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Comparing the functional consequences of human stem cell
transplantation in the irradiated rat brain

Munjal M. Acharya, Lori-Ann Christie, Mary L. Lan, and Charles L. Limoli1
Department of Radiation Oncology, University of California, Irvine, CA 92697-2695

Abstract
Radiotherapy is a frontline treatment for the clinical management of CNS tumors. Though
effective in eradicating tumor cells, radiotherapy also depletes neural stem and progenitor cells in
the hippocampus that are important for neurogenesis and cognitive function. Consequently, the
use of radiation to control primary and metastatic brain tumors often leads to debilitating and
progressive cognitive decrements in surviving patients, representing a serious medical condition
that to date, has no satisfactory, long-term solutions. As a result, we have explored the use of stem
cells as therapeutic agents to improve cognition after radiotherapy. Our past work has
demonstrated the capability of cranially transplanted human embryonic (hESCs) and neural
(hNSCs) stem cells to functionally restore cognition in rats 1 and 4-months after head-only
irradiation. We have now expanded our cognitive analyses with hESCs and quantified both
survival and differentiated fates of engrafted cells at 1 and 4 months after irradiation. Our findings
indicate the capability of hESC transplantation to ameliorate radiation-induced cognitive
dysfunction 1-month following cranial irradiation, using a hippocampal-dependent novel place
recognition task. Irradiated animals not engrafted with stem cells experienced prolonged and
significant cognitive dysfunction. Stereological estimates indicated that 35% and 17% of the
transplanted hESCs survived at 1- and 4-months post-grafting, respectively. One month after
irradiation and grafting, phenotypic analyses revealed that 26% and 31% of the hESCs
differentiated into neurons and astrocytes, while at the 4-month time, neuronal and astrocytic
differentiation was 7% and 46%, respectively. Comparisons between present and past data with
hESCs and hNSCs demonstrates equivalent cognitive restoration and a preference of hNSCs to
commit to neuronal versus astrocytic lineages over extended engraftment times. Our data
demonstrate the functional utility of human stem cell replacement strategies for ameliorating the
adverse effects of cranial irradiation on cognition.

Keywords
Human embryonic stem cells; human neural stem cells; transplantation; radiation; cognition;
hippocampus; spatial recognition memory

INTRODUCTION
Radiotherapy provides the most effective means for forestalling the progression of primary
and secondary malignancies in the brain. While beneficial, cranial irradiation causes an
unintended and deleterious decline in cognitive function in cancer survivors, representing a
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significant clinical problem that remains unresolved with no long-term, satisfactory
solutions (1,8). Pediatric cases are a particular concern, as their longer-term survival is with
marked cognitive decrements that severely impact quality of life and impose significant
socioeconomic burdens (22,31). Despite treatments designed to limit overt morphologic
brain injury, variable degrees of cognitive dysfunction that manifest as impaired
hippocampal-dependent (and independent) learning and memory occur routinely and persist,
and can include disrupted attention, concentration, and impaired executive functions such as
planning and multi-tasking (20,28-30). Thus, although advancements in cancer treatment
have led to prolonged survival, similar improvements to long-term cognitive function have
not been realized.

The mechanisms underlying radiation-induced cognitive dysfunction are complex, but
accumulating evidence now indicates that disruption to hippocampal neurogenesis plays a
contributory if not causal role (20,36). Ionizing radiation depletes radiosensitive populations
of mulitpotent neural stem and progenitor cells in the hippocampus and elicits a persistent
oxidative stress that compromises the neurogenic niche and serves to impair neurogenesis
long after irradiation (6,14,19-21). The temporal time course of stem cell death, the
inhibition of neurogenesis and the onset of hippocampal-dependent learning and memory
have suggested the importance of neural stem cells and neurogenesis in the maintenance of
cognitive function throughout life (20,21). Such evidence also implies that strategies
directed at preserving and/or replenishing stem cell pools in the brain may forestall the
development of cognitive impairments that plague those surviving the treatment of brain
cancer.

To explore interventions that might provide some clinical recourse to those afflicted with
radiation-induced cognitive dysfunction, we have developed an animal model in which we
have conducted intrahippocampal transplantation of human stem cells following cranial
irradiation (2,3). Our prior work has now established the efficacy of this methodology,
whereby human embryonic (hESCs) or neural (hNSCs) stem cells transplanted 2 days after
head only irradiation were found to survive, differentiate along neuronal and glial lineages
and prevent (or improve) impairments in cognition as long as 1 and 4 months afterwards
(2-5). To more completely understand the potential limitations and the underlying
mechanisms responsible for the beneficial effects of cranially transplanted stem cells, we
have expanded on our studies using hESC significantly. Here we report our findings that
hESC transplantation improves cognition at earlier as well as later times post-engraftment,
along with the quantified yields of engrafted cell survival and differentiated fate 1 and 4
months later. We also compare the functional consequences and outcomes of transplanted
human stem cells in the irradiated brain.

MATERIALS AND METHODS
Animals and irradiation

All animal procedures were performed in accordance with NIH and Institutional IACUC
guidelines. As in our previous study (2,3), we employed immuno-compromised athymic
nude rats (ATN) to circumvent cross-species immune rejection. A total of 38 young, male (2
month old) ATN rats (strain 02N01 Cr:NIH-rnu; NCI), maintained in sterile conditions,
were used in this study. Animal groups included: non-irradiated sham surgery controls
(CON; 1-month and 4-month, n=8); irradiated sham surgery, (IRR; 1-month, n=6, 4-month,
n=12) and irradiated with engrafted hESCs, (IRR+hESC; 1-month, n=6, 4-month, n=6).
Anesthetized rats were exposed to cranial γ-irradiation (10 Gy) using a 137Cs irradiator (J.L.
Shepard and Associates Mark I, Glendale, CA) at a dose rate of 2.07 Gy/min, as previously
described (2,3).
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Human stem cell (hESC and hNSC) transplantation surgery
The use of human stem cells in this study was approved by UCI’s Human Stem Cell
Research Oversight Committee (hSCRO). The hESC line H9 (a kind gift from Dr. Peter J.
Donovan, UC Irvine) was maintained as monolayer colonies (passages 42-49), as described
previously (2). Prior to transplantation, undifferentiated hESCs were labeled with 5-
bromo-2′-deoxyuridine (BrdU, Sigma-Aldrich) and BrdU incorporation was detected using
immunocytochemistry according to a standard protocol (2,3). The in vitro BrdU index for all
transplantation studies was 98 ± 0.75 (Mean ± S.E.M., N=16). The data for hNSCs
(ENStem-A cell line, EMD Millipore) described in our previous study (3), has been adapted
and re-plotted for comparison with our new hESC data presented in this study.

Irradiated rats received bilateral, intrahippocampal engraftment of BrdU-labeled hESCs two
days after cranial irradiation (IRR+hESC). 1.0 × 105 live undifferentiated hESCs were
injected per grafting site in 1 μl of the cell suspension using a 33-gauge microsyringe at an
injection rate of 0.25 μl/min. Each hippocampus received 4 distinct injections (total 4.0 ×
105 live hESCs per hemisphere) using the following stereotaxic coordinates (2): (i) AP: 3.0
mm from bregma, ML: 1.8 mm from midline, and ventral DV: 3.2 mm from the surface of
the brain; (ii) AP: 3.6 mm, ML: 2.5 mm, DV: 3.2 mm; (iii) AP: 4.2 mm, ML: 3.2 mm, DV:
3.2 mm and (iv) AP: 4.8 mm, ML: 4.0 mm, DV: 3.2 mm. Control (CON) and Irradiated
(IRR) rats receiving sterile vehicle (conditioned medium) at the same stereotaxic coordinates
served as sham surgery groups.

Assessment of cognition
CON, IRR and IRR+hESCs groups were tested on a novel place recognition (NPR) task at
1-month or 4-months post-grafting. The NPR task uses spontaneous exploration as a means
of assessing spatial recognition memory, which relies on intact hippocampal function
(23,32). A standard protocol (2,3) was followed employing Ethovision XT (v6.0; Noldus
Information Technology, Inc., Leesburg, VA) software for automated tracking and
exploration detection. Two open field white acrylic arenas, each measuring 45 high × 70 ×
70 cm were placed next to each other on the floor of a brightly lit, dedicated behavioral
testing room. Various large, high contrast posters placed on the walls of the testing rooms
served as extramaze spatial cues. The task began with 2 days of habituation during which
rats explored the arenas and two toy objects that were not used for subsequent testing for
20min before being returned to their home cages. For all phases, arenas and objects were
cleaned with 70% ethanol between trials to minimize odor cues. The familiarization phase
and 5-minute test phase were administered the following day. Identical plastic blocks (~8 ×
3 × 10 cm high), placed 27 cm from opposing corners of the arena were used as stimuli.
Small pieces of white Velcro placed on the undersides of the blocks were used to secure
them in place during testing. For the familiarization phase, rats were placed in the arenas to
explore for 5 min, and then returned to a holding cage for a 5-minute retention interval. For
the 5-minute test phase, one of the stimuli was moved to an open corner at a distance of 18
cm from the arena wall (“novel place”), while the other block remained at its former spatial
location (“familiar place”) and rats were returned to the arenas for 3min. Rats were then
returned to their home cages for a delay of 24h before being returned to the arenas for the
24-hour test phase. For this phase, the “novel place” block was again moved, this time to the
remaining open corner, and the “familiar place” block remained in the same location. For all
phases, the “head direction to zone” function in Ethovision XT was used to track exploration
of the blocks. Exploration was defined as the animal’s head being directed towards and
located within a 2cm radius of the stimulus.
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Immunohistochemistry, stereology and confocal microscopy
At the end of behavior testing, animals were euthanized by intracardiac perfusion and tissues
were processed as described (2). For stereological quantification, every 10th section through
the entire hippocampus was processed for BrdU immunostaining (3). Stereological counting
of BrdU positive nuclei was done using an Olympus BX60 microscope (MBF CX9000 color
digital camera and 100× oil-immersion lens with 1.30 numerical aperture), 3-axis motorized
stage and StereoInvestigator software (v9.0, MBF Biosciences, Williston, VT) using
unbiased stereological principles, as described previously (3). The surviving hESCs are
reported as the percentage yield of graft derived cells at 1- and 4-months post-grafting and
compared to our previous data with hNSCs (3). The Guenderson co-efficient of error (CE)
for each hippocampus was <0.038 ± 0.0025 (Mean ± S.E.M., N=8).

Phenotypic fate analysis of hESC graft-derived cells was done using dual
immunofluorescence and laser scanning confocal microscopy (Nikon Eclipse TE2000-U,
EZ-C1 interface) as described previously (2,3). Standard immunostaining protocols were
used for BrdU and neuronal (Tuj1, NeuN), astro-glial (GFAP, S100, O4, NG2) and
functional markers (Ki67, Nestin) as described in detail previously (2,3). Z-stack analyses
were carried out using 1 μm stack intervals and orthogonal image reconstruction was done
using Nikon Elements AR software (v3.2, Nikon Instech Co. Ltd., Japan).

Statistical analyses
Exploration ratio, or the proportion of total time spent exploring the novel spatial location
(tnovel/tnovel+tfamiliar), was used as the main dependent measure for statistical analyses. We
analyzed the behavior of the animals during minute 1 of the 5-min and 24-hr test phases;
previous research has shown that preference for the novel place diminishes after the first
minute as the spatial locations become equally familiar to the animals (23). To establish
baseline exploratory behavior, we also analyzed exploration of the stimuli during the initial
familiarization phase.

Analyses of cognitive data were performed using PASW Statistics version 17.0 (SPSS Inc.).
Analyses for the 1-month and 4-month post-transplantation times were conducted
separately. Group sample sizes for the statistical analyses were as follows: non-irradiated
sham surgery controls (CON; 1-month and 4-month, n=8); irradiated sham surgery, (IRR; 1-
month, n=6, 4-month, n=12) and irradiated with engrafted hNSCs, (IRR+hNSC; 1-month,
n=6, 4-month, n=6). In all cases, statistical tests were two-tailed, and p-values less than 0.05
were considered statistically significant.

Exploration ratio data were analyzed using univariate ANOVAs for the 5-min and 24-hr test
phases. In all cases, we confirmed that the data were normally-distributed using the
Kolmogorov-Smirnov test and that the error variances did not differ between groups by
using Levene’s test of equality of error variances. When a statistically significant overall
group effect was found, multiple comparisons were made using Fisher’s Protected Least
Significant Difference (FPLSD) post-hoc tests to compare the individual groups. Additional
analyses of recognition memory were conducted using one-sample t-tests to determine if the
mean proportion of time spent exploring the novel spatial location for each group differed
significantly from chance (i.e. 0.5).

RESULTS
HESC grafting improves cognition

One month post-grafting, rats were habituated and trained on the NPR task. Successful
performance of the task has been shown to rely on intact hippocampal function (23,32). As
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we have demonstrated in past studies (2,3) irradiated rats (IRR) showed impaired novel
place recognition at the short, 5-min retention interval. The group means and 95% CI for the
5-min test were: CON (mean=0.7812, 95% CI=0.5174-1.0451); IRR (mean=0.0717, 95%
CI=-0.0641-0.2074) and IRR+hESC (mean=0.6150, 95% CI 0.1097-1.1203). We found
significant group differences for exploration ratio at the 5-min retention interval [Fig. 1A;
F(2,17)=7.912; p=0.004]. Irradiated animals spent significantly less time exploring the novel
place compared to both CON (p<0.001) and IRR+hESC (p=0.013). Moreover, IRR animals
explored the novel place less than expected by chance (p=0.001). In contrast, after the 5-min
retention interval, irradiated, hESC-transplanted rats (IRR+hESC) did not differ from CON
animals and like controls spent more time than expected by chance exploring the novel
spatial location (indicated by the dashed line in Fig. 1A). Analogous trends were observed in
terms of total time spent exploring the novel spatial location (Fig. 1B), and in frequency of
visits to the novel spatial location and latency to explore the novel spatial location (data not
shown). These results suggest that transplantation of hESC prevented (or improved) post-
irradiation cognitive impairments and preserved short-term memory for spatial information
in a hippocampal-dependent task up to 1 month later.

At the 24-h retention interval, IRR rats again exhibited impaired NPR compared to control
animals (Fig. 1C). As before, IRR+hESC rats did not differ significantly from CON animals
and spent more time than expected by chance exploring the novel spatial location (p=0.045,
Fig. 1C). For this longer retention interval, the irradiated group transplanted with stem cells
(IRR+hESC) also showed a trend for increased exploration ratio compared to irradiated
(IRR alone) animals not given stem cells (Fig. 1C). Again, similar trends were observed
when total exploration of the novel spatial location (Fig. 1D), as well as frequency of visits
and latency to first explore the novel location was analyzed (data not shown). These results
suggest that hESC transplantation may also improve long-term retention of spatial
information, although the treatment appeared to be more effective at the shorter, 5-min
retention interval.

To analyze further why IRR animals showed impaired short- and long-term NPR behavior,
total time spent exploring both objects during the familiarization phase given before the
retention intervals was analyzed. IRR animals tended to spend less time exploring during the
familiarization phase compared to both the control and IRR+hESC animals (Fig. 1E). This
result suggests that the impairments seen in the IRR animals at 5min and 24h post-
familiarization might be related to lower exploration during initial exposure to the objects.

Comparing cognitive outcomes following stem cell grafting
The foregoing results now provide the basis to make a comparison between hESC and hNSC
transplantation for the restoration of cognition 1 and 4-months following irradiation. As
indicated, IRR animals did not explore the novel spatial location more than expected by
chance (dashed line) and showed significant deficits compared to non-irradiated controls (1-
month, p=0.001 and 4-month, p=0.014; Fig. 2) following the 5min retention interval.
Animals transplanted with hESC or hNSC and tested on the NPR task at a 5min retention
interval 1 or 4-months later did not differ from non-irradiated controls at either post-
irradiation time and tended to explore the novel spatial location more than expected by
chance (Fig. 2). Transplantation of irradiated animals with human stem cells (IRR+hESC or
IRR+hNSC) improved cognition significantly at 1 month when compared to their
corresponding IRR group (Fig. 2, p<0.05). At 4-months post-irradiation, stem cell-engrafted
groups showed a trend toward improved cognition compared to non-transplanted animals
tested 4-months post-irradiation (Fig. 2).
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Stereological enumeration of engrafted cell survival
To establish the extent of engrafted cell survival at 1- and 4-months post-irradiation,
unbiased stereology was undertaken to quantify the yield of human cells in the host brain.
Optical fractionator analysis of brain sections from the 1- and 4-months post-engraftment
group using BrdU immunostaining revealed that engrafted cells migrated extensively
throughout the hippocampus, populating the dentate gyrus (DG), dentate hilus (DH), CA3
and CA1 subfields, and slightly into the corpus callosum (CC) (data not shown). Past work
has shown that engrafted cells preferentially migrated to the dentate subgranular zone
(SGZ), the neurogenic niche of the hippocampus, at both the 1- and 4-months post-
engraftment time points (2). Stereologic quantification of 1- and 4-months tissues revealed
engrafted cell survival levels of 35% and 17%, respectively (Fig 3), whereas, for hNSCs,
engrafted cell survival was 23% and 12.5% respectively ((3); Fig 3). These relative yields of
hESCs translated to an average of approximately 138,000 and 65,000 new cells added to
each hemisphere at 1 and 4 months post-engraftment, respectively. The average yield of new
hNSCs added to each hippocampus at 1 and 4-months post-engraftment were approximately
123,000 and 49,000 respectively (3). We did not observe any tumor formation at 1 and 4-
months postgrafting with either human stem cell.

Phenotypic fate of engrafted hESCs
To elucidate the fate of engrafted cells, neuronal and glial markers were assessed in
conjunction with BrdU labeling 1 and 4 months after grafting (Fig. 4A). The expression of
the functional cell cycle marker (Ki67) was 4% at 1-month and reduced to 2% at 4-month
post-grafting (data not shown). By contrast, expression of the neural stem cell marker
(nestin) remained steady (1.6-2%) at both post-grafting time points (data not shown). The
yield of immature (BrdUrd+/Tuj1+) neurons dropped from 18% to 3% from 1 to 4-months
post-grafting, while the yield of mature (BrdU+/NeuN+) neurons reduced from 8% to 4%
respectively over this same timeframe (Fig. 4B). The majority of engrafted cells
differentiated along astro-glial lineages (Fig. 4A-B). The yield of immature (BrdU+/GFAP
+) astrocytes increased from 14% to 23% from 1 to 4-months post-grafting, while the yield
(7-8%) of mature (BrdU+/S100+) astrocytes did not differ at either time (Fig. 4B). Although
BrdU+/GFAP+ engrafted cells were located throughout the hippocampus, astrocytic
differentiation was most predominant in the CC (data not shown). The yield of oligo-
progenitor (BrdU+/NG2+) cells increased from ~3% to 8% in the 1 to 4-month groups
respectively, while mature oligodendrocytes (BrdU+/O4+) showed little change in yield
(8-9%) over these same times (Fig. 4B).

Thus, 1 month after transplantation, 26% of engrafted cells differentiated into neurons and
31% differentiated into glia (Fig. 5A and B). At 4-months the relative yield of neurons
dropped to 7% while the yield of glia increased to 46% (Fig. 5A and B). Absolute numbers
of newly added neurons and glia per hippocampus were also calculated (Fig.5C and D).
Extrapolating these yields of differentiated cell types based on stereology estimates indicates
that transplantation of hESCs resulted in the addition of approximately 36,000 neurons and
44,000 astro-glia at 1 month post-engraftment (Fig. 5C and D), whereas approximately
4,700 neurons and 30,000 astro-glia were added at 4 months post-engraftment (Fig. 5C and
D) into each hemisphere of irradiated animals.

DISCUSSION
The radio-therapeutic management of brain cancer adversely impacts quality of life in
survivors due to the progressive and often debilitating cognitive decrements that develop
over time. Our finding that intrahippocampal engraftment of human stem cells prevents the
development of radiation-induced cognitive impairment suggests that stem cell replacement
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strategies might one day be a promising strategy for treating this serious adverse side effect.
Our present and past data (2-5) clearly show the benefits of using transplanted stem cells for
ameliorating radiation-induced cognitive deficits. Engraftment of either hESCs or hNSCs
affords comparable benefits to cognition when analyzed at 1 or 4 months after grafting
based on the NPR task (Fig. 2). Unlike hESC-transplanted animals assessed 1 month post-
transplantation, those assessed at the 4-month time point did not show statistically
significant improvements in NPR performance compared to non-transplanted IRR animals
(Fig. 2). This is due to the fact that their performance was compared with IRR animals
assessed 4 months after whole-brain irradiation, which showed less impaired performance
compared to those assessed 1 month post-irradiation, possibly because the protracted
assessment time allowed for some amount of recovery. Further, although several
independent studies have now shown the novel place recognition task to be sensitive to
radiation-induced deficits as well as improvements following transplantation surgery, this
behavioral test paradigm relies on spontaneous exploration, which may be confounded by
group differences in locomotor activity or anxiety levels. We assessed locomotor activity
(distance traveled and velocity of movement) in our experimental animals during the initial
familiarization phase of the NPR task. Irradiated animals, whether they underwent
transplantation surgery or not, showed reduced locomotion and velocity compared to non-
irradiated controls (data not shown). Thus, additional paradigms that do not rely on
spontaneous exploration but are known to engage the hippocampus, such as contextual fear
conditioning and water maze spatial learning are needed to confirm and extend the present
findings. Further, important decisions regarding the best choice of cell types to use for
similar such strategies must also rely on additional data and endpoints, such as longer-term
efficacy and safety with regards to teratoma risk. While data indicate hNSC provide slightly
better cognitive benefits than hESC based on exploration ratios measured, differences
between these cell types for the restoration of cognition was not however found to be
statistically significant.

Following irradiation and engraftment, stem cells survived and migrated extensively
throughout the hippocampus, expressing neuronal and astrocytic markers (Fig. 4, refs).
Engrafted hESC survival quantified by unbiased stereology revealed that 35 and 17% of the
transplanted cells survived at 1 and 4 months, respectively. By contrast, our recent findings
of hNSC resulted in 23 and 12% of the transplanted cells remaining at these same time
points (3). While absolute differences in the yield of surviving cells are to be expected
between these cell types under the experimental conditions, it is interesting that the relative
decrease in surviving cells from 1 to 4 month was nearly identical (i.e. ~2-fold reduction).
Despite the drop in the number of engrafted cells, our data suggest that each stem cell type is
subject to and sensitive to similar selective pressures for survival within the irradiated tissue
bed.

Precisely how the attrition of engrafted cells impacts endogenous neurogenesis and
cognition is unclear at this time. Cell death could cause disruptions to the neurovascular unit
by altering the blood brain barrier and neurovascular niche (34,35,38). Alterations to the
functional interaction between non-neuronal cells types in close proximity to neurons may
modulate paracrine signaling and/or leave an inflammatory footprint for the recruitment and
activation of microglia (35,38). Activated microglia increase following irradiation (20), and
their role as pro- or anti-neurogenic affectors depends upon the equilibrium between
secreted molecules having pro- or anti-inflammatory properties (13). While the role of
immune modulation on neurogenesis, learning and memory in our irradiated animal model
remains to be clarified, a wealth of evidence clearly suggests that these are important issues
to resolve (7,37).
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While improved cognition may track with the number of surviving cells (i.e. there was a
trend of improved performance at 1-month compared to 4-months), the absolute number of
engrafted cells surviving at the times of cognitive testing may have been more than
necessary to ameliorate any radiation-induced cognitive decrements. On an average, about
5,000 newly born cells are added to each hippocampus (hemisphere) per day, accounting for
approximately 150,000 new cells per month (26). A cranial dose of 10Gy depletes about
90% of newly born and proliferating cells but not more mature neuronal phenotypes (20).
Therefore, ~135,000 fewer cells will be added to the hippocampus as a result of the
irradiation 1 month prior. Based on stereological estimates, about 140,000 engrafted cells
(hESCs) survived 1-month after irradiation. Therefore, this number of engrafted cells
compensates for the number of newly born cells that would have survived in the unirradiated
brain.

It should also be noted that cognition is a complex and multifaceted endpoint and likely to
rely on many factors besides the yield of surviving engrafted cells. Nonetheless, having
quantified yields of surviving engrafted cells does provide useful information in defining
cellular dose-response thresholds for the improvement of cognition after cranial irradiation.
Clearly, the numbers and types of engrafted cells surviving at 1 and 4 months were
sufficient to offset the adverse effects of radiation on NPR performance. Whether fewer
cells would be equally efficacious is uncertain at this time. In the present study
quantification of phenotypic fate of the engrafted hESCs revealed the addition of both
immature and mature neurons and astro-glial cell types in the irradiated hippocampus 1 and
4 months afterwards (Fig. 4). The adverse impact of irradiation on cognition was effectively
counteracted 1-month later by the presence of ~140,000 newly added cells (~26% neuronal
and 31% glial), while at 4-months after irradiation, only ~65,000 newly added cells (7%
neuronal and 46% glial) were required to prevent the cognitive deficits observed in
irradiated rats receiving no engraftment. While the mechanism(s) of stem cell based
cognitive rescue has not been elucidated, it is likely that some combination of functional
replacement and/or trophic support is playing a role.

Our past data showing that engrafted neurons express the activity-regulated cytoskeleton-
associated protein (Arc), a behaviorally induced immediate early gene in the CNS, suggests
that cell replacement may provide certain benefits to cognition (3). Nonetheless, trophic
support derived from the engrafted astro-glial cells is likely to impact cognitive processes as
well. Engrafted cells secrete a range of beneficial growth factors like GDNF and BDNF
(9,11,18). More recent data suggest that graft-host interactions can be facilitated by
manipulations to the microvascular niche and maintenance of gap junctions (17,24,25).
Astrocytes are also known to modulate nucleoside metabolism, and changes in adenosine
levels mediated by adenosine kinase may impact cognition through alterations in the
bioenergetics of synaptic networks (10,12). Learning and activity increase levels of basic
fibroblast growth factor (bFGF), which in turn increases astrocyte densities in the
hippocampus (16), and infusion of bFGF following traumatic brain injury increases
neurogensis and enhances cognitive recovery (33). Notwithstanding the importance of
neurons, significant work has clearly defined critical roles for astrocytes in a wide spectrum
of functions that support the integration of information necessary for learning and the
consolidation of memory (15,27).

Collectively our transplantation data indicate the broader applicability of using stem cell-
based replacement strategies for the amelioration of radiation-induced cognitive deficits.
Somewhat unexpectedly, significant differences between the differentiated fates of engrafted
hESC versus hNSC were not found (Fig. 5). Each cell type was found to commit to roughly
the same proportion of neuronal and astroglial lineages at each time post-grafting; the only
real difference was found in the higher incidence of neuronal differentiation of the hESC at
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the 1-month post-grafting time. These data suggest that both pluripotent and multipotent
cells respond similarly to the same microenvironmental cues persisting in the irradiated host
brain, where they survive and differentiate to ameliorate cognitive dysfunction over
protracted times after irradiation. While additional studies regarding the persistence and
safety of stem cell transplants are still required, the persistent benefits found from a single
dose of stem cells in our present and past studies (2-5) suggest that this strategy may provide
a satisfactory long-term solution to the cognitive deficits experienced by brain tumor
survivors subjected to cranial radiotherapy.
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Figure 1.
Human embryonic stem cell grafting improves radiation-induced impairments in novel place
recognition assessed 1 month post-implantation. (A) and (C) Exploration ratios (i.e.
timenovel/timenovel+timefamiliar) for the first minute of the 5min and 24hr test sessions,
respectively. (A) Following the 5min retention interval, irradiated animals (IRR) spent a
significantly lower proportion of time exploring the novel place vs. controls (Con; p=0.001)
and transplanted animals (IRR+hESC; p=0.013). In contrast, irradiated animals that received
hESC injections (IRR+hESC) did not differ from controls (p=0.375). (C) After the 24-h
retention interval, animals in the IRR group spent a lower proportion of time exploring the
novel place, although this difference was not statistically significant. IRR+hESC animals
showed a trend toward improved performance compared to the IRR cohort, and spent more
time than expected by chance exploring the novel spatial location (p=0.045). Similar trends
were observed when total time spent exploring the novel place was assessed after both the 5-
min (B) and 24-h (D) retention intervals. Analysis of time spent exploring both objects
during the initial familiarization phase revealed no significant group differences, although
IRR animals tended to spend less time engaged in exploration than both the Con and IRR
+hESC groups (E).
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Figure 2.
IRR-induced deficits in novel place recognition (NPR) performance are ameliorated in
animals receiving hippocampal transplantation of human stem cells 1- and 4-months after
irradiation. Irradiated animals did not explore the novel spatial location more than expected
by chance (indicated by dashed line) and showed significant deficits compared to non-
irradiated controls. By contrast, animals transplanted with either hESCs or hNSCs did not
differ from non-irradiated controls on the 5min test and tended to explore the novel spatial
location more than chance. At 1-month, transplanted animals showed a significant
improvement in NPR performance. Similar trends were observed 4-months post-IRR in both
transplanted groups. Graphs show group means + 1 S.E.M. *indicates significant difference
versus controls; # indicates significant difference versus corresponding IRR group (i.e.
p<0.05 on posthoc Fisher LSD group comparisons).
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Figure 3.
Yield of surviving engrafted human stem cells (hESCs and hNSCs) at 1- and 4-months post-
irradiation. Engrafted cells were detected by BrdU immunostaining and quantified by
counting BrdU-positive nuclei using an optical fractionator and unbiased stereology. Data is
represented as the Mean ± S.E.M. of 4 individual observations. #,p<0.05 and ##, p<0.043
indicates significance between 1 versus 4-month groups. *, p<0.01 denotes significance
between hESC versus hNSC-engrafted groups.
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Figure 4.
Differentiation of transplanted hESCs in the irradiated hippocampus. Engrafted hESCs
differentiated into neuronal and astro-glial phenotypes at 1- and 4-month post-engraftment.
hNSC graft-derived BrdU+ cells differentiated into Tuj1+ immature and NeuN+ mature
neurons (A, B). The majority of engrafted hESCs differentiated into S100+ (S100β protein)
mature, GFAP+ immature astrocytes (A, B) and O4+ mature and NG2+ oligo-progenitor
cells. Arrows indicate dual-labeled engrafted cell. (Scale bars: A, 5 μm).
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Figure 5.
Yields of differentiated human stem cells engrafted in the irradiated brain. The phenotypic
fate of hESCs and hNSCs expressed as a percentage in each hippocampus of the irradiated
rat brain (A, B). The yield of differentiated hESCs and hNSCs in each hippocampus of the
irradiated rat brain as calculated from stereological estimates of graft-derived cells (C,
D). #,p<0.002 and ##, p<0.001 indicates significant difference between 1 versus 4-month
postgrafting group. *, p<0.05; **, p<0.01; ***, p<0.001 denotes significant difference
between hESC versus hNSC-engrafted groups.
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