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Exome sequencing in amyotrophic lateral sclerosis identifies 
risk genes and pathways

A full list of authors and affiliations appears at the end of the article.

Abstract

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective 

treatment. Here we report the results of a moderate-scale sequencing study aimed at identifying 

new genes contributing to predisposition for ALS. We performed whole exome sequencing of 

2,874 ALS patients and compared them to 6,405 controls. Several known ALS genes were found 

to be associated, and the non-canonical IκB kinase family TANK-Binding Kinase 1 (TBK1) was 

identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins 

involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/

sequestosome), both of which have also been implicated in ALS. These observations reveal a key 

role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention.

Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease 

characterized by loss of motor neuron function for which there is no effective treatment or 

definitive diagnostic test (most cases are diagnosed clinically) (1). Approximately 10% of 

ALS cases are familial and inherited in an autosomal dominant, autosomal recessive, or X-

linked mode, while the remaining cases are apparently sporadic (2, 3). Approximately 20 

genes collectively explain a majority of familial cases, but these genes can explain only a 

minority (about 10%) of sporadic cases (2, 3) (Table 1).

Protein and protein/RNA aggregates are a common feature of ALS pathology. These 

aggregates often include proteins encoded by genes that cause ALS when mutated, including 

those encoding SOD1, TARDBP (TDP-43), and FUS(4). Multiple genes (e.g. C9orf72, 

GRN, VCP, UBQLN2, OPTN, NIPA1, SQSTM1) in addition to TARDBP harbor variants 
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pathogenic for TARDBP proteinopathy manifesting as ALS. This pathological TARDBP is 

part of a common pathway linked to neurodegeneration caused by diverse genetic 

abnormalities (5). While murine models of ALS are limited, silencing certain ALS genes can 

cause regression of the disease phenotypes and clearance of the protein aggregates (6).

Identifying ALS genes

To identify genetic variants associated with ALS, we sequenced the exomes of 2,874 

patients with ALS and 6,405 controls. We ran a standard collapsing analysis where the gene 

was the unit of analysis, and we coded individuals based on the presence or absence of 

“qualifying” variants in each sequenced gene, where qualifying was defined based on one of 

six different genetic models (7). A total of 17,248 genes had more than one case or control 

sample with a genetic variant meeting the inclusion criteria for at least one of the genetic 

models tested (Figs. 1, S1, S2). After correcting for multiple tests, the known ALS gene 

SOD1 (p=7.23×10−8; dominant coding model) was found to have a study-wide significant 

enrichment of rare variants in ALS cases as compared to controls, with qualifying variants in 

0.870% of cases and 0.078% of controls. The genes HLA-B, ZNF729, SIRPA, and TP53 

were found to have a significant enrichment of variants in controls; however, these 

associations appear to be due to sequencing differences and to subsets of the controls having 

been ascertained on the basis of relevant phenotypes.

Based on their associations with ALS in a preliminary discovery phase analysis utilizing 

2,843 cases and 4,310 controls, we chose 51 genes (Table S4) for analysis in an additional 

1,318 cases and 2,371 controls (sequenced using either whole exome or custom capture)(7). 

This analysis definitively identified TANK-Binding Kinase 1 (TBK1) as an ALS gene with a 

discovery association p=1.13×10−5, a replication p=5.78×10−7, and a combined 

p=3.63×10−11 (dominant not benign model). In the combined dataset, dominant not benign 

variants in this gene were found in 1.097% of cases and 0.194% of controls, with loss-of-

function (LoF) variants occurring in 0.382% of cases and 0.034% of controls.

Analysis of clinical features

We also performed gene-based collapsing analyses to identify genes associated with 

patients’ age of onset, site of onset, and survival time. No genes showed genome-wide 

significant association with any of these features. When applying multiple-test correction to 

only known ALS predisposition genes and TBK1, we found that D-amino acid oxidase 

(DAO) significantly correlated with survival times, with variant carriers showing shorter 

survival times (p=5.5×10−7, dominant coding model). In mice, DAO is required for the 

clearance of D-serine. Indeed, D-serine levels are increased in SOD1 mutant mice and spinal 

cords from humans with familial (FALS) or sporadic ALS (SALS)(8, 9). Known FALS 

mutations seem to reduce DAO activity, leading to neurotoxicity (10).

ALS patients with mutations in more than one known ALS gene are reported to have a 

younger age of onset (11). While we did not replicate this finding in our dataset, our lack of 

sequence data for known C9orf72 carriers, by far the most common ALS variant, as well as 

our lack of information about ATXN2 expansions inhibits our ability to adequately assess 

such an association.
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Associations with other ALS genes

Although SOD1 was the only already known ALS gene to attain a genome-wide significant 

association in our data, many other known ALS genes showed strong associations. For 

example, rare coding variants in TARDBP occurred in 0.661% of the ALS cases and 0.094% 

of controls in our study, ranking this gene second to SOD1 genome-wide under the dominant 

coding model (discovery data, p=2.97×10−6; Fig. 1). Consistent with previous reports and 

the ALS pathogenic TARDBP “DM” variants in the Human Genome Mutation Database 

(HGMD) database (3, 12), we observed that the implicated non-synonymous variants were 

generally predicted to be benign by PolyPhen-2(13) and were clearly concentrated in the 3′ 

protein-coding portion of the gene in the cases as compared with the controls (Fig. 2).

In the case of OPTN, we observed rare damaging variants in 0.620% of ALS cases and 

0.228% of controls (combined dominant not benign model; p=0.002). The greatest 

enrichment was for LoF variants, which occur in 0.334% of cases and 0.114% of controls 

(combined dominant LoF model, p=0.013). Whereas the initial studies of OPTN in ALS 

found a role in only a few families with a recessive genetic model, subsequent studies 

identified dominant mutations (14, 15). Here, dominant acting variants appeared to make a 

substantial contribution to sporadic disease.

Finally, we also observed a modest excess of qualifying variants in VCP (discovery 

dominant coding model; p=0.022) and of LoF variants in SPG11 (combined dominant LoF 

model; p=0.017). The former was driven by variants near the cell division protein 48 domain 

2 region, where variants were found in 71% of case variants as compared to 25% of control 

variants (Fig. 2). Similar to OPTN, SPG11 has previously been reported as a cause of 

recessive juvenile ALS, but based on our data, it could play a broader role because these 

cases did not have early onset (16).

We did not identify even a nominal association with other previously reported ALS genes in 

our dataset, including the recently reported TUBA4A, MATR3, GLE1, SS18L1, and 

CHCHD10 (Table 1)(17–21). A fraction of our samples were genetically screened for some 

of the known genes and had positive cases removed prior to sequencing, which may partially 

explain the lack of signal (7). Additionally, a comparison with genes implicated in a recent 

assessment of the role of 169 previously reported and candidate ALS genes in 242 sporadic 

ALS cases and 129 controls showed no overlap beyond signals for SOD1 and SPG11 (22). 

Some of these previously studied genes are mutated so rarely that even the sample size 

presented here is not sufficient to detect causal variant enrichment, while others simply 

show comparable proportions of rare variants among cases and controls. Finally, certain 

genes did not show associations owing to the nature of the causal variation: most known 

pathogenic variants in ATXN2 and C9orf72 are repeats that cannot be identified in our 

sequence data.

TBK1, autophagy and neuroinflammation

Previous studies have implicated both OPTN (optineurin)(23) and SQSTM1 (p62)(24) in 

ALS. The current study implicates TBK1 and suggests that OPTN is a more important 

disease gene than previously recognized. These genes play important and interconnected 
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roles in both autophagy and inflammation, emerging areas of interest in ALS research (Fig. 

3)(25–27). Mutations in SOD1, TARDBP and FUS result in the formation of protein 

aggregates that stain with anti-SQSTM1 and OPTN antibodies (28). These aggregates are 

thought to lead to a cargo-specific subtype of autophagy involved in the degradation of 

ubiquitinated proteins through the lysosome (29). The SQSTM1 and OPTN proteins 

function as cargo receptors, recruiting ubiquitinated proteins to the autophagosome via their 

LC3-interaction region (LIR) motifs. TBK1 phosphorylates both OPTN and SQSTM1 (30, 

31) and enhances the binding of OPTN to the essential autophagosome protein LC3, thereby 

facilitating the autophagic turnover of infectious bacteria coated with ubiquitylated proteins, 

a specific cargo of the OPTN adaptor (32, 33). Considering that TBK1 co-localizes with 

OPTN and SQSTM1 in autophagosomes, it is possible that all three proteins associate with 

protein aggregates in ALS(32). Indeed, TBK1 appears to play a role in the degradation of 

protein aggregates by autophagy (34). Additionally, OPTN also functions in the autophagic 

turnover of damaged mitochondria via the PARKIN ubiquitin ligase pathway (35). Finally, 

VCP, encoded by another gene with mutations that cause ALS, also binds to ubiquitinated 

protein aggregates. VCP and autophagy are required for the removal of stress granules, 

dense cytoplasmic protein/RNA aggregates which are a common feature of ALS pathology 

(36). Thus, OPTN, SQSTM1, VCP and TBK1 may be critical components of the aggresome 

pathway required for the removal pathological ribonucleoprotein inclusions (37). It appears 

that defects in this pathway can be selective for motor neuron death, in some cases 

apparently sparing other neuronal cell types.

In addition to their roles in autophagy, OPTN, SQSTM1 and TBK1 all function in the NF-

κB pathway (Fig. 3)(27, 38). For example, IκB Kinases (IKKα and IKKβ) phosphorylate the 

IKK-related kinase TBK1, which in turn phosphorylates the IκB kinases, suppressing their 

activity in a negative autoregulatory feedback loop (39). TBK1 also phosphorylates and 

activates the transcription factor IRF3(40–42) and the critical innate immunity signaling 

components MAVS and STING(43). The coordinate activation of NF-κB and IRF3 turns on 

the transcription of many inflammatory genes, including interferon-β(44). The innate 

immune pathway and neuroinflammation in general are thought to be an important aspect of 

neurodegenerative disease progression (45). Thus, pathogenic variants in OPTN, SQSTM1, 

or TBK1 would be expected to lead to defects in autophagy and in key innate immunity 

signaling pathways. Mutations in these genes might therefore interfere with the normal 

function of these pathways in maintaining normal cellular riboproteostasis (37).

The simple observation of enrichment of qualifying variants in patients shows that some of 

the variants we have identified influence risk of disease. We cannot determine, however, the 

extent to which they may interact with any other variants or other risk factors in determining 

risk. We therefore focus on estimating the proportion of patients in which variants in the 

relevant genes either “cause or contribute” to disease by subtracting the proportion of 

controls with qualifying variants in a gene from the proportion of cases with such variants. 

While we saw no enrichment of case variants in SQSTM1, variants in OPTN and TBK1 were 

estimated to explain or contribute to 1.30% of cases in our dataset when taken together 

(combined data), suggesting an important subgroup of patients that may have a common 
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biological etiology. No individual ALS cases had qualifying variants in more than one of 

these three genes.

The case variants found in OPTN and TBK1 were largely heterozygous and LoF, suggesting 

that a reduction in trafficking of cargo through the autophagosomal pathway or disruption of 

autophagosomal maturation may promote disease. While the most obvious enrichment of 

case variants in TBK1 was seen for LoF, there was also a signal for non-synonymous 

variants, which were found in 1.026% of cases and 0.365% of controls (combined data). If 

any of these non-synonymous variants are selective LoF for specific TBK1 functions as 

opposed to complete LoF variants, they may help elucidate which TBK1 function is most 

relevant to disease. We did not observe any clear concentration of qualifying variants in any 

part of the TBK1 gene (Fig. 4).

NEK1 associates with ALS2 and VAPB

Although no additional genes showed sufficiently strong evidence to be definitively declared 

disease genes at this point, some of the strongly associated genes identified here may be 

securely implicated as sample sizes increase. One gene of particular interest is NIMA-

Related Kinase 1 (NEK1). This gene just reached experiment-wide significance in the 

combined discovery and replication data sets (discovery p=1.08×10−6; replication p=0.001, 

combined p=3.20×10−9; dominant LoF model). In the combined dataset, dominant LoF 

variants in this gene were found in 0.835% of cases and 0.091% of controls (Fig. S3). 

Additional studies are needed to confirm this suggestive association. Even if LoF variants in 

this gene do predispose to ALS, their relatively high prevalence in our controls and in public 

databases indicates that such variants have quite low penetrance given that the lifetime 

prevalence of ALS is approximately 0.2%.

NEK1 is a widely expressed multi-functional kinase linked to multiple cellular processes, 

but it has not been linked to ALS. In an unbiased proteomic search for NEK1-interacting 

proteins in HEK293T cells, we discovered an interaction between NEK1 and two widely 

expressed proteins previously found to be mutated in familial ALS – the RAB guanine 

nucleotide exchange factor ALS2 (also called Alsin) involved in endosomal trafficking and 

the endoplasmic reticulum protein VAPB involved in lipid trafficking to the plasma 

membrane (Fig. S4A,B, Table S5) (46). ALS2 reciprocally associated with NEK1 in 

HEK293T cells, and both ALS2 and VAPB associated with NEK1 reciprocally in a mouse 

neuronal cell line NSC-34 (Fig. S4C–E).

Other top genes showing interesting association patterns but not obtaining genome-wide 

significance included ENAH, with variants in 0.262% of cases and 0.011% of controls 

(combined dataset) (discovery p=1.83×10−5; replication p=0.133; combined p=9.59×10−6; 

recessive not benign model); CRLF3, with variants in 0.452% of cases and 0.094% of 

controls (discovery p= 0.0002; dominant coding model); DNMT3A, with variants in 1.002% 

of cases and 0.456% of controls (combined dataset) (discovery p=0.0002; replication 

p=0.261; combined p=0.0002; dominant not benign model); and LGALSL, with variants in 

0.382% of cases and 0.068% of controls (combined data) (discovery p=0.0002; replication 

p=0.356; combined p=0.0002; dominant coding model).
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Conclusions

Here, we have implicated TBK1 as an ALS gene, providing insight into disease biology and 

suggesting possible directions for drug screening programs. We have also provided evidence 

that OPTN plays a broader role in ALS than previously recognized. Both TBK1 and OPTN 

are involved in autophagy, with TBK1 possibly playing a crucial role in autophagosome 

maturation as well as the clearance of pathological aggregates (31, 34). These observations 

highlight a critical role of autophagy and/or inflammation in disease predisposition. It is also 

noteworthy that many drugs have been developed that act on TBK1-mediated pathways 

owing to their role in tumor cell survival (47) and can therefore be used to investigate the 

effects of drug-dependent loss of function of the kinase.

We also provide a large genetic dataset for ALS, which suggests other possible ALS genes 

and provides a substantial collection of pathogenic variants across ALS genes. After 

removing the expected number of variants to be seen based on the frequencies of rare 

variants in controls, we identify more than 70 distinct pathogenic mutations across SOD1, 

OPTN, TARDBP, VCP, SPG11, and TBK1 that can be used in future efforts to functionally 

characterize the role of these ALS genes. The identification of TBK1 and the expanded role 

for OPTN as ALS genes reinforce the growing recognition of the central role of autophagy 

and neuroinflammation in the pathophysiology of ALS (Fig. 3). These pathways appear to 

be activated in response to the formation of various types of cellular inclusions, the most 

prominent of which appear to be ribonucleoprotein complexes, which has led to the proposal 

that the control of protein (proteostasis) or ribonucleoprotein/RNA misfolding (“ribostasis”) 

plays a key role in neurodegenerative diseases (37). Cellular RNP inclusions can be caused 

by mutations in low complexity sequence domains or “prion” domains of RNA binding 

proteins (37, 48) and exacerbated by mutations that diminish the autophagy pathway. 

Remarkably, a hallmark of motor neuron pathology in >95% of sporadic and familial ALS 

patients is the formation of TARDBP inclusions, suggesting that defects in ribostasis is a 

common feature of the disease (5, 49). The prominence of this disease mechanism in ALS 

has been proposed to be the consequence of the normal function of low complexity domains 

in RNA binding proteins in the assembly of functional “RNA granules” such as P-bodies 

and stress granules (see (37) for detailed discussion).

Here, an exome sequencing study has successfully identified variants that definitively 

predispose humans to a sporadic, complex human disease. Suggestive evidence in genes that 

do not yet achieve significant associations strongly motivates performing even larger exome 

sequencing studies in ALS. There is reason for optimism that such studies will begin to fill 

in an increasingly complete picture of the key genes implicated in ALS, providing multiple 

entry points for therapeutic intervention (Fig. 3). It is also likely that whole genome 

sequencing (especially with longer reads) will prove of particular value in ALS, given that 

there are many causal variants refractory to identification using contemporary exome 

sequencing. Finally, we note that effective studies will depend critically on the control 

samples available. For example, here we used the recently released ExAC dataset of 

>60,000 samples to hone in on extremely rare variants in our samples (50). Well-

characterized, publically available control sample sets will be of great importance for further 
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discovery of variants associated with complex traits, in particular for whole genome 

sequencing studies.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. QQ plot of discovery results for dominant coding model
The results for the analysis of 2,874 case and 6,405 control exomes are shown. 16,491 

covered genes passed QC with more than one case or control carrier for this test. The genes 

with the top 10 associations are labeled. The genomic inflation factor, lambda (λ), is 1.061. 

The association with SOD1 passed correction for multiple tests.
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Fig. 2. Variants in TARDBP and VCP
Dominant coding variants are shown in TARDBP and VCP (discovery dataset). Case 

variants are enriched at the 3′ end of the gene in TARDBP and near the cell division protein 

48 domain 2 region in VCP. LoF variants are filled in red, non-synonymous variants are 

filled in blue, and splice variants are filled in purple. Case variants are shown with red lines, 

control variants are shown with blue lines, and variants found in both cases and controls are 

shown with dashed lines.
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Fig. 3. A diagram showing the genes and pathways implicated in ALS disease progression
Genes known to have sequence variants that cause or are associated with ALS are indicated 

in red. These mutations can lead to the formation of protein, or protein-RNA aggregates that 

appear as inclusion bodies in postmortem samples from both familial and sporadic ALS 

patients. Some of the mutant proteins adopt “prion-like” structures (see text for more detail). 

The misfolded proteins activate the ubiquitin/proteasome autophagy pathways to remove the 

misfolded proteins. Ubiquilin2 functions in both the Ub-proteosome and autophagy 

pathways. TBK-1 (boxed) lies at the interface between autophagy and inflammation and 

associates with and phosphorylates both optineurin and p62, which can, in turn, enhance 

inflammation. ISG15 is induced by type I interferons (α & β) and interacts with p62 and 

HDAC6 in the autophagosome.
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Fig. 4. Variants in TBK1 and OPTN
Dominant not benign variants are shown in TBK1 and OPTN (combined datasets). LoF 

variants are filled in red, non-synonymous variants are filled in blue, and splice variants are 

filled in purple. Case variants are shown with red lines, control variants are shown with blue 

lines, and variants found in both cases and controls are shown with dashed lines.
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