UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

LARC: Language annotated Abstraction and Reasoning Corpus

Permalink

https://escholarship.org/uc/item/3r6807ct

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

Authors

Acquaviva, Sam Pu, Yewen Nye, Maxwell et al.

Publication Date

2021

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

LARC: Language annotated Abstraction and Reasoning Corpus

Sam Acquaviva

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Yewen Pu

Autodesk Inc, San Francisco, California, United States

Maxwell Nye

MIT, Cambridge, Massachusetts, United States

Catherine Wong

Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Michael Tessler

MIT, Cambridge, Massachusetts, United States

Josh Tenenbaum

MIT, Cambridge, Massachusetts, United States

Abstract

The Abstraction and Reasoning Challenge (ARC) is a set of tasks where one must induce a program from a few given input-output examples, and apply it to a new input. Although humans can easily solve most tasks, ARC is challenging for state-of-the-art algorithms. We hypothesize that humans use intuitive program induction, and interpret ARC tasks by constructing "natural programs" in language.

We experimentally study "natural programs" by formulating a two-player game: A participant solves and then communicates the program to another participant using natural language; the second participant must solve the task using the description alone. We find at least 361 out of 400 tasks can be solved from a natural language description, demonstrating that natural language is sufficient in transmitting these natural programs.

We compared the natural language programs to computer programs constructed using two separate state-of-the-art program synthesis approaches, and conducted a study on leveraging natural language annotations to improve performance of program-synthesis tools.