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Abstract

A mixed 3d cable element for the nonlinear
static and dynamic analysis of cable structures

by

Miquel Crusells Girona

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Filip C. Filippou, Co-chair

Professor Robert L. Taylor, Co-chair

This dissertation presents the formulation and validation of a new 3d mixed cable element
that is based on a two-field variational formulation and is suitable for the nonlinear static
and dynamic analysis of cable structures.

The new cable element is derived in general curvilinear coordinates under finite deforma-
tions, and identifies conjugate strain and stress measures for the nonlinear catenary problem.
The formulation uses the weak form of the strain-displacement relation and the principle of
virtual work to propose two numerical implementations of the element, one with a continuous
axial force distribution and one with a discontinuous one.

This dissertation also proposes a new filtered energy-momentum conserving algorithm
for obtaining the dynamic response of cable structures in time. This new algorithm exactly
conserves the Hamiltonian structure of the two-field mixed catenary problem for any non-
linear elastic complementary energy, and provides a consistent time integration in the case of
inelastic material response. A postprocessing Savitzky-Golay filter is included to address the
high-frequency contributions that appear in cables with a large sag-to-span ratio, without
jeopardizing the desired conserving properties.

The new element and the consistent time integration scheme are first validated under
nonlinear elastic material response with several benchmark problems from the literature. In
these examples, the mixed cable element obtains very accurate results for coarse meshes, and
displays especially accurate axial force distributions compared to other models. For cables
with a small sag-to-span ratio, the energy-conserving scheme and the Newmark method yield
nearly identical results, while in the case of cables with a large sag-to-span ratio, for which
the Newmark time integrator diverges, the new scheme gives accurate results and exactly
conserves the total energy of the system.

The proposed formulations are also validated under viscoelastic material response. In
the case of small viscoelastic strains, the new element behaves robustly and gives excellent
results. A new finite viscoelastic material model is formulated for large viscoelastic strains,
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and results show that it reduces to the infinitesimal model when small deformations are
considered. Simple benchmark problems involving the free vibration and the earthquake
response of simply-supported cables demonstrate that small relaxation times can reproduce
the internal physical mechanisms that dissipate the high-frequency waves in the axial force
field, while long relaxation times account for the decay of the dynamic response.

The study concludes with the structural analysis of three-dimensional cable nets using
the proposed 3d mixed cable elements. First, numerical joints are introduced to accommo-
date the discontinuities in the axial force field that appear in physical cable joints. These
complex structures show excellent results for displacements and axial forces. For available
experimental results, the proposed formulations give the smallest relative error compared to
other models in the literature.
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Chapter 1

Introduction

1.1 Motivation

Structural engineering used to rely on the empirical knowledge and mastery of its practi-
tioners until the late XIX century. However, scientific developments during the XX century
have resulted in sophisticated mathematical tools for understanding and designing structures
that are reliable, safe and aesthetic. The thorough evaluation of limit states under extreme
loads such as earthquakes, or the determination of the ultimate capacity of structures are
mandatory steps in today’s performance-based design guidelines, and hence precise nonlinear
structural analyses are expected in the professional practice of structural engineers.

(a) Seri Wawasan bridge, Malaysia (b) BC Place Stadium, Canada

Figure 1.1: Cable structures.

Among all structural typologies, cable structures have been widely used in engineer-
ing applications because they offer the advantages of high ultimate strength, flexibility,
light weight and prestressing capabilities, among others. Cable-stayed bridges like the Seri
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Wawasan bridge in Fig. 1.1(a) or prestressed roofs such as the dome of the BC Place Stadium
in Fig. 1.1(b) have become iconic examples of the XXI-century civil engineering practice.

Since the behavior of flexible cables under large displacements is highly nonlinear, signi-
ficant effort has been invested into developing accurate, robust and computationally efficient
models for them. These models have evolved from the initial truss elements, developed in
the early 1960s, to the recent elastic elements satisfying the catenary equation.

The simplest approach involves the representation of the cable as a series of straight
truss elements, usually based on linear displacement interpolation functions in the context of
infinitesimal-deformation theory. The geometric nonlinearity is then accounted for with the
corotational formulation, involving the transformation of the node kinematic variables under
large displacements. These elements suffer from the excessive mesh refinement required to
accurately capture the deformed shape and the axial force distribution and may exhibit snap-
through instabilities at states with nearly-singular stiffness. To address these limitations,
catenary elements have been proposed. These elements formulate the global balance of linear
momentum assuming one-dimensional infinitesimal linear elasticity (Hooke’s law) and obtain
the deformed shape of the cable by explicit integration. Some authors have also proposed
a finite-difference version of this catenary formulation by discretizing the global balance of
linear momentum into n segments.

While catenary formulations give more accurate results than truss elements for the same
mesh discretization, they also have shortcomings that limit their range of application. Cur-
rent catenary elements do not support extension to finite deformations and nonlinear material
behavior, and thus do not distinguish between the 2nd Piola-Kirchhoff and the Cauchy repre-
sentations of the axial force. In the dynamic case, catenary elements cannot accommodate
a consistent mass matrix and hence very fine meshes are required to obtain accurate results.
The assumption of infinitesimal deformations in both element types results in the inaccurate
balance of linear momentum in the deformed configuration, for which the distributed loads
do not evolve consistently.

For the nonlinear dynamic response of elastic cable structures, an additional challenge
arises in the development of accurate and consistent time integration algorithms. While
classical time integrators such as the Newmark method and the HHT-α method have been
widely used in the dynamic analysis of cable structures, it is well-documented that they
do not preserve the Hamiltonian structure of nonlinear elastodynamics. While this limita-
tion does not affect the accuracy of the results for cables with a small sag-to-span ratio,
it significantly affects the response of those with a large sag-to-span ratio, and may even
provoke the divergence of the numerical solution. For this reason, energy-momentum con-
serving algorithms, which provide a consistent time integration of the governing equations,
have been proposed for single-field elastodynamic problems. The limitations of classical time
integration schemes also pose restrictions on the dynamic analysis of cable structures with
rate-dependent inelastic material models. In this case, rheological models under small de-
formations are typically assumed, and thus inaccurate results are obtained for cables with a
large sag-to-span ratio.
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1.2 Objectives and scope

To address the above-mentioned limitations of truss and catenary elements, this study
proposes a new formulation for a family of cable finite elements with the following objectives:

• Use finite-deformation theory to describe the geometric nonlinearity.

• Solve the balance of linear momentum consistently.

• Accommodate nonlinear elastic and inelastic material response.

• Accommodate jumps in the axial force distribution to simulate cable joints.

• Develop a robust and versatile finite element implementation to allow its deployment
in a general purpose finite element analysis framework.

The developments focus on a two-field mixed variational formulation that satisfies the
equilibrium equation and the strain-displacement relation in the weak sense, and offer two
numerical implementations that correspond to a cable finite element with a continuous axial
force distribution and another one with a discontinuous axial force distribution.

Considering the new cable formulation, this dissertation studies the dynamic analysis of
cable structures with the following objectives:

• Determine the accuracy and range of application of existing time integration schemes
when the proposed mixed cable elements are used.

• Formulate a new energy-momentum conserving algorithm that preserves the Hamil-
tonian structure of the mixed two-field catenary problem for any nonlinear elastic
complementary energy under nonlinear geometry.

• Assess the high-frequency contributions that appear in the dynamic response of cables,
and propose a filtering process to physically address them.

• Deploy the new time integration scheme in dissipative systems using existing damping
and rheological models for cables with small deformations.

• Formulate a new finite viscoelastic material model that gives accurate results for cables
undergoing large deformations.

To conclude the study, this dissertation analyzes three-dimensional cable structures with
the proposed formulations and compares the results with other models in the literature and
with available experimental results.
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1.3 Dissertation outline

This dissertation is organized in seven chapters that correspond to three global parts:
the formulation of the mixed cable element, its validation under different material models,
and the analysis of three-dimensional cable structures.

The discussion begins in Chapter 2 with the preliminary concepts that are required for the
developments of the dissertation, and continues with a brief summary of existing formulations
for cables, which are later used in the assessment of the new cable finite element. Chapter
3 presents the derivation of the new cable element for a general material model and gives
its implementation for the Newmark and the HHT-α methods. The new energy-momentum
conserving algorithm in complementary space is presented in the same chapter, and its de-
sired conserving properties are proved. A Savitzky-Golay filter is proposed to address the
high-frequency contributions that may appear in the axial force time history. Chapter 4
evaluates the response of the proposed mixed cable element and the energy-momentum con-
serving algorithm under nonlinear elastic material behavior, and compares the results with
those given by existing formulations. Chapter 5 begins with the assessment of the proposed
formulations under incrementally-infinitesimal viscoelastic material models, and proceeds to
derive a new finite viscoelastic material model for cables under large deformations. Chapter
6 uses the new cable finite element and time integration scheme for the static and dynamic
analysis of three-dimensional cable structures, and compares the results with experiments,
if available, and other models in the literature. Finally, Chapter 7 provides a summary of
the dissertation and offers conclusions and directions for further study.
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Chapter 2

Preliminaries and literature review

This chapter presents the mathematical and engineering preliminaries that are necessary
for the developments in this dissertation, together with a brief description of the most relevant
cable models from the literature.

The discussion begins with the mathematics of curvilinear coordinates and differential
geometry, and gives special emphasis on how to operate with tensors in these bases. Curvili-
near coordinates are then used to formulate the governing equations of solid mechanics.
The literature review presents a summary of the most relevant cable finite elements: truss
elements and catenary elements. Geometrically-exact rods are also included at the end of
the discussion for their relevance in the formulation developed in this dissertation.

2.1 Preliminaries

The preliminary concepts in the following sections are grouped into two categories: the
mathematical tools, which include differential geometry and tensor analysis, and the engi-
neering equations of solid mechanics under curved geometries, which include the formulation
of kinematics and the principle of virtual work.

2.1.1 Differential geometry and tensor analysis

Consider the three-dimensional Euclidean space R3 with the Cartesian coordinate system
{ei}3

i=1 defining an orthogonal grid of coordinate lines (x1, x2, x3). At each point x ∈ R3,
define a new set of curvilinear coordinate lines (θ1, θ2, θ3) associated with the curvilinear
coordinate system {gi}3

i=1, as shown in Fig. 2.1.
The vectors of the new basis {gi}3

i=1 are defined by

gi =
∂x

∂θi
=
∂(xjej)

∂θi
=
∂xj

∂θi
ej (2.1)
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Figure 2.1: Cartesian and curvilinear coordinate systems at a point x ∈ R3.

where the Einstein summation convention is assumed. Equation 2.1 defines a change of basis
provided that the frames {ei}3

i=1 and {gi}3
i=1 have the same orientation and that the inverse

∂θi/∂xj exists, which is guaranteed by the condition

det

(
∂xj

∂θi

)
6= 0 (2.2)

The differential of length ds at any point x ∈ R3 is given by

ds2 = dx · dx = dθigi · dθjgj = gijdθ
idθj (2.3)

where gij is the metric tensor associated with the curvilinear coordinate system {gi}3
i=1. It

is relevant to observe that, for the Cartesian coordinate system {ei}3
i=1, ds2 = δijdx

idxj with
δij the Kronecker delta, giving the well-known expression for distances

ds2 = (dx1)2 + (dx2)2 + (dx3)2 (2.4)

Equation 2.4 is no longer valid in general curvilinear coordinates. Spaces1 for which Eq. 2.3
holds, and therefore a metric exists locally, are called Riemannian spaces.

The differential of area da at any point x ∈ R3 is given by the cross product between two
differential vectors dx and dy

nda = dx× dy = gi × gj dθ
idθj (2.5)

where n is the unit normal vector to the surface defined by dx and dy. The differential of
volume dv at any point x ∈ R3 is given by the box product

dv = dθ1dθ2dθ3g1 · (g2 × g3) =
√

det(gij) dθ
1dθ2dθ3 (2.6)

1Mathematically speaking, a Riemannian space requires the structure of a differentiable manifold, the
details of which are outside the scope of this chapter. The interested reader is referred to Ref. [7].
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A vector that is represented in the basis {gi}3
i=1 is said to have contravariant compo-

nents {θi}3
i=1. The dual basis or reciprocal basis {gi}3

i=1, with covariant components {θi}3
i=1,

satisfies
gi · gj = δji (2.7)

Therefore, it follows that the dual basis of the Cartesian frame {ei}3
i=1 is itself. As a result,

a vector v ∈ R3, or tensor of order 1, can be represented in both contravariant and covariant
coordinates in the form

v = vigi = vig
i (2.8)

with vi = v · gi and vi = v · gi. The relation between the two coordinates is given by

vj = v · gj = vigi · gj = gijv
i

vj = v · gj = vig
i · gj = gijvi

(2.9)

where gij is the dual metric tensor. The special case of orthogonal curvilinear coordinates
is relevant for the formulations proposed in subsequent chapters. In this case, the metric
tensor gij is diagonal because gi · gj = 0 for i 6= j, and

vi = giiv
i ; vi = giivi for i ∈ {1, 2, 3} (2.10)

with no summation implied. As a result, the metric tensor and its dual tensor for orthogonal
curvilinear coordinates have the form

gii = g−1
ii for i ∈ {1, 2, 3} and gij = gij = 0 for i 6= j (2.11)

A tensor T of order 2 has four possible representations in contravariant and covariant
components,

T = T ijgi ⊗ gj = Tijg
i ⊗ gj = T ·ji gi ⊗ gj = T i·jgi ⊗ gj (2.12)

where ⊗ represents the outer product in R3. The components are obtained by the usual
projections, for instance,

Tij = gi ·Tgj or T ·ji = gi ·Tgj (2.13)

These projections can be used to note that the 2nd order identity tensor I has the following
representations in curvilinear coordinates

I = gijg
i ⊗ gj = gijgi ⊗ gj = δijgi ⊗ gj = δjig

i ⊗ gj = gi ⊗ gi = gi ⊗ gi (2.14)

The transpose of a 2nd order tensor T, represented by Tt, is defined by

Ta · b = a ·Ttb ∀a,b ∈ R3 (2.15)

In the contravariant components T = T ijgi ⊗ gj, Eq. 2.15 implies that

(T ijgi ⊗ gj)(akg
k)(blg

l) = T ijajbi = (akg
k) ·Tt(blg

l) =⇒ Tt = T ijgj ⊗ gi (2.16)
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The inverse of a 2nd order tensor T, represented by T−1, is defined by

TT−1 = I (2.17)

In the contravariant components T = T ijgi ⊗ gj, Eq. 2.17 implies that

(T ijgi ⊗ gj)T
−1 = δjigi ⊗ gj =⇒ T−1 = Tijg

j ⊗ gi (2.18)

The extension to 4th order tensors comes naturally from the previous discussion. In
particular, the 4th order identity tensor I, for which IT = T, has the representation

I = δki δ
l
jg

i ⊗ gj ⊗ gk ⊗ gl = gi ⊗ gj ⊗ gi ⊗ gj (2.19)

2.1.2 Solid mechanics in curved geometries

The following preliminaries regarding solid mechanics in curved geometries are structured
into three sections: finite kinematics in curvilinear coordinates, Lie dragging and balance
laws.

2.1.2.1 Finite kinematics in curvilinear coordinates

Let a body B undergo a motion χt from a reference configuration P0 to a current con-
figuration Pt at time t ∈ I, as shown in Fig. 2.2, and denote the reference and current
positions vectors by X and x = χt(X), respectively. Let upper case letters denote variables
in the reference configuration and lower case letters, variables in the current configuration.
In the global Cartesian coordinates systems {Ei}3

i=1 and {ei}3
i=1 for the reference and current

configurations, respectively, the components of the position vectors are given by

X = X iEi = XiEi and x = xiei = xiei (2.20)

For simplicity, let the basis in the reference configuration coincide with the basis in the
current configuration, {Ei}3

i=1 ≡ {ei}3
i=1.

A set of curvilinear coordinates {θi}3
i=1 with basis vectors {Gi}3

i=1 can be defined in the
reference configuration by

Gi =
∂X

∂θi
=
∂Xk

∂θi
Ek (2.21)

These reference basis vectors {Gi}3
i=1 are convected by the motion χt to the current basis

vectors {gi}3
i=1

gi = χt (Gi) = χt

(
∂X

∂θi

)
=
∂x

∂θi
=
∂xk

∂θi
ek (2.22)

The deformation gradient F of the motion χt in the Cartesian coordinate system is given
by

F =
∂x

∂X
=

∂xi

∂Xj
ei ⊗ Ej (2.23)
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Figure 2.2: Motion x = χ(X, t) of the body B.

Therefore,

FGi =

(
∂xk

∂X l
ek ⊗ El

)
∂Xj

∂θi
Ej =

∂xk

∂Xj

∂Xj

∂θi
ek = gi (2.24)

and the deformation gradient F in curvilinear coordinates has the form

F = FI = F
(
Gi ⊗Gi

)
= gi ⊗Gi (2.25)

The left Cauchy-Green tensor b and the right Cauchy-Green tensor C have the form

b = FFt = (gi ⊗Gi) (Gj ⊗ gj) = Gijgi ⊗ gj

C = FtF = (Gi ⊗ gi) (gj ⊗Gj) = gijG
i ⊗Gj

(2.26)

while the Green-Lagrange strain tensor E is expressed by

E =
1

2
(C− I) =

1

2
(gij −Gij) Gi ⊗Gj (2.27)

The differential of length ds in the current configuration is given by

ds2 = dx · dx = FdX · FdX = dX ·CdX = gijdθ
idθj (2.28)

while the differential of volume dv in the current configuration is given by

dv = g1 · (g2 × g3)dθ1dθ2dθ3 = FG1 · (FG2 × FG3)dθ1dθ2dθ3

= (det F)︸ ︷︷ ︸
J

√
det(Gij)dθ

1dθ2dθ3︸ ︷︷ ︸
dV

= JdV (2.29)
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where J = det F is the determinant of the deformation gradient. The differential of area da
in the current configuration follows from

dv = da · dl = nda · FdL = JdV = JdA · dL =⇒ nda = JF−tNdA (2.30)

where n and N are the unit normal vectors to the surfaces in the current and reference
configurations respectively, and dl and dL are arbitrary differential vectors.

The displacement vector u is defined by

u = x−X (2.31)

As a result, the reference gradient H of the displacement field follows from the derivative

∂u

∂θi
=
∂x

∂θi
− ∂X

∂θi
= gi −Gi = (F− I) Gi = HGi (2.32)

in the form

H = HI = H
(
Gi ⊗Gi

)
=
∂u

∂θi
⊗Gi (2.33)

The relation between the reference displacement gradient and the Green-Lagrange strain is

E =
1

2

(
H + Ht + HtH

)
=

1

2

(
∂u

∂θi
⊗Gi + Gi ⊗ ∂u

∂θi
+

(
∂u

∂θi
· ∂u

∂θj

)
Gi ⊗Gj

)
(2.34)

Equation 2.34 is also known as the compatibility equation or the strain-displacement relation.

2.1.2.2 Lie dragging

With the aim of taking derivatives and formulating objective rate equations, tensors are
often pulled back from the current configuration to the reference configuration or pushed
forward from the reference configuration to the current configuration. These operations are
referred to as Lie dragging.

A 2nd order tensor a living in the current configuration can be pulled back χ∗ from the
current configuration to the reference configuration with

χ∗(a) = F−1aF−t = F−1(aijgi ⊗ gj)F
−t = aijGi ⊗Gj (2.35)

while a 2nd order tensor B living in the reference configuration can be pushed forward χ∗

from the reference configuration to the current configuration with

χ∗(B) = FBFt = F(BijGi ⊗Gj)F
t = Bijgi ⊗ gj (2.36)

In the process of Lie dragging, the components of the tensors do not change, and only the
basis vectors are dragged.
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The time derivative of a tensor a living in the current configuration is given by

ȧ =
da

dt
=
d(aijgi ⊗ gj)

dt
= ȧijgi ⊗ gj + aijġi ⊗ gj + aijgi ⊗ ġj (2.37)

noting that

ȧijgi ⊗ gj = χ∗
(
d

dt
χ∗(a)

)
(2.38)

This term is called the Lie derivative Lva of the tensor a,

Lva = χ∗
(
d

dt
χ∗(a)

)
(2.39)

and is therefore objective under superimposed rigid body motions. For this reason, objective
rate equations for finite plasticity and finite viscoelasticity are often written in terms of the
Lie derivative instead of in terms of the total time derivative.

2.1.2.3 Balance laws

Balance laws need to be established for finding solutions to the mechanical problem.
Under Cauchy’s tetrahedron argument [34], there exists a stress tensor σ living in the current
configuration, called the Cauchy stress tensor, such that

t = lim
∆a→0

∆f

∆a
= σn (2.40)

where ∆f is the current total force acting on the current area ∆a and t is the traction vector
acting on the plane with normal vector n. Defining the linear momentum L with

L =

∫
Pt
ρv dv (2.41)

the balance of linear momentum gives

L̇ =
d

dt

∫
Pt
ρv dv =

∫
Pt
ρb dv +

∫
∂Pt

t da (2.42)

where ρ is the density in the current configuration, v is the velocity field, b are the body
forces per unit mass and ∂Pt is the boundary of the current configuration Pt. Using the
divergence and localization theorems, and applying boundary conditions, gives the strong
form of the mechanical boundary value problem

divσ + ρb = ρa in Pt × I
u = ū on Γu × I
σn = t̄ on Γt × I
u = u0 ; v = v0 in Pt × {t = 0}

(2.43)
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where a is the acceleration field, div (·) is the divergence operator in the current configu-
ration, Γu is the boundary of the current configuration where displacements are imposed,
Γt is the boundary of the current configuration where tractions are imposed, ū and t̄ are
imposed displacements and tractions, respectively, and u0 and v0 are initial displacements
and velocities, respectively.

Different stress measures are used to obtain alternative but equivalent expressions for the
balance of linear momentum in Eq. 2.43. The first Piola-Kirchhoff (1st PK) stress tensor P
is obtained by pulling back the current differential area da to the reference configuration in
the form

tda = σn da = σJF−t︸ ︷︷ ︸
P

N dA = PN dA = T dA (2.44)

As a result, the 1st PK stress tensor P gives the current force per unit reference area.
Including the first Piola-Kirchhoff stress tensor P into the balance of linear momentum
results in 

Div P + ρ0b = ρ0a in P0 × I
u = ū on ΓU × I
PN = T̄ on ΓT × I
u = u0 ; v = v0 in P0 × {t = 0}

(2.45)

where ρ0 is the reference density and Div (·) is the divergence operator in the reference
configuration. In this case, ΓU and ΓT are the boundaries of the reference configuration
where displacements and tractions, respectively, are imposed.

The second Piola-Kirchhoff (2nd PK) stress tensor S pulls back the first index of the first
Piola-Kirchhoff stress tensor to the reference configuration, and thus represents the reference
force per unit reference area

S = F−1P = JF−1σF−t = χ∗(Jσ) (2.46)

In this relation, one identifies the Kirchhoff stress τ = Jσ as the push-forward of the 2nd
PK stress tensor S to the current configuration

τ = χ∗(S) (2.47)

Equations 2.46 and 2.47 give the relations between the contravariant components of the 2nd
PK, Cauchy and Kirchhoff stress tensors in the form

Sij = Jσij = τ ij (2.48)

For any test function η ∈ V , where V is the space of test functions,

V = {η : P0 → R3 | η = 0 on Γu} (2.49)

it holds that ∫
P0

η · (Div P− ρ0b− ρ0a) dV +

∫
ΓT

η · (PN− T̄) dA = 0 (2.50)
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Applying the divergence theorem to Eq. 2.50 gives the Principle of Virtual Work in finite
deformations∫

P0

P ·Gradη dV +

∫
P0

η · ρ0a dV =

∫
P0

η · ρ0b dV +

∫
ΓT

η · T̄ dA (2.51)

where Grad (·) is the gradient operator with respect to the reference configuration. The term∫
P0

P · Gradη dV on the left-hand side of Eq. 2.51 is known as the stress divergence term
and can be written in terms of the 2nd PK stress tensor,∫

P0

FS ·Gradη dV =

∫
P0

S · sym(FtGradη)︸ ︷︷ ︸
E(η)

dV =

∫
P0

S · E(η) dV (2.52)

where sym (A) is the symmetric part of the tensor A. As a result, the principle of virtual
work is written in terms of the 2nd PK stress by∫

P0

S · E(η) dV +

∫
P0

η · ρ0a dV =

∫
P0

η · ρ0b dV +

∫
ΓT

η · T̄ dA (2.53)

Equation 2.53 for prismatic bodies under a uniaxial state of stress reduces to∫
P0

NE11(η) dS +

∫
P0

η ·m0a dS =

∫
P0

η ·W dS + [η · T̄]ΓT (2.54)

where N = S11A is the axial force, m0 = ρ0A is the mass per unit reference length and
W = ρ0Ab are the body forces per unit reference length.

2.2 Literature review

The following sections present a literature review of relevant formulations for cables and
emphasize their advantages and disadvantages. The review begins with a simple corotational
truss element that has been widely used in engineering practice since the 1970s [17, 36, 56].
Afterwards, a brief summary is given for the recent catenary elements that are formulated
according to the catenary equation [1, 2, 3, 27, 48, 52, 57]. The review ends with a brief
description of geometrically-exact rods and their range of application in cable problems [39,
42, 46].

2.2.1 Corotational truss elements

From the mechanical standpoint, truss elements are defined as straight elements with a
cross section that is orthogonal to their axis. Several formulations exist for truss elements,
either under small or large deformations, or considering the corotation of their local frame
to lump large displacements to the nodes [17, 36, 56]. The model that is presented in this
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Figure 2.3: Geometric setup for the truss element.

section, and that is used as a comparison in subsequent chapters, uses small deformations
and a corotational transformation of the local frame [17].

Figure 2.3 shows the geometric setup for the truss element deforming from a reference
configuration P0 to a current configuration Pt at time t. In the reference local coordinate
system {Gi}3

i=1, X̄ and x̄ correspond to the reference and the current position vectors,
respectively, with the local displacement field ū given by

ū = x̄− X̄ (2.55)

The local displacements at nodes a and b, ūa and ūb, are

ūa = x̄a − X̄a = ū1E1 + ū2E2 + ū3E3 and ūb = x̄b − X̄b = ū4E1 + ū5E2 + ū6E3 (2.56)

so that the local displacements array ū for the truss element has the form

ūt = (ūta, ū
t
b) = (ū1, ū2, ū3, ū4, ū5, ū6) (2.57)

Defining the local displacement increment ∆ū with

∆ū = ūb − ūa = ∆ū1E1 + ∆ū2E2 + ∆ū3E3 (2.58)

the current length Ln of the element is given by

Ln =
√

(L+ ∆ū1)2 + (∆ū2)2 + (∆ū3)2 (2.59)
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where L is its reference length. Consequently, the axial deformation v of the truss element
under the assumption of small displacements is

v = Ln − L =
√

(L+ ∆ū1)2 + (∆ū2)2 + (∆ū3)2 − L ≈ L

(
1 +

∆ū1

L

)
− L = ∆ū1 (2.60)

The global displacements at nodes a and b, ua and ub, in the global Cartesian coordinate
system {Ei}3

i=1 are expressed as a function of the local displacements ūa and ūb by

ua = Qūa and ub = Qūb (2.61)

where Q ∈ SO(3) is the rotation matrix from the local to the global coordinate system,
and SO(3) refers to the special orthogonal group in three dimensions. Defining the global
element vector ∆X in the reference configuration and the global displacement increment ∆u
in the form

∆X = Xb −Xa = ∆X1E1 + ∆X2E2 + ∆X3E3

∆u = ub − ua = ∆u1E1 + ∆u2E2 + ∆u3E3

(2.62)

the direction cosines i of the element axis in the deformed configuration are given by

i =
∆X + ∆u

Ln
(2.63)

and therefore

v ≈ ∆ū1 = ū4 − ū1 = ∆u · i

=
∆X1 + ∆u1

Ln
(u4 − u1) +

∆X2 + ∆u2

Ln
(u5 − u2) +

∆X3 + ∆u3

Ln
(u6 − u3)

(2.64)

The equilibrium equation is established in the current configuration Pt by direct appli-
cation of the discrete principle of virtual work

δut (p− p0) = (δv)n+ δutma = δut
(
∂v

∂u

)t
︸ ︷︷ ︸

atg

n+ δutma

=⇒ p− p0 = atgn+ ma

(2.65)

where δu and δv are arbitrary virtual displacements and deformations, respectively, p are
the applied nodal forces, p0 are the resisting forces corresponding to the element distributed
load w, n is the axial force in the element, m is the mass matrix and a is the acceleration
field. The equilibrium equation gives the explicit form

p1

p2

p3

p4

p5

p6


− 1

2



−w · E1

−w · E2

−w · E3

w · E1

w · E2

w · E3


=


−∆X1 −∆u1

−∆X2 −∆u2

−∆X3 −∆u3

∆X1 + ∆u1

∆X2 + ∆u2

∆X3 + ∆u3


n

Ln
+ m



a1

a2

a3

a4

a5

a6


(2.66)
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As a result, this formulation does not distinguish between reference and current stress
measures and the axial force n corresponds to the infinitesimal axial force that results from
the approximation

n = σ11A ≈ P 11A ≈ S11A (2.67)

where σ11, P 11 and S11 are the axial components of the Cauchy, 1st PK and 2nd PK stress
tensors, respectively, as defined in the previous section.

Under the assumption that the external loads do not depend on the displacements, the
static tangent stiffness k for the truss element is given by

k = atg
∂n

∂v
ag︸ ︷︷ ︸

km

+
∂ag
∂u

n︸ ︷︷ ︸
kg

(2.68)

where km is the material stiffness of the element and kg is its geometric stiffness. The
material stiffness km that results from the linear elastic constitutive relation

n =
EA

Ln
v (2.69)

has the form

km =
EA

Ln

[
T −T
−T T

]
(2.70)

where T is the array with components

Tij =

(
∆Xi + ∆ui

Ln

)(
∆Xj + ∆uj

Ln

)
for i, j ∈ {1, 2, 3} (2.71)

The geometric stiffness kg has the form

kg =
n

Ln

[
I3 −I3

−I3 I3

]
(2.72)

with I3 being the 3x3 identity tensor.
Truss elements suffer from the excessive mesh refinement required to accurately capture

the deformed shape and the axial force distribution, especially because of the constant axial
force assumption. Also, because these elements are not specifically formulated as cables,
they may exhibit a snap-through instability at states of nearly singular stiffness.

2.2.2 Catenary elements

To address the limitations of simple truss elements, catenary elements were first proposed
in the early 2000s [1, 2, 3, 27, 48, 52, 57]. From a mechanical point of view, these elements
are defined as curved elements with a cross section that is orthogonal to their axis. Figure
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Figure 2.4: Geometric setup for the catenary element.

2.4 shows the deformed shape of the catenary element that is suspended from nodes a and
b with current coordinates xa = 0 and xb = xi,bEi.

Denoting by S and s the unstretched and deformed arc-length coordinates of the cable,
respectively, the strain ε of the element is given by the infinitesimal approximation

ε =
d(s− S)

dS
=
ds

dS
− 1 (2.73)

Consequently, the current position vector xb of node b can be obtained by the explicit
integration

xb =

∫ l0

0

dx =

∫ l0

0

dx

ds

ds

dS
dS =

∫ l0

0

dx

ds
(ε+ 1) dS (2.74)

where l0 is the unstretched length of the cable.
The equilibrium equation in the current configuration requires that each component of

the axial force vector n be in equilibrium with the external forces

n
dx

ds
= −(wS + f) (2.75)

where n is the magnitude of the axial force vector n, dx/ds are the direction cosines of the
axial force vector n in the current configuration, w is the distributed load on the cable and
f are the end forces at node a according to Fig. 2.4. As a result, the magnitude n of the
axial force is given by

n = ‖n‖ =

√√√√ 3∑
i=1

(wiS + fi)2 (2.76)
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where wi and fi are the components of the vectors w and f , respectively.
The continuous implementation of the catenary element substitutes Eqs. 2.75 and 2.76

into Eq. 2.74 to give

xb = −
∫ l0

0

wS + f√∑3
i=1(wiS + fi)2

(ε+ 1) dS (2.77)

The explicit integral in Eq. 2.77 requires a constitutive relation of the form ε = ε(n). As-
suming infinitesimal linear elasticity in one dimension (Hooke’s law), the strain ε is related
to the axial force n with

n = EAε (2.78)

where E is the Young modulus and A, the cross section of the cable. Introducing this
constitutive relation into Eq. 2.77 gives

xb = −
∫ l0

0

wS + f√∑3
i=1(wiS + fi)2


√∑3

i=1(wiS + fi)2

EA
+ 1

 dS (2.79)

The integral in Eq. 2.79 is then solved to give an explicit expression for the current position
vector xb at node b as a function of the unknown end forces f , xb = xb(f). This represents a
nonlinear system of equations that can be solved to obtain the unknowns f . The differential
relation

dxb =
∂xb
∂f

df (2.80)

gives the flexibility matrix ∂xb/∂f of the element.
The discrete catenary element deploys a finite-difference stencil in Eq. 2.75 to subdivide

the element into n subelements with equal unstretched length ls and n+ 1 nodes in the form

ni
∆xi
li

= −

ilsw + f +
i∑

j=2
j≤i

pj

 for i = 1, ..., n (2.81)

where ∆xi = xi+1−xi, li is the deformed length of subelement i and pj are the applied loads
at the internal node j. As a result, the position vector xi of the i-th node of the element is
given by the Riemann sum

xi =
i−1∑
j=1

∆xj =
i−1∑
j=1

∆xj
lj

lj
ls
ls for i = 2, ..., n+ 1 (2.82)

with the boundary condition xa ≡ x1 = 0. Approximating the strain εi in subelement i by
the relation li/ls and using Hooke’s law gives the constitutive relations

εi =
ds

dS
− 1 ≈ li

ls
− 1 =

ni
EAi

for i = 1, ..., n (2.83)
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Introducing these constitutive equations into Eq. 2.82 gives

xi = −
i−1∑
j=1

jlsw + f +

j∑
k=2
k≤j

pk

( 1

EAj
+

1

nj

)
ls for i = 2, ..., n+ 1 (2.84)

Equation 2.84 is the discrete counterpart to Eq. 2.79, and forms a system of n nonlinear
equations that can be solved to give the position vectors of all nodes and the end forces f .
The assembled differential relation in Eq. 2.80 also gives the flexibility matrix ∂x/∂f of the
discrete catenary element.

The dynamic analysis of catenary elements is formulated ad hoc by obtaining the stiffness
matrix k as the inverse of the flexibility matrix ∂x/∂f , and including it in the dynamic
equation [52]

ma + ku = F (2.85)

where m is the mass matrix for the element, a is the acceleration field, u is the displacement
field with respect to the equilibrium state and F are the external forces.

While catenary elements give more accurate results than truss elements for the same
mesh discretization, they also have shortcomings that limit their range of application. First,
current catenary elements do not support the extension to finite deformations and nonlinear
material behavior. Second, these elements assume infinitesimal deformations and integrate
the global balance of linear momentum explicitly or with finite differences without distin-
guishing between the 2nd PK and Cauchy representations of the axial force. Third, this
explicit integration does not accommodate a consistent mass for dynamic analysis, limiting
such approaches to the use of a lumped mass with the consequence that a large number of
elements is required for accuracy [52]. Finally, because of the assumption of infinitesimal
deformations, the distributed loads do not evolve consistently with the cable elongation,
resulting in the inaccurate balance of linear momentum in the deformed configuration. To
address this problem, associated catenary elements impose restrictions of the form wL = w̃l
with w and L the load and length in the reference configuration, and w̃ and l the load and
length in the current configuration, respectively [3].

2.2.3 Geometrically-exact rods

Geometrically-exact rods are the natural extension of classical beam theories to finite
deformations and finite rotations, and are hence not explicitly formulated as cables [39, 42,
46]. Their formulation, however, provides significant insight on how to incorporate finite-
deformation theory into catenary elements and constitutes, together with the formulations
in the preceding sections, the starting point for this dissertation.

Figure 2.5 shows the deformation of a rod from a reference configuration P0 to a current
configuration Pt at time t, with reference position vector X and current position vector
x. The rod in the reference configuration is defined by an axis R0 and a succession of cross
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sections with orthogonal frames {Gi}3
i=1, while the rod in the current configuration is defined

by an axis r and a succession of cross sections with frames {gi}3
i=1.
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Figure 2.5: Geometric setup for the geometrically-exact rod.

The coordinate systems along the axis of the rod in the reference and current configura-
tions can be obtained from the global Cartesian coordinate system {Ei}3

i=1 by means of the
rotation matrices Λ0(S) ∈ SO(3) in the reference configuration and Λ(S) ∈ SO(3) in the
current configuration,

Gi = Λ0Ei ; gi = ΛEi for i ∈ {1, 2, 3} (2.86)

Denoting by S the reference arc-length coordinate, the reference position vector X is
given by

X = ϕ0(ξ1, ξ2, S) = R0(S) +
2∑
i=1

ξiGi(S) (2.87)

where (·)′ refers to the derivative with respect to the arc-length coordinate S and (ξ1, ξ2)
are the section coordinates. For the reference configuration, G3 = R′0. The current position
vector x is given by

x = ϕ(ξ1, ξ2, S) = r(S) +
2∑
i=1

ξigi(S) (2.88)

noting that r′ 6= g3 in general because g3 is not necessarily tangent to the current axis.
The strain measures are defined by the pull-backs

Γ = Λtr′ − E3

Ω = ΛtΛ′ −ΛtΛ′0
(2.89)
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where Γ is the vector measuring the change in the angles between the tangent vectors and
the frame of the section (Γ1,Γ2) and the axial strain (Γ3), while Ω is the skew-symmetric
tensor, whose vector representation is ω, and measures the curvatures (ω1, ω2) and the rate
of twist (ω3).

The principle of virtual work is therefore written in the form∫ L

0

N · δΓ dS +

∫ L

0

M · δω dS =

∫ L

0

n̄ · δr dS +

∫ L

0

m̄ · δθ dS (2.90)

where N is the reference axial force, M is the reference bending moment in vector form, n̄
is the applied distributed axial force, m̄ is the applied distributed moment and δθ is the
rotation of the section in vector form. The difficulty of this model is now apparent, as it
requires the variations δΓ and δω in terms of the variations δr and δθ with Ω not contained
in a linear space but in the manifold SO(3). Using the tangent space to the manifold SO(3)
gives the explicit form of the principle of virtual work [42]∫ L

0

n · (−δθ × r′ + δr′) dS +

∫ L

0

m · δθ′ dS =

∫ L

0

n̄ · δr dS +

∫ L

0

m̄ · δθ dS (2.91)

with the pushed-forward stress resultants n = ΛN and M = ΛM. The objective constitutive
relation is given in terms of the reference stress resultants Π = (N,M) and the reference
strain measures Ψ = (Γ,ω) for the energy function U in the form

Π =
∂U
∂Ψ

(2.92)

The solution to Eq. 2.91 under the constitutive relations in Eq. 2.92 is obtained by
discretizing the domain into finite elements with interpolation functions for the displacement
field u and for the rotation field θ. The tangent stiffness of the element is given by the Fréchet
derivative of the stress divergence term on the left-hand side of Eq. 2.91 [46]. The inertia
forces for the dynamic analysis can be readily added with the terms Ma and Jρα, where M
and Jρ are the mass and the mass moment of inertia matrices, and a and α are the tangent
and the angular acceleration fields.

Geometrically-exact rods cannot be directly used to model cables because the consistent
tangent becomes singular in the limit EI → 0. A common trick to numerically overcome this
limitation consists of considering a small but non-zero bending stiffness EI in the model. This
numerical trick, however, entails three relevant disadvantages. First and most importantly,
the small but nonzero bending stiffness EI may result in an ill-conditioned consistent tangent
when combined with other material properties with large values, and therefore may give
rise to significant errors in the results. Second, the fictitious stiffness EI may generate a
significant rotation of the cable cross section, which is not physical for stranded cables even
under large deformations. Third, the model is computationally expensive because it requires
the storage of rotation degrees of freedom, even in the elastic case, for updating the large
rotations.
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Chapter 3

Element formulation

This chapter presents the formulation and implementation of a two-field cable element
that is based on a mixed variational formulation in curvilinear coordinates and finite deforma-
tions. For generality purposes, no assumptions are made at this stage about the constitutive
relation of the cable, and subsequent chapters implement different material models to assess
this formulation for different applications.

The discussion begins with the assumptions of the model and the geometric preliminaries
required to mathematically describe the kinematics of the cable. Afterwards, the equilibrium
equation and the principle of virtual work are derived to formulate the weak form of the
catenary problem. The governing equations are discretized in space with the finite element
method, and integrated in time with different time-stepping algorithms, which include the
well-known Newmark [37] and HHT-α [24] methods and a new energy-momentum conserving
algorithm in complementary space [13]. Finally, a filtering process based on a Savitzky-Golay
filter [41] is used to remove high-frequency contributions in the dynamic response.

3.1 Overview and assumptions

In view of the shortcomings for existing elements in Section 2.2, a new cable element
based on finite-deformation theory is proposed [14]. The formulation assumes the cable to
be infinitely flexible, and thus does not account for any bending stiffness or deformation of
the cross section. This new element formulation considers nonlinear stress measures in the
form of axial forces and conjugate strain measures to obtain the strain-displacement relation
and the equilibrium equation in the deformed configuration.

The element kinematics relate the Green-Lagrange strain tensor to the displacement
field in order to establish compatibility in finite deformations. Conjugate stress measures
are derived by transforming the 2nd Piola-Kirchhoff (2nd PK) and Cauchy stress tensors
into axial forces, and used to formulate the equilibrium equation and the principle of virtual
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work. The continuity requirements of the governing equations allow two different numerical
implementations: one with a continuous axial force field and one with a discontinuous axial
force field.

The cable element is first integrated in time with the Newmark method [37] and the
HHT-α method [24]. Since these do not preserve the Hamiltonian structure of nonlinear
elastodynamics [6, 44, 45], a new energy-momentum conserving algorithm in complementary
energy space is derived for the problem at hand [13]. Finally, the use of a Savitzky-Golay
filter [41] is proposed to dissipate any high-frequency oscillations in the dynamic response
[15, 47].

3.2 Geometric preliminaries

The proposed element represents the cable as a one-dimensional manifold C that is em-
bedded in the three-dimensional Euclidean space R3. Fig. 3.1 shows the geometric setup for
this idealized cable C with reference Cartesian coordinate system {EA}3

A=1.
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Figure 3.1: Geometric setup for the cable C.

A local orthogonal frame {Gi}3
i=1 associated with coordinates {ξi}3

i=1 is defined at any
material point P ∈ C in the form

G1 =
dX

dξ1
; G1 ·G2 = 0 ; ‖G2‖ = 1 ; G3 =

G1 ×G2

‖G1 ×G2‖
(3.1)

where ξ1 is the selected parameter for describing the curve. Note that the frame {Gi}3
i=1

is orthogonal but, in general, not orthonormal. Indeed, the metric tensor Gij for the frame
{Gi}3

i=1 has the structure

[Gij] = [Gi ·Gj] =

 ‖G1‖2 0 0
0 1 0
0 0 1

 (3.2)
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The differential vector dX along the curve C is given by

dX =
dX

dξ1
dξ1 = G1dξ

1 (3.3)

while the arc-length differential dS along the curve has the form

dS =
√
dX · dX = ‖G1‖dξ1 =

√
G11dξ

1 (3.4)

The dual frame {Gi}3
i=1 is defined with respect to the frame {Gi}3

i=1 with the dual metric
tensor Gij

Gi = GijGj (3.5)

Since the curvilinear coordinates {ξi}3
i=1 are orthogonal, Eq. 2.11 gives the relation

Gi = GiiGi = G−1
ii Gi for i ∈ {1, 2, 3} (3.6)

with no summation implied, and Gij = Gij = 0 for i 6= j.

3.3 Finite-deformation kinematics

With the preceding definitions, let the cable C undergo the motion χ(X, t) : R3×I → R3

in Fig. 3.2, from a reference configuration P0 to the current configuration Pt at time t,
where x = χ(X, t) and X represent the current and reference position vectors, respectively.
Upper case letters denote the variables in the reference configuration and lower case letters,
the variables in the current configuration. The motion χ(X(ξ1), t) is therefore uniquely
described by the curvilinear coordinate ξ1 at any time t.

In the global Cartesian coordinate system, X = XAEA defines the reference coordinates,
whereas x = xiei defines the current coordinates. Note that, in Cartesian coordinates,
EA = EA and ei = ei. Let the basis vectors for the reference and the current configuration
coincide for simplicity, {EA}3

A=1 ≡ {ei}3
i=1.

Under the motion χ(X, t), the reference orthogonal frame {Gi}3
i=1 is convected to the

current orthogonal frame {gi}3
i=1. Consequently, the deformation gradient F and the right

Cauchy-Green tensor C have the form

F =
∂x

∂X
= gi ⊗Gi ; C = FtF = gij Gi ⊗Gj (3.7)

with FG1 = g1 and G1 = F−1g1.
The Green-Lagrange strain tensor E in curvilinear coordinates has the form

E =
1

2
(gij −Gij) Gi ⊗Gj (3.8)
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Figure 3.2: Motion x = χ(X, t) of the cable C.

Hence, the only nonzero strain of the problem arises in the G1 direction. It is

E11 =
1

2
(‖g1‖2 − ‖G1‖2) (3.9)

The relevant stretch λ in the G1 direction, which is equal to the determinant J of the
deformation gradient F, is

λ2 =

(
ds

dS

)2

=
dx · dx
dX · dX

=
g11

G11

=

(
‖g1‖
‖G1‖

)2

(3.10)

Consequently,

E11 =
1

2
(λ2 − 1)‖G1‖2 (3.11)

The displacement field u at time t depends only on the reference curvilinear coordinate
ξ1 of the material point P ∈ C

u(X(ξ1), t) = x(X(ξ1), t)−X(ξ1) = uA(ξ1, t)EA (3.12)

For the referential displacement gradient H in curvilinear coordinates, one observes that the
only nonzero derivative with respect to the coordinates {ξi}3

i=1 is

du

dξ1
=

dx

dξ1
− dX

dξ1
= g1 −G1 (3.13)

As a result,

H =
du

dξ1
⊗G1 (3.14)
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so that the relationship between the Green-Lagrange strain tensor E and the displacement
field u, namely the strain-displacement relation, is

E =
1

2

(
du

dξ1
⊗G1 + G1 ⊗ du

dξ1
+

∣∣∣∣ dudξ1

∣∣∣∣2 G1 ⊗G1

)
(3.15)

where |·| represents the L2-norm of the vector. Introducing the notation (·)′ for the derivative
with respect to the curvilinear coordinate ξ1, the only nonzero component of E can be
expressed as

E11 = u′ ·G1 +
1

2
|u′|2 = u′ ·

(
G1 +

1

2
u′
)

=
1

2
u′ · (G1 + g1) (3.16)

It is important to observe that the above Green-Lagrange strain tensor is, in general, not
physical. Indeed, the constitutive equation cannot be directly expressed as a function of E11

since the metric tensor Gij is not the identity operator, i.e. G11 = ‖G1‖2 6= 1 in general.
However, one can generate an orthonormal basis by normalizing the vectors {Gi}3

i=1 into the
vectors {ĜA}3

A=1,

ĜA =
Gi

‖Gi‖
with i = A ∈ {1, 2, 3} (3.17)

Consequently, the components of E can be transformed into meaningful quantities by invok-
ing the change of basis

E = EijG
i ⊗Gj = ÊABĜA ⊗ ĜB (3.18)

Hence,
ÊAB = Eij(ĜA ·Gi)(ĜB ·Gj) (3.19)

noting that Ê11 = G11E11, as Ĝ1 ·G1 = ‖G1‖.

3.4 Equilibrium and Principle of Virtual Work

For expressing the equilibrium equation of the cable, let n denote the axial force in the
current configuration, hence a Cauchy representation of the axial force. Observe that the
first Piola-Kirchhoff (1st PK) and the Cauchy representations of the axial force coincide for
the problem at hand, which does not account for changes in the cross section dimensions.

With reference to the normalized convected vectors {ĝi}3
i=1 according to Eq. 3.17, the

physical Cauchy stress tensor σ̂ is given by

σ̂ = σ̂ijĝi ⊗ ĝj (3.20)

Consequently, the Cauchy axial force n corresponds to

n = Aσ̂11ĝ1 ⊗ ĝ1ĝ
1 = Aσ̂11ĝ1 = Aσ̂11

√
g11g1 (3.21)
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with magnitudes n = n̂ĝ1 = ng1 in the two bases, where A is the area of the cross section.
With the expression for the physical 2nd Piola-Kirchhoff stress tensor Ŝ in the form

Ŝ = ŜijĜi ⊗ Ĝj (3.22)

the 2nd Piola-Kirchhoff axial force N becomes

N = AŜ11Ĝ1 ⊗ Ĝ1Ĝ
1 = AŜ11Ĝ1 = AŜ11

√
G11G1 (3.23)

with magnitudes N = N̂Ĝ1 = NG1 in the two bases.
The 2nd Piola-Kirchhoff stress S11 is related to the Cauchy stress σ11 with the pull-back

transformation in Eq. 2.48
S11 = Jσ11 = λσ11 (3.24)

where J is the determinant of the deformation gradient F. The physical components of S
and σ are derived similarly to Eq. 3.19 so that

N = AG11

√
g11√
G11

σ11Ĝ1 = A
√
G11σ̂

11
√
g11Ĝ1 = n

√
G11Ĝ1 (3.25)

Hence,
N̂ = n

√
G11 ⇐⇒ n = N̂

√
G11 ⇐⇒ n̂ = λN̂ (3.26)
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Figure 3.3: Representation of a cable element in equilibrium.

The global equilibrium of the cable C in the current configuration in Fig. 3.3 requires
that each component of n be in equilibrium with the external loads w expressed per unit of
length in the current configuration [4, Ch.3]

n(s, t)− n(0, t) +

∫ s

0

w(s, t) ds =
d

dt

∫ s

0

m(s)u̇(s, t) ds (3.27)
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where m(s) is the linear density of the cable in the current configuration and ˙(·) represents
the material time derivative. The local counterpart in the current configuration can be
obtained with the Fundamental Theorem of Calculus∫ s

0

(
dn

ds
+ w −mü

)
ds = 0 (3.28)

Hence, by the localization theorem,

dn

ds
+ w −mü = 0 (3.29)

This expression arises directly from enforcing equilibrium for a differential cable segment
[34, Ch.3].

The external loads w(s, t) can be pulled back to the reference configuration with

w(s, t)ds = Ŵ(S, t)dS = W(ξ1, t)dξ1 (3.30)

On account of Eq. 3.26, the pulled-back equilibrium equation in the reference configuration
becomes

d

dS
(ng1) + Ŵ −m0ü =

d

dS

(
N̂
√
G11g1

)
+ Ŵ −m0ü = 0 (3.31)

where m0 = λm is the reference linear density of the cable.
In summary, if N̂ = Ψ(Ê, κ) is a frame-indifferent constitutive relation [21, Ch.7] between

the physical Green-Lagrange strain Ê and the physical 2nd Piola-Kirchhoff axial force N̂,
with κ a set of internal variables for use in the inelastic constitutive models to be discussed
in Chapter 5, the pair of fields (u, N̂) will be the solution of the cable problem, if and only
if, they satisfy the following equations

G11u′ ·
(

G1 +
1

2
u′
)
− Ê = 0 in Ω× I

d

dS

(√
G11N̂g1

)
+ Ŵ = m0ü in Ω× I

N̂−Ψ(Ê, κ) = 0 in Ω× I
u = ū on Γu × I√

G11N̂g1 = T̄ on Γq × I
u = u0 ; v = v0 ; N̂ = N̂0 in Ω× {t = 0}

(3.32)

for S ∈ Ω = (0, L) equivalent to ξ1 ∈ Ωξ = (ξ1
0 , ξ

1
L), and t ∈ I = (0, T ). In these, ū

and T̄ denote the imposed displacements and boundary forces, respectively. Note that the
boundary condition on Γq does not represent a prestressing force but a boundary force. In
general, this condition is not used in cable problems.
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Eq. 3.32 is a nonlinear second-order system of differential equations that can be trans-
formed into first order by introducing the velocity field v as an unknown, together with the
relation u̇ = v in Ω× I.

If the pair (u, N̂) satisfies Eq. 3.32, then for any variation δu ∈ V , the space of displace-
ment test functions, and any variation δN̂ ∈ W , the space of test functions for the 2nd
Piola-Kirchhoff axial force, it holds that

∫ L

0

δN̂

{
G11u′ ·

(
G1 +

1

2
u′
)
− Ê

}
dS = 0∫ L

0

δu ·
(
d

dS

(√
G11N̂g1

)
+ Ŵ −m0ü

)
dS +

[
δu ·

(
t̄−
√
G11N̂g1

)]
Γq

= 0

(3.33)

with the requirements for spaces V and W to be discussed in the following.
Eq. 3.33 corresponds to the two-field weak formulation of Eq. 3.32. Its solution produces

weakly-compatible solutions of the boundary value problem with the constitutive relation
imposed strongly.

Regarding the weak form of the strain-displacement relation, sufficient smoothness re-
quirements for u are u ∈ C0(Ω) with δN̂ ∈ L2(Ω), so that u′i has finite jumps at the points
with discontinuous derivative and is, therefore, square-integrable.

Regarding the weak form of the equilibrium equation, one can integrate by parts to reduce
the order of the highest derivative of the displacement field u, thus obtaining the Principle
of Virtual Work (PVW) for the cable problem∫ L

0

δu′ ·G11N̂g1 dS +

∫ L

0

δu ·m0ü dS = [δu · t̄]Γq +

∫ L

0

δu · Ŵ dS (3.34)

or, equivalently, integrating over the curvilinear coordinate∫ ξ1
L

ξ1
0

δu′ ·
√
G11N̂g1 dξ

1 +

∫ ξ1
L

ξ1
0

δu ·m0ü
√
G11dξ

1 = [δu · t̄]Γq +

∫ ξ1
L

ξ1
0

δu ·W dξ1 (3.35)

Eq. 3.34 can also be derived from the general principle of virtual work under finite defor-
mations in Eq. 2.54. As a result, the corresponding weak problem to Eq. 3.32 becomes

∫ L

0

δN̂

{
G11u′ ·

(
G1 +

1

2
u′
)
− Ê

}
dS = 0∫ L

0

δu′ ·G11N̂g1 dS +

∫ L

0

δu ·m0ü dS = [δu · t̄]Γq +

∫ L

0

δu · Ŵ dS

(3.36)

The spaces for the trial solutions of the displacements and the axial forces, S and N ,
respectively, are

S = {u ∈ H1(0, L) |u = ū on Γu}

N =
{

N̂ ∈ H0(0, L) | N̂ > 0, and N̂ = g11
√
G11t̄ · g1 on Γq

} (3.37)
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Similarly, the spaces for the test functions of the displacements and the axial forces, V and
W , respectively, are

V = {δu ∈ H1(0, L) | δu = 0 on Γu}
W = {δN̂ ∈ H0(0, L) | δN̂ = 0 on Γq}

(3.38)

where Hk(Ω) represents the Sobolev space for the k−th weak derivative in the L2(Ω) norm
[16, Ch.5].

Note that the absence of derivatives of the axial force field N̂ in Eq. 3.36 implies no conti-
nuity requirements for it in Eqs. 3.37 and 3.38. Consequently, it is possible to explore cable
finite element implementations with continuous and discontinuous axial force distributions.

The second-order weak problem in Eq. 3.36 can be transformed into first order by consi-
dering the velocity field v as an unknown and adding the weak momentum relation∫ L

0

δv ·m0u̇ dS =

∫ L

0

δv ·m0v dS (3.39)

where v ∈ T , the space of trial solutions for the velocity, and δv ∈ Z, the space of velocity
test functions,

T = {v ∈ H1(0, L) |v = v̄ in Γv × I}
Z = {δv ∈ H1(0, L) |v = 0 in Γv × I}

(3.40)

for the boundary Γv where velocities are imposed.

3.5 Hamiltonian structure

In the case of the physical Green-Lagrange strain Ê resulting from a complementary
energy function χ, a standard calculation shows that the problem in Eq. 3.36 can be derived
from the mixed Hamiltonian function H(u, N̂)

H(u, N̂) = W (u, N̂) +K(u̇)−Wext(u) (3.41)

where W (u, N̂) is the stored energy, K(u̇) is the kinetic energy and Wext(u) is the work of
the external loads in the form

W (u, N̂) =

∫ L

0

{
N̂G11u′ ·

(
G1 +

1

2
u′
)
− χ(N̂)

}
dS

K(u̇) =
1

2

∫ L

0

ρ0u̇ · u̇ dS

Wext(u) = [u · T̄]Γq +

∫ L

0

u · Ŵ dS

(3.42)
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In Eq. 3.42, the stored energy W (u, N̂) is given as a function of the complementary energy
χ(N̂), for which the constitutive relation reads as Ê = dχ/dN̂.

The material time derivative of the Hamiltonian function in Eq. 3.41 gives the so-called
Hamilton equation

Ḣ = 0 (3.43)

for time-independent boundary conditions and external forces, i.e. for the case that no energy
is input into the system. Under these conditions, the Hamiltonian function H(u, N̂) is
conserved in time with Eq. 3.43 expressing the conservation of total energy.

With the definition of the linear momentum p and of the angular momentum L for the
cable by

p =

∫ L

0

ρ0u̇ dS ; L =

∫ L

0

x× ρ0u̇ dS (3.44)

it follows that

ṗ = [T̄]Γq +

∫ L

0

Ŵ dS

L̇ = [x× T̄]Γq +

∫ L

0

x× Ŵ dS

(3.45)

Eqs. 3.43 and 3.45 constitute the Hamiltonian structure of the catenary problem as long as
the complementary energy function χ(N̂) exists.

3.6 Discretization and implementation

The following sections discuss the discretization and implementation of the proposed
mixed cable element in time and space. To this end, the different terms in the weak statement
of the governing equations are identified.

∫ L

0

δN̂

{
G11u′ ·

(
G1 +

1

2
u′
)
− Ê

}
dS︸ ︷︷ ︸

r1

= 0

∫ L

0

δu′ ·G11N̂g1 dS︸ ︷︷ ︸
r2

+

∫ L

0

δu ·m0ü dS︸ ︷︷ ︸
fi

= [δu · t̄]Γq +

∫ L

0

δu · Ŵ dS︸ ︷︷ ︸
fext

(3.46)

rt = (r1, r2) is the expanded stress-divergence term of the proposed cable element, where
one identifies the usual stress divergence term r2 of the principle of virtual work. Also, fi
and fext define the inertia forces and the external forces, respectively. As a result, the weak
statement of the catenary problem can be written in compact form as[

r1(t)
r2(t)

]
︸ ︷︷ ︸

r(t)

+

[
0

fi(t)

]
=

[
0

fext(t)

]
(3.47)
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As usual in the context of finite elements, the time domain I is subdivided into a finite-
difference stencil t0, t1, t2, ..., tn−1, tn, tn+1, ..., T in which the governing equations need to be
satisfied. In general, advancing from time step tn to time step tn+1 requires that the governing
equations be satisfied at some intermediate time tn+α defined by

tn+α = (1− α)tn + αtn+1 (3.48)

with 0 < α ≤ 1, so that the governing equations are evaluated in the form[
r1,n+α

r2,n+α

]
︸ ︷︷ ︸

rn+α

+

[
0

fi,n+α

]
=

[
0

fext,n+α

]
(3.49)

with the notation an+α = a(tn+α) for the time-dependent variable a(t).

3.6.1 Spatial discretization

The discretization in space of the governing equations in Eq. 3.49 requires interpolations
for the 2nd PK axial force field N̂(ξ1, t), the displacement field u(ξ1, t), the velocity field
v(ξ1, t) and the acceleration field a(ξ1, t). In general, different interpolation functions are
possible for these independent fields in a mixed finite element formulation [58, Ch.2].

For the 2nd Piola-Kirchhoff axial force field N̂(ξ1, tn), consider a k-th order Galerkin
approximation of the form

N̂(ξ1, tn) =
k+1∑
i=1

ϕi(ξ
1)N̂i,n and δN̂(ξ1) =

k+1∑
i=1

ϕi(ξ
1)δN̂i (3.50)

with a vector representation in the form

N̂n =
{
ϕ1 ϕ2 · · · ϕk+1

}︸ ︷︷ ︸
ϕt


N̂1,n

N̂2,n
...

N̂k+1,n

︸ ︷︷ ︸
N̂n

= ϕtN̂n = N̂t
nϕ (3.51)

where ϕ and N̂n are (k + 1)× 1 arrays.
For the displacement field u(ξ1, tn), consider an l-th order Galerkin approximation of the

form

u(ξ1, tn) =
l+1∑
i=1

φi(ξ
1)ui,n and δu(ξ1) =

l+1∑
i=1

φi(ξ
1)δui (3.52)
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with a vector representation in three dimensions in the form

un =

 φ1 0 0 · · · φl+1 0 0
0 φ1 0 · · · 0 φl+1 0
0 0 φ1 · · · 0 0 φl+1


︸ ︷︷ ︸

φt



u1
1,n

u2
1,n

u3
1,n
...

u1
l+1,n

u2
l+1,n

u3
l+1,n

︸ ︷︷ ︸
ûn

=

 φt1φt2
φt3

 ûn = φtûn (3.53)

In this case, φ is a d(l + 1)× d array, while ûn is a d(l + 1)× 1 array, with d the dimension
of the problem. Using the same shape functions for the reference configuration, X = φtX̂,
the current configuration xn at time tn results from

xn = X + un = φt(X̂ + ûn) = φtx̂n (3.54)

For simplicity, the same l-th order Galerkin approximation is considered for the velocity
field v(ξ1, tn) and for the acceleration field a(ξ1, tn), so that

vn =

 φt1φt2
φt3

 v̂n = φtv̂n and an =

 φt1φt2
φt3

 ân = φtân (3.55)

Observing that the interpolations in Eqs. 3.51, 3.53 and 3.55 lump the time dependency
of the variables at the nodal values, the 2nd PK axial force field N̂n+α, the displacement
field un+α, the velocity field vn+α and the acceleration field an+α at the configuration tn+α

become
N̂n+α = (1− α)N̂n + αN̂n+1

un+α = (1− α)un + αun+1

vn+α = (1− α)vn + αvn+1

an+α = (1− α)an + αan+1

(3.56)

3.6.1.1 Stress-divergence term

Introducing the interpolations in Eqs. 3.51 and 3.53 into the stress-divergence term rn+α

in Eq. 3.49 gives the spatial discretization

rn+α =

[
δN̂tR1,n+α

δûtR2,n+α

]
(3.57)

where δN̂t and δût are arbitrary nodal values for the variations δN̂ and δu, respectively. As
a result, the discretized stress-divergence term Rn+α, or simply stress-divergence term, is
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given for arbitrary nodal values of the variations by

Rn+α =

[
R1,n+α

R2,n+α

]
(3.58)

The absence of a derivative of the axial force N̂ in the expanded stress-divergence term
Rn+α, as corroborated by Eq. 3.46, permits a continuous and a discontinuous representation
of the axial force for the cable, as discussed in the following.

3.6.1.1.1 Mixed cable element with continuous axial force

In the case of a continuous axial force distribution, the stress-divergence term Rn+α at
the configuration tn+α has components

R1,n+α =

∫
Ωe

ϕ

([
G11ûtφ′

(
G1 +

1

2
(φ′)tû

)]
n+α

− Ên+α

)
dS

R2,n+α =

∫
Ωe

G11ϕtN̂n+αφ
′ĝn+α dS

(3.59)

where ĝn+α = G1 +(φ′)tûn+α is the numerical counterpart to g1,n+α and the Green-Lagrange

strain Ên+α is interpolated by Ên+α = (1 − α)Ên + αÊn+1, as will become evident in Sec-
tion 3.6.2.

The consistent linearization of the stress-divergence term Rn+α at the point V̄n+1 =
(ûn+1, N̂n+1) for the m-th iterate establishes

LRn+α = R|
V̄

(m)
n+α

+
∂Rn+α

∂V̂n+1

∣∣∣∣
V̄

(m)
n+α

(V̂
(m+1)
n+1 − V̄

(m)
n+1)︸ ︷︷ ︸

DRn+α(V̄
(m)
n+α,∆Vn+1)

(3.60)

where V̄
(m)
n+α = (1 − α)V̄n + αV̄

(m)
n+1. The Fréchet derivative at V̄

(m)
n+α, ∂Rn+α/∂V̂n+1|V̄(m)

n+α
,

represents the static stiffness Ks of the element in the form of a d(l+1)+k+1×d(l+1)+k+1
array

Ks =
∂Rn+α

∂V̂n+1

∣∣∣∣
V̄

(m)
n+α

=

[
KNN KNu

KuN Kuu

]
=


∂R1

∂N̂n+1

∂R1

∂ûn+1

∂R2

∂N̂n+1

∂R2

∂ûn+1

 (3.61)
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with components

KNN =
∂R1

∂N̂n+1

= −
∫

Ωe

ϕ
∂Ên+α

∂N̂n+1

dS = −
∫

Ωe

ϕ
∂Ên+α

∂N̂n+1

ϕt dS

KNu =
∂R1

∂ûn+1

= α

∫
Ωe

G11ϕĝtn+1(φ′)tdS

KuN =
∂R2

∂N̂n+1

= α

∫
Ωe

G11φ′ĝn+αϕ
t dS

Kuu =
∂R2

∂ûn+1

= α

∫
Ωe

G11ϕtN̂n+αφ
′(φ′)tdS

(3.62)

KNN and Kuu are symmetric. However, only if α = 1, KNu = Kt
uN, resulting in a symmetric

stiffness Ks.

3.6.1.1.2 Mixed cable element with discontinuous axial force

In the case of a discontinuous axial force distribution, the axial forces are treated as
internal degrees of freedom rather than as global, and are consequently condensed out at the
element level before assembly of the element response. This results in two independent axial
force values at the node shared by two adjacent elements, when noting that Eq. 3.46 does
not involve derivatives of N̂, so that N̂ ∈ H0(Ω). This permits a discontinuity in the axial
force distribution.

The stress-divergence term Rn+α of the element with a discontinuous axial force dis-
tribution is interpreted as Rn+α(N̂n+1(ûn+1), ûn+1) with the axial force values N̂n+1 deter-
mined in each element. The stress-divergence term for the global solution strategy is then
Rn+α ≡ R2,n+α and has the form

Rn+α =

∫
Ωe

G11ϕtN̂n+αφ
′ĝn+α dS (3.63)

The strain-displacement relation is enforced within each element in the form∫
Ωe

ϕÊn+αdS =

∫
Ωe

ϕ

[
G11ûtφ′

(
G1 +

1

2
(φ′)tû

)]
n+α

dS (3.64)

which gives a set of equations that can be solved iteratively for the unknown axial forces
N̂n+1. If the constitutive relation Ê(N̂) is linear in N̂, the determination of the axial forces
is rather straightforward from the linear system in Eq. 3.64.

The consistent linearization of the stress-divergence term Rn+α at the point ūn+1 for the
m-th iterate gives

LRn+α = R|
ū

(m)
n+α

+
∂Rn+α

∂ûn+1

∣∣∣∣
ū

(m)
n+α

(û
(m+1)
n+1 − ū

(m)
n+1)︸ ︷︷ ︸

DRn+α(ū
(m)
n+α,∆un+1)

(3.65)
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where the Fréchet derivative at ū
(m)
n+α, ∂Rn+α/∂ûn+1|ū(m)

n+α
, represents the condensed static

stiffness Ksc of the element in the form of a d(l+ 1)× d(l+ 1) array, and can be derived for
a particular iterate from static condensation

KNN∆Nn+1 + KNu∆un+1 = 0 ⇒ ∆Nn+1 = −K−1
NNKNu∆un+1 (3.66)

Consequently,

DRn+α(ū
(m)
n+α,∆un+1) = (Kuu −KuNK−1

NNKNu)︸ ︷︷ ︸
Ksc

∆un+1 (3.67)

with the stiffness contributions KNN, Kuu and KNu in Eq. 3.62. Analogously to the element
with a continuous axial force distribution, the condensed stiffness Ksc for the element with
discontinuous axial force distribution is symmetric provided that α = 1 and, as a result, it
is symmetric for static analysis.

3.6.1.1.3 Stability considerations

The mixed formulation of the nonlinear catenary problem with the displacements û and
the 2nd Piola-Kirchhoff axial forces N̂ as unknown independent fields results in the system
of equations [

KNN KNu

Kt
Nu Kuu

]
︸ ︷︷ ︸

K(V̄)

[
∆N̂
∆û

]
︸ ︷︷ ︸

∆V̂

=

[
F1

F2

]
︸ ︷︷ ︸

b

(3.68)

for the static case, where K(V̄) ≡ K(ū, N̄) is symmetric. This problem corresponds to the
compressible Stokes problem [25, Sec.4.3] and a mathematical discussion of the numerical
stability for it is presented in Ref. [8].

Noting that

KNN∆N̂ + KNu∆û = F1 ; Kt
Nu∆N̂ + Kuu∆û = F2 (3.69)

gives
∆û = K−1

uu(F2 −Kt
Nu∆N̂) (3.70)

and consequently

(KNN −KNuK−1
uuKt

Nu)︸ ︷︷ ︸
Ξ

∆N̂ = F1 −KNuK−1
uuF2 (3.71)

If a mode N̂ exists such that Ξ∆N̂ = 0, the solution will not be unique and instabilities will
arise in the form of spurious modes for the axial forces. To avoid this, it is required that

ker Ξ = 0 (3.72)
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The same considerations hold for the condensed stiffness matrix Ksc in Eq. 3.67, leading
to the requirement that

ker Ksc = 0 (3.73)

While these conditions are satisfied for elastic materials, because of the existence of a
one-to-one correspondence between stress and strain, they may not be satisfied for general
inelastic materials. Further computational details for inelastic materials are available in
Refs. [43] and [58].

3.6.1.2 Inertia forces

The spatial discretization of the inertia forces leads to

fi,n+α = δûtFi,n+α = δût
∫ L

0

m0φφ
t dS︸ ︷︷ ︸

M

ân+α (3.74)

where one identifies the mass matrix M of the element with

M =

∫ L

0

m0φφ
t dS (3.75)

As a result, the discretized inertia forces Fi,n+α for arbitrary nodal values of the variation
δu are given by

Fi,n+α = Man+α (3.76)

If the corresponding first-order system to Eq. 3.46 is considered with the weak momentum
relation ∫ L

0

δv ·m0u̇n+αdS︸ ︷︷ ︸
fu,n+α

=

∫ L

0

δv ·m0vn+αdS︸ ︷︷ ︸
fv,n+α

(3.77)

the interpolations in Eqs. 3.53 and 3.55 give

δut
∫ L

0

m0φφ
t dS︸ ︷︷ ︸

M

˙̂un+α = δut
∫ L

0

m0φφ
t dS︸ ︷︷ ︸

M

v̂n+α (3.78)

Consequently, the discrete weak momentum relation for arbitrary nodal values of the varia-
tions reads as

M ˙̂un+α︸ ︷︷ ︸
Fu,n+α

= Mv̂n+α︸ ︷︷ ︸
Fv,n+α

(3.79)

The particular updates for ˙̂un+α, v̂n+α and ân+α from time step tn to time step tn+1

produce additional inertia contributions to the stiffness K of the element, as discussed in
Section 3.6.2.
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3.6.1.3 External forces

The spatial discretization of the external forces gives

fext,n+α = δutFext,n+α = δût
(

[φ t̄n+α]∂Ωe +

∫
Ωe

φŴn+αdS

)
(3.80)

where one identifies the discretized external forces Fext,n+α for arbitrary nodal values of the
variation δu

Fext,n+α = [φ t̄n+α]∂Ωe +

∫
Ωe

φŴn+αdS (3.81)

The Fréchet derivative of the external forces Fext,n+α with respect to the unknown degrees
of freedom gives the contribution of the external forces to the stiffness K of the element.
Consequently, if the external forces do not depend on the unknowns, this contribution va-
nishes. The following sections consider the latter case for simplicity.

3.6.2 Time discretization

The time discretization of the governing equations in Eq. 3.49 provides the algorithm to
advance from time step tn to time step tn+1 of the dynamic response. The following sections
give the implementation of the proposed mixed cable element with the Newmark method,
the HHT-α method and a new energy-momentum conserving algorithm that preserves the
Hamiltonian structure of the catenary problem if a complementary energy function χ for the
material model exists.

3.6.2.1 Newmark method

For the Newmark method, the discretized governing equations in Eq. 3.49 are satisfied
at time tn+1 such that [

R1,n+1

R2,n+1

]
︸ ︷︷ ︸

Rn+1

+

[
0

Fi,n+1

]
=

[
0

Fext,n+1

]
(3.82)

with the displacement and the velocity fields evolving from time step tn to time step tn+1

according to the Newmark discrete time integrator [12, 37] ûn+1 = ûn + v̂n∆t+
1

2
((1− 2β)ân + 2βân+1) ∆t2

v̂n+1 = v̂n + ((1− γ)ân + γân+1) ∆t
(3.83)

for two algorithmic parameters 0 ≤ 2β, γ ≤ 1 and ∆t = tn+1 − tn. Typical values for
these parameters are β = 0.25 and γ = 0.5, which correspond to the implicit average
acceleration method [12]. Depending on the treatment of the axial forces, the following two
implementations are possible.
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3.6.2.1.1 Mixed cable element with continuous axial force

For the element with a continuous axial force distribution, the algebraic system of equa-
tions to be solved, Φ = 0, results from introducing the time integrator in Eq. 3.83 into the
governing equations in Eq. 3.82, and gives the objective function Φ in the form

Φ =
1

β∆t2

[
0

Mûn+1

]
+ Rn+1 −

[
0

Fext,n+1

]
− 1

β∆t2

[
0

M(ûn + ∆tnv̂n)

]
− 1− 2β

2β

[
0

Mân

] (3.84)

The consistent linearization of the above system of equations at the point V̄n+1 =
(ûn+1, N̂n+1) for the m-th iterate establishes

LΦ = Φ|
V̄

(m)
n+1

+
∂Φ

∂V̂n+1

∣∣∣∣
V̄

(m)
n+1

(V̂
(m+1)
n+1 − V̄

(m)
n+1)︸ ︷︷ ︸

DΦ(V̄
(m)
n+1,∆Vn+1)

(3.85)

where the Fréchet derivative ∂Φ/∂V̂n+1|V̄(m)
n+1

represents the dynamic stiffness K of the ele-

ment in the form

K =
∂Φ

∂V̂n+1

∣∣∣∣
V̄

(m)
n+1

= Ks +
1

β∆t2

[
0 0
0 M

]
(3.86)

with the static stiffness matrix Ks given in Eq. 3.61, and the mass matrix M given in
Eq. 3.75. As a result, the dynamic stiffness matrix K is symmetric in this case.

3.6.2.1.2 Mixed cable element with discontinuous axial force

For the element with a discontinuous axial force distribution, the algebraic system of
equations to be solved, Φ = 0, results from introducing the time integrator in Eq. 3.83
into the governing equations in Eq. 3.82 and then condensing out the axial force degrees of
freedom. This process results into the objective function Φ

Φ =
1

β∆t2
Mûn+1 + Rn+1 − Fext,n+1 −

1

β∆t2
M(ûn + ∆tv̂n)− 1− 2β

2β
Mân (3.87)

The consistent linearization of the former system of equations at the point ūn+1 for the
m-th iterate establishes

LΦ = Φ|
ū

(m)
n+1

+
∂Φ

∂ûn+1

∣∣∣∣
ū

(m)
n+1

(û
(m+1)
n+1 − ū

(m)
n+1)︸ ︷︷ ︸

DΦ(ū
(m)
n+1,∆un+1)

(3.88)
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where the Fréchet derivative ∂Φ/∂ûn+1|ū(m)
n+1

corresponds to the condensed dynamic stiffness

K of the problem in the form

K =
∂Φ

∂ûn+1

∣∣∣∣
ū

(m)
n+1

= Ksc +
1

β∆t2
M (3.89)

with the condensed static stiffness matrix Ksc given in Eq. 3.67, and the mass matrix M
given in Eq. 3.75. As a result, the dynamic stiffness matrix K is also symmetric in this case.

3.6.2.2 HHT-α method

For the HHT-α method, the displacement and velocity fields evolve from time step tn
to time step tn+1 according to the Newmark time integrator in Eq. 3.83, but the stress
divergence term Rn+α is interpolated linearly between the two time steps in the form

Rn+α = (1− α)Rn + αRn+1 (3.90)

for 0 < α ≤ 1. Consequently, it is readily concluded that the HHT-α method coincides with
the Newmark method when α = 1. Hilber et al. [24] proposed the collapse of the resulting
three-parameter (α, β, γ) method into a one-parameter (α) method that is unconditionally
stable in the linear case and displays improved numerical dissipation by selecting

β =
(2− α)2

4
and γ =

3

2
− α (3.91)

The discretized governing equations for the HHT-α method become

α

[
R1,n+1

R2,n+1

]
︸ ︷︷ ︸

αRn+1

+ (1− α)

[
R1,n

R2,n

]
︸ ︷︷ ︸

(1−α)Rn

+

[
0

Fi,n+1

]
=

[
0

Fext,n+1

]
(3.92)

and the different treatments of the axial force degrees of freedom give the following two
implementations.

3.6.2.2.1 Mixed cable element with continuous axial force

For the element with a continuous axial force distribution, the algebraic system of equa-
tions to be solved, Φ = 0, results from introducing the time integrator in Eq. 3.83 into the
governing equations in Eq. 3.92, and gives the objective function Φ in the form

Φ =
1

β∆t2

[
0

Mûn+1

]
+ αRn+1 −

[
0

Fext,n+1

]
+ (1− α)Rn

− 1

β∆t2

[
0

M(ûn + ∆tv̂n)

]
− 1− 2β

2β

[
0

Mân

] (3.93)
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The consistent linearization of Eq. 3.93 at the point V̄n+1 = (ûn+1, N̂n+1) follows from
Eq. 3.85, and gives the dynamic stiffness matrix K of the element in the form

K =
∂Φ

∂V̂n+1

∣∣∣∣
V̄

(m)
n+1

= αKs +
1

β∆t2

[
0 0
0 M

]
(3.94)

with the static stiffness matrix Ks in Eq. 3.61 at time tn+1, and the mass matrix M in
Eq. 3.75. As a result, the dynamic stiffness matrix K is symmetric for this case.

3.6.2.2.2 Mixed cable element with discontinuous axial force

For the element with a discontinuous axial force distribution, the algebraic system of
equations to be solved, Φ = 0, results from introducing the time integrator in Eq. 3.83
into the governing equations in Eq. 3.92 and then condensing out the axial force degrees of
freedom. This process results into the objective function Φ

Φ =
1

β∆t2
Mûn+1+αRn+1−Fext,n+1+(1−α)Rn−

1

β∆t2
M(ûn+∆tv̂n)− 1− 2β

2β
Mân (3.95)

The consistent linearization of Eq. 3.95 at the point ūn+1 follows from Eq. 3.88, and gives
the condensed dynamic stiffness matrix K of the element in the form

K = αKsc +
1

β∆t2
M (3.96)

with the condensed static stiffness matrix Ksc in Eq. 3.67 at time tn+1, and the mass matrix
M in Eq. 3.75. As a result, the dynamic stiffness matrix K is also symmetric in this case.

3.6.2.3 Energy-momentum conserving algorithm

The integration of the governing equations with the new energy-momentum conserving, or
consistent1, algorithm considers the catenary problem in first-order form at the intermediate

1The proposed algorithm is energy-momentum conserving provided that a complementary energy func-
tion χ exists for the material model. Otherwise, the algorithm provides a consistent time integration and is
therefore said to be energy-momentum consistent.
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configuration tn+1/2

∫ L

0

δv ·m0
un+1 − un

∆t︸ ︷︷ ︸
u̇n+1/2

dS =

∫ L

0

δv ·m0vn+1/2 dS

∫ L

0

δN̂

{[
G11u′ ·

(
G1 +

1

2
u′
)]

n+1/2

− Ên+1/2

}
dS = 0∫ L

0

δu ·m0
vn+1 − vn

∆t︸ ︷︷ ︸
an+1/2

dS +

∫ L

0

δu′ ·G11N̂n+1/2g1,n+1/2 dS

=
[
δu · T̄n+1/2

]
Γq

+

∫ L

0

δu · Ŵn+1/2 dS

(3.97)

If a complementary energy function χ exists for the material model, the physical Green-
Lagrange strain Ên+1/2 is obtained incrementally as

Ên+1/2 =
χ(N̂n+1)− χ(N̂n)

N̂n+1 − N̂n

(3.98)

with the well-defined limit, for N̂n+1 = N̂n,

Ê =
dχ

dN̂

∣∣∣∣
N̂n+1/2

(3.99)

On the other hand, if no complementary energy function χ exists for the material model,
the physical Green-Lagrange strain Ên+1/2 is given by the usual interpolation with α = 1/2

Ên+1/2 =
1

2

(
Ên+1 + Ên

)
(3.100)

The principle of virtual work in Eq. 3.97(3) is satisfied in the intermediate configuration
tn+1/2, while the term in square brackets of the strain-displacement relation in Eq. 3.97(2)
corresponds to the strain average, instead of the strain at the intermediate configuration.
While this fact was established by Simo and Tarnow [44] for the single-field formulation
and a St. Venant-Kirchhoff elastic material model, no assumption needs to be made in the
present scheme about the constitutive relation.

To show that the time integration scheme in Eq. 3.97 preserves the Hamiltonian structure
for a complementary energy function χ, it is necessary to show that the discrete Hamilton
equation is satisfied for time-independent boundary conditions and external loads in the form

1

∆t
(Hn+1 −Hn) = 0 (3.101)

where Hn = H(un, N̂n) is the Hamiltonian function of the system at time tn as defined in
Eq. 3.41. Indeed, adding and subtracting the work done by the strain in the compatibility
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equation (last term in Eq. 3.102) to the Hamiltonian increment translates the 2nd PK axial
force to the configuration tn+1/2,

Hn+1 −Hn =

∫ L

0

{
N̂n+1/2G

11(u′)n+1 ·
(

G1 +
1

2
(u′)n+1

)
− χ(N̂n+1)

}
dS

−
∫ L

0

{
N̂n+1/2G

11(u′)n ·
(

G1 +
1

2
(u′)n

)
− χ(N̂n)

}
dS

+
1

2

∫ L

0

ρ0 (vn+1 · vn+1 − vn · vn) dS − (Wext,n+1 −Wext,n)

+

∫ L

0

(N̂n+1 − N̂n)

[
G11u′ ·

(
G1 +

1

2
u′
)]

n+1/2

dS

(3.102)

With the variation δu = vn+1 − vn in the weak momentum relation in Eq. 3.97(1) and the
variation δu = xn+1−xn in the principle of virtual work in Eq. 3.97(3), and after subtracting
the first equation from the second, the energy balance is∫ L

0

((u′)n+1− (u′)n) ·G11N̂n+1/2g1,n+1/2 dS+

∫ L

0

vn+1/2 ·ρ0(vn+1−vn) dS = Wext,n+1−Wext,n

(3.103)
noting that, in the configuration tn+1/2, it holds that

vn+1/2 · (vn+1 − vn) =
1

2
(vn+1 · vn+1 − vn · vn)

g1,n+1/2 · ((u′)n+1 − (u′)n) = (u′)n+1 ·
(

G1 +
1

2
(u′)n+1

)
− (u′)n ·

(
G1 +

1

2
(u′)n

) (3.104)

Substituting Eqs. 3.103 and 3.104 into Eq. 3.102, the Hamiltonian increment simplifies to

Hn+1 −Hn =

∫ L

0

{
(N̂n+1 − N̂n)

[
G11u′ ·

(
G1 +

1

2
u′
)]

n+1/2

−
(
χ(N̂n+1)− χ(N̂n)

)}
dS

(3.105)
Eq. 3.105 can be interpreted as the compatibility equation in Eq. 3.97(2) with δN̂ = N̂n+1−
N̂n. As a result, the Hamiltonian increment Hn+1 −Hn vanishes provided that

χ(N̂n+1)− χ(N̂n) = (N̂n+1 − N̂n)Ê (3.106)

which is automatically satisfied by the incremental definition of the physical Green-Lagrange
strain in Eq. 3.98.

The discrete conservation of linear and angular momentum is proven by inserting the
variations δu1 = η and δu2 = η × xn+1/2 with η constant in the principle of virtual work in
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Eq. 3.97(3) to give

1

∆t
(pn+1 − pn) = [T̄n+1/2]Γq +

∫ L

0

Ŵn+1/2 dS

1

∆t
(Ln+1 − Ln) = [xn+1/2 × T̄n+1/2]Γq +

∫ L

0

xn+1/2 × Ŵn+1/2 dS

(3.107)

Eqs. 3.101 and 3.107 establish the discrete Hamiltonian structure of the proposed time
integration scheme.

If the external loads are time-dependent, the discrete energy conservation follows from
Eq. 3.103 in the form

Wn+1 −Wn +Kn+1 −Kn = [(un+1 − un) · T̄n+1/2]Γq +

∫ L

0

(un+1 − un) · Ŵn+1/2 dS (3.108)

Introducing the interpolation functions in Eqs. 3.51, 3.53 and 3.55 into Eq. 3.97 gives the
governing equations for the energy-momentum conserving, or consistent, algorithm in the
form  R1,n+1/2

R2,n+1/2

0


︸ ︷︷ ︸

Rn+1/2

+

 0
Fi,n+1/2

Fu,n+1/2 − Fv,n+1/2

 =

 0
Fext,n+1/2

0

 (3.109)

The consideration of a continuous or a discontinuous axial force field gives the following two
possible implementations.

3.6.2.3.1 Mixed cable element with continuous axial force

In the case of a continuous axial force distribution and considering the state-space degrees
of freedom ûn+1 and v̂n+1, the governing equations in Eq. 3.109 in the algebraic form Φ = 0
give the objective function Φ

Φ =

 0 0
0 1

∆t
M

1
∆t

M −1
2
M

[ ûn+1

v̂n+1

]
+ Rn+1/2 −

 0
Fext,n+1/2

0

−
 0 0

0 1
∆t

M
1

∆t
M 1

2
M

[ ûn
v̂n

]
(3.110)

The consistent linearization of the objective function Φ at the state-space point V̄n+1 =
(N̂n+1, ûn+1, v̂n+1) for the m-th iterate establishes

LΦ = Φ|
V̄

(m)
n+1

+
∂Φ

∂V̂n+1

∣∣∣∣
V̄

(m)
n+1

(V̂
(m+1)
n+1 − V̄

(m)
n+1)︸ ︷︷ ︸

DΦ(V̄
(m)
n+1,∆Vn+1)

(3.111)
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where the Fréchet derivative ∂Φ/∂V̂n+1|V̂(m)
n+1

corresponds to the dynamic stiffness K of the

element in the form

K =
∂Φ

∂V̂n+1

∣∣∣∣
V̄

(m)
n+1

=

 KNN KNu 0

KuN Kuu
1

∆t
M

0 1
∆t

M −1
2
M

 =

 Ks
0

1
∆t

M

0 1
∆t

M −1
2
M

 (3.112)

with the static stiffness matrix Ks in Eq. 3.61 at time tn+1/2, and the mass matrix M in
Eq. 3.75. Equation 3.112 shows that the dynamic stiffness K is non-symmetric due to the
different configurations at which KNu and KuN are evaluated, a common feature in energy-
momentum conserving algorithms.

In this solution strategy, the state-space vector V̄n+1 = (N̂n+1, ûn+1, v̂n+1) is used to
treat the velocities as independent degrees of freedom. This treatment relaxes the pointwise
relationship between u̇ and v, so that it is satisfied in the weak sense [20, 31]. It is also
possible to apply this relationship pointwise, as described in Section 3.6.2.3.3. In this case,
the global DOFs comprise only the displacements ûn+1 and the 2nd PK axial forces N̂n+1.

3.6.2.3.2 Mixed cable element with discontinuous axial force

In the case of a discontinuous axial force distribution and considering the state-space
degrees of freedom ûn+1 and v̂n+1, the governing equations in Eq. 3.109 in the algebraic
form Φ = 0 give the objective function Φ, after the static condensation of the axial forces,

Φ =

[
0 1

∆t
M

1
∆t

M −1
2
M

] [
ûn+1

v̂n+1

]
+Rn+1/2−

[
Fext,n+1/2

0

]
−
[

0 1
∆t

M
1

∆t
M 1

2
M

] [
ûn
v̂n

]
(3.113)

The consistent linearization of the objective function Φ at the state-space point V̄n+1 =
(ûn+1, v̂n+1) for the m-th iterate gives

LΦ = Φ|
V̄

(m)
n+1

+
∂Φ

∂V̂n+1

∣∣∣∣
V̄

(m)
n+1

(V̂n+1 − V̄
(m)
n+1)︸ ︷︷ ︸

DΦ(V̄
(m)
n+1,∆Vn+1)

(3.114)

where the Fréchet derivative ∂Φ/∂V̂n+1|V̂(m)
n+1

corresponds to the condensed dynamic stiffness

K of the element in the form

K =
∂Φ

∂V̂n+1

∣∣∣∣
V̄

(m)
n+1

=

[
Ksc

1
∆t

M
1

∆t
M −1

2
M

]
(3.115)

with the condensed static stiffness matrix Ksc in Eq. 3.67 at time tn+1/2, and the mass
matrix M in Eq. 3.75. The dynamic stiffness K of the element with a discontinuous axial
force distribution is also non-symmetric.

The pointwise relationship between u̇ and v can also be used with a discontinuous axial
force field if desired, as discussed in the following section. In this case, the displacements
ûn+1 are the only global DOFs of the problem.
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3.6.2.3.3 Pointwise momentum relation

The use of the state-space DOFs ûn+1 and v̂n+1 may restrict the generality of the algo-
rithm in some applications, especially when combining different element types in the same
structural model. In such cases, it may be advantageous to use the pointwise relationship be-
tween the displacement u and the velocity v, either with a continuous or with a discontinuous
axial force field.

The strong form of Eq. 3.97(1) is

1

∆t
(un+1 − un) = vn+1/2 =

1

2
(vn+1 + vn) (3.116)

corresponding to the linear approximation of vn+1

vn+1 =
2

∆t
(un+1 − un)− vn (3.117)

As a result, the discrete form of the principle of virtual work

1

∆t
M(v̂n+1 − v̂n) + R2,n+1/2 = Fext,n+1/2 (3.118)

can be rewritten as

2

∆t2
M(ûn+1 − ûn) + R2,n+1/2 =

2

∆t
Mv̂n + Fext,n+1/2 (3.119)

and the objective function Φ for the continuous axial force implementation becomes

Φ =
2

∆t2

[
0

Mûn+1

]
+ Rn+1/2 −

[
0

Fext,n+1/2

]
− 2
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[
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1
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M M

] [
ûn
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]
(3.120)

while the objective function Φ for the discontinuous axial force implementation is

Φ =
2

∆t2
Mun+1 + Rn+1/2 − Fext,n+1/2 −

2

∆t

[
1

∆t
M M

] [ ûn
v̂n

]
(3.121)

The system of equations Φ = 0 is then solved by an appropriate iterative algorithm
such as Newton’s method. The corresponding dynamic stiffness matrices result from the
linearization of the objective function Φ in the form

K = Ks +
2

∆t2

[
0 0

0 M

]
(3.122)

for the continuous formulation, and in the form

K = Ksc +
2

∆t2
M (3.123)

for the discontinuous formulation.
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3.6.2.4 Filtering the dynamic response

The time discretization of the dynamic response may give rise to undesirable high-
frequency oscillations [15, 47]. It is therefore important to eliminate these without com-
promising any properties of the algorithm used.

The filtering of the dynamic response can be introduced into the time integration scheme
with two different methods: a) the governing equations of the filter are added at the element
level [32]; or b) a postprocessing of the dynamic response is used. This study adopts the
second approach because the first approach may be computationally expensive for large
structures and the derivation of the consistent tangent may be difficult for complex filters.

A digital filter operator L of width N acting on a discrete signal fk is defined in the
frequency domain by the discrete convolution

L[fk] = (a ∗ f)k =
N∑

n=−N

anfk−n (3.124)

where the values of an define the filter coefficients. Because polynomials are often selected as
shape functions in finite elements, a Savitzky-Golay filter [41] is adopted for the smoothing
of the dynamic response. The 2m-order Savitzky-Golay filter of width N uses least squares
to fit a polynomial of degree 2m+ 1 to 2N + 1 adjacent data. Explicit coefficients an for the
cases 2m ∈ {0, 2, 4} are available in Ref. [10].

The Savitzky-Golay filter has the following relevant properties for the problem at hand:

1. If p2m+1 is a polynomial of, at most, degree 2m+ 1, the Savitzky-Golay filter of order
2m, D2m, conserves every polynomial signal of degree up to 2m+ 1,

D2m[p2m+1] = p2m+1 (3.125)

Among all filters of width N having this property, the Savitzky-Golay filter ensures
maximum noise reduction for stationary noise [9].

2. If the n-th moment µn of a signal f is defined as

µn(f) =
∞∑

k=−∞

fkk
n n = 0, 1, ... (3.126)

it can be shown that the moments of the original signal are identical with those of the
filtered signal [9],

µn(D2m[f ]) = µn(f) n = 0, 1, ... (3.127)

Consequently, the energy of the filtered signal is conserved on average.

The Savitzky-Golay filter can thus be understood as the truncation of the Taylor expan-
sion T2m+1 of the signal f to order 2m+ 1

D2m[f ] ≈ D2m[T2m+1] = T2m+1 ≈ f (3.128)
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This interpretation is used to select the frame length of the filter in terms of the dominant
period of the signal as a multiple of its half period or of its full period for simplicity. The
order of the filter is selected according to the number of data points in the frame length:
it is desirable to capture as many polynomial orders as possible without including the high
frequencies with the selection of too high a filter order. An empirical relation of three to four
data points to one polynomial coefficient (3-4:1 rule) seems to give excellent results in free
vibration, while a more restrictive smoothing rule of 6:1-7:1 may be required for earthquake
excitations, as discussed in Section 4.3.

3.7 Form finding problem

At the start of the cable analysis, a shape finding or form finding problem arises because
typically the initial length of the cable and the span between supports are specified.

The form finding problem is addressed in several studies to date and an overview of
prevailing methods for it is available in Ref. [55]. Most commonly, two methods are used
involving the following procedures:

1. Release some degrees of freedom at the fixed supports and impose appropriate support
displacements to obtain the desired span, either statically as a boundary condition
(stiffness matrix methods), or dynamically in a pseudo-time approach (dynamic equi-
librium methods) [5].

2. Apply a constraint for imposing the known length of the cable and derive the corres-
ponding extension of the stiffness matrix (geometric stiffness methods) [22, 23].
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Figure 3.4: Form finding strategy according to Argyris et al. [5].

The present study uses the former method by Argyris et al. [5] in a static manner, as
illustrated in Fig. 3.4 for a simple cable net with a plane reference configuration. This ap-
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proach is always possible for cables because they are modeled as one-dimensional manifolds.
In general, it may be difficult to establish the displacement field of a flat reference configu-
ration for the desired span. However, because the proposed formulation assumes a general
reference configuration, the adopted procedure is also suitable for any non-flat initial shape,
thus making it easier to find such a displacement field.

3.8 Concluding remarks

This chapter proposes a new family of cable elements based on finite deformations and
a weakly-compatible mixed finite-element approach. To begin with, the kinematics of the
catenary problem in general curvilinear coordinates are derived and the kinematic vari-
ables are identified. Afterwards, dual test functions for the strong form of the governing
equations are considered to obtain the principle of virtual work and the weak form of the
stress-displacement relation. The weak statement of the problem at hand gives two possible
implementations for the proposed mixed cable element: one with a continuous axial force
distribution and one with a discontinuous axial force distribution.

This chapter also presents a new energy-momentum conserving algorithm for the dynamic
analysis of cable structures. The developments show that the discrete Hamilton equation
and the discrete balance equations of linear and angular momentum are exactly conserved
for this algorithm, as opposed to classical integration schemes such as the Newmark method
or the HHT-α method.
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Chapter 4

Nonlinear elastic material models

This chapter presents the validation of the proposed 3d cable element and of the new
energy-momentum conserving algorithm under nonlinear elastic material response. This
assessment compares the results of the proposed formulation with those of reference elements
and time integration schemes for a few simple structural models.

The discussion begins with a brief summary of the relevant nonlinear elastic material
models for cables, and continues with the analysis of several benchmark problems that as-
sess the static and dynamic response with the formulations. These benchmark problems
correspond to examples from the literature [1, 3, 11, 26, 52, 54], and include distributed and
concentrated loads, in-plane and out-of-plane free vibration and earthquake response.

4.1 Nonlinear elastic material models

The proposed formulation for nonlinear static and dynamic analysis of cables supports
any constitutive relation of the form N̂−Ψ(Ê, κ) = 0, as stated in Eq. 3.32. In the context
of elastic material behavior, two models are relevant for cables [19, Ch.2]: a St. Venant-
Kirchhoff elastic material as an extension of linear elasticity to finite deformations and a
compressible neo-Hookean material. A brief description of these material models is provided
below and additional information can be found in Ref. [58].

4.1.1 St. Venant-Kirchhoff elasticity

For a St. Venant-Kirchhoff elastic material, the stored energy U per unit reference length
can be expressed in terms of the stretch λ as

U(λ) =
E

8

(
λ2 − 1

)2
(4.1)

where E represents the Young modulus under finite deformation.
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The 2nd Piola-Kirchhoff stress Ŝ in the physical basis becomes

Ŝ =
dU
dÊ

=
∂U
∂λ

∂λ

∂Ê
=
E

2
(λ2 − 1) = E Ê (4.2)

and the constitutive relation between the 2nd Piola-Kirchhoff axial force N̂ and the Green-
Lagrange strain Ê can be written as

N̂− N̂0 = (EA)Ê (4.3)

where A is the cross-sectional area and N̂0, the prestressing force. Figure 4.1 compares the
stress-strain relation of the St. Venant-Kirchhoff material model (SV) to the compressible
neo-Hookean model (NH).

If the cross-sectional stiffness is independent of the axial force,

∂Ê

∂N̂
=
∂Ê

∂N̂

∂N̂

∂N̂
=
ϕt

EA
(4.4)

For St. Venant-Kirchhoff elastic materials, n̂ − n̂0 = λ(N̂ − N̂0) → +∞ as λ → +∞.
Nevertheless, it is important to note that these elastic materials may misbehave because
N̂− N̂0 is finite for λ = 0 (Eqs. 4.2 and 4.3). Also, the model is single-valued in tension, as
desired.

The complementary energy χ per unit reference length is expressed in terms of the 2nd
PK axial force N̂ as

χ(N̂) = (N̂− N̂0)Ê− U =
1

2EA
(N̂− N̂0)2 (4.5)

4.1.2 Compressible neo-Hookean elasticity

In a compressible neo-Hookean material model, the stored energy U per unit reference
length is related to the stretch λ as

U(λ) = E

(
1

4
(λ2 − 1)− 1

2
lnλ

)
(4.6)

In this case, the 2nd Piola-Kirchhoff stress Ŝ in the physical basis becomes

Ŝ =
dU
dÊ

=
∂U
∂λ

∂λ

∂Ê
=
E

2

(
1− 1

λ2

)
(4.7)

and the constitutive relation for the 2nd Piola-Kirchhoff axial force N̂ can be expressed in
terms of the stretch λ by

N̂− N̂0 =
EA

2

(
1− 1

λ2

)
(4.8)
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Figure 4.1 compares the stress-strain relation of the compressible neo-Hookean material
model (NH) to the St. Venant-Kirchhoff material model (SV).

For compressible neo-Hookean elastic materials, n̂− n̂0 = λ(N̂− N̂0)→ +∞ as λ→ +∞
and N̂ − N̂0 → −∞ as λ → 0, as desired. Moreover, if the cross-sectional stiffness is
independent of the axial force,

∂Ê

∂N̂
=
∂Ê

∂λ

∂λ

∂N̂

∂N̂

∂N̂
=

λ4

EA
ϕt (4.9)

As is the case for the St. Venant-Kirchhoff elastic model, the compressible neo-Hookean
elastic model is single-valued in tension.
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Figure 4.1: Stress - strain relation for the two elastic material models.

The complementary energy χ per unit reference length in terms of the axial force N̂ is
given implicitly as a function of λ = λ(N̂) by

χ(N̂) = (N̂− N̂0)Ê− U =
EA

2

(
lnλ− λ2 − 1

2λ2

)
(4.10)

with

λ2 =
EA

EA− 2(N̂− N̂0)
(4.11)

4.2 Static analysis

For the static analysis, the proposed formulation is implemented in two cable finite ele-
ments, one with a continuous axial force distribution and another with a discontinuous one.
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These elements are deployed in the general purpose finite element program FEAP [51] and
in the Matlab toolbox FEDEASLab [18] for conducting the following numerical studies. The
elements use a linear approximation for the axial forces (k = 1) and a quadratic approx-
imation for the displacements (l = 2). Fig. 4.2 depicts the Lagrange polynomials for the
interpolation functions of the element that results, for the continuous formulation, in eight
degrees of freedom (DOFs) in 2d, six displacement DOFs (©) and two axial force DOFs (•);
and in eleven DOFs in 3d, nine displacement DOFs (©) and two axial force DOFs (•). The
discontinuous formulation condenses out the axial force degrees of freedom at the element
level and thus the corresponding DOFs do not appear in the global solution.

Figure 4.2: Interpolation functions for displacements (left) and axial forces (right).

In the following, the proposed elements are used to investigate several examples from
the literature. For the element with a continuous axial force distribution, an initial guess
for the axial forces and for the displacements is required, while, for the element with a
discontinuous axial force distribution, only an initial guess for the displacements is required,
as will be discussed for each example.

4.2.1 Example 1: Cable under self-weight

The simplest model for study consists of a horizontal elastic cable under its own weight.
Fig. 4.3 and Table 4.1 list the geometric and material properties of the cable that was
previously studied in Ahmad Abad et al. [1], Andreu et al. [3], Thai and Kim [52] and
Tibert [54]. A St. Venant-Kirchhoff material model and a neo-Hookean material model are
considered for the cable. Following Argyris et al. [5], the deformed shape is obtained by
assuming a straight horizontal reference configuration and imposing a support displacement
of ∆u = (0,−7.93) m at the right support, as shown in Fig. 4.4.

Using a mesh of equal-size elements, Fig. 4.5 shows the maximum cable sag at midspan,
as a function of the number of elements for both elastic material models. The continuous
and the discontinuous formulations are compared to the corotational elastic truss element
discussed in Section 2.2.1. An initial shape following a hyperbolic-cosine function is assumed
for the vertical displacements as the starting guess of the Newton-Raphson iterative solution
and a constant axial force of 15 kN is assumed for the continuous formulation. Note that
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Property Value

Cross-sectional area 548.4 mm2

Elastic modulus 131.0 kN/mm2

Cable self-weight 46.12 N/m
Cable length 312.73 m

Table 4.1: Geometric and material properties for Example 1.
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Figure 4.3: Structural model for Example 1.
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Ŵ

ŵ
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Figure 4.4: Form finding strategy for Example 1 according to Argyris et al. [5].

the solution for the corotational truss element oscillates because of the absence of a node at
midspan for an odd number of elements.

For a mesh of equal-size elements, the continuous and discontinuous formulations give
identical results in Fig. 4.5. It is evident that the accuracy of the proposed elements is
excellent even with a rather coarse mesh, in contrast to the corotational truss element which
requires ten or more elements for the cable. Both catenary elements give a midspan dis-
placement of ysv = −30.5336 m for a mesh of ten elements with the St. Venant-Kirchhoff
elastic material. The midspan displacement of both catenary elements for the same mesh
is practically the same for the neo-Hookean elastic material at ynh = −30.5337 m. In con-
trast, the midspan displacement for a mesh of ten corotational linear elastic truss elements
is yt = −30.5404 m.

Fig. 4.6(a) shows the 2nd Piola-Kirchhoff axial force distribution along the cable for a
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Figure 4.6: 2nd PK axial force distribution; (a) both formulations and material models; (b)
discontinuous formulation with both material models.

mesh of equal-size elements and both material models and formulations. As is the case with
Fig. 4.5, the discontinuous and the continuous cable elements and both material models give
identical results. For a mesh with unequal-size elements that is generated by placing a node
at 2/5 of the cable span and subdividing each portion into equal-size elements, an inter-
element discontinuity arises in Fig. 4.6(b) at the common node of elements with unequal
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size. The jump in the axial force value at the node located at 2/5 of the cable span reduces
quickly with increasing number of elements and is very small for a mesh with six elements
in Fig. 4.6(b).

While the response of the cable under self-weight in Figs. 4.5 and 4.6 is practically iden-
tical for the St. Venant-Kirchhoff and neo-Hookean elastic materials, it is possible to detect
a response difference by increasing the distributed load value W = ‖Ŵ‖. Fig. 4.7 shows the
midspan sag and the 2nd PK axial force vs. the distributed load and stretch, respectively,
with a mesh of four equal-size elements and projecting the stretch linearly from the Gauss
points to the midspan node. As expected for small deformations, the relation between the
midspan sag and the distributed load in Fig. 4.7(a) is initially linear and practically identi-
cal for the two material models, as is also the relation between the 2nd PK axial force and
the stretch in Fig. 4.7(b). With an increasing value of W, the St. Venant-Kirchhoff elastic
material model gives smaller midspan sags and larger 2nd PK axial forces.
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Figure 4.7: Cable response at midspan for St. Venant-Kirchhoff and neo-Hookean material models.

4.2.2 Example 2: Cable under point load

The second example deals with the same structural model as Example 1 under an addi-
tional concentrated load that is applied off-center, as shown in Fig. 4.8. This problem was
subject of previous studies in Ahmad Abad et al. [1], Andreu et al. [3], Thai and Kim [52]
and Tibert [54], so that the results of different models can be readily compared. Figure 4.8
and Table 4.1 summarize the geometry of the model and its material properties. The cable
is also assessed with St. Venant-Kirchhoff and neo-Hookean material models.

The initial cable length between sections 1 and 2 in Fig. 4.8 is 125.88 m, while the initial
cable length between sections 2 and 3 is 186.85 m. The applied concentrated force is 35.586
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Figure 4.8: Structural model for Example 2.

kN. The form finding problem is solved again with a horizontal reference configuration and
a displacement ∆u = (0,−7.93) m at the right support. The support displacement and the
point load are applied simultaneously.
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Figure 4.9: Deformed shape for Example 2.

Fig. 4.9 shows the deformed shape of the structure. Fig. 4.10 compares the sag and lateral
drift of the cable at the point of the concentrated load application for the continuous and the
discontinuous axial force distribution. The translation values are measured relative to the
catenary shape from Example 1 and are practically the same for both elastic material models.
Fig. 4.11 shows the 2nd Piola-Kirchhoff axial force distribution for the continuous and the
discontinuous formulations. The advantage of the discontinuous axial force formulation is
evident in Fig. 4.11(b): its ability to capture the jump in the axial force at the point of the
concentrated load application results in the significantly better accuracy of the sag and lateral
drift for coarse finite element meshes. In contrast, the continuous axial force formulation
gives rise to the characteristic Gibbs phenomenon at the point of the concentrated load
application as is evident from the axial force oscillation in Fig. 4.11(a).

It takes a very fine finite element mesh to capture accurately the change in the axial force
at the point of load application and to produce an accurate result for the translations at this
point with the continuous formulation. In fact, it takes more than a hundred elements with
the continuous formulation for the lateral drift to converge to the exact result in Fig. 4.10(b),
while even two elements with the discontinuous formulation produce a value very close to
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Figure 4.10: Translations at the point of the concentrated load application relative to the deformed
shape of the catenary for Example 2.
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Figure 4.11: 2nd Piola-Kirchhoff axial force distribution for Example 2.

the exact solution. No noticeable differences arise between the two elastic material models
in Figs. 4.10 and 4.11. It is possible to eliminate the shortcoming of the continuous axial
force formulation by placing two nodes at the same spatial point and linking only the cable
displacements of adjacent elements, thus, in effect, allowing for a discontinuous axial force
distribution with two independent axial force degrees of freedom. With this procedure and
the same mesh discretization, both implementations of the element give the same results for
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Figure 4.12: 2nd Piola-Kirchhoff axial force for the continuous implementation and two different

nodes at the point of the concentrated load application.

Reference Element type Vertical
disp. (m)

Horizontal
displ. (m)

Michalos and Birnstiel [36] Truss -5.472 -0.845

O’Brien and Francis [38] Elastic catenary -5.627 -0.860

Jayaraman and Knudson [28] Truss -5.471 -0.845

Jayaraman and Knudson [28] Elastic catenary -5.626 -0.859

Tibert [54] Elastic catenary -5.626 -0.859

Andreu et al. [3] Elastic catenary -5.626 -0.860

Yang and Tsay [57] Elastic catenary -5.625 -0.859

Thai and Kim [52] Elastic catenary -5.626 -0.859

Ahmad Abad et al. [1] Discrete elastic catenary -5.592 -0.855

Ahmad Abad et al. [1] Elastic catenary -5.626 -0.859

Ahmad Abad et al. [1] Discrete elastic catenary
with point loads

-5.830 -0.873

Present work (continuous,
nonlinear elasticity)

Discrete elastic catenary,
finite deformations

-5.630 -0.861

Present work (discontinuous,
nonlinear elasticity)

Discrete elastic catenary,
finite deformations

-5.630 -0.861

Table 4.2: Results for the cable model of Example 2 from different studies.

the displacements and the 2nd PK axial forces, as shown in Fig. 4.12 for the latter.
Table 4.2 compares the converged translation values of the present study with the results

of several models in earlier studies. The agreement is excellent, even though the assumption
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of infinitesimal deformations in earlier studies appears to slightly underestimate the transla-
tion values. Another cause for the slight discrepancy is the lack of distinction between axial
force representations in earlier studies and the assumption of a constant axial force along
the cable in some.

4.2.3 Example 3: Continuation and stability points

The third example investigates the stability of a cable supported by a pulley that was
previously studied in Bruno and Leonardi [11], Impollonia et al. [26] and Such et al. [48].
This cable is studied first in a 2d arrangement and is then extended to 3d by placing the
pulley support out-of-plane.

4.2.3.1 Two-dimensional arrangement

Figure 4.13 shows the structural model in two dimensions, consisting of an inclined cable
anchored at both ends and supported by an intermediate roller. Table 4.3 summarizes the
geometric and material properties of the structural model. The St. Venant-Kirchhoff elastic
material model is used in this case.
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Figure 4.13: Structural model for Example 3.

Property Value

Cross-sectional area 805 mm2

Elastic modulus 16.0 kN/mm2

Cable self-weight 62.0679 N/m
Cable length 500 m

Table 4.3: Geometry and material properties for Example 3.

The objective of this example is the determination of the equilibrium configurations of the
cable under the assumption that the pulley is free to move horizontally and that the pulley
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radius is negligible. For the nonlinear analysis, the cable is subdivided in two segments, one
for each span, with the curvilinear coordinate ξ1 of the roller as problem unknown. The
curvilinear coordinate ξ1 refers to the arc-length in the reference configuration with origin at
the left support, and is used to locate the roller node and subsequently construct the finite
element mesh. The analysis starts from a horizontal reference configuration and imposes a
displacement of ∆u = (−200, 50) m at the right support and a displacement of ∆u2 = 100
m at the intermediate roller. Moreover, the condition is imposed that the Cauchy axial force
have zero jump at the roller support, as friction is neglected. As a result, the problem is
solved by iterating over the curvilinear coordinate ξ1 so that the jump in the Cauchy axial
force at the roller becomes zero.

Table 4.4 summarizes the results for the equilibrium configurations of the 2d cable by
different authors with ξ1

i referring to the curvilinear coordinate of the pulley and Ni, to the
axial force. Because studies in Bruno and Leonardi [11], Impollonia et al. [26] and Such
et al. [48] do not account for finite deformations, the corresponding values in Table 4.4
correspond to infinitesimal deformations. For the results of the present study, the axial
force corresponds to the 2nd Piola-Kirchhoff axial force and the curvilinear coordinate, to
the reference configuration. While the values of the present study agree very well with
those of previous studies, it is worth noting the variation of the axial force that the current
formulation captures, as indicated by the range of axial force values for the cable in Table 4.4.
In contrast, previous models overestimate the axial force by reporting a value corresponding
to the maximum of the current formulation.

Bruno and
Leonardi

[11]

Such et al.
[48]

Impollonia
et al. [26]

Present
work (con-
tinuous)

Present
work (dis-
continuous)

ξ1
1 (m) 111.07 110.96 110.83 110.83 110.83

N1 (kN) 15.499 14.531 14.531 4.709 - 14.514 4.709 - 14.515

ξ1
2 (m) - - 221.52 221.53 221.51

N2 (kN) - - 10.631 2.726 - 10.622 2.726 - 10.622

ξ1
3 (m) 446.37 446.92 447.30 447.30 447.29

N3 (kN) 17.952 17.966 17.982 5.222 - 17.960 5.222 - 17.957

Table 4.4: Results for the 2d cable model of Example 3 from different studies.

Three equilibrium states result from the analysis, as Fig. 4.14(a) shows: two stable
configurations, denoted with 1 and 3, and one unstable configuration, denoted with 2, as
reflected by the change of direction for the horizontal component of the reaction at the pulley
in Fig. 4.15, where a zero horizontal reaction implies an equilibrium configuration. The stable
configurations 1 and 3 are not symmetric because the cable is inclined. The x1 coordinates
of the pulley for these equilibrium states in Fig. 4.14(a) are x1

1 = 47.253/47.253 m, x2
1 =

136.540/136.533 m and x3
1 = 283.155/283.144 m for the continuous and the discontinuous

formulations, respectively. Fig. 4.14(b) shows the 2nd Piola-Kirchhoff axial force distribution
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for the three equilibrium states. Both formulations produce very similar results, as is also
confirmed by the values in Table 4.4, because the axial force is continuous at the pulley in
the absence of friction.
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Figure 4.14: Deformed shape of equilibrium states (2d) and 2nd PK axial force distribution for 45
equal-size elements and Example 3.
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Figure 4.15: Horizontal reaction at pulley support (2d) vs. horizontal position x1 for Example 3.
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4.2.3.2 Three-dimensional arrangement

A three-dimensional arrangement of the cable is considered by placing the roller support
out-of-plane. Following the form finding procedure by Argyris et al. [5], the analysis starts
from a straight reference configuration and imposes a displacement ∆u = (−200, 0, 50) m
at the right support and a pair of displacements ∆u2 = 50 m and ∆u3 = 100 m at the
intermediate roller. The problem is then solved with the same procedure as for the 2d case.

Table 4.5 summarizes the results for the 3d equilibrium configurations of the cable and
compares them to the study by Impollonia et al. [26], with ξ1

i referring to the reference
curvilinear coordinate of the pulley and Ni, to the 2nd PK axial force. Because the study by
Impollonia et al. does not account for finite deformations, its results in Table 4.5 correspond
to infinitesimal deformations. As for the 2d case, it is worth noting the variation of the axial
force that the current formulation captures, which is indicated by the range of axial force
values in Table 4.5. In contrast, the model by Impollonia et al. overestimates the axial force
by reporting a value corresponding to the maximum of the current formulation.

Impollonia et al.
[26]

Present work
(continuous)

Present work
(discontinuous)

ξ1
1 (m) 126.12 126.26 126.25

N1 (kN) 14.12 4.79-14.08 4.79-14.08

ξ1
2 (m) 219.98 219.46 219.47

N2 (kN) 10.79 3.04-10.78 3.04-10.78

ξ1
3 (m) 424.76 424.69 424.70

N3 (kN) 17.42 5.40-17.36 5.40-17.34

Table 4.5: Results for the 3d cable model of Example 3 from different studies.

Three equilibrium states result from the analysis, as Fig. 4.16 shows: two stable configu-
rations depicted with solid lines (C1 and C3) and one unstable configuration, depicted with
a dashed line (C2), as also reflected by the change in direction of the horizontal component
of the reaction at the pulley in Fig. 4.17, where a zero horizontal reaction implies an equilib-
rium configuration. The x1 positions of the pulley for these equilibrium states in Fig. 4.16
are x1

1 = 56.54/56.53 m, x2
1 = 134.00/134.01 m and x3

1 = 274.31/274.31 m for the continuous
and for the discontinuous formulations, respectively.

4.3 Dynamic analysis

For the dynamic analysis, the Newmark method, the HHT-α method and the new energy-
momentum conserving algorithm are implemented in the Matlab toolbox FEDEASLab [18]
for the following numerical studies. The corresponding elements use linear interpolation func-
tions for the axial forces (k = 1) and quadratic interpolation functions for the displacements,
velocities and accelerations (l = 2), as depicted in Fig. 4.2.
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Figure 4.16: Deformed shape (30 elements) of the 3d equilibrium states for Example 3.
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Figure 4.17: Horizontal reaction at pulley support (3d) vs. horizontal position x1 for Example 3.

The implementation of the proposed cable elements with the Newmark and the HHT-
α methods does not use state-space variables, and thus the number of DOFs is the same
as for the static case in Section 4.2. In contrast, for the energy-momentum conserving
algorithm, the two-dimensional element with continuous axial force distribution in state-
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space results in fourteen DOFs, six displacement and six velocity DOFs, and two axial
force DOFs, while the three-dimensional element results in twenty DOFs, nine displacement
and nine velocity DOFs, and two axial force DOFs. The element with the discontinuous
axial force distribution in state-space condenses out the axial force DOFs reducing the total
number of DOFs accordingly. This number of DOFs can be further reduced with the use of
a pointwise momentum relation, as discussed in Section 3.6.2.3.3.

Before starting the dynamic analysis, the form finding problem is solved statically at t = 0
following the procedure by Argyris et al. [5] in Section 3.7. This procedure is performed in
the same way as in Section 4.2 by imposing appropriate support displacements for the desired
span.

The Newmark method, the HHT-α method and the energy-momentum conserving algo-
rithm are used to investigate the large-amplitude, in-plane and out-of-plane free vibration
of three cables with small, large and very large sag-to-span ratios, as well as their 2d and 3d
dynamic response under an earthquake support excitation. In the absence of concentrated
loads, no discontinuities arise in the axial force field, so that the continuous and the dis-
continuous implementations of the proposed element give the same results for the following
symmetric examples.

4.3.1 Linearized natural modes of vibration

The following assessment examples consider three cables with different sag-to-span ratios
that were investigated by Srinil et al. [47]. These cables, denoted with C1, C2 and C3, are
simply supported and span 850 m in all cases. Table 4.6 summarizes their geometric and
material properties.

Property C1 C2 C3

Cross-sectional area 0.1159 m2

Elastic modulus 17.94 GPa

Density 8337.9 kg/m3

Unstretched cable length 840.48 m 870.51 m 926.65 m

Table 4.6: Geometric and material properties of cables C1, C2 and C3.

First, the equilibrium configurations are found at t = 0 using the static form finding
procedure in Section 3.7. Figure 4.18 presents, for each cable and with a St. Venant-Kirchhoff
material model, the convergence analysis of the midspan sag, the 2nd PK end tension and
the total energy when the proposed cable elements and the corotational truss elements in
Section 2.2.1 are used. The relative error in Fig. 4.18 is given in terms of the results for a
mesh with 256 elements. It is evident that, for all sag-to-span ratios, the accuracy of the
proposed cable elements is excellent compared to the corototational truss elements in terms
of convergence rate and level of accuracy. The end tension in Fig. 4.18 shows the lowest
accuracy in all cases, but is two orders of magnitude higher for the proposed elements than
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Figure 4.18: Convergence analysis of the equilibrium configurations for cables C1, C2 and C3.

for the reference ones, which represents a significant contribution of the proposed model.
According to these results, cables C1 to C3 are discretized with a mesh of 10 elements for
the following dynamic examples, in contrast to the much finer mesh of 50 elements by Srinil
et al. [47].

The linearized first two in-plane (”I”) and out-of-plane (”O”) natural modes of vibration
about the equilibrium configuration are obtained from the solution of the standard linear
eigenvalue problem

det[Kst − ω2M] = 0 (4.12)

where ω is the angular frequency and Kst is the static stiffness matrix at the equilibrium
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configuration. Table 4.7 reports the results for a St. Venant-Kirchhoff elastic material (SV)
and a neo-Hookean elastic material (NH), where ”S” and ”A” refer to the symmetric and
antisymmetric mode, respectively, and the end tension is reported as 2nd PK axial force.
These results are compared with the results by Srinil et al. [47], who assumed infinitesimal
linear elasticity (LE) for the material. The results lead to the conclusion that all material
models give very similar results for the three cables.

C1 C2 C3
SV NH LE SV NH LE SV NH LE

Sag [m] 56.4 56.6 56.6 89.5 89.6 89.6 164.1 164.1 164.1
Sag-to-span [-] 1/15 1/15 1/15 1/9.5 1/9.5 1/9.5 1/5 1/5 1/5
End tension [kN] 15559 15506 15642 10444 10437 10500 6965 6965 7000

Freq. (1st S-I) [Hz] 0.146 0.145 0.145 0.158 0.158 0.158 0.119 0.119 0.119
Freq. (1st A-I) [Hz] 0.145 0.144 0.145 0.112 0.112 0.112 0.076 0.076 0.076

Freq. (1st S-O) [Hz] 0.074 0.074 0.074 0.059 0.059 0.058 0.043 0.043 0.043
Freq. (1st A-O) [Hz] 0.147 0.147 0.147 0.117 0.116 0.115 0.085 0.085 0.085

Table 4.7: Results for equilibrium of cables C1 to C3 and natural frequencies of vibration.

Figures 4.19 and 4.20 show the normalized eigenvectors for the first symmetric and the
first antisymmetric modes in the plane of the cable about the equilibrium configuration. It
is observed that, when the sag-to-span ratio increases, the single vertical extremum of the
symmetric mode divides into three because of the effect of larger antisymmetric horizontal
displacements. In contrast, the vertical displacements of the antisymmetric mode are almost
insensitive to the increase of the sag-to-span ratio.
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Figure 4.19: Normalized in-plane eigenvector for first symmetric mode (cables C1, C2, C3).

Figure 4.21 shows the normalized eigenvectors for the first symmetric and the first anti-
symmetric modes in the plane orthogonal to the cable about the equilibrium configuration.
In this case, the horizontal and the vertical components of these eigenvectors are zero, and
only the out-of-plane component is depicted. From Fig. 4.21, it is observed that the in-
crease of the sag-to-span ratio has a reduced impact on the first symmetric and on the first
antisymmetric out-of-plane modes.
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Figure 4.20: Normalized in-plane eigenvector for first antisymmetric mode (cables C1, C2, C3).
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Figure 4.21: Normalized out-of-plane eigenvector for first symmetric and antisymmetric modes
(cables C1, C2, C3).

4.3.2 Example 5: Free vibration for small sag-to-span ratio

The fifth example studies the large-amplitude in-plane and out-of-plane free vibration
of cable C1, with a small sag-to-span ratio. The structural model consists of a simply-
supported cable with the geometric and material properties in Tables 4.6 and 4.7. A St.
Venant-Kirchhoff elastic material model and a neo-Hookean elastic material model are used
in this example, but no significant differences are observed in the dynamic response because
the cable stretch remains relatively small. The cable is discretized with a mesh of ten
elements, in contrast to the fifty elements used by Srinil et al. [47].

The large-amplitude free vibration is evaluated for an initial displacement field u0 of the
form

u0 = αsus1 + αaua1 (4.13)

where us1 is the normalized first symmetric mode and ua1 is the normalized first antisym-
metric mode, either in the cable plane or in the plane orthogonal to it, with αs and αa the
corresponding amplification factors. An initial velocity v0 = 0 is assumed, and the necessary
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initial d’Alembert acceleration a0 is computed so that the initial state is in dynamic equili-
brium. The dynamic response of the cable is obtained with the implicit Newmark method
with parameters β = 0.25 and γ = 0.5, the HHT-α method with α = 0.75 and the new
energy-momentum conserving algorithm. The time step is set so that the dominant period
of each simulation contains about a hundred steps.

4.3.2.1 In-plane free vibration for small sag-to-span ratio

First, the large-amplitude free vibration in the plane of the cable is studied with a time
step of ∆t = 0.05 sec. Figure 4.22 presents the normalized results of the Newmark method
under a symmetric initial displacement field with amplification factors αs = 15 and αa = 0.
As expected, the cable response for this small sag-to-span ratio is essentially periodic with
linear oscillations for the displacement time history. In contrast, the axial force time history
shows a periodic response that contains a high-frequency component representing the axial
wave produced by the sudden release of the imposed displacements, as observed by Srinil
et al. [47]. Figure 4.25 gives the spectral decomposition of the axial force time history at
midspan and at the supports, for which two main frequencies appear, 0.14 Hz (7.00 sec) and
3.20 Hz (0.31 sec), corresponding to the two periods observed in Fig. 4.22(a). The Newmark
method conserves the total energy of the cable in Fig. 4.22(b) at its initial value of 3.64×104

kJ.
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Figure 4.22: Results for in-plane free vibration with the Newmark method, β = 0.25 and γ = 0.5
(Example 5).

The same study, under the symmetric initial displacement field with αs = 15 and αa = 0,
is performed with the HHT-α method in Fig. 4.23. The dynamic response of the cable
in Fig. 4.23(a) is again essentially periodic with linear oscillations for the displacements
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Figure 4.23: Results for in-plane free vibration with the HHT-α method, α = 0.75 (Example 5).

at midspan and at quarter span. In this case, the numerical dissipation of the algorithm
produces the decay of the high-frequency component in the axial force history, with an almost
imperceptible initial decay in the total energy in Fig. 4.23(b). Figure 4.25 gives the spectral
decomposition of the axial force history at midspan and at the supports, for which only the
low frequency at 0.14 Hz (7.00 sec) is relevant.
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Figure 4.24: Results for in-plane free vibration with the energy-momentum conserving algorithm
(Example 5).
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Figure 4.25: Spectral decomposition for axial force history and in-plane vibration (Example 5).

The same analysis with magnification factors αs = 15 and αa = 0 is performed with
the energy-momentum conserving algorithm in Fig. 4.24. In this case, the displacement and
the axial force time histories in Fig. 4.24(a) are identical to those of the Newmark method
in Fig. 4.22(a). The total energy is exactly conserved in Fig. 4.24(b) at the initial value
of 3.64×104 kJ, as is the case for the Newmark solution. Figure 4.25 shows the spectral
decomposition of the axial force time history at midspan and at the supports, with the same
two dominant frequencies as for the Newmark method at 0.14 Hz (7.00 sec) and 3.20 (0.31
sec).

4.3.2.2 Out-of-plane free vibration for small sag-to-span ratio

The large-amplitude free vibration of cable C1 in the plane orthogonal to the cable is
also studied with the same time integration schemes and a time step of ∆t = 0.1 sec. Fi-
gure 4.26 shows the normalized results of the Newmark method for a combined out-of-plane
initial displacement field with amplification factors αs = 15 and αa = 15. The results
show that the out-of-plane (OOP) displacement history at midspan is periodic with cons-
tant maximums, while the quarter-span OOP displacement history shows 3d coupling with
the periodic translation of a double peak. The 2nd PK axial force history in Fig. 4.26(a)
includes high-frequency contributions due to the sudden release of the imposed initial dis-
placements [47], and its spectral decomposition at midspan and at the supports is presented
in Fig. 4.30. It is observed that the axial force time history at the supports reproduces the
same frequencies of the midspan axial force time history, but adds a few new frequencies
that amplify the noise in Fig. 4.26(a). The Newmark method conserves the total energy for
this cable with a slight oscillation in Fig. 4.26(b) at a mean value of 8.40×104 kJ.
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Figure 4.26: Results for out-of-plane free vibration with the Newmark method, β = 0.25 and
γ = 0.5 (Example 5).
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Figure 4.27: Results for out-of-plane free vibration with HHT-α method, α = 0.75 (Example 5).

The same study, with out-of-plane amplification factors αs = 15 and αa = 15, is
performed with the HHT-α method in Fig. 4.27. The dynamic response of the cable in
Fig. 4.27(a) shows very similar midspan and quarter span OOP displacements compared
with the Newmark method, but includes numerical dissipation that dampens out the high
frequencies in the axial force time history. This energy dissipation is reflected in the total
energy evolution in Fig. 4.27(b) with a sudden initial drop, and in the spectral decomposition
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in Fig. 4.30, which removes the high frequencies observed in the Newmark solution.
Finally, the same case with out-of-plane amplification factors αs = 15 and αa = 15 is

studied with the energy-momentum conserving algorithm in Fig. 4.28. The results show
that the dynamic response for the OOP displacements and for the 2nd PK axial forces in
Fig. 4.28(a) is very similar to the one obtained with the Newmark method in Fig. 4.26(a),
but the total energy is exactly conserved in this case at the initial value of 8.28×104 kJ
in Fig. 4.28(b). The spectral decomposition of the axial force time history in Fig. 4.30
shows that the relevant high frequencies of the signal are identical to those for the Newmark
solution but have a larger amplitude in this case.
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Figure 4.28: Results for out-of-plane free vibration with the energy-momentum conserving algo-
rithm (Example 5).
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Figure 4.29: Filtered out-of-plane axial force history for energy-momentum conserving scheme

(Example 5).

The high-frequency contributions in the 2nd PK axial force history for the Newmark
method and the energy-momentum conserving algorithm can be removed with a Savitzky-
Golay filter with a one-period frame length, following the guidelines of Section 3.6.2.4. For
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Figure 4.30: Spectral decomposition for axial force time history and out-of-plane vibration (Ex-
ample 5).

this example, the period of the symmetric mode contains about 135 time steps, so that a
filter of order 45 is selected. Figure 4.29 shows the resulting axial force history that gives
a total energy of 8.03×104 kJ, representing a 3% reduction with respect to the non-filtered
solution, and thus showing an energy decrease significantly smaller than that of the HHT-
α method. The spectral decomposition of the filtered axial forces at midspan and at the
supports in Fig. 4.30 shows the drop in the amplification factor of the high frequencies when
the filter is applied, while keeping the low frequencies unchanged.

4.3.3 Example 6: Free vibration for large sag-to-span ratio

The sixth example evaluates the large-amplitude in-plane and out-of-plane free vibration
of cable C2, with a large sag-to-span ratio. The structural model consists of a simply-
supported cable with the geometric and material properties in Tables 4.6 and 4.7. A St.
Venant-Kirchhoff and a neo-Hookean elastic material model are used in this example, but
no significant differences arise between the two because the cable stretch remains relatively
small. The cable is discretized with a mesh of ten elements, in contrast to the fifty elements
used by Srinil et al. [47].

The large-amplitude free vibration is evaluated for an initial displacement field u0 of the
form

u0 = αsus1 + αaua1 (4.14)

where us1 is the normalized first symmetric mode and ua1 is the normalized first antisym-
metric mode, either in the cable plane or in the plane orthogonal to it, with αs and αa the
corresponding amplification factors. An initial velocity v0 = 0 is assumed, and the necessary
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initial d’Alembert acceleration a0 is computed so that the initial state is in dynamic equili-
brium. The implicit Newmark method with parameters β = 0.25 and γ = 0.5, the HHT-α
method with α = 0.75 and the new energy-momentum conserving algorithm are used to
obtain the dynamic response of the cable. The time step is set so that the dominant period
of each simulation contains about a hundred steps.

4.3.3.1 In-plane free vibration for large sag-to-span ratio

First, the large-amplitude free vibration in the plane of the cable is studied with a time
step of ∆t = 0.05 sec. Figure 4.31 presents the normalized results of the Newmark method
under the symmetric initial displacement field with amplification factors αs = 15 and αa = 0.
The cable response in Fig. 4.31(a) is essentially periodic for the displacements at midspan
and quarter-span, even though a nonlinear wave is observed because of the large sag-to-span
ratio of cable C2. The 2nd PK axial force time history shows significant high-frequency
oscillations caused by the sudden release of the imposed displacements. Figure 4.34 shows
the spectral decomposition of the axial force history at midspan and at the supports, with
a large-amplitude high frequency at 4.34 Hz (0.23 sec). The total energy of the cable in
Fig. 4.31(b) is conserved with a slight oscillation at the mean value of 2.49×104 kJ.
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Figure 4.31: Results for in-plane free vibration with the Newmark method, β = 0.25 and γ = 0.5
(Example 6).

Figure 4.32 presents the same analysis, with amplification factors αs = 15 and αa = 0, for
the HHT-α method. In this case, the cable response in Fig. 4.32(a) shows very similar results
for the displacement time history at midspan and at quarter span compared to the Newmark
method, but includes numerical dissipation that reduces the amplitude of the high-frequency
contributions to the axial forces. The spectral decomposition of the axial force history at
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Figure 4.32: Results for in-plane free vibration with the HHT-α method, α = 0.75 (Example 6).
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Figure 4.33: Results for in-plane free vibration with the energy-momentum conserving algorithm
(Example 6).

midspan and at the supports in Fig. 4.34 demonstrates the reduction in the amplification
factor of the high frequencies, and Fig. 4.32(b) shows the impact of this numerical dissipation
on the total energy of the cable, which shows a notable decrease in the early steps of the
simulation.

The same analysis, with amplification factors αs = 15 and αa = 0, is performed with the
energy-momentum conserving algorithm in Fig. 4.33. The time histories for the normalized
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displacements and the 2nd PK axial forces in Fig. 4.33(a) show very similar results to the
Newmark method. Significant high-frequency oscillations appear in the axial force time
history because of the compression wave produced by the sudden release of the imposed
displacements. These oscillations appear in the spectral decomposition in Fig. 4.34 at the
same frequencies and with very similar amplitudes as those for the Newmark method. The
total energy in Fig. 4.33(b) is exactly conserved at the initial value of 2.49×104 kJ.
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Figure 4.34: Spectral decomposition for axial force history and in-plane vibration (Example 6).
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Figure 4.35: Filtered in-plane axial force history for the energy-momentum conserving scheme

(Example 6).

A Savitzky-Golay filter with a one-period frame length is used to remove the high fre-
quencies in the axial force time history. In this case, the dominant period of the signal
contains about 126 time steps and hence a filter of order 31 is selected according to the
guidelines in Section 3.6.2.4. Figure 4.35 shows the axial force history at midspan and at
the supports that results from the filtering process, with a 6.4% decrease in total energy
to 2.33×104 kJ, while their corresponding spectral decomposition is presented in Fig. 4.34,
showing a significant amplitude reduction in the frequencies beyond 2 Hz (0.5 sec).
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4.3.3.2 Out-of-plane free vibration for large sag-to-span ratio

The large-amplitude free vibration in the plane orthogonal to the cable is studied with
the same integration methods and a time step of ∆t = 0.2 sec. Figure 4.36 presents the nor-
malized results of the Newmark method with out-of-plane amplification factors αs = 15 and
αa = 15. The out-of-plane (OOP) displacement history in Fig. 4.36(a) shows the expected
periodic behavior at midspan and the 3d coupling that results from the translation of a dou-
ble peak at quarter span. The axial force time history contains significant high-frequency
contributions due to the sudden release of the imposed displacements, and its spectral de-
composition at midspan and at quarter span is shown in Fig. 4.39. This decomposition
demonstrates that a wide range of high frequencies between 1.25 Hz (0.80 sec) and 2.25 Hz
(0.44 sec) is present in the signal. The total energy evolution for this case presents some
oscillations in Fig. 4.36(b), with a mean value of 5.77×104 kJ.
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Figure 4.36: Results for out-of-plane free vibration with the Newmark method, β = 0.25 and
γ = 0.5 (Example 6).

The same study, with out-of-plane amplification factors αs = 15 and αa = 15, is
conducted with the HHT-α method in Fig. 4.37. The dynamic response of the cable in
Fig. 4.37(a) shows a periodic wave for the displacement history at midspan, and captures
the 3d coupling represented by the translation of a double peak at quarter span. The numer-
ical dissipation of this integration scheme produces a clear signal for the displacements and
the 2nd PK axial forces in Fig. 4.37(a), while the total energy in Fig. 4.37(b) drops signifi-
cantly in the early stages of the response. Figure 4.39 presents the spectral decomposition
of the axial force time history at midspan and at the supports, with the complete removal
of the high frequency range present in the Newmark solution.

Figure 4.38 presents the same analysis for out-of-plane amplification factors of αs = 15
and αa = 15 with the proposed energy-momentum conserving algorithm. The results for the
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Figure 4.37: Results for out-of-plane free vibration with HHT-α method, α = 0.75 (Example 6).
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Figure 4.38: Results for out-of-plane free vibration with the energy-momentum conserving algo-
rithm (Example 6).

normalized out-of-plane (OOP) displacements and the 2nd PK axial force time histories in
Fig. 4.38(a) are very similar to those for the Newmark method. The axial force time history
shows a compressive wave with significant high-frequency contributions, as demonstrated in
the spectral decomposition in Fig. 4.39. However, in contrast to the Newmark method, the
total energy of the cable in Fig. 4.38(b) is, in this case, exactly conserved at the initial value
of 5.47×104 kJ.
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Figure 4.39: Spectral decomposition for axial force time history and out-of-plane vibration (Ex-
ample 6).

The high-frequency oscillations in the axial force time history in Fig. 4.38(a) are addressed
in Fig. 4.40 with the use of a Savitzky-Golay filter with a one-period frame length. Because
the dominant period of the symmetric mode contains about 85 time steps in this case,
a filter of order 28 is selected according to the 1:3 rule in Section 3.6.2.4. The filtering
process produces a total energy for the cable of 5.23×104 kJ, with a reduction of 4.4% with
respect to the non-filtered solution, and thus significantly smaller than the HHT-α method.
The spectral decomposition of the filtered axial force history in Fig. 4.39 demonstrates the
effective removal of the targeted high frequencies with the proposed filter.
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Figure 4.40: Filtered out-of-plane axial force history for the energy-momentum conserving algo-

rithm (Example 6).
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4.3.4 Example 7: Free vibration for very large sag-to-span ratio

The seventh example evaluates the large-amplitude in-plane and out-of-plane free vibra-
tion of cable C3, with a very large sag-to-span ratio. The structural model consists of a
simply-supported cable with the geometric and material properties in Tables 4.6 and 4.7. A
St. Venant-Kirchhoff and a neo-Hookean elastic material model are used in this example, but
no significant differences appear between the two because the cable stretch remains relatively
small. The cable is discretized with a mesh of ten elements, in contrast to the fifty elements
used by Srinil et al. [47].

The large-amplitude free vibration is evaluated for an initial displacement field u0 of the
form

u0 = αsus1 + αaua1 (4.15)

where us1 is the normalized first symmetric mode and ua1 is the normalized first antisym-
metric mode, either in the cable plane or in the plane orthogonal to it, with αs and αa the
corresponding amplification factors. An initial velocity v0 = 0 is assumed, and the neces-
sary initial d’Alembert acceleration a0 is computed so that the initial state is in dynamic
equilibrium. The implicit Newmark method with parameters β = 0.25 and γ = 0.5, the
HHT-α method with α = 0.75 and the new energy-momentum conserving algorithm are
used to obtain the dynamic response of the cable. The time step is set so that the dominant
response period encompasses about a hundred steps.

4.3.4.1 In-plane free vibration for very large sag-to-span ratio

First, the large-amplitude free vibration in the plane of the cable is studied with a time
step of ∆t = 0.1 sec. Figure 4.41 presents the normalized results for the Newmark method
under the symmetric initial displacement field with amplification factors αs = 16.5 and
αa = 0. In this case, the very large sag-to-span ratio of cable C3 produces a highly nonlinear
wave for the displacement time history at midspan and at quarter span, and a 2nd PK
axial force time history with very significant high-frequency contributions and non-physical
negative values in Fig. 4.41(a). Figure 4.44 presents the spectral decomposition of the axial
force signal at midspan and at the supports, containing a wide range of high frequencies with
two dominant amplitudes at 2.61 Hz (0.38 sec) and at 3.19 Hz (0.31 sec). The total energy
of the cable oscillates slightly around a mean value of 5.29×104 kJ in Fig. 4.41(b).

Figure 4.42 presents the same analysis, under the symmetric initial displacement field
with amplification factors αs = 16.5 and αa = 0, for the HHT-α method. In this case, the
displacement time history at midspan and at quarter span in Fig. 4.42(a) show significant
damping with respect to the Newmark solution. The numerical dissipation of the algorithm,
which reduces the total energy almost by a factor of two in Fig. 4.42(b), smoothes out the
2nd PK axial force time history at midspan and at the supports, even though non-physical
negative values are still present in the early time steps. The spectral decomposition of these
signals in Fig. 4.44 corroborates the energy dissipation with the removal of the frequencies
higher than 2 Hz (0.5 sec).
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(a) Normalized displacements and axial forces
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Figure 4.41: Results for in-plane free vibration with the Newmark method, β = 0.25 and γ = 0.5
(Example 7).
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Figure 4.42: Results for in-plane free vibration with the HHT-α method, α = 0.75 (Example 7).

The same analysis with amplification factors of αs = 16.5 and αa = 0 is performed with
the energy-momentum conserving algorithm in Fig. 4.43. While the normalized displace-
ments at midspan and at quarter span in Fig. 4.43(a) are very similar to those obtained with
the Newmark method in the early time steps of the simulation, a slight decrease in their
amplitude is observed in later time steps. The axial force time history at midspan and at
the supports, with spectral decompositions in Fig. 4.44, show higher amplitudes than those
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of the Newmark solution at the same high frequencies, while the total energy in Fig. 4.43(b)
is exactly conserved at the initial value of 5.25×104 kJ.
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Figure 4.43: Results for in-plane free vibration with the energy-momentum conserving algorithm
(Example 7).
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Figure 4.44: Spectral decomposition of the axial force history for in-plane vibration (Example 7).

The significant high-frequency contributions that appear in the axial force history in
Fig. 4.43(a) are addressed in Fig. 4.45 with the use of a Savitzky-Golay filter. Because the
dominant period of this simulation contains about 84 time steps, a filter of order 25 with
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a one-period frame length is selected. The resulting total energy after the filtering process
reduces to 4.66×104 kJ, which represents an 11.2% decrease with respect to the non-filtered
solution, and represents a much smaller energy reduction than that of the HHT-α method.
The spectral decomposition of the filtered signal in Fig. 4.44 shows the effective removal of
the frequencies higher than 1 Hz (1 sec) in the dynamic response.
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Figure 4.45: Filtered in-plane axial forces for energy-momentum conserving scheme (Example 7).

4.3.4.2 Out-of-plane free vibration for very large sag-to-span ratio

The large-amplitude free vibration in the plane orthogonal to the cable is studied with the
same integration schemes with a time step of ∆t = 0.25 sec. Figure 4.46 presents the time
histories for the normalized displacements, 2nd PK axial forces and energy for the Newmark
method with out-of-plane amplification factors of αs = 16.5 and αa = 16.5. These results
demonstrate that the Newmark method is unable to conserve the Hamiltonian structure of
the problem under large deformations [6, 44, 45] and thus diverges early in the simulation.

The same study, with out-of-plane amplification factors αs = 16.5 and αa = 16.5, is per-
formed with the HHT-α method in Fig. 4.47. In this case, the numerical dissipation of the
algorithm prevents the total energy in Fig. 4.47(b) from diverging, and meaningful displace-
ment and 2nd PK axial force results are obtained. The out-of-plane (OOP) displacement
history in Fig. 4.47(a) is periodic with constant maximums at midspan, and the expected 3d
coupling appears at quarter span with the periodic translation of a double peak. The 2nd
PK axial force history does not include significant high frequency contributions, as is also
demonstrated in the spectral decomposition in Fig. 4.49.

Figure 4.48 presents the results for the proposed energy-momentum conserving algorithm
with the same out-of-plane amplification factors αs = 16.5 and αa = 16.5. The normalized
displacement results in Fig. 4.48(a) display the same periodic behavior and 3d coupling
at midspan and quarter span, respectively, as those observed in the HHT-α solution in
Fig. 4.47(a). In this case, however, significant high-frequency contributions appear in the
2nd PK axial force time history, with negative values in some time steps. The spectral de-
composition of these axial forces in Fig. 4.49 shows significant amplitudes for the frequencies
between 1 Hz (1 sec) and 1.8 Hz (0.55 sec), which cause the wild oscillations in the signals.
The total energy is exactly conserved in Fig. 4.48(b) at the initial value of 4.82×104 kJ.
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Figure 4.46: Results for out-of-plane free vibration with the Newmark method, β = 0.25 and
γ = 0.5 (Example 7).
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Figure 4.47: Results for out-of-plane free vibration with HHT-α method, α = 0.75 (Example 7).

The high-frequency oscillations in the axial force history with the energy-conserving al-
gorithm are effectively removed in Fig. 4.50 with the use of a Savitzky-Golay filter. The
dominant period of the symmetric mode contains about 93 time steps in this case, and
hence a filter of order 31 with a one-period frame length is used according to the guidelines
in Section 3.6.2.4. The filtering process produces a total energy for the cable of 4.45×104

kJ, which represents an energy reduction of 7.7% with respect to the non-filtered solution,
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Figure 4.48: Results for out-of-plane free vibration with the energy-momentum conserving algo-
rithm (Example 7).

and constitutes a significantly smaller energy decrease than that of the HHT-α method. The
spectral decomposition of the filtered axial force time history in Fig. 4.39 demonstrates the
reduction in the amplification factor of the high frequencies in the range between 1 Hz (1
sec) and 1.8 Hz (0.55 sec) after the filtering process.
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Figure 4.49: Spectral decomposition for the axial force time history and out-of-plane vibration
(Example 7).
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Figure 4.50: Filtered out-of-plane axial force history for energy-momentum conserving algorithm

(Example 7).

4.3.5 Example 8: Earthquake response

The last example studies the forced vibration of a simply-supported cable under an
earthquake excitation, relevant for applications related to substation equipment stability.
Because these applications use cables with a small sag-to-span ratio, the structural model
for this example corresponds to cable C1 with a St. Venant-Kirchhoff elastic material model.
No damping is considered in this simulation, as inelastic material models are discussed in
Chapter 5 of this dissertation. The structural model is subjected to the El Centro ground
acceleration magnified 8 times to induce nonlinear cable behavior under large displacements.
The ground acceleration ag is imposed according to the method in Ref. [12] by defining u,
v and v̇ as values relative to the ground motion and replacing the inertia forces Fi by

Fi =⇒ Mv̇ + Mag (4.16)

The term Mag is then introduced in the equations as an applied load.
The cable is discretized with a mesh of ten equal-size elements and the dynamic response

is obtained with the implicit Newmark method (β = 0.25 and γ = 0.5) and with the proposed
energy-momentum conserving algorithm. The time step is set to ∆t = 0.02 sec according to
the data record of the ground motion in Ref. [12]. In this simulation, the stretch of the cable
remains small and, as observed in Example 5, both time integration schemes give almost
identical results.

4.3.5.1 Two-dimensional earthquake response

In the first simulation the ground acceleration is imposed in the direction of the cable
span so that the dynamic response is two-dimensional. Figure 4.51 presents the time histories
for the vertical and horizontal displacements with the two integration schemes. Because the
imposed ground acceleration is identical for both supports, the horizontal displacements show
a periodic behavior that aligns with the magnitude of the ground motion. In contrast, the
vertical displacement history shows the influence of the waves that initiate at the supports
and travel along the cable towards the midspan, noting that the quarter span peaks precede
the midspan ones.
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Figure 4.51: Displacements for cable C1 under 2d earthquake excitation (Example 8).
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Figure 4.52: Axial force time history for cable C1 under 2d earthquake excitation (Example 8).

The time history for the 2nd PK axial force at midspan and at the supports is presented in
Fig. 4.52. The results show that the seismic excitation has a small effect on the midspan axial
force history, which is characterized by small-amplitude oscillations around the static value.
In contrast, the axial force history at the supports suffers significantly from the dynamic
effect produced by the earthquake excitation, and its oscillations reach up to a factor of two
with respect to the static value.

4.3.5.2 Three-dimensional earthquake response

A second earthquake simulation is performed by imposing the same horizontal ground
acceleration with a 10-degree angle relative to the cable plane, so that the dynamic response
of the cable is three-dimensional.

Figure 4.53 shows the time histories for the out-of-plane (OOP), the vertical and the
horizontal displacements with the two time integration schemes. Results show that the



CHAPTER 4. NONLINEAR ELASTIC MATERIAL MODELS 89

0 5 10 15 20 25 30

Time [sec]

-2

0

2

4

O
O

P
 d

is
p

l.
 [

m
]

Midspan

Quarter span

0 5 10 15 20 25 30

Time [sec]

-2

0

2

4

V
e

rt
ic

a
l 
d

is
p

l.
 [

m
]

Midspan

Quarter span

0 5 10 15 20 25 30

Time [sec]

-2

0

2

4

H
o

ri
z
o

n
ta

l 
d

is
p

l.
 [

m
]

Midspan

Quarter span

Figure 4.53: Displacements for cable C1 under 3d earthquake excitation (Example 8).

small angle of 10 degrees excites the out-of-plane displacements significantly while keeping
the vertical and the horizontal displacements with a similar magnitude compared to the
2d case. A 3d coupling of the response is observed in the horizontal displacement history
that transfers energy to the OOP and vertical displacement histories 20 seconds into the
simulation. This phenomenon is corroborated by the 2nd PK axial force time history in
Fig. 4.54, for which a progressive decrease in the axial force magnitude at the supports takes
place during the same time interval. As observed in the 2d case, the 2nd PK axial forces
at midspan are only slightly affected by the earthquake excitation, while the corresponding
axial forces at the supports increase their magnitude up to a factor of two with respect to
the static value.

The results of this three-dimensional earthquake simulation suggest that very small an-
gles in the direction of the imposed ground acceleration excite the out-of-plane behavior
of interconnecting cables significantly. As a result, related applications may be affected
significantly by geometric defects or spurious out-of-plane displacements.
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Figure 4.54: Axial force time history for cable C1 under 3d earthquake excitation (Example 8).

4.4 Concluding remarks

The proposed mixed cable element, either with a continuous or a discontinuous axial
force implementation, can accommodate different material models. In this chapter, nonli-
near elastic materials are discussed with the results confirming that St. Venant-Kirchhoff and
neo-Hookean elastic materials behave roboustly in both implementations. The two material
models give very similar displacements and axial forces for the same material stiffness EA
under small distributed loads, as is expected for small cable strains. Under increasing dis-
tributed loads, the results show that the St. Venant-Kirchhoff material model gives smaller
midspan sags and larger 2nd PK axial forces than the neo-Hookean material model.

The static examples presented in this chapter show that the continuous and the discon-
tinuous implementations of the proposed mixed cable element give virtually identical results
for meshes of equal-size elements in symmetric problems. Moreover, they also show that a
small number of elements is required for very accurate results. In contrast, the discontinuous
formulation produces discontinuous axial force distributions when used in meshes of unequal-
size elements and symmetric problems, with the results converging to the continuous solution
as the mesh is refined.

Under concentrated loads, the continuous formulation provides inaccurate results for
coarse meshes, especially for horizontal displacements. In contrast, the discontinuous formu-
lation intrinsically accommodates jumps in the axial force at the point of load application,
and thus produces very accurate results for coarse meshes. The continuous formulation
converges to the exact solution when the mesh is refined, despite the presence of Gibbs os-
cillations due to the nature of the approximation. This shortcoming of the continuous form
can be eliminated by placing two nodes with linked displacements at the point of the con-
centrated load application. It is confirmed that both implementations of the cable element
give the same results in this case.

The proposed cable element is able to identify the equilibrium configurations of 2d and
3d cable arrangements with significant accuracy, and distinguish stable from unstable states.
For these equilibrium configurations, the accuracy of the resulting axial force distribution
is noteworthy, in contrast to existing catenary elements which overestimate the axial forces
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because of their assumption of a constant axial force distribution.
The first symmetric and antisymmetric in-plane and out-of-plane modes of vibration of

cables with different sag-to-span ratios can be computed with accuracy for the two nonlinear
elastic material models with the proposed formulation. The study of the in-plane and out-
of-plane free vibration of these cables shows that, for small sag-to-span ratios, the Newmark
method, the HHT-α method and the proposed energy-momentum conserving algorithm give
very similar results for displacements and axial forces, even though the HHT-α method intro-
duces a small decay in the total energy. For large sag-to-span ratios, the Newmark method
and the energy-momentum conserving algorithm give rise to high-frequency oscillations in
the axial forces, with the former not being able to exactly conserve the total energy of the
system. In this case, the HHT-α method removes the high frequencies in the axial forces at
the cost of a significant energy reduction. For the case of very large sag-to-span ratios and
large initial displacement fields, the Newmark method is unable to conserve the Hamiltonian
structure of the problem and diverges early in the simulation. The HHT-α method and the
energy-momentum conserving algorithm provide meaningful results for the displacements
and axial forces in this case, with the latter showing high-frequency oscillations in the axial
force field.

The use of a Savitzky-Golay filter effectively removes the high-frequency oscillations in
the axial force time history regardless of the cable sag-to-span ratio. Furthermore, it is
observed that the energy reduction of this filtering process is significantly smaller than that
of the HHT-α method, and thus represents a better approximation for the solution of the
conserving system.

When subjected to an earthquake excitation, the proposed mixed cable elements are able
to reproduce the waves that form at the supports and travel towards the cable midspan.
Moreover, the proposed elements corroborate the high sensitivity of simply-supported cables
to 3d offsets in the imposed ground acceleration, and thus reproduce significant out-of-plane
displacements for small offset values.
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Chapter 5

Viscoelastic material models

Once the excitation stops, the dynamic response of real structures decays with time due
to the energy dissipation caused by complex physical internal mechanisms and air resistance.
This behavior, which has not yet been considered in previous developments, is incorporated
into the proposed mixed cable element.

From a mechanics point of view, there exist three basic approaches to account for ener-
gy dissipation under an elastic material response. First, viscous damping forces can be
included directly in the equilibrium equation and assembled into a global damping term
in the principle of virtual work. Second, rheological models such as the standard linear
solid or the generalized Maxwell solid can be used to model the constitutive behavior of the
material with incrementally-infinitesimal dissipative strains. And third, viscoelastic models
with finite dissipative strains can be considered for the constitutive behavior of the material
when large strains occur. These three approaches are implemented in the following sections
and are used in some simple structural models to assess the dynamic response of cables.

5.1 Viscous damping forces

The most common model for considering damping in structures consists of including
viscous damping forces in the equilibrium equation. This section formulates the governing
equations under this assumption and discusses their numerical implementation.

5.1.1 Formulation

Viscous damping forces are distributed loads d that act along the cable and go against
its motion. These forces are proportional to the velocity field u̇ in the form

d = ϑ(s)u̇ (5.1)
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where ϑ(s) is the damping tensor per unit current length. The equilibrium equation in
Eq. 3.27 is therefore modified to

n(s, t)− n(0, t) +

∫ s

0

w(s, t) ds−
∫ s

0

ϑ(s)u̇ ds =
d

dt

∫ s

0

m(s)u̇(s, t) ds (5.2)

Applying the fundamental theorem of calculus and the localization theorem gives the local
form of the equilibrium equation in the reference configuration

d

dS

(
N̂
√
G11g1

)
+ Ŵ −Υu̇−m0ü = 0 (5.3)

where Υ(S) represents the damping tensor per unit reference length.
The same procedure as in Section 3.4 gives the modified principle of virtual work∫ L

0

δu′ ·G11N̂g1 dS +

∫ L

0

δu ·Υu̇ dS︸ ︷︷ ︸
fd

+

∫ L

0

δu · ρ0ü dS = [δu · t̄]Γq +

∫ L

0

δu · Ŵ dS (5.4)

where the new term fd represents the virtual work of the damping forces.
The spatial discretization of the damping term fd at the configuration tn+α uses the

interpolation functions for the displacement and the velocity fields in Eqs. 3.53 and 3.55 to
give

fd,n+α = δutFd,n+α = δut
∫

Ωe

φtΥφ dS︸ ︷︷ ︸
C

v̂n+α = δutCv̂n+α (5.5)

where one identifies the damping matrix C with

C =

∫
Ωe

φtΥφ dS (5.6)

The following sections give the time discretization of the damping term under the New-
mark method, the HHT-α method and the proposed energy-momentum consistent algorithm.

5.1.2 Implementation with Newmark and HHT-α methods

The numerical implementation of the damping term Fd with the Newmark and the HHT-
α methods only affects the principle of virtual work component of the objective function Φ
with the extra term

Fd,n+1 = Cvn+1 (5.7)

Introducing the velocity update from the Newmark time integrator in Eq. 3.83 into Eq. 5.7
gives the extra term ∆Φd in the objective function

∆Φd =
γ

β

1

∆t
C(ûn+1 − ûn) +

(
1− γ

β

)
Cv̂n + ∆t

(
1− γ

2β

)
Cân (5.8)
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The additional term in Eq. 5.8 depends on the unknown displacements ûn+1 and thus
adds a contribution Kd to the dynamic stiffness K of the element according to

Kd =
∂∆Φd

∂ûn+1

=
γ

β

1

∆t
C (5.9)

5.1.3 Implementation with energy-momentum algorithm

The implementation of the damping term Fd with the proposed energy-momentum con-
sistent algorithm adds the term

Fd,n+1/2 = Cv̂n+1/2 (5.10)

to the principle of virtual work component of the objective function Φ. The solution to the
corresponding governing equations can be obtained with state-space variables or with the
pointwise momentum relation, as discussed in the following.

5.1.3.1 State-space solution

The state-space solution of the governing equations considers the velocities v̂n+1 as in-
dependent degrees of freedom. If a continuous implementation of the axial force field is
assumed, the governing equations give the objective function Φ

Φ =

 0 0
0 1

∆t
M + 1

2
C

1
∆t

M −1
2
M

[ ûn+1

v̂n+1

]
+ Rn+1/2

−

 0
Fext,n+1/2

0

−
 0 0

0 1
∆t

M− 1
2
C

1
∆t

M 1
2
M

[ ûn
v̂n

] (5.11)

with the corresponding dynamic stiffness matrix K for the m-th iterate given by differenti-
ation with respect to the state-space variables V̂n+1 = (N̂n+1, ûn+1, v̂n+1)

K =
∂Φ

∂V̂n+1

∣∣∣∣
V̄

(m)
n+1

=

 KNN KNu 0

KuN Kuu
1

∆t
M + 1

2
C

0 1
∆t

M −1
2
M

 =

 Ks
0

1
∆t

M + 1
2
C

0 1
∆t

M −1
2
M

 (5.12)

where Ks is the static stiffness matrix given in Eq. 3.61 at the configuration tn+1/2.
In the case of a discontinuous axial force distribution, the strain-displacement relation is

solved at the element level so that the governing equations give the objective function Φ

Φ =

[
0 1

∆t
M + 1

2
C

1
∆t

M −1
2
M

] [
ûn+1

v̂n+1

]
+ Rn+1/2

−
[

Fext,n+1/2

0

]
−
[

0 1
∆t

M− 1
2
C

1
∆t

M 1
2
M

] [
ûn
v̂n

] (5.13)
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with the corresponding dynamic stiffness matrix K for the m-th iterate obtained from dif-
ferentiation with respect to the state-space variables V̂n+1 = (ûn+1, v̂n+1)

K =
∂Φ

∂V̂n+1

∣∣∣∣
V̄

(m)
n+1

=

[
Ksc

1
∆t

M + 1
2
C

1
∆t

M −1
2
M

]
(5.14)

and the condensed stiffness matrix Ksc in Eq. 3.67 at the configuration tn+1/2.

5.1.3.2 Pointwise solution

The solution of the governing equations with the pointwise relation for vn+1/2 in Eq. 3.116
gives the extra term ∆Φd to the objective function Φ

∆Φd =
1

∆t
C(ûn+1 − ûn) (5.15)

so that, for the continuous formulation,

Φ =
1

∆t

[
0(

2
∆t

M + C
)
ûn+1

]
+ Rn+1/2

−
[

0
Fext,n+1/2

]
− 1

∆t

[
0 0

2
∆t

M + C M

] [
ûn
v̂n

] (5.16)

while, for the discontinuous formulation, it is

Φ =

(
2

∆t2
M +

1

∆t
C

)
un+1 + Rn+1/2 − Fext,n+1/2 −

1

∆t

[
2

∆t
M + C M

] [ ûn
v̂n

]
(5.17)

The corresponding stiffness matrices result from the linearization of the objective func-
tions Φ in the form

K = Ks +
1

∆t

[
0 0

0 2
∆t

M + C

]
(5.18)

for the continuous formulation, and in the form

K = Ksc +
2

∆t2
M +

1

∆t
C (5.19)

for the discontinuous formulation.

5.2 Incrementally-infinitesimal viscoelasticity

An alternative approach for including damping in structures consists of accounting for
viscous flow at the material level. If strains are small, additive strain rates can be as-
sumed, and one can consider rheological models from infinitesimal deformation theory. The
corresponding formulation places a restriction on the magnitude of the strain rates and is
therefore said to be incrementally-infinitesimal in time. Nevertheless, finite deformations
can be considered at a particular time step.
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5.2.1 Rheological models

The viscous flow at the material level is idealized in incrementally-infinitesimal formula-
tions by rheological models that use a component known as dashpot. A dashpot establishes
a relation between the stress and the strain rate in the form

S = ηĖ (5.20)

where S is the physical1 2nd PK stress, η is the viscosity and Ė is the rate of change of the
physical Green-Lagrange strain.

Two rheological models are relevant in the context of viscoelastic cables, the standard
linear solid and the generalized Maxwell solid. The following sections give the constitu-
tive relations for these material models and discuss their numerical implementation for the
proposed mixed cable element.

5.2.1.1 Standard linear solid

The rheological model for the standard linear solid, shown in Fig. 5.1, is composed of a
spring of stiffness k∞ in parallel with a Maxwell element, which is in turn composed of a
spring of stiffness k and a dashpot of viscosity η in series.
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Figure 5.1: Rheological model for the standard linear solid.

The equilibrium and the compatibility equations of this rheological model give the linear
relations {

S = S∞ + Sk
Ė ≡ Ė∞ = Ė1 = Ėk + Ėη

(5.21)

where the subscripts refer to the components in Fig. 5.1 and Ė1 is the rate of change of
the Green-Lagrange strain for the entire Maxwell element. Assuming St. Venant-Kirchhoff
elasticity for the springs and defining the relaxation time τ for the Maxwell element by

τ =
η

k
(5.22)

1Section 5.2 assumes all stress and strain measures expressed in the physical basis, so that the hat is
dropped for simplicity.
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a standard calculation shows that the constitutive relation for the standard linear solid is
[43]

k0Ė +
k∞
τ

E = Ṡ +
S

τ
(5.23)

with k0 being the initial stiffness
k0 = k∞ + k (5.24)

Multiplying Eq. 5.23 by the cross-sectional area A gives the constitutive equation as a func-
tion of the 2nd PK axial force N,

k0AĖ +
k∞A

τ
E = Ṅ +

N

τ
(5.25)

5.2.1.2 Generalized Maxwell solid

The standard linear solid can be generalized to include m Maxwell elements in parallel
with the spring of stiffness k∞. The resulting model, shown in Fig. 5.2, is known as the
generalized Maxwell solid.
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Figure 5.2: Rheological model for the generalized Maxwell solid.

The equilibrium and the compatibility equations for the generalized Maxwell solid follow
the linear relations 

S = S∞ +
m∑
i=1

Si

Ė ≡ Ė∞ = Ė1 = · · · = Ėm

Ėi = Ėki + Ėηi for i = 1, ...,m

(5.26)

where the subscripts refer to the components in Fig. 5.2 and Ėi is the rate of change of
the Green-Lagrange strain for the i-th Maxwell element. Assuming St. Venant-Kirchhoff
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elasticity for the springs, relaxation times τi can be defined for each Maxwell element in the
form

τi =
ηi
ki

for i = 1, ...,m (5.27)

with an initial stiffness k0 for the model

k0 = k∞ +
m∑
i=1

ki (5.28)

The constitutive equations for the generalized Maxwell solid include rate equations for each
Maxwell element and the equilibrium equation for the entire rheological model in the form
[43] 

S = S∞ +
m∑
i=1

Si

kiĖ = Ṡi +
Si
τi

for i = 1, ...,m

(5.29)

It is straight-forward to show that the combination of the above two equations for m = 1 gives
the constitutive relation for the standard linear solid in Eq. 5.23. The governing equations
for the generalized Maxwell solid can be expressed in terms of the axial forces by multiplying
Eq. 5.29 by the cross-sectional area A

N = N∞ +
m∑
i=1

Ni = k∞AE +
m∑
i=1

Ni

kiAĖ = Ṅi +
Ni

τi
for i = 1, ...,m

(5.30)

where Ni is the 2nd PK axial force in the i-th Maxwell element.

5.2.2 Numerical implementation

Two approaches are possible for the numerical implementation of incrementally-infinite-
simal viscoelastic models. On the one hand, the exact solution of the differential equation
can be used to advance from time step tn to time step tn+1 and, on the other hand, a finite-
difference stencil can be deployed to integrate the differential equation numerically between
time steps tn and tn+1. While the first approach is more accurate in theory, the assumption of
small strains with small time steps for the current formulation gives very small discrepancies
between the two approaches in practice.
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5.2.2.1 Exact integration

5.2.2.1.1 Standard linear solid

The exact integration of the constitutive equation for the standard linear solid in Eq. 5.25
uses the integrating factor exp((k∞t)/(k0τ)) to give

A
d

dt

(
k0Ee

k∞
k0

t
τ

)
= A

(
k0Ėe

k∞
k0

t
τ +

k∞
τ

Ee
k∞
k0

t
τ

)
=

(
Ṅ +

N

τ

)
e
k∞
k0

t
τ (5.31)

and thus the strain evolution within the time step (tn, tn+1) is given as a function of the axial
force N by the integral

E(t)e
k∞
k0

t
τ =

1

k0A

∫ (
Ṅ +

N

τ

)
e
k∞
k0

s
τ ds+ C (5.32)

where C is the constant of integration determined by the initial condition E(tn) = En.
If a linear evolution for the axial force N is assumed, as corresponds to the usual finite-

difference discretization in time,

N(t) = Nn+1
t− tn

∆t
+ Nn

tn+1 − t
∆t

(5.33)

the physical Green-Lagrange strain En+1 results from the explicit integration of Eq. 5.32
evaluated at t = tn+1 in the form

En+1 =
1

k∞A

(
∆N

τ

∆t

(
1− k0

k∞

)(
1− e−

k∞
k0

∆t
τ

)
+ Nn+1 − Nne

− k∞
k0

∆t
τ

)
+ Ene

− k∞
k0

∆t
τ (5.34)

with ∆N = Nn+1 − Nn.
Consequently, the material tangent for the Newmark and the HHT-α methods has the

form
dEn+1

dNn+1

=
1

k∞A

(
τ

∆t

(
1− k0

k∞

)(
1− e−

k∞
k0

∆t
τ

)
+ 1

)
(5.35)

while, for the energy-momentum consistent algorithm, the material tangent is given from
the strain average En+1/2 and follows from the chain rule in the form

dEn+1/2

dNn+1

=
dEn+1/2

dEn+1︸ ︷︷ ︸
1/2

dEn+1

dNn+1

=
1

2k∞A

(
τ

∆t

(
1− k0

k∞

)(
1− e−

k∞
k0

∆t
τ

)
+ 1

)
(5.36)

5.2.2.1.2 Generalized Maxwell solid

The exact integration of Eq. 5.30 for the generalized Maxwell solid uses the linear evolu-
tion in Eq. 5.33 for the axial forces Ni(t), and solves the resulting linear differential equations

kiAĖ =
Ni,n+1 − Ni,n

∆t
+

Ni,n+1

τi

t− tn
∆t

+
Ni,n

τ

tn+1 − t
∆t

for i = 1, ...,m (5.37)
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where Ni,n is the 2nd PK axial force in the i-th Maxwell element at time tn. Integrating in
time and imposing the initial condition E(tn) = En gives the expression for E(tn+1) = En+1

kiA

∆t
En+1 =

Ni,n+1 − Ni,n

∆t
+

Ni,n+1 + Ni,n

2τi
+
kiA

∆t
En for i = 1, ...,m

Nn+1 = N∞,n+1 +
m∑
i=1

Ni,n+1 = k∞AEn+1 +
m∑
i=1

Ni,n+1

(5.38)

or, in compact form,

k1A
∆t

−
(

1
∆tn

+ 1
2τ1

)
0 · · · 0

k2A
∆t

0 −
(

1
∆t

+ 1
2τ2

)
· · · 0

...
...

...
. . .

...
kmA
∆t

0 0 · · · −
(

1
∆t

+ 1
2τm

)
k∞A 1 1 · · · 1




En+1

N1,n+1

N2,n+1
...

Nm,n+1



=
A

∆t


k1

k2
...
km
0

En +



(
1

2τ1
− 1

∆t

)
N1,n(

1
2τ2
− 1

∆t

)
N2,n

...(
1

2τm
− 1

∆t

)
Nm,n

Nn+1



(5.39)

Equation 5.39 is a linear system of equations that gives the Green-Lagrange strain En+1 and
the 2nd PK axial forces Ni,n+1 as a function of the total axial force Nn+1 and the history
variables En and Ni,n.

The material stiffness of the generalized Maxwell solid for the Newmark and the HHT-α
methods is obtained by implicit differentiation of the equilibrium equation in Eq. 5.38(2) in
the form

dEn+1

dNn+1

=
1

k∞A+
∑m

i=1
dNi,n+1

dEn+1

(5.40)

with the derivatives dNi,n+1/dNn+1 given by the compatibility conditions in Eq. 5.38(1),

dNi,n+1

dEn+1

=
kiA
∆t

1
∆tn

+ 1
2τi

for i = 1, ...,m (5.41)

The corresponding material stiffness for the proposed energy-momentum consistent al-
gorithm is obtained by the chain rule in the form

dEn+1/2

dNn+1

=
dEn+1/2

dEn+1︸ ︷︷ ︸
1/2

dEn+1

dNn+1

=
1

2k∞A+ 2
∑m

i=1
dNi,n+1

dEn+1

(5.42)

with the same contributions dNi,n+1/dNn+1 as in Eq. 5.41.
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5.2.2.2 Numerical integration

5.2.2.2.1 Standard linear solid

The numerical integration of Eq. 5.25 for the standard linear solid uses linear discrete
approximations for the time derivatives to give the algebraic counterpart to the differential
equation

k0A
En+1 − En

∆t
+
k∞A

τ
En+1/2 =

Nn+1 − Nn

∆t
+

1

τ
Nn+1/2 (5.43)

Equation 5.43 is linear in En+1 and thus has the explicit solution

En+1 =
1

A
(
k0

∆t
+ k∞

2τ

) (Nn+1 + Nn

∆t
+

1

τ
Nn+1/2 + A

(
k0

∆t
− k∞

2τ

)
En

)
(5.44)

The material tangent for the Newmark and the HHT-α methods is therefore given by

dEn+1

dNn+1

=
1

∆t
+ 1

2τ

A
(
k0

∆t
+ k∞

2τ

) (5.45)

while, for the energy-momentum consistent algorithm, the material tangent follows from
chain rule in the form

dEn+1/2

dNn+1

=
dEn+1/2

dEn+1︸ ︷︷ ︸
1/2

dEn+1

dNn+1

=
1

∆t
+ 1

2τ

A
(

2k0

∆t
+ k∞

τ

) (5.46)

Equations 5.45 and 5.46 correspond to the linearized versions of Eqs. 5.35 and 5.36, respec-
tively.

5.2.2.2.2 Generalized Maxwell solid

The numerical integration of Eq. 5.30 for the generalized Maxwell solid also uses linear
discrete approximations for the time derivatives to give

kiA
En+1 − En

∆t
=

Ni,n+1 − Ni,n

∆t
+

1

τi
Ni,n+1/2 for i = 1, ...,m

Nn+1 = N∞,n+1 +
m∑
i=1

Ni,n+1 = k∞AEn+1 +
m∑
i=1

Ni,n+1

(5.47)

where Nm,n refers to the 2nd PK axial force in the m-th Maxwell element at the time step
tn. It is readily observed that Eq. 5.47 is identical to Eq. 5.38 because, for given linear axial
forces Ni(t), the exact solution of E(t) is linear. As a result, the numerical integration of the
generalized Maxwell solid is identical to its exact solution for linear axial forces Ni(t).
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5.3 Finite viscoelasticity

The assumption of additive strain rates is abandoned when considering finite deformation
theory in the viscoelastic material model. In this case, the viscous strains and their evolution
are nonlinear functions of the deformation tensors.

5.3.1 Formulation

Two finite viscoelastic material models, corresponding to the extension of the standard
linear solid and the generalized Maxwell element to finite deformations, are formulated in
this section. First, the model with one viscoelastic strain, corresponding to the standard
linear solid, is formulated. Afterwards, this model is generalized to multiple viscoelastic
strains in a generalized Maxwell element manner.

5.3.1.1 Finite viscoelasticity with one viscoelastic strain

In the case of finite viscoelasticity with one viscoelastic strain, the total motion χ of
the cable is decomposed into an elastic part χe and a viscous part χv as shown in Fig. 5.3.
Consequently, the total motion χ of the cable is given by the composition

χ = χe ◦ χv (5.48)
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Figure 5.3: Decomposition of the deformation for finite viscoelasticity with one viscoelastic strain.
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Under the decomposition in Eq. 5.48, the deformation gradient F can be expressed in
the multiplicative form

F = FeFv (5.49)

and thus a set of basis vectors {Ḡi}3
i=1 arises in the intermediate configuration P̄t by con-

vecting the reference set {Gi}3
i=1 in the form

Ḡi = FvGi for i ∈ {1, 2, 3} (5.50)

Also, convecting the basis vectors {Ḡi}3
i=1 from the intermediate configuration P̄t to the

current configuration Pt gives the current basis vectors {gi}3
i=1,

gi = FeḠi for i ∈ {1, 2, 3} (5.51)

The deformation gradient F is therefore expressed in curvilinear coordinates by

F = (gi ⊗ Ḡi)︸ ︷︷ ︸
Fe

(Ḡj ⊗Gj)︸ ︷︷ ︸
Fv

= gi ⊗Gi (5.52)

The 2nd Piola-Kirchhoff stress tensor S is decomposed accordingly into a time-infinity
component S∞ coming from F and a viscous component Sv coming from FeFv in the form

S = S∞(E) + Sv(Ee) (5.53)

where S∞ is a function of the total Green-Lagrange strain S∞ = S∞(E) and Sv, a function
of the elastic Green-Lagrange strain Sv = Sv(Ee). The time-infinity component S∞ of the
stress is given from an energy function U∞ with the usual relation

S∞ =
∂U∞
∂E

(5.54)

while an objective evolution law for Sv(Ee) is required. Following the thermodynamic ar-
gument of Reese and Govindjee [40], an appropriate evolution law is given by the quadratic
form

−1

2
(Lvbe)b−1

e = V−1τ v (5.55)

where Lvbe is the Lie derivative of the left Cauchy-Green tensor be, V−1(be) is the fourth-
order viscosity tensor and τ v is the Kirchhoff stress for the viscous part of the deformation.
In curvilinear coordinates, the left Cauchy-Green tensor be has the form

be = Ḡijgi ⊗ gj (5.56)

while the Kirchhoff stress, coming from the energy function Uv, is the push-forward of the
corresponding 2nd PK stress Sv = ∂Uv/∂Ee of the viscous part,

τ v = τ ijv gi ⊗ gj = χ∗(Sv) = Fe
∂Uv
∂Ee

Ft
e (5.57)
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Note that the 2nd PK stress Sv = ∂Uv/∂Ee in Eq. 5.57 resides in the intermediate configu-
ration P̄t and has the form in contravariant components

S̄v =
∂Uv
∂Ee

= S̄ijv Ḡi ⊗ Ḡj = ˆ̄Sijv
ˆ̄Gi ⊗ ˆ̄Gj (5.58)

for the convected basis {Ḡi}3
i=1 and for the physical basis { ˆ̄Gi}3

i=1, respectively. The corres-
ponding 2nd PK stress Sv in the reference configuration P0 is given by the pull-back

Sv = χ∗(τ v) = F−1τ vF
−t = S̄ijv Gi ⊗Gj (5.59)

The Lie derivative Lvbe in Eq. 5.55 is expressed in curvilinear coordinates by

Lvbe = ˙̄Gijgi ⊗ gj (5.60)

and therefore

−1

2
(Lvbe)b−1

e = −1

2
( ˙̄Gijgi ⊗ gj)(Ḡklg

k ⊗ gl) = −1

2
˙̄GijḠjlgi ⊗ gl (5.61)

The relevant 11-contravariant component is given by the projection

ĝ1 ·
(
−1

2
(Lvbe)b−1

e ĝ1

)
= −1

2
˙̄G11Ḡ11 (5.62)

and the internal variable for the evolution law becomes the metric coefficient Ḡ11 in the
intermediate configuration P̄t.

The viscosity tensor is assumed volumetric in the form

V−1 =
1

η
I (5.63)

where η is the finite-deformation viscosity and I is the fourth-order identity tensor in Eq. 2.19.
The right-hand side in Eq. 5.55 is then given by

V−1τ v =
1

η
τ v =

1

η
Fe
∂Uv
∂Ee

Ft
e (5.64)

and can be expressed in curvilinear coordinates with

V−1τ v =
1

η
(gi ⊗ Ḡi)(S̄jkv Ḡj ⊗ Ḡk)(Ḡ

l ⊗ gl) =
S̄ijv
η

gi ⊗ gj (5.65)

The relevant 11-contravariant component becomes

ĝ1 ·
(
V−1τ v

)
ĝ1 =

S̄ijv
η
‖g1‖2 =

S̄11
v

η
g11 (5.66)
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In conclusion, the evolution law for the problem at hand results in

−1

2

˙̄G11

Ḡ11
=
S̄11
v

η
g11 (5.67)

where one needs to express S̄11
v = S̄11

v (Ḡ11) recalling that

Ee =
1

2

(
g11 − Ḡ11

)
(5.68)

The solution of the material model will therefore satisfy the nonlinear system of equations
N = N∞(E) + Nv(Ee)

−1

2

˙̄G11

Ḡ11
=
S̄11
v

η
g11

(5.69)

If St. Venant-Kirchhoff elasticity is assumed for the viscous part of the deformation, it
holds that

S̄11
v = Ḡ11 ˆ̄S11

v = Ḡ11keEe =
Ḡ11ke

2

(
g11 − Ḡ11

)
(5.70)

where ke is the elastic modulus of the viscous part. Note that a factor Ḡ11 is necessary

because S̄11
v is not defined in the physical basis { ˆ̄G}3

i=1 of the intermediate configuration P̄t
in Eq. 5.58. The explicit evolution law for this material is therefore

− ˙̄G11 =
(Ḡ11)2

τ
g11

(
g11 − Ḡ11

)
(5.71)

where the relaxation time τ is defined as

τ =
η

ke
(5.72)

Moreover, if one assumes a St. Venant-Kirchhoff elastic material with stiffness k∞ for the
time-infinity part of the strain, the total 2nd PK axial force is given by

N = k∞AE +G11Ḡ
11keAEe = k∞AE +G11Ḡ

11keA

2

(
g11 − Ḡ11

)
(5.73)

Again, a factor G11 is required because the pull-back Sv = χ∗(τ v) is not expressed in the
physical basis {Ĝi}3

i=1 of the reference configuration P0.

5.3.1.2 Generalized finite viscoelasticity

In the case of m viscoelastic strains, the total motion χ of the cable is decomposed m
times into an elastic part χ

(i)
e and a viscous part χ

(i)
v for i = 1, ...,m as shown in Fig. 5.4.

χ = χ(1)
e ◦ χ(1)

v = · · · = χ(m)
e ◦ χ(m)

v (5.74)
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Figure 5.4: Decomposition of the deformation for finite viscoelasticity with m viscoelastic strains.

Since the deformation is the same for all parts of the model, the deformation gradient F
may be decomposed into

F = F(1)
e F(1)

v = · · · = F(m)
e F(m)

v (5.75)

and the developments in the previous section apply to each viscous part. As a result, the
solution of the finite viscoelastic material model with m viscoelastic strains satisfies the
nonlinear system of equations

N = N∞(E) +
m∑
i=1

N(i)
v (E(i)

e )

−1

2

˙̄G11,(i)

Ḡ11,(i)
=
S̄

11,(i)
v

η
g11 for i = 1, ...,m

(5.76)

with m internal variables corresponding to the metric coefficients G11,(i) for each intermediate
configuration P̄(i)

t .
If St. Venant-Kirchhoff elasticity is assumed for all elastic behaviors of the model, it holds

that 
N = k∞AE +

m∑
i=1

G11,(i)Ḡ
11,(i)k

(i)
e A

2

(
g11 − Ḡ(i)

11

)
− ˙̄G11,(i) =

(Ḡ11,(i))2

τ
g11

(
g11 − Ḡ(i)

11

)
for i = 1, ...,m

(5.77)
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where k∞ is the stiffness of the time-infinity part and k
(i)
e are the stiffnesses of the m viscous

parts.

5.3.2 Numerical implementation

The numerical implementation of the two finite viscoelastic material models reduces to
discretizing the evolution laws in the time domain. Assuming a St. Venant-Kirchhoff elastic
material model for the time-infinity part of the strain and for the viscous part of the strain,
the finite-difference discretization of the material model with one viscoelastic strain gives

Nn+1 = k∞AEn+1︸ ︷︷ ︸
N∞,n+1

+ Ḡ11
n+1G11,n+1

keA

2

(
g11,n+1 − Ḡ11,n+1

)︸ ︷︷ ︸
Nv,n+1

−
Ḡ11
n+1 − Ḡ11

n

∆t
=

(Ḡ11
n+1/2)2

τ
g11,n+1/2

(
g11,n+1/2 − Ḡ11,n+1/2

) (5.78)

where the metric coefficients at time tn+1/2 refer to the usual interpolations

g11,n+1/2 =
g11,n+1 + g11,n

2
and Ḡ11,n+1/2 =

Ḡ11,n+1 + Ḡ11,n

2
(5.79)

Equation 5.78 is a nonlinear algebraic system of equations in Ḡ11
n+1 and En+1 that can be

solved by any suitable iterative method.
The tangent of the material model for the Newmark and the HHT-α methods is given

by the derivative
dEn+1

dNn+1

=
1

k∞A+ dNv,n+1

dEn+1

(5.80)

where

dNv,n+1

dEn+1

=
dNv,n+1

dg11,n+1

dg11,n+1

dEn+1

= 2
dNv,n+1

dg11,n+1

= keAG11,n+1

(
Ḡ11
n+1 + g11,n+1

dḠ11
n+1

dg11,n+1

)
(5.81)

The derivative dḠ11
n+1/dg11,n+1 can be computed implicitly from Eq. 5.78(2) to give

dḠ11
n+1

dg11,n+1

=
2(Ḡ11

n+1/2)2g11,n+1/2 − Ḡ11
n+1/2

g11,n+1/2(1− 2Ḡ11
n+1/2g11,n+1/2)− 2τ

∆t

(5.82)

The tangent of the material model for the energy-momentum consistent algorithm is obtained
by the chain rule after multiplying Eq. 5.80 by a factor of 1/2.

The finite-difference discretization of the model with m viscoelastic strains for St. Venant-
Kirchhoff elasticity of all elastic behaviors gives

Nn+1 = k∞AEn+1︸ ︷︷ ︸
N∞,n+1

+
m∑
i=1

Ḡ
11,(i)
n+1 G

(i)
11,n+1

k
(i)
e A

2

(
g11,n+1 − Ḡ(i)

11,n+1

)
︸ ︷︷ ︸

N
(i)
v,n+1

−
Ḡ

11,(i)
n+1 − Ḡ

11,(i)
n

∆t
=

(Ḡ
11,(i)
n+1/2)2

τ
g11,n+1/2

(
g11,n+1/2 − Ḡ(i)

11,n+1/2

)
for i = 1, ...,m

(5.83)
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Equation 5.83 is a nonlinear system of equations in Ḡ11,(i), i = 1, ...,m, and En+1 that can
be solved by any suitable iterative method.

The tangent of the material model with m viscoelastic strains for the Newmark and the
HHT-α methods is given by the derivative

dEn+1

dNn+1

=
1

k∞A+
∑m

i=1

dN
(i)
v,n+1

dEn+1

(5.84)

with the derivatives dN
(i)
v,n+1/dEn+1 given in Eq. 5.81. For the energy-momentum consistent

algorithm, the material tangent in Eq. 5.84 is multiplied by a factor of 1/2 according to the
chain rule.

5.4 Material damping of high-frequency oscillations

The examples in Chapter 4 show that high-frequency oscillations arise in the axial force
time history when no dissipation is considered in the formulation. While these oscillations
are successfully removed by postprocessing the signal with a Savitzky-Golay filter, this sec-
tion uses viscoelastic material models to reproduce the physical internal mechanisms that
smooth out these oscillations. Viscous damping forces are typically not considered for this
purpose because the modes of vibration for geometrically nonlinear systems change with the
displacement field, and thus damping properties cannot be easily selected to target specific
modes.

The following examples study representative cases from Section 4.3 to assess the material
damping of the high-frequency oscillations. The reader is referred to Tables 4.6 and 4.7 for
the material properties and equilibrium solution of the corresponding cables. The time
integration of the governing equations is performed with the energy-momentum consistent
algorithm in a pointwise approach because it preserves the Hamiltonian structure in the
non-dissipative case and does not diverge when t → ∞. Also, because no concentrated
loads are applied in the following examples, the continuous and the discontinuous axial force
implementations give results with indistinguishable differences.

The incrementally-infinitesimal and the finite viscoelastic material models are included
in the proposed element with one viscous strain targeting the high-frequency waves in the
axial force time history. The time-infinity stiffness of both models is set equal to the Young
modulus of the cable, k∞ = E, and the additional stiffness of the viscous part is taken in
the proportional form

k = ζE (5.85)

As a result, when the viscous forces dissipate completely, the cable has identical material
properties to the models in Section 4.3. The relaxation time of the viscous part is taken as
τ = 0.05 sec in all cases so that the material damping is effective in the early time steps of
the response.



CHAPTER 5. VISCOELASTIC MATERIAL MODELS 109

5.4.1 Example 1: In-plane vibration for small sag-to-span

The first example corresponds to the in-plane free vibration of cable C1, with a sag-to-
span ratio of 1/15, under an initial displacement field of the same form as in Eq. 4.13, with
αs = 15 and αa = 0. The cable is discretized with a mesh of ten elements, and the time
step is set to ∆t = 0.05 sec. Since the cable strains are small in this case, the finite and the
incrementally-infinitesimal viscoelastic material models give indistinguishable results.

Figure 5.5 presents the time histories at midspan for the normalized displacements and
the 2nd PK axial forces with different values of the parameter ζ. In this case, the periodic
peaks of the displacement time history in Fig. 5.5(a) are significantly reduced for increasing
values of the parameter, even though the linear oscillations of the dynamic response are
preserved. A slight decrease in the phase of the displacement history also appears for the
largest values of ζ, and becomes more pronounced during the last cycle of the response for
ζ = 2/5. The time history for the 2nd PK axial force field in Fig. 5.5(b) demonstrates
that small values of the parameter smooth out the high-frequency contributions effectively
after a short time into the response, while having a minor impact on the amplitude of the
dominant oscillations. The phase of the axial force time history decreases slightly for the
largest parameter values, as is also observed in the last cycles of the response.
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Figure 5.5: Material damping of high-frequency oscillations for in-plane vibration and small sag-
to-span (Example 1).

5.4.2 Example 2: Out-of-plane vibration for large sag-to-span

This example corresponds to the out-of-plane free vibration of cable C2, with a sag-to-
span ratio of 1/9.5, under an initial displacement field of the same form as in Eq. 4.14, with
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αs = 15 and αa = 15. The cable is discretized with a mesh of ten elements, and the time
step is set again to ∆t = 0.05 sec. Since the cable strains are small in this case, the finite and
the incrementally-infinitesimal viscoelastic material models give indistinguishable results.

Figure 5.6 presents the time histories for the normalized displacements at quarter span
and the 2nd PK axial forces at the supports with different values of the parameter ζ. For
small values of ζ, the displacement history in Fig. 5.6(a) remains practically unaffected rela-
tive to the undamped response, while large parameter values reduce slightly the displacement
peaks and produce an increment of its phase, which is noteworthy in the last cycles of the
response for ζ = 2/5. The significant energy dissipation caused by the largest values of ζ
also slows down the translation of the double peak in the displacement time history, and
thus reduces the modal coupling of the response. The time history for the 2nd PK axial
force field in Fig. 5.6(b) starts with significant high-frequency oscillations in all cases, but
these are rapidly smoothed out by the energy dissipation of the material model. The phase
of the axial force time history also increases for large values of the parameter ζ as observed
in the last cycles of the response, but these have a minor effect on the axial force peaks.
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Figure 5.6: Material damping of high-frequency oscillations for out-of-plane vibration and large
sag-to-span (Example 2).

5.4.3 Example 3: In-plane vibration for very large sag-to-span

The third example corresponds to the in-plane free vibration of cable C3, with a sag-to-
span ratio of 1/5, under an initial displacement field of the same form as in Eq. 4.15, with
αs = 16.5 and αa = 0. The cable is discretized with a mesh of ten elements, and the time
step is set to ∆t = 0.05 sec. Since the cable strains remain relatively small in this case, the
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finite and the incrementally-infinitesimal viscoelastic material models give indistinguishable
results.

Figure 5.7 presents the time histories at midspan for the normalized displacements and
the 2nd PK axial forces with different values of the parameter ζ. While the displacement
history in Fig. 5.7(a) follows the same overall behavior for all parameter values, the high
modes of the response caused by the very large sag-to-span ratio of the cable are progressively
dampened out as ζ increases. In contrast to Examples 1 and 2, the parameter ζ does not have
a significant influence on the phase of the signal in this case. The time history for the 2nd
PK axial force field in Fig. 5.7(b) demonstrates that relatively large values of ζ are required
to effectively dampen out the high-frequency contributions in the response, while its phase
remains unchanged for all values of the parameter. The secondary low-frequency amplitudes
of the signal, in the spectral decomposition of Fig. 4.44(a), are also reduced by the largest
values of ζ, even though the overall trend of the signal does not change significantly.
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Figure 5.7: Material damping of high-frequency oscillations for in-plane vibration and very large
sag-to-span (Example 3).

5.5 Decaying large-amplitude free vibration

After assessing the material damping of the high-frequency contributions, the following
examples focus on the global decaying response of the cable free vibration under viscous
damping forces and viscoelastic material models. Examples 4 and 5 consider the structural
models for cables C1 and C3 of Section 4.3, and the reader is referred to Tables 4.6 and 4.7 for
their material properties and equilibrium solution. Analogously to Section 5.4, the govern-
ing equations are integrated in time with the new energy-momentum consistent algorithm.
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Because no point loads are present, the continuous and the discontinuous implementations
of the proposed mixed cable element give identical results for the following examples.

5.5.1 Example 4: Viscous forces vs. viscoelastic model for small
sag-to-span

The fourth example studies the decaying in-plane free vibration of cable C1, discussed
in the absence of damping in Section 4.3.2.1, and compares the dynamic response for the
following two models:

• Model 1 (M1). A combination of an incrementally-infinitesimal material model with
one viscous strain for the damping of the high-frequency waves, with the viscous forces
given by the isotropic damping matrix

C = cI (5.86)

where c is the damping coefficient and I is the identity matrix. The material properties
for the viscoelastic part are taken from Example 1 as k∞ = E, τ = 0.05 sec and k = ζE,
with ζ = 1/10 and St. Venant-Kirchhoff elastic springs. The damping coefficient c for
the viscous forces is selected according to the infinitesimal approximation [12]

c = 2mζ̄ω1 (5.87)

where m is the contributing mass lumped at the node, ζ̄ is the damping ratio for
small deformations and ω1 is the angular frequency of the dominant mode of vibration.
A damping ratio of ζ̄ = 0.005, common for cables under free vibration [30], gives a
damping coefficient of c = 0.38 kg/s.

• Model 2 (M2). An incrementally-infinitesimal viscoelastic material model with two
viscous strains, one intended to dampen the high-frequency waves and another, to
model the overall decay of the dynamic response. As in model 1 (M1), the material
properties for the Maxwell element with a short relaxation time are taken from Example
1 as τ1 = 0.05 sec and k1 = ζE, with ζ = 1/10 and a St. Venant-Kirchhoff elastic spring.
The time-infinity part is also considered as St. Venant-Kirchhoff elastic with k∞ = E.
For the Maxwell element governing the overall decay of the response, a relaxation time
τ2 given by weighting the dominant period T1 by the damping ratio ζ̄ is adopted

τ2 = (1− ζ̄)
2π

ω1

= (1− ζ̄)T1 (5.88)

in empirical correspondence to model 1, giving the long relaxation time of τ2 = 6.82
sec, and with the same St. Venant-Kirchhoff spring with k2 = k1.
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Figure 5.8: Results for decaying in-plane free vibration of cable C1 (Example 4).

The initial displacement field for the free vibration is given in the plane of the cable
according to Eq. 4.13, with magnification factors αs = 15 and αa = 0. The time step is set
to ∆t = 0.05 sec for both models.

Figure 5.8 shows the time histories for the normalized displacements and the 2nd PK
axial forces under models 1 and 2. The larger initial stiffness of model 2, equal to kM2

0 =
(1 + 2ζ)E, gives slightly larger 2nd PK axial forces in the beginning of the response relative
to model 1, with an initial stiffness of kM1

0 = (1 + ζ)E, even though the initial displacements
for the two models are almost indistinguishable. As time advances, the viscous forces of
model 1 homogenize the displacement oscillations at quarter span, as observed by the peaks
converging to the same decaying amplitude in Fig. 5.8(a). In contrast, model 2 conserves
the relative differences between the displacement peaks of the decaying response. The same
signal homogenization occurs in the axial force time history for model 1. A decrease in the
phase of the displacement and the 2nd PK axial force time histories is also observed for
the viscoelastic material model (M2), as demonstrated in the last cycles of the response.
Because the short relaxation time is the same for both models, the high-frequency waves
in the axial force time history are equally dampened out during the first half period of the
dynamic response.

5.5.2 Example 5: Viscous forces vs. viscoelastic model for very
large sag-to-span

The fifth example studies the decaying in-plane free vibration of cable C3, discussed in
the absence of damping in Section 4.3.4.1, and compares the dynamic response with the
following two models:
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• Model 1 (M1). A combination of a finite viscoelastic material model with one viscous
strain for the damping of the high-frequency waves, with the viscous forces given by
the isotropic damping matrix

C = cI (5.89)

where c is the damping coefficient and I is the identity matrix. The material pro-
perties for the viscoelastic part with short relaxation time are taken from Example
3 as τ = 0.05 sec and k = ζE, with ζ = 1/5 and a St. Venant-Kirchhoff elastic
model for S̄11

v , while the time-infinity part is considered nonlinear with a compressible
neo-Hookean material model according to Section 4.1.2 and a stiffness k∞ = E. The
damping coefficient c for the viscous forces is selected according to the infinitesimal
approximation [12]

c = 2mζ̄ω1 (5.90)

where m is the contributing mass lumped at the node, ζ̄ is the damping ratio for
small deformations and ω1 is the angular frequency of the dominant mode of vibration.
A damping ratio of ζ̄ = 0.005, common for cables under free vibration [30], gives a
damping coefficient of c = 0.31 kg/s.

• Model 2 (M2). A finite viscoelastic material model with two viscous strains, one tar-
geting the high-frequency contributions and another, the overall decay of the dynamic
response. As in model 1, the material properties for the viscous part that addresses the
high frequencies are taken from Example 3 as τ1 = 0.05 sec and k1 = ζE, with ζ = 1/5
and a St. Venant-Kirchhoff elastic model for S̄11,1

v , while the material properties for
the viscous part governing the overall decay of the response are taken as k2 = k1 with
a St. Venant-Kirchhoff elastic model for S̄11,2

v and τ2 given by weighting the dominant
period T1 by the damping ratio ζ̄ in the form

τ2 = (1− ζ̄)
2π

ω1

= (1− ζ̄)T1 (5.91)

thus τ2 = 8.36 sec. A compressible neo-Hookean material model according to Sec-
tion 4.1.2, with k∞ = E, is considered for the time-infinity part of the finite viscoelastic
model.

The initial displacement field for the free vibration is given in the cable plane according to
Eq. 4.15, with amplification factors αs = 16.5 and αa = 0. The time step is set to ∆t = 0.05
sec in all cases to capture the nonlinear oscillations of the response with accuracy.

Figure 5.9 shows the time histories for the normalized displacements and the 2nd PK
axial forces under models 1 and 2. As is the case for Example 4, the larger initial stiffness of
model 2, equal to kM2

0 = (1+2ζ)E, gives slightly larger 2nd PK axial forces in the beginning
of the response relative to model 1, with an initial stiffness of kM1

0 = (1 + ζ)E. However,
larger initial displacements at midspan and at quarter span are observed in this case for
model 2 during the first three cycles of the response. These discrepancies disappear after a
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short period of time, and the displacement time histories for both models result in similar
amplitudes during the second half of the response. The phase of the displacement time
history remains unchanged for both material models, and the high modes in the response
are conserved in time with slight differences in amplitude. While the displacement time
histories in Figs. 5.9(a) and 5.9(b) show relatively similar behaviors, model 1 dampens the
amplitude of the axial force time history much faster than model 2. Moreover, some high-
frequency oscillations still appear in the fifth cycle of the response for model 2, while model
1 almost completely remove them after the third cycle. The phase of the axial force time
history also remains unaltered for both material models.
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Figure 5.9: Results for decaying out-of-plane free vibration of cable C2 (Example 5).

5.6 Example 6: Earthquake response

The last example assesses the addition of damping into the earthquake response of cable
C1 that was discussed in Section 4.3.5. To this end, the same two models as in Example 4
are considered for adding energy dissipation to the system: the first model (M1) includes
viscous damping forces with a damping ratio of ζ̄ = 0.005 as suggested in Ref. [30], while the
second model (M2) considers viscous damping at the material level with an incrementally-
infinitesimal viscoelastic model with τ2 = 6.82 sec and k2 = ζE, and ζ = 1/10. Both
models also include a Maxwell element with a short relaxation time τ = τ1 = 0.05 sec and
k = k1 = ζE, with ζ = 1/10, to address any high frequency oscillations in the response. All
elastic springs are considered as St. Venant-Kirchhoff elastic, and the time-infinity stiffness
is given by the Young modulus of the cable, k∞ = E.

The structural model is subjected to the El Centro ground acceleration with an amplifi-
cation factor of 8 to induce nonlinear cable behavior under large displacements. The ground
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acceleration ag is imposed according to the method in Ref. [12] by defining u, v and v̇ as
values relative to the ground motion and considering the term Mag as an applied load.

The cable is discretized with a mesh of ten equal-size elements and the dynamic response
is integrated in time with the proposed energy-momentum consistent algorithm. The time
step is set to ∆t = 0.02 sec according to the record of the ground motion in Ref. [12].

5.6.1 Two-dimensional response

In the first simulation the ground acceleration is imposed in the direction along the cable
span so that the dynamic response is two-dimensional. Figure 5.10 presents the time histories
for the vertical and the horizontal displacements and both models, while Fig. 5.11 shows the
corresponding time histories for the 2nd PK axial forces.
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Figure 5.10: Displacement results for the 2d earthquake response with damping (Example 6).

The results show that the energy dissipation introduced by the two models in Figs. 5.10
and 5.11 smooths out the displacement and the 2nd PK axial force time histories signi-
ficantly, and decreases their phase compared to the undamped response in Figs. 4.51 and 4.52.
The horizontal and the vertical displacement time histories in Fig. 5.10 show similar initial
amplitudes for both models, even though discrepancies appear after five seconds into the
response: the viscoelastic material model (M2) gives smaller amplitudes for both components
and smooths out the high modes that appear in the vertical displacements. Figure 5.11 shows
that the axial force time history at midspan remains almost at the static value with minor
oscillations, as observed in the undamped solution in Fig. 4.52. The same time history at
the supports has no significant high frequency contributions, and shows a major decrease
after 15 sec into the response that was not observed in the undamped case. Figure 5.11(b)
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demonstrates that the 2nd PK axial forces at the supports experience increasing amplitudes
for model 2 after 20 sec into the response, in accordance with the horizontal displacements
in Fig. 5.10(b). This phenomenon shows a modal coupling for model 2 that is not observed
in the response for model 1.
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Figure 5.11: Axial force results for the 2d earthquake response with damping (Example 6).

5.6.2 Three-dimensional response

The second simulation involves the same horizontal ground acceleration with a 10-degree
angle from the cable span, so that the dynamic response is three-dimensional. Figure 5.12
presents the time histories for the out-of-plane (OOP), vertical and horizontal displacements
and both models, while Fig. 5.13 shows the corresponding time histories for the 2nd PK
axial forces.

As was the case for the 2d response, both models smooth out the displacement and
the 2nd PK axial force time histories significantly in Figs. 5.12 and 5.13 with respect to
the undamped solutions in Figs. 4.53 and 4.54. The OOP displacements in Fig. 5.12 are
almost identical for both models during the first 10 sec of the response. However, the same
3d coupling between the horizontal and the OOP displacements that was observed in the
undamped case appears for model 1 15 sec into the response. This energy transfer is small
for model 2, which conserves a small amplitude for the horizontal displacements and results
in a slight increase in the OOP displacements. This coupling effect is also observed in the
axial force history for model 1 in Fig. 5.13(a), while the axial force history for model 2 in
Fig. 5.13(b) almost conserves the same amplitude. The 2nd PK axial forces at midspan show
minor oscillations and a value almost equal to the static one for both models, as observed in
the undamped solution.

5.7 Concluding remarks

Chapter 5 presents three different approaches to include viscoelastic energy dissipation
into the proposed mixed cable element: viscous damping forces, incrementally-infinitesimal
viscoelastic material models and finite viscoelastic material models.
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Figure 5.12: Displacement results for the 3d earthquake response with damping (Example 6).
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Figure 5.13: Axial force results for the 3d earthquake response with damping (Example 6).

The two viscoelastic material models are used to reproduce the internal dissipation that
leads to the damping of the high-frequency waves in actual cable structures. Results show
that a viscous part with a short relaxation time successfully removes the high-frequency
contributions in the axial force time history, but also has some impact on the overall dynamic
response of the cables. In the case of in-plane free vibration, a significant decrease in the
displacement peaks and a slight decrease in the phase of the response is observed for small
sag-to-span ratios and large stiffnesses of the viscous part. When the sag-to-span ratio
increases, no significant change in the phase of the response is observed, with only a slight
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decrease of the displacement peaks. In contrast, a slight increase in the phase of the response
appears for the out-of-plane free vibration.

A damping model considering viscous forces is compared to the viscoelastic material
models to account for the overall decay of the free vibration. For small sag-to-span ratios,
the former model homogenizes the displacement and the axial force time histories, while
the latter model preserves the relative differences of the oscillations during the response but
give larger initial axial forces and decrease the phase of the response. In the case of very
large sag-to-span ratios, no significant differences in the phase of the response are observed
between models, even though the model with viscous forces gives smaller amplitudes for the
2nd PK axial forces than the viscoelastic ones.

When viscous forces and the incrementally-infinitesimal viscoelastic material model are
considered in the 2d and the 3d earthquake response of cables with a small sag-to-span ratio,
the displacement and 2nd PK axial force time histories are significantly dampened, and the
phase of the response is slightly decreased with respect to the undamped solution. Moreover,
the viscoelastic material model reduces the 3d coupling effect between the horizontal and
the out-of-plane displacements that is observed in the undamped 3d case, and thus keeps
the dynamic response mostly in the cable plane.
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Chapter 6

Cable structures

The proposed mixed cable element is used in this chapter to study the response of three-
dimensional cable nets.

The discussion begins with the numerical treatment of cable joints, which require special
attention for the continuous implementation to satisfy equilibrium, and continues with the
static analysis of three cable structures: a skyline cable system, a hyperbolic paraboloid
cable dome and a saddle cable dome. The earthquake response of a planar cable system
is also studied in the last example. The results for these structures are compared to other
studies [1, 28, 29, 33, 50, 52, 53] and experiments [35].

6.1 Numerical treatment of cable joints

A cable joint, shown in Fig. 6.1(a), is a node where two or more cables meet. Equilibrium
at the joint therefore requires that the resultant of all cable axial forces balance the external
loads in the current configuration. In general, this condition generates discontinuities be-
tween the different axial force values that need to be reproduced if physical results are to be
achieved. Example 2 in Section 4.2.2 demonstrated that the discontinuous implementation of
the cable element is intrinsically capable of reproducing jumps in the axial force distribution
with high accuracy, since the axial forces are computed at the element level. In contrast, the
continuous implementation assigns a single axial force degree of freedom at each node and
hence requires a very fine mesh to accurately reproduce physical jumps in the neighborhood
of the node, but still gives rise to Gibbs oscillations.

To overcome this limitation in the case of a continuous axial force distribution, a nu-
merical cable joint is designed to accommodate axial force jumps. As a matter of fact, a
jump can be achieved with the continuous form of the element if several nodes are placed
at the same spatial point. This multiplicity allows different axial force degrees of freedom,
while the continuity in the displacement field can be guaranteed by linking the displacement
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degrees of freedom of the nodes at the joint. As a result, the numerical implementation of
the joint with the continuous formulation, shown in Fig. 6.1(b), consists of n different nodes
with equal coordinates and degrees of freedom {ui, N̂i}ni=1 for which

u1 = u2 = · · · = un (6.1)

with n ≥ 2 the number of cables connecting to the joint. The continuous formulation thus
results in a continuous axial force distribution along the cable with a discontinuity at the
joint.
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Figure 6.1: Numerical treatment of cable joints.

6.2 Static analysis of cable structures

First, the static behavior of three cable structures from the literature is studied in this
section. These structures are three-dimensional and correspond to a triangular skyline cable
system, a hyperbolic paraboloid cable roof and a saddle cable roof.

6.2.1 Triangular skyline cable system

The first application consists of a three-dimensional triangular skyline cable system that
was studied by Kanzaki et al. [29], Such et al. [48], Suzuki et al. [50] and Thai et al. [53].
The structural model consists of three supports (P1, P2, P3), representing the tip of three
towers, at which three cables (C1, C2, C3) with a common node (M) are anchored. A vertical
load F=100 N is applied at the common node to simulate a weight that is hanging from the
structure. Figure 6.2 and Table 6.1 summarize the geometry of the model and its material
properties. A usual assumption to analyze this structure [29, 48, 50, 53] consists of neglecting
the elastic deformation of the three cables because the self-weight and the applied vertical
load are small. This assumption is approximated in the present model by considering a St.
Venant-Kirchhoff elastic material for the cables with an elastic stiffness EA = 100 GN.
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Figure 6.2: Structural model for the triangular skyline cable system.

Property Value

Support location P1 (260,210,786) m
Support location P2 (320,685,790) m
Support location P3 (15,680,771) m
Cable length C1 418.00 m
Cable length C2 193.70 m
Cable length C3 149.23 m

Cable self-weight, W 0.1 N/m
Elastic stiffness, EA 100 GN

Table 6.1: Geometric and material properties for the triangular skyline cable system.
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Figure 6.3: Reference configuration for the form finding of the triangular skyline cable system.
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The form finding of the system is performed according to the procedure by Argyris et
al. [5] with a reference configuration that is contained in the horizontal plane X3 = 786 m,
as shown in Fig. 6.3. Support P1 starts on its final position, while support P2 is located
on the projection of its final position on the latter horizontal plane. Cable C3 is initially
placed on a straight line parallel to the X1 axis with its corresponding unstretched length.
Consequently, the initial displacements for the supports are ∆uP1 = 0, ∆uP2 = (0, 0, 4) m
and ∆uP3 = (23.1271, 69.26635,−15) m. To avoid the singular stiffness of the cables in the
reference configuration, an initial parabolic guess with a deflection of 10 m at midspan is
assigned to all cables for the first Newton-Raphson iteration.
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Figure 6.4: Convergence study for the skyline cable system.

The two implementations of the proposed cable element, with a continuous and a dis-
continuous axial force distribution, are used to analyze this cable net, with the continuous
formulation including the numerical joints discussed in Section 6.1. Figure 6.4 presents the
convergence plots for the elevation (x3), the vertical resisting force (Pr) and the 2nd PK
axial forces of the cables (N) at the common node when all cables are discretized with the
same number of elements. The relative errors are computed with respect to a mesh of 384
elements in total. While the relative errors for the displacements and the axial forces are very
similar for both formulations, a significant difference exists on the accuracy of the vertical
resisting force. Since the discontinuous formulation performs a static condensation to com-
pute the axial forces, a relative error is observed corresponding to the accuracy of the axial
forces when the displacement DOFs reach machine precision. In contrast, the continuous
formulation considers the axial force DOFs as independent of the displacement DOFs, and
therefore the latter reaching machine precision does not alter the axial force convergence
rate, and the resisting force shows machine precision error regardless of the mesh size.
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Table 6.2 compares the coordinates (x1, x2, x3) and the axial forces N at the common
node that are given by the proposed formulation with those obtained by other studies, where
”o·” refers to the polynomial order of the interpolation functions and ”n·”, to the number
of elements per cable. For the present study, the axial forces correspond to the 2nd PK
representation, while the studies in Refs. [29] and [48] consider infinitesimal deformations.
Reference [53] considers a decomposition of the strain into a linear and a nonlinear part,
with isogeometric shape functions, but does not report axial force values. From Table 6.2,
it is observed that the results for the proposed formulation agree very well with those in
the literature. Moreover, the continuous implementation with numerical joints gives the
same results as the discontinuous implementation. Figure 6.5 shows the deformed shape of
the cable structure for a mesh of four elements per cable and compares it to the reference
configuration used for the form finding procedure.

Reference x1 [m] x2 [m] x3 [m] NC1 [N] NC2 [N] NC3 [N]

Kanzaki et al. [29] 145.50 610.30 751.60 320.0 299.4 406.9

Such et al. [48] (I) 145.50 610.29 751.58 320.0 299.4 406.9

Such et al. [48] (II) 145.50 610.30 751.58 320.0 299.4 406.9

Thai et al. [53] (o1n1) 142.02 610.50 807.14 - - -

Thai et al. [53] (o1n128) 145.51 610.31 751.54 - - -

Thai et al. [53] (o2n1) 145.53 610.52 750.83 - - -

Thai et al. [53] (o2n64) 145.51 610.31 751.52 - - -

Thai et al. [53] (o3n1) 145.50 610.29 751.56 - - -

Thai et al. [53] (o3n64) 145.51 610.32 751.43 - - -

Continuous (n1) 145.49 610.24 751.72 318.0 296.9 407.1

Continuous (n128) 145.49 610.24 751.72 318.4 297.0 407.1

Discontinuous (n1) 145.49 610.24 751.72 318.0 296.9 407.1

Discontinuous (n128) 145.49 610.24 751.72 318.4 297.0 407.1

Table 6.2: Results for triangular skyline cable system and both cable formulations.

6.2.2 Hyperbolic paraboloid cable dome

The second application refers to a pretensioned hyperbolic paraboloid cable roof, also
known as hypar net, that was numerically and experimentally tested by Lewis et al. [35]
and subsequently studied by Ahmad Abad et al. [1], Kwan [33], Sufian and Templeman [49]
and Thai and Kim [52]. The complete structure is shown in Fig. 6.6, while Fig. 6.7 shows
the structural model for the analysis, corresponding to one fourth of the entire structure
by symmetry. All cables are assumed to be St. Venant-Kirchhoff elastic and their material
properties are summarized in Table 6.3. A force F=15.7 N is applied at some nodes of the
dome according to Fig. 6.7, and the structure is pretensioned with an additional axial force
of 200 N before the point loads are applied.
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Figure 6.5: Deformed shape for the skyline cable system.
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Figure 6.6: Hyperbolic paraboloid cable dome.
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Figure 6.7: Structural model for the hyperbolic paraboloid cable dome.

Property Value

Cross-sectional area 0.785 mm2

Elastic modulus 128.3 kN/mm2

Cable self-weight 0.195 N/m
Prestressing 200 N

Table 6.3: Material properties for the hyperbolic paraboloid cable dome.

The reference configuration for the cable roof is taken as the hyperbolic paraboloid in
Fig. 6.7 in the absence of loads, with equation

X3 =
X1X2

12
(6.2)

and thus no specific form finding procedure is required in this case. The average Cauchy
axial force of the dome under its own weight and before pretensioning is 9 N, which increases
to 209 N after the pretensioning process.

Table 6.4 presents the vertical displacements and their relative error with respect to
the experimental results for the nodes in Fig. 6.7 and different studies. The results for
the proposed formulation are given for a mesh of two elements per cable and are the same
for both implementations. From Table 6.4, it is observed that the proposed mixed cable
element reproduces the experimental results with high accuracy, showing the smallest norm
of the relative error at 3.7%. The dynamic approach used in Ref. [35] to numerically find
the deformed shape of the structure gives the most inaccurate results, while the minimum
energy approach [49] reduces the former error to 4.7%. Elastic catenary elements in Refs.
[33, 52] display intermediate relative errors in the range of 6-8%.

Results from Table 6.4 also show that, in almost all formulations, the nodes closer to the
upper supports (17, 22) display the highest positive relative errors. This difference arises
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Node Experiment
[35]

Dynamic
relaxation

[35]

Minimum
energy [49]

Elastic
catenary

[52]

Elastic
catenary

[33]

Present
work

5 19.5 19.3 (-1.0) 19.3 (-1.0) 19.6 (0.3) 19.5 (0.1) 19.2 (-1.8)

6 25.3 25.3 (0.0) 25.5 (0.8) 25.7 (1.6) 25.4 (0.2) 25.2 (-0.5)

7 22.8 23.0 (0.9) 23.1 (1.3) 23.4 (2.5) 23.3 (2.2) 22.9 (0.4)

10 25.4 25.9 (2.0) 25.8 (1.6) 25.9 (2.0) 25.9 (1.8) 25.4 (0.1)

11 33.6 33.8 (0.6) 34.0 (1.2) 34.2 (1.7) 34.1 (1.3) 33.5 (-0.2)

12 28.8 29.4 (2.1) 29.4 (2.1) 29.6 (2.8) 29.5 (2.4) 29.1 (1.0)

15 25.2 26.4 (4.8) 25.7 (2.0) 25.9 (2.6) 25.8 (2.3) 25.4 (0.8)

16 30.6 31.7 (3.6) 31.2 (2.0) 31.4 (2.7) 31.3 (2.3) 30.9 (1.0)

17 21.0 21.9 (4.3) 21.1 (0.5) 21.6 (2.7) 21.4 (2.0) 21.3 (1.4)

20 21.0 21.9 (4.3) 21.1 (0.5) 21.6 (2.7) 21.5 (2.3) 21.2 (0.9)

21 19.8 20.5 (3.5) 19.9 (0.5) 20.1 (1.7) 20.0 (1.0) 19.9 (0.6)

22 14.2 14.8 (4.2) 14.3 (0.7) 14.6 (2.5) 14.4 (1.4) 14.5 (2.0)

‖ε‖ - 10.7 4.6 7.8 6.2 3.7

Table 6.4: Vertical displacements (mm) and percentage relative errors ε for the hyperbolic

paraboloid cable dome.

because no pretensioning losses are considered, and the same prestessing force is assigned to
all elements in the mesh. In practice, the physical pretensioning operation, which is normally
carried out at the base supports for practical reasons, produces pretensioning losses that
increase towards the upper nodes of the structure.

Figure 6.8 shows the deformed shape of the structural model for a mesh of four elements
per cable.

6.2.3 Saddle cable dome

The third example refers to the pretensioned saddle cable dome studied by Ahmad Abad
et al. [1], Kwan [33] and Thai and Kim [52]. Figure 6.9 shows the structural model for the
dome consisting of 142 St. Venant-Kirchhoff elastic cables with properties in Table 6.5. The
structure is unsymmetrically loaded with a force of 1 kN in the x1 and −x3 directions at joints
11→15, 22→26, 33→37, 44→48, 55→59, 66→70 and 77→81 according to the projected grid
of cable joints in Fig. 6.10, while the self-weight of the cables is neglected. The reference
configuration for the dome is taken as the saddle ruled surface in Fig. 6.9, with the symmetric
X3 coordinates in Table 6.6, and hence no form finding procedure is required in this case.

The nodal displacements for some representative joints are summarized for different stud-
ies in Table 6.7. For the proposed formulation, a mesh of one element per cable is used, with
both implementations giving the exact value in the absence of distributed loads, while the
elastic catenary from Ref. [1] considers a finite difference discretization, as discussed in Sec-
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Property Value

Cross-sectional area 306 mm2

Elastic modulus 147 kN/mm2

Cable self-weight 0 N/m
Prestressing 60 kN

Table 6.5: Material properties for the saddle cable dome.

Node X3 Node X3 Node X3 Node X3 Node X3

1 1.368 11 1.032 22 0.792 33 0.648 44 0.600

2 2.432 12 1.835 23 1.408 34 1.152 45 1.067

3 3.192 13 2.408 24 1.848 35 1.512 46 1.400

4 3.648 14 2.752 25 2.118 36 1.728 47 1.600

5 3.800 15 2.867 26 2.200 37 1.800 48 1.667

Table 6.6: X3 coordinate for the saddle cable roof in the reference configuration.

tion 2.2.2, with eight internal nodes per cable. Table 6.7 demonstrates a very good agreement
between the mixed cable elements and the other models in the literature.

Table 6.8 presents the axial forces for some representative elements given by the proposed
formulation, in the 2nd PK form, and by the formulation in Ref. [33], which assumes in-
finitesimal deformations. Since the cable self-weight is neglected, the axial force distributions
for the individual cables are constant. The results in Table 6.8 confirm the good agreement
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Node
Kwan [33] Thai and Kim [52] Abad [1] Present work

u1 u2 u3 u1 u2 u3 u1 u2 u3 u1 u2 u3

11 15.6 4.5 -81.7 15.6 4.5 -81.7 15.6 4.5 -81.8 15.5 4.5 -81.7

13 7.4 4.2 -33.3 7.4 4.2 -33.3 7.4 4.2 -33.4 7.4 4.2 -33.6

15 4.1 2.8 -11.2 4.1 2.8 -11.2 4.1 2.8 -11.2 4.1 2.8 -11.3

22 14.4 3.5 -97.1 14.4 3.5 -97.1 14.4 3.5 -97.3 14.5 3.5 -97.2

24 7.3 3.0 -32.0 7.3 3.0 -31.9 7.3 3.0 -32.1 7.4 3.0 -32.4

26 4.8 0.6 11.3 4.8 0.6 11.3 4.8 0.6 11.2 4.8 0.7 10.6

33 11.7 1.7 -92.4 11.7 1.7 -92.4 11.7 1.7 -92.6 11.7 1.7 -92.5

35 6.3 1.2 -20.2 6.3 1.2 -20.2 6.3 1.2 -20.4 6.3 1.2 -20.4

37 4.7 -0.5 35.8 4.7 -0.5 35.8 4.7 -0.5 35.6 4.6 -0.5 35.3

44 10.6 0.0 -88.7 10.6 0.0 -88.7 10.6 0.0 -88.9 10.6 0.0 -88.7

46 5.8 0.0 -14.0 5.8 0.0 -14.0 5.8 0.0 -14.2 5.8 0.0 -14.4

48 4.6 0.0 45.9 4.5 0.0 45.9 4.5 0.0 45.7 4.5 0.0 45.5

Table 6.7: Nodal displacements (mm) for the saddle cable dome.

between the present study and the formulations in the literature.

Cables Kwan [33] Present work

11→12 53.70 53.62

23→24 57.80 58.03

47→48 62.51 62.43

1→11 75.43 75.44

24→35 69.30 69.40

Table 6.8: Axial forces (kN) for the saddle cable dome.

Figure 6.11 shows the deformed shape of the dome with a magnification factor of ten for
the displacements and a mesh of one element per cable.

6.3 Earthquake response of a pretensioned cable net

The last example studies the earthquake response of a pretensioned cable net that was
studied by Jayaraman and Knudson [28] and Thai and Kim [52]. The structural model
consists of a central square that is hanging from eight supports as shown in Fig. 6.12, where
all distances on the X1X2 plane are 30.48 m and the square is at an elevation of X3 = −9.144
m. All cables are assumed to be St. Venant-Kirchhoff elastic and their material properties
are summarized in Table 6.9. Four forces F=35.586 kN are applied at the four nodes of the
central square of the structure. The reference configuration is taken as in Fig. 6.12 in the
absence of loads, so that no form finding procedure is required.
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Figure 6.11: Deformed shape of the saddle cable dome.
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Figure 6.12: Structural model for the pretensioned cable net.

First, the static response under the applied loads is studied in Table 6.10. As in the
earlier cases, the results for the continuous and the discontinuous implementations of the
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Property Value

Cross-sectional area 146.45 mm2

Elastic modulus 82.737 kN/mm2

Cable self-weight 1.459 N/m
Prestressing (central square) 24.283 kN
Prestressing (inclined cables) 23.687 kN
Density 140.6 kg/m

Table 6.9: Material properties for the planar cable net.

mixed cable element are identical when numerical cable joints are introduced according to
Section 6.1. Table 6.10 presents the vertical displacements of node 1, and demonstrates the
very good agreement between the proposed formulation, with a mesh of two elements per
cable, and the models in Ref. [52].

Model u1 u2 u3

Jayaraman and Knudson [28] -39.62 -40.20 -446.32

SAP2000 [52] -40.28 -40.28 -448.88

Thai and Kim [52] -40.13 -40.13 -446.50

Present work -40.33 -40.33 -447.69

Table 6.10: Vertical displacements (mm) for node 1 of the cable net.

After the static analysis at t = 0, the cable net is subjected to the El Centro ground
acceleration by defining u, v and v̇ as values relative to the ground motion and considering
the term Mag as an applied load [12]. The same acceleration time history is imposed to all
supports in the vertical direction, and the time integration is performed with the energy-
momentum consistent algorithm with a time step ∆t = 0.02 s. The cable density in Table 6.9
is computed by distributing the four lumped masses in Ref. [52] along their contributing
lengths, while no material damping is considered for the model.

Since the results in Ref. [52] use only four lumped masses at the four nodes of the square
for the entire structure, no secondary vibration of the cables is evident in the results. In
contrast, the displacement time history in Fig. 6.13 shows a primary oscillation corresponding
to the dominant earthquake excitation and a secondary oscillation that is produced by the
vibration of the inclined cables that is excited by the consistent mass of the structure. This
secondary vibration gives rise to a compressive axial force wave in the 2nd PK axial forces
of the central cables in Fig. 6.13.

6.4 Concluding remarks

Chapter 6 uses the proposed formulations to analyze the static and dynamic behavior of
three-dimensional cable structures.
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Figure 6.13: Earthquake response for the planar cable net.

The principal disadvantage of the continuous implementation of the mixed cable element,
corresponding to its inability to intrinsically model jumps in the axial force distribution
(Section 4.2.2), is overcome by developing numerical cable joints with different nodes and
linked displacement DOFs. This numerical treatment of the joints in the continuous case
produces identical results to those for the discontinuous implementation, as demonstrated
in the examples.

For the hyperbolic paraboloid cable roof, the proposed cable elements reproduce the
experimental results with high accuracy, and give the smallest percentage relative error at
3.5% compared to alternative models in the literature. The static analysis of the saddle cable
dome and the planar cable net give almost identical results to the corresponding infinitesimal
models in the literature, while the dynamic analysis of the planar cable net with mixed cable
elements accounts for a consistent mass matrix, and gives accurate results with secondary
oscillations in the displacement field.
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Chapter 7

Summary and conclusions

7.1 Summary

This dissertation covers the development and validation of a mixed 3d cable element
that accounts for nonlinear geometry effects under elastic and inelastic material behavior.
The cable element is formulated for general loading conditions and is therefore capable of
reproducing the continuous axial force distribution that results from distributed loads, as
well as the jumps that appear in the axial forces under the application of concentrated loads.

The formulation of the proposed 3d cable element is based on a mixed variational frame-
work under finite deformations with two independent fields: the displacement field and the
axial force field. The study derives the kinematics of the problem in general curvilinear
coordinates and identifies the kinematic variables and their conjugate stress measures. Sub-
sequently, the principle of virtual work and the weak form of the strain-displacement relation
are derived for general loading conditions and material models. Based on the weak statement
of the nonlinear catenary problem, two numerical implementations of the cable element are
possible: one with a continuous axial force distribution and one with a discontinuous axial
force distribution. A new time integration scheme that preserves the discrete Hamiltonian
structure of the problem is also proposed in this context, and a Savitzky-Golay filter is
deployed to address the high-frequency contributions that arise in the nonlinear dynamic
response of flexible cables with a large sag-to-span ratio.

The proposed 3d cable element is first validated with simple benchmark problems under
two nonlinear elastic material models, a St. Venant-Kirchhoff model and a compressible
neo-Hookean model. These problems show that, even for coarse meshes, the proposed ele-
ment describes the displacement field and the axial force distribution with high accuracy
compared to other formulations in the literature. The validation of elastic mixed cable
elements also includes two continuation analyses in 2d and 3d, for which the stability points of
two inclined cables are determined with accuracy. Finally, the proposed formulations are used
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to investigate the nonlinear dynamic response of three simply-supported elastic cables with
different sag-to-span ratios, and their results are compared with the Newmark and the HHT-
α methods. These examples show that the new energy-momentum conserving algorithm is
equivalent to the Newmark method for small sag-to-span ratios, and that it provides accurate
results for large sag-to-span ratios in contrast to the Newmark method, which diverges in
some cases. The HHT-α method includes numerical dissipation that controls the high-
frequency oscillations in the axial forces but reduces the total energy appreciably in contrast
to the Savitky-Golay filter.

Two incrementally-infinitesimal viscoelastic material models, the standard linear solid
and the generalized Maxwell solid, are used to formulate viscoelastic mixed cable elements
under small deformations. To account for large viscoelastic strains, a new viscoelastic ma-
terial model is formulated under finite deformations using a rate-dependent evolution law
in terms of the Lie derivative of the strains. This new material model reduces to the infini-
tesimal case when small deformations are considered. When these constitutive models are
used in simple benchmark problems, the results show that small relaxation times model the
material damping of compression axial force waves along the cable, while long relaxation
times describe the overall decay of the dynamic response of actual cables.

Finally, numerical cable joints are introduced so that the continuous implementation of
the element can accommodate physical jumps in the axial force field. These numerical cable
joints are used to analyze the structural behavior of complex three-dimensional cable nets
with the proposed cable element. In the first example, a skyline cable system with a hanging
load is analyzed statically under the assumption of negligible elastic deformations, while the
second and the third examples refer to a hyperbolic paraboloid and a saddle cable roof. The
last example studies the earthquake response of a planar cable net suspended from eight
supports.

7.2 Conclusions

The proposed 3d mixed cable element shows consistency, versatility and numerical ro-
bustness for the nonlinear static and dynamic analysis of cable structures under general
loading. The following conclusions follow from the study:

• When a mixed two-field variational formulation of the catenary problem is considered,
two numerical implementations are possible for the corresponding finite element: one
with a continuous axial force distribution and one with a discontinuous one.

• A time integration scheme that satisfies the principle of virtual work at the midpoint
between time steps, while also satisfying the weak compatibility equation for the aver-
age strain of subsequent time steps preserves the Hamiltonian structure of the mixed
two-field catenary problem for any nonlinear complementary energy function.

• The static analysis of elastic cables leads to the following conclusions:
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– The continuous and the discontinuous implementations of the mixed cable element
give identical results for meshes of equal-size elements and symmetric problems.

– The discontinuous implementation gives discontinuous axial force distributions
when used in meshes of unequal-size elements and symmetric problems, with the
results converging to the continuous solution as the mesh is refined.

– Under concentrated loads, the discontinuous implementation gives very accurate
results for coarse meshes, while the continuous implementation requires very fine
meshes to model the jump in the axial force field while giving rise to Gibbs
oscillations in the axial force distribution. This shortcoming of the continuous
form is eliminated by placing two nodes at the same spatial point with linked
displacement degrees of freedom.

– The accuracy of the axial force distribution for the proposed element is noteworthy
compared to other models in the literature, which usually report values near the
maximum of the proposed formulation.

• The dynamic analysis of elastic cables leads to the following conclusions:

– For cables with a small sag-to-span ratio (∼1/15), the energy-conserving scheme
is equivalent to the Newmark method. The HHT-α method gives the same initial
results but includes numerical dissipation in time.

– For cables with a large sag-to-span ratio (∼1/9.5), the Newmark method gives
slight oscillations in the total energy, while the energy-conserving scheme preserves
exactly the total energy of the cable. Slight high-frequency contributions are also
observed in the axial force time history for these methods, but are dampened out
by the numerical dissipation of the HHT-α method.

– For cables with a very large sag-to-span ratio (∼1/5), the Newmark method di-
verges early in the response, while the energy-conserving algorithm gives a cons-
tant total energy evolution with significant high-frequency oscillations in the axial
forces. The HHT-α method shows an initial drop in the total energy that dampens
out these high frequencies.

– A Savitzky-Golay filter successfully removes the high-frequency contributions in
the axial force time history with a significantly smaller reduction of total energy
than the HHT-α method.

– The earthquake response of simply-supported cables shows that small out-of-plane
angles for the ground acceleration induce significant 3d coupling of in-plane and
out-of-plane response that gives rise to large out-of-plane displacements even for
small sag-to-span ratios.

• The analysis of viscoelastic cables leads to the following conclusions:

– The new finite viscoelastic material model is equivalent to the common infinites-
imal viscoelastic models for cables undergoing small deformations.
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– Viscoelastic material models with a short relaxation time successfully dampen out
the high-frequency oscillations in the axial force time history that appear in the
conservative analyses.

– Damping forces tend to homogenize the nonlinear waves resulting from the non-
linear dynamic response of cables, in contrast to the viscoelastic material models,
which preserve the relative differences between peaks.

– Viscoelastic material models give larger initial axial forces because of the addi-
tional stiffness of the viscous part, and tend to increase the phase of the solution
when the stiffness of the viscous part increases. This effect on the phase of the
response is reduced as the sag-to-span ratio of the cable increases.

– Viscoelastic material models, in contrast to damping forces, reduce the 3d coupling
in the earthquake response of simply-supported cables, and thus give smaller out-
of-plane displacements for the same out-of-plane angles of the ground acceleration.

• The structural analysis of three-dimensional cable nets leads to the following conclu-
sions:

– When numerical joints are introduced into the continuous form of the proposed
element, both continuous and discontinuous axial force implementations give in-
distinguishable results.

– Coarse meshes, with one or two elements per cable, suffice to give very accurate
results when cable nets are studied with the proposed formulation.

– Numerical results for the proposed cable element agree very well with those in
the literature, and give the smallest relative error among all existing models when
compared to experimental results.

7.3 Recommendations for further research

The results of this dissertation generate new questions about the analysis of cable struc-
tures which represent challenges for future research. In particular, the proposed 3d mixed
cable elements can be extended in three areas:

• The following numerical issues deserve attention:

– The numerical stability of high-order mixed cable elements for the proposed vari-
ational formulation.

– The extension of the proposed energy-momentum conserving algorithm in com-
plementary space to three-dimensional material models.

• The following issues regarding constitutive material models deserve attention:
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– Finite damage models, to permit the analysis of corrosion and other section-
decreasing damage mechanisms.

– Finite plasticity models, for determining the ultimate capacity of cable systems
leading to effective repair and maintenance procedures.

• The following issues regarding application areas deserve attention:

– Sliding cables used in modern construction techniques.

– External forces that depend on the unknown degrees of freedom, such as hydro-
static loads in cable submarine applications.

– Fluid-structure interaction for cables; for instance, the supersonic flows in aero-
nautical and military applications.
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