complexes (Np2B6, Pu2B6, and Am2B6), 1b2u is almost a 5fϕ
nonbonding orbital (5f component >98%) because of the
contraction of 5f shell in the later actinide elements. Thus,
U2B6 is the unique species among the considered complexes,
which possesses ϕ···ϕ bonding due to the effective overlap and
energy matching between the 5fϕu orbital of U···U and the σs3
orbital of the B6 ring.
Spin-unrestricted EDA-NOCV calculations are carried out

to further obtain detailed insight into the interactions between
the U···U and B6 fragments. Five major orbital components
were found (ΔEorb1 − ΔEorb5), with the corresponding
deformation densities (Δρ1 − Δρ5) presented in Table 1.
Among them, the orbital term ΔEorb1 (π···π bonding) via U2
5fπ and σr1 orbitals of B6 is the strongest orbital interaction,
which provides 56.0% of the total orbital interactions ΔEorb.
The other π-type (ΔEorb2) bond formed by U2 (5f/6d)π and π1
orbitals of B6 accounts for 21.5% of the total orbital
interactions. Two singly occupied δ···δ bonding orbitals

derived from 6dδu of U···U and π2 orbitals of B6 contribute
11.7% in total, which is slightly smaller than that in the La2B8
inverse sandwich.33 Remarkably, due to the favorable energy
matching and symmetry compatibility between the 5fϕu orbital
of U···U and the σs3 orbital of B6, the corresponding
contribution of ΔEorb5 is as high as 23.2 kcal/mol, accounting
for 1.7% of the total orbital interaction. To provide a
quantitative comparison, we also conducted EDA-NOCV
analyses of the quadruple bond in [Re2Cl8]2−, as summarized
in Table S5. The δ-type bonding in [Re2Cl8]2− contributes
only 0.8% (1.8 kcal/mol) to the total orbital interaction,
consistent with the findings of Frenking et al.89 Therefore,
although the percentage contribution of the ϕ···ϕ bonding is
relatively small, it remains a significant factor in the stability of
the system and cannot be overlooked.
A clearer view of the chemical bonding classification of the

U2B6 inverse sandwich is provided by AdNDP analyses59

(Figure 7) in order to discuss the aromaticity and stability.
Except for six B−B σ bonds and three 5f electrons in the first
row, the rest of the multicenter bonds are mainly divided into
four categories. σr0 and σr1 of B6 can interact with U···U 5dσg
or 5fπu orbitals to form in-plane delocalized bonding. π0 and π1
orbitals of B6 tend to participate in the bonding perpendicular
to the plane with little U···U 7s and 6dπg orbitals, respectively.
The 12 delocalized electrons in rows 2 and 3 individually
satisfy the 4n + 2 Hückel rule, giving rise to the in-plane σ and
π double aromaticities for the U2B6 inverse sandwich.
Moreover, two degenerate singly occupied δ bonds are
constructed from the π2 orbital of B6 moiety and 5d/6f δu
orbital of U···U. Thus, the valence electrons of U2B6 fulfill the
“2 (x + 6 + y) rule” for the inverse sandwich complex, which
was proposed by Li, Wang, and co-workers very recently,25

where x = 6, y = 1, thus providing further evidence for the
rather high chemical stability. Of particular importance is the
delocalized ϕ-bonding primarily from B6 σs3 and U···U 5fϕu
orbitals, where the composition of U 5f is calculated to be 81%.
3.4. U2B6 as the Building Unit for UB2 Solid. Employing

a similar self-assembly method used in the study of the La2B8
cluster vs LaB6 solid,

90 and the Mo3S4 cluster vs MoS2 solid,
34

we compared the An2B6 cluster and the AnB2 solid material
(An = U, Np, Pu) in terms of geometric parameters, charge
distribution,91 and bonding characteristics, as shown in Table
S6. For simplicity, we only discussed the uranium case as an
example. From the high resemblance between the two cases,
the UB2 periodic system can be considered as the two-
dimensional expansion from the U2B6 building block (Figure
8a). Although the An−B and B−B distances in the UB2 system
are slightly shorter than those in the molecular systems, the B−
B bonding strength is stronger, consistent with previous studies
comparing the Ln2B8 and LnB6 systems.

90

According to the density of states (DOS) shown in Figure
8b, the hybridization between 5f and 6d components is
stronger in the U2B6 case, indicating that covalency plays a
larger role in isolated U2B6 compared to the UB2 solid state.

90

Further insights into the chemical bonding comparison of the
B−B and U−B interactions in both the U2B6 and UB2 systems
are provided in Figure 8c and Table S6, both of which
demonstrate that the overall bonding patterns between the
cluster and solid systems are similar. Below the Fermi level
(occupied region) in both systems, the interactions predom-
inantly arise from bonding states without antibonding
contributions in the valence band, indicating high stabilities.

Figure 7. AdNDP bonding analyses of U2B6 at the PBE/TZP level.
“ON” represents “occupation number” here. The AO composition of
the multicenter ϕ···ϕ bonding is listed in parentheses.
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An energy integration up to the Fermi level (ICOHP) can
be used to compare the strengths of each orbital-pair
interaction. In Figure 8d, we show the result of ϕ bonding
contour projected on the Γ-point in the real space of the UB2
crystal, along with the corresponding ICOHP value. Other
types of bonding, such as σ, π, and δ, are detailed in Figure S5,
indicating that the B6 ring acts as a unit that enhances the
interaction between the B and U atoms on the upper and lower
sheets. An obvious bonding peak of 5fϕ character was found,
most pronounced in the area approximately 1 eV below the
Fermi level, contributing 3.8% (−15.11 kcal/mol) to the total
bonding in a unit cell, which agrees well with the MO diagram
in Figure 5. The dominant bonding character of the U−B
interaction in the UB2 solid originates from π bonding, with an
ICOHP value as large as −232.45 kcal/mol (58.5%) in a unit
cell.

4. CONCLUSIONS
Over the past hundred years, the concept of chemical bonds
has emerged as an exciting area in the modern chemistry field.
Different covalent interactions such as σ-, π-, and δ-types of
bonding patterns have been extensively studied, especially in
compounds with multiple bonds. Our theoretical analyses have
shown that the global minimum of U2B6 has D6h symmetry
with six unpaired electrons, presenting σ-, π-, δ-, and ϕ-types of

bonding character. A singly occupied ϕ···ϕ bonding orbital was
found with the contribution of 1.7% to the total orbital
interaction, involving the U 5fϕ and the three-node in-plane
group orbital of the B6 ring. The comparison between the U2B6
complex and UB2 solid suggests various similarities between
these two systems regarding geometry, electronic structure,
and chemical bonding. The non-negligible ϕ bonding is also
found in UB2 solid, contributing to the chemical bonding.
Thus, the study of cluster science can help us to better
understand the stability of solid-state materials. Overall, the
current results have enriched the categories of chemical
bonding and provided theoretical evidence for the potential
feasibility of the diactinide-boron inverse sandwich complexes.
In principle, other types of chemical bonding with higher
quantum number of orbital angular momentum are not
impossible, e.g., L = ±4 (γ), ±5 (η), ±6 ( ), ···, while it still
remains a challenge due to the scarcity of the known chemical
elements containing ng-orbitals and the rather weak overlap
between the higher valence shell orbitals.
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Figure 8. (a) Top and side views of UB2 hexagonal crystalline structure, with the U2B6 unit highlighted in red. (b) pDOS figures of both the U2B6
complex and the UB2 crystal. (c) COHP analyses of U−B and B−B interactions of the U2B6 complex and the UB2 crystal. (d) ϕ bonding of the
UB2 crystal with the corresponding ICOHP value. Here, Fermi levels of all of the plots were shifted to zero for better comparison.
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