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ABSTRACT: We study the jet energy drop, which is the relative difference between the
groomed and ungroomed jet energy or transverse momentum. It is one of the fundamental
quantities that characterizes the impact of grooming on jets produced in high energy colli-
sions. We consider three different grooming algorithms i) soft drop, ii) iterated soft drop,
and iii) trimming. We carry out the resummation of large logarithms of the jet energy
drop, the jet radius as well as relevant grooming parameters at next-to-leading logarithmic
(NLL') accuracy. In addition, we account for non-global and clustering logarithms, and
determine the next-to-leading order corrections. For soft drop we perform a joint resum-
mation of the jet energy drop and the groomed jet radius, which is necessary to achieve
the correct all-order structure of the cross section, in particular for the Sudakov-safe case
of soft drop with § = 0. We present numerical results for LHC energies and compare
to PYTHIA simulations as well as CMS data. Our factorization framework predicts the
onset of nonperturbative effects in the jet energy distribution, in line with what we find
in PyTHIA. The jet energy drop observables stand out because they only probe soft radi-
ation, making them ideal candidates for the tuning of parton shower Monte Carlo event
generators and for probing medium effects in heavy-ion collisions.
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1 Introduction

Jet substructure techniques have become an important part of measurements at high en-
ergy particle colliders over the last decade. These techniques are used in searches for
physics beyond the Standard Model, e.g. tagging hadronic decays of heavy resonances or
discriminating quark/gluon jets, the measurement of fundamental parameters, such as the
strong coupling constant, and probing the modification of jets in heavy-ion collisions. See
refs. [1-3] for reviews from a theoretical and experimental point of view.



In the past couple of years, precision calculations of jet substructure observables have
become available, that allow for direct comparisons of theoretical calculations and data. A
crucial ingredient in making this possible, is the development of jet grooming techniques
that are compatible with theoretical calculations. Grooming techniques address the highly-
contaminated environment at hadron colliders, systematically removing soft wide-angle
radiation from the observed jets, see figure 1, thereby also reducing hadronization effects.
Examples are trimming [4], pruning [5], soft killer [6], soft drop [7], iterated soft drop [8]
and recursive soft drop [9]. Initially, grooming (desirable for experiment) and theoretical
precision seemed mutually exclusive, but some of these grooming techniques are quite
amenable to calculations in perturbative QCD. Specific examples include: the soft-drop
groomed jet mass [10-12], the groomed jet radius [13] and the repositioning of the jet
axes due to grooming [14]. Experimental results for soft-drop groomed jet observables can
be found in refs. [15-24], and for related recent theoretical calculations of groomed jet
substructure observables see refs. [25-42].

In this work, we consider the jet energy drop, which is given by the relative transverse
momentum (or energy) difference between the groomed and ungroomed (i.e. original) jet,

gor or
Ap=Pr—Pr _y_ Pr (1.1)
pr pr
We consider the jet energy drop for three grooming procedures that have been used by
experimental collaborations: i) trimming, ii) soft drop and iii) iterated soft drop. This
observable is of great interest for characterizing the impact of grooming on the measured
jets. In particular, the soft sensitivity of these observables makes them ideally suited for
tuning parton shower event generators, see e.g. refs. [43, 44]. While we focus in this paper
on the comparison to Pythia in the perturbative regime, studying the nonperturbative
regime requires a field theoretic understanding of the effects on grooming, which have been
discussed in refs. [14, 35]. For models describing the nonperturbative effect with grooming,
see refs. [10, 27, 29, 34, 45-47]. Similarly, collinear drop [48] also probes soft radiation,
by “taking the difference” of two soft drop grooming procedures with different parameters.
However, this removes the softest radiation, which is kept in our case.

For each grooming procedure, we develop the factorization formula for jet energy drop
within Soft Collinear Effective Theory (SCET) [49-53], which allows for the resummation
of large logarithmic corrections to all orders at next-to-leading logarithmic (NLL’) order.
The logarithms we resum are those of the jet energy drop, as well as the jet radius and
grooming parameters. We will treat all logarithms as independent, but in principle, one
can refine predictions (e.g. near the endpoint in Ag) by considering parametric relations
between the jet energy drop and grooming parameters. To obtain our predictions, we in-
cluded the one-loop expression for the ingredients of the factorization theorem, the one-loop
anomalous dimensions, and two-loop cusp anomalous dimension, and the non-global [54]
and Abelian logarithms including clustering effects [55]. While there has been significant
progress in the study of NGLs [56-66], including clustering effects [67-72], we restrict to
their contribution at order a?

S

our phenomenological results.

since the higher order terms are numerically irrelevant for



Figure 1. Schematic picture of a jet, with circles representing radiation whose size corresponds to
its energy. Wide-angle soft radiation (grey) is groomed away, resulting in the groomed jet (green).

In order to resum the relevant logarithms for soft drop, we perform a joint resum-
mation of logarithms of Ag and the soft drop groomed jet radius Ry [7, 13]. For these
two variables, we develop a two-dimensional scale-setting technique in order to perform
numerical calculations. Depending on the relative scaling of Ap and R, a different fac-
torization formula is obtained, which are matched before integrating over a range of R,
or integrating it out completely. For the special case of soft-drop parameter 3 = 0, the
corresponding cross section is not infrared safe but Sudakov safe [7], and so resummation
is essential to obtain a prediction. Other examples of Sudakov-safe observables include the
soft-drop momentum sharing fraction z, [73], ratios of two angularities [74, 75], and the
jet-pull angle [76-78]. In this work, we extend previous results of the jet energy drop for
soft drop with § = 0 beyond (modified) leading logarithmic accuracy.

The remainder of this paper is organized as follows. In the three subsequent sections 2—
4 we discuss the jet energy drop for the three grooming algorithms: iterated soft drop, soft
drop, and trimming. In each section, we first introduce the grooming procedure (though
soft drop is already described in section 2), and present results at fixed order. We then
factorize the cross section to resum large logarithmic corrections to all orders, and give
expressions for all necessary perturbative ingredients, as well as non-global and clustering
logarithms. In addition, we discuss profile scales and present numerical results for LHC
kinematics, which we compare to PYTHIA. Note that section 2 contains many of the basic
ingredients that are also needed in subsequent sections, such as the collinear factorization
for inclusive jet production. In section 5, we draw conclusions and present an outlook.

2 Iterated soft drop

We start in section 2.1 by reviewing the factorization of the inclusive jet cross section in
terms of PDFs, hard functions, and jet functions. This initial step exploits the collimated
nature of jets, but is independent of further details of the jet measurement. It is therefore
the same for the jet energy drop calculation for all three grooming procedures discussed



in this work. In section 2.2, we review the (iterated) soft drop algorithm, and we present
results for the corresponding one-loop jet function in section 2.3. In section 2.4, we discuss
the refactorization of this jet function and resummation of the logarithms of the jet energy
drop Ag and grooming parameter z.y;. In particular, we include results for all relevant
functions at one-loop order, needed for our numerical results at NLL’. Non-global and
clustering logarithms are discussed in section 2.5, and section 2.6 describes our central
scale choice, as well as the scale variations used to assess the perturbative uncertainty.
Finally, in section 2.7 we present numerical studies for LHC kinematics.

2.1 Jet production

We consider generic jet substructure measurements performed on an inclusive jet sample,
as the discussion in this section applies to all jet energy drop observables in this paper. To
achieve factorization, we assume that the jet is collimated, keeping only terms at leading
power in the jet radius R. This allows us to factorize the cross section in terms of parton
distribution functions (PDFs), hard-scattering functions, and jet functions, which capture
the formation and evolution of the observed jet.!

The cross section differential in the jet rapidity n and transverse momentum pr and
the energy drop Apg is given by

do B dx; dx; dz
dydprddy Z/ T fitwom) [ g [ Hietas g nvr /)
X gk(za AE7pTR7 H) []‘ + O(RQ)] .
(2.1)

Here the PDFs are denoted by f; ; and we integrate over the momentum fractions z;; of
the colliding partons with flavor 7, j. The hard function H,j;, captures the hard scattering
of the incoming partons ij — kX, where we are inclusive over additional hard partons (X).
The hard function depends on the incoming momentum fractions z; ;, the jet rapidity 7,
and the partonic transverse momentum pr/z of the final state parton k. It is independent
of the jet algorithm, is the same as for inclusive hadron production, and known analytically
at one loop [79, 82, 83]. The produced parton k subsequently fragments inclusively into the
observed jets, which carry a momentum fraction z and thus have transverse momentum
pr = z X (pr/z). The corresponding dynamics of the formation of inclusive jets is captured
by the jet function Gy, which is convolved with the hard function. The jet function G also
accounts for the jet energy drop Ag, and thus depends on the grooming parameters of the
algorithm under consideration. Since the discussion so far is independent of the specific
grooming procedure we have omitted dependence on the grooming parameters here, but
will include them when describing specific cases below. As we focus on this jet function
and its refactorization in the remainder of this work, we find it convenient to change the
parton flavor index G to G; from this point on.

The factorization in eq. (2.1) is a generalization of the factorized cross section for
inclusive jet production [84-86]. The characteristic scales of the various ingredients are the

In many cases it has been observed that the neglected (’)(R2) power corrections are numerically small,
even for relatively large values of the jet radius parameter R, see e.g. refs. [79-81].



same as for inclusive jet production

pf ~ Aqep fi3 ~ PT pig ~ prR. (2.2)

The resummation of logarithms of the jet radius R = ug/uy is achieved by evolving the
jet function G; from the jet scale pug to the hard scale uy, using the time-like DGLAP
evolution equation [87-89]

d Ldz a,
L Gi(2,Ap,prR, 1) = Z/ 7 ?Pji(z/z/) Gj(#,Ap,prR, ) . (2.3)
j 7z

The relevant Altarelli-Parisi splitting functions Pj; are collected in eq. (A.3).

Integrating the jet function G; in eq. (2.1) over the jet energy drop variable Apg, the
semi-inclusive jet function J; of ref. [85] is obtained

1
| 485G, Ap pr, ) = Sz pr o). (2.4
At next-to-leading order (NLO), it is convenient to rewrite the jet function G; as
Gi(z, Ap, prR, p) = Ji(z,prR, 1) 6(AE) + 0(1 — 2)AGi(Ap, prR, as(1)) - (2.5)

At this order, the initial parton splits into at most two other partons. The distribution in
Ap is encoded in the second term, which only receives a contribution when both partons
are inside the jet, so z = 1. In the following sections, we only report on AG;, which encodes
the dependence on the grooming procedure and only depends on the scale y through the
strong coupling. Using eq. (2.5), we write

gi(Z, AE, pTR7 :u) = Z ‘]l] (Z)pTRv H) [5(AE) + Ag] (AEv pTR7 Qs (N)):| + O(O[g)
J

=Y Jij(z,prR, ) G (A, prR, as(n)), (2.6)
J

conveniently separating the formation process of inclusive jets (.J;;) from the grooming and
A measurement (G;) [84, 90]. Note that eq. (2.6) is not a separation of physics at different
scales. Upon summation over the flavor index j, we recover the semi-inclusive jet function

Ji(zapTRmu) = ZJij(Z?pTRuu) . (27)
J



The coefficients J;; are given by [90]

2
Tl v = 001 = 2) ¢ 52 in (50 ) i) (2.8)
+CF[—2(1+22)(1I151__ZZ)> + (123 - 2§2>5(1—z)—1+z”,
+

Qg 2
Jog(z, pTR, 1) = p [(ln (pQMR2> —2In(1 — z))qu(z) - C’Fz} ,
T

Joq(z, DT R, 1) = ;—; [(ln (p;;) —2In(1 — z))qu(z) — Tr22(1 — z)] ,

Jog(z,pr R, ) = 6(1 — 2) + ;;{ In (pg;)ng(z) _40a(1 —Zz + 22)? <1n§1_—zz))+
+ {CA<152 - 23”2) + 350}5(1 - 2)} .

2.2 The soft drop grooming algorithm and its variants

We start by reviewing the original soft drop (SD) algorithm, introduced in ref. [7], which
iteratively goes through the clustering history of a jet, eliminating soft branches until the
so-called soft drop criterion is satisfied. First, an inclusive jet sample is identified with
the anti-ky algorithm [91], which clusters particles pairwise according to their geometric
distance in the (7, ¢) plane and the inverse square of the transverse momenta (relative
to the beam). The transverse momenta of these jets correspond to the ungroomed jet
pr. Second, each of the obtained jets is reclustered with the Cambridge/Aachen (C/A)
algorithm [92, 93]. Different from anti-kr, the C/A algorithm only depends on the pairwise
geometric distance of particles. Therefore, particles that are closest in distance are clustered
first, yielding an angular-ordered clustering tree. Third, the obtained reclustered C/A
jet is declustered recursively to identify soft branches. At each step of the declustering
procedure, the transverse momenta pp;, ¢ = 1,2 of the two branches and their relative
distance ARy = ((m1 — 1m2)? + (¢1 — ¢2)?)'/? are considered. Whether or not the softer
branch is removed from the jet, depends on the soft drop criterion

i AR2\?
min [pr1, pro) S e ( 12> ‘ (2.9)

pr1+ P12 R

Here the soft threshold 2.yt and the angular exponent § are free parameters that specify
the grooming procedure.? If the branches fail the criterion, i.e. the splitting is too soft, the
softer branch is removed and the declustering sequence continues following the more ener-
getic branch. Once the soft drop criterion is satisfied, the grooming algorithm terminates
and all remaining particles in the two branches constitute the groomed jet. If no branching
satisfies the soft drop criterion, the last single particle is considered to be the groomed jet.

The observable we consider in this work is the relative difference Ag of the jet energy
or jet transverse momentum before and after grooming, which will be discussed for the
original soft drop algorithm in section 3. In the case of soft drop grooming, the factorization

2The case 3 = 0 corresponds to the modified mass drop tagger (mMDT) [45].



— Fails SD condition
— Passes SD condition ...

Figure 2. Illustration of the (iterated) soft drop grooming algorithm. Branches along the most
energetic branch (black) are tested against the soft drop condition, starting from the left. The reg-
ular soft drop algorithm terminates when the first branch, here (B), passes the soft drop condition,
which defines the soft drop groomed radius R,. Instead, iterated soft drop continues testing all
branches at smaller angular scales, here (C), (D), where (C) is also groomed away in this example.
The dotted lines correspond to branchings that are not tested against the soft drop condition in
either case.

and resummation of Ag involve the groomed jet radius R4, which is the geometric distance
between the two branches that satisfy the soft drop criterion, R, = AR;2. For convenience,
we often use the normalized groomed jet radius 6, = Ry/R.

In this section we consider Ap for the iterated soft drop (ISD) algorithm [8]. This
differs from the original soft drop by continuing with the grooming procedure, following
the more energetic branch after the soft drop condition is satisfied.?> This continues until
only one particle is left and, thus, the entire jet is declustered. The groomed jet is then
given by all particles that are contained in branches that satisfy the soft drop condition
along the way. In the remainder of this section, we present a calculation of the cross section
differential in Ag for this grooming algorithm. See figure 2 for an illustration of regular
and iterated soft drop.

2.3 Fixed-order results

When the jet energy drop Ap and the grooming parameter z., are not parametrically
small, i.e. Ag, zcut are both order one, a fixed-order calculation of the relevant jet function
AggSD is sufficient, which we present here. In section 2.4, we will consider the case where
they are parametrically small and lead to large logarithms in the jet function, requiring
resummation.

To calculate the jet function AQ%SD, we can use the squared matrix element and the
phase space in the collinear limit [94]

as eE’YE IUz 2e 1 d.CC
Dyo§, = = (=
/d 2024 T I‘(l — 6) (E) /0 (m(l — 1-))25 Crp

1+a? de

/d% 7o = O:F(elee) (g>2€ /01 (z(1 CiIﬂc))% {CA 1 f s 1 ;m el - xﬂ
—I—nfTF[mz—l—(l—x)z—%x(l—x)]}/éudf%, (2.11)

3 Alternatively, both branches can be followed, which is known as recursive soft drop [9], and will not be
considered in this paper.



where 0 is the angle between the two partons and FE is the energy of the parton initiating
the jet.* The one-loop jet function for soft drop and iterated soft drop identical. However,
differences appear at higher orders, leading to rather different factorization structures. The
measurement function for the jet function for (iterated) soft drop is given by

AgISD (AE7 pTR Zcut s 67 Qs (/’L))
/H@y@#)@<l€“ﬂm>zthR))(1—x>zwAWRVWXAE
+0(z > 2t (0/R)?)O(1 — 2 < 2t (0/R)?)3(AE — (1 — )

-+@@<zmwaWxxy_x>%mwﬂa%&AE—x)_aAEﬂ. (2.12)
The last term subtracts the semi-inclusive jet function, as required for AQ%SD, see eq. (2.5).

Performing the integrals and expanding in distributions, we find for quark and gluon jets
the following results

AgISD (AEa pTR7 Zcut, /87 Qg (:u’))

- 2sCr 1 {@(AE < Zcut)|: 2 [mAE} +2In zeyt ——

T B
2 Ag
* (3_ 1 _AE> ln(zcut>

+MAEw—hﬁ%m+3%m—2mﬂ%mﬂ}, (2.13)

[AE]

AQ;SD (AEv pTR7 Zcuts /87 Qg (/’L))

IHAE
E

= 045 1{ (AE < Zcut)(—QCA

+2C 4 In zewt ——
T f

1
+ [Ag]

_2+AE_A2E) +2nsTr (A%Jr(l —AE)2)]1H(AE)>

Zcut

— 20,4(

1
1-Ag
2 Zu 23 :
Cal —In® zeut + 42cut — 9 + §zcut - 2L12(Zcut)

+(AR)

4
+ nfTF <—Zcut + zfut 9 g’ut> } } . (2.14)

From eq. (2.13) we read off that the jet energy drop is bounded by Ap < zey at NLO.
Note that by construction (see eq. (2.6)) we have

1
/ dAp AGSP(Ap, prR, zeus, B, as(i)) = 0. (2.15)
0

As a consistency check, we investigate several limits of the grooming parameters. First,

we consider the limit 3 — co. As can be seen from eq. (2.13), the entire jet function AGSP

is proportional to 1/ and vanishes in this limit. Indeed, for § — oo the soft drop condition

4For a jet at central rapidity E = pr and the distance in (7, ¢) corresponds (approximately) to an angle.
Boost invariance implies that our calculation is valid for general rapidity.
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Figure 3. Comparison of the full one-loop result for jet function for iterated soft drop AGHSP (solid
red), its singular (dashed blue) and non-singular terms (dotted green), for jets initiated by quarks
(left) and gluons (right).

in eq. (2.9) is always trivially satisfied and no branches are removed from the jet. Second,
since AQ}SD is proportional to 1/ we cannot take the limit § — 0 at fixed order. Indeed,
for iterated soft drop, the jet energy drop with 8 = 0 is not IRC safe. For regular soft
drop the case 8 = 0 is still Sudakov safe, as discussed in section 3.4. Third, we consider
the limit zcyy — 0, which (similar to § — oo) corresponds to the limit of no grooming.
To see more clearly that AQ%SD also vanishes in this limit, we rewrite it as follows: the
plus distributions in eq. (2.13) are defined such that they vanish when integrated over the
interval 0 < Ag < 1. We can rewrite these distributions such that they instead vanish
when integrating over the interval 0 < Ap < zcyt of the theta function that multiplies
the distributions, which we indicate by the subscript ©+. For example, for the quark case

this yields

AQ;SD - asﬂ_C'F;{@(AE < Zcut) |: —2 |:IHAAE T 2In Zcut[Al]
E lo+ Elo+
. (3 _ 2) In (AE) } + 6(Ap) [32us — 2Lia(zeut)] } , (2.16)
1-— AE Zecut

and similarly for the gluon, making it clear that AggSD vanishes in the limit zcy; — 0.
We end this section by comparing the singular terms, obtained by expanding Ag}SD
in the limit Ap < zeqt < 1, to the full NLO expression of |AQZ<ISD|, shown in figure 3.
We chose representative values of the soft-drop parameters and jet kinematics, indicated
in the figure. We observe at NLO the non-singular power corrections, which equals the
difference between the singular terms and the fixed-order NLO, are very small compared to
singular terms at NLO over the entire range of Apg, suggesting the importance of all-order
resummation, which is discussed in the next section. Because the non-singular is so small,
we do not include it as a matching correction, since its impact on our results is negligible.

2.4 Factorization and resummation

In this section we discuss the refactorization of the jet function for iterated soft drop, which
will enable the resummation of the logarithms of the jet energy drop Ap and grooming
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Figure 4. Lund diagram for the jet energy drop A for iterative soft drop grooming, with Ap <
Zeuy € 1. At LL accuracy, emissions in the shaded triangle are vetoed. The relevant modes in SCET
correspond to the red dots at the corners of the triangle, with their power counting summarized
in table 1.

parameter zcyt. Typically zeys = 0.1 (we will consider larger values as well), so we assume
the parametric scaling Ap < zeyy < 1. We start with a leading logarithmic (LL) analysis
of the jet energy drop, by analyzing the Lund diagram [95] shown in figure 4. By using
the logarithm of the angle # and momentum fraction z on the horizontal and vertical
axis, emissions have a uniform probability distribution in this plane at LL accuracy. The
grooming condition and the measurement are indicated by the two dashed lines. For
the cross section with jet energy drop below some value Ag, emissions inside the shaded
triangular area in the Lund plane are not allowed. Such emissions are not groomed away
and therefore lead to a value of the jet energy drop that is larger than Ag. Here it is
important to note that for iterated soft drop all branches along the leading branch are
tested against the soft drop condition, whereas the original soft drop terminates once the
criterion in eq. (2.9) is met. From the area of the vetoed region we can calculate the LL
expression for the cross section cumulative in Ag, from which we obtain the differential
result by taking the derivative:

GE° (A, prR. e fras () 2 S e[S ()] (2an)
The color factors are Cy = Cp (Cy = C4) for jets initiated by a quark (gluon).

We will now extend the resummation to NLL’ accuracy using SCET. The power count-
ing of the relevant modes in the effective theory can be read off from the Lund diagram, and
correspond to the red dots at the corners of the triangle. There are two soft modes Sz and
Sa located on the vertical axis, which are sensitive to the jet boundary as well as the energy
drop and grooming condition, respectively. In addition, there is a collinear-soft [96, 97]
mode Sy, located at the intersection (hence the subscript X) of the two dashed lines rep-
resenting the measurement and the grooming condition, which it is therefore sensitive to.
We note that for iterated soft drop there is no hard mode, which would correspond to the
origin of the Lund diagram, in contrast to most jet substructure observables. Physically,

~10 -



Mode: Function: | Scaling (n-p,n-p,p1)

soft SG Zcut PT (R27 17 R)

soft Sy Agpr(R*1,R)

collinear-soft | Sx Agpr ((ii)WBR{ L, (ii )l/ﬂR)

Table 1. The modes in SCET that enter in the refactorization of the jet function Q}SD for the jet
energy drop with iterated soft drop, with Ap < zeut < 1.

this arises because energy drop with z.y, < 1 only probes (collinear-)soft radiation. The
relevant scaling of the three modes is summarized in table 1, in terms of the light-cone
components of their momenta,
. nt nt
p“:n-p7+n'p? +7 (2.18)

where n# = (1,0, 0, 1) is along the jet axis, n* = (1,0,0, —1), and p/| denotes the transverse
components. This leads to the following factorization formula for Q~ZISD,

QNZISD (AEa pTR) Zcut Ba Qg (,U,)) NgL Si,G(zcutpTRa ﬁ? ,LL) /dA/E S’i,Z(A/Ea pTR7 :u) (219)

< Six(Bp — A,z prR ) SY(22)).
Zcut
To achieve NLL' accuracy, we also include the contribution from non-global logarithms,
which are accounted for by the non-global function SNY, discussed in section 2.5. Strictly
speaking, the NGLs should also be included through a convolution in Ag, but the difference
with the multiplicative treatment above is beyond the accuracy we are working at, see
section 2.4 of ref. [90].
The one-loop expressions for other three functions in eq. (2.19) are given by

aC; H m
: - B, =14 —== ) 22 — 7, 2.2
Si,c(Zewtpr R, B, p) =1+ m(1+B) { ! (ZcutpTR) " 24} 20

OzSCi In AE 2 K
Si A 9 R7 =0(A + {2 |: “ AL ()
z(Ag,prR, 1) = 6(Ag) - Ag 1y [Agly  \prR

+6(Ap) [m? (p“) o } , (2.21)

ozSCi{ 1+ {lnAE]
T +

_9 T F
B Ag

2
+ ln( )
[As], zc_ult/ prR

+6(An)5 fﬁ {m?(zgult/;pﬂ%) + ;ﬂ} (2.22)

Six(Ag, ot PPTR, B, 1) = 6(Ag) +

We limited ourselves to reporting only the finite terms of the different functions, as the 1/
poles can be reconstructed from the In i terms. We have verified that all In 1 terms cancel
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in eq. (2.19), and that the remainder agrees with the NLO result in eq. (2.13) in the limit
Ap < zZeyw < 1, providing a check on the refactorization.
The natural scale of each mode is given by its virtuality. Reading off from table 1,

nsg ~ zZetprR,  ps, ~ ApprR, pg o~ NG prR. (2.23)

By evaluating each function in eq. (2.19) at its natural scale, and evolving them to a
common scale p through renormalization group (RG) equations, we achieve the joint re-
summation of logarithms of Ag and z¢,t. The RG equations are given by

d
ﬂ@ Si,G(zcutpTR, B, ,LL) = '}’fg (ZcutpTRa /Ba ,u) Si,G(ZCutpTR7 Ba M) ) (224)

d
/’L@ S’L,Z(AEa pTR7 ,U,) = / dAIE fYZSZ (AE _A/Ea pTR7 ,U,) Si,Z(AlEv pTR7 /’L) ) (225)

d

M@ Six(Ag, Z(;llt/BPTR, B,p) = /dA,E VX (Ap— AL, Zc_ult/ﬂpTRyﬁau)

x 8 x (A, 2o/ PprR, B, 1), (2.26)

where the corresponding anomalous dimensions can be found in the appendix A.

Next we discuss in some detail how we solve the different evolution equations, as similar
techniques will be employed for the other grooming techniques discussed in subsequent sec-
tion. Evolving the function S; ¢ from initial scale po to the scale i, using the multiplicative
RG equation in eq. (2.20),

Si,G(ZcutpTR7 67 M) = Ui,SG (ZcutpTRa ﬁa 122 /LO) Si,G(ZCutpTRa ﬁa /’LO) )

2 sy [ 1O — 25 (1st0)
Ui cu Ra s [y = ¢ TEp IR0 — . 227
The two functions K and 7 are given by
as(1)  de o do/
Kimpo) = [ 25 Tia) [ , (228)
as(po) Be) as(uo) B(e)
as()  do
mupo) = [ @), (2:29)
as(uo) B(a)

following the convention of refs. [98, 99]. Here, f(«) is the QCD beta function and T'; is
the cusp anomalous dimension, which allow for a perturbative expansion

ﬁ(as)z—zasgﬁn (%) <as)=§rz (%) e

The relevant coefficients 5; and I'; are given in egs. (A.1) and (A.2). We evaluate the
integrals in eq. (2.28) and eq. (2.29) up to NLL accuracy

K (po, ) = Lo {M <1llnr)+(nﬁ1> (1r+lnr)+ﬁlln2r},

482 Las(po) T Lo Bo 250
(2.31)
Y as (o) (T1 B
(1o, i) = ~25, [lnr +t (Po - ﬁo) (r— 1)] ; (2.32)
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Fixed-order B8 v NGLs
InR LL tree 1-loop 1-loop —
NLL 1-loop 2-loop  2-loop —
NNLL 2-loop 3-loop  3-loop —
InAg,Inzt LL tree 1-loop 1-loop —
NLL tree 2-loop  2-loop LL
NLL' 1-loop 2-loop  2-loop LL
NNLL 1-loop 3-loop 3-loop NLL

Table 2. The required perturbative ingredients needed at different orders (rows) for the resumma-
tion of logarithms of the jet radius R, jet energy drop Ag and grooming parameter z.,; for iterated
soft drop. The columns indicate the order of fixed-order ingredients in the factorization, the QCD
beta function 3, the anomalous dimension v and NGLs.

where 7 = as(p) /s (o). Similarly, for the evolution equations of the functions S; z and
Six, we find

Siz(Ap,prR, 1) = /dA’E Ui, z(Ap—Ag, prR, i, po) Si,z(Ag, prR, po) , (2.33)

SLX(AE, Zc_ult//BpTR, 5, ,U/) = / dA,E U’i,SX (AE _A/E7 Zc_u%g/ﬁpTR7 67 s MO)
x Si x (Ng 2! “prR. B, o), (2.34)

where the corresponding evolution factors can be written as

e?Ki(,UmeO) <M067E >277i ('u “0) [ @(AE)

Uis, (Ag,prR, p, p1o) = ] , (2.35)

L [—2n;(p, o)] \ prR ALF2G0)
/B 67%[(1’(#:#0) iﬁ —2m; (1, 10)
U. s (Mg, 2o PprR, By iy o) = ——————— | €72
i (B Zeud T 2 T [20;(p, 110)] pTR
O(Ag)
- [Al—%(uu)] | (2:36)
E +

The convolutions of the above evolution factors and the soft functions at the initial scale pg
in eq. (2.33) can be carried out following e.g. refs. [98, 100]. For completeness, we summarize
the required perturbative ingredients in table 2. An analogous counting of the perturbative
accuracy applies to the other grooming techniques discussed in subsequent sections.

2.5 Non-global logarithms

Non-global logarithms (NGLs) start contributing to the jet energy drop at next-to-next-to-
leading order (NNLO). For iterated soft drop, we will show that the NGLs are related to the
hemisphere case, for which a fit to the leading logarithmic resummation [54] or a perturba-
tive expansion is available [101], in the large- N, limit. We will show that for our phenomeno-
logical results, the effect of NGLs beyond their leading NNLO contribution is negligible,
and therefore limit ourselves to this contribution for the other grooming procedures.
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Figure 5. Non-global soft contribution SN for the jet energy drop for iterated soft drop, for i = ¢
(blue) and ¢ = g (green), including two-loop (dotted) and three-loop (solid) contributions. The
dotted vertical line shows the onset of the nonperturbative region.

The NGLs for iterated soft drop originate from correlations between the two soft
modes Sg and Sz, see figure 4. As jets were identified using the anti-k jet algorithm,
which provides a hard boundary for soft radiation, we do not have to take into account
clustering effects. Starting with the NGL at NNLO, we exploit the small R limit to map
the in- and out-of-jet region to two hemispheres [102]. In the strong energy-ordered limit
of two soft gluon emissions [54]

2
s drid d d
SF (AR, Zeut) _1+80iCA(a> /mm/dcl(bl/d@@@(xl > 1)
2 T1 T2 2w 2

Cos (9
(1 —c1c — 5152c08 p2) 5152

X [O(c1 <0)4+O(c; > 0)0(x1 > Zcutgf)]

X

X [@(CQ < O) + @(CQ > O)@(I’Q < AE)] , (2.37)

where 6; are the polar angles of the emissions with ¢; = cos; and s; = sin#;, and x; =
kr;/pr their energy fractions. The constraints on the soft radiation that are specific to
the measurement can be read off from the Lund plane in figure 4 and are encoded in the
theta functions on the second and third lines. Specifically, the energy fraction of the most
energetic emission has to pass the soft drop criterion if it is inside the jet, whereas the
second one has to be less than Ag if it is inside. We can replace z1 > zcutﬁ’f by 1 > zcut,
up to subleading NGLs, because 67 ~ 1 in the frame where the in and out-jet region are
different hemispheres. Outside the jet both emissions are unconstrained. Out of the four
resulting contributions, the term ~ ©(c; < 0)©(cz < 0) is scaleless, and the other three
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terms add up to give®

72 s\ 2 Ag
SFO (g za) =1 - O (52) W2(22). (2.39)

Zcut

This is the usual result for the leading NGL in the hemisphere case, where the argument
of the logarithm squared is now given by the ratio of the characteristic scales of the two
functions Sg and Sz in eq. (2.23). We emphasize, however, that this is NGL does not
arise in the standard way, as both the high and low energy restrictions are imposed on the
same hemisphere.

We plot the numerical size of the NNLO non-global contribution to the jet energy drop
distribution in figure 5 for quarks and gluons as a function of Ag. The region to the left of
the dotted vertical line is nonperturbative, as the softest scale in the factorization formula
1g, (see eq. (2.23)) drops below 0.5GeV. Outside the nonperturbative region, the effect
of NGLs is less than 10%. Although this NGL does not arise in the standard way, we
still expect that the higher-order corrections are also the same as for the hemisphere case.
Thus we explore the effect of higher order corrections using the solution [101] of the BMS
equation [56]. We find that the effect of the three-loop contribution is (much) below the
percent level, outside the nonperturbative region, as shown in figure 5. The two-loop NGL
is thus sufficient for our numerical results in section 2.7, and we adopt the same practical
approach for the grooming algorithms discussed in the subsequent sections.

2.6 Profile functions and scale variations

We will now describe our central scale choice, taking particular care to avoid the Landau
pole in the nonperturbative region. The scale variations used to estimate the perturbative
uncertainty will also be discussed.

We observe from eq. (2.23) that the softest scale s, determines the nonperturbative
region of the A distribution,

Ao, 1/8 B/(1+8)
Ap < (1;’;’]%“) . (2.39)

Here we take Anp = 1.5 GeV as the value where the scale starts becoming nonperturbative.
For instance, we used this value of Axp in eq. (2.39) to determine the position of the dotted
vertical line in figure 5.

To prevent the strong coupling constant a, from running into the Landau pole for
small Ag, we use profile functions [100] to freeze the scales at some value Ageeze above the
Landau pole. The transition to the fixed-order region (where A is large) does not require
special care, because the non-singular contribution is so small, see figure 3. We make the

®Integrals over z; that include 0 in the integration domain are divergent. To calculate these, we note
that the integral over 0 < z; < 1 does not yield a large logarithm, allowing us to rewrite the original
integral as minus the integral over the complement, which is convergent. The infinities cancel between real
and virtual contributions. A similar approach can be used for the angular integral for emissions in the same
hemisphere.
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following choice to smoothly transition

x T > 2x0 region I,
T;x0) = 2.40
Joro(; 20) { zo[1 + (/70)? /4] x < 2x9 region II. (240)
Our central scale choice is given by
o 1 —1
/‘%ext = fpro(A(E'+B)/Bzcut/ﬁpTR; Afreeze) 5
1 B

1Sy = (g (zeuprR)?) 7

Mg‘?t = ZcutpTRa

lucgent = pTR )

usg™ = pr, (2.41)

where it is important to relate the two scales which depend on Apg, such that ucseznt also

cent
Sx
the latter two scales, the hard scale and jet scale, enter our calculation through the jet

stops running when the softer scale p enters the nonperturbative region. Note that

production described in section 2.1. We make the choice
Atreeze = 0.2 GeV (2.42)

throughout this paper, which ensures that we see the Sudakov peak.

QCD scale uncertainties are obtained by varying the scales of Sx, Sz individually up
and down by a factor of 2 around their central value. We also vary the scales of Sg, G, H
simultaneously because there is not a large hierarchy between them, since R = 0.8 and we
generally take z.y, = 0.5. Finally, we vary all scales simultaneously up and down, and take
the envelope of these variations to obtain the uncertainty band.

2.7 Numerical results

In this section we present our numerical results for the jet energy drop for the iterated soft
drop algorithm, comparing to PYTHIA 8.2 simulations [103]. We consider LHC kinematics
at /s = 13 TeV, reconstructing jets with the anti-kp algorithm and R = 0.8 in the rapidity
range of |n| < 2. Throughout this work, we use the CT14 NLO PDF set [104].

In figure 6, we show our results at NLL and NLL’ accuracy for the jet energy drop,
and the corresponding results for PYTHIA at parton level, including initial- and final-state
radiation. The different panels correspond to different jet transverse momentum intervals
ranging from pr = 30 to 1200 GeV, and we choose the grooming parameters zcyy = 0.5
and 8 = 2. For the NLL' curves, we include the perturbative uncertainty bands, following
the procedure in section 2.6. We indicate the onset of the nonperturbative region by a
dotted vertical line, corresponding to pig, ~ 1.5GeV (see eq. (2.39)). We use a differential
scale setting, which leads to a good prediction for the shape but only ensures the correct
normalization up to higher-order corrections. We address this by simply normalizing our
distribution, though there are more refined proposals (see e.g. ref. [105] for a discussion in
the context of the thrust event shape). The NLL' result becomes unreliable (negative) at
small Ag, because of large perturbative corrections from Sy, and would anyway need to
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Figure 6. Jet energy drop distribution with z.,t = 0.5 and § = 2 at NLL (dashed blue) and
NLL’ accuracy (orange curve and band), compared to PYTHIA (dashed purple). The different
panels correspond to different jet transverse momenta. The central curves are normalized to unity
between the dotted vertical line and the endpoint Ag = zcyus.
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Figure 7. Comparison of the QCD scale uncertainties at NLL and NLL', for the lower left panel
of figure 6.

be supplemented by a nonperturbative model. We therefore use the respective NLL curve
(which is always positive) to obtain the normalization factor for the individual quark/gluon
predictions and apply this to the NLL’ curves as well. After combining these with the
appropriate quark/gluon fractions we normalize the prediction by the cross section & on
the interval between the vertical dotted line and the endpoint at Agp = zcyt, to limit the

17—



7 T 1 L o e LI o o o B
60 £ l\[ 3oV p, 210001200 GOV, R = 0.5, \n\ <2 E s =13 Tev pr = 1000-1200 GeV, R = 0.8, [ < 2 3
o |= Iterated Soft Drop, z., = 0. 5 7 60 " Iterated Soft Drop, 3 = 1—:
50 it 3 4 E
Eei ] 50 ¥ -
Cle 1 H o E
« O - =3 7 A Sm zaw =0.05 3
_g < Eed o 3a_9 14 = Esw e Zeut = 0.1
< 30 B 9
~i Ok “ o =03
Co v e e Zeut = U.
20 B cut E
10 B 3
£
0 i fiirahe S CI eedoan 1]
0. 0.15 0.2 0.25 0.3

Ap
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Figure 9. PYTHIA results for the jet energy drop with iterated soft drop at parton level (blue),
including hadronization (red) and also MPI (green), for pr = 30 — 50 GeV (left) and 100 — 200 GeV
(right). Note that these curves are normalized on the full Ag interval.

sensitivity to nonperturbative physics in the perturbative region. We note that the NLL
results lie within the uncertainty band of the NLL’, instilling confidence in the convergence
of resummed perturbation theory. We also find generally good agreement with PYTHIA,
with the largest differences in the nonperturbative region, as expected. We observe that
for lower jet pr the jet energy drop distribution peaks at larger values and is generally
broader, which arises from the larger value of as.

As an example, we show the QCD scale uncertainty at NLL and NLL’ accuracy in
figure 7. We observe a dramatic reduction of the uncertainty band at NLL’. This il-
lustrates the need to perform perturbative calculations at least at NLL’ accuracy, where
scale variations in the RG evolution kernels are partially canceled by the NLO results of
the different functions, and is the reason we omit the uncertainty band for NLL curves in
subsequent plots.

In figure 8, we show the dependence of the jet energy drop on the grooming param-
eters zeyt and B. We consider jets with pr = 1000 — 1200 GeV to limit the effect of the
nonperturbative region. In the left panel we fix z.yt = 0.5 and vary S, while in the right
panel we choose 5 = 1 and vary zcu. As expected from eq. (2.9), the energy drop becomes
smaller in the limit § — oo and 2.y — 0. Indeed, in these limits, the jet energy drop
distributions approach a delta function at Ay = 0 (apart from nonperturbative effects).
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In figure 9, we study the effect of hadronization and multiple parton interactions (MPI)
on the jet energy drop in PYTHIA, for two different bins in the jet transverse momentum.
The effect of hadronization is huge: in particular, for jet pr = 30 — 50 GeV about 17%
of the jets at parton level are unaffected by grooming (i.e. A = 0). The effects of MPI
are sizable and affect the whole distribution: the radiation due to MPI is uncorrelated to
the primary scattering and therefore fairly uniformly distributed over the jet, such that
grooming always removes a substantial part of them, independent of the value of Ag. This
has of course the desired effect of removing them from the groomed jet, but makes our
observable particularly sensitive to MPI. Hadronization mostly affects the peak region,
shifting its location to the right. The effect of hadronization extends over a larger range of
A g than one would expect from the onset of nonperturbative effects estimated in eq. (2.39).
The effect of both hadronization and MPI is reduced at higher jet energies.

3 Soft drop

In this section we present the calculation of the jet energy drop using regular soft drop
grooming. As discussed in section 2.2 above, the soft drop algorithm terminates once
a pair of branches satisfies the criterion in eq. (2.9). Therefore, the soft drop condition
is not applied to emissions that are at smaller angles than the opening angle between
the two branches that satisfy the grooming condition. This leads to a different and more
complicated factorization structure than for iterated soft drop, involving the angle between
the two branches that satisfy the soft drop condition.

In our factorization analysis, we consider the cross section differential in both the
energy drop Ag and the opening angle of the two branches Ry = 6,R. We identify two
separate regimes, depending on the relative size of Ag, 8,, and z.u, as discussed below.
After the resummation is performed, we can remove the dependence on ¢, by integrating
over it, or, alternatively, calculate the cross section for jet energy drop with a cut on
0y < 05", A related factorization structure was found in ref. [14], for the angle between
the standard and the groomed jet axis. Both observables probe the radiation which is
groomed away by soft drop, and are therefore very soft sensitive. Indeed, imposing a cut on
64 reduces the soft sensitivity of the jet energy drop, as will be demonstrated in section 3.7.
In addition, it can be advantageous for experimental measurements. The (modified) LL jet
energy drop cross section was calculated in ref. [7], by means of a conditional probability.
We will also explain the connection between this approach and our double differential
factorization.

We start by presenting results for the jet function differential in both Ag and 6,
at NLO in section 3.1. In section 3.2, we discuss in detail the refactorization of the jet
function, separated into two factorization regimes, and the resummation of logarithms of
Apg, 04 and zey, including non-global logarithms. We show how the global logarithms
can be reproduced by means of a conditional probability in section 3.3, and discuss the
Sudakov-safe case 8 = 0 in section 3.4. In section 3.5 nonperturbative effects are discussed
(in particular for the case where there is a cut on §,), and our scale choices are presented
in section 3.6. Finally, in section 3.7 we present numerical results for LHC kinematics and
compare to PYTHIA results.
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3.1 Fixed-order results

In our factorization analysis, we need to account for the groomed jet radius 6,, since
its value modifies the structure of the large logarithms in the jet energy drop Ag. In
particular, we will jointly resum large logarithms involving Ar and 6, to all orders in a.
We therefore calculate the double-differential jet function at NLO, which will provide a
check on our factorization. However, only the jet function differential in Ag enters in the

final result (unless a cut on 6, is imposed).
At NLO, AGPP is calculated from
AGIP(Ap, g, prR, 2o, B, ois(11)
_ /dq>2 05,000 < R) [0z > 20 (0/R)))O(1 — & > 200t (0/R)*)3(Ap)3(6, — 0/R)
+0(z > 2t (0/R))O(1 — 2 < 20t (0/R)P)5(AE — (1 — 2))5(6,)
+0(@ < 2w (0/R)")O(1 = & > 2w (0/R)*)3(Ap — 2)3(6,) — 6(AR)3(0,)]
(3.1)

At this order terms are either oc §(6,), when one parton fails the soft drop criterion, or
x §(Afg), when both pass. The final term subtracts off the contribution already contained
in the semi-inclusive jet function, see eq. (2.5). For quarks and gluons we find to NLO

AQED(AE, 097PTR7 Zcut s /87 as(u))

sC In6 3 1
= 2585100, < 1| (-2+ 3203 [H2] (2020w = § + B2
™ 6)g + 2 [99]+
2 1 InAg 1
+ —1In(1 — 6524y ]+@A < Zeut)0(0 {2{ ] 4+ 21In zZeyt ———
0, (1 =05 zcut) 5 (Ap +)0(0g) A ). ‘Bl
AgSD(AEa egv pTRa Zcut Ba Qg (:LL)) (33)
s Inf6
= 9s (5(AE)@(eg < 1){0A (— 22 £ 922, — 9z§ut>5[”
s 2 By *
3 9 1 2
+ ( 2In zeut — =Zcut + —zfu — 3zg’u ) + —1In (1 — zcut96>
2 2 ! ’ [99]4_ eg g
In6 1
+ @ |:<3ZC11t - 6202ut + 6Z§ut)ﬂ|: ne ! + (_1 + 3Zcut - 3zgut + 2Z§ut)7 ]
2 g 14 [ 9]+
1 IHAE 1
+ =6(0,)9(AEr < zeu [C’ {2[ +2In 2oyt ——— ]
B ( g) ( E t) A AE’ N t [AE]+
2 2 2 2 Ag
— Cy —4—|—2AE—2AE —I—anTF AE—I—(l—AE) In({ —
1-Ag Zcut
1 2 Zzut 2 3 2 4 3
+55(9g)5(AE) Ca(—In" zeus +42zcut — 5 +§zcut +nTr —zcut—l—zcut—gzcut .
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Figure 10. Numerical results for the singular, non-singular and fixed-order result of AGSP for soft
drop as a function of the groomed jet radius 6, for the same jet kinematics as in figure 3 and with
grooming parameters § = 1 and zqy = 0.3.

As is clear from the 1/ poles in the above expressions, the jet energy drop is not IRC safe
for soft drop with 5 = 0. However, unlike for iterated soft drop, 8 = 0 is Sudakov safe, as
will be discussed in section 3.4. Alternatively, it is also IRC safe if a cut on 6, is imposed,
which removes the singularity at 6, = 0.

Upon integration over the groomed radius 6,

1
/0 deg Ag’LSD(AE7 997pTR7 Zecut s 67 Qg (M)) Ngo Ag’LISD(AEv pTR7 Zcut s /87 Qg (/’L)) . (34)

we obtain the jet function for iterated soft drop in eq. (2.13). Consequently, the size of the
logarithmically enhanced terms in the jet function is the same as for iterated soft drop,
shown in figure 3. For completeness, we also plot the NLO jet function AQZSD as a function
of 6, to further assess the numerical size of the power corrections to the singular terms in
the limit Ap < zeut < 1. The results in figure 10 show that the power corrections are small
as long as 0, is not too small. We impose a sufficiently large 0;‘“ in our phenomenological
studies below, and thus do not need to include a matching correction.

3.2 Factorization and resummation

We will consider the kinematic regime where Ap < 2oyt < 1 and 6, < 1. We obtain
two different factorization formulae, depending on whether 6, is (parametrically) larger or
smaller than (Ag/ zcut)l/ A discussed in sections 3.2.1 and 3.2.2, respectively.

3.2.1 Regime A

The Lund diagram for regime A is shown in the left panel of figure 11. The dashed lines
show the measurements of Ap and 6, as well as the grooming condition, as indicated in

the figure. The cumulative measurement of the groomed radius 6, < 67 vetoes emissions
e
refs. [7, 13]. In addition, we now measure the jet energy drop Ap < A%. Emissions with

in the red region with momentum fraction z > zey(8/R)? and angles /R > 6¢, see also

2 < zewt(0/R)P and 0/R > 0, are groomed away, and contribute to the measured value of
Ap. Therefore, emissions are vetoed in the blue region. For 6, < (Ag/ zcut)l/ P we thus
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Figure 11. Lund diagrams for the energy drop of a soft-drop groomed jet in the region Ap <
Zeut < 1 and 0, < 1, for regime A (left) and B (right). The relevant SCET modes are indicated
by red and green dots, and their power counting can be read off, see table 3.

Mode: Function: | Regime A Regime B

hard H pr(R* 1, R)

soft Sy Appr(R?1,R)

collinear ceer pr(R:, 1, Ry)

collinear-soft | Sg zcut9§pT(R§, L, Ry)

collinear-soft | Sx AEpT<(wat)2/BR2, 1, (i—i)l/ﬂR)

collinear-soft | Sy Agppr (R§7 L, Ry)

Table 3. The scaling of the modes that enter the factorization formulae of the jet energy drop
cross section in the kinematic region where Ap < zoyy < 1 and 6, = Rg/R < 1. Regime A (B)
correspond to 6, being smaller (larger) than (Ag/zeu)'/?.

obtain the Lund diagram as shown in figure 11. Note that to simplify the notation, we
omit the superscript ¢ for cumulative variables in figure 11.

We start with the resummed result at LL accuracy, which can be calculated from the
vetoed red and blue shaded areas of the Lund diagram. This gives the cumulant from
which we obtain the double-differential result by taking derivatives with respect to both
Apg and 6,

(3.5)

QEE(AEvegvaRv Zcutaﬁ?as(u))
d d sy 1 cu
LL exp{—ac {Bln2(ZAEt)+2lnzcutln99+ﬁln299]}.

~ dAg do,

We extend this beyond LL using a factorization formula within SCET, for which the
modes correspond to red points at the intersections of the dashed lines in the left panel
of figure 11. The parametric scaling of the momenta of the hard, collinear, soft, and
collinear-soft modes are summarized in table 3. (Because this is a refactorization of a

collinear function, these modes are strictly speaking hard-collinear, collinear, etc.) The
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resulting factorization, differential in Ag and 6, is given by

g~ls,1]2 (AEaeg?pTRa Zcutyﬂaas(/'é)) (36)

NLL d

TR [H (prR, 1) ¥ (Ogpr R, 1) S (2eusly P pr R, B, 1) SNETAC (200405
g

X /dﬁﬂg Six (A, prR, Zeut, B, 1) Siz (A — A, prR, 1) SN (AR)| -

The hard function H; is only sensitive to the jet scale and does not depend on Ag and
4. Note that for iterated soft drop this hard function was absent. The collinear function
C’fgr does not depend on Ap, since collinear radiation is never groomed away. It can set
the measurement of 6, (when the derivative acts on the collinear function), or account for
collinear emissions at smaller angles (when the derivative does not act on it). Next, the
collinear-soft function Si,(; is sensitive to the soft drop grooming condition and can also set
the groomed radius of the jet 6,. The three functions discussed so far also appear in the
NLL’ factorization of the soft drop groomed radius [13]. The collinear-soft function SZ x is
sensitive to both the Ap measurement and the grooming condition, as the corresponding
emissions contribute to the jet energy drop if they fail the soft drop criterion. Finally, the
soft function S; 7 accounts for soft wide-angle radiation which is always groomed away. The
same functions Si, x and S; 7z enter in the factorization for iterated soft drop in eq. (2.19).
Interestingly, in regime A the dependence on Ag and 0, appears in separate parts of the
factorization formula.

There are two types of non-global logarithms in eq. (3.6) associated with ungroomed
and groomed jet boundary, R and R, respectively. These can be treated independently
as long as they are sufficiently separated, i.e. R, < R. The NGLs at the ungroomed
jet boundary arise due to correlations of the out-of-jet region, where the radiation is un-
constrained (and thus has energies of order pr), and the in-jet region, where wide-angle
radiation must have energies below Agpr. This is taken into account by the same non-
global soft function as the hemisphere case, SN¢(Ag). The SZNGJFAC(zcutGg ) arises at the
boundary of the groomed jet. Unlike the hard boundary of the initial ungroomed anti-
kp jet, it is sensitive clustering effects from C/A. This same contribution entered in the
resummation of the groomed jet radius [13], and is given by

2 2
SNGHAC (2 100) =1 — %%CiCA (;T) In? (zet07) - (3.7)
The factor 4/9 compared to eq. (2.38) is due to clustering effects.

Here we present the one-loop expressions for the functions in eq. (3.6) that did not
appear for iterated soft drop. The hard function H; [90, 106], the collinear function Cfgr
and the collinear-soft function S; g [13] are given by

~ 1 2
HAMR,M:H@[—W( £ )-2111( & )—3+3”}, (3.8)

pTR pTR 4 8
~ Qs 7 5 37T2>
H =14+ == _ In? _
o(pTR, 1) + - [CA( n <pTR> o + 3

Ao ()3
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2
ngr(engRu)—Ho‘scF[mQ( K )—i—gln( s >+13—3”},
T

Ogpr R Oypr R 4 8
(3.10)
CE (0, prR, 1) =1 0‘5[012( a ) BOI( H )
g Ogprtp) =1+ —=|Caln 0,07 R tom 0,07 R
67 372 23
Cal — — 22 ) —Tpn, =2 11
+ A<18 8) anlB]’ (3.11)
Si.c(zewt0 PP R, B, 1) :1+a"’c"[—1n2 (“) +7TT (3.12)
, g iz} 7T(1—|—ﬁ) Zcut9é+ﬂpTR 24

The functions Si, x and S; 7 are given in eq. (2.20) above. We have verified that combining
these ingredients agrees with the fixed-order result for AG; in section 3.1, in the limit where
the factorization holds.

To resum the logarithms of Ag, 6, and 2y, we evaluate each of the ingredients in the
factorization formula in eq. (3.6) at their natural scale,

pr ~prR, pces ~0gprR,  pg. ~ zenly prR, ps, ~ ApprR,
1+ —1
HSy ™~ ASE’ B)/ﬁzcut/ﬁpTR ) (3.13)

and evolve them to a common scale u. The RG equations for the new ingredients are

d -~ - .
Cm H; (prR, p) =~ (prR,p) H; (prR, 1) (3.14)
d o . .
. CF% (Ogpr R, 1) =7~ (Ogpr R, 1) C5¥ (OgprR, 1) (3.15)

d 4 S; <
Ma Si,G(Zcth;-i_ﬁpTRa Ba M) =% ¢ (Zcut9;+ﬁpTRa ﬁ? ,u) Si,G(Zcth;—thTRa 67 ,U) , (3'16)
and the one-loop expressions for these anomalous dimensions are given in appendix A.
g

3.2.2 Regime B

The Lund diagram for regime B is shown on the right side of figure 11. Since in this
case 0, > (Ag/ zcut)l/ B there is a white triangle between the dashed lines representing
the measurement of Ag and the soft drop criterion which is not vetoed. This triangle
corresponds to emissions that fail the soft drop criterion and would give a value of A that
is too large, except that the soft drop procedure has already terminated. Different than
in regime A, the measurements of Ag and 6, are not independent here. For regime B we
work differentially in the groomed radius 6,. One emission sets the value of 6, and other
emissions must be outside the shaded region with boundary §/R = 6, and z = Ag. At LL
accuracy, the resummed result is

ng (AE7pTR7 Zcut 57 997 aS(:u))

L asCp 2 d 2050}
= - —1 cu Ay — -
— n(z teg)dAE exp{ -

InAg lnﬁg} . (3.17)
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The LL result can again be extended to NLL’ using SCET. We identify a total of five
modes that contribute. Four of them correspond to the corners of the shaded region in
figure 11, indicated by red points. In addition, there is a mode indicated by the green
point which is located at the intersection of the grooming condition and /R = 6,. Since
only the emission that sets 6, is sensitive to the soft drop condition, the collinear-soft SZ(’G
mode only contributes if it sets 6, and has a single emission (see the discussion in ref. [14]
and section 3.3). We find that the extension to NLL/, including non-global logarithms, can
be written as

QZSB (AEv pTR7 Zeut /87 097 OZS(/J/))

;L d . . N
"2 i (prR, ) ETR CE (Ogpr R, 1) + C ¥ (0gpr R, 1) Sf. (04, zeut0s pr, B, 1)
9
X /dASE Si (A, 0gpr R, 1) Siz(Ap — A, prR, 1) SNETAY(AR)SNE (AR) .

(3.18)

The function gz{’G at one-loop order is given by derivative of SLG (in regime A) with respect
to 6,. However, emissions in S’{’G which do not set 6, are scaleless and hence, the associated
RG equation is given by

d

Mdi d CEgr
)

~7,{7G(6‘(]7 ZCutgngv ﬂ7 ,U’) - _Efyz (engRa /'L) ] (319)
g

as required for consistency of the factorization formula in eq. (3.18). The new collinear-soft

function 31 7 in eq. (3.18) is at one-loop order given by

S asCi In A
Siz(Ag,0gprR, 1) =6(AE) + { _9 { E
T Ag

2 14
+ In ( )
+ [Ag] + Ogpr R

+6(AR) [ 2 (69 ;TR> + gﬂ } . (3.20)

It satisfies the RG equation

d - s ~
M@Si,z (Ap,04pr R, 1) = /dA/E W7 (Ap — A, 0gpr R, 1) Si.z (A, 0gprR, 11) , (3.21)

with the anomalous dimension again given in appendix A. The characteristic scales of the
ingredients in the factorization formulae for regime B are given by

pr ~prR,  pces ~ O4prR, Hy, ~ zcut9;+ﬁpTRa ps, ~ ApprR,
pg, ~ApbgprR. (3.22)
The structure of the non-global logarithms is very similar to regime A, except that the
argument of S}\IG+AC, describing the NGLs at the groomed boundary, is now Ag instead

of zCHtO/; . To understand this change, remember that these NGLs arise from correlated
emissions inside and outside the groomed jet radius. Emissions inside are unconstrained
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Figure 12. Lund diagram analysis in which regime B is written as a conditional probability for
Ap given a value of 6,4, and the 6, cross section.

(i.e. have energy of order pr), while the energy of emissions outside is constrained to be
below Agpr, which for regime B is more restrictive than the grooming condition.

In principle one can also consider the intermediate regime 6, ~ (Ag/ zcut)l/ B. The
effective theory corresponding to this intermediate case can be obtained from regime A, for
which Sx and Sg merge, or regime B, for which Sz and Sé; merge into one function. The
anomalous dimensions are smooth in this merging, but the function describing these merged
modes in the factorization theorem can have different fixed-order expressions (due to terms
that become power suppressed in regime A or B). The matching between A and B is thus
automatically valid at NLL accuracy, and this intermediate case only needs to be considered
if one wants to ensure NLL' accuracy throughout the intermediate matching regime.

3.3 Conditional probability

An alternative way of obtaining the global structure of the factorization for regime B is
by means of a conditional probability, which is how the jet energy drop was calculated in
ref. [7] at (modified) LL accuracy. We describe how this arises in our SCET framework,
providing additional insight on the origin of S'I’G

The starting point is to write the double differential QZSB (Ag,b,) as

GiB (AR, 0) = GPP (M| 0,) x GV (0,), (3.23)

where for brevity we suppress arguments other than Ap and 6,. GPP(Ag|6,) denotes the
conditional probability to obtain a certain energy drop Ag for a given 0, i.e. it treats 0, as
a fixed parameter just like the jet radius R. Q?D(Qg) represents the probability distribution
of having a specific value of §,, calculated to NLL' in ref. [13].

This decomposition can also be understood in terms of the Lund plane, as seen in
figure 12. Here the conditional probability is depicted by the Lund plane with a blue vetoed
area, while the one with a red vetoed area represents the 6, distribution. In contrast to
the double differential case, for the conditional probability emissions outside the groomed
radius that pass the SD condition are now allowed since R, is treated as a fixed parameter.
The relevant modes are again indicated as red dots on the corners, leading to the following
factorization for each of these pieces:

G?D (AE| 99) — S~i7G2 (Zcut9;+5pT7 /87 /’L) Si,GQ (ZcutpTRa 67 ,U’) (324)

X /dASE Siz(Ag, 0yp1r R, 1) Siz(Ap — Alg, prR, 1),
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Figure 13. The Lund diagram for the jet energy drop with soft drop grooming and g = 0.
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We now note that the modes Sg1 and Sgo are defined in a similar way: the former
vetoes emissions that pass the grooming condition, whereas the latter vetoes emissions that
fail said condition. This translates to a minus sign difference in the a; term of these two
functions, i.e. Sg1 X Sg2 = 1+ O(a?), removing their contribution. Of course this holds
also for multiple independent emissions, exponentiating the one-loop soft function, which is
why there is no such mode in the factorization for regime B in eq. (3.18). Similarly, for Sg
and Sgo we have Sy X Sgo = 1+ O(a?). However, in this case the derivative with respect
to 0y in eq. (3.24) between SLGl and S~,~702 prevents them from cancelling, leaving exactly
S’Z{G as remainder. Thus we reproduce the factorization theorem for regime B in (3.18),
apart from non-global logarithms.

3.4 (B = 0 and Sudakov safety

Soft drop with 8 = 0 corresponds to the modified mass drop tagger of ref. [45]. It is a
special case, because the jet energy drop is not IRC safe, as is clear when taking 8 — 0 in
the fixed-order result for GPP in eq. (3.2). With a cut 6, > 05 > 0, it is IRC safe. As was
found in ref. [7], the jet energy drop is Sudakov safe, allowing us to safely take the 5 — 0
limit of the cross section in which the logarithms of Ag and 6, are jointly resummed. This
works because the Sudakov factor arising from the resummation regularizes the divergence.
(See ref. [73] for a discussion of Sudakov safety in the context of the momentum sharing
fraction z,.) In the absence of a cut on 6, the jet energy drop is particularly sensitive to
nonperturbative effects, as discussed in section 3.5.

For g = 0, only regime B contributes, which was shown in the right panel of figure 11
for B > 0. In this case, the line corresponding to the soft drop criterion now has slope
B = 0, as shown in figure 13. It is clear from the figure that the 6, measurement is
necessary to regulate the collinear divergence for Ar measurements at S = 0. In fact, we
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Figure 14. The nonperturbative regions for soft drop with 8 > 0 (left) and 8 = 0 (right). Plots
are not to scale to highlight the nonpertubative regions.

can immediately take § — 0 in the ingredients in this regime, and there is no difficulty
in obtaining resummed predictions. The IR divergence is in regime A, whose range of
applicability is shrunk to the point 6, = 0 for § — 0. In the resummed cross section, it is
Sudakov suppressed. With the collinear divergence regulated by the 6, measurement, we
can obtain a A distribution by integrating over a desired range of 6,. It is worth noting
that LL formulation given in eq. (3.17) yields an «; independent result when integrated
over the entire range of 0,

LL In 2yt

 InAg’

This surprising feature was already pointed out in ref. [7], where they also kept the sub-

1 ~
/0 deg gsg (AEv pTR7 Zcuty /B - O) ‘997 Qg (/"L)) (325)

leading terms in the splitting functions, compared to the LL expression in eq. (3.17). Our
full NLL’ result includes many more contributions but its analytic expression is not par-
ticularly tractable.

3.5 64 and nonperturbative effects

We will now discuss the size of nonperturbative effects, considering the case where we
completely integrate over 6,4, as well as imposing a minimum cut on §,. As we will see
below, introducing a cutoff reduces the sensitivity to nonperturbative effects. It is also
advantageous from an experimental point of view, if the tracking efficiency is limited at
small 0, [16].

As usual, we determine the onset of the nonperturbative region by considering the
softest scales involved in the factorization formulas in eqgs. (3.6) and (3.18). The softest
scales in regime A and regime B are p S ™ zcutH;Jrﬁ prRand pg, ~ ApfyprR, respectively.
Therefore, within regime A we use the relation

1 1

Anp \THP Ap\?
0 < (2)" and g, < () 3.26
77 \zewprR 77 \zew (3.26)

to determine the nonperturbative region, while for regime B
1
Ap ) 4 Anp

<lg < ———. 3.27
(Zcut g AEPTR ( )
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As discussed in section 3.4, for § = 0 we only have regime B, and eq. (3.27) simplifies to

P Axp

< —. 3.28
g AEpTR ( )

These nonperturbative regions are illustrated in figure 14.

We now highlight some aspects of nonperturbative contributions to the Ap distri-
bution resulting from integrating over (a range of) 99.6 First, we note that the entire
Ap distribution receives a nonperturbative contribution from the ¢, integration when
Gg“t < (Axp/(ZeutprR))V/I48) | due to region A. If 0;1“ is above this threshold, the on-
set of the nonperturbative regions is instead determined by region B (corresponding to the
red regions in figure 14). In this case the nonperturbative contributions become small for
much of the Ag distribution, for both 8 > 0 and § = 0, allowing for a purely pertur-
bative calculation. In our numerical studies presented in section 3.7, we always indicate
the corresponding onset of the nonperturbative region by a vertical dotted line. If the cut
is chosen such that 65" < (Anp/ (zewsprR))Y4P) | then we have some nonperturbative
contributions for Ag values even above the indicated vertical line.

3.6 Profile functions and scale variations

In this section we describe our choice of central scales, as well as the variations used to
assess the perturbative uncertainty. We start with regime A, which is particularly simple
because no function in the factorization formula depends on both Ag and 6, whereas for
regime B we need to design two-dimensional profile scales.

In regime A there are no scales that simultaneously depend on both Apg and 6.
Consequently, we can take the same central scales and scale variations for Sy and Sx
as for iterated soft drop, see section 2.6. For the additional scales associated with the
6, measurement (corresponding to the red region in the Lund plane in the left panel of
figure 11), we take

M%‘Zﬁ = fpro(zcuteé—i_ﬁpTR; Atreese) 5

pcent 1/ B/(148)
et = (5) e,
Zcut
p™ = prR. (3.29)

Here fpro(; o) ensures that we avoid the Landau pole. Its expression is given in eq. (2.40),

and we take the same value Afeese = 0.2 GeV as for iterated soft drop. By expressing p&S2t,

cent
Sa
are obtained by varying the scales that also appear for ISD in the same way as described

in terms of u$™, we ensure that they stop running simultaneously. QCD scale uncertainties

in section 2.6, while identifying the variation of p$$™* with the variation of /@ent as their

cent cent

canonical forms are identical. We also vary the new 6, dependent scales of u S and p¢iee:

Usually one does not associate nonperturbative corrections with variables that are integrated over, but
in this case Ag and 6, are intertwined by the double-differential factorization. Therefore, the integration
of 64 does not remove the nonperturbative effects coming from factorization scales associated with the 6,
measurement.
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Figure 15. The two regions defined in the two-dimensional profile function given in eq. (3.30). All
04 and Ag-dependent scales take on their canonical values in region I and begin to freeze once they
enter region II. The involved scales are properly defined only within the factorization of regime B,
satisfying the condition Ag < zcuteg . This condition is indicated by the orange hatched region for
Zews = 0.5 and § = 1, identifying x and y with Ag and 60, respectively.

individually up and down by a factor of 2 around their central value. The perturbative
uncertainty band is obtained by taking the envelope of all the variations.

Regime B presents a further complication, since the Ag and 6, measurements can no
longer be treated independently. In this case the softest scale is pg ~ Ag 0y prR, which
thus becomes nonperturbative before any other scale. As this scale depends on both Ag
and 6, it can run into the nonperturbative region by either Ag or 6, becoming small,
corresponding to region II in figure 15. Therefore, we now need a two-dimensional profile
to implement the freezing of the scale in the nonperturbative region

Ty Ty > 2xg region I,
oo, y; o) = (3.30)
zo[l + (xy/z0)? /4] zy < 2z region II.

With this new profile function, we define the central scale for pg_as

A
2d O
N%e;t - fpro <AE7 04 p:;§6> prR, (3.31)
to smoothly freeze u S, at Afreeze- The condition Ap < zcut95 is necessary to ensure that
we stay within regime B, and is indicated in figure 15 by the orange hatched region for
Zewt = 0.5 and f = 1, when z and y of eq. (3.30) are identified with Ag and 6, respectively.

When pu%" starts freezing in region II, we want to ensure that all other scales also stop

Sz
running. To accomplish this, we define the following profile function

912)?0(‘7:7 Y; A? B, co, xO)

Ty > 229 region I,

1B (3.32)

1+A o
1+ (xy) (1 (21’ xO) — 1)] xy < 2x region II,
2x0 co\ Y
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where A > —1 controls the rate at which scale freezes to ¢y in region II. The parameter
B is chosen according to the canonical behaviors of different scales in region I. The profile
function is continuous everywhere and smoothly approaches cy as x or y become small. We
then take the remaining central scales to be

:U/?—?nt = pTRa
A
d f
IU’CCegér = gIQ)I"O <997 AE7 07 07 )\CEgr, p;eze >PTR )
A
cent __ _2d . - freeze
MS/G = Ypro (957’ Ag; 0,8, )\S’Ga prR )ZcutpTRa
Afrees
pggnt = g2, (AE, 0,:0,0, \s,,, ;;;;);)TR. (3.33)

This ensures that all 6, and Ag-dependent scales take on their canonical values in region
I, given in eq. (3.22), while freezing them in the same region II. Because different scales
enter region II with different values, it is natural to freeze them to different \; to maintain
their relative hierarchy. We take ); to be the average value of the scale 2'*5, with = and
B defined in eq. (3.33), along A 60, = 2% within regime B, divided by 2. We then vary
all scales individually by factors of 2 around their central choices and all simultaneously,
taking the envelope to obtain the uncertainty band.

3.7 Numerical results

We start by presenting results for the jet energy drop with soft drop for z¢y = 0.3, 5 =1,
and compare to PYTHIA at parton and hadron level (without MPI). The NLL' results for
02‘“ = 0.25 and three jet pr intervals are presented in figure 16. Here we leave out the
interval pr = 30 —50 GeV, which is shown for the other grooming procedures, as the energy
drop distribution is nonperturbative over most of the Ap range in this case. We indicate
the nonperturbative region by the dotted vertical line, and we normalize our results over
the perturbative range. We find very good agreement with the PYTHIA results at parton
and hadron level, which are also normalized on the same range. For the chosen kinematics,
and in particular the 9;‘“ value, the cross section is dominated by perturbative dynamics.

In figure 17, we investigate in more detail the impact of nonperturbative effects using
PyTHIA. We show the parton level results and including corrections due to hadronization
and MPI for the jet transverse momentum interval of pr = 300 — 450 GeV. The three
panels correspond to three different values of egut = 0, 0.1, 0.25. Here we normalize the
result over the entire Ar range. We find that nonperturbative effects are small when the
relatively large value of 9;“ = 0.25 is chosen, which corresponds to the results in figure 16.
However, if we lower 9;‘“ nonperturbative effects become more important. We observe that
hadronization corrections dominate but also MPI leads to a shift of the distribution to larger
values of Ag. Interestingly, these differences are substantially reduced when normalizing
to the perturbative region, indicating that the shape in the perturbative region is not much
affected by hadronization. This is due to the shape of the perturbative distribution, which
we illustrate in figure 18. We consider the case where the perturbative distribution is falling
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Figure 16. Numerical results at NLL' (orange) for the jet energy drop for soft drop with 2z, = 0.3,
B =1and 0;‘“ = 0.25. In addition, we show PYTHIA results at parton (purple dashed) and hadron
level (blue dashed) for comparison. The different panels correspond to different jet transverse
momenta. The central curves are normalized to unity between the dotted vertical line and the
endpoint Ag = zeut.

(like here) or peaked (as for jet mass), and convolve with a nonperturbative shape function
to model the effect of hadronization. Before normalizing, the effect of this convolution is
similar, but this is no longer true after normalizing on a restricted range that does not
include the nonperturbative region. When no cut on 6, is imposed (upper left panel of
figure 17), the nonperturbative corrections are very large. We thus conclude that imposing
a cut on ¢, allows us to control the soft sensitivity of the jet energy drop.

Next, we consider the jet energy drop for S = 0, which is a Sudakov safe observable,
as discussed in section 3.4. In figure 19, we show the NLL’ results for z.y = 0.1 with
0;‘“ = (.25, choosing the same jet kinematics as in figure 16. In addition, we show PYTHIA
results at parton and hadron level, finding again good agreement.

We end this section by comparing in figure 20 our numerical results to the preliminary
CMS data of ref. [107]. The grooming parameters chosen by CMS are zcy, = 0.5 and 5 =
1.5, and a cut on the groomed jet radius of 65‘“ = 0.25 was imposed. We observe very good
agreement in the perturbative region which is indicated by the dotted vertical line. Note
that both our theoretical results and the data are normalized in the perturbative region.
We note that the data of ref. [16] with § = 0 and z¢yy = 0.1 are in the nonperturbative
region or Ag > zcu, where our factorization theorem does not apply.
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Figure 17. PYTHIA results for the jet energy drop with soft drop at parton level (blue) and
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Figure 18. We explore the effect of hadronization by taking a falling distribution (solid) or a
peaked distribution (dashed), as proxy for the perturbative result (blue) of energy drop (for soft
drop) and jet mass, and convolving with a shape function to obtain the red curve. While the effects
are similar when normalizing on the full range (1/0, left panel), this is no longer the case when
normalizing on the region to the right of the vertical dotted line (1/&, right panel).

4 Trimming

In this section we consider the jet energy drop of a trimmed jet. We start by introducing the
trimming algorithm in section 4.1. We then present fixed-order results of the corresponding
jet function in section 4.2, and introduce the factorization and resummation in section 4.3,
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Figure 20. Comparison of our theoretical calculation for soft drop and the preliminary CMS data
of ref. [107].

including a discussion of non-global logarithms. In section 4.4, we present numerical results
and compare to PYTHIA.

4.1 The trimming algorithm

Trimming (TR) [4] is one of the first jet-grooming algorithms. It improves the event
reconstruction at high luminosity colliders and is frequently used for experimental analyses
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(particularly ATLAS), see e.g. refs. [108, 109]. The grooming proceeds as follows: first jets
are reconstructed with the anti-kp algorithm and jet radius parameter R. The constituents
of the identified jets are then reclustered with a smaller jet radius Rs,p < R. Subjets are
removed from the jet if their transverse momentum pp; (or energy) is below a threshold
given by pr; < feutAnara. Here feut is a dimensionless quantity and Ap..q is a hard scale,
which we choose as ppr of the initial ungroomed jet. The trimmed jet is then given by all
the particles in the remaining subjets.

In ref. [45] the jet mass of a trimmed jet was calculated, and in refs. [86, 106] the longi-
tudinal momentum fraction z = pr;/pr of the reclustered inclusive subjets was considered.
Here we consider the jet energy drop induced by the trimming procedure. Similar to soft
drop, this observable is particularly sensitive to the soft aspects of jets. In ref. [4] the
kp algorithm was used for reclustering the jets into smaller subjets, as kp subjets better
share the total available jet energy amongst themselves. We use instead the C/A algo-
rithm, such that the clustering effects are the same as for soft drop. (We have checked in
PyTHIA that this has a minimal effect on the jet energy drop distribution.) Typical values
of the trimming parameters used in experimental analyses are Rg,, = 0.2 and feut = 0.05,
though they depend on the observable under consideration. For our numerical results in
section 4.4, we choose a relatively large value of f.yy = 0.3 to ensure that a large part of
the distribution can be described perturbatively.

4.2 Fixed-order results

We denote the jet function that measures the jet energy drop for trimming by AGI®. Tt
depends on the grooming parameters 6; = Rgu /R, fout < % and the jet energy drop Ap,
which is the total energy fraction of the subjets removed by trimming. At NLO, the jet
function can be calculated as

AngR(AE,pTRa 0t7fcutvu) (41)
- /d<I>2 05,00 < R){O(0>0R)[O(x> four) O (1 — 2 > faur) 5(Ap)
+ 06 (SU > fcut) C] (1—.1? < fcut) (5(AE—(L‘)
4O (@< fou) O (L2 fout) 8(Ap—(L—2))] + © (0 < 0,R)6(Ap) — 5(Ap)}.

If the two partons are clustered into different subjets 8 > 6; R, they are individually tested
against the trimming condition. As before, the very last term subtracts the contribution
already contained in the semi-inclusive jet function.

For quark and gluon jets, we find

quTR(AEa pTR7 9t7 fcut7 Ug (lu))

_ O‘fF o, {@(AE < fcut)[— 1 _QAE _ [AQE}+ +3}
4 S(AE) (=210(1 — four) + 210 fous — 3fcut)} , (4.2)
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Figure 21. Numerical comparison of the size of singular (dashed blue) and non-singular (dotted
green) terms of the fixed-order (red) jet function for trimming. We show the quark and gluon result
in the left and right panel, respectively.

AggTR(AEa pTR7 9t7 fCut7 aS (ILL))
— % g, {@(AE < fou) [ — 20, Tr(AL + (1 - Ap)?)

(4_ 2 2
[Ap], 1-Ag

4
+ 5(AE) [nfTF (3f§ut - 2f(:2ut + 2fcut)

+Cy

—2(1 - AE)AEH

Ca( = S8t F — Ao~ 20— fo) 42 S |} @3)

We observe that at NLO the jet energy drop Ap is always less than fcyut, similar to (iterated)
soft drop where Ag < zecus. The plus distribution here is defined on the interval 0 < Ag <
1. If we rewrite it to be defined on the interval of the theta function O(Agp < feut), the
In feut term in the last lines for both the quark and gluon jet function cancels, and we can
safely take the limit f.,t — O (similar to zcy — 0 for iterated soft drop in section 2.3). In
this limit the trimming is removed and the jet function AGTR thus vanishes.

Next we consider the relative size of the singular and non-singular terms for trimming
at fixed order in figure 21. We observe that the singular terms dominate over the entire
range of Ap, suggesting that the resummation is likely important, and that the matching
to NLO does not need to be included in our numerical results. We note that different from
iterated soft drop (see figure 3) the NLO distribution does not smoothly go to zero at the
endpoint Ag = feus.

4.3 Factorization and resummation

For the trimmed jet energy drop there are three parameters that enter in the large loga-
rithms requiring resummation, namely the energy drop Ag and the grooming parameters
feut , 0:. We will assume Ap < feut < 1 and 6; < 1, for which the corresponding Lund dia-
gram is shown in figure 22. The two horizontal dashed lines correspond to the measurement
of the jet energy drop z = Ag and the cutoff imposed on the reclustered subjets z = feut,
respectively. The vertical line corresponds to the size of the subjets R/0 = R/Rgu, = 1/6;.
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Figure 22. Lund diagram for the energy drop of a trimmed jet. The relevant SCET modes are
indicated by red dots.

We note that the Lund diagram here looks quite similar to that for the jet energy drop for
soft drop with 8 = 0 in figure 13. However, in contrast to the groomed radius 6, the subjet
radius 6; has a fixed value. In particular, it is not integrated over after the resummation is
performed, as in the case of soft drop. Emissions in the shaded region of the Lund diagram
are vetoed and we can read of the resummed LL expression,

5 d 200,C; A
TR A Y R7 cu 797 S L:L |:_ 5 Zl ( E)l 9:| . 44
Gi (AR, prR, feut, 0t cs(p)) e exp —In = n 6, (4.4)

The relevant modes in SCET, needed to achieve NLL’ resummation, again correspond
to the corners of the shaded region in figure 22. Their power counting is summarized in
table 4. The refactorization of the jet function for trimming is at NLL’ accuracy given by

QN;IR (AEa pTR7 fcuta 0t7 Ozs(,u)) (45)
NLL Sir(foutrpr R, 1) Sir(fout Or TR, 1) /dA/E S,z (A, pTR, 1)
x Siz1(Ap — A, 0, pr R, 1) SN (A R/ feur) S;CTC (AR feut) -

We now provide the NLO expressions for the various ingredients in this factorization. The
one-loop soft function S; 7 is the same as S; 7, which appeared in the factorization formula
of (iterated) soft drop, and is given in eq. (2.19). The other soft and collinear-soft functions
are given by

i (ouprBop) =1+ 25 {— w? () + Z} , (16)
SZ-,T(fcuthpTR, w) =1+ ozSWC’i {1112 (M) — ;le} , (4.7)
+6(Ap) { ~ n2 (QJTR) + gﬂ } . (4.8)
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Mode: Function: Scaling

soft St few pr(R*, 1, R)
soft Sy Appr(R*, 1, R)
collinear-soft | St Jeut pT(R21, 1, Reup)
collinear-soft | Sy Appr(R2,,, 1, Reup)

Table 4. The parametric scaling of the momenta of the various modes in SCET, needed to describe
the jet energy drop cross section for trimming with Ap < feus < 1 and 6; = Rgup/R < 1.

These functions are similar to the ones for soft drop, as they can be obtained by appro-
priately replacing trimming parameters by soft drop parameters. For example, Si, 7z can
be obtained from eq. (3.20) by replacing 6, by 6;. Eq. (4.5) contains two contributions

from non-global logarithms: first of all, SZNG

arises at the boundary 8 = R of the initial
jet, because emissions inside the jet must have z < Ag or z > feut (for details, see the
discussion of the corresponding NGL for iterated soft drop in section 2.5). Since the jet
is obtained by anti-k7 reclustering, it has a hard boundary that is not perturbed by the
clustering of soft radiation. The second contribution from NGLs arises at the boundary
0 = R, of the trimmed subjets. It has a very similar origin: emissions outside of a trimmed
subjet must have z < Ag or z > f.ut. However, because the subjets are obtained with the
C/A algorithm, they are sensitive to clustering effects, and there are also Abelian clustering
effects. It is described by the same SZNGJFAC given in eq. (3.7) for soft drop, but with a
different argument.

The large logarithms are resummed by evaluating each of the four (global) functions
in eq. (4.5) at their characteristic scale

psy ~ Jeupr R, pg, ~ febeprR,  ps, ~ApprR, pg , ~ApbiprR,  (4.9)

and using the RG equations

d
pg Sicr (eupr R o) = VT (feutpr R 1) S50 (foutpr R, 12) (4.10)
d - - B
,U/@ Si,T(fcutet prR, H) = /yfT (fcutet prR, ,U,) S’i,T(fcutet prR, M) ) (411)

d - , )
M@ Siz/(Ag, 0 prR, 1) = /dAIE’YSZ (A — A, 0iprR, 1) Si z/(Alg, 0 prR, ), (4.12)

to evolve them to a common scale. The anomalous dimensions are summarized in the
appendix A.

4.4 Numerical results

We start by presenting numerical results for the jet energy drop with trimming. For the
four panels in figure 24, we choose the same LHC jet kinematics as in the previous sections.
The grooming parameters are taken to be fouy = 0.3 and 6; = 0.4. As mentioned before,
the feut value here is larger than what is typically used in experimental analyses. Our

— 38 —



1 do
O'dAE

LI s B s s A M
TeV, pr = 100-200 GeV, R = 0.8, |n| <2 3
Trimming: few = 0.1, ; = Ryw,/R = 0.4

V=13

Partonic
+had
+had+MPI

1 do
O'dAE

o [T T T T T T T oo T

o M

005 0.1 0.15
Ap

0.2

f=1

B L I B o I LSRN A e e ey e
E Vs =13 TeV, pr = 100-200 GeV, R = 0.8, || <2 3
Fl Trimming: feu = 0.3, 6; = Rgp/R =04 3
;. — Partonic _E
E — +had 3
E — +had+MPT {
3 v b v by b by by ay |E
0. 0.05 0.1 0.15 0.2 0.25 0.3
Ap
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Figure 24. Numerical results for the jet energy drop obtained with the trimming algorithm at
NLL (blue dashed) and NLL' (orange) order, compared to PYTHIA partonic (purple dashed). We
choose trimming parameters f.,; = 0.3 and 6; = 0.4. The different panels correspond to different
jet transverse momenta. The central curves are normalized to unity between the dotted vertical
line and Ag = feut-

choice is motivated by the fact that for relatively large values of f.yt a significant fraction

of the jet energy drop cross section is in the perturbative range, where the resummation

techniques studied in this work are applicable. This point is illustrated in figure 23, where

PyTHIA predictions at parton and hadron level are compared. Explicitly, in the right panel

the red and green curves overlap for Ag = 0.15, while they never completely overlap in
the left panel. Similar to soft drop, MPI affects the whole distribution.
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Figure 25. Dependence of the jet energy drop for trimming on the grooming parameters 6; (left)
and feut (right).

In figure 24 we show both the NLL’ and NLL results, finding again that the NLL curve
is within the uncertainty band of the NLL’ result in the perturbative region, indicating
a good convergence of the resummed cross section. We note that the cross section does
not vanish at Ag = feut, consistent with the NLO result shown in figure 21. Indeed, the
cross section can extend to Ag values well above f.u.. However, this requires a different
factorization formula than eq. (4.5), since we formally assumed Ap < feut, and we leave
an analysis of the region Ag 2 fcu for future work.

In figure 25 we consider the dependence of the jet energy drop on the grooming param-
eters 0y and feus, for a jet pr = 1000 —1200 GeV (as in the lower-right panel of figure 24). A
larger value of 6; leads to larger subjet energies, which are more likely to cross the thresh-
old set by feut. This leads to the larger spike near Ag = 0 in the left panel of figure 25.
Similarly, a smaller value of f.,+ allows more subjets to pass the grooming condition, re-
ducing the jet energy drop. Note that in this case we only plot distributions for Ag < feut,
because our factorization formula does not lead to reliable predictions beyond that.

5 Conclusions

We have studied the jet energy drop, which is the relative difference in jet energy (or
transverse momentum) of a groomed and ungroomed jet, and is a key observable for char-
acterizing the impact of grooming on jets. We considered three different grooming algo-
rithms, frequently used in experimental analyses: i) soft drop, ii) iterated soft drop, and
iii) trimming. The jet energy drop is particularly sensitive to soft radiation, making it ide-
ally suited for tuning parton shower event generators to data, particularly to constrain the
hadronization model. Since it maps out the soft substructure of jets, it also has significant
potential for studying the modification induced by medium effects in proton-nucleus and
nucleus-nucleus collisions.

We have developed factorization formulae which allow for an evaluation of the cross
sections at next-to-leading logarithmic (NLL') accuracy, resumming logarithms of the jet
radius, jet energy drop, and grooming parameters. We also include the non-global loga-

rithms with C/A clustering effects and Abelian clustering effects at order a?. Formally,
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one should also resum the NGLs, but from earlier work we note that their effect beyond
the leading term is negligible for our phenomenological results. The factorization for soft
drop requires a joint resummation of the jet energy drop and groomed jet radius 04, and is
very sensitive to nonperturbative effects when integrating the resummed cross section over
6. This sensitivity can be reduced in a controlled manner by imposing a minimum cut
on ¢,. The energy drop for soft drop with 8 = 0 is a Sudakov safe observable, which we
calculate also to NLL’. We have presented numerical results for all three algorithms and
compared to PYTHIA simulations, finding very good agreement in the perturbative region.
For soft drop we also compared to CMS data.
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A Anomalous dimensions

The coefficients in the QCD beta function are given by

11 4
= Ca—-T,
Bo 3 Ca—3Trny,

34 20
61 = ?Ci— (3CA+4CF)Tfnf ) (A1)
and the cusp anomalous dimension is expanded in terms of
Ty = 4C;

. 2 2
I = 4C; {(697 - 7;>CA _ an} (A.2)

9
The one-loop Altarelli-Parisi splitting functions are given by

_ 1+22 3 1+ (1-2)?
Pyq(z) = Cr = + 55(1 - Z)} ; Pgq(2) = Cr B
Pyy(z) =2Cy i + 1_Z+z(1—z)} +@5(1—z), P(2) =Tp[* + (1 —2)?].

(1 Z)+ z 2
(A.3)
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Here we list all relevant anomalous dimensions

20,C; 1
SG - _ EAg’ 1 M >
Y (ZcutpTRaﬁvu) T 1+ﬁ n<zcutpTR )
V2 (Ap,prR, ) = 77 (Ap, prR, i) = 2o [ - ln( : )6(AE)
7 ) ) 7 Y ) T [AE]+ pTR )
Sx (A VB P _ 205G 1 B | ( 4 )5 A
Yi ( E;Zcut PT 757”) T [AE]+ 1+/8 n z;ui/ﬁpTR ( E) ’
i _ asCF PTR> _ 3}
fYq (pTR7 /’L) - T 21n ( ,LL 2 9
- X R\ 1
Y (prR, i) = —>|2C4 In (pz ) - 260],
CEer [ e . a,Cp [ < 12 > 3]
0 = 21 —
'Yq ( ngRa//J) T n engR + 21
Cee" (pe Xs K 1
= %1901 -
F)/g (engRvu) T CA 3 <9§pTR> + 260:| )
& 20,C; [ 1
52(Ap, 0, prR, 1) = “—m( o >5A},
7 “(Ap, 0y pr R, 1) |, 6, pr R (Ag)
72 ( E,UtDPT 7”) T [AE]+ atpTR ( E) )
2a5C;
ST - _ s 1 o
Y (feur PT R, 1) - n( FoR)
S 205C;
ST fousbe prR.p) = — Zln( o ) Ad
’}/’L (fC t tpT 7/’6) fcutetpTR ( )

where C; = Cp (Cy) for i =

q (i = g). We achieve full NLL' accuracy by including the

two-loop cusp anomalous dimension, which multiply the In p terms in eq. (A.4).
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