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Periodicity, Chaos and Localization in a Burridge-Knopoff Model
of an Earthquake with Dieterich-Ruina Friction

Brittany Erickson', Bjorn Birnir! and Daniel Lavallée?

1 Department of Mathematics, University of California, Santa Barbara
2Earth Research Institute, University of California, Santa Barbara

ABSTRACT

We investigate the emergent dynamics when the nonlinear Dieterich-Ruina rate and state friction law
is attached to a Burridge-Knopoff spring-block model. We derive both the discrete equations and the
continuum formulation governing the system in this framework. The discrete system (ODEs) exhibits
both periodic and chaotic motion, where the system’s transition to chaos is size-dependent, i.e. how
many blocks are considered. From the discrete model we derive the nonlinear elastic wave equation
by taking the continuum limit. This results in a nonlinear partial differential equation (PDE) and we
find that both temporal and spatial chaos ensues when the same parameter is increased. This critical
parameter value needed for the onset of chaos in the continuous model is much smaller than the value
needed in the case of a single block and we discuss the implications this has on dynamic modeling
of earthquake rupture with this specific friction law. Most importantly, these results suggest that the
friction law is scale-dependent, thus caution should be taken when attaching a friction law derived at
laboratory scales to full-scale earthquake rupture models. Furthermore, we find solutions where the
initial slip pulse propagates like a traveling wave, or remains localized in space, suggesting the presence
of soliton and breather solutions. We discuss the significance of these pulse-like solutions and how they
can be understood as a proxy for the propagation of the rupture front across the fault surface during an
earthquake. We compute analytically the conditions for soliton solutions and by exploring the resulting
parameter space, we introduce a possible method for determining a range of suitable parameter values to
be used in future dynamic earthquake modeling.

1 Introduction

1.1 Background

Although significant advances have been made in our knowledge of fault structure and plate tec-
tonics, our understanding of the the physical mechanisms responsible for the initiation, prop-
agation and termination of earthquake rupture remains unclear. It is believed that there exist



complex physical properties and behaviors in the earth’s crust and along fault surfaces that pre-
vent our ability to make accurate predictions. Two avenues by which we try to understand the
physics and complexity of earthquakes are in laboratory studies of rock friction and mathemat-
ical dynamic rupture modeling. So far these two fields remain relatively disconnected and it is
still unclear how laboratory discoveries can best be applied in dynamic models of earthquake
faults [Scholz, 1998], [Marone, 1998].

The late 1970s saw an increased interest in stick-slip instabilities present in laboratory rock
experiments as a means of understanding earthquake ruptures. Dieterich, Ruina, Rice and oth-
ers used these experiments as a means to formulate constitutive laws capable of describing the
frictional stress when rocks were sheared against each other or over a surface [Dieterich, 1978],
[Ruina, 1983], [Rice, 1983]. The mechanisms of slip instabilities in laboratory experiments
have been proposed to be dependent on several factors including reduced frictional force during
sliding (slip weakening) and a decrease in slip velocity [Ruina, 1983]. Improvements to these
constitutive laws were made when data analysis suggested that friction could not be a func-
tion solely dependent on velocity, nor could slip-weakening friction completely describe the
relationship between static and dynamic friction [Marone, 1998].

Resolution to these setbacks were made when they found that with the incorporation of a state
variable there emerged a robust friction law capable of reproducing a wide range of dynamics
similar to the behavior of a fault during an earthquake rupture. These emergent dynamics in-
clude a Gutenberg-Richter distribution of event sizes, stick-slip phenomena and fault healing
[Marone, 1998]. The state variable is an empirical quantity usually interpreted as a measure of
asperity contact between two sheared surfaces, or the amount of time required for the renewal
of these asperities (characteristic contact lifetime) [Marone, 1998].

1.2 The "Slip Law" Formulation

In the literature this constitutive law is currently referred to as "rate and state" friction or the
"Dieterich-Ruina" (D-R) friction law. One formulation of such a friction law was proposed by
Ruina [1983] and is known as the "slip law" [Ampuero and Rubin, 2007]:

T =0l + 6 + Aln(3F)] }
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dt
where the friction stress 7 is a function of the normal stress o, i, is a constant coefficient of
friction, D, is the critical slip distance in order for friction to change from static to dynamic

values [Rabinowicz, 1951] (D). is also denoted in some formulations of these laws as L). V' is
the slip rate, V, is a constant introduced for dimensional consistency [Ruina, 1983], A and B



Friction stress

Displacement

Figure 1: Schematic diagram taken from Erickson et al. [2008] (originally from Scholz [2002]), illustrating the
response to a step change in the imposed velocity, v of a single spring-block slider model. The imposed velocity,
initially maintained constant at vg, is suddenly incremented by Awv and subsequently held constant at vg + Av. The
friction stress 7, initially constant at 7, suddenly increases to A when the velocity is incremented by Av and then
decreases exponentially to a new value B The length scale D, (also known as L), characterizes the distance taken
by the state variable 6 to reach a new steady state 6.

are positive frictional parameters corresponding to the response to a step change in the imposed
velocity of a single spring-block configuration [Scholz, 2002] (see Figure 1) and 6 is the state
variable. And while there are other formulations of the D-R friction law, and none can com-
pletely simulate all the laboratory data of friction, the studies conducted by Ampuero and Rubin
[2007] (and references therein) suggest that the slip law is far more consistent with laboratory
experiments.

According to Dieterich and Kilgore [1994], the parameter D, corresponds to the critical sliding
distance necessary to replace the population of asperity contacts. The parameters A and B are
empirical constants, however the meaning of these two parameters is best understood by writing
the expression for the friction stress:

T=1+0+ Aln(v/vy),

where 7 is the traction when the oscillator is moving at constant velocity vo. When the slider
moves at constant velocity v, (steady state), the expression for the stress becomes:

Tss = To — (B — A) In(vgs /vp).

According to Rice [1983] and Rice et al. [2001], the parameter A = J7/01n(v) is a mea-
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Solutions for the continuum limit of the above schema:
u(x.t) isthe displacement relative to the driving plate

Figure 2: The equations of motion are derived from the dynamics of a spring connected chain of blocks, elastically
coupled to a driver plate moving at a constant velocity Vy. u(z,t) is the slip value for each block, p is the spring
coefficient between blocks and A corresponds to the elastic coupling with the driver plate. The blocks slide along
the rough surface determined by Dieterich-Ruina friction. Depending on the internal parameters, the chain will
move in a variety of ways.

sure of the direct velocity dependence (sometimes called the "direct effect") while (A — B) =

07ss/0In(vgs) is a measure of the steady-state velocity dependence (see Figure 1). When com-

pared to the slip weakening friction law, the parameter (B — A) plays a role of a stress drop

while A corresponds to the strength excess [Ohnaka and Shen, 1999]. Furthermore, A and B

are related to the nondimensional seismic ratio introduced by Andrews [1976] in the following
A

sense: S = 7.

1.3 The Burridge-Knopoff Model

The ability of the D-R friction law to properly reproduce earthquake dynamics is studied by the
formulation of a dynamic rupture model subject to a friction law, an initial spatial distribution
of the stress and strength of the material over the fault surfaces, as well as a mathematical
description of how these properties evolve during the rupture process. One type of dynamic
model, studied extensively since its introduction in the 1960s, is the Burridge and Knopoff
[1967] (BK) model of many blocks interconnected by elastic springs (see Figure 2) with spring
stiffness coefficient . The blocks are also elastically coupled (with spring stiffness coefficient
M) to a rigid plate moving at a constant velocity V, and pulled over a rough surface described by
some friction law. The interface between the blocks and the rough surface can be considered an
analogue for a 1-dimensional earthquake fault [Carlson et al., 1991]. Although there are more
physical rupture models available (for a comprehensive review of numerical implementations



of dynamical modeling of earthquake rupture see Section 2 of Madariaga and Olsen [2002] and
references therein), the Burridge-Knopoff model is more convenient as it allows us to simulate
many scenarios of rupture without being too expensive in regard to computing time. Thus we
have the ability to explore the parameter space of the system more broadly and observe the
emergent dynamics introduced by the friction law.

Burridge and Knopoff [1967] conducted several laboratory experiments of this system - the
first case considered equal spring constants between blocks, and the second with graduated
values for the spring constants. They observed several types of behavior in this configuration
including the presence of large shocks in the system when the spring constants were stretched far
enough to set the blocks on the verge of instability. And while they found a Gutenberg-Richter
distribution of event sizes present in their model, they note that statistical properties along the
fault surface are determined by the nature of the friction law describing the interface (a property
confirmed, at least partially, by Elbanna and Heaton [2009]). At this time rate and state friction
laws had not yet emerged as powerful tools in dynamic simulations however. Burridge and
Knopoftf formulated the equations of motion for this system incorporating a friction law that
was dependent only on the block’s velocity.

These equations and similar formulations of them have been studied in detail since this time.
In studies involving a velocity weakening friction law attached to a BK model, the internal
parameter space has been explored and a rich variety of dynamics have been observed including
chaotic regimes as well as localized solutions, see [Carlson et al., 1991] [Schmittbuhl et al.,
1993], [Schmittbuhl et al., 1996], [Espanol, 1994], [Elbanna and Heaton, 2009]. Carlson and
Langer [1989] considered a spring-block model under a velocity weakening friction law: if X;
is the position of the j** block then the friction acting on this particle is given by:

F(X) :Fo¢(X/Ul)> (2)

where v; is a characteristic speed and ¢ vanishes for large values of X and is normalized so
that ¢(0) = —¢(0) = 1. They found that this friction law exhibits periodic as well as stick-
slip motion in the spring-block system. Furthermore, Carlson et al. [1991] found a transition
from localized to delocalized events and derived a parameter condition for the BK model under
velocity-weakening friction that guarantees that pulses remained sufficiently small so as not to
propagate into the outer, firmly stuck regions in the model. In Schmittbuhl et al. [1993], the
authors found a wide range of event types by varying a control parameter proportional to the
product of the driving rate and the size of the system. The authors found that by increasing their
parameter © = N x v, where N is the size of the system (number of blocks) and v is the driving
displacement rate, a transition from chaotic to localized (solitary wave type) solutions occurred
(referred to as a "finite-size effect"). When © = 8, for example, a solitary wave emerged with



constant speed (10 blocks per time unit) and a wavelength of 8 blocks. Furthermore, the work of
Espaiiol [1994] studied a Burridge-Knopoff model of a spring-block system subject to velocity
weakening friction, namely

I
F(v) = Ty 3)
vy

where vy is a characteristic velocity for friction and Fj, is the threshold friction. In their model,
the speed of sound, [ is defined by the ratio of the spring constant between the blocks and the
spring constant connecting the block to the driver plate: [ = &. By varying the speed of sound,
they observed intervals in which periodic, complex or localized, solitonic behavior emerged.
For large values of [, they found periodic motion, while for intermediate values of [, they found
various amounts of solitonic behavior, the pulse sometimes undergoing several turns in the chain
of blocks before decaying.

It is important to note that chaotic behavior and localized events found in these studies consider
a Burridge-Knopoff model under a different, nonlinear friction law (i.e. velocity weakening).
Because we find similar behavior with the rate and state Dieterich-Ruina friction law, it in-
troduces the question of whether or not the specific form of the friction law matters, or if the
nonlinearity of the law alone is sufficient in generating these dynamics.

1.4 Modeling Challenges

Although the use of rate and state dependent friction is justified by empirical studies in the
laboratory, there are disadvantages because of the difficulties that the nonlinearity of the D-R
friction law imposes in the numerical simulations. As detailed in Erickson et al. [2008], the D-R
friction law attached to dynamic models can result in differential equations that are very stiff
in the numerical sense. Naive methods to numerically integrate these equations are extremely
inefficient and computationally expensive. For these reasons, the D-R friction law has often
been altered in numerical simulations. Lapusta and Rice [2003] incorporated a regularized for-
mulation of D-R friction in a 2-dimensional antiplane framework. However, for the parameter
range they considered, they found only periodic behavior in their solutions. Either alteration of
the nonlinear term or an insufficient exploration of parameter values may explain why chaotic
regimes have rarely been observed with rate and state friction laws.

In addition to numerical difficulties, implementing a robust friction law in the dynamic model
of an earthquake presents another fundamental challenge. Friction laws like the D-R friction
law or the Free Volume law ([Daub and Carlson, 2008]) have been developed to describe the
physical processes of small samples in laboratory experiments with a micro-scale lengths on the



order of the cm or less. Applications of these friction laws into numerical models of earthquakes
will thus require making assumptions about the spatial properties of the parameters of the fric-
tion law as current numerical implementation of a dynamic model of an earthquake requires a
description of the initial stress and the friction law at a length scale of the order of ~ 100m. It’s
possible that the emergent behavior from a full-scale rupture model can be lost or altered when
considering models of this size, as modern computing capabilities prevent us from being able
to prescribe frictional properties at the micro-scales in a full-scale model.

In addition to possible problems introduced by attaching laboratory derived friction laws to full
scale models, dynamic modeling requires a correct description of the spatio-temporal variabil-
ity of parameters involved in the earthquake rupture process. This makes the simulation of the
propagation of the rupture and prediction of the ground motion possible. Unfortunately there
has been little agreement on proper parameter values and our evidence to date suggests that a
proper quantification of parameter values across the fault is neither achieved, nor well under-
stood. For instance, the selection of the parameters values can be complicated when heating and
pore pressure are included [Rice, 2006]. More generally, the proper question is to determine
the spatial distribution of these parameters along the fault surface. Direct estimates of them
into realistic conditions prevailing during an earthquake is currently unattainable and there is
no evidence that indirect estimate of the parameters of the friction laws through inversion meth-
ods will lead to an important breakthrough. For instance, current attempts to determine the
spatial variability of the slip-weakening distance D, (a parameter common to several friction
laws, including the D-R friction law) are inconclusive. Zhang et al. [2003] for example, found
difficulties in the determination of values for D, due to constraints in kinematic inversion and
were able to estimate only an upper bound on values of D.. Using a slip weakening friction law
to compute the parameters of a dynamic rupture model, Peyrat et al. [2004] conclude, "it may
not be possible to separate strength drop and D, using rupture modeling with current bandwidth
limitations". Using dynamic rupture inversion of a synthetic earthquake to compute the initial
stress and D, Corish et al. [2007] can only estimate the average value of D.. Furthermore, they
conclude that "there is a trade-off between the average initial stress on the fault and the slip-
weakening distance that precludes identification of the exact values of either quantity based on
strong-motion records".

Although there lacks a strong consensus made for a proper regime of relevant parameter values,
we develop the proper numerical methods capable of handling the numerical challenges intro-
duced by the nonlinearity of the D-R friction law and are able to explore the parameter space
quite deeply. This allows us to study the Burridge-Knopoff spring and block model subject to
this friction law and analyze how each parameter influences the emergent behavior. This in turn
sheds light on the parameter values capable of reproducing earthquake dynamics and may lead
to a method for determining appropriate values to be used in future dynamic rupture simulations



with more sophisticated models.

2 The 1-Dimensional Discrete Model

2.1 Extension of the Single-Block Case

In Erickson et al. [2008] we conducted an in-depth study of the parameters associated with a BK
model of single spring-block subject to the nonlinear D-R friction law and discussed its ability
to capture 1-dimensional earthquake motion. We began numerical simulations of the model
by using the version proposed by Madariaga [1998] of a single spring-block oscillator. In this
form one can view the block’s slip relative to the pulling force or driver plate. The equations
of motion coupled with "slip-law" formulation of the Dieterich-Ruina rate and state dependent
friction law (equation (1)) are given by:

b = (—1/M) [k + 6+ Aln(o /)] @
0 =—(v/D.)(0+ Bln(v/vp))

where u is the slip, v is the slip velocity, vy is a reference velocity and 6 is the state variable. The
parameter M is the mass of the block. In this context, the spring stiffness £ corresponds to the
linear elastic properties of the medium surrounding the fault [Scholz, 2002] and the parameters
D., A, and B are the parameters of the D-R friction law described in section 1.2.

System (4) can be non-dimensionalized (see [Erickson et al., 2008] for details) into the follow-
ing form:

u=v—1
0= —7lu+ (1/§)(6 + In(v))] (5)
0=—vl+ (14¢€)ln(v))
where u is now the slip of the block relative to the driver plate,
§=(kD.)/A

is the nondimensional spring constant,

7= Vk/M(D./v,)



is the nondimensional frequency and
e=(B—-A)/A

measures the sensitivity of the velocity relaxation and is a ratio of the stress parameters in the D-
R friction law. Although more information on A and B can be found in section 1.2 and in Scholz
[2002], the analogy with earthquake motion is that the parameter € is determined by the ratio
of the amount of stress dropped during an earthquake, to the stress increase that accompanies
a sudden change in fault velocity (see Figure 1). Furthermore, this ratio implies that e = 1/,
where S is the nondimensional seismic ratio [Andrews, 1976]. That a relationship between ¢
and S exists is important in light of the fact that an increase in € (equivalent to a decrease in
S) instigates a transition into chaotic behavior. We found that when varying the parameter € in
the single spring-block model under D-R friction causes the stationary state to undergo a Hopf
bifurcation into a periodic orbit. After € is further increased, the system period doubles into
periodic orbits of 2, 4, 8 etc. After this period doubling cascade, the system reaches a chaotic
state for critical values €. Assuming that the friction law is responsible for the nonperiodic
behavior of earthquake events (like the conclusions made by Carlson and Langer [1989]), then
dynamic modeling requires that € be in this chaotic regime.

In the case of a single block subject to Dieterich-Ruina friction, critical values of € were quite
large (= 11). Thus we extend this study to the case of many blocks, in order to see if chaos
ensues for a wider parameter range including smaller values of €. This information may give us
insight into which features of the D-R friction law are preserved, lost or added when considering
systems of larger size.

We begin by deriving the discrete formulation of the Burridge-Knopoff spring-block model
subject to the nonlinear Dieterich-Ruina friction law. We find however, that in keeping € fixed at
the small value of 0.5, the discrete system (ODEs) exhibits both periodic and aperiodic motion,
where the system’s transition to chaos is size-dependent, i.e. how many blocks are considered.
The chain undergoes periodic motion when less than 20 blocks are considered. Under the same
system parameters however, the chain will undergo chaotic motion when 21 or more blocks are
incorporated, although this transition depends on the parameters under consideration.

2.2 Equations of Motion

The following equations of motion are derived from a one-dimensional chain of spring-connected
blocks elastically coupled and driven by a plate moving at a constant rate V,,. The blocks slide
along a rough surface according to the nonlinear D-R friction law (see Figure 2) and the equa-
tions of motion for the j™ block’s position u; are given by:



F](uJ,H) 0; + Aln(u;/V,)
0; = (%/DW + Bn(ui;/V5))

iy = pu(ujpr — 2uj +uj1) — AMug — Vot) — (uj,Qj)}
(6)

where Fj is the rate ; and state 6; D-R friction law from equation (1), y is the spring constant
coupling the blocks, A is the spring constant coupling each block to the driver plate, and 1}, A,
B and D, are the associated frictional parameters, described in section 1. The spring constants
i and A can be interpreted as the elastic properties across the medium, and are held constant
with ;o = X for the studies in this section. u; is the position of the 4" block, or its slip from its
initial starting position.

The variable u has two components: © = Upjqe + V,t Where w4 18 the block’s slip relative to
the driving plate, and V/,t is the distance the plate has moved in ¢ units of time. For our purposes,
we redefine the variable u; to be the ;% block’s slip from its adjacent point on the driver plate,
resulting in the following equations:

iy = p(ujp = 2 + i) — My — Fj(u, 0;)
Fj(uij,0;) = 0; + Aln(gE +1) ()
0; = —((1j +V,)/D.) (0, + Bln(y + 1))

where u; is now the ;% block’s slip relative to the driver plate.

We non-dimensionalize the system in the manner of Madariaga [1998] (as described in Erickson
et al. [2008]) then return to the use of €, v, u and ¢. The non-dimensional equations are given
by:

Uy =y (i1 — 2u; + ujin) — 3y — (Y2 /€)(0; + In(d; + 1)) } ®)

0, = —(u; +1)(0; + (1 + €) In(u; + 1))
where u; is the non-dimensional slip of the ;%" block relative to the driver plate,
= /p/m(D./Vo) and
A =+/A/m(D./Vo)
are the nondimensional frequencies,

£ = (uD.)/A



is the nondimensional spring constant, and
e=(B—A)/A

as before (see section 1.2 and 2.1 for more information on ¢, A and B).

2.3 Numerical Methods

Because of the nonlinearity imposed into equation (8) by the logarithmic term in the D-R fric-
tion law, analytic integration cannot be done even in the simplest case of a single block. For
this reason we proceed by implementing a numerical method by first writing (8) as a system of
3 first order ODEs:

Uj = ’Uj
Ui = 72 (ujo1 — 2u; + ujpr) — Yy — (v2/€)(0; + In(v; + 1)) 9)
0; = —(v; +1)(0; + (1 +¢)In(v; + 1))

As mentioned in the previous section, Dieterich-Ruina friction has introduced numerical chal-
lenges because the nonlinearity of the logarithmic term causes the system’s local Jacobian ma-
trix to have very negative eigenvalues - a property that usually indicates the presence of numer-
ical stiffness (well documented in [Erickson et al., 2008], [Noda et al., 2008], and [Rojas et al.,
2009]) . During our simulations conducted in Erickson et al. [2008] we found that even with
the use of an implicit numerical method suited for numerically stiff problems, the time step was
still restricted by accuracy requirements. Even with a stable method, if the time step taken is
too large, then the algorithm returns numerical value of v; < —1 and the logarithmic term is
undefined. For this reason, we use a classical fourth order explicit Runge-Kutta method on the
ODE:s in equation (9) whose step size adapts according to requirements for accurate resolution
when v; is close to —1.

N blocks are evenly spaced on a chain of length 20 dimensionless spatial units. Since fault
rupture is caused by small stress instabilities along the fault surface and often propagate like
a localized pulse [Heaton, 1990], we choose to represent the initial data as localized departure
from the equilibrium (or stationary) regime. Therefore initial data is a smooth Gaussian pulse
centered at the middle block:

—(2;—-10)%

up(j) = 1.be™ oz forj=1,..N, where o0 =1,
v(j) =0, forj=1,..N

This corresponds to imposing an initial stress peturbation into the initial position of each block
from its adjacent point on the driver plate, the middle block having the greatest initial displace-
ment. All have zero initial velocity (with respect to the driver plate). Free boundary conditions
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imply that blocks on either end of the chain are only influenced by the single block connecting
them to the chain, and their elastic coupling with the driver plate.

2.4 Transition to Chaos

Because of a lack of insight into proper parameter values (explained in section 1.3), we explore
the parameter space that allows for more manageable numerical computation (i.e. where the
parameters associated with the nonlinear terms are not too large). Numerical integration is done
for different amounts of blocks: N = 3, 10, 20, and 21 blocks. Parameter values used here are
fixed at e = 0.5, £ = 0.5, v = 0.5 and ¥ = 0.5. Figures 3, 4, 5 and 6 correspond to different
amounts of blocks considered. For each figure, the plot on the top left is the initial displacement
of all N blocks and the top right is the slip of all /V blocks against time. The plot on the bottom
left is the contour of the middle block’s slip against time and one can further view the periodic,
or aperiodic behavior occurring. The bottom right plot is the phase space for the middle block’s
slip, velocity and state variable. Periodic orbits will appear as a single closed loop in the phase
space, while aperiodic orbits will appear as a strange attractor (see [Erickson et al., 2008] for
more explanation).

Figure 3 shows the results from a system of 3 connected blocks. After a transient period in which
the initial perturbation is amplified, the nonlinearities saturate this growth and the system settles
into the same periodic trajectory - suggesting that the blocks move collectively. All 3 blocks
undergo abrupt, periodic motion of period approximately 20 temporal units and amplitude ap-
proximately 4 slip units. They are stuck to the rough surface until the driver plate overcomes the
static friction holding each block in place, and the chain suddenly begins to slide. After a time
period, the blocks approach a gradual stop until the pulling force overcomes static friction, and
the cycle begins again. Sudden and jerky motion, reminiscent of stick-slip behavior emerges as
the blocks respond to the driver plate. Under the same parameter combination, periodic motion
occurs when considering the system of 10 blocks as viewed in Figure 4, although it appears that
the period of the solution has undergone at least one period doubling bifurcation. In this case all
10 blocks undergo periodic motion, but their slip values reach different amplitudes - the block
in the center of the chain reaches an amplitude of approximately 3 slip units during each cycle,
while nearby blocks reach smaller amplitudes. Similar is the case for N= 20 blocks, although
the periodicity of the motion appears to double again.

For this fixed set of parameter values, the motion is periodic in time for /N = 3,...,20, but when
N = 21, the motion becomes aperiodic in time. As seen in Figure 6, each block follows its
own chaotic trajectory in time and the blocks appear to move independently of each other -
suggesting chaotic behavior in space as well. Further studies show that this transition to chaotic
motion varies, depending on the parameters considered. More specifically, the fact that a tran-
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No. Blocks = 3,¢ =0.5, £ =0.5,y=0.5,yt=0.5

Initial Data for 3 Block System
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Figure 3: Solution to the ODEs derived from a 3 block system. The top left figure shows the initial data, where
the boundary conditions fix the two end blocks at zero displacement, and the center block is displaced by a value
from smooth Gaussian distribution. The top right plot shows the slip of all 3 blocks against time and the motion
is periodic in time, each block attaining the same amplitude. The bottom left figure shows the slip of the middle
block against time, where an initial transient period exists during which the small instabilities introduced by the
initial slip displacement are amplified, then saturated by the system’s nonlinearities and then settle into periodic
motion. The bottom right plot shows the middle block’s slip, velocity and state variable value in the phase space.
These bottom two plots emphasize the periodic motion that this block undergoes.

13



No. of Blocks = 10,& = 0.5, £ = 0.5, y = 0.5, and yt = 0.5

Initial Data for 10 Block System
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Figure 4: Solution to the ODEs derived from a 10 block system. The top left figure shows the initial data, where
the boundary conditions fix the two end blocks at zero displacement, and the center blocks are assigned initial
displacements from a smooth Gaussian distribution. The top right plot shows the slip of all 10 blocks against time
and after a transient period, the chain settles into what appears to be periodic motion. The blocks reach different
amplitudes, the center block and blocks near the end reaching an amplitude of about 3 units, while the remaining
blocks reach smaller amplitudes. The bottom left figure shows the slip of the center (fifth) block against time, where
an initial transient period exists during which the small instabilities introduced by the initial slip displacement are
amplified, then saturated by the system’s nonlinearities and then settle into periodic motion. The bottom right
plot shows the center block’s slip, velocity and state variable value in the phase space. These bottom two plots
emphasize the periodic motion that this block undergoes.
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Figure 5: Solution to the ODEs derived from a 20 block system. The top left figure shows the initial data, where
the boundary conditions fix the two end blocks at zero displacement, and the center blocks are assigned initial
displacements from a smooth Gaussian distribution. The top right plot shows the slip of all 20 blocks against
time and after a transient period, the chain settles in to what appear to be periodic motion. The blocks reach
different amplitudes, the center block and blocks near the end reaching an amplitude of almost 5 units, while
the remaining blocks reach smaller amplitudes. The bottom left figure shows the slip of the center (tenth) block
against time, where an initial transient period exists during which the small instabilities introduced by the initial
slip displacement are amplified, then saturated by the system’s nonlinearities and then settle into periodic motion.
The bottom right plot shows the center block’s slip, velocity and state variable value in the phase space. These
bottom two plots emphasize the periodic motion that this block undergoes.
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Figure 6: Solution to the ODEs derived from a 21 block system. The top left figure shows the initial data, where
the boundary conditions fix the two end blocks at zero displacement, and the center blocks are assigned initial
displacements from a smooth Gaussian distribution. The top right plot shows the slip of all 21 blocks against
time and maintains what appears to be chaotic motion. The bottom left figure shows the slip of the eleventh
block against time, where an initial transient period exists during which the small instabilities introduced by the
initial slip displacement are amplified, then saturated by the system’s nonlinearities and then continue in aperiodic
motion. The bottom right plot shows the center block’s slip, velocity and state variable value in the phase space.
These bottom two plots emphasize the chaotic motion that this block undergoes.
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sition occurs between /N =20 and N = 21 is not universal; it depends on the parameters used.
It is also important to note that regardless of the type of motion these systems produce, one can
observe from Figures 3, 4, 5, and 6 that there is a transient period during which small instabil-
ities introduced by the initial slip displacement is amplified as energy enters the system. This
amplification is then saturated by the nonlinearities present from the friction law. This feature
suggests that under these parameter values, the friction law can be a mechanism responsible for
causing even small instabilities to grow into large, but finite events, similar to the conclusions
made by Carlson and Langer [1989] who stated that the velocity weakening friction law was re-
sponsible for the amplification of small heterogeneities in the initial spatial distribution, leading
to chaotic motion.

It should also be noted that in addition to an initial transient region and a chaotic regime, the
system of 21 blocks tend to synchronize and move in periodic motion - although this is only
after a long time in the chaotic state and it’s possible that this behavior only occurs for the
parameter values we considered. The initial transient region seems to depend on the number
of blocks considered. In the case of 3 blocks (see Figure 3) the transient region in which the
initial data is amplified lasts up until 77 ~ 50, whereas this time is 77 ~ 100 in the case of
10 or 20 blocks. After a period in the transient regime, the systems of 3, 10 or 20 blocks enter
a periodic regime. However, in the case of 21 blocks, after a transient regime in which the
initial data is amplified (also lasting until 77 ~ 100), the systems enter a chaotic state that lasts
until 7, ~ 800, before synchronization sets in and the system enters a periodic regime. The
ratio of time spent in the transient regime to time spent in the chaotic regime, % is therefore
approximately %. These numbers are only a rough estimate however, and may vary if different
parameter values are considered.

Further insight into these solutions is gained by computing the Fourier power spectrum (see
[Erickson et al., 2008] for details on how the power spectrum is computed) as viewed in Figure
7. We consider the middle block in each chain of length 3, 10, 20 and 21 blocks. Figure
7 shows the power spectrum (normalized with respect to the fundamental frequency) for the
system of 3, 10, 20 and 21 blocks, and one can further view the periodic or aperiodic motion of
these systems. The power spectrum for 20 blocks however, shows its power concentrated at the
dominant frequency and its harmonics. The last plot in Figure 7 shows the power spectrum for
the system of 21 blocks, where broadband noise is present, suggesting chaotic motion.

We can view the aperiodic behavior in the power spectrum in more detail by plotting the log-
linear plot of the power against the frequency. Figure 8 shows this data for the chaotic solutions
from the 21 block system. We see that the spectra for this system experiences two regimes of de-
cay. There is an initial period where the power spectrum undergoes exponential decay which is
then followed by slower, algebraic (power-law) decay. Sigeti [1995] acknowledges the common
agreement that the power spectra computed from continuous-time dynamical systems within the
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Figure 7: Normalized power spectra for the slip associated with 3, 10, 20 and 21 blocks. The single peak in the first
plot further emphasizes the period 1 behavior of the solutions to the model when considering 3 blocks. The second
two plots suggest the periodic behavior of the systems of 10 and 20 blocks. Each plot reveals a finite amount of
peaks, with 1 or 2 strong peaks and several harmonics. The last plot shows the normalized power spectra for the
slip associated with 21 blocks where a transition to chaos occurs, as broadband noise is evidenced by the high
number of frequencies represented.
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Exponential Decay in Temporal Power Spectrum for 21 Blocks
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Figure 8: The log-linear plot for power against frequency for the systems of 21 blocks shows two regimes of
decay. For both systems we see an initial period where the power spectrum experiences exponential decay, but this
is followed by slower, algebraic (power-law) decay.

chaotic regime experience exponential decay. That this is followed by a second regime in which
a power-law behavior is present has also been seen in several dynamical systems that exhibit
chaos, like those documented in Valsakumar et al. [1997]. The power law behavior is a feature
not uncommon to many areas of geology and geophysics and evidence of a fractal distribution
(see [Turcotte, 1997] and references therein). For instance, the well known Gutenberg-Richter
law for frequency-magnitude earthquake distribution follows a power law, as does topography
[Turcotte, 1997] and turbulent flow [Frisch, 1995].

3 The Continuum Formulation

3.1 Extension of the Discrete Model

As we have seen in the previous chapter, chaotic dynamics emerge in the discrete formulation
when the number of blocks is increased. For this reason, we are interested in studying the
dynamics of a continuum model to see if the behavior undergoes qualitative changes when con-
sidering infinitely many blocks. In this section we derive the nonlinear Dieterich-Ruina wave
equation derived from the Burridge-Knopoff spring block system subject to the D-R friction
law. We find that a transition to chaos also occurs when varying the parameter ¢, similar to what
we found in Erickson et al. [2008] for the case of a single block. The critical value of € however,
is much smaller than that required for a single block.
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3.2 Equations of Motion

We can derive a continuous model for a chain of blocks by taking the continuum limit in the
manner of Carlson and Langer [1989]. We let Az be the distance between blocks so that the
ratio 1~ is the mass per unit length of string, or linear density [Pain, 1968]. Then we consider
equations (7) and (8) when m, Ax — 0 and the additional rescaling: = = D.z. This yields
our final equations of motion, given by the following elastic wave equation for u(z, t) driven by
Dieterich-Ruina friction and its associated state variable evolution equation:

U = g — u — (¥2/§)(0 + In(uy + 1))
Oy = —(ue + 1)(0 + (1 + €) In(u; + 1)) } (10)

where the final equations now involve a fourth internal parameter:

¢’ = lim (uD;Az*)/(mVy)

m,Az—0

the square of the wave speed, and ¢, v, 7 and £ are defined in section 2.2.

3.3 Numerical Methods

To solve equation (10) numerically, we first write it as a system of 3 first order equations in
time:

vtt _ gy — P — (72/€)(0 + In(v + 1))) (11)
bp=—(v+1)(0+ (1+€)In(v+1))

To approximate the spatial derivative u,, we discretize in space using the method of lines [As-
cher and Petzold, 1998]. This procedure approximates spatial derivatives with finite differences
and yields a system of ordinary differential equations, the number of equations dependent on
the spatial discretization. We chose to discretize the interval = € [0, 20] into M = 200 grid
points, resulting in 200 ordinary differential equations and assigned the continuous version of
the same initial slip as the discrete system in section 2, with zero initial velocity, namely
—(z—10)2
u(z,0) = 1.5e~ o2 |, whereo =1,
v(z,0) =0,
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Figure 9: Parameter combination (¢, ¢, &,7,%) = (0.5,0.1,0.5,0.5,0.5) yields a stationary solution to the PDE
(10). Given a gaussian centered displacement for initial data, the slip of each point in space is slightly displaced
from their adjacent points on the driver plate. During the initial transient region, the slip increases as the chain is
pulled forward by the driver plate but each point along the chain responds differently due to the different friction
forces acting on point along the chain. But after this time, the entire chain settles on its adjacent position to the
driver plate, and the entire chain slides along at a constant rate with the moving plate. Thus relative slip values
become zero and the velocity is constant.

and free boundary conditions as before. As mentioned in the previous section, this form of
the initial data was chosen to represent localized departure from the equilibrium position and
corresponds to slightly displacing the center of the continuum of blocks.

The method of lines is applied to the spatial derivative u,,. in (11) yielding the following system
of ODE:s:

o 8 « « ug [ 6 +log(vo + 1)
V1 a B « o Uy 01 + log(vy + 1)
% V; = o a f « o u; — 7?2 0; + log(v; + 1) ,
| vm | i « a B || um | | O +log(vps +1) |
where o = AC—;, b = =2 AC;Q — &%, and M = 200 (in this study) is the number of spatial

points in the discretization. Due to such a large system of ODEs, we solved them in parallel,
using a similar Runge-Kutta scheme as discussed in section 2 (for a summary of the parallel
methods developed, see [Erickson, 2010]). With the goal in mind of answering whether or not
the features of the D-R friction law are scale-dependent, we study the critical values of ¢ that
lead to aperiodic behavior in order to see if the transition to chaos occurs for smaller values.
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Figure 10: Parameter combination (c, €, &,,%) = (0.5,0.3,0.5,0.5,0.5) yields a periodic solution to the PDE in
equation (10). Given the same initial displacement as in Figures 9 we observe that an increase in € from 0.1 to 0.2
yields a bifurcation of the stationary state. During the initial transient region, the blocks are pulled forward by the
driver plate but, due to the different friction forces acting on each block, respond differently in how far they slip.
But after this time, each block settles on a periodic response to the driver plate, alternating between sliding and
slowing down in response to the pull of the driver plate, and the roughness of the surface.
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Figure 11: Parameter combination (¢, €,&,v,%) = (0.5,1,0.5,0.5,0.5) yields an aperiodic solution to the PDE
in eqution (10). Given the same initial data as before (see Figures 9 and 10), the blocks are slightly displaced
from their adjacent points on the driver plate. The parameter € has been increased from 0.2 (periodic motion) to
0.5. During the initial transient region, the blocks are pulled forward by the driver plate but respond chaotically to
the forces acting on them. Each point in space appears to undergo independent aperiodic motion - suggesting the
presence of spatial as well as temporal chaos.

0(10,1)
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3.4 Transition to Chaos

Parameter combination (c,¢,&,7v,%) = (0.5,0.1,0.5,0.5,0.5) yields a stationary solution as
seen in Figure 9. The perturbation introduced from the initial displacement is amplified as the
chain is pulled forward by the driver plate during an initial transient period. Because the friction
along the surface is a function of each point’s velocity v(z, t) and asperity contact 6(z, t), each
point responds differently in how far it slips. The center of the chain slips the greatest amount,
relative to the driver plate, while the points near the ends of the chain remain almost stationary
(sliding steadily with the driver plate). When the initial slip amplification is saturated by the
nonlinearities, each point settles on its adjacent position to the driver plate, and the whole chain
slides along at a constant rate with the moving plate. Thus relative slip values become zero, and
all points slide with a constant velocity.

A bifurcation of this stationary state occurs when e is increased from 0.1 to 0.2, as viewed in
Figure 10 where a periodic solution emerges. After a transient period, the chain oscillates be-
tween negative and positive slip values; the point in the center attaining the most extreme values.
Negative slip values correspond to the driver plate moving beyond the chain, while positive slip
values mean points on the chain are slipping beyond the driver plate. The smoothness in the
dynamics represents a fluid-like interaction between each point along the chain and the rough
surface it slides upon. The chain fluctuates gently in response to the driver plate and the friction
on the surface, approaching a full stop before sliding forward again.

For e = 1, chaotic motion appears in Figure 11 and one can see each point along the chain
undergoing its own aperiodic motion as waves of different amplitudes propagate through the
medium and interact with the boundary. Each point in space follows its own aperiodic trajectory
- suggesting the presence of spatial as well as temporal chaos.

We can view these periodic and aperiodic solutions further by computing the associated power
spectra, as shown in Figure 12. The top two plots are associated with the periodic solution
viewed in Figure 10. The top left plot is that of the normalized temporal power spectrum,
showing what appears to be 2 dominant frequencies surrounded by small harmonics. On the
top right is its spatial power spectrum where periodic behavior is also visible. The bottom two
plots further emphasize the chaotic behavior seen in Figure 11 as both show peaks at many
frequencies. To view the power spectra more deeply we plot the log-linear plot of the power
against the frequency. The plot in Figure 13 shows the decay of the power spectra for the
chaotic solution to the PDE in equation (10) experiencing exponential decay for a short time
period, before leveling off and decaying as a power law (algebraic decay). See section 2.4 for
more on this type of behavior.
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Normalized Temporal Power Spectrum for Periodic PDE Normalized Spatial Power Spectrum for Periodic PDE
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Figure 12: Normalized power spectra for periodic and aperiodic solutions to the PDE in equation (10). The
top two plots correspond to the periodic solution shown in Figure 10. On the left is the temporal power spectrum,
showing what appears to be 2 dominant frequencies with small harmonics clustering about them, suggesting period
2 behavior. On the right is the spatial power spectrum, clearly showing 1 peak corresponding to period 1 behavior.
Thus there is neither temporal nor spatial chaos. The bottom two plots correspond to the chaotic solution show in
Figure 11. On the left is the temporal power spectrum showing many high peaks and clusters of harmonics. On
the right, a similar spread of frequencies occur, suggesting chaos in both time and space.
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Exponential Decay in Temporal Power Spectrum for Chaotic PDE
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Figure 13: The log-linear plot for power against frequency for the chaotic solution to the PDE in equation (10)
shows two regimes of decay. We see an initial period where the power spectrum experiences exponential decay,
but this is followed by slower, algebraic (power-law) decay.

4 Localized Solutions

4.1 Solitons and Breathers

During the studies conducted in sections 2 and 3, we also observed that in certain parameter
regimes both the discrete and the continuous formulations of the Burridge-Knopoff model sub-
ject to Dieterich-Ruina friction exhibit solutions where initial slip pulses remain localized in
space. Like the studies of Espafol [1994] who studied a BK model with velocity weakening
friction, we also found solutions that propagate like a traveling wave, or remain localized in
space. The localized solutions suggest the presence of solitonic behavior, where initial data in
the form of a smooth Gaussian pulse tends to remain localized under certain parameter values.
In the case of a traveling wave we see evidence of a soliton, a solitary wave that maintains
its shape while it travels at a constant speed through the medium. The solutions that remain
localized in space and oscillate in time however, are known as breathers.

The general definition of a soliton solution to a nonlinear wave equation is that it has 3 proper-
ties: it is a wave with permanent form, that is localized in space for each fixed point in time, and
if two solitons meet, their forms are preserved after the interaction [Mickens, 2004]. A breather,
on the other hand, is a time-periodic, exponentially decaying (in space) solution of a nonlinear
wave equation [Kichenassamy, 1991]. Breather solutions are rare and the only nonlinear wave
equation known to possess large breather solutions is the sine-Gordon equation (see [Birnir,
1994], [Birnir et al., 1994] and references therein).
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4.2 Significance of Localized Solutions

The significance of these types of solitary wave solutions was emphasized by Heaton [1990],
who studied dislocation time histories generated from models derived from earthquake wave-
forms. He found that, contrary to crack-like dynamic rupture models where the rise time was
comparable to the entire duration of rupture along the fault, dislocation rise times were only
about 10% of the overall rupture duration. The most appropriate explanation for this observa-
tion of short slip durations is that the rupture travels like a self healing pulse that propagates
along the fault. Heaton suggests that a dynamic friction law (he considers a law that is inversely
related to slip velocity) can be a mechanism for causing the fault to heal itself shortly after the
rupture passes through, resulting in a localized pulse. The rest of this section is devoted to the
exploration the space of parameter values for which these types of soliton or breather solutions
emerge for the nonlinear wave equation with D-R friction, equation (10). These solutions can
be understood as a proxy for the propagation of the rupture front across the fault surface during
an earthquake and may determine a range for suitable parameter values to be used in dynamic
modeling of earthquakes.

4.3 Localized Solutions to Discrete and Continuous Formulation

As detailed in the introduction, Schmittbuhl et al. [1993] and Espafiol [1994] observed (among
others) solitary wave-type solutions when varying different parameters of the BK model subject
to a velocity weakening friction law. Similar to the discoveries described in these papers, we
have also seen solitary wave and localized solutions in both the discrete and the continuous
models under the D-R friction law. Figures 14 and 15 show solutions from the ODEs and the
PDE under similar conditions, where solitary, localized or unlocalized behavior emerges. Initial
data is assigned to both of our systems in the form of a smooth Gaussian pulse with zero initial
velocity namely,

u(z,0) = 01e-E=102/0%)  here o = 1,

v(x,0) =0,
and free boundary conditions as before. This initial, localized pulse is again intended to rep-
resent localized departure from equilibrium and it tends to remain localized under certain pa-

rameter values, suggesting the presence of solitonic or breather solutions. We are interested in
determining the parameter(s) on which this behavior depends.

In the next section we find that solitary and localized behavior seems to be dependent on the
ratio between the parameters ¥ = \/\/m(D./Vo) and v = \/pu/m(D./V o), indicating that
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Figure 14: These four plots show the slip of a chain of 20 blocks with different parameter combinations. The
parameters € and ¢ are fixed, while  and ¥ are varied. The top right plot shows that not all parameter combinations
yield solitary or localized solutions, as we see the initial pulse split into two waves that travel quickly through the
medium and interact with the boundary. The bottom two figures however, show solutions to the ODE system where
the slip remains localized in space and the amplitude either remains at a constant height, or dies out. This suggests
that both v and ¥ may be responsible for the localization, but that ~ is probably responsible for causing the slip
the die out (as ¥ remains constant in the bottom two plots). The plot on the bottom right suggests that under these
parameter values, the friction law alone can be a mechanism to halt rupture propagation.
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Figure 15: These four plots are the solutions to the PDE in equation (10) corresponding to the parameter values
used in the previous plot for the ODEs The top two plots are evidence that not all parameter combinations yield
localized solutions to the PDE, while some do, as seen in the bottom two plots. In the top two plots the PDE
is initialized by a centered Gaussian pulse that splits into two waves that travel quickly throughout the medium
and interacting with the boundary. In the bottom two plots however, the initial pulse remains localized in space,
either dying out or traveling with positive amplitude. Although additional numerical simulations are needed, there
is repeated evidence that the parameter ~y is probably responsible for slip localization in these solutions. The plot
on the bottom right suggests that under these parameter values, the friction law alone can be a mechanism to halt
rupture propagation.
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the emergence of these types of solutions may be directly affected by the parameters A and p,
(the spring constant connecting each block to the driver plate, and the spring constant between
blocks in the original, discrete formulation). This coincides with the findings of Espaiiol [1994]
who found the localization dependent on the speed of sound [?> = &. In the case of the localized
(breather) solutions, in some parameter regimes the amplitude of this localized pulse decays
over time, as viewed in the bottom right plots in Figures 14 and 15.

Figure 14 shows four different numerical solutions to the ODEs (8) where a chain of 20 blocks
is considered. The parameters ¢ and ¢ are fixed at values 1 and 1.84, respectively, while v and
~ are allowed to vary. In the top left plot in Figure 14, we see that for this set of parameter
values, the initial Gaussian pulse splits into two solitary waves that travel through the medium
and interact with the boundary. In the top right plot of this same Figure however, the initial
pulse does not propagate like a traveling wave, suggesting that not all parameter combinations
yield localized or solitary wave like solutions. The bottom two figures show solutions where
the slip does not propagate throughout the medium, but remains localized or quasi-localized in
the center of space, suggesting the presence of breather solutions. In these cases the slip either
dies out (as in the bottom right of Figure 14), or maintains its amplitude and "breathes" (seen in
the left of the same Figure). These solutions suggest that both v and 7 may be responsible for
this localization, but the value of « probably affects whether or not the slip amplitude dies out,
as 7 takes the same value in the bottom two plots.

We are interested if solitary or localized solutions occur for the PDE in equation (10) under
similar conditions to the ODEs (8), or if the qualitative behavior changes in the continuum case.
Figure 15 shows solutions to the PDE with the same parameter values and one can see, when
comparing these plots to those in Figure 14, that for these sets of parameter values the dynamics
are fairly similar, although we cannot compare them absolutely as the PDE is determined by the
additional parameter c.

To investigate the behavior when two of these solitary waves meet, we take a solution that
resembles a soliton and initialize it with two smooth Gaussian pulses, with different amplitudes.
Figure 16 shows the profiles at different times for the interaction of these two pulses. The two
initial pulses each split into two waves of the same form, then meet, and maintain the same form
after the interaction. This is further evidence that our numerical solutions are solitons.

It is important to note, however, that the PDE in equation (10) can be re-scaled so that it is
independent of the wave speed c. More specifically, we can scale the spatial variable = by c,
replacing x by cx and yielding the following, re-scaled PDE:

Uy = g — 770 — (72/€)(0 + In(uy + 1))
0 = —(us —i—f)i)(é’ —i—f(yl +¢)In(u; + 1)) } (12)
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Figure 16: Soliton solutions at varying times. Initialized with 2 smooth Gaussian pulses, each wave splits into two
waves that maintain the same shape after they pass through each other.
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Figure 17: 0 plots showing the localization of slip as a function of the parameter 7. Moving from left to right
corresponds to increasing the value of 7. Increasing 4 will cause the solution to localize as well as cause the slip

to decrease in amplitude.
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In this framework, we can ignore the effect of varying the wave speed, and instead view the

equations of motion in terms of the driving term 72, i.e., the term corresponding to the pull

of the driver plate (and the parameter responsible for loading energy into the system) and the

damping term ﬁ, the parameter controlling the amount of friction acting on the system. With

these parameters in mind, we can control the behavior of the system by means of a single
perturbation parameter,

_drive A A%

= damping /€ 2

the ratio of the drive to the damping.

We are interested in determining the role that { plays in the emergence of these traveling waves
or localized solutions. Figure 17 shows results from the solutions to the PDE in equation (10)
in a parameter-varying study. Since increasing the control parameter ( is analogous to keeping
¢ and vy fixed while increasing 7, these figures demonstrate the effect that the control parameter
has on the system. Figure 17 shows a set of 9 plots of solutions to the PDE when the control
parameter ( = % is increased (from top to bottom). One can also observe that the plots in the
left 2 columns illustrate how the initial Gaussian pulse splits into two waves that travel outwards
through the boundary. But in moving from top to bottom, the slip pulse is squeezed together so
that it takes longer to interact with the boundary. This is evidence that an increase in the control
parameter will cause the slip to localize, as well as die out in some cases. This makes sense as
one can consider increasing ¢ as analogous to increasing 7 (effectively increasing the pull of the
driver plate so that it forces the chain of blocks to slide at steady state). One can further view
this effect as analagous to crossing under the Hopf bifurcation plane seen in Figure 18, where
parameter combinations yield stationary solutions.

4.4 Analytical Investigation of Soliton Solutions

In this section we investigate whether we can analytically determine the parameter spaces for
which these solitary wave solutions occur. The original PDE (written with wave speed c,) is:

Ur = Collae — ¥u = (¥2/§) (0 + In(uy + 1))
O, = —(us +1)(0 + (1 +€) In(uy + 1)) } (13)

)

We now consider a solution to (13) of the form h(x + ct), i.e. a traveling wave solution with
wave speed c. Letting ¢ = = + ct, and plugging h into the PDE yields the following ODE:
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Figure 18: 2 different views of the bifurcation surface associated with equation (15), where v = 7. Parameter
combinations that lie below the surface will generate stationary solutions, while a combination above the surface
will correspond to a Hopf bifurcation, and yield a periodic orbit. That it is a skewed surface for the parameter
space we consider implies that the Hopf bifurcation is dependent on all three parameters ¢, £ and ~.

(2= )5k =—7h—(y /5)(9+ln( )

. (14)
cgp = —((cq + (0 + (1 +¢) In(cqr ))
This second order ODE can be re-written as a system of first order ODEs by letting « = h and
dh
v = w
du
dw =v
(¢ —c )dZ; = —7u— (v*/&)(0 + In(cv + 1)) (15)

%: C((Cv—i- 1)@+ (1+€)In(ev + 1))

)

To do stability analysis of the ODE (15), we look first for the stationary solution, and find it at
(u,v,0) = (0,0,0). Then we look at the Jacobian matrix of equation (15):

0 1 0
_ | =2 —’c —*
‘Df - 2—ct £(c?—c3)(cv+1) £(c2—c)

0 —(1+e(n(co+1)+1) —=H

c

and D f evaluated at the stationary solutions yields:

0 1 0

_ -5 —%c —
A= Z Ho-d)  HP-d)

0 —(1+¢ -1

Q
N
|

Q
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It is important to note that, other than the presence of the parameters ¢ and ¢y (which can
be eliminated by scaling the equations appropriately in space, see equation (12)), matrix A is
almost an exact copy of that obtained in Erickson et al. [2008], for the equations governing
a single block. Just as before, matrix A has 3 distinct eigenvalues: 1 real eigenvalue and 2
complex conjugates. When the real part of the complex conjugates crosses the imaginary axis,
the system in equation (15) undergoes a Hopf bifurcation from a stationary solution into a
periodic orbit (see [Guckenheimer and Holmes, 1983] and [Perko, 2001]), as occurred in the
single-block case in Erickson et al. [2008].

Figure 18 shows the parameter combinations that will yield bifurcations of the stationary state.
Not surprisingly, it appears similar to the surface computed in Erickson et al. [2008] for the
single block case, thus a similar analysis of the bifurcation plane can be made. Parameter
combinations that lie below this plane will generate stationary solutions to equation (15), but
once the parameter values have crossed this Hopf bifurcation plane, we see either periodic
solitary wave type solutions or periodic localized solutions like those in the first 3 plots in
Figures 14 and 15. We can use the information obtained from the study of the single block (see
Erickson et al. [2008]) to predict that a similar route to chaos exists for the ODE (15) derived
from considering soliton solutions to the PDE (10). In this case, increasing the value of the
paramter ¢ will correspond to a period doubling cascade into chaos, resulting in solitary wave
solutions that are aperiodic in time, although e will need to be on the order of ~ 11, as before.
The assertion of this result would suggest that solitary wave-type solutions in the continuum
formulation undergo behavioral changes on the same order of parameter values as in the single
block case.

5 Discussion: Implications on the Scaling of the Friction Law

It has been widely recognized that our understanding of the physical mechanisms controlling
earthquake rupture depends significantly on understanding the role of friction (see [Brace and
Byerlee, 1966], [Scholz, 1998], among others). We believe that earthquakes and the resulting
ground motions are affected by at least four factors, including initial stress, fault geometry,
fault frictional behavior, and wave-propagation path effects. Of these, geometry and wave-
propagation are somewhat possible to predetermine, the spatial distribution of the initial stress
can be modeled according to the stochastic model discussed in Lavallée et al. [2006] (for ap-
plications see Schmedes et al. [2010a] and Schmedes et al. [2010b]) , but fault friction is still a
major unknown. This makes understanding fault friction a cornerstone of understanding earth-
quake behavior. As highlighted in Harris [2004], earthquakes are the result of processes in
the earth’s crust that have evolved over multiple scales in both time and space. Understand-
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ing the physics of earthquakes requires the study of these processes at all scales from both an
observational and a dynamic modeling perspective.

That the transition to chaos for the discrete and continuum model with D-R friction ensues for
a smaller parameter value than in the case of a single block may be an indication that a careful
rescaling of the friction law is necessary, prior to attaching the friction law to full scale models.
A similar conclusion was made by Schmittbuhl et al. [1996] who studied a "hierarchical array of
blocks" and found that velocity weakening friction was scale dependent. These authors studied
the bulk response of a two-dimensional elastic body sheared over a rough surface defined by a
the velocity weakening friction law. They found that this friction law can produce Coulomb-
like behavior at the system scale. More specifically, the velocity dependence of the body at the
interface is lost or blurred when moving to larger scales. They conclude by emphasizing the
need to study scale dependent effects of friction laws with an intrinsic length scale.

Our results suggest that when implementing the D-R friction law in dynamic rupture models,
it’s possible that qualitative behavior can be lost or altered when considering full-scale models.
However it is possible to investigate the evolution of the scaling properties of numerical solu-
tions to equations involving the friction law. Unfortunately, the presence of nonlinear terms in
the mathematical formulation of friction laws like the D-R law makes it very difficult to define
a transformation from laboratory scales to full scale models of the earth’s faults. Another hy-
pothesis will consist of formulating an "effective friction law" for length scales on the order of
100 m, much like the pioneering work of Campillo et al. [2001] who explored how small-scale
variability in the parameters of the friction law can be renormalized to larger length scales.

6 Conclusions

We have derived the equations for both the discrete and the continuous formulations of a
one-dimensional Burridge and Knopoff [1967] spring-block model subject to the nonlinear
Dieterich-Ruina friction law. In the discrete case we observe a transition to chaos when varying
the system size, i.e. the number of blocks N. For N = 3, 10, and 20 blocks, periodic behavior
emerges. When NV is increased from 20 to 21 however, this periodic behavior is lost and chaos
ensues, as further asserted by the broadband noise in the power spectrum (see Figure 7). This
transition occurs for a fixed set of parameter values and we see that the small value of € = 0.5
will generate chaotic motion, as long as the system size /N is sufficiently large. This value is
much smaller than that required for chaotic motion that we found in the single block case [Er-
ickson et al., 2008], where € ~ 11. This suggests that, in contrast to the conclusions made by
Lapusta and Rice [2003] who found only periodic behavior emerging from D-R friction, dy-
namic rupture modeling with this friction law can produce chaotic dynamics when considering

36



a wide range of parameter values with an increase in system size. It is possible that the param-
eter values selected by the authors, or their regularization of the D-R friction law prohibited the
emergence of chaotic dynamics.

Also, these results suggest that chaotic regimes in the BK model under D-R friction is a function
of the number of blocks considered, similar to the conclusions of Schmittbuhl et al. [1993] who
studied a similar block-spring model subject to a velocity weakening friction law and found
that chaos was also dependent on the system size. It should be emphasized that this information
reveals that the D-R friction law may very well be scale-dependent, as we have seen different
dynamics emerge in systems with different numbers of blocks. That the transition to chaos
appears highly sensitive to the number of blocks /N as well as the value of the parameter e
suggests that one should take into consideration their system size when choosing the parameters
for a dynamic rupture model, or find another means of scaling the friction law appropriately.
Because aperiodic solutions appear for smaller values of this specific parameter than in the case
for a single block, it’s probable that chaotic dynamics emerge for a broader range of parameter
values for systems of larger size. Our numerical solutions so far suggest that the critical value of
the parameter € necessary to induce chaos decreases as a function of N, the numbers of blocks
considered (for a hypothetical curve, see Figure 25 in Erickson [2010]).

For the continuum model of blocks and springs subject to the nonlinear D-R friction law, a
bifurcation from a stationary state (steady sliding) to chaotic behavior can be observed when
the parameter e is increased, as further asserted in the power spectrum (see Figure 12). Recall
that € is the ratio of the stress parameters (B — A) and A in the D-R friction law. Our results
in this section show that ¢ = 1 is sufficient for chaos in the PDE, a much smaller value than
that required for chaotic motion in the single block system in Erickson et al. [2008], where € ~
11. It is important to note that we found chaotic behavior in the continuum model for different
combinations of parameter values at even smaller values, namely for e = 0.5, however a clear
transition from stationary to periodic to chaotic was not evident.

Although it is difficult to compare absolutely the discrete and the continuum model due to the
second model’s fourth parameter c, in either case the critical value for € is much smaller than in
the case of a single block, where € ~ 11. Our results suggest that for a fixed set of parameters,
the critical value for € decreases with NV, the number of blocks considered. In the future it will
be interesting to find the relationship between /N and the critical value for €, while keeping
the other parameters fixed. In particular, it will be important to establish if this relationship
depends on the values taken by the other parameters. Given the scale size of the model, the
corresponding value taken by € could be a useful method for controlling the observation of
periodic or chaotic earthquake ruptures.

Furthermore, when we consider that e = 1/5, where S is the nondimensional seismic ratio
[Andrews, 1976], smaller values of € that yield chaotic dynamics correspond to a broader range
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of S values. We found that in the single-block case, critical values of € were large, correspond-
ingto S ~ 1% or smaller. Although we concluded in Erickson et al. [2008] that earthquake
ruptures generated by chaotic simulations from a single block model correspond to velocities
propagating at the supershear speed (see among others, [Freund, 1979], [Dunham, 2007]), for
these models with more than one block chaotic regimes can be reached for a larger range of S
values. In these cases, we find chaotic regimes corresponding to S = 2 or smaller.

In addition to these transitions from periodic to chaotic behavior, we have also observed that
both the discrete and the continuous formulation of the Burridge-Knopoff block and spring
model subject to the D-R friction law exhibit solutions where an initial, smooth Gaussian pulse
can either split into two traveling waves that propagate as solitons, or remain localized in space,
as breathers. In spite of having only explored a small region of the parameter space, we were
able to determine which internal parameters seem to affect this behavior. Because these solitonic
or localized solutions can be understood as a proxy for the propagation of the rupture across the
fault during an earthquake ([Heaton, 1990]), this result may also suggest a possible range for
parameters that could be used in future earthquake modeling. By narrowing the parameter space
to values that yield localized solutions, we may have a method for assigning appropriate values
to parameters that have, thus far, been difficult to determine.

Furthermore, a robust friction law is vital for dynamic rupture modeling of earthquakes, but
evokes the question of whether or not small-scale laboratory derived friction laws are appro-
priate for full-scale modeling and modeling at high slip speeds. We have shown that finding
pulse-like solutions in the continuum model reduces to studying the bifurcation analysis of a
single block. Thus it is possible that using parameters relevant to the single block case under
D-R friction may be directly applicable to large-scale models if one is interested in generat-
ing pulse-like solutions. This knowledge could be an indirect way for validating the use of a
small-scale, laboratory derived friction law in full-scale dynamic rupture models.

An additional observation we made in this study is that for certain parameter combinations, the
initial slip pulse in the BK model with D-R friction tends to die over time (as in the plots in
the bottom right of Figures 14 and 15). Now the earthquake rupture process can be roughly di-
vided into three parts: nucleation, propagation and arrest. But although rupture can be initiated
in dynamic models of earthquakes by stress perturbations in initial conditions, an appropriate
technique for terminating rupture is still unclear. Many dynamic models of earthquakes impose
an artificial mechanism for stopping the rupture. The stopping criterion invoked by Ma et al.
[2008] for example, solves for a traction value that will force the slip rate to die at the next
time step during the dynamic rupture. The dying pulse in the bottom right plot of Figures 14
and 15 suggest that the friction law alone can provide a sufficient mechanism for halting the
rupture process. In these cases where the slip amplitude decays, the dying pulse suggests that a
localized rupture can propagate along the fault and be attenuated over a finite fault length. The
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plots in the bottom right of Figures 14 and 15 suggest that properly choosing parameters of the
friction law will be sufficient in halting rupture propagation. Having determined the parameter
responsible for causing the slip to decay naturally, this parameter can be made a function of
time and/or space in order to have a method for dynamically terminating slip events.

Under the Dieterich-Ruina law we may have discovered only a small subset of solutions to
both the discrete and the continuous model, but there is no question that even in one spatial
dimension, a rich phenomenology of dynamics exists. Furthermore, the presence of chaotic
regimes and localized solutions are of great importance because they help justify the use of a
relatively simple model in studies of fault friction, whereas more sophisticated dynamic models
may be computationally limited.
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