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Abstract

The cognitive maps that humans compute as representations of
the spatial environment they have visited are rarely even close
approximations to what was actually experienced. When we
experience the environment we seem to see it all so perfectly,
yet rarely are we able to reproduce from memory an exact
description of the places visited. Yet these vague, muddled
descriptions of the places visited are adequate for many spatial
reasoning tasks. But how is such an impoverished representa-
tion computed from what is initially delivered by one’s senses?
And what effect does this representation have on the construc-
tion of the cognitive map? We present one method for comput-
ing a vague description of each local space visited. It is derived
from the initially accurate description needed for the actions
the viewer might perform within the local space. We show the
effect of this representation on the structure of the cognitive
map.

Introduction

Urban planners, geographers and environmental psycholo-
gists have long been interested in the human’s perception of
the environment (e.g. Downs & Stea (1973) Lynch (1960)),
and Artificial Intelligence researchers have in the past
attempted to develop computational models of the underly-
ing processes (e.g. Davis (1986), Engelson (1994), Korten-
kamp (1993), Kuipers (1996), Yeap (1988)). The term
cognitive map has been widely used to describe the represen-
tations which result from these processes. Since the term was
first coined by Tolman (1948), there have been numerous
theories proposed to describe these representations (e.g.
Downs & Stea (1973) Gallistel (1989)).

In our own laboratory a computational theory of cognitive
maps has been developed which seeks to explain what infor-
mation is made explicit at each step in the cognitive mapping
process starting at the bottom with what is delivered by
vision (Yeap, 1988; Yeap, Holmes, & Jefferies, 1994; Yeap &
Jefferies, 1997; Yeap, Naylor, & Jefferies, 1990). We are
interested in how spatial knowledge develops from the most
primitive representations computed directly from the senses
and on through various stages to ever more sophisticated rep-
resentations.
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The predominant theory regarding the development of spa-
tial knowledge is that of Siegel and White (1975) — it sug-
gests that the progression of spatial knowledge in a cognitive
map is from landmark to route to survey map. The essence of
this theory is that landmarks are remembered first and this is
followed by an initial topological network and then a much
expanded one and finally euclidean information becomes
available. The main argument in favor of this theory is the
experimental evidence which shows that as one’s knowledge
of the spatial environment progresses landmark knowledge is
far more accurate than route knowledge and likewise route
knowledge is more accurate than survey knowledge (Cous-
ins, Siegel, & Maxwell, 1983; Lee & Schmidt, 1988§;
Moeser, 1988). Given the complexity of computing survey
knowledge as compared to landmark knowledge such a find-
ing is not surprising. However it does not necessarily follow
that route and survey knowledge cannot be computed simul-
taneously alongside landmark knowledge (see Yeap & Jeffer-
ies (1997) for a detailed discussion). Recently, Montello
(1993) criticized the landmark/route/survey hypothesis argu-
ing that pure landmark or route knowledge always coexist
with metric knowledge about distance and direction, how-
ever vague they may be. Metric knowledge begins to be
acquired the first time one encounters an environment and
like all spatial knowledge the quantity and quality of the
information stored improves with repeated exposure to its
source. Indeed if one considers the information which is
delivered by the senses as for example in vision, then metric
knowledge is as computable from this input as landmarks or
routes and is abundantly available when compared with land-
mark knowledge.

Humans “see” the places they visit with much precision.
Even though we can easily determine where objects are
when we are looking directly at them, rarely are we able to
reproduce from memory an exact description of the places
we have visited. Not often do we remember exactly where
objects are when we cannot physically see them, and nor do
we easily remember their exact size and distance to other
objects. Yet we are able to make good use of the vague and
imprecise memories we have for our environment. The deci-
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sions we make on how to get from one place to another are
often based on rather sketchy memories for the places we
have visited along the way. Continuing on with our bottom-
up approach to computing a cognitive map our concern is
with how representations of such poor quality are computed
from one's seemingly rich and detailed experience of the
environment.

Our recent work on cognitive mapping has been concerned
with deriving a representation for the viewer's local space
from visual input (Yeap, et al., 1990, Yeap, et al., 1994; Yeap
& Jefferies, 1997). This is a fundamental step in the con-
struction of a cognitive map and we have shown how this
could be done. Our current algorithm emphasizes the impor-
tance of detecting exits in view from the surfaces perceived,
and from these exits, a boundary of the local space is com-
puted. Each local space is computed using a cartesian co-
ordinate reference frame and this provides an adequate repre-
sentation for the task of determining where things are when
the viewer is looking directly at them. The representation is
called an Absolute Space Representation (ASR), a term
which emphasizes the independent, local nature of each local
space visited. Once computed the individual ASRs can be
connected together in the way they are experienced to form a
cognitive map. Computing the local space in this way is a
necessary first step but once one moves out of the current
space, it is evidently clear that, at least for humans, one does
not remember the exact details of its shape. How then would
the representation devolve into what the viewer actually
remembers, i.e. a vague representation of what was initially
computed and if such a representation is computed, what
effect does this have on the construction of a cognitive map?
In this paper we describe one method we have devised for
devolving the initial description of the local space into a
much simplified representation and we show the effect of
using it to build a cognitive map. We have written computer
programs to test our ideas. The results from two experiments
which simulate a viewer with a 150° view moving through a
complex 2D environment are presented.

In recent years the qualitative spatial reasoning (QSR)
community has proposed many methodologies for represent-
ing and reasoning with this vague and uncertain spatial
knowledge (Clementini, Di Felice, & Hernandez, 1995;
Cohn, Randell, & Cui, 1995; Egenhofer & Khaled, 1992;
Hernandez, 1993; Rohrig, 1994). In the next section, on
related work, we examine some of their methods and briefly
mention one cognitive mapping implementation which
makes use of qualitative representations and reasoning tech-
niques (Kuipers, 1996).

Related Work

Cohn & Gotts (1996b) state that: “The challenge of QSR is
to provide calculi which allow a machine to represent and
reason with spatial entities of higher dimension, without
resorting to the traditional quantitative techniques prevalent
in, for example, the computer graphics or computer vision
communities”. Much of the motivation for QSR comes from
the fact that accurate metric representations grossly over-
specify the accuracy which is achievable. For a robot the sen-
sors employed are incapable of delivering such accuracy.
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Humans on the other hand are able to compensate for this
with high level conceptual knowledge about how their envi-
ronment should appear to them, however the problem for
them is that the representation seems to quickly degrade once
there is no longer immediate feedback from the environment.
A common theme is apparent across many of the QSR mod-
els - spatial relations are defined in such a way that the vari-
ous relationships between objects can be distinguished at an
appropriate but usually coarse granularity. Given some facts
about pairs of objects the transitivity of the spatial relations
is exploited to infer further facts. For example, if A is in front
of B and B is in front of C then it can be inferred that A is
also in front of C. The possible inferences are usually stored
in composition tables.

For Hernandez, Clementini and Di Felice (Hernandez,
1993; Hernandez, Clementini, & DiFelice, 1995), the key to
defining qualitative spatial relationships is to make explicit
Just those spatial relations necessary for a particular context,
thus eliminating unnecessary detail. Within the local space
orientation is expressed using relations such as left, right,
front, and back (for a level with four distinctions); left-back,
right-back, left-front, and right-back, would be added for a
level with eight distinctions. In large-scale geographic space
the absolute orientation relations north, south, east, west, etc
would be used. Eight topological relations are defined —dis-
Joint, tangent, overlaps, contains-at-border, included-at-bor-
der, contains, included, and equal. Hernandez (Hernandez,
1993) defines neighboring structures to simplify the process
of calculating the composition of pairs of relations. In Her-
nandez et al. (1995) a methodology for representing and rea-
soning with qualitative distance as it pertains to large-scale
geographic space is developed. The problem in representing
distance relations is that our notions of vague terms such as
far and near are defined by the context in which they are
used. To define a distance relation Hernandez et al. (1995)
specifies a primary object, a reference object, and a frame of
reference. Distance relations can be specified at various lev-
els of granularity, for example a level with four distinctions
would comprise very close, close, far and very far. Thus a
system of distance relations is defined along with a set of
structure relations which define how the distance relations
relate to each other. The composition of spatial relations as in
A far B and B close C results in a relation between A and C
over some range of distances specified by a lower and upper
bound.

Cohn et al.'s (1995) RCC-theory defines some basic rela-
tions to specify the connectivity of a pair of spatial regions.
RCC-5 has the set of five relations, partially overlapping,
proper part, equal, proper part inverse, and distinct regions.
A finer granularity of relationships is achieved by splitting
individual members in the set into two or more disjoint rela-
tions. For example, in RCC-8, the set of eight relations, par-
tially overlapping is split into tangential proper part and
non-tangential proper part. In (Cohn & Gotts, 1996a) the
RCC-theory is extended to encompass regions with indeter-
minate boundaries. While Cohn’s group has mostly been
concerned with qualitative representational issues, Bennett
(Bennett, 1994) has proposed a method for automatically
generating the entries in the composition table of RCC rela-
tions using propositional logic.



One implementation that does compute qualitative repre-
sentations from sensory information is that of Kuipers
(1996). His Spatial Semantic Hierarchy comprises five layers
from sensorimotor to metric level with the topological level
being immediately prior to the metric level. Assimilation of
knowledge proceeds from layer to layer with each layer pro-
viding the properties that the next one depends on. The topo-
logical layer consists of places, paths and regions along with
connectivity and containment relations. Following on from
the topological layer, the metric layer adds metric attributes
so that places, paths and regions are linked by metric rela-
tions, such as relative and absolute angles and distances,
according to some framework.

Computing a Qualitative Local Space
Representation

Determining the ongoing nature of spatial memories when
they are no longer receiving immediate feedback from the
environment is not easy. Studies which examine this problem
are mostly concerned with the manner in which the represen-
tations are distorted and their significance altered once they
are merged into the wider “picture in the head”. Variables
such as size, distance and location are often systematically
distorted by containment relations and the significance of an
object as compared with others it is related to (Hirtle &
Jonides, 1985; Holyoak & Mah, 1982; Sadalla, Burroughs,
& Staplin, 1980; Tversky, 1992). But these modifications
result from some top-down processing, i.e. the input to the
process isn’t only what has been computed bottom-up from
the senses but also includes the results of earlier computa-
tions, often higher-level representations which are conceptu-
ally more sophisticated.

Our concern at this stage is only with what can be com-
puted bottom-up from the senses. It is our contention that the
initial representation computed for a local space is computed
for the viewer's immediate needs, to provide a locus for the
objects surrounding the viewer, and the activities which
involve these objects. But while much of the detail is forgot-
ten or goes unnoticed one can still remain cognizant of the
local space for a long time after it was occupied. To encapsu-
late a local space in this way would only require representing
its extent in very rough terms, but the resulting representa-
tion could still provide a useful framework for reasoning
about the local space and could then become more elaborate
as the viewer's familiarity with the environment increases.
Such a representation is “qualitative” in the sense of QSR;
the representation may never be isomorphic to the actual
environment and the “quality” of the information represented
would be extremely variable.

We compute such a representation by devolving the initial
representation computed into a rectangle which roughly
approximates its extent. A straightforward algorithm is used
- points on the surfaces forming the boundary of the ASR are
sampled to firstly find a good length for the rectangle and
then the length itself is sampled to find a good width. We call
this representation a fuzzy ASR. Figure 1 (a) shows an initial
ASR computed, its surfaces are labelled s1 — s5 and its exits
el - e4 (for a detailed description of this algorithm, see Yeap
& Jefferies (1997)). The fuzzy ASR computed from this ASR
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(a) (b)

Figure 1. (a) An exact ASR computed while the viewer
occupied the local space. (b) the fuzzy ASR description
which devolves from the ASR in (a)

is shown in Figure 1 (b). No claims are made as to the plausi-
bility of our method. In reality many processes would be
operating to modify the original ASR and we cannot claim to
fully understand these. This is but one method for producing
a fuzzy ASR. There will be many, many more.

The real significance of the fuzzy ASR for our computa-
tional theory is the manner in which the representation is
able to be used to structure the cognitive map, however
poorly. The fuzzy ASR does not comprise actual surfaces or
exits, it merely represents a portion of space once occupied
by the viewer. But one would expect the viewer to remember
some of the connections to neighboring spaces, confused
though they may be. Thus we retain the connections to
neighboring “ASRs”, but only in the loosest sense. We con-
ducted two experiments with the program by varying the
amount of knowledge the viewer retained for the connections
between ASRs.We thus showed how a fuzzy cognitive map
might be structured and how useful such a map might be.

In the first experiment the viewer remembers how many
exits there are in an ASR but no locational information is
retained for them. For the fuzzy ASR in Figure 1 (b), for
example, the viewer remembers just that there are four exits,
el, e2, e3 and e4. When the ASR is exited a connection is
made to the ASR just entered but the viewer does not remem-
ber which exit was used. Our viewer has a very poor memory
indeed! The outcome of this is a scenario often faced by
humans “I know I've been here before so which doorway
did I use to get to...” Thus the information made explicit in a
fuzzy-ASR comprises the rough extent of the ASR, the num-
ber of exits in the ASR and which neighboring ASRs have
been experienced as connected to this one. The results of the
experiment are displayed in Figure 2. Figure 2 (a) shows the
portion of the environment traversed and Figure 2 (b) a cog-
nitive map constructed from the “exact” ASRs computed for
each local space visited. Note that although for display pur-
poses the ASRs are laid out as if there is one global coordi-
nate system, in reality this is not the case. Each ASR is
independent of all others with its own local coordinate sys-
tem, and the only links to other ASRs are through the exits
used to traverse them. Thus the viewer knows exactly where
cach surface and exit in the ASR is located, and exactly
which exits are used to connect to neighboring ASRs. The
actual structure of the cognitive map is mostly route-like,
except where previously visited ASRs are able to be recog-
nized (see Yeap, Jefferies, & Naylor (1991)). These parts of
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Figure 2. (a) The environment traversed, (b) a cognitive map computed from exact ASRs (c) the viewer’s interpretation of
a cognitive map computed from fuzzy ASRs where the viewer has no locational information for the exits. (d)the viewer's
interpretation of a cognitive map constructed from fuzzy ASRs where the viewer knows on which side of the fuzzy ASR

the exits are located but not their exact position.

the map exhibit a more integrated structure. Figures 2 (c) and
(d) convey the underlying structure of the fuzzy cognitive
map more realistically but this is only practical for a small
number of ASRs. In all the figures the ASRs are numbered in
the order in which they are visited.

The fuzzy cognitive map constructed for the path in Figure
2 (a) would comprise:

fuzzy-ASR1 with four exits, connected to ASR 2
fuzzy-ASR2 with two exits, connected to ASR 3, ASR |
fuzzy-ASR3 with five exits, connected to ASR 4, ASR 2
fuzzy-ASR4 with three exits, connected to ASR 5, ASR 3
fuzzy-ASRS5 with four exits, connected to ASR 6, ASR 4
fuzzy-ASRG6 with three exits, connected to ASR 5

To demonstrate the usefulness of such a map, the viewer is
told to repeat the journey from start to finish in its head. Fig-
ure 2 (c) demonstrates how confused a viewer making use of
such a map could become. As the viewer imagines re-enter-
ing ASR 1, its knows from its fuzzy map that one of these
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exits leads into ASR 2 but not which one. The viewer ran-
domly chooses an exit. The line emanating from the bottom
of fuzzy ASRI, rather than its side, demonstrates that the
viewer made an erroneous decision. It can be seen from the
output from our computer simulations displayed in this fig-
ure that the errors made here result in rotation errors in the
cognitive map and while they are not shown in this figure,
translation errors are possible also.

In the second experiment we allowed the viewer to
remember on which side of the fuzzy ASR the exits were
located and thus on which side of a fuzzy ASR the connec-
tion to a particular ASR is located. Figure 2 (d) shows a
viewer’s attempt at using a fuzzy cognitive map constructed
using this strategy. In ASR 1 the viewer recalls that ASR 1
connects to ASR 2 via an exit on the left side of ASR 1 and
since there is only one such exit the correct choice is made.
However, on the side of ASR 3 which connects to ASR 4
there are two exits. One leads directly into ASR 4 (see Figure
2 (b)) and one leads into an as yet unexplored region of the
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Figure 3.(a) The environment traversed, (b) a cognitive map computed from exact ASRs (¢) the viewer’s interpretation of
a cognitive map computed from fuzzy ASRs where the viewer has no locational information for the exits. (d)the viewer's
interpretation of a cognitive map constructed from fuzzy ASRs where the viewer knows on which side of the fuzzy ASR

the exits are located but not their exact position.

environment — this exit can be seen as the lighter shaded gap
in the boundary directly adjacent to the exit into ASR 4 in
Figure 2 (b). To visit ASR 4 from ASR 3 the viewer must
choose between these exits and does so correctly (this time).
If the incorrect exit had been chosen a translation error
would have occurred. This is the case in Figure 3 (d) when
the viewer does make a wrong decision on which exit leads
from ASR 3 into ASR 4. See the paragraph which follows for
a more detailed explanation.

Figure 3 shows the results of applying the strategies of
both experiments to a longer traversal of the environment.
Again Figure 3 (a) shows the environment traversed, (b) the
cognitive map constructed from exact ASRs, (c) the cogni-
tive map constructed when the viewer has no locational
information for the exits in a fuzzy ASR, and (d) the cogni-
tive map constructed when the viewer remembers which side
of the fuzzy ASR the exits are on. Note in Figures 3 (b), (c)
and (d) that the viewer fails to recognize ASR 3 when the
local space is re-entered from ASR 4 and a new ASR, ASR 8
is constructed. This is overlaid on top of ASR 3 only for dis-
play convenience. There is no such integration in the
viewer's “head” and a one dimensional route-like structure is
a better approximation of the actual structure of this part of
the cognitive map. Figure 3 (c) has the expected rotation

error. A translation error occurs at about fuzzy ASR 3 in both
Figure 3 (c¢) and Figure 3 (d). This is most noticeable in the
way in which fuzzy ASR 8 in particular, has shifted in rela-
tion to fuzzy ASR 3 in the display. In deciding which exit
leads from fuzzy ASR 3 into fuzzy ASR 4 the viewer selects
an erroneous one which is on the same side of the fuzzy ASR
as the correct one. In Figure 3 (d) it is just possible to make
out a corner of fuzzy ASR 4 underneath fuzzy ASR 5. Unfor-
tunately in Figure 3 (c) fuzzy ASR 4 is completely hidden.

Conclusion

We have shown how a representation for the local space
which is little more than a vague description for its extent
could be computed from an initial accurate description of the
local space. Also shown is the underlying structure of the
cognitive map which emerges as the viewer explores its envi-
ronment, computing these muddy descriptions, uncertain as
to how they are connected. Such a map is not an unrealistic
representation of a viewer’s initial tentative exploration of
the environment. However a viewer using one of these maps
to navigate around its environment would soon become lost.
How is such a map enriched as the viewer becomes more
familiar with its environment, not in precise metric terms, but
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merely in terms of being able to work out roughly where
places and objects are in relation to others? One would know
exactly which exits in an ASR lead to which neighboring
ASRs but still be no wiser as to their exact coordinate values
in a cartesian frame of reterence, for example. Is this the role
of landmarks? The “fuzzy cognitive map"” has given us a
framework in which we can study these problems. The fuzzy
ASR provides a structure in which the viewer's experience of
the environment can be charted. Eventually important details
will be recorded and significant events remembered, some
will be remembered well, some poorly. The fuzzy ASR will
continue to evolve to reflect the ever changing memories one
has for the spatial environment.
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