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mass. In this paper we introduce the Convolved SubStructure (CSS) approach, which

uses a theoretical understanding of the observable to decorrelate the complete shape of

its distribution. This decorrelation is performed by convolution with a shape function

whose parameters and mass dependence are derived analytically. We consider in detail the

case of the D2 observable and perform an illustrative case study using a search for a light

hadronically decaying Z ′. We find that the CSS approach completely decorrelates the D2

observable over a wide range of masses. Our approach highlights the importance of im-

proving the theoretical understanding of jet substructure observables to exploit increasingly

subtle features for performance.
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1 Introduction

Jet substructure is now playing a central role at the Large Hadron Collider (LHC), where it

has provided a new set of powerful tools to search for physics beyond the Standard Model.

For example, jet substructure tools have been used to tag highly Lorentz boosted Standard

Model bosons (W/Z/H), significantly improving searches for new high mass states (see

e.g. [1–18]). With an ever improving understanding of jet substructure observables, these

tools have now also been used to search for low mass resonances by directly studying the

mass distribution of the tagged jets themselves. This has been applied both to the Standard

Model search for H → bb̄ [19, 20], and to searches for new light Z ′ bosons, deriving bounds

in a previously unprobed region of parameter space [21–23].1 These searches represent an

impressive advance in the sophistication of jet substructure techniques.

Unlike for high mass resonance searches, these low mass searches use the mass of the

jet itself. This makes it important that the jet substructure observable used for tagging

is independent of the mass of the jet. Otherwise, the cut on the tagging observable can

significantly distort the jet mass spectrum, making it difficult to search for resonances.

This was first highlighted in [25], where a procedure, termed DDT, was introduced to

decorrelate the observable from the jet mass and pT . More precisely, the DDT decorrelates

the first moment of the observable. Due to the importance of this problem, several other

groups have applied machine learning to develop tagging observables that are decorrelated

with the jet mass and pT [26, 27].

In parallel with experimental advances, there have been significant advances in the the-

oretical understanding of jet substructure observables,2 and a large number of calculations

from first principles QCD [29–45]. These calculations provide significant insight into the

behavior of jet substructure observables, and have enabled advances in their sophistication,

1For other recent bounds on this region see [24].
2For a review of recent advances in jet substructure, see [28].
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with many of the most important observables in current use arising out of analytic calcu-

lations. Recently an all orders factorization formula [46, 47] was derived for the groomed3

D2 observable [41, 48], which is used extensively by ATLAS [1–10]. It was derived in

soft-collinear effective theory (SCET) [49–53] and its multi-scale extensions [41, 54–59].

This factorization allows for an understanding of the all orders perturbative and non-

perturbative behavior of the observable.

In this paper, we show how we can use an understanding of substructure observables

to completely decorrelate them with the jet mass. In particular, we will show that the

standard way of incorporating non-perturbative hadronization effects, namely convolution

with a model shape function, motivates a simple way of performing the decorrelation:

convolution with a function that maps the distribution at any mass to the distribution

at a reference mass. We will call this approach to decorrelation Convolved SubStructure

(CSS).4 The CSS approach naturally preserves the domain and normalization of the tagging

observable, and allows a decorrelation of the complete shape of the observable, not just the

first moment. The philosophy of our approach is slightly distinct from [26, 27], namely it

attempts to decorrelate a given standard observable, such as D2 [41, 48], or N2 [65], using

a theoretical understanding of that particular observable, and as such, is similar in spirit

to the original DDT [25]. Indeed, we will show that the first moment of our approach

reproduces the DDT, and therefore the CSS approach should be thought of as a systematic

generalization of the DDT beyond the first moment.

A schematic depiction of our approach is shown in figure 1. At a given mass, the

distribution predicted by the factorization theorem for an observable such as D2 is given

as a convolution of a non-perturbative shape function [66–69] FNP(ε;m) which encodes

the effects of hadronization, with the perturbative distribution (here and throughout the

text, ε will denote a dimensionless convolution variable, and m denotes the mass). Both

the perturbative distribution, as well as the non-perturbative shape function depend on

the jet mass, and therefore both introduce correlations between the observable and the

jet mass. However, with an understanding of these different functions, we can map the

distribution at a given mass to a reference mass if we know both the non-perturbative

shape function, FNP(ε,m), as well as the mapping between the perturbative distributions,

FP(ε;m1,m2), which is a perturbatively calculable function. The end result is that we

can derive a function, FCSS(ε;m1,m2), which completely decorrelates the observable by

mapping it to a reference mass point.5 This defines the CSS decorrelated D2 observable:

dσCSS

dD2
=

∞∫
0

dε FCSS(ε;m1,m2)
dσ

dD2
(D2 − ε) . (1.1)

3By grooming we mean modified mass drop (MMDT) [38, 39] or soft drop [37] groomers, which for β = 0

are equivalent.
4We note that CSS is also the common abbreviation for the pioneers of factorization, namely Collins,

Soper and Sterman [60–64]. We find this fitting since our approach is based on a factorized understanding

of the observable.
5Technically we map the graph (the set points {(x, f(x)) : x ∈ D}) of the observable to the graph at a

reference mass point.
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Figure 1. The evolution of a two-prong observable, taken here to be D2, with the jet mass is

governed by the corresponding evolution of its perturbative and non-perturbative components. Here

FNP(ε;m) encodes the effects of hadronization, while FP(ε;m1,m2) is a perturbatively calculable

function describing the mapping between the perturbative distributions at the masses m1 and m2

(They are technically defined as convolutions in ε as described in the text, which has been suppressed

in the figure.). By combining these mappings we can completely decorrelate the observable by

mapping it to a reference mass value.

Here ε is a dimensionless convolution variable, and m1 and m2 denotes the masses that the

function maps between. The exact function can be determined through an understanding

of both the perturbative and non-perturbative aspects of the distribution, namely,

FCSS = F−1NP ⊗ FP ⊗ FNP , (1.2)

where ⊗ denotes convolution. This combination of mappings is shown schematically in

figure 1. While it is of course trivial that such a function exists, the simple structure of

the observable enables us to provide a simple analytic form for the function FCSS, allowing

for a fast numerical implementation, as well as an understanding of how it scales with m1

and m2. Furthermore, the function FCSS can be systematically improved starting from this

initial function, using an expansion in orthogonal polynomials, as developed in [69].6

An outline of this paper is as follows. In section 2 we discuss the sources of correlation

between a two-prong substructure observable such as D2, and the jet mass, treating both

the perturbative and non-perturbative aspects of this correlation, and we show that in both

cases they can be modeled using shape functions. Furthermore, we analytically derive the

mass scaling of the shape function parameters. In section 3 we discuss how we can use

6The perturbative distribution can of course be calculated, while the non-perturbative contribution must

currently be modeled. However, due to the structure of the factorization theorem for the tagging observable,

one can confidently predict the scaling of the non-perturbative corrections with the jet mass (that is, their

contributions to the moments of the distribution) in a systematically improvable manner, thus fixing the

functional form of the jet mass dependence in the expansion of the shape function with respect to the

orthogonal polynomials (specifically, generalized Laguerre polynomials).
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this understanding to decorrelate jet substructure observables using shape functions, and

introduce the CSS approach. We then illustrate concretely how the decorrelation can be

done in practice. In section 4 we perform a brief study, illustrating the effectiveness of the

decorrelation procedure for Z ′ → qq̄. We conclude in section 5.

2 Correlation with mass for jet substructure observables

In this section we discuss the sources of correlation between a two-prong observable, such

as D2, and the jet mass (for brevity, we will not always explicitly say groomed jet mass,

although we always work with groomed observables), to illustrate how these correlations

arise. In section 2.1, we discuss the dependence of non-perturbative physics on jet mass,

and introduce the modeling of hadronization effects using shape functions. In section 2.2

we discuss perturbative sources of correlation, and show that they can also be well captured

by a simple shape function.

In this paper we will consider the concrete example of the D2 observable, for which a

factorization formula is known [46, 47]. This allows us to make precise statements about

the perturbative and non-perturbative behavior of the observable. The D2 observable is

defined in terms of the energy correlation functions [70]

e
(β)
2 =

1

p2TJ

∑
i<j∈J

pT ipTjR
β
ij , (2.1)

e
(β)
3 =

1

p3TJ

∑
i<j<k∈J

pT ipTjpTkR
β
ijR

β
ikR

β
jk , (2.2)

as [41, 48]

D
(β)
2 =

e
(β)
3

(e
(β)
2 )3

. (2.3)

Here Rij is the distance between particles i and j in the pseudorapidity-azimuth plane,

and β > 0 is an angular weighting parameter whose typical value is β = 1 or β = 2.

For notational simplicity we will often drop the angular exponent, writing the observable

simply as D2. For a jet with two prong substructure we have D2 � 1, while for a more

standard QCD jet without a resolved substructure D2 ∼ 1.

2.1 Non-perturbative effects

Jet substructure observables are sensitive to low scales within a jet, and are therefore natu-

rally susceptible to non-perturbative effects. Non-perturbative contributions can arise both

from the underlying event (UE), as well as from the standard hadronization process within

the jet. In [46], it was shown that due to the grooming procedure, non-perturbative effects

from the underlying event are negligible. We will therefore neglect them in what follows.

Using the factorization formula for the D2 observable derived in [46, 47], it can be

shown that the dominant non-perturbative effects from hadronization are captured by a

collinear-soft function

Csi(e3) = tr〈0|T{Yi}δ(e3 − Ê3)ΘSDT̄{Yi}|0〉 . (2.4)

– 4 –
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Here the Yi are products of Wilson lines along the subjet directions, T and T̄ denote

time and anti-time ordering respectively. The measurement function and soft drop con-

straints are implemented by the energy flow operators Ê3 and ΘSD, whose exact form is

not relevant for the current discussion. These operators can be written in terms of the

energy-momentum tensor [71–74]. Importantly, due to the application of the grooming

algorithm, the collinear-soft function, and hence the non-perturbative hadronization cor-

rections, depend only on the color structure of the jet itself, and not on the color structure

of the global event, making them a property of the observable.

While the collinear-soft function in eq. (2.4) can be calculated perturbatively, it is cur-

rently not possible to calculate it non-perturbatively. Instead, a functional parametriza-

tion of the non-perturbative matrix element, which is referred to as a shape function,

FNP, is used [66–69]. Shape functions have been used in a variety of contexts in jet

physics [41, 45, 46, 75–77]. For the particular case of D2, this allows the non-perturbative

D2 distribution to be written as a convolution of the perturbative distribution and the

shape function

dσNP

dD2
=

∞∫
0

dx F̃NP(x)
dσ

dD2

(
D2 −

x

mJz
3/2
cut

)
. (2.5)

The scalings entering this expression are determined by the scalings of the collinear-soft

function in eq. (2.4), and were derived in [46, 47]. We will take our model shape function

to have the simple functional form7

F̃NP(x;α,ΩD) =

(
α

ΩD

)α 1

Γ(α)
xα−1e

− αx
ΩD . (2.6)

This function has a first moment ΩD ∼ ΛQCD, is normalized to unity, and we may think

of this specific shape function as but the first term in an orthogonal expansion which

specifies the non-perturbtive corrections to all moments of the distribution, where we have

truncated to specifically fix only the first moment. Here α is a parameter, which specifies

the functional form. We will choose α such that the function vanishes as x → 0. We find

that α = 2-3 provides a good description of the non-perturbative correction. Since the

dominant effect is a shift of the first moment, which is fixed, it is only at small value of

D2 that there is dependence on α. The physical interpretation of this function is that it

smears the energies within the jet at the scale ΛQCD. In certain cases universal properties

of the first moment of shape functions can be proven [78, 79]. These moments, as well as

higher moments have been extracted from event shape data, for example from the thrust

event shape [80].

Ref. [46] studied the non-perturbative shape parameter ΩD, and found

• ΩD is independent of the quark or gluon nature of the jet.

• The scaling predicted by eq. (2.4), namely that the non-perturbative shift in the

distribution is inversely proportional to the mass, is well respected in parton shower

Monte Carlo simulations.
7This functional form is that of a Gamma distribution. Amusingly, we note that these are the maximally

entropic distributions with a fixed first moment and first logarithmic moment.
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Figure 2. The shift of the D2 distribution due to hadronization. (a) The perturbative and

hadronized distributions as found in Pythia, and as modeled using the non-perturbative shape

function described in the text. (b) The dependence of the non-perturbative shift, ∆NP
D as a function

of the groomed mass, which introduces a source of correlation of the D2 distribution with the

groomed jet mass.

In figure 2, we show the effects of hadronization on the D2 observable found in Pythia,

and as modeled using the shape function of eq. (2.6). We see that the simple shape function

reproduces quite well the effects of the hadronization.

Although it is conventional to work with a shape function parameter that has mass

dimension 1, such as ΩD, for our purposes it will be convenient to introduce the dimen-

sionless shift in the first moment of the D2 distribution, which we denote ∆NP
D . For the

case of the non-perturbative hadronization corrections, we have the relation

∆NP
D =

ΩD

mJz
3/2
cut

. (2.7)

When using the dimensionless variable, we use the shape function

FNP(ε;α,∆D) =

(
α

∆D

)α 1

Γ(α)
εα−1e

− αε
∆D , (2.8)

which is the same functional form as in eq. (2.6), but we have dropped the tilde to emphasize

that the dimension of the argument has changed. The dependence of ∆NP
D as extracted

from Pythia is shown in figure 2b, as well as a fit for the non-perturbative parameter

ΩD. To extract this scaling, we have fit the shift parameter in the tail region of the

distribution, where we expect that a shift of the distribution is valid. The uncertainties

represent a conservative estimate due to the fact that the precise region in which one

should be performing the fit is not always clear. The strong dependence on the mass of

the jet is clearly visible, which introduces a non-perturbative correlation between the D2

distribution and the jet mass. It is also important to note that the shift ∆NP
D is dependent

– 6 –
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(b)

Figure 3. The decorrelation of the perturbative D2 spectrum. In (a) we show the perturbative

groomed D2 spectrum as a function of the jet mass, and in (b) we show the decorrelated D2

spectrum. The movement of the distribution in (a) as the mass is varied is largely eliminated by

the decorrelation procedure in (b).

only on mJ , and not on pT , as can be derived from the factorization formula [46, 47]. This

simplification is only true for groomed distributions.

Inverting the logic of this section, if we are able to transform between the perturbative

and non-perturbative distributions using a convolution with a simple function, this also

implies that we can perform the deconvolution to obtain the perturbative distribution.

Doing this would remove the correlation of the D2 distribution with the jet mass arising

from hadronization corrections. However, to completely decorrelate the distribution, we

also need to understand how to decorrelate the perturbative distributions, which can also

depend on the jet mass. This will be addressed in section 2.2. In section 3 we will then

give a numerically simple way of performing the decorrelation via convolution.

2.2 Perturbative effects

In addition to a dependence of the hadronization corrections on the jet mass, there is

also a dependence of the perturbative D2 distribution on the jet mass that introduces a

further correlation between the D2 distribution and the jet mass. Unlike the hadronization

correction, where only the scaling of the hadronization corrections as a function of the jet

mass is calculable, the perturbative distribution can be calculated to a given accuracy, and

hence the complete dependence of the distribution on the jet mass can be understood. In

figure 3a we show a plot of the perturbative D2 distribution at next-to-leading logarithm

matched to leading order 1 → 3 splitting functions in the large D2 region in order to

reproduce the correct endpoint behavior. In the figures this accuracy is referred to as

NLL+LO. See [47] for a more detailed discussion of the order counting. Here the H → gg

process was used to produce gluon jets. We can see that there is a mild, but non-negligible

dependence on the jet mass within the peak region. A more quantitative measure, ∆P
D, the

– 7 –
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Figure 4. (a) The shift in the mean of the perturbative distribution computed using the NLL+LO

result, along with the analytic prediction described in the text. (b) The shift in the log mean for

both the standard and CSS decorrelated distributions for different values of the α parameter for

the shape function.

shift in the mean relative to the distribution at m = 35 GeV is shown in figure 4a. This is

only a small effect for the groomed D2, which has a fixed endpoint at 1/(2zcut), independent

of the jet mass. It is ultimately this fact that leads to a large degree of stability of the

distribution. For the ungroomed D2 distribution the endpoint depends strongly on the jet

mass so that the distribution displays a much more complicated dependence on the jet mass.

Following the logic of the previous section, if we understand the form of the correlation

between the D2 distribution and the jet mass, we can also remove this correlation. Moti-

vated by the implementation of the shape function for the non-perturbative contribution,

we can also attempt to decorrelate the perturbative component of the distribution by con-

volving with a function which takes the perturbative distributions to some reference value.

Since the mean of the D2 distribution increases with decreasing mass, to decorrelate by

convolution with a simple shape function, we will always use as a reference mass value the

lowest mass value of interest. Namely, we write

dσ

dD2
(ε1;m2) =

∞∫
0

dε FP (ε;m1,m2)
dσ

dD2
(ε1 − ε;m1) , m2 < m1. (2.9)

Here we have made explicit the mass dependence of the functions, which is separated from

the argument of the function by a semi-colon. The fact that such a (possibly singular)

function exists is trivial, and it can be determined by division in Laplace or Fourier space

(i.e. by deconvolution). Furthermore, this function is (in principle) exactly calculable from

the factorization theorem, given predictions for the perturbative D2 distribution at any

given accuracy at any jet mass. However, to have a reasonable prediction for the D2 dis-

tribution requires a matched calculation. This implies that results for the distribution are

necessarily numerical instead of analytic, making it difficult to understand the deconvolu-

– 8 –
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tion analytically. We would therefore like to find a simple function that provides a good

approximation to the exact result.

Although we cannot analytically predict the exact shape function (in a practical way),

we can use our analytic NLL+LO result to compute moments of the perturbative distri-

bution. We expect that the dominant effect of the correlation between the D2 observable

and the jet mass will be a shift of the first moment, as can be seen from figure 3a. The

shift in the mean relative to the distribution at m = 35 GeV, ∆P
D, is shown in figure 4a.

The shift in the first moment of the distribution arises due to the renormalization group

evolution of the functions appearing in the factorization theorem of refs. [46, 47]. We can

therefore write the shift in the first perturbative order as

∆P
D = γD

m1∫
m2

dµ
αs(µ)

µ
+ . . . , (2.10)

where γD is a constant, which we extract from our calculation of the distribution at two

mass points. The prediction from this functional form is shown in the dashed line in

figure 4a, which provides an excellent description of the numerical results at many other

values of the jet mass, confirming the perturbative evolution of the first moment.

To perform the perturbative decorrelation, we will use as the base decorrelation func-

tion the functional form of eq. (2.6). Since we can analytically predict the shift ∆P
D, we

can use this function to exactly decorrelate the mean. However, by tuning the angular

exponent, with the mean fixed, we can further attempt to decorrelate the complete shape

of the distribution. The value of α can be extracted by decorrelating the log-mean of the

distribution, which can be computed analytically from our NLL+LO calculation. The evo-

lution of the log mean with mass is shown in figure 4, both without decorrelation, and after

decorrelation using the function of eq. (2.6) for several values of α. We find that for α in

the range of α = 2-3, we have good decorrelation of the log mean. Furthermore, it is quite

insensitive to the exact value of α used, which shows that the correlation is dominated

by a shift in the mean. The decorrelation of the full distribution for α = 2.4 is shown in

figure 3b. As compared with figure 3a, we see a good decorrelation of the full shape of the

distribution. This shows that the dependence of the D2 observable on the mass is in fact

remarkably simple, being driven by a shift in the first moment captured by eq. (2.10), with

deviations from this to account for the behavior at the endpoints being captured by the

simple class of functions in eq. (2.6).

We conclude this section by emphasizing that this analysis could be improved by

iteratively building up a shape function starting from the base function of eq. (2.6) using

an expansion in orthogonal functions, as has been done in [69], requiring all moments to

be decorrelated exactly. However, for our purposes we will find that the simple function of

eq. (2.6) works extremely well, as will be illustrated in our case study in section 4.

3 Convolved substructure

Motivated by the above observation that both the perturbative and non-perturbative com-

ponents of the distribution can be decorrelated using simple shape functions, we propose
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that we can use shape functions as an efficient way to completely decorrelate two-prong

substructure observables by mapping them to reference mass. This is what we will call the

Convolved Substructure, or CSS procedure. Since the shape functions used in hadroniza-

tion are typically used to shift the distribution to a larger value, for the D2 observable, we

will also choose the reference mass to be the lowest mass of interest, ensuring that the shift

in the mean required for decorrelation is positive.

We define the CSS decorrelated D2 observable by

dσCSS

dD2
=

∞∫
0

dε FCSS(ε)
dσ

dD2
(D2 − ε) . (3.1)

Here FCSS is an as of yet unspecified function with unit norm. While we have used the

specific example of D2, this approach should apply much more generally, however, we

expect that it will only be for IRC safe observables with sufficiently favorable factorization

properties that analytic scalings for the FCSS function can be derived. Within this subset

of observables, we believe that this represents a completely general and efficient way of

performing the decorrelation. Unlike previously proposed analytic approaches, it aims to

decorrelate all moments of the distribution, and naturally preserves the domain and norm

of the distribution. Furthermore, motivated by the success in describing non-perturbative

corrections using a simple basis of functions [69], we will show that we can choose a simple

analytic form of the function FCSS as the initial approximation. Further improvements can

be systematically added, if needed.

It is also interesting to see that this approach includes as a special case the standard

DDT, which is a shift of the first moment. Performing a Taylor expansion for a small shift,

we have

dσCSS

dD2
'
∞∫
0

dε FCSS(ε)
dσ

dD2
(D2)−

∞∫
0

dε FCSS(ε)ε
d

dD2

dσ

dD2
(D2)

' dσ

dD2
(D2 −∆D) , (3.2)

where ∆D is the first moment of the function FCSS,

∆D =

∞∫
0

dε FCSS(ε)ε . (3.3)

This reproduces (a constrained form of) the DDT, which decorrelates the first moment. We

note that while the DDT procedure was originally introduced as a shift which decorrelates

the first moment of the distribution, it has since been generalized to decorrelate, for exam-

ple, the background efficiency at a given cut. Nevertheless, it can still only decorrelate a

single chosen moment of the distribution. We will re-emphasize this point in our numerical

comparisons in section 4. Note that when used for incorporating non-perturbative effects,

the linear shift applies in a particular region of the distribution, but the full shape function

is needed at small values. We will see in section 3.1 that this is also true when used for
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decorrelation, with the full convolution reducing to a linear shift throughout most of the

distribution, and the full non-linear nature of the function only becoming relevant near the

endpoints of the distribution.

The exact function FCSS to shift from the mass m1 to a reference mass m2, with

m2 < m1, can be written as

FCSS(ε;m1,m2) = F−1NP(ε;m1)⊗ FP(ε;m1,m2)⊗ FNP(ε;m2) , (3.4)

as was illustrated in figure 1. Here the ⊗ denotes convolution in the variable ε, and the

inverse denotes an inverse in the convolutional sense (i.e. a deconvolution). Instead of

performing the decorrelation in this form, we will simplify our discussion and use a single

effective function. This can certainly be improved, however, we will already find that with

a single function we will find an excellent decorrelation. We will use the decorrelation

function of the previous section, namely8

FCSS(ε;α,∆D) =

(
α

∆D

)α 1

Γ(α)
εα−1e

− αε
∆D . (3.5)

With this parametrization, we have that the first moment is ∆D for all values of α, but

we allow for a general power law behavior as x → 0, specified by α. When considering a

full example at the LHC, we will find that a value of α slightly larger than two will give

an excellent fit. Taking the first moment of eq. (3.4), we find that

∆D(m1,m2) = ∆NP
D (m2)−∆NP

D (m1) + ∆P
D(m1,m2) . (3.6)

Again, we assume that the reference mass that we are shifting the distributions to, namely

m2, satisfies m2 < m1. In sections 2.1 and 2.2 we have used the factorization formula for the

D2 observable derived in [46, 47] to predict the mass dependence of both the perturbative,

∆P
D, and non-perturbative, ∆NP

D , moments appearing in eq. (3.6). In principle, the exact

values of the moments can be extracted for given processes and observables, by studying

the distributions with and without hadronization, as was done above.

The decorrelation using this procedure on our NLL+LO calculation is shown in figure 5,

which shows both the perturbative and non-perturbative distributions, as well as the final

CSS curve, and can be viewed as an analytic realization of the strategy outlined in figure 1.

Good, but not perfect decorrelation is observed, and we will see in section 4 that the

decorrelation procedure seems to work even better in Pythia than for the analytic example

shown here.9 For ease of applicability, we find it more convenient to give a formula for

∆D(m1,m2), with two constants that can be directly extracted by fitting the decorrelation

at several points, as will be demonstrated in a practical example in section 4. Using our

8That the final convolution in eq. (3.4) can be approximated by a single function of the same form can

be understood by looking at the functional form in Laplace space, where these functions take the form

of rational functions to the power α using the first term in the expansion for FCSS. Due to the inverse

convolution appearing in eq. (3.4), the Laplace transform of the convolution of the three functions has the

same polynomial degree as the Laplace transform of a single such function.
9There is also a tradeoff between exactly reproducing the mean and accurately capturing other aspects

of the shape.
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Figure 5. The implementation of the CSS decorrelation on our analytic NLL+LO calculation,

using the first moment shift determined analytically from eq. (3.6). Perturbative distributions at

the different mass values are shown in small-dashed, while the full distributions are shown in solid.

The CSS result decorrelated to mJ = 35 GeV is shown in dashed blue. It involves decorrelating

both the perturbative and non-perturbative evolution, as can be seen from the different curves.

understanding of the functional dependence on the jet mass for both the perturbative and

non-perturbative contributions to the moment discussed in sections 2.1 and 2.2, we have

the general form of the moment for the CSS approach as

∆D(m1,m2) = cNP

(
1

m2
− 1

m1

)
+ cP

m1∫
m2

dµ
αs(µ)

µ
,

' cNP

(
1

m2
− 1

m1

)
+ c̃P log

(
m1

m2

)
, (3.7)

where the second line is an approximation that is good for most numerical purposes. Again,

we emphasize that the reference mass, m2 is taken to satisfy m2 < m1, so that this shift is

positive. Here the cNP, cP and c̃P are constants that can be fit for numerically, and describe

the non-perturbative and perturbative scalings respectively. We note that although it may

appear unnatural, the coefficients cNP and c̃P have different mass dimensions, since cNP is

associated with a power-law variation, while c̃P is associated with a logarithmic variation.

From a practical perspective, the CSS decorrelation function can be constructed by

fixing the value of α appearing in eq. (3.5) using a single value of the mass. For D2, we

find values of α ∈ [2, 3] work well, with no strong preference for a given value. Using

several values of the mass, one can then fit for cNP and c̃P to give a smooth function that

describes the evolution of the moment of the shape function. Knowing the analytic scaling

of the function is therefore important, as it allows the shape to be fixed using dedicated

Monte Carlo at a few specific mass points, and does not require Monte Carlo at every

single value of the mass to determine the form. We will illustrate this for a case study of
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Z ′ → qq̄ in section 4, where we will find that this gives a remarkably good (almost perfect)

decorrelation of the D2 observable.

3.1 Practical implementation

In practice, the convolution procedure described above needs to be applied jet-by-jet and

not at the distribution level. The convolution of two distributions corresponds to the addi-

tion of the random variables described by the distributions. Therefore, one possibility for

translating the distribution-level results from earlier to event-by-event results is to add to

every observed D2 value a random value drawn from the distribution FCSS(x;α,ΩD) from

eq. (3.5). This is not ideal because (a) the randomness can introduce features in the clas-

sification performance for finite statistics and (b) there are various technical reasons like

reproducibility that make injecting randomness unattractive. Another way to accomplish

the convolution but using a deterministic approach is to use the (inverse) cumulative distri-

bution function (CDF). Given a random variable X with CDF C(x) = Pr(X < x), C(X)

is a new random variable that follows a uniform distribution. For any other CDF G, one

can then form the random variable G−1(C(X)), which follows the probability distribution

g(x) = ∂yG(y)|y=x that corresponds to G. Let

c(x) =
1

σ

dσ

dD2
(3.8)

g(x;α,∆D) = c(x)⊗ FCSS(x;α,∆D). (3.9)

We can now define the CDFs C(x) =
∫ x
0 c(x

′)dx′ and G(x;α,∆D) =
∫ x
0 g(x′;α,∆D)dx′.

Then, the jet-by-jet transformation is given by

D2 7→ G−1(C(D2);α,ΩD). (3.10)

This simple mapping allows us to numerically implement the CSS procedure in an effi-

cient manner.

An explicit example of the mapping given by eq. (3.10) for the example of Z ′ → qq̄,

which is discussed in detail in section 4, is shown in figure 6. This figure demonstrates

the construction of the CSS D2, following the procedure from section 3.1. The CDF for

each D2 distribution is computed (C for D2 and G for D2 CSS), as shown in figure 6a and

then the transformation in eq. (3.10) is shown in figure 6b. While the CSS curves may

look mostly linear, there are important non-linear features at high and low D2. These will

be discussed in detail in section 4, and will play an important role in decorrelating the

complete D2 distribution, and not just the first moment. The perturbative expansion of

the CSS procedure to its first moment, as was discussed around eq. (3.2) gives rise to a

linear behavior, and the fact that the mapping in figure 6b is mostly linear simply shows

that this is a good approximation. Note that the DDT procedure would result in straight

lines in figure 6 with a mass-dependent offset.

4 A case study: D2 for Z′ → qq̄

An important and recent application of variable decorrelation is the search for a low mass

hadronic resonance, Z ′ → qq̄ [21–23], which we therefore use as a case study. The generic
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Figure 6. (a) The CDF of the D2 and D2 CSS distributions in various bins of groomed mass

for QCD jets. (b) The mapping between D2 and D2 CSS. Here an angular exponent β = 2 was

used for D2. The mapping is linear throughout most of the range of interest, but with important

non-linearities at small and large values of D2.

quark and gluon background is too large to observe a dijet resonance directly, but when

the Z ′ is produced in association with initial state radiation, it can be sufficiently boosted

for its decay products to be collimated inside a single jet. For our study, both the Z ′ and

the generic quark and gluon background are simulated with Pythia 8.183 [81, 82]; the

former by changing the mass of a Standard Model Z boson and the latter with all hard

QCD processes. All stable final state particles excluding neutrinos and muons are clustered

into jets with FastJet 3.1.3 [83] using the anti-kt algorithm [83, 84] with R = 0.8. In

order to make sure that the Z ′ particles with masses up to 300 GeV are mostly contained

inside a single jet, jets are required to have pT > 1 TeV. Jets are then re-clustered using the

Cambridge/Aachen algorithm [85–87] and groomed with mMDT/soft drop using zcut = 0.1.

From the groomed jet’s constituents, the jet mass is calculated along with D2 using the

EnergyCorrelator FastJet contrib [83, 88]. Throughout this section we will use an

angular exponent of β = 2 for the D2 observable, but for notational simplicity, we will

suppress the argument.

To perform the CSS decorrelation, we will shift all distributions to the reference mass

of m = 50 GeV, and we will consider jets with masses in the range 50 GeV < m < 250 GeV,

namely a factor of 5 variation. This is approximately the mass range used in the current

LHC searches [21–23]. In a realistic application, it may be convenient to shift the distri-

butions in different mass regions to different reference values. For example, for low mass

searches, the Z mass provides a natural mass scale where the analysis changes, and therefore

it may prove useful to shift jets with mass m > mZ to the reference mass of mZ , and jets

with mass m < mZ to the lower mass limit of the search. In this way, the required decorre-

lation in each mass window is minimized. However, the goal of this section is simply to illus-

trate that we can completely decorrelate the D2 distribution over a wide range of jet masses.
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(d)

Figure 7. Figure (a) shows the groomed D2 distribution without further modification. Figures (b)

and (c) show the groomed D2 distribution after the application of the CSS and DDT procedures,

respectively. The differences between the DDT and CSS distributions are shown in figure (d), and

grow at small values. The DDT and CSS procedures are applied to both signal and background,

where the transformations are defined by the background distributions.

In figure 7 we show the standard D2 distribution, as well as the decorrelated distribu-

tions using the CSS and DDT approaches, for five narrow bins in the groomed jet mass.

The DDT is applied by shifting

D2 7→ D2 − 〈D2|m〉+ 〈D2|50 < m/GeV < 55〉, (4.1)

where the averages 〈x|y〉 (this means the average of x given y) are computed using the

QCD background jets. By construction, the average of the resulting DDT distribution is

independent of m:

〈D2 DDT|m〉 = 〈D2 − 〈D2|m〉+ 〈D2|50 < m/GeV < 55〉|m〉
= 〈D2|m〉 − 〈D2|m〉+ 〈D2|50 < m/GeV < 55〉
= 〈D2|50 < m/GeV < 55〉 (4.2)

– 15 –



J
H
E
P
0
5
(
2
0
1
8
)
0
0
2

�� ��� ��� ��� ���
���

���

���

���

���

���

������� ���� [���]

Δ �

Δ� ���������� ������
� = ���� ���� = ���� ��� > � ���

���������� ���
����������

Figure 8. The first moment of the CSS mapping, ∆D, as a function of jet mass as extracted from

Pythia, and compared with a fit to the analytic form described in eq. (3.7) in the text.

The CSS procedure is applied using the shape function, FCSS, of eq. (3.5) with α = 2.4

and ΩD as indicated in the figure. The value of α was fixed for a single value of the mass,

however, fortunately, we find that we are quite insensitive to the precise choice of α. The

values of ΩD are plotted in figure 8 along with a fit to the analytic form, which we see

provides an excellent description. The extractions of the shift at these five mass values can

be viewed as fixing the coefficients of the analytic mass dependence of the decorrelation

procedure of eq. (3.7), and providing a prediction for every other value of the mass, as

would be required experimentally. Here we see the advantage of knowing the analytic

form, namely that one only needs dedicated Monte Carlo at several specific mass values.

The signal distributions are also shown to give a feeling for the range of interest of the D2

observable for discrimination.

A number of features of the different decorrelation procedures are clearly evident from

these figures. First, we see in figure 7b that the CSS decorrelated observable has essentially

no dependence on the jet mass. The complete shape of the distribution is identical for the

wide range of masses shown. By contrast, the shape of the DDT version in figure 7c

changes with mass even though the mean is fixed. This is particularly true on the left

side of the peak. The difference between methods arises from the non-linear nature of the

CSS mapping, as was mentioned in figure 6. A zoomed in view of the small D2 region

is shown in figure 9, which highlights the difference between the two approaches. Both

the CSS and DDT mappings are effectively linear to the right of the D2 peak, where we

see that both decorrelate the observable very well, but the non-linear mapping is required

to perform the decorrelation of the shape of the distribution at small values of D2. It

is in this region that the shape of the distribution changes non-trivially with mass, and

the difference between distributions at different masses cannot simply be described by a

shift. The ability of the CSS approach to correctly reproduce the change in shape of

the distribution in this region of the distribution, which is the most important region for
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Figure 9. A comparison of the groomed D2 DDT distribution in (a) and the groomed D2 CSS

distribution in (b) at small values. The CSS approach decorrelates the entire shape of the distribu-

tion, including at low values of D2, where the shape of the distribution changes non-trivially, and

which is the relevant region for discrimination.

discrimination, is quite remarkable. The differences between the two different decorrelated

distributions are shown in figure 7d, which also highlights that the differences between the

two decorrelation procedures become large at small values of D2. We also note that here we

have chosen to decorrelate the background (QCD) distributions, and therefore the signal

distributions exhibit some dependence on mass.

As a further quantitative comparison between the CSS and DDT approaches, in fig-

ure 10 we compare different integrals of the distributions, namely the mean, and the

probability that D2 ≤ 0.4 (the lower tail fraction), which we denote Pr(D2 < 0.4). By

construction, the mean of the DDT D2 distribution is independent of mass, as seen in fig-

ure 10a. However, the shape does change with mass as indicated by the lower tail fraction

in figure 10b (lower D2 is more signal-like). On the other hand, since the CSS approach

decorrelates the complete shape of the distribution both the mean and the tail fraction

are nearly independent of mass. We must also emphasize that the DDT approach could

equally well be applied to flatten the Pr(D
(2)
2 < 0.4) (or any other given integral of the

distribution). However, it would then not decorrelate the mean. In other words, it can be

used to decorrelate a single moment at a time. On the other hand, the CSS approach aims

to decorrelate all moments.

Finally, it is important to check that the CSS procedure does not degrade the tagging

performance of the D2 observable. This was shown for the DDT approach in [25]. Applying

the mapping shown in the right plot of figure 6 also to Z ′ events results in the distributions

that were already shown in figure 7. Lower values of D2 are more signal-like so an upper-

threshold on the D2 distribution is an effective two-prong tagger. Figure 11 quantifies the

tradeoff between signal and background efficiency with and without the CSS procedure. As

desired, there is a minimal difference in the ROC curve after applying CSS. This difference

could be further minimized by performing the CSS decorrelation in narrower mass windows.
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Figure 10. (a) The mean D2 and (b) Pr(D2 < 0.4) for QCD jets as a function of mass. By

construction the DDT decorrelates a single moment, chosen here to be the first moment, but does

not decorrelate higher moments. On the other hand, the CSS procedure is designed to decorrelate

the entire shape of the distribution.

5 Conclusions

In this paper, we have shown how a given jet substructure observable, such as N2 or

D2, can be decorrelated with the jet mass using an understanding of its perturbative

and non-perturbative behavior. Inspired by the use of shape functions for modeling non-

perturbative effects, we introduced the Convolved SubStructure (CSS) approach, which

uses a shape function, convolved with the substructure observable’s distribution, to map it

to a reference mass. The shape function incorporates effects due to both perturbative and

non-perturbative physics, and we used a recently derived factorization formula to analyti-

cally derive the mass dependence of both these contributions. Unlike previous approaches

with similar philosophies, the CSS approach completely decorrelates the entire shape of the

distribution. Furthermore, it is systematically improvable by expanding the shape function

in a basis of orthogonal functions [69], and uses maximally the theoretical understanding

of the observable.

We have shown in detail how the CSS approach can be practically implemented in

an extremely simple manner, and studied its behavior for the example of a light Z ′ →
qq̄ search using the D2 observable. We found that using a simple two parameter shape

function we were able to obtain an excellent decorrelation of the entire D2 distribution

over a wide range of mass values. The shape function parameter defining the shift of the

first moment of the distribution has a functional dependence on the jet mass that can be

understood from first principles, and is fixed by demanding that the first moment of the

mapped distributions are the same as the reference mass distribution. Higher moments

can be handled similarly, but since we require the shape function to maintain the domain

and norm of the distribution, we find that already the decorrelation of the first moment
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Figure 11. A scan in an upper cut on D2 traces out a Receiver Operator Characteristic (ROC)

curve quantifying the tradeoff between Z’ (signal) efficiency and QCD (background) efficiency for

various groomed jet mass bins, shown in a linear plot in a) and a log plot in b). The CSS procedure

is not found to significantly degrade the discrimination power of the observable.

effectively decorrelates the whole spectrum. Furthermore, the discrimination power of the

CSS observable was not significantly degraded. In real applications, the tradeoff between

discrimination power and decorrelation must be evaluated, and it may be practical to

perform the decorrelation in mass windows.

One important aspect that we did not study in this paper is whether an identical

mapping applies at detector level. Even if it is not the case, our approach is general, and

another simple functional form that performs the decorrelation could be found. It will also

be interesting to apply the CSS approach to other observables, such as N2, for which the

DDT approach has been applied successfully [21, 23]. Again, a slightly modified convolution

function may be required, depending on the behavior of the observable. We therefore hope

that the CSS approach can be used to decorrelate a variety of substructure observables,

improving the reach and performance of searches for low mass particles at the LHC.
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