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Abstract

Fingerprints of High Energy Physics Beyond Colliders

by

David I. Dunsky

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Lawrence J. Hall, Chair

Hints of new physics Beyond the Standard Model (BSM) range from dark matter and the
strong CP problem to grand unification and the origin of the matter-antimatter asymmetry.
Historically, colliders have been the principal engines of discovery, but with no new physics
discovered at the Large Hadron Collider (LHC) except the expected Higgs, and decades
until the next collider may be built, a few questions naturally arise: What if there is no
new physics until very high scales? How can we discover high energy physics which may
hide at energies far above the reach of next-generation colliders? This dissertation focuses
on answering these questions in three parts.

Part (I) discusses early-Universe cosmology and model building guided by hints from Stan-
dard Model parameters as measured by the LHC, particularly Higgs Parity phenomenology.
Higgs Parity is a two Higgs doublet mirror extension of the Standard Model that provides
an explanation for the peculiar vanishing of the Higgs quartic coupling at very high energies
due to quantum corrections from Standard Model particles. Higgs Parity comes in many rich
variations, but all share the key mechanism of making the Standard Model Higgs a pseudo-
Goldstone boson at the Higgs quartic scale, thereby giving the Standard Model Higgs a
vanishing mass and hence vanishing quartic coupling at this scale. The phenomenology of
these variations of Higgs Parity are discussed in Chapters 1-3. We find that Higgs Parity
admits a natural dark matter candidate in the mirror electron, which can be detected from
its scattering with protons due to unavoidable kinetic mixing between the mirror photon and
our photon (Ch. 1); generation of dark radiation from the decay of mirror glueballs that can
be detected by CMB Stage IV (Ch. 2); and generation of our observed matter-antimatter
asymmetry via leptogenesis associated with warm and hot sterile neutrino dark matter (Ch.
3). In all Higgs Parity models, future precision measurements of the top quark mass, strong
coupling constant, and Higgs mass will hone in on the precise scale at which the Higgs quartic
vanishes and hence predict the aforementioned signals. The reader will thus find signal plots
in this part of the dissertation that indicate how the various Higgs Parity signals change as
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a function of these Standard Model parameters. Finally, Part (I) concludes with discussion
on physics inspired by, or in similar spirit to, Higgs Parity: general cosmological constraints
on sterile neutrino dark matter in left-right symmetric theories (Ch. 4) and Higgsino dark
matter in Intermediate Scale Supersymmetry models (Ch. 5).

Part (II) focuses on astrophysical probes of BSM physics at energies and couplings unreach-
able at current colliders. We first turn to Nature’s own accelerator, supernova shocks, to
search for undiscovered CHarged Massive Particles (CHAMPs) that may make up a compo-
nent of dark matter (Ch 6). Such undiscovered particles with minuscule electric charges are
well motivated in particle physics (kinetic mixing between the photon and a dark photon),
and in cosmology. For example, a particle with electric charge about one trillionth that
of an electron can be thermally produced via freeze-in in the early Universe with a relic
abundance matching that of the dark matter we see today. Typically, such small electrically
charged particles are too weakly interacting or too massive to be discovered at colliders.
However, the plasma of the interstellar medium provides a unique laboratory to search for
such particles. We trace the dynamics of CHAMPs in the Milky Way and their acceleration
by supernova shocks and find this Fermi-accelerated component of dark matter can provide
unique experimental signatures typically absent from dark matter moving at virial speeds,
such as from their Cherenkov light produced in water or ice. From this analysis, we disfavor
CHAMP dark matter with mass less than 105 GeV and charge greater than 10−9e.

In the following chapter, we examine how Magnetic White Dwarfs (MWDs) can generate
leading constraints on the coupling of low mass axions to photons (Ch. 7). Axions — well-
motivated particles that arise in many theories beyond the Standard Model, such as from the
breaking of a global U(1) or from string compactifications — are extremely weakly coupled to
Standard Model particles and are thus difficult to probe. However MWDs possess enormous
static (B & 100 MG) and large scale (coherence & 1R⊕) magnetic fields that can provide
another unique laboratory to test the axion-modified Maxwell equations. In particular,
we calculate the axion-induced polarization of MWD starlight arising from the conversion of
photons leaving the MWD atmosphere and converting to axions in the MWD magnetosphere.
Taking into account astrophysical polarizations and uncertainties, we exclude, at 2σ, axion-
photon couplings greater than 5.4× 10−12 GeV−1 for axion masses below 3× 10−7 eV.

Part (III), which concludes this dissertation, considers other novel signals of high energy
physics from the sky, namely gravitational waves. Gravitational waves provide a particularly
promising way of studying ultra-high energy physics since gravitational waves produced in
the early Universe can travel unimpeded through the primordial plasma and be detected
today, carrying information about the BSM physics that sourced them. Moreover, it is often
the case that the higher the scale of the BSM physics, the stronger the gravitational wave
signal. In contrast, with state-of-the-art technology, a collider far larger than the size of the
solar system is needed to reach energies approaching grand unification scales.

We first study the gravitational wave signals from a stochastic cosmic string background
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experiencing an exotic equation of state in the early Universe known as kination, which can
arise from the rotation of an axion field (Ch. 8). We find that the change in the expansion
rate of the Universe due to the rotation of the axion field imprints a unique triangular peaked
gravitational wave spectrum that encodes enformation about the duration and energy scale of
the kination era. We determine the parameter space where current and future gravitational
wave detectors can distinguish the kination cosmology from the standard ΛCDM cosmology.

In the final chapter (Ch. 9), we investigate more generally the gravitational wave signals
from hybrid topological defects such as cosmic strings bounded by magnetic monopoles
or domain walls bounded by cosmic strings. We show that many grand unification paths
generate hybrid topological defects in the early Universe that decay via gravitational waves
from the ‘eating’ of one defect by the other via the conversion of its rest mass into the other
defect’s kinetic energy. We calculate these gravitational wave ‘gastronomy’ signals and show
how observation of these relic gravitational wave signatures can be used to distinguish many
unification paths, providing extraordinary insight into ultra-high energy physics.
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Λ/vR = 0.1 and Λ/vR = 10, respectively. In the green shaded region, N1 DM is
too warm. In both freeze-out or freeze-in cosmologies, successful N2 leptogenesis
requires g(x) > 1 for Λ & vR; the greater Λ/vR is, the more degenerate M2 and
M3 must be to realize the observed baryon asymmetry. The vertical gray solid,
dashed, and dotted lines show representative values of g(x) when M2 and M3

have the maximal natural degeneracy (g(x)max, solid), when M2 and M3 are com-

parable (g(x) = 1, dashed), and when m
(ss)
3 and m

(5)
3 are as naturally degenerate

as can be (g(x) at χmin, dotted). . . . . . . . . . . . . . . . . . . . . . . . . . 85
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3.14 The parameter space where frozen-out N1 DM and N2 leptogenesis can naturally be re-

alized without radiative corrections affecting the stability of N1 DM and in accord with

the active neutrino mass spectrum. The shaded (unhatched) regions solely constrain

N1 DM from freeze-out as in Fig. 3.2. The hatched gold region indicates where the

baryon asymmetry generated by N2 is unable to match the observed baryon asymmetry

with g(x) set to its largest, natural value, and y33 set by consistent neutrino masses.

The right, downward sloping contours mark where the radiative corrections to yi1 are

sufficiently large that they must be unnaturally tuned with tree contributions to keep

N1 DM stable when g(x) is set to its largest, natural value, and y33 set by consistent

neutrino masses for Λ/vR = 0.1, 1, 10 (gold, red, green). The dashed and dotted

contours show the same region when M2 and M3 are comparable, (g(x) = 1, dashed)

and m
(ss)
3 and m

(5)
3 are as naturally degenerate as can be (g(x) at χmin, dotted). Nat-

uralness and neutrino mass consistency excludes areas with too low or high values of

vR, and places a strong upper bound on the cutoff Λ. We fix the ν2 and ν3 masses by

the Inverted Hierarchy (IH, Top) and Normal Hierarchy (NH, Bottom). . . . . . 87
3.15 The parameter space where N1 DM from freeze-in and N2 leptogenesis can nat-

urally be realized without radiative corrections affecting the stability of N1 DM
and in accord with the active neutrino mass spectrum. The unhatched shaded
regions are constraints solely on N1 DM from freeze-in as in Fig. 3.3. In the
hatched gold region, the baryon asymmetry generated by N2, at the maximum
possible ηY2 ' 0.1Ytherm, is unable to match the observed baryon asymmetry with
g(x) set to its largest natural value, and y33 constrained by neutrino masses. The
right, downward sloping contours indicate where the radiative corrections to yi1
are sufficiently large that they must be unnaturally tuned with tree contributions
to keep N1 DM stable when g(x) is set to its largest natural value, and y33 set
by consistent neutrino masses. Each contour corresponds to a specific Λ/vR, as
shown by the legend at the bottom. The dashed and dotted contours show the
same region when M2 and M3 are comparable, (g(x) = 1, dashed) and m

(ss)
3 and

m
(5)
3 are as naturally degenerate as can be (g(x) at χmin , dotted). Naturalness

and neutrino mass consistency excludes areas with too low or high values of vR,
and places a strong upper bound on the cutoff Λ. Regions with larger M1 are
only allowed if Λ < vR, as occurs for the model of Sec. 3.7. The hatched vi-
olet region shows the inconsistent region where the mass of N2 is greater than
the mass of the heavy fermion that generates it. Left: We fix m22 =

√
∆m2

atm

and m33 = −
√

∆m2
atm + ∆m2

sol resembling the Inverted Hierarchy. Consequently,
m22(m22 − m33) ' (0.1 eV)2 and y2

33 is relatively large at x = 1. Right: We

fix m22 =
√

∆m2
sol and m33 = −

√
∆m2

atm, resembling the Normal Hierarchy.
Consequently, m22(m22−m33)� (0.1 eV)2 and y2

33 is relatively small at x = 1. 89
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3.16 The parameter space of N1 DM from freeze-out, natural leptogenesis, and con-
sistent neutrino masses in terms of the mass of N1, M1, and the mass of the top
quark, mt. Remarkably, N1 DM, natural leptogenesis, and the observed neutrino
masses are consistent with the current measurement of mt = 173.0 ± 0.4 GeV.
The center triangle fixes αS(MZ) at its central value, and the triangles to the
left and right at ±2σ values. We fix mh at its central value throughout, since
variations in mh within its uncertainty do not appreciably change the parameter
space. The ν2 and ν3 masses are fixed by: Left the Inverted Hierarchy (IH) in ac-
cordance with the top left panel of Fig. 3.14 and Right by the Normal Hierarchy
(NH), in accordance with the bottom right panel of Fig. 3.14. . . . . . . . . 91

4.1 The parameter space of N1 DM produced by relativistic freeze-out and dilution
from N2 decay: constraints on the LR symmetry breaking scale vR and the mass
N1. The constraints from warm DM are in green, Big Bang Nucleosynthesis in
orange, and insufficient dilution in blue. The constraints depend on the LR-
model dependent parameter c . 1. Left: We fix the ν2 mass by the atmospheric

neutrino mass difference, m2 =
√

∆m2
atm. Right: We fix the ν2 mass by the solar

neutrino mass difference, m2 =
√

∆m2
sol. . . . . . . . . . . . . . . . . . . . . 103

4.2 The parameter space of N1 DM produced by relativistic freeze-out and dilution
from N2 decay in terms of the left-right symmetry breaking scale, vR, and the
mass of N1, M1, for c = 1. We show constraints from N2 decaying after Big Bang
Nucleosynthesis (orange), decaying too early to provide sufficient N1 dilution
(blue), warm DM bounds (green), and hot DM bounds (red). In addition we
show prospects of future surveys of TRH from pulsar timing on DM subhalos
(dashed orange), improved searches for hot DM from CMB telescopes (dashed
red), and warm DM from 21-cm cosmology (dashed green). Lastly, to the left of
the dashed purple curve labeled ‘Leptogenesis’, the baryon asymmetry produced
by N2 decays is insufficient due to dilution and sphalerons, even with ε = 1.
Left: We fix the ν2 mass with the atmospheric neutrino mass difference, m2 =√

∆m2
atm. Right: We fix the ν2 mass with the solar neutrino mass difference,

m2 =
√

∆m2
sol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 The predicted top quark mass in Higgs Parity theories is shown in green, as
a function of the right-handed symmetry breaking scale. The experimentally
preferred top mass is shown as a gray band, leading to the preferred range of vR
shown by the vertical blue band. The red band shows the range of vR preferred
by gauge coupling unification. . . . . . . . . . . . . . . . . . . . . . . . . . . 108
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4.4 The parameter space for N1 DM produced by freeze-in. The observed relic abun-
dance occurs in the unshaded region for values of T inf

RH shown by the dashed red
contours. Constraints from small scale structure are shown in green, with pro-
jections from future probes of small scale structure using the 21cm line in dashed
green. In the blue region N1 decays too rapidly via WR to `±π∓, and in the
pink region N1 decays too rapidly via WR −WL mixing to νγ when SU(2)L is
broken by (2, 1) + (1, 2) (solid) or by (2, 2) (dashed). The decay via WR −WL

mixing to `+`−ν is weaker and not shown. The horizontal dashed blue lines show
the limit (4.12) on the mixing angle of N1 with active neutrinos. Collider searches
for WR exclude vR below about 10 TeV, as shown in orange. . . . . . . . . . 111

5.1 Running of the SM quartic coupling with current and future uncertainties in mt,

αs(mZ), and mh. Their central values are mt = 172.76 GeV, αs(mZ) = 0.1179, and

mh = 125.10 GeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Regions of parameter space showing the smallness of the ISS tree-level prediction

for the Higgs quartic coupling at the scale m̃. λ(m̃)tree is less than 10−3 if µ
is much greater than mHu and mHd , or if mHu and mHd are nearly degenerate.
The tree-level prediction is zero when m2

Hd
= m2

Hu
, as indicated by the black

horizontal line. In the gray region, one of the Higgs doublets has a negative
mass squared. With Higgsino or sneutrino LSP, the blue region is excluded by
XENON1T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.3 Prediction for the top quark mass as a function of the sparticle mass scale, m̃,
and the tree-level Higgs quartic coupling at m̃. Contours of mtop span 3σ above
and below the current central value for mtop, (172.76±0.30) GeV. For Higgsino or
sneutrino LSP dark matter, the green shaded region is excluded by XENON1T
and dotted green lines show the sensitivities of future experiments. Values of mt

are experimentally disfavored in the dark blue region . . . . . . . . . . . . . 119
5.4 Threshold corrections to the Higgs quartic coupling as a function of sparticle mass

parameters. The six curves correspond to m = (At, µ,m+,mA,M1,M2) with the re-

maining five parameters fixed at m− = min(mq̃,m˜̄u). The Higgsino can be the LSP on

the solid curves, but is not the LSP on the dashed part of the curves for µ,M1 and M2.

Left At > 0. Vacuum instability occurs when At, µ & 4.2m−. Right At < 0. Vacuum

instability occurs when |At|, µ & 2.2m−. . . . . . . . . . . . . . . . . . . . . . . 121
5.5 Prediction for the top quark mass as a function of m− = min(mq̃,m˜̄u) and the

Higgs quartic coupling at m−. Contours of mt span 3σ above and below the
current central value for mt, (172.76±0.30) GeV. The red shaded region requires
unrealistically large negative supersymmetric threshold corrections to the quartic
coupling. The green shaded region and the green dotted lines are as in Fig. 5.3.
Values of mt are experimentally disfavored in the dark blue region. . . . . . 128
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5.6 Upper bound on the dark matter mass mDM as a function of the top quark mass mt

for a range of typical threshold corrections. The blue curve shows the bound when

the threshold corrections are zero, the orange curve when the sparticle spectra are

degenerate m−, and in green, when M1,2 =
√

10m−. Equivalently, the figure shows an

upper bound on mt as a function of mDM. . . . . . . . . . . . . . . . . . . . . . 129
5.7 Upper bound on the dark matter mass mDM as a function of the top quark mass mt and

the strong coupling constant αs(mZ) shown in blue. Equivalently, the figure shows an

upper bound on mt as a function of αs(mZ) and mDM, and a lower bound on αs(mZ)

as a function of mt and mDM. The wider gray bands show the current 2σ uncertainties

of mt and αs(mZ), and the narrower bands show the expected future uncertainties.

Dark matter direct detection bounds are shown in green. . . . . . . . . . . . . . 130
5.8 Prediction for the tree-level quartic coupling with a UV boundary condition

mHu = mHd . In the blue shaded region, reproducing λ(m−) requires mt < 171.86
GeV, 3σ away from the central value. Here we impose αs(mZ) < 0.1189 and
δλ(m−) > −0.002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.9 Contours of the reheating temperature TRH required to produce the observed
dark matter abundance by LSP production during reheating. In the blue region,
direct decay of the inflaton into sparticles overproduces the LSP. To the right of
the dot-dashed line, radiation is not thermalized by the would-be freeze-out, and
the LSP production occurs just before the completion of thermalization. . . 132

6.1 Shaded regions indicate the parameter space where CHAMPs fall into disks
with baryons at a halo collapse redshift zvir, determined by setting ttherm(zvir) <
tcoll(zvir). Pre-reionization (left), the ion fraction is low and thermalization be-
tween X and the plasma is difficult. Post-reionization (right) the ion fraction is
high and thermalization between X and the plasma is enhanced. At high red-
shifts, the halos are denser, and the thermalization time shorter. The change
in concavity for halos & 1011M� signifies where thermalization with electrons
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6.9 Contours of the minimum βγ for CHAMPs to traverse 500m of Earth crust.
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7.1 Constraints on the axion-photon coupling gaγγ arise from searches for axion-
induced X-rays from super star clusters [233] and a nearby MWD [234] in addi-
tion to gamma-rays from SN1987A [558], searches for spectral irregularities with
Fermi-LAT [36, 696] and H.E.S.S. [18], the CAST axion helioscope [55], HB star
cooling [78], and constraints from SHAFT [336], ABRACADABRA [551, 604],
ADMX [259, 144], and RBF+UF [228, 344] that are contingent on the axion
being dark matter. The fiducial 95% upper limit from this work from the non-
observation of linear polarization from SDSS J135141 is computed assuming the
most conservative (at 1σ) magnetic field strength, MWD radius, and orienta-
tion. The shaded orange region shows how the limits change when considering
astrophysical uncertainties; the dominant uncertainty is the inclination angle.
The limit found using the best-fit astrophysical parameters for the MWD is also
indicated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1757.2 The MWD emits thermal, unpolarized light, but this light may acquire a linear
polarization when traversing the magnetosphere by photon-to-axion conversion.
Photons polarized along the direction of the transverse magnetic field may convert
to axions, while those polarized in the orthogonal direction are unaffected. Note
that the conversion process may take place well away from the MWD surface. 177
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7.3 (Top) The wavelength of the 3d−1−2p0 absorption line as a function of magnetic
field. The red shaded region indicates the range of field strengths present on the
surface, assuming the best-fit dipole field of 761 MG from [450]. (Middle) In solid
black is the 3d−1 − 2p0 line template for a 761 MG dipolar field; in dashed black
for 400 MG. (Bottom) The flux of SDSS J135141 as measured by SDSS DR7
(gray). In solid black is the best fit spectrum assuming a 761 MG dipole field. In
dashed black is the best fit spectrum assuming a 400 MG dipole field. . . . 191

7.4 The linear polarization data as a function of wavelength towards the MWD SDSS
J135141 as observed by [566] with the SAO 6-m telescope. We use a Gaussian
likelihood to fit a model to the data with three components: (i) the axion signal,
(ii) the astrophysical background, and (iii) an instrumental systematic contri-
bution. We assume that the axion signal and the instrumental systematic are
wavelength-independent, while the astrophysical background depends on wave-
length as described in Sec. 7.3. The axion signal and the instrumental systematic
contributions would be completely degenerate, given that the systematic nor-
malization parameter can take either sign, but for the prior on the systematic
nuisance parameter. The best fit model, along with the axion contribution to
that model, are illustrated, along with the best-fit statistical uncertainties on the
data; the statistical uncertainty is treated as a hyperparameter that is determined
by maximum likelihood estimation. The red band illustrates the allowed axion
contribution at 1σ confidence. At the best-fit point the astrophysical normaliza-
tion is zero. Still, we illustrate the astrophysical linear polarization model, with
an arbitrary normalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.5 (Left) The Gaia EDR3 data set in the three bandpasses (dots), G, GBP, and GRP,
for SDSS J135141. The model from cooling sequences is shown as error bars in
each bandpass at the best fit WD mass of 0.7 M� and age. (Right) The same as
the left panel, but now for Grw+70◦8247 at the best fit WD mass of 1.0 M�. 196
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7.6 (Left) The axion-induced linear polarization fraction Lp for SDSS J135141 as a
function of the inclination of the magnetic dipole moment relative to the line-of-
sight. The polarization fraction vanishes for i = 0◦ and 180◦ because in these
cases there is no preferred direction for the linear polarization to point. We
highlight in orange the inclination angles preferred at 1σ by the analysis in [450].
In our fiducial analysis we fix the inclination angle at the value, indicated by
vertical orange, within the 1σ band that leads to the weakest limit. Note that in
the figure we also fix the magnetic field at the lowest value allowed at 1σ, and
also the polarization fraction is illustrated for the indicated value of gaγγ. Since
Lp � 1, however, the polarization fraction scales approximately quadratically
with gaγγ. (Right) As in the left panel, but illustrating the dependence of Lp on
the dipole magnetic field strength. Note that the inclination angle is fixed at the
conservative value indicated in the left panel. The shaded orange region is that
preferred at 1σ by [450]; in our fiducial analysis we fix the magnetic field at the
value corresponding to the lower edge of this region to be conservative. In both
panels that axion mass is ma � 10−7 eV such that Lp is independent of ma. 198

7.7 As in the left panel of Fig. 7.6 but for the MWD Grw+70◦8247. As in Fig. 7.6
we fix gaγγ = 10−12 GeV−1. We illustrate the dependence of Lp on the inclination
angle for both the dipole fit presented in [411], which has polar field strength
Bp = 347 MG, and for the best-fit harmonic model (out through ` ≤ 4) from
[411]. The best-fit inclination angles for both fits are indicated by the vertical lines
(solid for harmonic and dashed for dipole). Note that the harmonic model does
not lead to vanishing Lp at i = 0◦ and i = 180◦ because their magnetic field profile
is not symmetric about the magnetic axis in this case. Ref. [411] does not present
uncertainties on their fit parameters, so we estimate that the leading uncertainty
arises from the inclination angle. We estimate this uncertainty using the difference
between the inclination angles from the dipole and harmonic fits. In particular, we
take the uncertainty on the inclination angle to be twice the difference between
the inclination angles measured between the dipole and harmonic fits. To be
conservative we then, in our fiducial analysis, fix the inclination angle in the
harmonic model at the indicated value (solid, vertical orange) that leads to the
smallest value of Lp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.8 As in Fig. 7.1 but for the MWD Grw+70◦8247. We compute the upper limit
on gaγγ using the harmonic magnetic field model. The orange region arises from
varying the inclination angle over the region shown in Fig. 7.7; the fiducial upper
limit is that computed with the inclination angle shown in solid vertical in that
figure. The upper limit computed with the best-fit inclination angle in [411] is
also indicated. Note that we fix the MWD radius at Rstar = 6.7×10−3 R�, which
is the smallest value allowed at 1σ in our analysis, in order to be conservative.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
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7.9 The linear polarization data from [614] for PG 1031+234 presented as ratios of
the Stokes parameters Q (left) and U (right) relative to the intensity I. We fit a
model consisting of an axion, astrophysical, and systematic contributions to the
joint Q/I and U/I data, treating the statistical uncertainty as a nuisance param-
eter. We display the best-fit joint model, in addition to the best-fit components.
The uncertainties on the data points are the best-fit uncertainties from maximum
likelihood estimation of the associated hyperparameter. The magnetic field model
consists of two dipoles, with one being offset, and thus the axion and astrophys-
ical contributions have varying phase differences over the rotational phase of the
MWD. We estimate the constraint |gaγγ| . 8.8× 10−12 GeV−1 at 95% confidence
for ma � 10−7 eV, subject to the caveat that the magnetic field model is fixed at
the best-fit model from [614]. The best-fit axion coupling, corresponding to the
illustrated curve, is gaγγ ≈ 7.4× 10−12 GeV−1. . . . . . . . . . . . . . . . . 204

8.1 Scaling evolution of the energy density ρ with scale factor a (left axis) as well as
the equation of state w (right axis) as a function of temperature in units of TMK,
the transition temperature from matter to kination. The colored curves are for
the two-field model (blue) and the logarithmic potential (orange), whereas the
step function (black) is the piecewise approximation we employ in the remainder
of the paper. For the two-field model, we show the blue dotted curves for different
ratios of the soft masses of the two fields P̄ and P , and the blue shading indicates
the entire possible range of the model. . . . . . . . . . . . . . . . . . . . . . 216

8.2 Primordial helium (left panel) and deuterium (right panel) abundances as a func-
tion of TKR and TRM, respectively. The gray bands show the experimental con-
straints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.3 Posterior distribution for TKR for a late era of kination. We use Planck temper-
ature and polarization data (highTTTEEE+lowEE+lowTT) to constrain TKR >
130 eV at 95% (vertical dashed line). See Fig. E.1 for the complete 2-dimensional
posterior distributions for ΛCDM + TKR parameters. . . . . . . . . . . . . . 222

8.4 The linear matter power spectrum for ΛCDM and kination cosmology at z = 0.
For kination cosmology we use TKR = 130 eV and TRM = 5 keV. Kination leads
to an enhanced linear power spectrum above k ≈ O(1) h/Mpc. . . . . . . . . 223
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8.5 Axion dark matter and the baryon asymmetry from axion rotation. Left panel: in
the axion parameter space, contours of TKR = 1GeV (1TeV) are shown in dashed
(dot-dashed) lines as predicted by dark matter from kinetic misalignment (purple)
and for the baryon asymmetry from minimal ALPgenesis (blue). The contours
intersect along the green line where dark matter and the baryon asymmetry are
simultaneously explained as in ALP cogenesis. Right panel: the purple lines are
the contours of the mass of axion dark matter predicted by kinetic misalignment
as a function of fa and TKR. In both panels, the red region is excluded by
the warmness of axion dark matter from kinetic misalignment. The yellow line
in either plot shows the prediction assuming a QCD axion which terminates at
fa = 108GeV since lower fa is disfavored by astrophysical constraints. . . . . 226

8.6 The unshaded regions show the allowed parameter space for axion kination for
the fixed values of TKR labeled in each panel. Contours of TMK are shown in
these regions with kination. The excluded shaded regions are discussed in the
text. To achieve minimal ALPgenesis, the parameter space collapses into mS '
5keV(0.1/cB) as shown by the black solid line in the upper-right panel, or into
fa given by Eq. (8.31) with S(Tws) = fa as shown by the black solid line in the
lower-right panel, where we take cB = 0.1. On the other hand, lepto-ALPgenesis
restricts the parameter space to mS & 30TeV. The axion cannot constitute
dark matter via kinetic misalignment in the upper panels due to the warmness
constraint in Eq. (8.28). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

8.7 An illustration of the model dependence in the primordial gravitational wave
spectrum. Here we fix TKR = 104GeV, TRM = 108GeV (and accordingly TMK '
2 × 105GeV), and the inflationary energy scale V

1/4
inf = 1016GeV. The black

lines are for the case where the rotation energy density ρθ follows a piecewise
scaling when T ≶ TMK as shown in Fig. 8.1. The solid (dashed) black lines are
obtained from an analytic (numerical) derivation of the evolution of the metric
perturbations. The colored curves are for the two-field model (blue) and the
logarithmic potential (orange) with evolution demonstrated in Fig. 8.1. For the
two-field model, we show the blue dotted curves for different ratios of the soft
masses of the two fields P̄ and P , m2

P̄
/m2

P = 1, 2,∞ from top to bottom. . . 232
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8.8 GW spectra from inflation for inflationary energy scale V
1/4

inf of 1.6 × 1016 GeV
(left panel) and 6× 1015 GeV (right panel). Each panel contains various choices
of (TKR, TRM). The left (right) vertex of each triangle approximately indicates
the choice of TKR (TRM) labeled at the top axis, while T 3

MK = TRMT
2
KR. The

(TKR, TRM) choices are (3MeV, 3GeV) for red, (10−2, 107)GeV for purple, (104, 8×
107)GeV for blue, and (105, 3 × 109)GeV for brown. Finally, for QCD axion
dark matter to be produced by kinetic misalignment with C = 1 and 0.3, TKR

is predicted to be 2 × 106 and 7 × 105 GeV as shown in the solid and dotted
orange curves with the maximal TRM of 7 × 1010 and 4 × 1010 GeV allowed by
the constraints shown in Fig. 8.9. These curves assume g∗(T ) for the Standard
Model and H with individual energy density contributions including a piecewise
ρθ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8.9 Parameter space for the QCD axion dark matter produced by kinetic misalign-
ment, which predicts TKR ' C × 2× 106GeV as can be seen in Fig. 8.5. The left
(right) panel assumes C = 1 (0.3). The regions above the thick magenta and or-
ange lines lead to a primordial gravitation wave signal that can be probed by DE-
CIGO and BBO for the labeled choices of V

1/4
inf , while within the adjacent trans-

parent shadings, the peak of the spectrum can be detected by each observatory.
The signal is made possible by the kination era; otherwise, V

1/4
inf > 1.2× 1016GeV

is required for DECIGO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.10 Possible ranges of temperatures are shown for ALPgenesis assuming cB = 0.1.
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(right panel) become detectable by the experiments specified next to the col-
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wave observatory indicates the regions where the peak in the gravitational wave
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8.11 Possible ranges of temperatures are shown for lepto-ALPgenesis. The left two
columns are for the case with entropy production from saxion domination (D =
1), while the right column assumes radiation domination (D = O(20)) with de-
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1/4
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8.12 Left: An illustration of the model dependence in the stochastic string gravita-
tional wave spectrum. The solid black line is the case where the rotation energy
density ρθ follows a piecewise scaling T ≶ TMK as shown in Fig. 8.1. The colored
curves are for the two-field model (blue) and the logarithmic potential (orange)
with evolution demonstrated in Fig. 8.1. For the two-field model, we show the
blue dotted curves for different ratios of the soft masses of the two fields P̄ and
P , mP̄/mP = 1, 100. The dashed black curve shows the standard string spec-
trum in a ΛCDM cosmology. We fix (TKR, TRM) = (1 GeV, 100 GeV). Right: An
illustration of the difference between the m = 1 amplitude (purple) and the total
amplitude summed over 104 harmonics (red). The sum over high modes partially
flattens the right side of the kination induced peak, shifting the spectral depen-
dence from f−1 to f−1/3. We fix (TKR, TRM) = (1GeV, 10TeV). In both panels,
the second, smaller triangle at high frequencies is an additional fingerprint of ax-
ion kination and arises from loops that form in the early radiation dominated era
and decay in the subsequent matter or kination dominated eras (see Table 8.1).
Both panels assume Gµ = 5 × 10−15, and α = 0.1. The drop in the spectrum
above f ∼ 1012 Hz arises from only considering loops that form after the string
network reaches scaling, tk > tscl. We take scaling to be reached shortly after
string formation, tk ∼ 1/H(T =

√
µ). However, string friction with the thermal

bath can delay scaling and shift this high frequency cutoff to lower frequencies
[43, 665, 670, 333]. We do not include this model dependent effect in this work.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

8.13 Representative spectra of primordial gravitational waves emitted from local cos-
mic strings experiencing axion kination (solid) and the standard ΛCDM cosmol-
ogy (dashed). Long eras of kination exhibit greater amplitudes in the triangular
shaped peak of ΩGWh

2, which is a key signature of axion kination. Of crucial im-
portance is the slowly decaying high frequency tail arising from the sum over high
mode numbers which enables detectors like BBO, DECIGO, and CE to detect
deviations from the ΛCDM spectrum even when the kination peak is not located
within their frequency domain. Left: Early axion kination cosmology where ki-
nation occurs before BBN. The top most contour shows the gravitational wave
amplitude when Gµ is fixed to pass through the NANOGrav signal. Right: Late
axion kination cosmology where kination occurs in the epoch between CMB and
BBN. For each contour, we plot the required Gµ to pass through the NANOGrav
signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
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8.14 Left: Required Gµ for ΩGWh
2 to pass through the NANOGrav signal [70, 132,

271]. For long kination eras, which occur when TRM � TKR, Gµ decreases with
respect to the standard ΛCDM cosmology so that the kination peak does not
exceed the NANOGrav signal. Right : The parameter region of axion kination
whose imprints on the gravitational wave spectrum from cosmic strings can be
detected. For each (TRM, TKR), we fix Gµ according to the left panel so that
spectrum passes through the NANOGrav signal. For the reference ΛCDM cos-
mology, we fix Gµ and α to 6×10−11 and 0.1, respectively, to also fit NANOGrav.
For a given (TKR, TMK), a detection is registered when the difference in ampli-
tudes, ΩGW−ΩGW,0 is greater than 10% (solid) or 100% (dashed) of the standard
cosmological amplitude, ΩGW,0, within the sensitivity curve of the detector. . 246

8.15 Detector reach of the kination cosmic string gravitational wave spectrum for
a range of TKR and TMK consistent with minimal ALPgenesis (top) and lepto-
ALPgenesis (bottom). The top-right panel zooms in on the bottom-left part of
the top-left panel. Gµ and α are fixed at 6 × 10−11 and 0.1, respectively, to fit
the NANOGrav data [70]. For a given (TKR, TMK), a detection is registered when
the difference in amplitudes, ΩGW − ΩGW,0 is greater than 10% (solid) or 100%
(dashed) of the standard cosmological amplitude, ΩGW,0, within the sensitivity
curve the detector. In the transparent shared regions, the peak of the spectrum
originated from axion kination can be detected. . . . . . . . . . . . . . . . . 247

9.1 A sample of SO(10) symmetry breaking paths down to the Standard Model that
produce hybrid defects. The color of the arrows denotes the type of topological
defect produced; red corresponds to magnetic monopoles, blue to cosmic strings,
and green to domain walls. A red (blue) glow on an arrow indicates that defect
becomes part of a monopole-bounded string (string-bounded wall). For example,
monopoles formed at a red arrow with red glow become attached to strings formed
at a blue arrow with red glow. Likewise, strings formed at a blue arrow with blue
glow become attached to domain walls formed at a green arrow with blue glow.
Note that the lower dimensional (boundary) defect of a hybrid defect always
arises from an earlier stage of symmetry breaking than the higher dimensional
(bulk) defect as discussed in Appendix F.1. A dot on a red arrow indicates stable
monopoles form at that stage of symmetry breaking and need to be inflated away.
If other monopoles, strings, or domain walls exist at this time, they will also be
inflated away. However, inflated defects can later destabilize the bulk defects and
generate gravitational waves via nucleation of monopoles on strings (red glow) or
string holes on walls (blue glow). . . . . . . . . . . . . . . . . . . . . . . . . 256
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9.2 Top: Free energy diagram for a pair of monopoles nucleating on a string vs their
nucleation separation, l. For l > ltp, the free energy of the system turns negative
and it becomes energetically possible to nucleate a pair of monopoles in place of
a string segment of length ltp. Bottom: Illustration of the nucleation process. For
strings with length l > ltp a string segment of length ltp is ‘eaten’ and replaced
with a monopole-antimonopole pair which form the boundaries of the cut string
piece. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

9.3 Representative spectra of gravitational waves emitted by cosmic strings that are
eaten by the nucleation of monopoles for fixed Gµ = 1 × 10−8. Each colored
contour corresponds to a different value of κm = m2/µ which parameterizes the
ratio between monopole and string symmetry breaking scales and sets the nucle-
ation time of the monopoles on the string. Since nucleation is an exponentially
suppressed process, the metastable string network is typically cosmologically long-
lived and behaves as pure string network before nucleation. At high frequencies,
ΩGW ∝ f 0 like a pure string network while after nucleation, ΩGW decays as f 2.
The black contour shows the pure string spectrum without monopoles. For κ ≥ 9,
the nucleation timescale of monopoles is greater than the age of the Universe and
the metastable string network is indistinguishable from the pure string spectrum.
The dotted-yellow and blue boxes highlight the potential signals of NANOGrav
[71] and PPTA [329], respectively. . . . . . . . . . . . . . . . . . . . . . . . 267

9.4 The parameter region in the Gµ–
√
κm plane where the gravitational wave spec-

trum from cosmic strings eaten by the nucleation of monopoles can be detected.
For a given (Gµ,

√
κm), a detection is registered when ΩGW is greater than the

sensitivity curve of the given detector and the relative difference in spectra be-
tween cosmic strings eaten by monopoles and a pure string spectrum with the
same Gµ is greater than 10%. The latter condition ensures the two signals are
sufficiently distinguishable and the detection of the infrared f 2 slope shown, for
example in Fig. 9.3, can be achieved. The yellow and blue dashed lines highlight
the potential signals by NANOGrav and PPTA, respectively, as in Fig. 9.3 . 268

9.5 Illustration of monopoles connecting to strings below the string formation scale,
vµ. At vµ, the magnetic field of the monopoles squeezes into flux tubes (strings)
with the typical string length l set by the monopole density at vµ. . . . . . . 270
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9.6 The vm−vµ parameter space where monopoles attached to strings can be relativis-
tic. In the dark blue region at large vm, the monopoles are sufficiently heavy that
the conversion of string rest mass to monopole kinetic energy cannot accelerate
the monopoles to relativistic speeds and any gravitational wave signal is heavily
suppressed. In the red region, the monopoles are light enough that the string can
accelerate them to relativistic speeds, neglecting friction. This region of parame-
ter space can potentially generate a gravitational wave signal. The black contours
shows the typical maximum drag speed of the monopoles from friction with the
thermal bath. For sufficiently large βm, a model dependent friction parameter,
the drag speed prevents the monopoles from reaching relativistic speeds and the
gravitational wave signal can be suppressed. In the light blue region, vµ > vm,
which is forbidden for composite monopole-bounded strings. . . . . . . . . . 271

9.7 Representative spectra of gravitational waves emitted by monopoles that are
eaten by strings. Each colored contour corresponds to a different value of sym-
metry breaking scales (vm, vµ). In all cases, we fix βm and the monopole speed
v near unity. The dominant energy loss by the monopoles is from friction which
causes the monopole-bounded string to decay within a Hubble time. The emission
of gravitational waves thus occurs in a ‘burst’ and is peaked at high frequencies
corresponding to the monopole-antimonopole separation distance when T ≈ vµ.
At high frequencies, ΩGW ∝ f−1 while at low frequencies ΩGW ∝ f 3 by causality.
The frequency dependence near the peak of the spectrum interpolates scales as
ΩGW ∝ ln f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

9.8 Top: Free energy diagram for a circular string-bounded hole nucleating on a
domain wall vs the string nucleation radius, R. For R > Rtp, the free energy
of the system turns negative and it becomes energetically possible to nucleate
a string in place of a wall element of area πR2

tp. Bottom: Illustration of the
nucleation process. For walls with radii R > Rtp a piece of wall with area πR2

tp

is ‘eaten’ and replaced with a string which forms the boundary of the punctured
hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

9.9 Representative spectra of gravitational waves emitted by domain walls that are
eaten by nucleation of strings for fixed σ1/3 = 1012 GeV. Each colored contour
corresponds to a different value of κs = µ3/σ2 which parameterizes the ratio
between string and wall symmetry breaking scales and sets the nucleation time of
the strings on the wall. Since nucleation is an exponentially suppressed process,
the metastable wall network is typically cosmologically long-lived and behaves
as pure wall network before nucleation. At high frequencies, ΩGW scales as f−1

while after nucleation, ΩGW decays as f 3 by causality [380]. For sufficiently large
κs, the domain wall network is long-lived enough to dominate the energy density
of the Universe at decay and emits enough gravitational radiation to violate
measurements of ∆Neff , as shown by the red region. Consequently, κs must be
close to unity so that walls decay by string nucleation before wall domination. 284
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9.10 The parameter region in the vσ−κs plane where the gravitational wave spectrum
from domain walls eaten by the nucleation of strings can be detected. We take the
fiducial value ε = 1 so that σ = v3

σ. For a given (vσ, κs), a detection is registered
when ΩGW is greater than the sensitivity curve of the given detector. In the red
region, the energy density emitted by walls into gravitational radiation is large
enough to be excluded by ∆Neff bounds. Deep in the red region, κs is sufficiently
large that the walls are so long-lived that they dominate the energy density of
the Universe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

9.11 Illustration of strings connecting to walls below the wall formation scale, vσ.
The walls fill in the area between strings because winding the Higgs field, φ,
responsible for the symmetry breaking at vσ around a string necessarily generates
a discontinuity in φ [569, 378]. As a result, a structure must abruptly change φ
back to ensure the continuity of φ. This structure is the domain wall. . . . . 286

9.12 Evolution of a circular string radius Rs as a function of time in the flat spacetime
limit (ie subhorizon strings) when the string is the boundary of domain wall
(solid) and when it is a pure string loop (dashed). The colored contours show the
evolution for a variety of different string sizes. When the string is small compared
to Rc = µ/σ, the string dominates the dynamics and circular string-bounded walls
oscillate similarly to pure string loops of the same size. However, when the string
size becomes of order or greater than Rc, the wall dominates the dynamics of the
string and causes the string to oscillate highly relativistically compared to pure
string loops of the same size. This can be seen by the increase of the period-
averaged velocity squared, 〈v2〉, which increases from approximately 0.5 in the
pure string loop limit to more relativistic values as the size of the string-bounded
wall grows above Rc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
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9.13 Evolution of the infinite string-wall network. The blue curve shows the curvature
radius of the string-bounded walls over time, R/t, while the orange curve shows
the string RMS velocity, vRMS. Top: Representative case where tDW < Rc so that
walls form before dominating the string dynamics. For t < Rc, we numerically
compute the modified one-scale model equations. The string-wall network reaches
a scaling regime where R maintains a constant fraction of the horizon. As t ap-
proaches Rc, the walls begin dominating the dynamics and the strings move more
relativistically. At t = Rc, infinite string-bounded walls with curvature radius
R behave like wall-bounded strings of curvature radius R. We approximate this
transition by piecewise connecting the one-scale model solution to the numerical
solution of the Euler-Lagrange equation of motion for a circular string-bounded
wall. For t > Rc, the infinite network collapses and the pieces oscillate at constant
physical size before decaying via gravitational waves. Bottom: Same as the top
but representative of the case where tDW > Rc so that walls form already dom-
inating the string dynamics. In this scenario, vRMS of the infinite wall network
abruptly increases at wall formation. We transition from the one-scale to the
Euler-Lagrange solution when vRMS of the infinite strings approximately reaches
vRMS of a string-bounded wall piece of the same curvature radius. . . . . . . 289

9.14 Top: The gravitational power, PGW, emitted by string-bounded walls as a func-
tion of R/Rc. The orange contour shows the power in the first harmonic P1 while
the blue contour shows the total power. For R � Rc, the string dominates the
dynamics and we recover the pure string loop limit, namely PGW/Gµ

2 = Γs,
where Γs ≈ 50 is a constant and is independent of string size. For R � Rc, the
wall dominates the dynamics and we recover the pure domain wall limit, namely
PGW ≈ GσMDW. Bottom: The power spectral index as a function of R/Rc, de-
fined by Pn ∝ n−q. In the pure string limit, q → 1 and in the pure wall limit,
q → 3/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

9.15 The vσ − vµ parameter space where wall-bounded strings can generate a grav-
itational wave signal. In the green region, the largest string-bounded walls at
the network collapse time, t∗ have a lifetime comparable to pure-string loops of
the same size. The energy density they deposit into gravitational waves when
they decay is comparable to pure string loops and hence they do not produce a
‘bump’ in ΩGW relative to the flat pure-string spectrum at high frequencies. In
the yellow region, the largest string-bounded walls at the network collapse time,
t∗ are sufficiently large that their lifetime is long compared to a pure string loop
of the same size. The energy density they deposit into gravitational waves when
they decay is greater than pure string loops and a ‘bump’ in ΩGW can be observed
relative to the flat string spectrum. In the blue region, vµ < vσ which is forbidden
for composite string-bounded walls. The black contours show the approximate
frequency, f∗, where ΩGW decays from the pure string spectrum. The top and
bottom panels show the same regions for ε ≡ σ/v3

σ = 1 and 10−2, respectively. 296
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9.16 Representative spectra of gravitational waves emitted by strings that are eaten
by domain walls for fixed

√
µ = 1012 GeV. Each colored contour corresponds to a

different value of the wall symmetry breaking scales vσ. Prior to wall domination
at t∗, the wall-string network behaves similarly to a pure string network and
ΩGW ∝ f 0 at high frequencies. After the network collapses and the largest
string-bounded walls decay, ΩGW drops as f 3 at low frequencies. For tDW < Rc,
the largest wall-bounded string pieces at decay do not live longer compared to
pure string loops of the same size and hence do not deposit significantly more
energy density into gravitational waves compared to pure string loops. There is
no ‘bump’ in ΩGW in this case. For tDW � Rc, the largest wall-bounded strings
pieces at decay have size R � Rc and are long-lived compared to pure string
loops of the same size. These pieces deposit significant energy into gravitational
waves at decay and generate a ‘bump’ in ΩGW as shown by the vσ = 1011 GeV
contour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
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Parameters
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Overview of Part I

Part I of this dissertation focuses on model building and early Universe cosmology guided by
Standard Model parameters. Intriguingly, the measured values of these parameters may point
to new physics at high energies (∼ 109−12 GeV) associated with the energy scale at which
the Higgs quartic vanishes from renormalization. Chapters 1−3 discuss the phenomology
of Higgs Parity models which provide a framework for understanding this vanishing of the
Higgs quartic. Even though these models predict a new physics scale at energies far beyond
the reach of future colliders, each Higgs Parity model generates testable predictions at near-
future terrestrial and space-based detectors.

In Ch. 1, we consider the Higgs Parity model where a mirror symmetry maps the Stan-
dard Model electroweak sector to a mirror electroweak sector. In this model, the strong CP
problem is solved by an exact parity symmetry. Moreover, the existence of mirror fermions
is required by the theory and their masses are fixed to be heavier than their Standard Model
counterparts by the ratio of vacuum expectation values of the two Higgs doublets, a fac-
tor generally greater than a million. Despite being heavy, mirror electrons are stabilized
by the unbroken mirror electromagnetism, allowing them to be dark matter. Because the
mirror symmetry does not extend to the color sector, quarks and mirror quarks share color
charge, allowing us to calculate an unavoidable four loop kinetic mixing diagram between
the Standard Model and mirror hypercharge sectors. With the kinetic mixing parameter
determined, we calculate the scattering rate of mirror electron dark matter with nucleons as
a function of the top quark mass (which predominantly determines the Higgs quartic scale
and hence mass of the mirror electron), and show how the direct detection rate maps to
future measurements of Standard Model parameters. This is based on published work done
with my collaborators, Lawrence Hall and Keisuke Harigaya [265].

In Ch. 2, we consider a second Higgs Parity model where the full Standard Model gauge
group is doubled. We run a Boltzmann code to precisely determine the relic abundance
of mirror electron dark matter and find that mirror electrons can be frozen-out if they are
subsequently diluted to the observed dark matter abundance by the non-adiabatic decays
of mirror neutrinos, whose mass is fixed by the Standard Model neutrino mass and Higgs
quartic scale. Interestingly, we find cosmological constraints on large scale structure limiting
the allowed Higgs quartic scale and lightest neutrino mass to a small region consistent with
uncertainties in the top quark mass and neutrino mass spectrum. In addition, we calculate
the relic dark radiation produced from decays of mirror glueballs and show how the indirect
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detection of ∆Neff from future CMB telescopes can predict the Higgs quartic scale and hence
corroborate future measurements of Standard Model parameters. This is based on published
work done with my collaborators, Lawrence Hall and Keisuke Harigaya [264].

In Ch. 3, we consider a third Higgs Parity model where the mirror electroweak sector
is identified with the right-handed electroweak sector. Here, the Higgs quartic scale is just
the left-right breaking scale, and mirror fermions are just their right-handed counterparts
with only the right-handed neutrinos being heavy. In this model, we find the lightest right-
handed neutrino can be dark matter if it is diluted by the non-adiabatic decays of the two
heavier right-handed neutrinos. Furthermore, we show how the right-handed neutrino that
provides the dilution through its decays can also produce the observed baryon asymmetry
in the Universe via leptogenesis as a function of the sterile neutrino dark matter mass and
Standard Model parameters like the top quark mass. Interestingly, a small parameter space
consistent with the top quark mass uncertainty is still allowed, and future 21cm cosmology
telescopes searching for warm dark matter can probe the entire parameter space. This is
based on published work done with my collaborators, Lawrence Hall and Keisuke Harigaya
[266].

Ch. 4 generalizes the results of Ch. 3 to any left-right symmetric model. In general,
any left-right model requires three right-handed neutrinos, the lightest of which can be dark
matter (sterile neutrino). We show that relativistic freeze-out and dilution of the lightest
right-handed neutrino bounds the left-right symmetry breaking scale and mass of the sterile
neutrino dark matter, while also avoiding tension that occurs with other approaches that
populate sterile neutrino dark matter, such as the Dodelson-Widrow or Shi-Fuller mecha-
nisms. We rigorously prove that when either of the two heavier neutrinos dominate the
energy density of the Universe before decaying, the see-saw mass contributions to the left-
handed neutrino are small, upending the conventional see-saw relationship between the mass
of the left and right-handed neutrinos. We find signals of hot and warm dark matter; the
former is produced from the beta decays of the diluting neutrino and warm dark matter and
the latter from the lightness of the sterile neutrino dark matter. Excitingly, each signal can
be discovered and potentially correlated by future CMB and 21cm cosmology telescopes.
This is based on published work done with my collaborators, Jeff Dror, Lawrence Hall, and
Keisuke Harigaya [257].

Last, Ch. 5 discusses another potential reason behind the renormalization group van-
ishing of the Higgs quartic: Intermediate Scale Supersymmetry (ISS). For a large range
of parameter space associated with the supersymmetric Higgs mass parameter and Higgs
doublet masses, the Higgs quartic nearly vanishes at the ISS symmetry breaking scale. Con-
sequently, we identify the supersymmetry breaking scale with the scale at which the Higgs
quartic vanishes from renormalization behavior, roughly at 109−12 GeV. We find that Hig-
gsino dark matter with mass comparable to the Higgs quartic scale can be probed by current
and near-future direct detection experiments due to its tree-level weak interactions. As with
Higgs Parity, we calculate the signal region as a function of the top quark mass and strong
coupling constant. This is based on published work done with my collaborators, Lawrence
Hall and Keisuke Harigaya [263].
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Chapter 1

Higgs Parity, Strong CP and Dark
Matter

1.1 Introduction

For decades, a natural weak scale has been the key guide to constructing theories of physics
beyond the Standard Model (SM), leading to new physics at or below the TeV scale. However,
so far LHC data points to an alternative view where the SM, with a highly perturbative Higgs
boson, is the effective theory to extremely high energies. In this case, the Higgs quartic
coupling, λSM , exhibits extraordinary behavior taking an absolute value of 10−2 or less at
energies above about 109 GeV. Indeed, at 2σ

λSM(µc) = 0, (1.1)

where µc ' (109 − 3 × 1012) GeV [157] (see [482, 622, 48, 168, 275, 169, 353, 401, 230] for
earlier works).

In a recent paper [347], two of us introduced a new framework, “Higgs Parity”, to un-
derstand this behavior of the SM quartic. A Z2 symmetry replicates the SU(2) gauge group
of the SM, SU(2)↔ SU(2)′, with the Higgs sector transforming as H(2, 1) +H ′(1, 2) under
(SU(2), SU(2)′) and is spontaneously broken at scale v′ = 〈H ′〉 � 〈H〉. A SM Higgs sector
much lighter than v′ requires a fine-tuning that makes the Higgs a pseudo Nambu-Goldstone
boson of an accidental SU(4) symmetry. The SM Higgs quartic coupling then arises only at
the loop level, so that

|λSM(v′)| = O(10−3) (1.2)

and µc is close to v′.
The strong CP problem [2] can be addressed by introducing spacetime parity [105, 528],

and a viable theory was first constructed by Babu and Mohapatra [81]. Higgs Parity provides
a solution to the strong CP problem if it is promoted to a spacetime parity, P , and does not
replicate QCD [347].
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Thus, simple theories with Higgs Parity can simultaneously solve the strong CP problem
and account for the extraordinary behavior of the SM quartic, making them a significant
competitor to axion theories [561, 560]. However, without a Weakly Interacting Massive
Particle or an axion, the nature of dark matter (DM) in these theories becomes pressing. In
this paper we show that such theories have a built-in DM candidate provided P replicates
the entire electroweak gauge group as well as the quarks and leptons. DM is composed of
mirror electrons and positrons, stabilized by an unbroken U(1)′QED. The mirror baryon made
of three mirror up quarks is also stable. However, a strong upper bound on the abundance
of exotic hadrons, made both of mirror up quarks and SM quarks, requires that only a very
small fraction of DM can arise from such mirror baryons. The suppression of the mirror up
quark abundance requires that e′ is produced non-thermally as we will discuss.

In this paper we study a theory that has the same number of parameters as the SM.
Remarkably, these parameters allow us to compute the DM mass, its self interactions, and
its interactions with SM particles.

At energies above µc, the gauge group is SU(3)× (SU(2)×U(1))× (SU(2)′×U(1)′) and
parity ensures three independent gauge couplings, as in the SM. The Higgs potential involves
three parameters, rather than the two of the SM; two describe the two symmetry breaking
scales of 〈H ′〉 = v′ for SU(2)′×U(1)′ → U(1)′QED and 〈H〉 = v for SU(2)×U(1)→ U(1)QED,
while the third is irrelevant to us since it fixes the mirror Higgs mass, mh′ . The Yukawa
coupling matrices of the mirror sector are the complex conjugate of those of the SM sector.
Thus mirror quark and charged lepton masses are larger than those of the SM by v′/v (and
calculable renormalization factors) and the strong CP parameter θ̄ = 0. Since the gauge and
Yukawa couplings in our theory are the same as in the SM, the change in parameter space
may be described by

{mh, v, θ̄} → {v, v′,mh′} → {v, v′}. (1.3)

The last stage signifies that the mirror Higgs mass has no effect on any experimental ob-
servable. Particle physics and dark matter physics are described by one parameter less than
in the SM; however, additional physics is required to understand the DM abundance. There
could be extra parameters in the mirror neutrino masses, but ν ′ are very heavy and play no
role in this paper.

The mass and interaction strength of DM particles are not free parameters. The mirror
electron e′ interacts with SM particles via U(1) kinetic mixing, which arises at four-loop level
and is a prediction of the theory. The mirror electroweak scale v′, and hence the mass of
DM me(v

′/v), is fixed once the SM Higgs mass, the top quark mass and the strong coupling
constant are measured with a sufficient accuracy. The theory thus predicts a tight correlation
between these three parameters and the direct detection rate of DM.

Although the strong CP parameter vanishes at the renormalizable level, a non-zero value
arises from a dimension-6 interaction between the Higgs and gluon fields. Assuming a cut-
off scale at or below the Planck mass, a neutron electric dipole moment is expected to be
observed in near future experiments.



CHAPTER 1. HIGGS PARITY, STRONG CP AND DARK MATTER 6

In section 1.2 we review how a Z2 symmetry of the Higgs sector, H(2, 1) + H ′(1, 2),
spontaneously broken by 〈H ′〉 = v′, leads to λSM(v′) = 0 at tree level. In section 1.3 we
describe the Lagrangian of the theory and show that the strong CP problem is solved. We
compute the four-loop correction to the U(1) kinetic mixing and the relation between the
SM parameters and v′. In section 1.4, observational constraints on mirror DM is discussed,
and the correlation between SM parameters and the direct detection rate of DM is shown.
In section 1.5, non-thermal production of mirror electrons is discussed.

1.2 Vanishing Higgs Quartic from a Z2 Symmetry

In this section we review the framework of [347] that yields the near vanishing of the SM Higgs
quartic coupling at a high energy scale. Consider a Z2 symmetry that exchanges the SU(2)
weak gauge interaction with a new SU(2)′ gauge interaction, and the Higgs field H(2, 1)
with its partner H ′(1, 2), where the brackets show the (SU(2), SU(2)′) representation. The
scalar potential for H and H ′ is given by

V (H,H ′) = −m2(H†H +H ′†H ′) +
λ

2
(H†H +H ′†H ′)2 + λ′H†HH ′†H ′. (1.4)

We assume that the mass scalem is much larger than the electroweak scale. Withm2 positive,
the Z2 symmetry is spontaneously broken and H ′ acquires a large vacuum expectation value
of 〈H ′〉 = v′, with v′2 = m2/λ. After integrating out H ′ at tree-level, the Low Energy
potential in the effective theory for H is

VLE(H) = λ′ v′2 H†H − λ′
(

1 +
λ′

2λ

)
(H†H)2. (1.5)

To obtain the hierarchy 〈H〉 = v � v′, it is necessary to tune λ′ to a very small value
λ′ ∼ −v2/v′2; the quartic coupling of the Higgs H, λSM, is then extremely small.

The vanishing quartic can be understood by an accidental SU(4) symmetry under which
(H,H ′) is in a fundamental representation. For |λ′| � 1, necessary for v � v′, the potential
in Eq. (1.4) becomes SU(4) symmetric. After H ′ obtains a vacuum expectation value, the
Standard Model Higgs is understood as a Nambu-Goldstone boson with a vanishing potential.
Note that in this limit of extremely small λ′, the vacuum alignment in the SU(4) space
is determined by the Coleman-Weinberg potential. The top contribution beats the gauge
contribution so that the true vacuum is the asymmetric one, where the entire condensate
lies in H ′ (or in H, which is physically equivalent). (The SU(4) symmetry implies that the
Higgs boson contribution to the Coleman-Weinberg potential does not affect the vacuum
orientation.)

Below the scale v′, quantum corrections from SM particles renormalize the quartic cou-
pling, and it becomes positive. From the perspective of running from low to high energies,
the scale at which the SM Higgs quartic coupling vanishes, µc of (1.1), is identified with v′,
v′ ' µc. The threshold correction to λSM(v′) is calculated in the next section.
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Although the scale v′ is much smaller than the Planck scale and the typical unification
scale, the theory is no more fine-tuned than the Standard Model because of the Z2 symmetry.
The required fine-tuning is

m2

Λ2
× v2

m2
=
v2

Λ2
, (1.6)

where the first factor in the left hand side is the fine-tuning to obtain the scale m much
smaller than the cut off scale Λ, and the second one is the fine-tuning in λ′ to obtain the
electroweak scale from m. The total tuning is the same as in the Standard Model, v2/Λ2,
and may be explained by environment requirements [34, 351].

It is considered that a global symmetry is always explicitly broken in quantum grav-
ity [313, 202, 316, 92, 362, 363]. We may gauge the Z2 symmetry so that it remains exact
above the scale v′ [242, 183], and is only spontaneously broken when H ′ condenses.

In [347] it was shown that the strong CP problem [2] is solved if the Z2 symmetry includes
space-time parity and leaves the QCD interaction invariant. In this paper we choose to
have Z2 replicate the full electroweak interaction, so that there is an unbroken mirror QED
symmetry that stabilizes light mirror matter [97] allowing it to be DM [345].

1.3 The Mirror Electroweak Theory

In this paper we study a theory where the electroweak gauge group, SU(2)× U(1), is repli-
cated by a parity symmetry, while the QCD interaction is invariant; thus the gauge group is
SU(3)× (SU(2)× U(1))× (SU(2)′ × U(1)′). The Standard Model matter (q, ū, d̄, `, ē) and
Higgs are neutral under SU(2)′ × U(1)′, and the action of parity is

x̄ ↔ − x̄
SU(2)× U(1) ↔ SU(2)′ × U(1)′

q, ū, d̄, `, ē ↔ (q′, ū′, d̄′, `′, ē′)†

H ↔ H ′, (1.7)

where matter is described by 2-component Weyl fields.

Renormalizable interactions

The most general gauge and parity invariant Lagrangian up to dimension 4 is given by

L4 = LKE −
εB
2
BµνB′µν + LY − V (H,H ′) (1.8)

where LKE contains canonical kinetic energies for all fields, εB describes kinetic mixing
between ordinary and mirror hypercharge and the QCD θ parameter is absent due to parity.
V (H,H ′) is the Higgs potential of (1.4), and Yukawa couplings are described by

LY =(q yuū)H† + (q ydd̄)H + (` yeē)H + (q′y∗uū
′)H

′† + (q′y∗dd̄
′)H ′ + (`′y∗e ē

′)H ′ + h.c. (1.9)
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where yu,d,e are the SM 3 × 3 Yukawa coupling matrices and parity implies that the mirror
Yukawa matrices are the complex conjugate of the SM ones.

As V (H,H ′) has three parameters, this theory possesses a single extra parameter com-
pared to the SM. The analysis of the previous section applies: without loss of generality, in
the limit of small λ′, the vacuum has 〈H〉 = v � 〈H ′〉 = v′, and λSM(v′) = 0 at tree level.
In this theory the observed values of GF and the Higgs mass determine v and v′, and the
third parameter of the Higgs potential determines the mirror Higgs mass and is irrelevant
for physics below the scale v′.

Strong CP problem

The 6× 6 mass matrices for the (u, d) quarks of the two sectors are

Mu,d =

(
y∗u,d v

′ 0
0 yu,d v

)
. (1.10)

Mirror and standard quarks give equal and opposite phases to the determinant of their mass
matrices, so that θ̄ = 0 at tree level. Loop corrections give rise to θ̄ ∼ O(10−16) as in the
Standard Model [272], corresponding to a neutron electric dipole moment of order 10−31 e
cm, so that the strong CP problem is solved. This method of using parity to solve the strong
CP problem was invented by Barr, Chang and Senjanovic [97]. The vanishing Dirac mass
limit of the model by Babu and Mohapatra [81] reduces to this method.

The effective field theory contains the Higgs Parity even, dimension 6 operator

L6 =
C

M2
Pl

(|H2| − |H ′|2)GG̃, (1.11)

where G is the field strength of SU(3)c, MPl = 2.4× 1018 GeV is the reduced Planck mass,
and C is a dimensionless coupling. Condensation of H ′ yields the strong CP phase

θ = 32π2C

(
v′

MPl

)2

= 5× 10−11C

(
v′

1012 GeV

)2

. (1.12)

We will find that DM places a lower bound on v′, giving a result for θ close to the experimental
constraint, θ < 10−10 [211, 88, 337], that could be discovered in on-going searches for the
neutron electric dipole moment [461, 89, 652].

The strong CP problem can be also solved by a CP symmetry, which forbids the theta
term. Since CP symmetry also requires Yukawa couplings to be real, the CKM phase is
obtained by spontaneous breaking of CP. A one-loop quantum correction to the strong CP
phase can be suppressed by sophisticated setups [544, 96, 113, 377]. In the parity solution,
parity does not require Yukawa couplings to be real and the CKM matrix is easily reproduced.
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γ′ γ

q′ q

Figure 1.1: Four-loop diagram that gives rise to kinetic mixing between sectors.

Kinetic Mixing at 4 loops

Kinetic mixing between the standard and mirror sectors is induced at four loops by the
shared color charge of standard and mirror quarks, as shown in Fig. 1.1. We may directly
compute the kinetic mixing between the SM photon and the mirror photon by projecting the
external gauge field into the massless combination. The renormalization group equation of
the kinetic mixing parameter can be read off from the four-loop beta function of QCD [592],

d

dlnµ

( ε
e2

)
=

g6
3

(4π)8

(
−1760

27
+

1280

9
ζ(3)

)∑

ij

qiq
′
j. (1.13)

Here i runs over all the quark charges, qi, while j is summed only over mirror quarks with
mass below the scale µ. The prediction for ε is shown in Fig. 1.2 as a function of v′.
Here we take the boundary condition ε(Λ) = 0, where Λ is the UV cutoff of our theory.
This results if either U(1) is incorporated in a non-Abelian factor above Λ providing any
particles carrying both U(1) charges are much heavier than Λ. The three curves correspond
to Λ = 10v′, 1016 GeV and 1018 GeV. Even with Λ as low as v′ there are large logarithms,
such as ln v′/mu′ , so that the the solution of (1.13) is expected to dominate over finite
contributions. The result, ε = O(10−8), is important for placing a limit on the mass of e′

from DM direct detection, and the large numerical factor of (1.13) plays a crucial role.

Neutrino Masses

Standard and mirror neutrinos obtain mass from operators of dimension 5

L5 = (` η `)
H2

MM

+ (`′ η∗ `′)
H ′†2

MM

+ (` ξ `′)
HH ′†

MD

+ h.c. (1.14)

where MM,D are large mass scales and η and ξ are 3×3 dimensionless flavor matrices. Taking
MD �MM , where the mixing between ν ′ and ν is small, so that mν′/mν ' (v′/v)2, gives

mν′ ' 1011 GeV
( mν

0.03 eV

)( v′

1013 GeV

)2

. (1.15)
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Figure 1.2: The prediction for the kinetic mixing parameter ε as a function of v′, for three
values of the cutoff of the theory. If DM is e′, the shaded region is excluded by the direct
detection limit of XENON1T. For various values of the coupling C, defined in (1.11), the
present limit on the neutron electric dipole moment excludes the region to the right of the
vertical lines.

Threshold correction to λ(v′)

We start from the one-loop Coleman-Weinberg potential of the theory above the mirror
electroweak scale,

Vtree =λ
(
|H|2 + |H ′|2

)2
+ λ′|H|2|H ′|2 −m2(|H|2 + |H ′|2), (1.16)

V1−loop =c|H|4 ln
|H|
M

+ c|H ′|4 ln
|H ′|
M

,

c ≡− 3

8π2
y4
t +

3

128π2
(g2 + g′

2
)2 +

3

64π2
g4, (1.17)

where M is an arbitrary scale. A change of M can be absorbed by a change of λ. We take
M to be the vev of H ′, which is given by

v′ ≡ 〈H ′〉 =

√
2m2

4λ+ c
. (1.18)

After integrating out H ′, the potential of H, to the leading order in c and λ′, is given by

V (H) ' v′
2
(λ′ − c

2
) |H|2 + (

3

4
c− λ′ + c ln

|H|
v′

) |H|4. (1.19)
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To obtain the electroweak scale much smaller than v′, λ′ ' c/2 is required. Then the Higgs
potential is given by

V (H)/|H|4 ' c

4
(1 + 4 ln

|H|
v′

). (1.20)

We match this potential to the one-loop Coleman-Weinberg potential of the SM,

VSM(H)/|H|4 =λSM(µ)− 3

16π2
y4
t

(
ln
y2
t |H|2
µ2

− 3

2

)
(1.21)

+
3

256π2
(g2 + g′

2
)2

(
ln

(g2 + g′2)|H|2/2
µ2

− 3

2

)
+

3

128π2
g4

(
ln
g2|H|2/2

µ2
− 3

2

)
,

where we take the MS scheme. By matching VSM(H) to V (H) with µ = v′, we obtain

λSM(v′) ' − 3

8π2
y4
t ln

e

yt
+

3

128π2
(g2 + g′

2
)2 ln

e√
(g2 + g′2)/2

+
3

64π2
g4 ln

e

g/
√

2
. (1.22)

A numerical evaluation shows that λSM(v′) is negative and O(10−3).
In Table 1.1, we show the prediction for v′ for a wide variety of (mt, αs(mZ)). To compute

the running of the quartic coupling we follow the computation in [157], adding the contri-
bution from the mirror quarks to the running of the SU(3)c coupling constant at one-loop
level.1 For each (mt, αs(mZ)), the range of the prediction corresponds to the 1-sigma un-
certainty in the measured Higgs mass, mh = (125.18± 0.16) GeV. The MS quartic coupling
at µ = mt reported in [157] has a theoretical uncertainty of 0.0003, equivalent to a shift
of the Higgs mass by 0.15 GeV, which is comparable to the uncertainty in the measure-
ment of the Higgs mass. The reference values of (mt, αs(mZ)) corresponds to the central
values and the 1-2σ ranges, derived from the experimental results mt = (173.0± 0.4) GeV,
αs(mZ) = 0.1181± 0.0011 [642].

Table 1.1: The prediction for v′ for mh = (125.18± 0.16) GeV.

αs(mZ)\mt 173.8 GeV 173.4 GeV 173.0 GeV 172.6 GeV 172.2 GeV
0.1159 (2.6-3.4)× 109 (4.9-6.9)× 109 (1.0-1.5)× 1010 (2.5-3.8)× 1010 (0.67-1.1)× 1011

0.1170 (4.8-6.7)× 109 (1.0-1.5)× 1010 (2.4-3.7)× 1010 (0.66-1.1)× 1011 (2.2-4.0)× 1011

0.1181 (1.0-1.5)× 1010 (2.4-3.7)× 1010 (0.65-1.1)× 1011 (2.2-4.0)× 1011 (0.95-2.1)× 1012

0.1192 (2.3-3.6)× 1010 (0.64-1.1)× 1011 (2.1-4.0)× 1011 (0.96-2.1)× 1012 (0.66-1.9)× 1013

0.1203 (0.63-1.0)× 1011 (2.1-4.0)× 1011 (0.97-2.2)× 1012 (0.70-2.1)× 1013 (1.2-7.3)× 1014

1We estimate the uncertainty due to the one-loop approximation by shifting the mirror quark thresholds
by an O(1) factor, and find that the uncertainty on the prediction of v′ is less than 10%.
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Figure 1.3: The prediction for v′ as a function of mt and αs(mZ). The thickness of the v′

contours is due to the uncertainty in the Higgs boson mass. The gray shaded rectangles show
the current experimental values for mt at 2σ and αs(mZ) at 1σ. More precise measurements
of these quantities will hone in on v′.

1.4 Observational Constraints on e′ and u′ Dark

Matter

The mirror fermions acquire a mass mf ′ = yf ′v
′ from the vacuum expectation value of the

mirror Higgs, v′. The Z2 symmetry sets yf ′ = yf at the scale µ = v′, so that mirror fermion
masses are larger than their SM counterparts by a factor of approximately v′/v, as shown in
Fig. 1.4. Note that the Yukawa couplings of mirror quarks run faster than those of mirror
leptons due to their additional SU(3) charge. Consequently, the mirror electron and mirror
up quark masses are nearly degenerate at large v′.

Hadronization of u′

After the QCD phase transition, u′ quarks form bound states by combining with other
colored particles, namely, they hadronize. Hadronization of massive colored particles and
their subsequent evolution was investigated in [419].

Since the ordinary SM quarks, which we collectively denote as q, are much more abundant
than u′, the u′ first form bound states u′qq and u′q̄, having B′ number of 1/3. These hadrons
have a large radius ∼ Λ−1

QCD and, if sufficiently dense, can efficiently scatter with each other
to rearrange constituents [419]. In particular, states with B′ = 2/3 are formed by

u′qq + u′qq → (u′u′q)∗ + qqq, u′qq + u′q̄ → (u′u′q)∗, u′q̄ + u′q̄ → (u′u′q)∗ + q̄q̄q̄ (1.23)
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Figure 1.4: Masses of the lightest charged mirror fermions, e′, u′ and d′.

and similarly there is a processing of B′ = −1/3 hadrons to those with B′ = −2/3 by the
corresponding antiparticle reactions. The rearrangements may involve emission of pions,
which we omit here and hereafter. In addition, rearrangements can form B′ = 0 mesons
containing u′ū′

u′qq + ūq̄q̄ → (u′ū′)∗, u′qq + ū′q → (u′ū′)∗ + qqq, u′q̄ + ū′q → (u′ū′)∗. (1.24)

The two u′/ū′ in the B′ = ±2/3, 0 hadrons are initially at a distance of O(Λ−1
QCD) and in

excited states denoted by a superscript ∗. They lose energy by emitting hadrons and fall
into the ground state where the two u′/ū′ are bound by a Coulomb potential and have a
separation of O

(
(m′uα3)−1). Once they fall into the ground state, mesons composed of u′

and ū′ decay via annihilation into SM hadrons, depleting the u′ number.
Once B′ = ±2/3 baryons form, further rearrangement reactions lead to the production

of baryons with B′ = ±1

u′u′q + u′q̄ → (u′u′u′)∗, u′u′q + u′qq → (u′u′u′)∗ + qqq (1.25)

and similarly for the production of antibaryons via the antiparticle reactions. Processes such
as u′u′q + ū′q → u′ū′ + u′qq do not occur as they require the separation of deeply bound u′s
in the first baryon. The excited states (u′u′u′)∗ fall into the ground state u′u′u′, which has a
radius of O

(
(m′uα3)−1). Because of the small radius, the u′u′u′ do not participate in further

rearrangements, and the u′ number is frozen once it forms the u′u′u′ state [227].2

2This should be compared with the result of [361]. There it is assumed that the mass of the constituent
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In summary, the initial u′ have three possible fates. They can: 1) Form hadrons including
one or two u′ (u′qq, u′u′q, u′q̄), which we denote as h′. 2) Form B′ = 1 baryons, composed
of three u′. 3) Annihilate into SM particles via the formation of u′ū′.

The cross section of the rearrangement and the subsequent falling in the ground states
is suppressed by the destruction of the excited states before falling. Taking this effect into
account, the production cross section of the ground states is [227]

σ ∼ 4π

Λ2
QCD

√
ΛQCD

mu′
. (1.26)

The production cross section of u′u′u′ is of this order. This is also effectively the annihilation
cross section of h′ as u′ū′ annihilate into SM particles.

The abundances of (u′u′u′) and h′ is estimated as follows. If the cross section times
the number density of u′ is larger than the Hubble expansion rate around the QCD phase
transition, the abundance of (u′u′u′) is comparable to the initial abundance of u′. The
abundance of h′ is given by the freeze-out abundance determined by the cross section in
Eq. (1.26). If the cross section is small, the abundance of (u′u′u′) is given by the freeze-in
abundance, while that of h′ is close to the initial abundance of u′. The abundance of (u′u′u′)
and h′ are given by

Yu′u′u′ ' Yu′ ×
{
Yu′/Ycrit Yu′ < Ycrit

1 Yu′ > Ycrit

, (1.27)

Yh′ ' Yu′ ×
{

1 Yu′ < Ycrit

Ycrit/Yu′ Yu′ > Ycrit

, (1.28)

Ycrit ≡
H

σvs

∣∣∣∣
T=ΛQCD

= 10−16 mu′

106 GeV
. (1.29)

Ref. [420] considers an alternative model where U(1)EM×U(1)EM ′ breaks to a single U(1)EM
and additional scalar particles are introduced. Then u′ decays into a new particle and a SM
quark. In their setup e′ is also unstable, and the additional scalar particles are dark matter
candidates. We do not consider these non-minimal models in this paper.

The ICRR Limit on u′ Dark Matter

The abundance of h′ is strongly constrained. Stringent constraints come from monopole
searches of the 1980’s, which are sensitive to ionization from fractionally charged h′. The
bound from the ICRR experiment [416] is derived in [262] taking into account the acceleration

is small enough so that the ground state is easily excited to a state with a large radius. As a result the
depletion of the u′ number is not prevented by the formation of the ground state, and the DM abundance is
much smaller than the abundance of the constituent before the phase transition, allowing a DM mass above
the unitarity limit [340].
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by supernova remnants. For mu′ = 106−7 GeV the bound is Yh′ < 10−25.3 This is much
smaller than Ycrit of (1.29), so that the bound on the u′ abundance before the QCD phase
transition is the same, Yu′ < 10−25. The abundance of u′u′u′ is even smaller and almost
all of DM is composed of e′. Possible cosmological scenarios leading to the hierarchy of the
abundances of e′ and u′ are discussed in Section 1.5.

Bulk Matter Constraints on u′ Dark Matter

Additional constraints on h′ come from searches for fractionally charged particles in bulk mat-
ter, implemented via Millikan drop experiments or ferromagnetic levitometers [563]. While
such experimental constraints are strong (no more than one h′ per ∼ 1021 nucleons) and
mass-independent, the results should be interpreted carefully, taking into account the distri-
bution of h′ on Earth from billions of years of geologic churning, the potential contamination
of the sample during the refinement process pre-experiment [456], and the uncertainty to
what materials h′ may bind to due to the exotic chemistry of fractionally charged particles
[456, 457]. We (very) roughly estimate the relative number of h′ compared to nuclei in the
crust as well as in meteorites and find that the flux constraints fh′ ≡ Ωh′/ΩDM . 10−8 are
already or marginally stringent enough to explain why h′ have gone undetected in such bulk
matter experiments.

h′ which existed in the Earth before it solidified sank to the center of the Earth. Thus we
consider h′ which has fallen onto the Earth after its solidification. Supernova shocks partially
evacuate h′ from the Milky Way disk so that the flux of both accelerated and unaccelerated
h′ on Earth is approximately Φ ≈ fh′105 GeV/mh′ cm−2s−1 [262]. The h′ impinging on the
Earth with speed vvir typically stop within a meter or so of crust, where geological effects
become important. With typical geological denudation rates of order vchurn ∼ 10−3 cm/yr
[413], a steady-state number density of h′ in the soil is reached with value

nh′ ∼
Φ

vchurn

≈ 1 cm−3 fh′

10−8

107 GeV

mh′
. (1.30)

The volume of each non-refined terrestrial sample tested for fractionally charged particles is
. 10−3 cm3 [563], so that (1.30) suggests fewer than one h′ resides in a given sample. It is
thus highly plausible that h′ has escaped detection in such samples.

Bulk matter searches for fractionally charged particles have also been tested on meteorites
which have the advantage of lacking the uncertainty associated with geological weathering.
Moreover, iron meteorites are naturally ferromagnetic and hence can be minimally processed
in principle before testing on ferromagnetic levitometers.

Meteorites are made of heavy elements which are synthesized in stars. As is argued
in [227], h′ are expected to sink toward the center of stars and annihilate, thereby reduc-

3The bound is derived assuming that the charged particle does not feel strong interactions and may stop
only from ionization losses in the atmosphere or Earth’s crust. The ICRR experiment was situated above
ground. Even with its strong interactions, we find h′ does not stop in the atmosphere nor the iron plates
inside the ICCR detector for mu′ = 106−7 GeV.



CHAPTER 1. HIGGS PARITY, STRONG CP AND DARK MATTER 16

ing their abundance in meteorites. We thus consider the abundance of h′ in meteorites
accumulated only during their exposure to cosmic rays, including h′.

The distribution of h′ within the meteorite must be considered. For example, h′ with
speed vvir and charge qe ≈ 1 impinging on the meteorite stop after ∼ 10 cm and are thus
typically ablated when the meteorite enters the atmosphere [121, 506]. 4 Fermi-accelerated
h′, on the other hand, can penetrate deeper into the core and avoid ablation losses. The
accelerated spectrum of h′ induces a depth dependent number density within the meteorite.
For low momentum, the Fermi-accelerated differential spectrum of h′, d(nv)/dp = Φ/p, [262],
so that the number density of h′ a distance X below the meteorite surface is approximately

nh′(X) ∼ Φ t

2X
≈ 104 cm−3 fh′

10−8

107 GeV

mh′

0.5 m

X

tCR

2× 108 yr
, (1.31)

where tCR is the exposure time of the meteorite to cosmic rays before falling to Earth. We
set the surface depth equal to the typical atmospheric ablation for meteorites like the Hoba
sample, approximately 0.5 m.

The ablation length as well as the exposure time can be inferred by measuring the abun-
dance of isotopes and the tracks of cosmic rays in a meteorite [121]. For example, the Hoba
meteorite experienced 40 cm of ablation and about 2 × 108 years of exposure to cosmic
rays [506]. Since 10−4 cm3 by volume of Hoba has been tested with null results [409], there
is a good chance that no h′ are detected for fh′ = 10−8. Besides Hoba, only three other
meteorites have been tested, totaling less than 10−3 cm−3 by volume [563, 409, 437]. The
exposure time to cosmic rays for each of these meteorites is far less than Hoba [121, 285],
and thus give weaker constraints.

Long-range self interaction of e′

Mirror electrons interact with other mirror electrons via a massless mirror photon. Even
though mirror electrons experience a long-range force, their mass is too heavy to appreciably
self-scatter and disrupt the dark matter halo profile [33] nor the spectrum of the cosmic
microwave background.

The XENON1T Limit on e′ Dark Matter

Mirror electrons also interact with SM particles via kinetic mixing and can produce an
observable signal. The cross section of the scattering between e′ and a nucleus, of mass mN

and atomic number Z, with relative velocity vrel is given by

dσ

dq
=

8πα2Z2ε2

v2
relq

3
|F (q)|2, (1.32)

4If mh′ & 5/q2 × 108 GeV, h′ can pass right through even the largest sampled meteorite, Hoba, and
hence avoid all bulk matter meteorite constraints. Note |q| may be as low as 1/3.
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where q is the momentum transfer and F (q) is the nuclear form factor. The number of
expected events in a direct detection experiment with an energy threshold Eth, a total target
mass Mtar, an exposure time T , and atomic weight A is

Nevent = 1.6×
( ε

10−8

)2 107 GeV

me′

(
Z

54

)2(
131

A

)2
10 keV

Eth

f(Eth)

0.3

MtarT

ton× year
, (1.33)

where we assume a local DM density of 0.3 GeV/cm3, as well as a velocity distribution of

dvf(v) = dv
4√
π

v2

v3
0

exp(−v2/v2
0), v0 = 220 km/s. (1.34)

Here f(Eth) takes into account the suppression of the scattering by the form factor,

f(Eth) =

[∫ qmax

qth

dq|F (q)|2q−3

]
/

[∫ qmax

qth

dqq−3

]
,

qth =
√

2mNEth, qmax = 2mNvrel. (1.35)

XENON1T searches for a recoil between DM and Xenon with a threshold energy around
10 keV [60]. The bound obtained there can be interpreted as an upper bound of 16 on
the expected number of the events. Assuming the Helm form factor [374, 475], we find
f(Eth) ' 0.3, so that the bound becomes

me′ > 1× 106 GeV
( ε

10−8

)2

. (1.36)

This result is translated to a bound in the (v′, ε) plane in Fig. 1.2. Together with the
prediction for ε, this requires that the mirror electroweak scale is above (3 × 1011 − 1012)
GeV, for a UV cutoff ranging from v′ to MPl. The LZ experiment [532] is expected to
provide about 10 times better sensitivity and probe v′ values an order of magnitude larger.
An experiment whose sensitivity is saturated by the neutrino-floor will have about 100 times
better sensitivity [125] and probe v′ values two orders of magnitude larger. Note that larger
values of v′ are expected to yield larger values of θ via the dimension 6 operator of (1.11), as
shown by vertical lines in Fig. 1.2, greatly enhancing the importance of the next 1-2 orders
of magnitude of sensitivity in nuclear recoil experiments.

Correlations between mt, αs(mZ) and the Direct Detection Rate

The direct detection rate is a function of v′, which is determined by SM parameters. Future
experiments will hone in on v′ and the direct detection rate as measurements of the top
quark mass, strong coupling constant, and Higgs mass improve. The uncertainty on v′

comes dominantly from those of the top quark mass and the strong coupling constant. We
provide a fitting formula for v′ around (mt, αs(mZ)) = (172.5 GeV, 0.1192),

log10

v′

GeV
' 12.3 + 0.2

[
−mt − 172.5 GeV

0.1 GeV
+
αs(mZ)− 0.1192

0.0003
+
mh − 125.18 GeV

0.18 GeV

]
.

(1.37)
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The uncertainty from the Higgs mass is sub-dominant, as seen in Fig. (1.3).
In Fig. 1.5, we show the prediction for the expected number of events, in experiments

with Xenon targets, as a function of the top quark mass for a given strong coupling constant.
We take a UV boundary condition for the kinetic mixing parameter of ε(Λ) = 0 with Λ =
1018 GeV (10 v′) in the upper (lower) panel, as shown by the green (blue) curves in Fig. 1.2.
For a given set of the SM parameters, the difference in signal rates between these two cutoffs
is only a factor of about 3 - 6. The width of the bands correspond to the uncertainty from
the Higgs mass. The horizontal solid line shows the bound from XENON 1T, while dashed
lines show the sensitivity of future experiments. The constraint from XENON 1T already
requires mt < 173.1 (173.4) GeV.

The strong coupling constant can be measured with an accuracy of 0.1% by improving
lattice computation as well as the conversion of the coupling at the lattice scale to that of
higher energy scales [474]. Further measurements at the Z-pole at lepton colliders can achieve
similar accuracy [122]. The uncertainty in the prediction of the event rate from the last term
of (1.37) is then very small compared with that from the cutoff Λ. The top quark mass can be
measured with an accuracy of 0.2 GeV at high-luminosity running at the LHC [205], below
which the uncertainty is saturated by the theoretical ambiguity associated with the definition
of the pole mass and its conversion to MS [124, 111, 110]. The Higgs mass can be determined
with an accuracy of few 10 MeV at high luminosity running of the LHC [171]. At this stage
the direct detection rate is predicted within a factor of about 6, where the uncertainty
from the top quark mass dominates. Further improvement is possible by determining the
MS top quark mass directly by the measurement of the top quark production cross section
which is free from the ambiguity. Lepton colliders can determine the top quark mass with
an accuracy of few 10 MeV [617, 391, 440, 112], allowing for the prediction of the direct
detection rate within few ten percents. With this accuracy, uncertainties from the local DM
density, the velocity dispersion [170, 139], the cutoff Λ, and the theoretical uncertainty in
the determination of v′ become important.

1.5 Cosmological Production of e′ Dark Matter

In this section we describe how the relic DM abundance is set in the early universe. We
assume that the matter-antimatter asymmetry of the mirror sector is negligible and discuss
the abundance of symmetric components. This is the case, for example, if baryogenesis in
the mirror sector is kinematically prevented because of the large mass scale of the mirror
sector.

As we have seen in the previous section, the abundance of e′ must be much larger than
that of u′. We first show that thermal production mechanisms do not work. The hierarchy of
the abundances can be achieved by non-thermal production from the decay of the inflaton, or
generically from a particle that dominates the energy density of the universe. This particle
can have additional CP violating decay channels kinematically open to the SM but not the
heavier, mirror sector, allowing a matter-antimatter asymmetry to develop solely in the SM.
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Figure 1.5: The prediction for the e′ DM direct detection rate as a function of mt. The
thickness of the signal rate contours is due to the uncertainty in the Higgs boson mass. The
gray shaded rectangle shows the current experimental value of mt to 2σ.

Freeze-Out and Dilution

For a large enough reheat temperature (TRH & mu′), both the SM and mirror sectors are
in thermal equilibrium. As a result, the abundance of e′ is set by thermal freeze-out and
is given by Ωe′ ≈ ΩDM(v′/108GeV)2 5 . To produce the observed DM abundance, v′ is so
low that it is already ruled out by kinetic mixing (v′ . 1012 GeV), besides predicting an

5This neglects the e′ produced from beta decays of heavier mirror fermions during e′ freeze-out, which
exacerbates the overproduction problem.
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unrealistically large top quark mass.
One way to increase v′ while maintaining Ωe′ = ΩDM is to dilute the frozen-out e′ by

entropy produced from the decays of a massive particle that subsequently dominates the
energy density of the universe. However, this fails because e′ and u′ have comparable freeze-
out abundances and dilution changes their abundances by the same amount, preventing any
hierarchy between e′ and u′ abundances from developing.

Freeze-In

Another potential thermal mechanism for producing e′ DM is through freeze-in from the
SM plasma via electromagnetic interactions and kinetic-mixing, with ε ∼ 10−8. Taking
the reheat temperature after inflation below the e′ mass, TRH � me′ leads to a freeze-in
abundance with an exponential Boltzmann suppression, ∼ exp(−2me′/TRH). The hope is
that when this is chosen to give the observed DM abundance in e′, the heavier u′ will be
even more Boltzmann suppressed so that its relic abundance is sufficiently small. However,
e′ has the observed DM abundance if TRH ≈ me′/10 and, at this value of TRH , the freeze-in
abundance of u′ is larger than for e′: the closeness of me′ and mu′ means that the additional
Boltzmann suppression of u′ production is more than compensated by the much stronger
coupling of u′ to the SM via gluons. For the reasons discussed in Sec 1.4, u′ must be highly
sub-dominant relative to e′, hence the freeze-in origin for DM fails.

Non-Thermal Production from Decays of φ

We have seen that u′ is overproduced by many orders of magnitude in both freeze-out and
freeze-in production of e′ DM. Nevertheless, non-thermal production of e′ DM from the
decay of an inflaton φ, (or any field which dominates the energy density of the universe), can
produce e′ DM with a sufficiently small and innocuous abundance of u′ (Ωu′/ΩDM . 10−8)
if certain constraints on the inflaton reheat temperature and the e′ and u′ branching ratios
are imposed.6 These general constraints are as follows:

First, the reheat temperature must be sufficiently low so that the thermally produced
freeze-in abundance of u′ from the SM bath is . 10−8 ΩDM , implying 7

TRH .
mu′

40− 1
2

ln(
Ωu′/ΩDM

10−9 )
. (1.38)

6It is also conceivable to produce e′ from a field whose energy density is subdominant when it decays.
7Here we assume that the maximum temperature of the universe, Tmax, is TRH. If the decay is perturba-

tive and the decay rate is constant in time, the maximum temperature is generically greater than TRH [446,
356]. In this case the upper bound on TRH is stronger. See [360, 357] for the estimation of DM abundance
produced between TRH and Tmax.
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Next, decays of the inflaton must directly produce the observed DM abundance, requiring a
branching ratio into e′ of

Be′ '
eV

TRH

mφ

me′
. (1.39)

Last, the inflaton branching ratio into u′ must be sufficiently small that Ωu′/ΩDM . 10−8,
implying

Bu′ . 10−8 Be′ . (1.40)

This small branching fraction requires mφ to be in a narrow range, as it is challenging to
obtain Bu′ � Be′ except by a kinematic suppression.

This seems to require a coincidence among the mass scales, which may be understood
by an anthropic argument. Let us consider a landscape of vacua, scanning over the scale
v′ while fixing other parameters of the theory. Suppose that the structure of the theory is
such that u′ is abundantly produced where kinematically allowed so that matter-radiation
equality occurs much earlier than in our universe. A few examples are provided below. There
are two possible obstacles for the formation of a habitable environment in such a DM-rich
universe [646]. First, the collapse of halos occurs much earlier, and hence galaxies are much
denser than in our universe. A planet then has more frequent close encounters with stars,
disturbing the habitable orbit around its own star. Second, the mass fraction of baryons is
much smaller than ours. The baryons inside a disk are no longer self-gravitating and are
stable against further collapse to form stars. Both obstacles require that the DM abundance
should not exceed O(10 − 100) times the DM abundance in our universe, so that universes
with copious u′ production do not contain observers.8 On the other hand, universes with
e′ production kinematically forbidden have no DM. Almost no galaxies are formed before
domination by dark energy, after which structure formation is prevented.

The requirements on TRH , Be′ , and Bu′ described above can be satisfied, for example,
in a model where the inflaton directly couples to quarks and gluons but not to leptons. To
satisfy (1.40), the upper bound on the inflaton mass is mφ < 2mu′ . e′ DM is produced
through decays φ → ē′e′γ′ via an off-shelf loop of mirror quarks and a virtual γ′. The
inflaton coupling is determined so decays to quarks and gluons give TRH appropriately small
to satisfy (1.39) and ensure that the freeze-in abundance of e′ is negligible.

Another model, which we will explore in detail in the future, can incorporate baryogenesis.
The inflaton directly couples to heavy right-handed neutrinos N,N ′, that are integrated out
to yield dimension 5 operators of (1.14), leading to masses for the neutrinos ν and ν ′. The
inflaton decays to ν ′ via the mixing between the right-handed neutrinos and ν ′. The beta
decay of ν ′ into e′ē′ and a lighter ν ′, which is suppressed by the large mirror electroweak scale,
produces e′ DM with a small branching ratio. The decay into u′ is forbidden by imposing

8Note that we fix the magnitude of the primordial cosmic perturbation as well as the baryon density.
The first and the second obstacles are avoided by decreasing the cosmic perturbation and increasing the
baryon density, respectively.
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mν′ < mu′ + md′ + me′ . The anthropic argument is applicable if the beta decay of ν ′ into
e′ē′ and a lighter ν ′ involves a small mirror MNS angle. ν ′ also decays into the Standard
Model left-handed leptons and the Higgs, and leptogenesis [300] occurs non-thermally [467,
72]. A SM matter-antimatter asymmetry is generated via the interference between the tree
and one-loop decay diagram of ν ′ via the operator l′lH, akin to the decay of sterile neutrinos
via the operator NlH. However, there is no mirror matter-antimatter asymmetry since the
large mass scale of the mirror sector prevents an analogous reaction.

1.6 Conclusion and Discussion

The Standard Model is remarkable: it correctly describes a wide wealth of data, while
giving a highly incomplete understanding of particle physics. At its inception, there was an
immediate realization that one must seek a deeper theory beyond. A particularly elegant idea
is to unify the three gauge forces [309, 310], despite their manifest differences. Furthermore,
if there is a desert above the weak scale, v, the unification of couplings at a very large energy
scale MG leads to a prediction for the proton decay rate, Γp

{αi} →
MG

v
, Γp ∝

1

M4
G

. (1.41)

In the intervening decades, despite a succession of ever more powerful experimental tests,
the Standard Model, with three generations, neutrino masses and a single Higgs doublet,
has shown ever wider applicability. We are motivated to pursue an alternative completion
far in the UV because the observed value of the Higgs mass implies that the SM possesses
another scale, µc, where the Higgs quartic coupling vanishes

{αi,mt,mh} →
µc
v
, (1.42)

and we take the view that this is the next symmetry breaking scale of nature. Which deeper
symmetries of nature should be introduced and broken at µc? Motivated by the strong CP
problem we introduce a Higgs Parity that includes spacetime parity but does not replicate
QCD, and motivated by DM we introduce mirror electroweak gauge symmetry.

We have constructed the minimal theory with gauge group SU(3) × SU(2) × U(1) ×
SU(2)′×U(1)′ with Higgs Parity exchanging the two electroweak groups and the correspond-
ing two Higgs doublets, H andH ′. The new symmetry breaking is accomplished by 〈H ′〉 = v′,
which is a mirror version of the SM electroweak breaking SU(2)′ × U(1)′ → U(1)EM ′ , with
v′ ' µc. Remarkably, this theory has the same number of parameters as the SM while solving
the strong CP problem and providing a DM candidate, the mirror electron e′. In addition,
a very small kinetic mixing parameter results from a 4-loop gauge calculation and provides
the interaction between e′ and ordinary matter that allows a prediction of the event rate
Nevent at nuclear recoil direct detection experiments

{αi,mt,mh} →
v′

v
, Nevent ∝

1

v′
. (1.43)
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We comment on the comparison between grand unification (1.41) and our UV completion
of the SM (1.43). Both have a compelling signal with a rate suppressed by the high symmetry
breaking scale, MG for proton decay, and v′ for DM direct detection. A succession of exper-
iments was necessary to reduce the uncertainties on {αi} so that MG, and hence the proton
decay rate, could be precisely predicted. This was made difficult because Γp depends on the
4th power of MG. Although the minimal theory is excluded, unified threshold corrections
allow more complicated models. Similarly, in the theory of this paper further experiments
are now needed to better measure {αs,mt,mh} to pin down v′ and hence the direct detection
rate. Here one is greatly aided by two features: Nevent falls only linearly with v′, and there
is a second observable, the neutron electric dipole moment, that grows as v′2. Figure 1.5
shows that, no matter how the values of {αs,mt,mh} evolve as uncertainties are reduced, the
entire parameter space of the theory will be tested. As in grand unification, adding particles
in the desert could destroy the prediction; however, extra particles added at the scale v′ do
not easily affect our prediction. There is an uncertainty coming from the UV completion
scale for the calculation of the kinetic mixing parameter, but this is a logarithmic effect that
leads at most to an uncertainty of 2.5 around the central prediction. Unlike minimal grand
unification, our theory implies that the gauge structure gets more complicated before any
ultimate simple unification.
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Chapter 2

Dark Matter, Dark Radiation, and
Gravitational Waves from Mirror
Higgs Parity

2.1 Introduction

At high energy colliders, precision measurements of the electroweak symmetry breaking
sector of the Standard Model (SM) have been pursued for decades, but so far there has been
no discovery of any physics that would lead to a natural explanation of the weak scale. If
the SM Effective Field Theory is valid well above the weak scale, at what mass scale will it
finally break down? A possible answer has been provided by the LHC: perhaps new physics
enters at the scale where the SM Higgs quartic coupling passes through zero. For example,
this new physics could be the breaking of PQ symmetry [581] or of supersymmetry [349, 397,
350, 293].

Another possibility for this new physics is the breaking of a discrete symmetry, “Higgs
Parity”, that interchanges the SM Higgs, H, a doublet under the weak SU(2), with a partner
Higgs, H ′, a doublet under some SU(2)′ [347]. There are many implementations of this idea.
One elegant possibility is that SU(2)′ is identified as the SU(2)R under which the right-
handed quarks and leptons transform as doublets. In this case Higgs Parity may include
spacetime parity and lead to a solution of the strong CP problem [347]: parity forces θ to
vanish and the quark Yukawa matrices to be Hermitian [105, 528, 82, 81]. Furthermore,
since the breaking of SU(3)×SU(2)L×SU(2)R×U(1)B−L occurs at the scale where the SM
Higgs quartic vanishes, a remarkably successful unification of couplings results [347, 346].
However, the theory needs extending to incorporate dark matter (DM).

In another class of theories, Higgs parity transforms SM quarks and leptons, (q, u, d, l, e),
into mirror quarks and leptons, (q′, u′, d′, l′, e′). We have recently explored such a theory
where the electroweak group is doubled, but QCD is not, so both ordinary and mirror quarks
are colored [265]. This theory solves the strong CP problem, with mirror quark contributions
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to θ̄ cancelling contributions from the ordinary quarks [97]. Although there is no immediate
path to gauge coupling unification, the theory does have the interesting possibility of e′ dark
matter that is within reach of direct detection. However, hadrons containing the u′ quark
are also stable, and since the bounds on such heavy hadron dark matter are very strong, the
e′ production mechanism must be non-thermal rather than thermal.

In this paper we study a complete mirror sector where Higgs Parity doubles the entire
Standard Model: SM↔ SM′. In this theory e′ and u′ are again stable and DM candidates;
but since now u′ does not couple to QCD, it is much less constrained by direct detection,
allowing successful DM production via Freeze-Out with dilution or via Freeze-In. Long ago, a
mirror copy of the SM with an unbroken parity was introduced as a way to restore space-time
inversion symmetry [472, 442, 554, 288].

This Mirror Higgs Parity theory is highly constrained: the parameters in the SM′ La-
grangian are the same as in the SM Lagrangian, so that the only new parameters are the
ones describing portal interactions: one for kinetic mixing, one for the Higgs portal and
several for the neutrino portal. Although the doubling of QCD implies that Higgs Parity
can no longer solve the strong CP problem, there is now a gravity wave (GW) signal from
the QCD′ transition. In the case of Freeze-Out DM, once the neutrino portal parameters
are chosen to give the observed DM abundance, the GW signal can be computed entirely in
terms of measured SM parameters. This paper is devoted to the DM, dark radiation (DR)
and GW signals and their relation.

In section 2.2 we review how Higgs Parity predicts the vanishing Higgs quartic coupling at
a high energy scale. Section 2.3 introduces the mirror copy of the SM with Higgs Parity and
the mass spectrum of the mirror sector. Direct detection of DM and, in unified theories, its
relation to the proton decay rate is discussed in section 2.4. The constraint from long-lived
mirror glueballs is investigated in section 2.5. In section 2.6, we compute the relic abundance
of e′/u′ dark matter and dark radiation. The spectrum of the GWs from the mirror QCD
phase transition is estimated in section 2.7. The final section is devoted to conclusions and
discussions.

2.2 Vanishing Higgs Quartic from a Z2 Symmetry

In this section we review the framework of [347] that yields the near vanishing of the SM Higgs
quartic coupling at a high energy scale. Consider a Z2 symmetry that exchanges the SU(2)
weak gauge interaction with a new SU(2)′ gauge interaction, and the Higgs field H(2, 1)
with its partner H ′(1, 2), where the brackets show the (SU(2), SU(2)′) representation. We
call the Z2 symmetry as Higgs Parity. The scalar potential for H and H ′ is

V (H,H ′) = −m2(H†H +H ′†H ′) +
λ

2
(H†H +H ′†H ′)2 + λ′H†HH ′†H ′. (2.1)

We assume that the mass scalem is much larger than the electroweak scale. Withm2 positive,
the Higgs parity is spontaneously broken and H ′ acquires a large vacuum expectation value
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of 〈H ′〉 = v′, with v′2 = m2/λ. After integrating out H ′ at tree-level, the Low Energy
potential in the effective theory for H is

VLE(H) = λ′ v′2 H†H − λ′
(

1 +
λ′

2λ

)
(H†H)2. (2.2)

To obtain the hierarchy 〈H〉 = v � v′, it is necessary to tune λ′ to a very small value
λ′ ∼ −v2/v′2; the quartic coupling of the Higgs H, λSM, is then extremely small.

The vanishing quartic can be understood by an accidental SU(4) symmetry under which
(H,H ′) is in a fundamental representation. For |λ′| � 1, necessary for v � v′, the potential
in Eq. (2.1) becomes SU(4) symmetric. After H ′ obtains a vacuum expectation value, the
SM Higgs is understood as a Nambu-Goldstone boson with a vanishing potential. Note that
in this limit of extremely small λ′, the vacuum alignment in the SU(4) space is determined
by the Coleman-Weinberg potential. The top contribution beats the gauge contribution so
that the true vacuum is the asymmetric one, where the entire condensate lies in H ′ (or in
H, which is physically equivalent). (The SU(4) symmetry implies that the Higgs boson
contribution to the Coleman-Weinberg potential does not affect the vacuum orientation.)

Below the scale v′, quantum corrections from SM particles renormalize the quartic cou-
pling, and it becomes positive. From the perspective of running from low to high energies,
the scale at which the SM Higgs quartic coupling vanishes is identified with v′. The threshold
correction to λSM(v′) is calculated in the next section.

Although the scale v′ is much smaller than the Planck scale and the typical unification
scale, the theory is no more fine-tuned than the SM because of Higgs Parity. The required
fine-tuning of the theory is

m2

Λ2
× v2

m2
=
v2

Λ2
, (2.3)

where the first factor in the left hand side is the fine-tuning to obtain the scale m much
smaller than the cut off scale Λ, and the second one is the fine-tuning in λ′ to obtain the
electroweak scale from m. The total tuning is the same as in the SM, v2/Λ2, and may be
explained by environment requirements [34, 351].

2.3 The Mirror Standard Model

The phenomenology of the theory crucially depends on the action of Higgs Parity on the SM
gauge group. Refs. [347, 346] considers the case where the SU(3)c × U(1)Y gauge group is
not replicated. The theory solves the strong CP problem and can be embedded into SO(10)
unification. Ref. [265] replicates the U(1)Y gauge group. The theory solves the strong CP
problem and has an interesting dark matter candidate. In this paper we study a theory
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where the SM gauge group is entirely replicated by a Z2 symmetry which maps

SU(3)× SU(2)× U(1) ↔ SU(3)′ × SU(2)′ × U(1)′

q, ū, d̄, `, ē ↔ q′, ū′, d̄′, `′, ē

H ↔ H ′. (2.4)

where matter is described by 2-component, left-handed, Weyl fields. 1

The Lagrangian

The most general gauge and Higgs Parity invariant Lagrangian up to dimension 5 is

L = LSM(q, ū, d̄, l, ē, H) + LSM ′(q′, ū′, d̄′, l′, ē′, H ′) + λ′′(H†H)(H ′†H ′) +
ε

2
BµνB′µν

+ (` η `)
H2

MM

+ (`′ η `′)
H
′2

MM

+ (` ξ `′)
HH ′

MD

+ h.c.
(2.5)

where LSM is the SM Lagrangian up to dimension 4 and LSM ′ its Z2 mirror. The next
two terms of (2.5) link the SM and mirror sectors: λ′′ = λ + λ′ describes mixing between
the ordinary and mirror Higgs doublets and ε kinetic mixing between ordinary and mirror
hypercharge. The dimension 5 operators in the second line of (2.5) describe the neutrino
sector. MM,D are large mass scales and η and ξ are 3× 3 dimensionless flavor matrices.

The Mirror Spectrum

The charged mirror fermions acquire a mass mf ′ = yf ′v
′ from the vacuum expectation value

of the mirror Higgs, v′. The Z2 symmetry sets yf ′ = yf at the scale µ = v′, so that mirror
fermion masses are larger than their SM counterparts by a factor of approximately v′/v, as
shown in Fig. 2.1.

Mirror electrons and up quarks are the lightest fermions charged under U(1)′EM and
SU(3)′, respectively, and thus stable and viable DM candidates. We explore e′ and u′ DM
in Sec. 2.6.

Unlike mirror quarks, mirror glueballs, S ′, acquire mass chiefly from SU(3)′ nonpertur-
bative effects, with mass [137, 181]

m′S ' 6.8Λ′QCD � ΛQCD. (2.6)

The mirror QCD confinement scale, Λ′QCD, is not a free parameter, but is determined by
running αS(mZ) ' .1181 up to the Z2 restoration scale v′, equating αS(v′) = αS′(v

′), and

1The Z2 mapping described in (2.4) is not unique. For example, the Z2 symmetry can be extended to
spacetime parity if space is inverted and SM fields are mapped to their Hermitian conjugated mirrors.
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Figure 2.1: Mass spectrum of key mirror particles. The purple band shows the range of mirror
neutrino masses for SM neutrino masses betwen 0.01− 0.10 eV.

then running αS′ down to lower scales until it diverges at the scale Λ′QCD. In the MS scheme
the dynamical scale is given by

Λ′QCD ' 190 GeV

(
v′

1010 GeV

)4/11

. (2.7)

Mirror glueballs are unstable and dominantly decay to γ′γ′, and if heavy enough, subdomi-
nantly to HH†. The latter are visible decays which may occur during BBN if S ′ is long-lived.
We investigate such constraints in Sec. 2.5.

Standard and mirror neutrinos obtain mass from the dimension 5 operators on the second
line of (2.5). We will be interested in small mixing between ν ′ and ν with MD � MM so
that mν′/mν ' (v′/v)2, giving

mν′ ' 105 GeV
( mν

0.03 eV

)( v′

1010 GeV

)2

(2.8)

as shown in Fig. 2.1 for two values of mν . Mirror neutrinos are unstable and decay to `H or if
heavy enough, beta decay to e′, u′, d′. Long-lived ν ′ may come to dominate the energy density
of the universe and release significant entropy into the SM thermal bath upon decaying. We
investigate the effect of such entropy dilution on freeze-out e′ and u′ DM in Sec. 2.6.
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Figure 2.2: (Left) Running of the SM quartic coupling. (Right) Predictions for the scale v′ as a
function of mt.

Prediction for v′

Between the electroweak scale and the scale v′, the running of the Higgs quartic coupling
λSM is exactly the same as in the SM. We follow the computation in [157] and show the
running in the left panel of Fig. 2.2 for a range of top quark mass mt = (173.0± 0.4) GeV,
QCD coupling constant at the Z boson mass αS(mZ) = (0.1181± 0.0011), and Higgs mass
mh = (125.18± 0.16) GeV.

The value of the SM quartic coupling at the scale v′ is not exactly zero because of the
threshold correction [265],

λSM(v′) ' − 3

8π2
y4
t ln

e

yt
+

3

128π2
(g2 + g′

2
)2 ln

e√
(g2 + g′2)/2

+
3

64π2
g4 ln

e

g/
√

2
, (2.9)

where the MS scheme is assumed. The prediction for the scale v′ is shown in the right panel
of Fig. 2.2. For each top quark mass and QCD coupling constant, the range of the prediction
corresponds to the 1-sigma uncertainty in the measured Higgs mass, mh = (125.18 ± 0.16)
GeV. Within the uncertainties, v′ as small as few 108 GeV is possible. Future measurements
can pin down the scale v′ with an accuracy of few tens percent [265].
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Figure 2.3: Constraints on kinetic mixing if DM is composed of mirror electrons.

Kinetic Mixing

Even though quantum corrections to the kinetic mixing are small, 2 no symmetry forbids a
tree-level ε from being order unity in the effective Lagrangian (2.5). However, as shown in
Fig. 2.3, mirror electron DM with ε & 10−8 is strongly constrained by nuclear and electron
recoil experiments, ionization signals, and cosmology ([262] and references therein.) A nat-
ural explanation for such a small ε is that SU(3)×SU(2)×U(1)×SU(3)′×SU(2)′×U(1)′

unifies into a larger gauge group with no abelian factors. Consequently, ε must vanish above
the unification scale vG by gauge invariance.

For example, consider a theory where the SM gauge group and the mirror gauge group
separately unify to G×G′ at scale vG, shown qualitatively in Fig. 2.4. Above vG the operators
that induce kinetic mixing between the standard and mirror sectors are:

1

2

c6

M2
Pl

(ΣF )(Σ′F ′) +
1

2

c8

M4
Pl

(Σ2F )(Σ′2F ′) +O(1/M6
Pl) (2.10)

where F, F ′ are the gauge field strengths and Σ,Σ′ the Higgs fields. The first term is absent
if Σ is not an adjoint representation of G or charged under some symmetry. When Σ and Σ′

2Diagrams contributing to kinetic mixing via the Higgs portal only occur beyond four loops, likely
inducing an ε� 10−12.
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Figure 2.4: Qualitative picture of the effective field theory at scales v, v′, and vG. The gauge
groups G and G′ do not contain any abelian factors so that kinetic mixing can only be radiatively
generated at the scale vG and below, or be induced by higher dimensional operators at vG.

acquire a vacuum expectation value vG, 3 the higher dimensional operators in (2.10) induce
a kinetic mixing ε

ε ' 3.5× 10−5 c6

( vG
1016 GeV

)2

+ 6.0× 10−10 c8

( vG
1016 GeV

)4

+O(v6
G/M

6
Pl). (2.11)

It is possible to freeze-in e′ as DM via the induced kinetic mixing of (2.11). As shown
in Fig. 2.4, the correct DM abundance can be produced for a kinetic mixing parameter
ε ' 4×10−11, essentially independent of DM mass. If the dim-6 coefficient c6 is non-zero, the
correct e′ DM abundance can be produced for the unification scale vG ' 1×1013 c6

−1/2 GeV.
If c6 vanishes, and the dim-8 coefficient c8 is non-zero, the correct e′ DM abundance can be
produced for vG ' 5× 1015 c8

−1/4 GeV.

2.4 Direct Detection and the Correlation with Proton

Decay

Direct Detection by Nuclear Recoils

Kinetic mixing induced from higher dimensional operators allows e′ dark matter to scatter
electromagnetically with a nucleus. The Rutherford cross section for scattering between e′

and a nucleus of mass mN and atomic number Z, with relative velocity vrel is given by

dσ

dq
=

8πα2Z2ε2

v2
relq

3
|F (q)|2, (2.12)

3Since the Z2 symmetry is unbroken above v′, 〈Σ〉 = 〈Σ′〉 = vG.
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where q is the momentum transfer and F (q) is the nuclear form factor. The number of
expected events in a direct detection experiment with an energy threshold Eth, a total target
mass Mtar, an exposure time T , and atomic weight A is

Nevent = 1.6×
( ε

10−8

)2 107 GeV

me′

(
Z

54

)2(
131

A

)2
10 keV

Eth

f(Eth)

0.3

Mtart

ton× year
, (2.13)

where we assume a local DM density of 0.3 GeV/cm3, as well as a velocity distribution of
[701]

dvf(v) = dv
4√
π

v2

v3
0

exp(−v2/v2
0), v0 = 220 km/s. (2.14)

Here f(Eth) takes into account the suppression of the scattering by the form factor,

f(Eth) =

[∫ qmax

qth

dq|F (q)|2q−3

]
/

[∫ qmax

qth

dqq−3

]
,

qth =
√

2mNEth, qmax = 2mNvrel. (2.15)

Assuming the Helm form factor [374, 475], we find f(Eth) ' 0.3.
XENON1T searches for a recoil between DM and Xenon with a threshold energy around

10 keV [60]. The bound obtained there can be interpreted as an upper bound of 16 on the
expected number of the events. Currently, the strongest bound on ε for me′ > 102 GeV
comes from XENON1T [262], requiring

ε < 1× 10−10
( me′

102 GeV

)1/2

(2.16)

as shown in Fig. 2.3. If ε is close to this bound, future experiments may detect e′ dark
matter.

Correlation Between Proton Decay and Direct Detection

Let us consider a case where the SM gauge group is embedded into a unified gauge group
with heavy gauge bosons mediating proton decay. The proton decay rate is

Γ−1(p→ π0e+) ' 3× 1035years
( vG

1016 GeV

)4
(

0.103 GeV2

W0

)2

, (2.17)

where |W0| = 0.103 ± 0.041 GeV2 encodes the relevant hadronic matrix element extracted
from a lattice computation [59]. We also assume that below the heavy gauge boson mass
scale the gauge group contains a U(1) factor which eventually joins the U(1)Y gauge group.
(This case excludes, for example, the Pati-Salam gauge group breaking at an intermediate
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Figure 2.5: Correlation between the proton decay rate and the DM-nuclear scattering rate as a
function of v′. The rates are related as they both depend on the unification scale vG via higher-
dimensional operators.

scale.) The kinetic mixing is given by Eq. (2.11) and we assume c6 = 0. The direct detection
rate Nevent/Mtart of (2.13) and the proton decay rate are correlated with each other,

Γ−1(p→ π0e+) ' 3× 1035years

(
Nevent

Mtart

ton× year

10

)1/2
1

c8

(
v′

2× 109 GeV

)1/2

, (2.18)

as shown in Fig. 2.5. The blue region shows that if XENON1T were to detect a nuclear recoil
signal, the proton lifetime would generally be longer than Hyper-Kamiokande could detect,
for c8 = 1. The orange region shows the analgous signal region for LZ. For v′ ≤ 109 GeV,
Hyper-Kamiokande and LZ both can detect correlating proton decay and nuclear recoil
signals, respectively. If c8 > 1, the kinetic mixing parameter is stronger for fixed vG so that
nuclear recoil experiments and proton detect experiments may find correlating signals for
v′ & 109 GeV. For example, the dashed blue and orange contours of Fig. 2.5 show the reach
of XENON1T and LZ, respectively, for c8 = 10.

2.5 High and Low Reheat Scenarios; BBN and Dark

Radiation

Since all the parameters of the SM have been determined, the only free parameters that
affect the cosmology of the Mirror Higgs Parity theory are the reheat temperature after
inflation and the portal parameters that connect the SM and mirror sectors. A key question
is whether the two sectors were brought into thermal equilibrium after inflation.



CHAPTER 2. DARK MATTER, DARK RADIATION, AND GRAVITATIONAL
WAVES FROM MIRROR HIGGS PARITY 34

g′

g′

γ′

γ′

q′

q′

q′

q′S′

g′

g′

H

H†

q′

q′

q′

h′
S′

Figure 2.6: Mirror glueball decay to γ′γ′ (left) and H,H† (right).

At sufficiently high temperatures, the SM and mirror sectors are kept in thermal equilib-
rium by the Higgs portal; the sectors then decouple at a temperature

Tdec

v′
' 10−3

(
v′

109 GeV

)1/3

. (2.19)

Our two cosmological scenarios correspond to whether the reheat temperature after inflation,
TRH is above or below Tdec, and lead to very different mechanisms for the abundance of e′

and u′ dark matter. For TRH > Tdec, the u′ and e′ abundances are given by freeze-out as the
temperature drops below their masses, followed by dilution from ν ′ decay; for TRH < Tdec

we assume that only the SM sector is reheated, so that DM arises from freeze-in. These two
schemes for DM production are discussed in the next section.

In both high and low reheating cosmologies, long-lived mirror glueballs are produced
whose decay products may yield substantial dark radiation or alter the relic abundances of
light elements. In this section we study the general constraints on the maximum production
of mirror glueballs. These results will be used in the next section to place limits on the high
TRH scheme and identify regions of parameter space that give signals of dark radiation and
perturbed light element abundances.

The mirror QCD confinement transition occurs when the mirror thermal bath cools to
a temperature T ′c = 1.26 Λ′QCD [137]. At this point, the mirror bath contains only γ′ and
g′ so that the ratio of entropies of the two sectors at T ′c is about r = (16/106.75)(T ′c/Tc)

3.
If the reheat temperature after inflation is greater than Tdec, the two sectors were initially
in thermal equilibrium and r = (8/9)(g′∗(Tdec)/106.75). On the other hand, if the reheat
temperature after inflation is below Tdec, the two sectors were never in thermal equilibrium
and ratio of temperatures T ′/T is generally much less than one.

After the mirror QCD transition, g′ confine to form mirror glueballs S ′, whose energy
density normalized by the entropy is given by

ρS′

s
=

3

4
Ar T ′c. (2.20)

The factor A takes into account the non-trivial dynamics before and after the phase transition
and is estimated in Appendix A.2. A = 1 corresponds to the limit where a massless ideal
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gas of mirror gluons suddenly becomes pressureless mirror glueballs at T ′c and the mirror
glueball number density is conserved afterward.

Mirror glueballs are typically long-lived. The lifetime of the mirror glueball is dominantly
set by its decay rate to mirror photons, described by the dimension-8 operator F ′F ′G′G′,
generated by a loop of mirror quarks of mass mq′ and charge Q′ as shown in the left panel of
Fig. 2.6. After confinement this becomes a dimension-5 operator connecting S ′ to γ′γ′ [414]

∆LS′→γ′γ′ =
Q′2

240π

α

m4
q′

FS′

0++ F ′µνF
′µνS ′ (2.21)

with matrix element FS′

0++ = 〈0|1/2g2
sG

a
µνG

µν
a |0++〉 ' 2.7m3

S′ [515]. Since the amplitude is
dominated by the smallest mq′ , we take q′ = u′ giving Q′ = 2/3, so that the mirror glueball
decay rate to mirror photons is

ΓS′→γ′γ′ '
1

16π

(
2.7α

270π

)2
m9
S′

m8
u′
. (2.22)

The mirror glueball can also decay to the SM sector via the Higgs portal as shown by the
right panel of Fig. 2.6. The decay rate to HH† is given by

ΓS′→HH† '
1

8π

(
2.7

16π2

)2
m5
S′

v′4
. (2.23)

If its lifetime, Γ−1
S′ ' (ΓS′→γ′γ′ + ΓS′→HH†)

−1, exceeds about 1 s, S ′ decays during BBN.
If this occurs, S ′ may inject substantial energy density, ρvis, into the SM hadronic sector
altering the neutron to proton ratio before nucleosynthesis or disassociating light elements
immediately after, leading to the constraint [428]

ρvis

s
=

ΓS′→HH†

ΓS′

3

4
A
r

D
T ′c . 10−14 GeV. (2.24)

Here, D is a generic dilution factor which may arise if there exists a particle which comes
to dominate the energy density of the universe and decays before BBN, thereby injecting
entropy into the SM thermal bath.

In the cosmology with TRH > Tdec, mirror neutrinos are a natural candidate to provide
such dilution since they are abundantly produced, decouple from the mirror bath while
relativistic, and are long-lived. In this scenario, D = TMD,ν′/TRH,ν′ , where TMD,ν′ is the
temperature of the SM bath when ν ′ induced matter-domination begins and TRH,ν′ when
it ends. If TRH < Tdec, there is no particle in the mirror standard model to provide such
dilution and D = 1. We show the BBN constraints as a function of v′ in Fig. 2.7 in orange
using the precise energy yield constraints calculated in [428]. When TRH > Tdec, r is known
so D is constrained, as shown in the left panel of Fig. 2.7. When TRH < Tdec, D is known so
r is constrained, as shown in the right panel of Fig. 2.7.
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Figure 2.7: ∆Neff contours (purple) and BBN constraints (orange) from S′ → γ′γ′, HH†. In the
left (right) panel the two sectors were (were not) initially thermally coupled so that DM is thermally
produced via freeze-out and dilution (freeze-in). The temperature ratio of the two sectors, T ′/T ,
is evaluated at the mirror confinement temperature. For clarity, we take A = 1.

In addition, the energy deposited by S ′ into mirror photons is constrained, even if S ′ does
not decay during BBN. The mirror photons behave as dark radiation, whose energy density
is conventionally expressed as an excess in the effective number of neutrinos ∆Neff . For the
high TRH cosmology, with ν ′ decay leading to a dilution factor D, ∆Neff depends on whether
S ′ decays before, during, or after the ν ′ matter-dominated era

∆Neff '
ΓS′→γ′γ′

ΓS′

4

7

(
43

4

)4/3
r

D

T ′c√
ΓS′MPl

A

×





(
π2

10

)1/4 g∗(TΓS′
)1/4

g∗S(TΓS′
)1/3

1

D1/3
S ′ decays before MD

(
π2

10

)1/3(
TRH,ν′√
ΓS′MPl

)1/3

S ′ decays during MD

(
π2

10

)1/4 g∗(TΓS′
)1/4

g∗S(TΓS′
)1/3

S ′ decays after MD.

(2.25)

For the low TRH cosmology few ν ′ are produced, so they do not give a matter dominated era
and D = 1. Contours of the dark radiation abundance produced from S ′ → γ′γ′ are shown
in Fig. 2.7.
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Figure 2.8: Temperatures of the mirror bath around which each mirror fermion freezes-out (solid)
and decays (dashed). Mirror temperatures of sector decoupling, ν ′ decoupling, as well as the mirror
QCD phase transition, are shown as dotted lines.

2.6 Cosmological Abundance of Mirror Dark Matter

Freeze-Out and Dilution from ν′ Decay

In this section, we take the reheat temperature of the universe larger than the temperature
at which the two sectors decouple, TRH > Tdec. In this case, the relic abundances of mirror
e′ and u′ dark matter are set by freeze-out followed by dilution from the late decays of ν ′.4

4Furthermore, the maximum temperature of the universe after inflation is taken less than the mirror
electroweak scale to avoid domain wall problems from the spontaneous breaking of Higgs Parity. Generically,
the maximal temperature is higher than the reheat temperature. See [356, 535] for a recent estimation of
the maximal temperature.
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As the temperature of the universe drops, unstable mirror particles decay, while stable e′

and u′ annihilate and freeze-out. Although heavier mirror charged leptons and quarks are
unstable, their decay widths are much smaller than their masses because of the large mirror
electroweak scale. Fig. 2.8 shows the temperatures around which each particle freezes-out
(solid lines) and decays (dashed lines). Here we ignore the effects caused by late decays of
mirror neutrinos, and include them momentarily. For v′ in the range of (108 − 1011) GeV,
the e′ and u′ abundances are determined by the following processes in chronological order:

1. b′ freezes-out.

2. c′, µ′ and s′ freeze-out. During these annihilations, b′ and c′ decay producing c′, µ′ and
s′. The annihilations also produce e′, u′ and d′, but they thermalize quickly.

3. d′, u′ and e′ freeze-out. During these annihilations, s′ and µ′ partially decay producing
e′, u′ and d′.

4. QCD’ phase transition occurs. Mirror hadrons composed of s′, u′ and d′ quickly anni-
hilate. Mirror hadrons composed of s′ and d′ decay into u′u′u′.

We note that τ ′ is short-lived and does not affect the above processes. A set of Boltzmann
equations describing the freeze-out dynamics is shown in Appendix A.1.

We elaborate on the fourth process. After the mirror QCD phase transition, mirror quarks
are tied with each other by strings and form bound states. For v′ < 1010 GeV, the Coulomb
binding energy of mirror hadrons containing a u′ or d′ is comparable to T ′c [361], and so an
O(1) fraction of these mirror quarks form loosely bound states with large radii ∼ Λ′QCD.
With such a large cross-section, these mirror hadrons scatter among themselves efficiently,
rearranging their quark constituent until they contain a q′q̄′ pair, and subsequently annihilate
into γ′ [419, 361]. For v′ > 1010 GeV the Coulomb binding energy of mirror hadrons is larger
than T ′c, and so most of the mirror quarks initially form tightly bound states with a smaller
radius ∼ (mq′α

′
S)−1 [227]. Nevertheless, these tightly bound states still have a relatively

large radius and scatter and annihilate relatively efficiently. The mirror baryon containing
only mirror strange quarks, s′s′s′, generally forms a tightly bound state for all v′. Still, s′

annihilates efficiently so that its beta decay contributions to e′ are small.
The thermal abundances of e′ and u′ are shown in Fig. 2.9. The solid lines conservatively

assume that the annihilation cross-section of mirror hadrons is π/(mq′α
′
S)2. The abundance

of e′ does not change even if the cross-section is as large as Λ′−2
QCD. For comparison, the dashed

line assumes mirror hadrons completely cease annihilating after confinement. Even though
the annihilation cross-section of e′ does not change in either case, the relic abundance of e′

drops when annihilations of mirror hadrons continue after the QCD’ phase transition since
any beta decays from s′ or d′ that produce e′ below T ′c are effectively absent (see Fig. 2.8).
To the left of the vertical dotted line, the QCD’ phase transition occurs before u′ freezes-out,
which is why its abundance dramatically increases if hadronic annihilations are assumed to
cease below T ′c.
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Figure 2.9: The cosmological abundance of mirror electrons and up quarks from freeze-out and from
decays of heavier charged mirror fermions. Dilution from mirror neutrino decays is not included.

We see from the solid lines of Fig. 2.9 that e′ is the dominant component of DM. On
the other hand, efficient annihilations after the QCD′ phase transition make u′ a small
component of DM, which exists today in the form of mirror hadrons like u′u′u′. For all
v′ > 6 × 107 GeV, the thermal abundance of e′ is too large to be DM. This is problematic
as such a low v′ requires mt and αS(mZ) to lie beyond their current 3σ experimental values.

Nevertheless, in the above discussion, we have ignored mirror neutrinos which are cos-
mologically stable if mν′ < me′ +mu′ +md′ and MD of (2.5) is sufficiently large. The former
prevents decays to the mirror sector, due to mirror fermion number and mirror electromag-
netic charge conservation, and the latter suppresses decays to the SM sector. However, as
MD is reduced, mirror neutrinos can decay well after they becoming non-relativistic to SM
particles, thereby diluting e′ and u′. Consequently, the v′ required to produce e′ DM shifts
to higher scales.

Shortly after the two sectors decouple at Tdec, ν
′ decouple from the mirror thermal bath

as the mirror weak interaction rate drops below the Hubble expansion rate, as shown in
Fig. 2.8. Since Tdec = T ′dec � mν′ , ν

′ decouple while relativistic with an initial yield Yν′ '
nν′(Tdec)/s(Tdec) = 0.004. With this initial abundance, if ν ′ are sufficiently long-lived they
dominate the energy density of the universe prior to decaying.
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One generation of long-lived ν′

For our first example, we assume that two flavors of ν ′ decay rapidly and study e′ dilution
from decays of the single long-lived flavor. The long-lived ν ′ decays to `H via the neutrino
portal operator of (2.5)5 with a decay rate

Γν′→lh =
mν′

8π

v′2

M2
D

. (2.26)

The mass of the mirror neutrino is given by Eq. (2.8), and for sufficiently large v′, the mirror
neutrino is massive enough that it can beta decay into e′, u′ and d̄′, with a decay rate

Γν′→e′u′d̄′ =
3

8

1

192π3

m5
ν′

v′4
. (2.27)

When ν ′ dominantly decay into the SM sector, the decay products heat up the SM thermal
bath, thereby diluting the frozen-out abundance of e′ and u′ relative to nγ by a factor

D =
TMD,ν′

TRH,ν′
' mν′Yν′

1.2(Γν′MPl)1/2

(
g∗RHπ

2

10

)1/4

. (2.28)

(Γν′)
−1 = (Γν′→lh + Γν′→e′u′d̄′)

−1 is the lifetime of the mirror neutrino. The numerical factor
of 1.2 is taken from [354]. We solve the Boltzmann equation for the abundance of mirror
fermions in Appendix A.1, including freeze-out, the change of the expansion rate during the
mirror neutrino matter-dominated era, and dilution from ν ′ decays. An approximation for
the resulting e′ yield from freeze-out and dilution is

ρe′,FO

s
≈ 35

m2
e′

πα2

1

MPl

g
1/2
∗

g∗S

1

D
≈ 5× 10−6 v′2v√

MPlmν

1

MD

(2.29)

where D is the dilution factor provided by mirror neutrino decays (2.28).
For a given (v′,m′ν), the parameter MD is determined to yield the correct e′ DM abun-

dance. Furthermore, the resulting values of MD are large enough that m′ν can be mapped
to mν by the scaling

mν = mν′
v2

v′2
. (2.30)

Further constraints on this scenario are shown in the (v′,mν) plane in Fig. 2.10.
In the allowed white region, we find MD must lie within the range (1018− 1023) GeV. In

the red-shaded region, the e′ abundance is smaller than the dark matter abundance without
dilution. For too small a neutrino mass, the required TRH,ν′ ≈

√
Γν′MPl to reproduce the dark

matter abundance is below the MeV scale and affects BBN as well as the effective number

5We take ξ = η = 1.



CHAPTER 2. DARK MATTER, DARK RADIATION, AND GRAVITATIONAL
WAVES FROM MIRROR HIGGS PARITY 41

108 109 1010 1011 1012
10-3

10-2

10-1

1

1014

1015

1016

vʹ [GeV]

m
ν
[e
V
]

M
M
[G
eV

]

0.
06

0.
05

0.
05

0.
06

0.
1

0.
2

Δ
N
ef
f=
0.
3

Δ
m
t,
Δ
α
S
(m

Z
)
>
3σ

2σ 1σ 0σ
Ω
e' >

Ω
D
M

(ν' →
e'+u'+d')

Ω
e'
>
Ω
D
M

(ν
' He
av
y
→
ν' L
ig
ht
+e
'+
e
')

Σmν > 0.3 eV

TRH,ν' < TBBN = 4 MeV

In
su
ffi
ci
en
tD
ar
k
M
at
te
r

mν,Heavy
2 < Δm31 (23)

2

Figure 2.10: Constraints on (v′,mν) when e′ dark matter arises from freeze-out and dilution from
one long-lived species of ν ′. Here mν is the mass of the neutrino that is the Higgs Parity partner
of the long-lived ν ′. Purple contours show ∆Neff resulting from decays of S′ to γ′. Vertical gray
contours show v′ when mt and αS(mZ) deviate from their central values by 0 to 3σ.

of neutrinos [426, 427]. We adopt the bound TRH,ν′ > 4 MeV [603], excluding the pink-
shaded region. In the blue-shaded region, the mirror beta decay ν ′ → e′u′d̄′ is kinematically
allowed, creating too much e′ and u′ abundance. In the orange-shaded region the sum of the
SM neutrino masses are above 0.3 eV, which is disfavored by the observations of the Cosmic
Microwave Background (CMB) [30]. The gray-shaded region is excluded at the 3σ level from
measurement of αS and the Higgs and top masses. If the long-lived species is the lightest
ν ′ then beta decay to ν ′e′ē′ cannot occur. However, if the long-lived ν ′ is one of the heavier
states, then the lightly green-shaded region of Fig. 2.10 is also excluded since the long-lived
ν ′ creates e′. The corresponding SM neutrino mass should be above ∆m2

31(23), excluding the
lightly yellow-shaded region. The allowed region is not large: mt should be above its present
central value and, remarkably, the neutrino mass must be within a factor of 10 of its present
upper bound of 0.1 eV.

In the resulting allowed region of parameter space for e′ dark matter, the purple con-
tours show our prediction for ∆Neff from decays of mirror glueballs, produced at the QCD′
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confining transition, to mirror photons. Throughout the entire region ∆Neff is in the range
0.03-0.4, allowed by Planck [30] and within range of the sensitivities of CMB Stage IV ex-
periments [10].

Universal coupling strength of neutrino portal

As a second illustration of e′ freeze-out and dilution from ν ′ decays, we take the strength
of the neutrino portal coupling to be independent of generation. Thus, in a neutrino mass
basis, we take ν ′ → lH decays to be given by (2.26) for all three generations of ν ′. To
avoid overproducing e′, all three ν ′ must be light enough that beta decay is forbidden. Thus
the total decay rate of each mirror neutrino is given by (2.26) and is proportional to mν′ .
Consequently, the dilution (2.28) is dominated by the heaviest mirror neutrino. For a normal
hierarchy (mν1 � mν2 < mν3) of SM neutrinos, the mirror neutrino responsible for dilution
is ν ′3; for an inverted hierarchy (mν3 � mν1 < mν2), ν ′2,1 give comparable dilutions; and for
a quasi-degenerate spectrum ν ′3,2,1 all give comparable dilutions.

The bounds from BBN, too much dark matter from ν ′ → e′u′d̄′ decay, and too little dark
matter from freeze-out are approximately as in Fig. 2.10, with the vertical axis interpreted
as the heaviest neutrino, which is constrained by oscillation data to be at or above 0.05 eV.
Thus the larger values of v′ and ∆Neff are excluded in this case. The upper bound on the
heaviest neutrino from the cosmological limit on the sum of the neutrino masses is 0.1 eV.

In addition to these bounds, there is a constraint from the decay ν ′3 → ν ′1,2e
′ē′ for a

normal hierarchy or ν ′2,1 → ν ′3e
′ē′ for an inverted hierarchy. In either case, too much e′ is

produced. Regardless of whether the SM neutrinos obey a normal or inverted hierarchy, this
constraint can be translated to a bound on the lightest SM neutrino:

mν,lightest >
∆m2

31

4me

v′

v
−me

v

v′
. (2.31)

∆m2
31 ≡ |m2

3 − m2
1| ' (0.05 eV )2 is the atmospheric neutrino mass difference squared and

me is the electron mass. We have made the good approximation that ∆m2
31 is also the mass

squared difference between the lightest and heaviest SM neutrino in an inverted hierarchy.
This bound is shown in the yellow hatched region of Fig. 2.10.

The constraints on this scheme for e′ dark matter are shown in Fig. 2.11, where the
vertical axis is the lightest SM neutrino mass. The bound of (2.31) appears in green. If v′

turns out to be larger than 4 × 109 GeV, the lightest neutrino mass is predicted to be in a
narrow range. The lightest mirror neutrino is longer-lived than the heaviest mirror neutrino
for a universal MD, but decays before the onset of the BBN for mν > 10−3 eV.

The sum of the masses of the three neutrinos can be constrained through its imprint on
the structure of the universe. Future measurements of the CMB, BAO, and 21cm emission
are expected to determine the sum of the masses with an uncertainty of 10 meV [287, 45, 64].
One can check the consistency of the the measurements and the bounds we have obtained.

During the matter dominated era by ν ′, cosmic perturbations of massive components can
grow. Since e′ tightly couples to mirror photons, the perturbation of e′ does not grow by
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Figure 2.11: Constraints on (v′,mν) when e′ dark matter arises from freeze-out and dilution from
ν ′ with universal neutrino portal couplings. Here mν is the mass of the lightest neutrino. Purple
contours show ∆Neff resulting from decays of S′ to γ′. Vertical gray contours show v′ when mt and
αS(mZ) deviate from their central values by 0 to 3σ. In the allowed white region, ∆Neff is always
greater than 0.03, which will be probed by CMB Stage IV [10].

itself. The perturbation of mirror glueballs grows, decays into mirror photons, which scatter
with e′ and grow the perturbation of e′, like the growth of a weakly interacting massive
particle during a matter dominated era [184]. We will discuss the implication of the growth
to the future searches for ultra compact mini halo elsewhere.

Freeze-In from Higgs Portal and Kinetic Mixing

In this section, we consider the relic abundances of mirror e′ when the reheat temperature
of the universe is below Tdec and only the SM sector is reheated. Since the SM and mirror
sectors are weakly coupled below Tdec, mirror DM is produced via freeze-in through the Higgs
portal, as shown in Fig. 2.12. Although the mirror fermion and gauge boson production rates
are UV-dominated, the entropy production during reheating negates far-UV production so
that the dominant production occurs around TRH. Reheat temperatures below the mirror
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Figure 2.12: Freeze-in production of mirror fermions (left) and mirror gauge bosons (right) through
the Higgs portal.

electron mass yield insufficient e′ to be DM since the small e′ freeze-in abundance is further
diluted by (me′/TRH)6 as production almost ceases below T ≈ me′ .

6 Consequently, we focus
on TRH & me′ . A set of Boltzmann equations describing the freeze-in dynamics is shown in
Appendix A.1. The thermal evolution of the mirror electrons is as follows:

At TRH, the mirror electrons carry a typical energy TRH and a freeze-in number density7

n(TRH) =
4

9

nH(TRH)2

H(TRH)
〈σv(TRH)〉. (2.32)

nH is the SM Higgs thermal number density, H is Hubble, and 〈σv〉 is the freeze-in cross-
section given by

〈σv(TRH)〉 =
1

8π

y2
e

v′2
. (2.33)

For all v′, the frozen-in abundance of e′ at TRH exceeds that of dark matter for TRH & me′ .
For v′ & 4 × 108 GeV, annihilations of e′ are ineffective during subsequent freeze-out. The
freeze-in yield of e′ from the Higgs portal is

ρe′,FI

s
≈ 0.01

1

(g∗)1/2g∗S

y3
e

v′
TRHMPl (Higgs Portal) (2.34)

In this regime, a reheat temperature approximately equal to the mirror electron mass repro-
duces the correct DM abundance, as shown in Fig. 2.13.

For v′ . 4 × 108 GeV, annihilations of e′ are effective during subsequent freeze-out and
the allowed TRH rises, as shown in Fig. 2.13. However, as TRH increases, mirror fermions

6Some e′ production still occurs for TRH < T < me′ by scatterings involving highly energetic particles
produced by inflatons [360, 357], which we find is not efficient enough to reproduce the DM abundance.

7For low v′ and high TRH, e′ and γ′ may thermalize during reheating, altering (2.32). Thermalization
cools the mirror bath so that mirror particles freeze-out instantly but are then replenished by the Higgs
portal. Since freeze-in production is maximized at TRH, any pre-thermalized contribution is typically small.
Even so, we consider this effect in Appendix A.1.
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Figure 2.13: Constraints on the mirror electroweak scale v′ and the reheat temperature TRH of
the universe. In the blue region, e′ is overproduced via freeze-in from the Higgs portal. In the
red region, the required ε to freeze-in e′ as DM via the kinetic mixing portal (shown by the dotted
counters) is large enough to produce nuclear recoil signals in XENON1T. In the orange region, the
reheat temperature is high enough that the two sectors were originally thermally coupled and the
freeze-in regime reduces to the freeze-out regime (see Sec. 2.6).

heavier than e′ are produced at TRH, which transfer much of their abundance to γ′ and e′ as
they annihilate and thermalize via 2→ 2 and 2→ 3 processes as discussed in Appendix A.1.

For TRH ≥ Tdec, the two sectors were once in thermal equilibrium and the situation reverts
to traditional freeze-out discussed in Sec. 2.6. ∆Neff and BBN constraints from frozen-in
mirror glueball decays are not shown in Fig. 2.13 as they are much weaker than the bound
on overproduction of e′ DM.

Finally, as mentioned in Sec. 2.3, e′ DM can also be frozen-in via kinetic mixing induced
from higher dimensional operators (2.11). On one hand, the freeze-in abundance of e′ through
the Higgs portal is dominantly set by its yukawa coupling, which is fixed and whose smallness
prevents sufficient e′ to be produced as DM for TRH < me′ . On the other hand, the freeze-in
abundance of e′ through kinetic mixing is set by ε, which is a free parameter (indirectly set
by the unification scale vG), and whose value can be chosen to sufficiently produce e′ DM
for reheat temperatures as low as ∼ me′/25.
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For TRH < me′ , the freeze-in yield of e′ from kinetic mixing is

ρe′,FI

s
≈ 0.02πα2ε2MPl

(
me′

TRH

)2

exp

(
−2me′

TRH

)
(Kinetic Mixing) (2.35)

The black dotted contours in the region TRH < me′ of Fig. 2.13 show the ε necessary for e′

to be frozen-in as DM. The shaded red region is excluded if e′ is the DM since the required
ε to freeze-in e′ DM via kinetic mixing is large enough to already produce recoil signals at
XENON1T8. A similar calculation for the proposed LZ experiment, which can probe ε an
order of magnitude smaller, produces the green contour ‘LZ’. For low v′, LZ has the potential
to probe nearly all reheat temperatures capable of freezing-in e′.

2.7 Gravitational Waves from the Mirror QCD Phase

Transition

In the range of v′ consistent with the observed top quark mass, mirror quark masses are
much larger than the mirror QCD scale. The mirror QCD phase transition is then first
order [689, 640]. The phase transition proceeds by nucleation of bubbles, which collide with
each other and produce gravitational waves [687].

We consider the case where the e′ dark matter abundance is set by freeze-out followed
by dilution from late ν ′ decays. The abundance of gravitational waves ΩGW,colh

2 directly
produced by the bubble collisions as a function of a frequency f is given by

dΩGW,col h
2

d lnf
' 2× 10−8 (f/fp)

3

0.3 + (f/fp)4

(
10

β/H

)2

D−4/3

(
ρg′/ρtot

2/3

ρlat

ρg′

ρkin

ρlat

)2
ρtot/ρSM

3
,

(2.36)

fp ' 2× 10−5 Hz

(
β/H

10

) (
T ′c

100 GeV

)
D−1/3

(
g′dec

60

100

gdec

)1/3 (
ρtot/ρg′

3/2

)1/2(
b′

0.5

)1/6

.

(2.37)

fp is close to the frequency at the peak of the distribution and T ′c ' 1.3 Λ′QCD is the temper-
ature of the mirror QCD phase transition. Here we use the results of Ref. [396], assuming
that the velocity of the bubble wall is the speed of light, and take into account the dilution
D from ν ′ decay. The ratio (β/H) parametrizes the duration of the phase transition β−1

in comparison with the Hubble time scale H−1. ρtot is the total energy density, ρg′ is the
energy density of the mirror gluon bath, ρlat is the latent heat of the phase transition, ρkin

is the kinetic energy of the bubble wall and ρSM is the energy density of the SM bath, all of
which are evaluated at the phase transition. Lattice calculations show ρlat/ρg′ is O(1), and
so we approximate this ratio as unity [142]. Likewise, we expect ρkin is comparable to ρg′ as

8If e′ is not the DM, or is produced in a non-thermal way, the red region is not applicable and the
SM × SM ′ model is not necessarily excluded.



CHAPTER 2. DARK MATTER, DARK RADIATION, AND GRAVITATIONAL
WAVES FROM MIRROR HIGGS PARITY 47

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10 102
10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

f [Hz]

dΩ
G
W
h2

d
ln
f

Δm
t , Δα

S (m
Z ) >
3σ

2σ

1σ

0σ

LISA

DECIGO
BBO

ΔN
eff >
0.3

Ωe' > ΩDM
(ν' → e'+u'+d')

β

H
= 10

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 1 10 102 103
10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

f [Hz]

Δm
t , Δα

S (m
Z ) >

3σ
2σ

1σ

0σ

LISA

DECIGO

BBO
ΔN

eff >
0.3

Ωe' > ΩDM
(ν' → e'+u'+d')

β

H
= 100

Figure 2.14: Gravitational wave spectrum generated by the mirror QCD phase transition for
β/H = 10 (left) and β/H = 100 (right). Future gravitational wave detectors such as LISA and
BBO may detect a signal if mt and αS(mZ) lie more than 2σ away from their current central values.

is the case for a weakly coupled, relativistic transition, and so we take ρkin/ρlat = 1 [162].
gdec and g′dec are the degrees of freedom of the SM and the mirror sector at the decoupling
of the two sectors, respectively. b′ parametrizes the energy density of the mirror gluons just
before the phase transition, ρg′ = b′T ′QCD

4. The ratio ρSM/ρg′ is estimated in Appendix A.2.
Gravitational waves are also produced by the turbulent motion of fluids induced by the

bubbles [417]. The abundance of such gravitational waves ΩGW,tubh
2 is

dΩGW,tub h
2

d lnf
' 4× 10−9 9(f/fp)

3

(f/fp + 0.02H/β)(f/fp + 0.8)11/3

(
10

β/H

)2

D−4/3

×
(
ρg′/ρtot

2/3

ρlat

ρg′

ρkin

ρlat

)3/2
ρtot/ρSM

3
(2.38)

fp ' 1× 10−4Hz

(
β/H

10

) (
T ′c

100 GeV

)
D−1/3

(
g′dec

60

100

gdec

)1/3 (
ρtot/ρg′

3/2

)1/2(
b′

0.5

)1/6

.

(2.39)

Here we use the results of Refs. [162, 163] assuming that the bubble walls expand at the speed
of light.9 Numerically, this contribution is smaller than the one from the bubble collision.

9Since the mirror QCD bath couples to the standard model particles very weakly, bubbles only induce
turbulent motion of mirror glueballs. In particular, a turbulent magnetic field is not induced. For a phase
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The prediction (2.36, 2.38) for the gravity wave spectrum depends on v′ via T ′c and
especially D. With v′ determined by the top quark mass, we show in Fig. 2.14 the prediction
for the spectrum of the gravitational waves for various mt, taking β/H of (10,100) in the
(left, right) panel. The dashed and dotted lines show the contribution from the bubble
collision and the turbulent motion respectively, and the solid lines show the sum of them.
In the blue shaded region, the freeze-out followed by the dilution from ν ′ fails as is shown
in Fig. 2.10. The ratio (β/H) is likely to be O(100) [384]. If the top quark mass is large
enough, gravitational waves can be detected by future experiments such as LISA, DECIGO
and BBO [530]. We note that prediction for the gravitational wave spectrum assumes that
the phase transition occurs before the ν ′ matter-dominated era. This condition is satisifed
in the region where future experiments may detect the gravitational wave spectrum, that is,
at the 2− 3σ level for mt and αS(mZ).

We also note that many aspects of the phase transition in QCD-like theories, such
as (β/H) and ρkin/ρlat, are not well-understood because of the non-perturbative nature.
Once the phase transition is well-understood, it will become possible to check the consis-
tency of future measurements of the top quark mass and the gravitational wave spectrum.
For a survey of gauge theories exhibiting first order phase transitions, see [616, 21].

2.8 Conclusion and Discussion

We have introduced the Mirror Higgs Parity theory, described by (2.5). The entire SM
Lagrangian, including dimension 5 operators for neutrino masses, is replicated by Higgs
parity and the only unknown parameters are those of the kinetic mixing, Higgs and neutrino
portals that connect the two sectors. The spectrum of the mirror sector is a scaled up version
of the SM spectrum, as shown for the light mirror particles in Fig. 2.1. The scaling depends
only on the Higgs Parity breaking scale v′, which sets the scale at which the SM Higgs quartic
vanishes and will become better determined by precision measurements of (mt, αS).

There are several interesting theories containing the Higgs Parity mechanism for the
vanishing of the Higgs quartic at high energies. Mirror Higgs Parity is the simplest theory
where the Higgs Parity partner of the electron, e′, is dark matter, with an abundance set
by thermal mechanisms. Direct detection of e′ dark matter can occur via kinetic mixing
and leads to a recoil spectrum characteristic of photon exchange. The present bound from
XENON1T and the future reach of LZ on the kinetic mixing parameter ε are shown in
Fig. 2.3.

If the SM gauge group is unified at scale vG into a group such as SU(5), the proton decay
rate scales as Γp ∝ 1/v4

G. Furthermore, since kinetic mixing vanishes in the unified theory,
it may arise from a higher dimensional operators, such as in Eq. (2.10), leading to ε ∝ vnG,
where n is a model-dependent, positive integer. Thus proton decay excludes small vG and

transition generating magnetic turbulence, Ref. [162] finds a spectrum of gravitational waves produced by
turbulent magnetic fields similar to that from turbulent motion of fluids, and hence we simply use the fitting
provided in Ref. [163].
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direct detection excludes large vG. The correlation of these two rates for n = 4 is shown in
Fig. 2.5. A large fraction of the allowed parameter space of the theory will be probed by a
combination of Hyper-Kamiokande and LZ.

For large values of the reheat temperature after inflation, TRH, the SM and mirror sectors
reach thermal equilibrium via the Higgs portal interaction. The e′ relic abundance arises
first from freeze-out and is then diluted by ν ′ decay to `H. Fixing the neutrino portal
parameters to obtain the observed abundance, the remaining relevant parameters are v′,
which determines me′ , and mν which determine mν′ . The constraints on this scheme for dark
matter are shown in the (v′,mν) plane in Fig. 2.10, for the case that dilution is dominated by
a single ν ′. Remarkably, the corresponding neutrino is required to have a mass larger than
0.01 eV, in the range of masses determined from oscillation data. Furthermore, v′ must be
in the range of (108− 1010) GeV, predicting a Higgs mass of 123± 6 GeV at 3σ in (mt, αS),
and 123 ± 3 GeV at 1σ, by requiring the Higgs quartic to vanish at v′. Fixing (mh, αS) at
their measured central values, we predict mt between (173.2− 175.5) GeV.

Within this allowed unshaded region of Fig. 2.10, we predict the contribution to dark
radiation arising from decays of mirror glueballs to mirror photons. The resulting ∆Neff ,
shown by purple contours, varies from about 0.04 to 0.4, and is highly correlated with v′ and
therefore with mt.

Since all the mirror quarks are much heavier than the mirror confining scale, the mirror
QCD phase transition, which occurs at T ′ ∼ (40−1000) GeV for v′ = (108−1012) GeV, is first
order and produces gravitational waves from bubble dynamics and turbulent fluid motion at
the transition. The spectral energy density today, normalized to the critical energy density,
is then obtained by including the ν ′ decay dilution factor, and is shown in Fig. 2.14. Part of
the allowed region of the theory can be probed by LISA, DECIGO and BBO, and a gravity
wave signal in these experiments would be correlated with mt and ∆Neff .

For low values of the reheat temperature after inflation, TRH, e′ DM can arise via freeze-in
production. The observed DM abundance may be obtained anywhere in the unshaded region
of Fig. 2.13. On the edge of the blue shaded region this occurs via the Higgs portal, which
is UV dominated around TRH. In the rest of the unshaded region this occurs via kinetic
mixing, dominated at temperatures near me′ , for a suitable value of ε.

Mirror Higgs Parity exchanges SU(3) with SU(3)′ and hence does not solve the strong
CP problem. One possible solution is to introduce a QCD axion [561, 560, 678, 685]. If
Higgs Parity transforms the QCD axion into a mirror QCD axion, the mirror QCD axion is
an axion-like-particle with a mass

ma′ = 0.6
Λ
′2
QCD

fa
= 0.4 keV

(
v′

109 GeV

)8/11
1010 GeV

fa
, (2.40)

where the topological susceptibility is taken from [268]. The mass is correlated with v′ and
hence with the top quark mass. Both axions may contribute to the dark matter density.

Alternatively, if the QCD axion is neutral under Higgs Parity it couples to QCD and
mirror QCD with the same decay constant. Since Higgs Parity ensures the equality of the
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theta angles in the two sectors, the strong CP problem is still solved [595, 114, 388, 299].
The mass is given by Eq. (2.40). An advantage of such a heavy axion is that it is easier to
understand the PQ symmetry as an accidental symmetry [299]. In this case, it is even possible
to have a small decay constant � 109 GeV, since the large mass prevents the production
of axions in stellar objects and meson decays. We will discuss the phenomenology of axion
dark matter in Mirror Higgs Parity in future works.
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Chapter 3

Sterile Neutrino Dark Matter and
Leptogenesis in Left-Right Higgs
Parity

3.1 Introduction

The discovery at the Large Hadron Collider of a Higgs boson with mass 125 GeV [3, 176]
suggests a new paradigm for particle physics: the mass scale of new physics beyond the
Standard Model (SM) is the scale where the Higgs quartic coupling vanishes, ΛNP ∼ (109−
1013) GeV, and not the weak scale. In this case, a variety of precision measurements at
colliders, searches for rare processes, and cosmological observations could reveal this new
physics. ΛNP may be the scale where new symmetries emerge, for example Peccei-Quinn
symmetry [581] or supersymmetry [349, 397, 350, 293].

In this paper we study a Higgs Parity extension of the SM [347]. The SU(2) gauge
group is extended to SU(2)×SU(2)′ and the Higgs sector is extended to H(2, 1) +H ′(1, 2),
with a parity interchanging these Higgs multiplets, H(2, 1)↔ H ′(1, 2). This Higgs Parity is
spontaneously broken at ΛNP by 〈H ′〉, yielding the SM as the low energy effective theory.
Remarkably, in the limit that the weak scale is far below ΛNP , the Higgs quartic coupling is
found to vanish at ΛNP . One possibility is that SU(2)′ is part of a mirror sector, with mirror
matter heavier than ordinary matter by a factor 〈H ′〉 / 〈H〉. This yields a highly predictive
scheme for dark matter composed of mirror electrons [265, 264].

The most economical version of Higgs Parity, which we study in this paper and review in
Sec. 3.2, is based on the simple extension of the SM electroweak gauge group to SU(2)L ×
SU(2)R×U(1)B−L, first introduced in the 1970s [553, 526, 619]. We introduce Higgs doublet
multiplets, HL(2, 1) + HR(1, 2), rather than the conventional case of weak triplets and a
(2, 2) multiplet. Higgs Parity is imposed, HL(2, 1) ↔ HR(1, 2), and spontaneously broken
by 〈HR〉 = vR, so that the SM Higgs quartic coupling vanishing at this Left-Right (LR)
symmetry breaking scale vR. This theory has the same number of gauge couplings and
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charged fermion Yukawa couplings as the SM. The Higgs potential has three parameters
rather than two; but one of these is irrelevant as it only determines the mass of the right-
handed Higgs boson. Another determines the electroweak scale 〈HL〉 = v, while the third
provides a correlation between the Higgs boson mass, the top quark mass, the QCD coupling
and vR. For this theory, precision measurements at future colliders will play a key roll in
sharpening this prediction for vR, which is presently highly uncertain

vR ∼ (109 − 1013) GeV. (3.1)

This will test whether precision gauge coupling unification in SO(10) can be realized, and
whether proton decay is within reach of future searches [346].

It has been known for many years that spacetime parity can solve the strong CP problem,
in particular in the context of the gauge group SU(2)L×SU(2)R×U(1)B−L broken solely by
doublets HL,R [81]. Indeed, the Higgs Parity theory we study actually has one less relevant
parameter than the SM, since θ̄ = 0 at tree-level. Non-zero contributions arise at the two-
loop level and are estimated to typically generate the neutron electric dipole moment of order
10−27 ecm [347], and may be within the reach of current searches. Given the simplicity of the
parity solution of the strong CP problem proposed in [81], why does the solution involving
an anomalous Peccei-Quinn symmetry [561, 560] dominate the literature? The answer may
be that it requires an axion [678, 685]; a candidate for the cosmological dark matter with
plausible production mechanisms [572, 14, 241, 625, 226, 429, 194, 192]. Furthermore, the
axion can be searched for in many ways and will be probed in the coming decade over much
of its parameter range. In Secs. 3.3 and 3.4 of this paper, we show that the LR Higgs Parity
theory also contains a dark matter candidate that can be produced in the early universe,
leading to constraints and tests on the theory.

The minimal description of neutrino masses is to add the dimension 5 operator `i`jHH
to the SM, where `i are the lepton doublets and H the Higgs doublet. Alternatively, right-
handed neutrinos Ni can be added to the theory together with the two operators

LSM+N ⊃ yij `iNj H +
Mij

2
NiNj, (+ `i`j HH) (3.2)

involving two flavor flavor matrices. (The `i`jHH operator could also be present, but in the
seesaw mechanism [692, 308, 522, 529] it is taken to be subdominant.) A virtue of adding
the right-handed neutrinos is that, if they are produced in the early universe, their decays
can lead to the cosmological baryon asymmetry via leptogenesis [300].

Theories containing SU(2)L × SU(2)R gauge symmetry necessarily contain Ni as the
neutral member of the SU(2)R doublets ¯̀

i. In the effective theory below the scale vR, the
generic structure of the operators leading to neutrino masses is

LLR ⊃ yij `iNj HL +
Mij

2
NiNj + c

Mij

2v2
R

`i `j HLHL. (3.3)

Even though there are three operators, the flavor matrices for the `i`j and NiNj terms are
identical, although there is a model dependent coefficient c in the relative strengths of these
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two terms. If the lightest right-handed neutrino N1 has a very small mass M1, it could be
dark matter, produced in the early universe via SU(2)R × U(1)B−L gauge interactions [433,
120, 257]. With an abundance set by freeze-out (and subsequent dilution by the decay of a
heavier right-handed neutrino, N2) the allowed range of the (M1, vR) parameter space was
found to be restricted to a triangle, with a location that depended on c [257]. With c = 1,
the allowed ranges within the triangle were roughly M1 ∼ 2−300 keV and vR ∼ 1010±2 GeV.
Lowering c led to a lowering of vR and a reduction in the range for M1, with no parameter
space for vR < 106 GeV. Increasing c above unity requires fine-tuning in the theory, but
opens up regions to larger values of M1 and vR. Large values of these parameters were also
consistent with N1 dark matter produced via freeze-in.

In the LR Higgs Parity theory, neutrino masses are generated by the operators of (3.3)
with c = 1. As noted above, without interactions for neutrino masses the LR Higgs Parity
theory has one fewer relevant parameter than the SM; adding the neutrino mass interactions,
(3.2) for the SM and (3.3) with c = 1 for Higgs Parity, does not alter this. Thus N1 dark
matter can arise as in [257] and, remarkably, in the case that its abundance is determined by
freeze-out, the required scale vR ∼ 1010±2 GeV lies inside the range (3.1) determined by the
Higgs mass. N1 dark matter can be probed by future precision collider data that tightens
the range of (3.1).

In Sec. 3.5 we show that leptogenesis from the decay of N2 is possible in this theory, at
the same time that N1 provides the dark matter, and we investigate the extent to which the
resulting reduced range for M1 can be probed using 21cm cosmology.

In theories of sterile neutrino dark matter, there are naturalness issues for the small
mass and long lifetime of the sterile neutrino. This is especially true in the LR symmetric
theory, as the interactions of Ni are either determined by symmetry or constrained by the
observed neutrino masses and mixings. In Sec. 3.6 we study radiative corrections to the mass
and lifetime in the effective theory where quark and lepton masses arise from dimension 5
operators. These lead to significant naturalness constraints on the parameter space for dark
matter. In Sec. 3.7 we introduce UV completions of these operators that greatly improve
the naturalness of the long-lived, light right-handed neutrino dark matter. In Sec. 3.8 we
study the naturalness of leptogenesis in these theories and find highly restricted ranges for
the LR symmetry breaking scale, vR, and the dark matter mass, M1. Conclusions are drawn
in Sec. 3.9.

3.2 Higgs Parity

We begin with a brief review of Higgs Parity, first introduced in [347], as a model that
simultaneously predicts a nearly vanishing Higgs quartic coupling at a scale 109−13GeV and
solves the strong CP problem.
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Vanishing quartic

Higgs Parity is a Z2 symmetry that exchanges the SU(2)L gauge interaction with a new
SU(2)′ interaction. The SM Higgs field H(2, 1) is exchanged with its Z2 partner H ′(1, 2),
where the brackets show the (SU(2)L, SU(2)′) charges. The scalar potential of H and H ′ is

V (H,H ′) = −m2
(
|H|2 + |H ′|2

)
+
λ

2

(
|H|2 + |H ′|2

)2

+ λ′ |H|2 |H ′|2 . (3.4)

We assume that the mass scale m is much larger than the electroweak scale, v.
With positive m2, H ′ obtains a large vacuum expectation value 〈H ′〉 = m/λ1/2 ≡ v′ and

Higgs Parity is spontaneously broken. After integrating out H ′ at tree-level, the low energy
effective potential of H is

VLE(H) = λ′ v′2 |H|2 − λ′
(

1 +
λ′

2λ

)
|H|4 . (3.5)

The hierarchy v � v′ is obtained only if the quadratic term is small, which requires a small
value of λ′ ∼ −v2/v

′2. The quartic coupling of the Higgs H, λSM, is then very small at the
symmetry breaking scale v′. The nearly vanishing quartic coupling can be understood by
an approximate global SU(4) symmetry under which (H,H ′) forms a fundamental repre-
sentation. For |λ′| � 1 the potential in Eq. (3.4) becomes SU(4) symmetric. The SU(4)
symmetry is spontaneously broken by 〈H ′〉 and the SM Higgs is understood as a Nambu-
Goldstone boson with vanishing potential.

At tree-level the potential still leads to 〈H〉 = 〈H ′〉 = v′/
√

2 because of the small quartic
coupling. However, for extremely small λ′, vacuum alignment in the SU(4) space is fixed by
quantum corrections which violate the SU(4) symmetry. The dominant effect is renormal-
ization group running from energy scale v′ down to v. The top contribution dominates over
the gauge contribution and generates a positive quartic coupling λSM(v) ' 0.1, and creates
the minimum of the potential at v � v′. From the perspective of running from low to high
energy scales, the scale at which the SM Higgs quartic coupling nearly vanishes is the scale
v′. Threshold corrections to λSM(v′) are computed in [265, 346] and are typically O(10−3).

The vacuum alignment can be also understood in the following way. For λ′ > 0, the
minima of the potential are (〈H〉 , 〈H ′〉) = (v′, 0) and (0, v′), where v′ ≡ m/λ1/2, and the
mass of Higgses are as large as m. For λ′ < 0, the minima are 〈H〉 = 〈H ′〉 ∼ v′. None of the
minima for λ > 0 and λ′ < 0 has a non-zero but small v. To obtain a viable vacuum, we need
λ′ ' 0, for which the potential has an accidental SU(4) symmetry and nearly degenerate
vacua with 〈H2〉+〈H ′〉2 = v′2. In this case, quantum corrections must be taken into account
to determine the minimum. The dominant effect is given by the top quark Yukawa coupling.
The Colemann-Weinberg potential given by the top Yukawa makes (〈H〉 , 〈H ′〉) = (v′, 0)
and (0, v′) minima. By switching-on small negative λ′, the vacuum (〈H〉 , 〈H ′〉) = (0, v′) is
slightly destabilized and we may obtain (〈H〉 , 〈H ′〉) = (v, v′) with v � v′. There also is a
physically equivalent minimum connected to this by Higgs Parity, (〈H〉 , 〈H ′〉) = (v′, v).
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Left-right Higgs Parity

In this work, we consider the case where only the right-handed (SM) fermions are charged
under SU(2)′, i.e., SU(2)R, and we accordingly relabel (H,H ′) as (HL, HR). The gauge
group of the theory is SU(3)c × SU(2)L × SU(2)R × U(1)B−L and the matter content is
listed in Table 3.1. The presence of the right-handed neutrinos is now required by the gauge
symmetry. Higgs Parity maps SU(2)L ↔ SU(2)R, and hence `↔ ¯̀†, q ↔ q̄†, and HL ↔ H†R.1

The symmetry breaking pattern is,

SU(3)c × SU(2)L × SU(2)R × U(1)B−L × Z2

〈HR〉−−−→ SU(3)c × SU(2)L × U(1)Y
〈HL〉−−−→ SU(3)c × U(1)EM. (3.6)

q ` q̄ = (ū, d̄) ¯̀≡ (N, ē) HL HR

SU(3)c 3 1 3̄ 1 1 1
SU(2)L 2 2 1 1 2 1
SU(2)R 1 1 2 2 1 2
U(1)B−L 1/6 −1/2 −1/6 1/2 1/2 −1/2

Table 3.1: The gauge charges of quarks, leptons, HL, and HR.

In contrast to conventional Left-Right symmetric models, we do not introduce scalar
multiplets in (2, 2), (3, 1) or (1, 3) representations of SU(2)L × SU(2)R around the scale
vR; the Higgs Parity explanation for the vanishing quartic coupling holds only if SU(2)R
and SU(2)L symmetry are dominantly broken by HR and HL. Thus, Yukawa couplings are
forbidden at the renormalizable level, and arise from dimension-5 operators,

−Le,u,d =
cuij
M

qiq̄jHLHR +
cdij
M

qiq̄jH
†
LH
†
R +

ceij
M

`i ¯̀jH
†
LH
†
R + h.c., yfij ≡ cfij

vR
M

(3.7)

−Lν,N =
cij
2M

(
`i`jHLHL + ¯̀

i
¯̀
jHRHR

)
− bij
M

`i ¯̀jHLHR + h.c. yij ≡ bij
vR
M

(3.8)

These can arise, e.g., from exchanges of massive Dirac fermions (as considered in [347, 346])
or from the exchange of a massive scalar with a charge (1, 2, 2, 0).2 In Sec. 3.7, we take
some of the masses of the Dirac fermions to be small. In this case, the corresponding SM
right-handed fermions dominantly come from the Dirac fermions rather than the SU(2)R
doublets. The origin of the neutrino masses are discussed in Sec. 3.3.

1If the Z2 does not include spacetime parity, `↔ ¯̀, q ↔ q̄ and HL ↔ HR
2To obtain the up and down quark masses solely from the exchange of (1, 2, 2, 0), it must be a complex

scalar rather than a pseudo-real scalar. In this case, the strong CP problem cannot be solved by parity
because of the complex vacuum expectation value of the complex scalar, unless extra symmetries, such as
supersymmetry, are imposed [105, 528, 449, 527].



CHAPTER 3. STERILE NEUTRINO DARK MATTER AND LEPTOGENESIS IN
LEFT-RIGHT HIGGS PARITY 56

Strong CP problem

Higgs Parity can also solve the strong CP problem if SU(3)c is Z2 neutral and the Z2 sym-
metry includes space-time parity [347]. Then spacetime parity forbids the QCD θ parameter
at tree-level and requires the quark mass matrices yfijv in Eq. (3.7) to be Hermitian and thus

enjoy real eigenvalues. The determinant of the quark mass matrix is then real and hence θ̄
is absent at both tree-level and at one-loop. Two-loop corrections to the quark mass matrix
give non-zero θ̄ [347], but can be below the experimental upper bound from the neutron
electric dipole moment.

Solving the strong CP problem by restoring space-time parity was first pointed out in
[105, 528]. The first realistic model was proposed in [82, 81], which used (2, 1)+(1, 2) Higgses
and Dirac fermions to generate the Yukawa coupling in Eq. (3.7). In their model, space-
time parity is assumed to be softly broken in the Higgs potential to obtain the hierarchy
v � vR. In the setup of [347], Higgs Parity including space-time parity is spontaneously
broken without soft breaking and predicts vanishing λSM(vR). The embedding of the theory
into SO(10) unification is achieved in [347, 346], with Higgs Parity arising from a Z2 subgroup
of SO(10).

Prediction for the Higgs Parity symmetry breaking scale

Between the electroweak scale and the Left-Right scale vR, the running of the Higgs quartic
coupling λSM is exactly the same as in the SM. We follow the computation in [157] and show
the running in the left panel of Fig. 3.1 for a range of values for the top quark mass mt =
(173.0±0.4) GeV, QCD coupling constant at the Z boson mass αS(mZ) = (0.1181±0.0011),
and Higgs mass mh = (125.18± 0.16) GeV.

The value of the SM quartic coupling at the scale vR is not exactly zero because of the
threshold correction [265],

λSM(vR) ' − 3

8π2
y4
t ln

e

yt
+

3

128π2
(g2 + g′

2
)2

(
ln

e
√

2√
g2 + g′2

− ln
g2

√
g4 − g′4

)
+

3

64π2
g4 ln

e
√

2

g
,

(3.9)

where the MS scheme is assumed. The prediction for the scale vR is shown in the right panel of
Fig. 3.1 as a function ofmt. Colored contours show how the prediction in vR changes when the
QCD coupling constant varies by ±2 deviations about its mean, αS(MZ) = 0.1181± 0.0011.
The thickness of each curve corresponds to the 1-sigma uncertainty in the measured Higgs
mass, mh = (125.18±0.16) GeV. With 2σ uncertainties, vR can be as low as 109 GeV. Future
measurements of SM parameters can pin down the scale vR with an accuracy of a few tens
of percent [265].
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Figure 3.1: (Left) Running of the SM quartic coupling. (Right) Predictions for the scale vR as
a function of the top quark mass, mt. Contours of αS(MZ) show how the prediction changes with
the uncertainty in the QCD couping constant. The thickness of each countour corresponds to ±1σ
deviation in mh.

3.3 Right-handed neutrino dark matter

In this section, we review the results of [257] on the general properties and constraints of
right-handed neutrino dark matter in LR theories.

Neutrino masses

The effective Lagrangian of (3.8) leads to a 6× 6 neutrino mass matrix,
(
νi Ni

) (
Mij v

2/v2
R yijv

yjiv M
(∗)
ij

)(
νj
Nj

)
, (3.10)

where Mij = cijv
2
R/M . Without loss of generality, we can work in a basis where cij is diagonal

such that

Mij = Mi δij, (3.11)

with all Mi real and positive. Upon integrating out the three heavy states, we obtain a mass
matrix for the three light neutrinos:

mij = δij
v2

v2
R

Mi − yikv
1

Mk

yjkv ≡ δijm
(5)
i −m(ss)

ij . (3.12)
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In this basis, and in the limit that yij is diagonal, the lepton flavor mixing arises entirely
from the charged lepton mass matrix.

The lightest right-handed neutrino as dark matter

We define N1 as the right-handed neutrino responsible for the dark matter (DM) density of
the universe.3 Even though there is no symmetry that stabilizes N1, it may be sufficiently
long-lived to be a DM candidate.

N1 decays via N1 − ν mixing controlled by yi1. The N1 − ν mixing angle is given by

sin 2θ1 ≡
v

M1

√
Σi |yi1|2, (3.13)

where v ' 174 GeV. The experimental constraints on sin 2θ1 arise from two different pro-
cesses: 1) N1 DM may be overproduced via the Dodelson-Widrow mechanism [244]. 2)
N1 DM decays into νγ and may overproduce photons relative to observed diffuse photon
backgrounds and galaxy fluxes [254]. This decay rate is given by:

ΓN1→νγ '
9α

8192π4

M5
1

v4
sin2 2θ1 '

(
1.5× 1030 sec

)−1
(

M1

1 keV

)5(
sin2 2θ1

5× 10−9

)
. (3.14)

These two constraints are summarized by the experimental limit on the mixing angle [254],

v2

M2
1

Σi |yi1|2 ≤ sin2 2θ1exp ' 5× 10−9





(
M1

3 keV

)−1.8

×D (Overproduction)
(

M1

3 keV

)−5

(Decay).

(3.15)

Here D is a possible dilution factor after N1 is produced by the Dodelson-Widrow mechanism.
The higher photometric sensitivities of next generation x-ray and gamma-ray telescopes such
as ATHENA [540] and e-ASTROGAM [645] may probe an order of magnitude smaller decay
rate [165]. For M1 > 1 MeV, the tree-level decay N1 → e+e−ν is open and the resultant
constraint on yi1 is similar to (3.15).

Regardless of how small yi1 is, constraints arise from N1 decays mediated by gauge
exchange. For example, N1 decays into `±+ hadron(s) via WR exchange when kinematically
allowed. In addition, WR and WL mix with each other by a top-bottom-loop, and N1

may decay into `+`−ν. The experimental upper bounds on these decay rates are about
10−25 sec−1 [278]. Furthermore, the WR −WL mixing also generates a radiative decay of N1

into νγ [120, 466, 339], which has a stronger experimental upper limit of about 10−27 sec−1

due to the emission of a hard photon [254]. The parameter region with large M1 and/or
small vR is excluded by these gauge-induced decays as discussed more in [257] and shown
graphically in Fig. 3.3.

3Note that our numbering of SM neutrinos does not necessarily coincide with the neutrino numbering
commonly found in the literature.
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3.4 Cosmological production of right-handed neutrino

dark matter

In this section, we review the two production mechanisms of N1 DM considered in this
paper [257]:

• At sufficiently high reheating temperatures T inf
RH after inflation, Ni have a thermal

abundances from WR exchange. The N1 abundance is reduced by an appropriate
amount to the DM abundance by making N2 long-lived so that entropy is produced
upon decaying.

• At low reheating temperatures T inf
RH after inflation, the N1 DM abundance is produced

by freeze-in via WR exchange. N2 are also produced by freeze-in, via WR exchange or
via the Yukawa couplings with `H.

In these two scenarios, N1 DM can be obtained over a wide range of parameter space.

Relativistic freeze-out and dilution

The right-handed neutrinos couple to the SM bath via WR exchange. If the reheat temper-
ature of the universe after inflation is sufficiently high,

T inf
RH & 108 GeV

( vR
1010 GeV

)4/3

, (3.16)

the right-handed neutrinos reach thermal equilibrium and subsequently decouple with a
thermal yield Ytherm ' 0.004.4 For N1 to have the observed DM abundance requires mN1 '
100 eV. Such light sterile neutrino DM, however, is excluded by the Tremaine-Gunn [651,
141, 331] and warmness [541, 400, 693, 618] bounds; see [254] for a recent review.

N1 may be DM if their abundance is diluted. If another right-handed neutrino, N2, is
sufficiently long-lived such that it comes to dominate the energy density of the universe
and produces entropy when it decays, it can dilute the DM abundance and cool N1 below
warmness bounds [73, 120]. The relic density of N1 is

ρN1

s
= 1.6

3

4

M1

M2

TRH ,

⇒ ΩN1

ΩDM

'
(

M1

10 keV

)(
300 GeV

M2

)(
TRH

10 MeV

)
, (3.17)

4The analysis is this section is also applicable to lower T inf
RH as long as N1 and N2 are frozen-in from

WR exchange, and N1 is overproduced as DM (see Eq. (3.22)). In such a scenario, the required dilution to
realize N1 DM is diminished, and hence the warmness constraints on N1 slightly increase above 2 keV. See
Fig. 3.3 for the warmness constraints on a pure freeze-in cosmology without any dilution.
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where the numerical factor 1.6 is taken from [354], ρN1 is the energy density, s is the en-
tropy density, ΩDM ' 0.25 is the observed cosmic relic abundance, and TRH is the decay
temperature of N2, as set by its total decay rate ΓN2

TRH =

(
10

π2g∗

)1/4√
ΓN2MPl. (3.18)

The reheating bound from hadronic decays of N2 during BBN (TRH > 4 MeV) [426, 427,
368], requires that N2 is heavy enough,

M2 & 24 GeV
M1

2 keV
. (3.19)

Low reheating temperatures can also affect the CMB since some decays occur after neutrinos
decouple and heat up only electrons and photons, relatively cooling neutrinos and reducing
the effective number of neutrinos [426, 427, 398]. In our case, N2 also decays into neutrinos
and the bound from the CMB, TRH > 4 MeV [603], may be relaxed.

To achieve the dilution of N1 dark matter, N2 must be long-lived enough. N2 can always
beta decay through WR exchange into right-handed fermions, N2 → (`+ūd, `−ud̄) and N2 →
N1`

+`−. These decay channels are unavoidable as they are independent of the free-parameter
yi2, and prevent N2 from efficiently diluting N1 for large M2 and/or small vR. In addition,
N2 can decay through the couplings yi2. When M2 & v, N2 can decay at tree-level via
N2 → νh, νZ, `±W∓

L while for M2 . v, N2 can beta decay through WL/Z exchange and
active-sterile mixing to SM fermions, N2 → `ud, `+`−ν, ννν̄. As discussed in more detail in
Ref. [257], these decays require yi2 to be sufficiently small.

In Ref. [257], we used the above results, together with the radiative stability bound on
N1, to derive constrains on the neutrino mass matrix of (3.12). We considered the cases with
M3 & M2 and M3 � M2. As we will see later, efficient leptogenesis require that M3 & M2.
For this case, Ref. [257] shows that the lightest neutrino mass eigenstate is closely aligned

with ν1 and has a mass m1 �
√

∆m2
sol. The other two mass eigenstates are very close to ν2

and ν3 and have masses m2 = (v2/v2
R)M2 and m3 = (v2/v2

R)M3 − y2
33v

2/M3. The mass of
N2 is thus fixed as

M2 ' m2

(vR
v

)2

. (3.20)

In Fig. 3.2, we show the constraints on (vR,M1) when m2 =
√

∆m2
atm (left) and m2 =√

∆m2
sol (right). In the orange shaded region, the required TRH is below 4 MeV, which

is excluded by hadronic decays of N2 during BBN [426, 427]. The green-shaded region is
excluded due to the warmness of N1 affecting large scale structure [541, 400, 693, 618]. The
light green-shaded region shows the sensitivity of future observations of 21cm lines [537].
In the blue-shaded region, N2 decays too quickly through WR exchange to efficiently dilute
the N1 energy density. The non-trivial shape of the blue-shaded region is due to the TRH

dependent effective degrees of freedom.
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Figure 3.2: The parameter space of N1 DM produced by relativistic freeze-out and dilution
from N2 decay in terms of the Left-Right symmetry breaking scale, vR, and the mass of
N1, M1. We show constraints from N2 decaying after Big Bang Nucleosynthesis (orange),
decaying too early to provide sufficient N1 dilution (blue), warm DM bounds (green), and
hot DM bounds (red). In addition we show prospects of improved searches for hot DM from
CMB telescopes (dashed red), and warm DM from 21-cm cosmology (dashed green). We

fix the ν2 mass with the atmospheric neutrino mass difference, m2 =
√

∆m2
atm, left, and the

solar neutrino mass difference, m2 =
√

∆m2
sol, right.

The blue line itself is an interesting region of parameter space, which does not require
any tuning but simply corresponds to the limit where the dominant decay is set entirely
by WR exchange. In this limit, the N1 abundance has two contributions: from N2 decay
through N2 → N1`

+`− as well as the prior thermal abundance from relativistic decoupling.
The former contribution makes up 10% of DM and is hot. The red-shaded region is excluded
by the effect of the hot component on the CMB and structure formation, as set by current
limits of ∆Neff and mν,eff [282]. The low vR part of the blue line is already excluded, and
high vR is in tension. CMB Stage IV experiments [10, 9] can cover the light red-shaded
region and probe the limit where N2 dominantly decays via the WR exchange.

In sum, as can be seen from Fig. 3.2, the allowed region of N1 DM from freeze-out in LR
theories forms a bounded triangle in the vR −M1 plane.



CHAPTER 3. STERILE NEUTRINO DARK MATTER AND LEPTOGENESIS IN
LEFT-RIGHT HIGGS PARITY 62

Freeze-in

Figure 3.3: The parameter space for N1 DM produced by freeze-in. The observed relic
abundance occurs in the unshaded region for values of T inf

RH shown by the red contours.
Constraints from small scale structure are shown in green, with projections from future
probes of small scale structure using the 21cm line in dashed green. In the blue region
N1 decays too rapidly via WR to `±π∓ and in the pink region N1 decays too rapidly via
WR − WL mixing to νγ. The horizontal dashed blue lines show the limit (3.15) on the
mixing angle of N1 with active neutrinos.

When the reheat temperature of the universe is below the thermalization temperature of
the right-handed neutrinos (see (3.16)), neither N1 nor N2 has a thermal abundance. Instead,
the N1 abundance is determined by scattering via heavy WR and ZR exchange, which, being
UV-dominated, depends on the reheating temperature after inflation,

ρN1

s
' 1× 10−5

(
M1

(
T inf

RH

)3
Mpl

v4
R

)
, (3.21)

⇒ Ω

ΩDM

'
(

M1

150 keV

)(
1010 GeV

vR

)4(
T inf

RH

107 GeV

)3

. (3.22)

The production of sterile neutrino DM by B−L gauge boson exchange is considered in [433].
Freeze-in production from other sources, such as `H → N1, are subdominant since yi1 � 1
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is needed to ensure that N1 is long-lived. N1 may be also produced from beta decays of
N2 and N3. These contributions, however, are always subdominant to the direct freeze-in
production of N1, whether N2,3 are produced by the WR interaction or the `NH interaction.

The contours of Fig. 3.3 show the reheat temperature after inflation for N1 DM to arise
from freeze-in, in the (vR,M1) plane. In the green region, the warmness of N1 affects large
scale structure. Since N1 from freeze-in are not diluted, they are warmer than N1 from freeze-
out and dilution, for a fixed M1. More concretely, the free-streaming length is larger by a
factor of approximately (4/3.2)(YthermM1s/ρDM)1/3, giving a commensurately stronger warm
DM bound compared to Fig. 3.2. Here, the factor of 4/3.2 comes from the difference in 〈p/T 〉
between the non-thermal freeze-in and the thermal freeze-out distributions, as discussed
in [372]. In the blue and pink regions, the decay of N1 mediated by WR or WR−WL-mixing
overproduces the observed amount of galactic gamma-rays, respectively [278]. Similarly,
the decay of N1 via active-sterile mixing overproduces the observed galactic x-rays and
gamma-rays for the mixing angle sin2 2θ1 labeling the purple dotted contours. Unlike the
WR-mediated decay, which is fixed by vR, the decay via N1 − ν mixing is set by the free
parameters yi1.

Fig. 3.3 shows that the parameter space for N1 DM from freeze-in is weakly constrained
compared to that of N1 DM from freeze-out and dilution, shown in Fig. 3.2. For example,
vR could be as low as about 100 TeV, with the reheat temperature after inflation below
100 GeV. Likewise, bounds on M1 are weak; although, as M1 increases, sin2 2θ1 is constrained
to become extremely small to keep N1 sufficiently long-lived. In the next section we find
that, if leptogenesis via N2 decay is incorporated into the N1 DM freeze-in cosmology, the
(M1, vR) parameter space becomes more tightly constrained.

3.5 Leptogenesis from heavy right-handed neutrino

decay

In both the freeze-out and freeze-in cosmologies, where N1 makes up DM, the decays of N2

can produce a baryon asymmetry through leptogenesis. Producing a large enough lepton
asymmetry requires N3 to have a sizable Yukawa coupling y33 or y23; y13 = y∗31 is small due
to the longevity of N1. N3 is therefore short-lived.

The lepton asymmetry yield from N2 decay is

YL = εηYthermB (3.23)

where ε is the asymmetry created per N2 decay into `HL or `†H†L, η is the efficiency factor,
and B ≡ Br(N2 → `HL) + Br(N2 → `†H†L). In the next two sub-sections we discuss the
abundance of N2, which differs in the two cosmologies, and the quantities ε and η.
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Figure 3.4: Purple contours of the asymmetry parameter, ε, required to produce the ob-
served baryon asymmetry, YB ' 8 × 10−11 in the freeze-out cosmology. Larger values of ε
are required as M1 increases due to the greater dilution necessary to realize N1 dark matter.
Likewise, larger values of ε are required at low vR when TRH is below the weak scale, as
indicated by the dashed gray line. In this regime, the baryon asymmetry is generated only
by N2 that decay at temperatures above the weak scale, where electroweak sphalerons are
operative. To the left of the dot-dashed purple contour, the baryon asymmetry can only be
realized when ε is greater than its natural maximum, ε∗.

The baryon asymmetry in freeze-out and freeze-in cosmologies

When the reheat temperatures after inflation, T inf
RH, is high, N1 DM is produced by freeze-out

and subsequent dilution from N2 decay. Although the initial N2 abundance is thermal, the
efficiency η is reduced by the dilution produced from N2. Also, if the reheat temperature
after the N2 MD-era, TRH, is below the weak scale, the baryon asymmetry is reduced because
only the lepton number produced above the weak scale is converted to baryons by sphaleron
processes. The N2 decays yield a baryon asymmetry

YB =
28

79
ε

(
3TRH

4M2

)
f B =

28

79
ε

(
ρDM/s

M1

)
f B, (Freeze-Out + Dilution) (3.24)

where the factor of 28/79 accounts for the conversion of the lepton asymmetry into the
baryon asymmetry via sphaleron processes [367]. f is the fraction of decays that occur when
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the temperature of the universe is above the weak scale where sphalerons convert the lepton
asymmetry into a baryon asymmetry. The fraction depends on whether the temperature of
the universe falls below v during a radiation-dominated or N2 matter-dominated era:

f = ΓN2t(T = v) '





(TRH/v)2 TMD < v

(TRH/v)2(v/TMD)1/2 TNA < v < TMD

(TRH/v)4 TRH < v < TNA

1 v < TRH.

(3.25)

Here, TMD = 4
3
M2Ytherm is the temperature at the start of the adiabatic matter-dominated

era, and TNA = (TMDT
4
RH)1/5 is the temperature at the start of the non-adiabatic matter-

dominated era [446, 199]. Fig. 3.4 shows contours of ε required to produce the observed
baryon asymmetry, YB ' 8 × 10−11, in the (vR,M1) plane. The contours zig-zag through
the plane due to the era-dependent change in f , according to Eq. (3.25). For large vR, the
reheat temperature is high and N2 always decays before the electroweak phase transition so
that f = 1 and the required ε depends solely on M1. As TRH drops below v, as indicated by
the dashed gray line, f falls below unity and ε is suppressed.

In addition, there is no efficiency lost due to cancellations between the lepton asymmetry
generated during production with the lepton asymmetry generated during decay, since the
production of N2 through WR exchange does not generate any lepton asymmetry. Since yi2
are small, the wash-out effect is negligible. Finally, we use the DM abundance from (3.17)
to obtain the final result.

Conversely, in the limit when the reheat temperature after inflation, T inf
RH, is low, N1,2

abundances are frozen-in and the resultant baryon asymmetry is

YB =
28

79
εηYthermB. (Freeze-In) (3.26)

Note that without a thermal abundance, the freeze-in yield of N2 is too low to induce a
matter-dominated era, so that no entropy is produced when N2 decays; this accounts for the
difference between Eq. (3.26) and (3.24). The efficiency factor, η, of N2 is [323]

ηYtherm '





YWR
+ 0.03

(
m̃2

10−4 eV

)
Ytherm : m̃2 < 10−3 eV (Weak Washout)

0.03Ytherm

(
m̃2

10−2 eV

)−1.16

: m̃2 > 10−3 eV (Strong Washout)

(3.27)

where

m̃2 ≡
∑

i

|yi2|2v2/M2. (3.28)

In the weak washout regime, when m̃2 < 10−3 eV, N2 decays out-of-equilibrium. YWR
is the

freeze-in yield of N2 from WR exchange, where we have set η ' 1 again for this production
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mechanism. Since the freeze-in abundance of N1 and N2 via WR exchange is identical, YWR

is simply

YWR
=
ρN1/s

M1

=
ρDM/s

M1

. (3.29)

In the strong washout regime, where Y2 reaches Ytherm by the Yukawa coupling yi2, N2 is
in thermal equilibrium when T ∼ M2, and the lepton asymmetry is washed-out until the
Yukawa interection is out-of-equilibrium, strongly reducing the efficiency of leptogenesis. The
maximum possible ηYtherm for freeze-in is about 0.1Ytherm, which occurs when m̃2 ' 10−3 eV
at the transition between the weak and strong washout regimes [323]. The leptogenesis CP
asymmetry parameter, defined by the difference between the branching ratio of N2 into a
lepton and an anti-lepton [209], is given in the limit that yi1 � 1 by

ε =
(y33 + y22)2

8π

Im(y2
23)

y2
22 + |y32|2

g(x) =
(y33 + y22)2

8π
g(x) sin2 α sin 2β, x =

M2
3

M2
2

. (3.30)

Since the Higgs Parity solution to the strong CP problem requires yij to be Hermitian, the
heavy 2× 2 space contains a single phase y23 ≡ |y23|eiβ. Furthermore, we introduce an angle
α defined by |y23|/y22 ≡ tanα. The function g(x) is [300, 225]

g(x) ≡ √x
(

1

1− x + 1− (1 + x) log

(
1

x
+ 1

))
, (3.31)

and is much less than unity when M3 and M2 are disparate, near unity when M3 and M2

are comparable, and much greater than unity as M3 and M2 become degenerate.
It is possible to choose y33,M3/M2, α and β to achieve a sufficiently large asymmetry

per decay (3.30) for successful N2 leptogenesis in both the freeze-out and freeze-in N1 DM
cosmologies. For freeze-out, the baryon asymmetry generated by N2, (3.24), can match the
observed baryon asymmetry YB ' 8× 10−11 everywhere in the unshaded region of Fig. 3.4.
At larger values of vR, ε ∼ 10−5 is sufficient. However, at lower vR as TRH drops below the
weak scale, larger values are needed, as shown by the purple contours, as only the fraction
of N2 decaying above v result in baryogenesis. At the lowest values of vR that give N1 dark
matter, an insufficient baryon asymmetry is generated even if y33 becomes non-perturbative
and ε = 1, as shown by the shaded purple region of Fig. 3.4. In the case of freeze-in
cosmology there is no dilution, so that the baryon asymmetry of (3.26) can successfully
yield the observed asymmetry everywhere in Fig. 3.3, except in the region not shown at very
low vR where T inf

RH � v.

Enhancing the lepton asymmetry parameter

For comparable M2 and M3, g(x) ∼ 1, and for large angles α, β ∼ 1, the asymmetry
parameter is of order (y33 + y22)2/8π. For the freeze-out cosmology, y22 is negligible, while
for the freeze-in cosmology y22 is subject to the similar constraints as y33. We thus focus on
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y33 in this subsection. The coupling y33 determines the size of the seesaw contribution to
the ν3 mass via

m33 = m
(5)
3 −m(ss)

33 =
v2

v2
R

M3 −
y2

33v
2

M3

− y2
32v

2

M2︸ ︷︷ ︸
<10−3 eV

. (3.32)

In the freeze-out cosmology the last term is negligible due to the long lifetime of N2. More-
over, m33 is aligned with the neutrino mass eigenstate m3 [257]. In the freeze-in cosmology,
we assume that the last term is less than 10−3 eV, since otherwise YB, (3.26), is strongly sup-
pressed from strong washout effects.5 Unlike the freeze-out cosmology, m33 is not necessarily
m3, but O(0− 0.1 eV), since m23 may be non-negligible.

Avoiding a finely tuned cancellation between the two terms, y33 is maximized when the
two terms are comparable, giving y33 ∼ m33vR/v

2. This leads to a maximal natural value
for the asymmetry parameter

ε∗ ≡
m2

3 v
2
R

8π v4
∼ 10−11

( vR
1010 GeV

)2 ( m33

0.05 eV

)2

. (3.33)

Using this value for ε, the baryon asymmetry in the freeze-out plus dilution cosmology (3.24)
is too small, except for the very highest values of vR ∼ 3 × 1012 GeV as shown by the dot-
dashed contour labeled ε∗ in Fig. 3.4. Hence, except for a very small region near vR ∼ 3×1012

GeV, simultaneous N1 dark matter and N2 leptogenesis requires an enhancement of ε above
ε∗. By comparing (3.33) with the contours of required ε in Fig. 3.4, it is apparent that the
enhancement must be very significant at lower values of vR. A similar conclusion applies to
leptogenesis with freeze-in dark matter, (3.26).

There are two possibilities for this enhancement. One is to take y33 � m33vR/v
2 by

having m
(5)
3 ,m

(ss)
33 � |m33| so that a cancellation between the two terms of (3.32) occurs.

Alternatively, g(x) may be large when M2 and M3 are nearly degenerate (i.e. x ' 1). It is
useful to introduce

χ ≡ m
(5)
3 −m(ss)

33

m
(5)
3 +m

(ss)
33

=
m33

m
(5)
3 +m

(ss)
33

. (3.34)

As χ goes to zero, the fine-tuning between the dimension-five and see-saw masses increases
since each becomes larger than m33 and hence increasingly degenerate so as to keep their
difference equal to m33. That is, as χ→ 0, M3 grows (so that m

(5)
3 increases) and y2

33 grows

(even faster than M3, so that m
(ss)
33 increases) in the following manner:

M3 = m33
v2
R

v2

1 + χ

2χ
(3.35)

y2
33 = m2

33

v2
R

v4

(1 + χ)(1− χ)

4χ2
. (3.36)

5If y2
23v

2/M2 is taken much greater than O(0.1 eV), it is possible that y2
33 commensurately grows to

ensure m33 remains O(0.1 eV). Although this appears to enhance ε by increasing y2
33, the strong washout

reduces YB by a slightly higher power, so the net effect is a decrease in YB . We avoid this route.
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Note that −1 < χ < 1 and that the sign of m33 is the same as the sign of χ. For the
freeze-out cosmology, m22 = m2 = m

(5)
2 is always positive. In terms of χ and ε∗ of (3.33),

the lepton asymmetry parameter can be written as

ε = ε∗
(1 + χ)(1− χ)

4χ2
g(x) sin2 α sin 2β. (3.37)

The observed baryon asymmetry can be explained by the enhancement from small χ and/or
x ' 1.

We focus on the freeze-out cosmology for the rest of this subsection and identify m22

and m33 with m2 and m3, respectively. Combining (3.24), (3.33), and (3.37), the baryon
asymmetry produced by N2 decays is

YB
8× 10−11

= 10−5 2 keV

M1

( vR
1010 GeV

)2 ( m3

0.05 eV

)2 (1 + χ)(1− χ)

4χ2
g(x) fB sin2 α sin 2β.

(3.38)

Since m2 is dominated by the dimension 5 contribution to its mass,

x =
M2

3

M2
2

=
m2

3

m2
2

(1 + χ)2

4χ2
. (3.39)

This is an important result since it shows that x and χ are not independent; they are related
by the neutrino spectrum. The two choices for enhancing ε, x near unity and small χ, are
seen to be mutually exclusive: if χ � 0.1 then x � 1 for any realistic neutrino spectrum.
Thus N1 freeze-out dark matter and leptogenesis from N2 decay requires either x near unity
or small χ.

For the case of x very close to unity, χ is fixed from (3.39), giving

χ '
( −1

1 + 2
√
r
, − 1

1± 2/
√
r

; 1− r, −1

3
(1± r

3
)

)
, r =

∆m2
sol

∆m2
atm

(3.40)

where the first two cases are for a normal hierarchy, with |m3| > m2 and |m3| < m2,
respectively, while the last two cases are for the inverse hierarchy with m3 positive (and
m2 > m3), and negative. These give values for the enhancement factor of

(1 + χ)(1− χ)

4χ2
g(x) ' (0.20, 30; 0.015, 1.96)

1

1− x. (3.41)

We see that the inverse hierarchy requires g(x) to be larger than in the normal hierarchy.
Using this result, for the normal hierarchy with |m3| < m2, we find the observed baryon
asymmetry results for

x− 1 ' 2
|M2 −M3|

M2,3

' 1× 10−5

(
2 keV

M1

)( vR
1010 GeV

)2 ( m3

0.01 eV

)2

fB sin2 α sin 2β.

(3.42)
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For the case of a cancellation of large contributions to the neutrino mass m3, with χ
very small, we find that (3.39) gives g(x) ∼ 3χ(m2/m3) � 1, so that the observed baryon
asymmetry requires

χ ' 0.75× 10−5

(
2 keV

M1

)( vR
1010 GeV

)2
(

m3m2

(0.05 eV)2

)
fB sin2 α sin 2β. (3.43)

We conclude that N1 DM from freeze-out and leptogenesis from N2 decay can occur
simultaneously throughout the large unshaded region of Fig. 3.4. Enhancements in ε are
required and can arise in two ways: near degeneracy of M2,3 or large y33 with m3 resulting
from a cancellation between seesaw and dimension 5 contributions. In the next section we
study whether leptogenesis can be obtained naturally, considering both the origin in the
enhancement for ε and the effects of radiative corrections from y33 on the N1 lifetime.

Restriction on neutrino masses in freeze-in cosmology

In the freeze-in cosmology without leptogenesis, discussed in Sec. 3.4, yi2 is not necessarily
small since N2 need not be long-lived. Consequently, m22 may possess a substantial contri-
bution from m

(ss)
22 , spoiling the direct relationship between M2 and vR of Eq. (3.20) required

for the freeze-out cosmology. However, requiring efficient leptogenesis in the freeze-in N1

DM cosmology puts restrictions on the neutrino mass matrix.
To avoid the strong wash-out and maximize the allowed parameter space, the see-saw con-

tribution from N2 is required to be negligible. Then the SM neutrino masses are determined
by the see-saw contribution from N3, m

(5)
2 , and m

(5)
3 .

The enhancement of the asymmetry requires M3 & M2 for the following reasons. For
enhancement by degeneracy, M3 = M2. For enhancement by tuning in m33, if M2 > M3,
m

(5)
2 must be also cancelled by m

(ss)
22 from N3, giving y2

33 ' M2
3/v

2
R and y2

23 ' M2M3/v
2
R.

However, m
(ss)
23 ' y23y33v

2/M3 '
√
M2M3v

2/v2
R becomes much larger than the observed SM

neutrino masses.
Since M3 & M2, the see-saw contribution from N3 to m22, y2

23v
2/M3 is also negligible.

We obtain a relation similar to Eq. (3.20),

M2 ' m22

(vR
v

)2

. (3.44)

Moreover, m
(5)
2 must be as large as the observed neutrino masses. Suppose that it is neg-

ligible. To obtain the two observed non-zero neutrino mass eigenvalues, m23 must be non-
negligible. Since y23 is required to be small to avoid strong wash-out, y33 must compensate it.
Then m

(ss)
33 is large, requiring the cancellation with m

(5)
3 and hence y2

33 'M2
3/v

2
R. However,

m
(ss)
23 '

y23y33v
2

M3

' y23
v2

v2
R

<
(0.001eV)1/2M

1/2
2 v

vR
< (0.001eV)1/2(0.1eV)1/2 = 0.01eV,

(3.45)

which is not large enough to explain the SM neutrino masses. We conclude that m22 in
Eq. (3.44) must be 0.01− 0.05 eV.
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3.6 Naturalness and radiative corrections in the

effective field theory

For N1 to be dark matter, whether in the context of (SM+N) or of Left-Right symmetry,
small parameters must be introduced to limit its mass and decay rate, M1/M2,3, yi1 � 1.
For sufficient cosmological stability, (3.15) can be approximated by

yi1 . 3× 10−13

(
3 keV

M1

)3/2

. (3.46)

The value of M1/M2,3 is model-dependent. In LR Higgs Parity, taking the examples of (3.20)
or (3.36) with |χ| not tuned to be small,

M1

M2,3

' (10−12 − 10−13)

(
M1

3 keV

)(
1011GeV

vR

)2

. (3.47)

Quite generally, light sterile neutrino dark matter has a small numbers problem.
In (SM+N), with the N interactions of (3.2), the smallness of yi1 and M1 can result from

an approximate global symmetry under which only N1 transforms. However, since freeze-
in production of N1 via yi1 violates (3.46), the only available production mechanism is via
neutrino oscillations, and this also violates (3.46) unless it is enhanced by a very high lepton
asymmetry [623].

In LR symmetric theories, N1 may be produced by the SU(2)R × U(1)B−L gauge inter-
actions. However, the smallness of the coupling yi1 seems to be hard to understand. We
need a hierarchy yi1 � yejk, despite the right-handed neutrinos and the right-handed charged

leptons coming from the same SU(2)R doublets ¯̀. A similar problem arises from the hi-
erarchies yi1 � yi2, yi3 and M1 � M2,3. The observed large neutrino mixing angles imply
no large symmetry distinction between the `i, and the LR symmetry then implies there are
none between the ¯̀

i. Then no symmetry can distinguish yi1 from yi2, yi3, nor M1 from M2,3.
While one can simply choose yi1 and M1 to be small, in this and the next section we seek

an explanation for their suppression. At the tree-level, it is possible to obtain the desired
hierarchies of parameters by breaking U(3)q × U(3)q̄ × U(3)` × U(3)¯̀× U(1)HL × U(1)HR
by appropriate symmetry breaking fields. However, because of the absence of symmetry
protection mentioned above, quantum corrections may destabilize the hierarchies.

To make a comparison, we first examine the conventional LR symmetric theory with an
SU(2)L × SU(2)R bi-fundamental and point out the difficulty in guaranteeing the stability
of N1. We then argue why the problem can be avoided in Left-Right Higgs Parity, deferring
the presentation of a UV completion to the next section. We show that the lepton sector
of (3.7) and (3.8) has a naturalness problem if the cut-off scale of those interactions are far
above vR: in certain regions of parameter space, radiative contributions to yi1 and M1 violate
(3.46) and (3.47). This gives significant naturalness constraints on N1 dark matter and on
leptogenesis from N2 decay. The UV completion discussed in the next section will also solve
this problem.
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Conventional LR symmetric theories

In the conventional LR symmetric theories, the SM Higgs is embedded into an SU(2)L ×
SU(2)R bi-fundamental scalar Φ, which can be decomposed under SU(2)L × U(1)Y as

Φ = (Hu, Hd) , Hu : (2,
1

2
), Hd : (2,−1

2
). (3.48)

In order for N1 to be stable, the SM Higgs must almost exclusively come from only one of
Hu or Hd. In fact, the charged lepton Yukawa coupling arises from

L = yeij`iΦ
¯̀
j = yeij`iHdēj + yeij`iHuNj (3.49)

with the SM Higgs H containing Hd. In the basis where the Ni mass matrix is diagonal,
yei1 is as large as yτ ∼ 10−2. To satisfy (3.46), the fraction of Hu in the SM Higgs must be
very small. This can be achieved by coupling ΦΦ† to an SU(2)R triplet that spontaneously
breaks SU(2)R, thereby splitting the masses of Hu and Hd. Also, the operators Φ2 and `Φ† ¯̀

must be suppressed, since the former introduces Hu −Hd mixing and the latter introduces
the Yukawa coupling of N to `H†d. This can be achieved by a non-zero charge of Φ under
some symmetry.

We must also introduce up and down quark Yukawa couplings,

L = yuqΦ†q̄ + ydqΦq̄. (3.50)

These terms necessarily break the aforementioned symmetry of Φ. The dominant effect
comes from the quantum correction to the mass of Φ from the quark loop,

∆L ∼ yt∗yb

16π2
Λ2 Φ2 + h.c. ∼ 10−4Λ2 Φ2 + h.c., (3.51)

where Λ is the cut-off of the theory. This introduces Hu − Hd mixing and the Yukawa
coupling of N ,

L = yij`iHNj, yij ∼ 10−4 Λ2

m2
Hu

yeij ∼ 10−6 Λ2

m2
Hd

> 10−6, (3.52)

violating the bound (3.46).
This problem can be avoided by using different Φs for quark and lepton Yukawa couplings

and/or introducing supersymmetry, but we do not pursue this direction further.

Left-right Higgs Parity

The coupling yij receives quantum correction also in Left-Right Higgs Parity. The quantum
correction from the quark and charged lepton Yukawa couplings is given by the Feynman
diagram in Fig. 3.5. We estimate this radiative correction to yi1 to be

∆yi1 ∼
1

(16π2)2
3ytybyτ UτIiU

∗
τI1

(
Λc

vR

)2

' 10−9

(
Λc

vR

)2

, (3.53)
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`j

`i

HL

HR

q

q

HL

HR

Figure 3.5: Radiative corrections to yi1 from charged leptons and quarks in the EFT. Loop
momenta near the quark EFT cutoff scale, Λc, lead to (3.53).

`1 `i(`j)

HL(HR)

HR

`3 `j

HR

HL

Figure 3.6: Radiative corrections to yi1 and M1j (parenthesis) in the EFT. Loop momenta
near the EFT cutoff scale lead to (3.54) and (3.56).

where the PMNS matrix U appears in the charged current ē Uγµν, and Ii is the standard
PDG numbering for the LR partner of Ni. In the following we take UτI ∼ 0.5. This
correction is quadratically divergent, for loop momenta above vR up to Λc, the cutoff of the
effective theory with the dimension-five operators for the charged fermion masses of (3.7).
The stability of N1, (3.15), requires yi1 . 10−13 for any M1, which is violated for Λc > vR.
The dimension-five operators may be, however, UV-completed by introduction of particles
with masses below vR. In the next section, we present such a setup and show that the
quantum correction to yi1 can be suppressed.

Successful leptogenesis from N2 decay requires y33 to be sufficiently large. Since the flavor
symmetry that distinguishes N1 from N2,3 is broken by the charged lepton Yukawa couplings,
quantum corrections involving y33 and the charged lepton Yukawas generate non-zero yi1.
Similarly, M1 should also receive quantum corrections from M2,3 and charged lepton Yukawa
couplings.

The Feynman diagrams for quantum corrections to yi1 and M1j from the lepton sector are
shown in Fig. 3.6. Two further diagrams involve the same vertices with different connections
of the Higgs lines. They are quadratically divergent for loop momenta above vR up to Λ,
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the cutoff of the effective field theory described by the Lagrangian (3.8) and the third term
of (3.7). We estimate this radiative correction to yi1 to be

∆yi1 ∼
1

(16π2)2

∑

j=2,3

yij y
2
τ UτIjU

∗
τI1

(
Λ

vR

)2

. (3.54)

Requiring this radiative correction to yi1 not exceed the limit of (3.46) from the radiative
decay of N1 bounds yij (i, j = 2, 3),

yij . ymax =
M1 sin 2θ1exp

v

(16π2)2

0.25 y2
τ

(vR
Λ

)2

. 10−5

(
3 keV

M1

)3/2(
10

Λ/vR

)2

, (3.55)

where we used U∗τI1UτIj ∼ 0.25 and assumed no cancellation in (3.54) between j = 2 and
j = 3 contributions. For N1 dark matter, whether by freeze-out or freeze-in, yij may be
chosen small enough to satisfy this bound. However, leptogenesis requires a significant y33

and we discuss this below.
Similarly, diagrams such as the one in Fig. 3.6 lead to radiative corrections to the

¯̀
1
¯̀
jHRHR operator

∆Mj1 ∼
1

(16π2)2
Mj y

2
τ UτIjU

∗
τI1

(
Λ

vR

)2

. (3.56)

Diagonalizing the N mass matrix leads to a radiative correction to M1 from M2,3

∆M1 ∼
1

(16π2)4
M2,3(0.25 y2

τ )
2

(
Λ

vR

)4

. (3.57)

For this not to exceed the value of M1/M2,3 given in (3.47) requires

M1 & 3 keV
( vR

1012 GeV

)2
(

Λ/vR
10

)4

, (3.58)

where we assumed no cancellation between j = 2, 3 contributions. Thus, for N1 dark matter,
a cutoff Λ = 10 vR just allows the entire triangular regions of Fig. 3.2 for the freeze-out
cosmology but limits very large vR in Fig. 3.3 for the freeze-in cosmology.

The quadratically divergent correction to yi1 (3.54) places a naturalness constraint on y33

and therefore, via (3.30), on leptogenesis

ε . 3× 10−12

(
3 keV

M1

)3(
10

Λ/vR

)4

g(x) sin2 α sin 2β. (3.59)

This is far below the required values of ε shown in Fig. 3.4 for freeze-out dark matter and
given in (3.26) for freeze-in cosmology, unless g(x) � 1.6 This requires x near unity and,

6We will discuss a natural origin for g(x)� 1 in Sec. 3.8.
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Figure 3.7: The parameter space where the mass and stability of N1 DM can be realized
without fine tuning in the effective theory ``HLHL + ¯̀̀̄ HRHR + `¯̀HLHR. The charged
fermion masses are UV completed below vR to avoid the radiative correction of Fig. 3.5. In
the hatched blue region, the value of y33 required to set x ≡ (M3/M2)2 ' 1 for leptogenesis,
approximately m33vR/v

2, is sufficiently large that the tree and loop contributions to yi1 must
be unnaturally tuned to keep N1 stable when Λ/vR = 1. Λ is the UV cutoff. The lower blue
contour shows the same region if Λ/vR = 10. The unhatched shaded regions are constraints
solely on N1 DM in the freeze-out (left) and freeze-in (right) cosmologies, as in Figs. 3.2 and
3.3.

from (3.36) and (3.39), y33 ∼ m3vR/v
2. Requiring this value of y33 to satisfy the bound of

(3.55) leads to the naturalness constraint

(
M1

3 keV

)3/2 ( vR
1010 GeV

)
.

(
10

Λ/vR

)2

(3.60)

shown by blue lines in Fig. 3.7. Thus, in the EFT the quadratic divergence of yi1 greatly
limits the range of (M1, vR) that naturally allows successful leptogenesis.

In the next section we give a UV completion of the lepton and quark sector. This is
important for two reasons: first it provides an understanding for why N1 is very light and
long-lived, and second it allows a very large reduction in the radiative corrections for yi1 and
M1, reopening large regions of the (M1, vR) plane to natural leptogenesis.
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3.7 A UV Completion yielding a light, long-lived N1

As we have seen in the previous section, to naturally protect the stability of N1 against
quantum corrections, the UV completion of the dimension-5 operators (3.7) and (3.8) should
occur at a mass scale below vR for the correction from Fig. 3.5, and at the most, not far
above vR for the correction from Fig. 3.6. In this section, we present a UV completion and
show that the quantum corrections can be sufficiently suppressed.

The UV completion: tree-level

The operators ``HLHL, ¯̀̀̄ HRHR and `¯̀HLHR can be obtained by introducing singlet fields
Sa and S̄a with the following couplings and masses,

L = λia`iS̄aHL + λ̄ia ¯̀
iSaHR +

1

2
MS̄,aS̄aS̄a +

1

2
MS,aSaSa +MSS̄,abSaS̄b + h.c.,

λ̄ia = λ∗ia, MS̄,a = MS,a, M
∗
SS̄,ab = MSS̄,ba, (3.61)

and integrating out S and S̄. With three pairs of S and S̄, the neutrino sector has U(3)` ×
U(3)¯̀× U(3)S × U(3)S̄ × U(1)HL × U(1)HR flavor symmetry. Hierarchical breaking of the
symmetry can explain the hierarchy yi1 � yi2, yi3 and M1 � M2,3. We assume flavor
symmetry breaking such that among three pairs of S and S̄, only two pairs have significant
coupling λ and/or small masses MS; we may instead start from the theory where only two
pairs of S and S̄ are present. This suppresses the quantum correction to yi1 and M1 for the
following reason. Although the vertex corrections to λ from the tau Yukawa may couple ¯̀

1 to
S, one linear combination of ¯̀

i does not couple to S̄. We may redefine the linear combination
as ¯̀

1, which is light. The operator `¯̀HLHR is obtained from the mass term MSS̄SS̄. This
gives rise to Yukawa couplings between the massive linear combinations of `i and of ¯̀

i, but
the massless combinations, which do not couple to S and S̄, do not obtain Yukawa couplings.

If there are (effectively) only two pairs of S and S̄, the U(3)` × U(3)¯̀ symmetry may
be anarchically broken in the neutrino sector. This model explains why N1 is much lighter
and has a smaller Yukawa coupling than N2,3. However, to show that N1 is sufficiently light
and stable, we must study higher-dimensional operators from the cutoff scale of the theory
Mcut, e.g. the Planck scale (and, in the next subsection, from radiative corrections). If the
U(3)` × U(3)¯̀ symmetry is anarchically broken, the following higher-dimensional operators
are allowed:

L ∼ λ̄2M∗
S

M2
cut

¯̀̀̄ HRHR +
λλ̄M∗

SS̄

M2
cut

`¯̀HLHR, (3.62)

with λ and λ̄ being typical entries in the matrices λia and λ̄ia.
7 These operators give N1 a

7Although MS is a real parameter, we put the superscript ∗ to clarify the charge structure.
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mass and a coupling to `H with values

∆M1 '
λ2MSv

2
R

M2
cut

'
(
MS

Mcut

)2

M3 ' keV
M3

mν(vR/v)2

(
vR

3× 1011GeV

)4(
MS

vR

)2(
MPl

Mcut

)2

,

∆yi1 '
λ2MSS̄vR
M2

cut

' M2
S

M2
cut

y33, (3.63)

where we take the largest Mi and yij, i.e. M3 and y33. It is possible to reduce the size of
these corrections by taking MS smaller than vR, when HR = vR in (3.61) and (3.62). In this
case the effective theory below MS takes the form of Eq. (3.8) with HR replaced with vR. It
is clear that (3.63) can satisfy (3.46) and (3.47) for the range of vR of interest.8 We delay
a discussion of the implications of these results as the quantum corrections to yi1 are larger
than the tree result of (3.63), unless vR > 10−4Mcut.

In the model without S̄, shown in Eq. (3.84), MSS̄ in Eq. (3.62) is replaced by MS, but
the corrections to M1 and yi1 are still given by Eq. (3.63).

The UV completion: quantum corrections

Corrections from lepton Yukawas

We first discuss the quantum corrections from yi2, yi3 and charged lepton Yukawa couplings.
All three ¯̀

i have Yukawa interactions in Eq. (3.7), among which the tau Yukawa is the largest.
The tau Yukawa necessarily breaks the approximate or accidental symmetry of (3.61) that
discriminates ¯̀

1 from ¯̀
2,3, and gives quantum contributions to M1 and yi1.

The quantum corrections depend on the UV model that generates the dimension-5 inter-
actions in Eq. (3.7). Let us first consider the case where the charged lepton Yukawas arise
from the exchange of a heavy scalar Φ with charge (1, 2, 2, 0), 9

L = −m2
Φ|Φ|2 + (xijΦ`i ¯̀j − AΦ†H†LH

†
R + h.c.). (3.64)

After integrating out Φ and inserting the vev of HR, we obtain the Yukawa coupling

yeij =
AvR
m2

Φ

xij. (3.65)

The quantum correction above the scale MS renormalizes λ and MS but, by the approx-
imate (accidental) symmetry, one linear combination of the Ni still has a small (zero) mass
and coupling to `HL. Only corrections below the scale MS can change the mass and decay

8In fact, further suppression results if supersymmetry exists in the UV, since holomorphy of the super-
potential can forbid the operators in Eq. (3.62).

9Φ couples exclusively to leptons, not quarks, so that potential CP violating phases of Φ do not enter
into the quark sector. Consequently, the strong CP problem remains solved when introducing Φ.
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Figure 3.8: Two-loop diagrams correcting the mass and decay rate of the dark matter, N1,
when the neutrino masses are generated by the exchange of a heavy singlet S, and the
charged lepton masses are generated by the exchange of a heavy scalar, Φ. The diagrams
are UV completions to the EFT diagrams of Fig. 3.6.

rate of N1. The two-loop diagram shown in the left panel of Fig. 3.8 dominantly corrects
M1, generating

L ' 1

(16π2)2

MS,bA
2

m4
Φ

x1ax
∗
3aλ
∗
3bλ
∗
3b

¯̀
1
¯̀
iHRHR

' 0.25 y2
τ

(16π2)2
M3

M2
S

v4
R

¯̀
1
¯̀
iHRHR, (3.66)

where we assume MS � mΦ. In the second equality we use x1ax
∗
3aA

2/m4
Φ = (UτI1UτIiyτ )

(UτI3UτIiyτ )
∗/v2

R ' (0.25 y2
τ/v

2
R), and λ2/MS ' M3/v

2
R. This term, after HR obtains a vev,

gives a mass mixing between N1 and N3 resulting in a correction to the mass of N1

∆M1 '
(

0.25 y2
τ

(16π2)2

)2(
MS

vR

)4

M3. (3.67)

The mass mixing also induces a coupling of N1 to `H,

∆yi1 '
(

0.25 y2
τ

(16π2)2

)(
MS

vR

)2

yi3. (3.68)

The diagram in the right panel of Fig. 3.8 also corrects yi1 by a similar amount.
We next consider the case where the charged lepton yukawas arise from the exchange of

heavy fermions E and Ē,

L = zeia`iĒaH
†
L + (zeia)

∗ ¯̀
iEaH

†
R +ME,aEaĒa. (3.69)

When mE > zevR, after integrating out E and inserting the vev of HR, we obtain the yukawa
coupling

yeij = zeia
vR
MEa

ze†aj (3.70)
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Figure 3.9: Two-loop diagrams correcting the decay rate and mass of the dark matter, N1,
when the neutrino masses are generated by the exchange of a heavy singlet S, and when the
charged lepton masses are generated by the exchange of a heavy fermion, E. The diagrams
are UV completions to the EFT diagrams of Fig. 3.6.

When mE < zevR, the SM right-handed charged leptons originate from Ē, and the Yukawa
coupling is ye ' ze. The two-loop diagram with external HR and ¯̀

3 in the left panel of
Fig. 3.9 generates a mass-mixing between N3 and N1,10

L ' 1

(16π2)2
g2z1az

∗
3aλ
∗
3bλ
∗
3b

MS,b

Max
{
M2

E,a,m
2
HR

} ¯̀
1
¯̀
3HRHR (3.71)

' 1

(16π2)2

M2
S

v4
R

M3
¯̀
1
¯̀
3HRHR ×

{
(0.5yτ )

2 (z1az
∗
3a)
−1 ME & vR

(z1az
∗
3a) ME . vR.

(3.72)

In the second line, we use z1az
∗
3a = UτI1UτI3yτMEa/vR ' 0.25yτMEa/vR, and λ2/MS '

M3/v
2
R. This term, after HR obtains a vev, gives a mass mixing between N1 and N3. For

mE & vR, the correction is minimized for the largest z = O(1). For mE . vR, the correction
is minimized for the smallest z ≈ yτ . The smallest quantum correction is then

∆M1 &

(
0.25 y2

τ

(16π2)2

)2(
MS

vR

)4

M3. (3.73)

Similarly, the mass mixing also induces a coupling of N1 to `H,

∆yi1 &

(
0.25 y2

τ

(16π2)2

)(
MS

vR

)2

yi3. (3.74)

The two-loop diagram in the right panel of Fig. 3.9 with external HL and `i also corrects yi1
by a similar amount. We see that Eqs. (3.67) and (3.68), from a UV completion with Φ, or
Eqs. (3.73) and (3.74), from a UV completion with E, are identical in form to Eqs. (3.57)
and (3.54) with Λ replaced by MS. Thus, with MS � vR the naturalness of the theory is
greatly improved. When we take Λ/vR < 1, Λ should be interpreted as MS.

10Without WR in the diagram, one of external HR must be charged.
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Corrections from charged fermion Yukawa couplings

We next consider the quantum corrections from charged fermion Yukawa couplings. We
introduce a UV completion for the up and down quark Yukawas by heavy fermions U, Ū ,
and D, D̄, with Lagrangian

Lu = zuiaqiŪaHL + (zuia)
∗q̄iUaHR +MU,aUaŪa,

Ld = zdiaqiD̄aH
†
L + (zdia)

∗q̄iDaH
†
R +MD,aDaD̄a. (3.75)

With MU > zuvR, integrating out U generates the up quark Yukawa couplings

yuij = zuia
vR
MU,a

zu†aj (3.76)

via a seesaw, and similarly for the down quark Yukawas by integrating out D. When mU <
zuvR, on the other hand, the SM right-handed up quarks dominantly come from Ū rather
than q̄, so that the light fermion masses are “flipped” rather than “seesaw”, with the Yukawa
coupling yu ∼ zu. In the up, down or charged lepton sectors, if M > yvR the light mass is
seesawed, while it becomes flipped as M drops below yvR.

When the heavy fermion masses MU , MD, are less than vR, the cutoff scale of the EFT
generating the dimension-five quark masses is below vR. As a result, the quadratically
divergent radiative corrections to yi1 as calculated in Eq. (3.53) and visualized in Fig. 3.5,
are absent. The radiative corrections to yi1 in the UV complete theory are shown by the
diagrams in Fig. 3.10, which generate the operator

L ' 1

(16π2)2

MUMD

vRm2
HR

(zukbz
u∗
kb )(zdlcz

d∗
lc )`i ¯̀1HLHR ×

{
MEvR
M2
∗

(zeiaz
e∗
1a) : E exchange

yei1 : Φ exchange
,

M∗ = max(MU ,MD,ME, z
uvR, z

dvR, z
evR), (3.77)

where we assume MU,D,E < mHR . We consider the correction from the third generation
fermions and their LR partners, since the smallest possible corrections are largest for the
third generation. For MU,D,E > zu,d,evR, where we may integrate out the heavy fermions to
obtain the dimension-5 operators, the quantum correction is bounded by

∆yi1 &
1

(16π2)2
y3
t y

3
b ×

{
y3
τ

yτ
'
{

10−18 : E exchange

10−14 : Φ exchange.
, (3.78)

where we take M∗ ∼ vR. The correction is small enough for M1 < 10 MeV/10 keV for
E/Φ exchange. For MU,D,E < zu,d,evR, where the SM right-handed fermions are dominantly
Ū , D̄, Ē, the quantum correction is bounded by

∆yi1 &
1

(16π2)2
y3
t y

3
b

MUMD

ytybv2
R

×
{
y3
τ
ME

yτvR

yτ
, (3.79)
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Figure 3.10: Two-loop diagrams correcting the decay rate of the dark matter, N1, when
the charged lepton masses are generated by the exchange of a heavy fermion, E (left), or
scalar, Φ (right), and the up-type quark and down-type quark masses are generated by the
exchange of heavy fermions, U , D, respectively. Each diagram is a UV completion to the
EFT diagram of Fig. 3.5.

which is even smaller than (3.78).
In summary, these UV completions easily allow small M1 to be natural throughout the

allowed regions of Figs. 3.2 or 3.3 for any vR consistent with Higgs Parity, 109GeV . vR .
1013GeV. The radiative correction of (3.67), from the left panel of Fig. 3.9, easily satisfies
(3.47) for MS < vR. A possible tree-level contribution from the Planck scale, (3.63), is
natural if MS/vR . (M1/keV)1/2(3× 1011GeV/vR)2.

Furthermore, corrections to the N1 decay rate from Fig. 3.8 or 3.9 (Fig. 3.10) involving
lepton (charged fermion) yukawa couplings, can be made small enough in either cosmology
by choosing MS (MU ,MD,ME) sufficiently less than vR. For (3.68) or (3.74), the N1 stability
requirement (3.46) is satisfied if MS/vR < (30 keV/M1)3/4, where we took y33 = 10−6, typi-
cal for natural leptogenesis. For radiative corrections involving “seesaw” charged fermions,
(3.78) shows that the N1 lifetime is natural for M1 < 10 MeV/10 keV for E/Φ exchange;
for “flipped” masses (3.79) shows that M1 can naturally be much larger. Hence, the UV
completion with the largest natural range for M1 has charged lepton masses arising from E
exchange, rather than Φ exchange, and has “flipped” rather than “seesaw” charged fermion
masses. In such UV completions, the entire parameter of Figs. 3.2 or 3.3 can be made
natural for N1 DM.

For sufficiently small Dirac masses MU,D,E � zu,d,evR, the SM fermion masses are
“flipped” with right-handed states dominantly SU(2)R singlets, Ū , D̄ and Ē. This may
suppress the decay of N2 by WR exchange, relaxing the upper bound on vR in the cosmology
with freeze-out and dilution by N2. With “flipped” masses, q̄ and the charged component
in ¯̀ obtain large masses zu,d,evR = yu,d,evR. For vR around the upper bound, N2 can decay
only into the first generation of q̄ and ¯̀. The decay rate of N2 via WR exchange is

ΓN2→(`+ūd, `−ud̄) + ΓN2→N1`+`− =
2

1536π3

M5
2

v4
R

|UeI2 |2 (3 + |UeI1|2) . (3.80)
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Figure 3.11: The parameter space of N1 DM produced by relativistic freeze-out and dilu-
tion from N2 decay when the masses of the heavy fermions, MU,D,E, are far lighter than
yu,d,evR. The shaded regions are identical to Fig. 3.2, except that the beta decay rate of
N2 is suppressed, shifting the (blue) insufficient dilution region to higher vR. The N2 beta
decay rate decreases as the two heaviest generations of q̄ and ¯̀ becoming heavy, reducing
the kinematically allowed decay channels and inducing suppressions from the PMNS matrix.
We show the allowed regions for m2 =

√
∆m2

atm (left) and m2 =
√

∆m2
sol (right). The blue

contours show how the insufficient dilution boundary depends on whether ν2 and ν3 obey a
normal (NH) or inverted hierarchy (IH). Bounds from hot DM are discussed in the text.

The PMNS matrix elements are given by [279]

|UeI2|2 =





|Ue2|2 ' 0.30 : NH, |m2| < |m3|
|Ue3|2 ' 0.023 : NH, |m2| > |m3|
|Ue2|2 ' 0.30 : IH, |m2| > |m3|
|Ue1|2 ' 0.67 : IH, |m2| < |m3|

,

|UeI1|2 =

{
|Ue1|2 ' 0.67 : NH

|Ue3|2 ' 0.023 : IH
. (3.81)

The suppression is most significant for NH with |m2| > |m3|. If the active neutrinos obey
an IH, the suppression is also strongest when |m2| > |m3|. The allowed parameter space
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of N1 DM is shown in Fig. 3.11 for all cases. The bounds from warmness and BBN are
as in Fig. 3.2; but the suppression of the N2 beta decay rate relaxes the blue bound that
arises from insufficient dilution, permitting the highest allowed vR to reach 1012−13 GeV.
From (3.80), the fraction of N1 DM that is hot is |UeI1|2/3 = 0.22(NH), 0.007(IH). Thus, N2

decaying dominantly via WR exchange is excluded for NH and allowed for IH.

3.8 Natural leptogenesis

In this section we study the extent to which successful leptogenesis can occur without the
need for fine-tuning of parameters. In Sections 3.3, 3.4 and 3.5 we simply chose parameters of
our theory to obtain a realistic light neutrino spectrum, decay rates, masses and interactions
for N1,2 that satisfy the constraints required for dark matter, and parameters that enhance
leptogenesis to realistic values. While this is certainly possible, in this section we study the
extra naturalness constraints imposed on the (M1, vR) parameter space by requiring a natural
theory without fine-tuning. We will use the UV completion described in the previous section
that allows us to start with an understanding of why N1 is light and sufficiently stable, and
also limits the size of radiative corrections.

In Section 3.5 we have seen that sufficient leptogenesis typically requires an enhancement
of ε that can occur by near degeneracy ofN2 andN3, or by increasing y33 so that a cancellation
between contributions to the light neutrino masses is required. Can these parameter choices
be made natural by introducing approximate symmetries in the UV completion? In addition,
in the last section we found a radiative correction to yi1 proportional to y33, leading to mixing
between N1 and νi. Can a sufficiently long lifetime for N1 be naturally maintained in the
presence of an enhanced y33 for leptogenesis?

Models for enhanced asymmetry parameter

Highly degenerate right-handed neutrinos, M2 'M3, can be explained by introducing an ap-
proximate flavor symmetry ensuring that c22 ' c33 and c23 ' 0 in Eq. (3.8). Such symmetries
include an SU(2) symmetry rotating (`2, `3), or discrete symmetries `2 ↔ `3 and `2 → −`2.
The symmetry is explicitly broken in the coupling bij to explain the mass splitting of the
two heaviest SM neutrinos.

The symmetry is also explicitly broken by the charged lepton Yukawa couplings. For
example, when the charged lepton Yukawas arise from the exchange of a heavy scalar Φ of
charge (1, 2, 2, 0), as in (3.64), one-loop quantum corrections from the coupling xΦ`¯̀ give a
wave-function renormalization,

L =(1 + δZ22)N †2 σ̄∂N2 + (1 + δZ33)N †3 σ̄∂N3 +
(
δZ23N

†
2 σ̄∂N3 + h.c.

)
,

δZij '
xkix

∗
kj

8π2
, (3.82)
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where we conservatively do not include a log-enhancement. This generates a mass splitting

|M2 −M3|
M2,3

'
√

(δZ22 − δZ33)2 + (δZ23 + δZ∗23)2 &
y2
τ

8π2
' 10−6, (3.83)

where we use |xkix∗kj| & y2
τ . Near the resonance x = 1, g(x) ' M2/2(M2 − M3), so the

maximum natural g(x) is 5 × 105. We obtain the same bound for the case when charged
lepton masses are generated by heavy fermion exchange, as in (3.69). In summary, the
maximum natural value for g(x) is of order 106.

Cancellation between the SM neutrino mass contributions from the see-saw of N3 and
the first dimension-5 operator of Eq. (3.32) can be explained in the following manner. Since
we are interested in large y33, we only consider `3 and ¯̀

3, and drop generation indices. Let
us introduce only one singlet S and couplings

L = λ`SHL + λ¯̀SHR +
1

2
MSS

2 + h.c. (3.84)

Integrating out S gives the dimension-5 operator

L = − λ2

2MS

(
`HL + ¯̀HR

)2
+ h.c., (3.85)

corresponding to Eq. (3.8) with b33 = c33. Only one linear combination of ν and N , which is
dominantly N , obtains a Majorana mass and hence the SM neutrino remains massless. This
can be interpreted as a cancellation between m(5) and m(ss) in (3.34), giving |χ| � 1.

Since there is no symmetry forbidding the Majorana mass of ν, it is generated by quantum
corrections. Below the scale vR, there is a quantum correction to ``HLHL given by the
diagram in Fig. 3.12, while there is no corresponding quantum correction to ¯̀̀̄ HRHR and
`¯̀HLHR. This quantum correction upsets the cancellation, giving a lower bound

|χ| > g2

16π2
ln

(
min(MS, vR)

MN

)
' 10−2. (3.86)

Radiative corrections: N1 lifetime

Naturalness thus limits the maximum baryon asymmetry generated by N2 in either cosmol-
ogy,

YB .
28

79

1

8π
y2

max g(x) sin2 α sin 2β





ρDM/s

M1

(Freeze-Out + Dilution)

ρDM/s

M1

+ 0.03
m

(ss)
2

10−4 eV
Ytherm

(
Freeze-In

Weak Washout

)

0.03Ytherm

(
m

(ss)
2

10−2 eV

)−1.16 (
Freeze-In

Strong Washout

)
,

(3.87)
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` `

HL HL

WL

Figure 3.12: A diagram contributing to a non-zero neutrino mass for the case with tree-level
cancellation between m(5) and m(ss).

where ymax is given in Eq. (3.55).
The parameter space where YB is unable to reach the observed baryon asymmetry with-

out tuning is shown in Fig. 3.13 in blue shading for the freeze-out cosmology and orange
shading for the freeze-in cosmology, for Λ/vR = 1. The dashed contours above and below
show the analagous regions for Λ/vR = 0.1 and Λ/vR = 10, respectively. Because the radia-
tive correction to the N1 decay rate depends on the fourth power of Λ/vR, the results are
sensitive to this ratio; natural leptogenesis becomes implausible for Λ � vR. The allowed
parameter space within the freeze-in cosmology is greater than the freeze-out cosmology due
to the additional contribution to YB from Y`H , which is assumed for the moment to saturate
0.1Ytherm for the purpose of showing the theoretical maximum allowed region of the freeze-in
cosmology in Fig. 3.13. When Y`H is negligible compared to YWR

, the baryon asymmetry
in the freeze-in cosmology is identical to the freeze-out cosmology and the orange region
extends down to match the blue region.

The vertical gray lines show the asymmetry enhancement for three representative values
of g(x): when M3 and M2 are as naturally degenerate as can be (g(x)Max, solid), when

M3 and M2 are comparable (g(x) = 1, dashed), and when m
(ss)
3 and m

(5)
3 are as naturally

degenerate as can be (g(x) at χmin, dotted).
A key result of Fig. 3.13 is that, for a theory with Λ/vR > 1, natural leptogenesis requires

g(x) � 1 in either cosmology, which is only possible when x ≡ (M3/M2)2 is close to unity.
Thus there are two ways to construct natural theories of leptogenesis. In the first, the
structure of the theory below vR is modified to remove the quadratic divergence of (3.54);
such a theory is provided in Sec. 3.7. In the second, a symmetry is introduced to naturally
yield near degeneracy of N2 with N3, as discussed in Sec. 3.8.

The ratio (Λ/vR) can be less than one if the effective field theory described by (3.7) and
(3.8) is generated by physics below the scale vR. In Sec 3.7 we construct an explicit model
that generates (3.7) and (3.8) and show that in this theory the radiative corrections are
given by (3.67) and (3.68), which are identical to (3.57) and (3.54) with Λ replaced by MS,
the mass of the fermion which upon integrating out generates the operators of (3.8). Thus,
when we take Λ < vR, we understand it to be the mass MS of this fermion.
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Figure 3.13: Parameter space for simultaneous N1 DM and N2 leptogenesis without fine-
tuning. In the (blue, orange) shaded regions, the observed baryon asymmetry from N2

decay, in the (freeze-out, freeze-in) cosmology, requires y33 so large that fine-tuning is needed
for sufficient stability of N1, when Λ = vR. The upper and lower dashed blue and orange
contours show the analagous exclusion regions for Λ/vR = 0.1 and Λ/vR = 10, respectively.
In the green shaded region, N1 DM is too warm. In both freeze-out or freeze-in cosmologies,
successful N2 leptogenesis requires g(x) > 1 for Λ & vR; the greater Λ/vR is, the more
degenerate M2 and M3 must be to realize the observed baryon asymmetry. The vertical
gray solid, dashed, and dotted lines show representative values of g(x) when M2 and M3

have the maximal natural degeneracy (g(x)max, solid), when M2 and M3 are comparable

(g(x) = 1, dashed), and when m
(ss)
3 and m

(5)
3 are as naturally degenerate as can be (g(x) at

χmin, dotted).
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Natural leptogenesis for freeze-out cosmology

Although it appears the mass ratio M3/M2 can be freely adjusted to generate a large g(x)
independent of y33, this is not the case as is shown in Section 3.5. This is because the
neutrino mass matrix, (3.12), relates y33, vR,M2, and M3 together in a way that ensures
the active neutrino masses, m2 and m3, remain O(0.1 eV). In the freeze-out cosmology, the
smallness of yi1 and yi2 together with (3.12) require that m2 and m3 satisfy Eqs. (3.20) and
(3.32), so that y2

33 must not only be less than y2
max, but equal to

y2
33 '

(√
xm2 −m3

)√
xm2

v2
R

v4
.

(
Constraint from neutrino masses

in freeze-out cosmology

)
(3.88)

In Fig. 3.14, we show the constraints on (vR,M1) when incorporating leptogenesis nat-
urally and consistently within the freeze-out N1 DM cosmology. The shaded regions con-
straining N1 DM remain from Fig. 3.2, but newly added is a hatched gold region where
natural leptogenesis is inconsistent with the observed neutrino masses. Within the allowed
region reside three triangles with the same representative values of M3/M2 (equivalently,
g(x)), shown in Fig. 3.13: when M3 and M2 are as naturally degenerate as can be (g(x)max,

solid), when M3 and M2 are comparable (g(x) = 1, dashed), and when m
(ss)
3 and m

(5)
3 are

as naturally degenerate as can be (g(x) at χmin, dotted), which occurs for M3 � M2. The
right side of each triangle marks the region where y33, as set by (3.88), is greater than ymax,
(3.55); that is, where neutrino masses are incompatible with a natural N1 lifetime. The left
side of the triangle, i.e. the boundary of the hatched gold region, marks the region where
YB generated by N2 (upper (3.87)), is unable to match the observed baryon asymmetry with
y33 set by (3.88) and sin2 α sin 2β = 1; that is, where neutrino masses are incompatible with
leptogenesis for the specified x. Within the unshaded region of each triangle, natural lepto-
genesis is possible for sin2 α sin 2β < 1. The gold, red, and green contours show the allowed
regions when Λ/vR = 0.1, 1, and 10, respectively.

Among the four panels of Fig. 3.14, the variation in location of the naturally allowed
region can be understood by the differences in the values and relative signs of m2 and m3

taken in each panel. This is because the apex of each triangle is determined by the value
of y2

33 that satisfies the neutrino mass relations, (3.88), and natural stability bounds for N1

DM, (3.55). For the solid and dashed triangles, x ≈ 1, and hence y2
33 ' m2(m2 −m3)v2

R/v
4.

When the active neutrinos obey an inverted hierarchy, as shown by the top two panels of
Fig. 3.14, m2 ≈ |m3| ≈

√
m2

atm, so that if m3 < 0, (top left panel), m2(m2−m3) ' (0.1 eV)2,
and if m3 > 0, (top right panel), m2(m2 − m3) � (0.1 eV)2.11 The first scenario gives a
relatively larger value of y2

33 compared to the second, meaning leptogenesis can be realized at
slightly lower values of vR in the top left panel compared to the top right panel. However, a
lower value of y2

33 means radiative corrections to yi1 are smaller, so that slightly higher values
of M1 can be reached in the top right panel compared to the top left. Identical reasoning

11m2 = |m2| since it is determined solely by the positive-definite dimension five mass contribution, m
(5)
2 .

m3 is not necessarily positive because it may have a non-negligible see-saw contribution with a negative sign.
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Figure 3.14: The parameter space where frozen-out N1 DM and N2 leptogenesis can naturally be
realized without radiative corrections affecting the stability of N1 DM and in accord with the active
neutrino mass spectrum. The shaded (unhatched) regions solely constrain N1 DM from freeze-out
as in Fig. 3.2. The hatched gold region indicates where the baryon asymmetry generated by N2 is
unable to match the observed baryon asymmetry with g(x) set to its largest, natural value, and y33

set by consistent neutrino masses. The right, downward sloping contours mark where the radiative
corrections to yi1 are sufficiently large that they must be unnaturally tuned with tree contributions
to keep N1 DM stable when g(x) is set to its largest, natural value, and y33 set by consistent
neutrino masses for Λ/vR = 0.1, 1, 10 (gold, red, green). The dashed and dotted contours show

the same region when M2 and M3 are comparable, (g(x) = 1, dashed) and m
(ss)
3 and m

(5)
3 are as

naturally degenerate as can be (g(x) at χmin, dotted). Naturalness and neutrino mass consistency
excludes areas with too low or high values of vR, and places a strong upper bound on the cutoff
Λ. We fix the ν2 and ν3 masses by the Inverted Hierarchy (IH, Top) and Normal Hierarchy (NH,
Bottom).
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explains the slight variation in the bottom two panels when the active neutrinos obey a
normal hierarchy.12

Last, Fig. 3.14 does not show the parameter region where radiative corrections to the
mass of N1, (3.57), exceed M1. This is because the radiative corrections to M1 are far less
constraining than the radiative corrections to yi1 affecting the stability of N1. For example,
when Λ/vR ≤ 1, ∆M1 > M1 only when vR > 1013 GeV, which is not visible on Fig. 3.14.
For larger values of Λ/vR, the constraints from ∆M1 do affect regions of parameter space
for vR < 1013 GeV, but only for parameter space already excluded by the constraints from
∆yi1.

Natural leptogenesis for freeze-in cosmology

Just as neutrino mass relations tie together g(x) and y33 in the freeze-out cosmology, so too
do they tie g(x) and y33 in the freeze-in cosmology, as is shown in Section 3.5. After requiring
m̃2 < 0.001 eV to avoid strong wash-out, a similar relationship to (3.88) occurs:

y2
33 '

(√
xm22 −m33

)√
xm22

v2
R

v4
,

(
Constraint from neutrino masses

in freeze-in cosmology

)
(3.89)

where |m33| . 0.05 eV and m22 = M2(v/vR)2 = 0.01− 0.05 eV.
In Fig. 3.15, we show the constraints on (vR,M1) when leptogenesis is incorporated

naturally and consistently in the cosmology with N1 DM from freeze-in. The shaded regions
constraining N1 DM remain from Fig. 3.3, but newly added is a hatched gold region where
natural and consistent leptogenesis is inconsistent with the observed neutrino masses. Within
the allowed region reside three triangles associated with the three familiar values of M3/M2:
g(x)max, solid; g(x) = 1, dashed; g(x) at χmin, dotted. The right side of each triangle marks
the region where y33, as set by (3.89), is greater than ymax, (3.55). The left side of the
triangle, i.e. the boundary of the hatched gold region, marks the region where YB generated
by N2, at the maximum possible ηY2 ' 0.1Ytherm, is unable to match the observed baryon
asymmetry with y33 set by (3.89) and sin2 α sin 2β = 1. Within the unshaded region of each
triangle, natural leptognesis is possible for sin2 α sin 2β < 1. Each contour color corresponds
to a different Λ/vR spanning six decades from 10−4 − 10, as shown by the legend at the
bottom of the figure. Fig. 3.15 demonstrates that naturally reaching the highest masses of
N1 DM allowed in the freeze-in cosmology requires Λ/vR � 10−1.

The left side of the triangle in Fig. 3.15 is vertical unlike Fig. 3.14 because ηY2 at its
maximum is independent of M1 due to the additional contribution from Y`H . When m̃2 6∼
10−3 eV, ηY2 ≤ 0.1Ytherm, and the triangular region shrinks (m̃2 is defined in (3.28)). If
m̃2 � 10−3, Y`H � YWR

, and the left side of the triangular regions of Fig. 3.15 contract to
match those of Fig. 3.14 for freeze-out.

12A consistent neutrino mass spectrum requires m2 > m3 when x ∼ 1, otherwise y2
33, a positive definite

quantity, would be negative (see (3.88)). This is violated if |m2| < |m3| and m3 > 0, which is why this case
is absent in Fig. 3.14.
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Figure 3.15: The parameter space where N1 DM from freeze-in and N2 leptogenesis can nat-
urally be realized without radiative corrections affecting the stability of N1 DM and in accord
with the active neutrino mass spectrum. The unhatched shaded regions are constraints solely
on N1 DM from freeze-in as in Fig. 3.3. In the hatched gold region, the baryon asymmetry
generated by N2, at the maximum possible ηY2 ' 0.1Ytherm, is unable to match the observed
baryon asymmetry with g(x) set to its largest natural value, and y33 constrained by neutrino
masses. The right, downward sloping contours indicate where the radiative corrections to
yi1 are sufficiently large that they must be unnaturally tuned with tree contributions to keep
N1 DM stable when g(x) is set to its largest natural value, and y33 set by consistent neutrino
masses. Each contour corresponds to a specific Λ/vR, as shown by the legend at the bottom.
The dashed and dotted contours show the same region when M2 and M3 are comparable,
(g(x) = 1, dashed) and m

(ss)
3 and m

(5)
3 are as naturally degenerate as can be (g(x) at χmin

, dotted). Naturalness and neutrino mass consistency excludes areas with too low or high
values of vR, and places a strong upper bound on the cutoff Λ. Regions with larger M1 are
only allowed if Λ < vR, as occurs for the model of Sec. 3.7. The hatched violet region shows
the inconsistent region where the mass of N2 is greater than the mass of the heavy fermion
that generates it. Left: We fix m22 =

√
∆m2

atm and m33 = −
√

∆m2
atm + ∆m2

sol resembling
the Inverted Hierarchy. Consequently, m22(m22−m33) ' (0.1 eV)2 and y2

33 is relatively large

at x = 1. Right: We fix m22 =
√

∆m2
sol and m33 = −

√
∆m2

atm, resembling the Normal
Hierarchy. Consequently, m22(m22 −m33)� (0.1 eV)2 and y2

33 is relatively small at x = 1.
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Since m22 and m33 are unknown quantities generally misaligned with the active neutrino
masses, it is impossible to know the exact parameter space associated with the normal
and inverted hierarchies. Nevertheless, since m22 and |m33| remain of order the observed
neutrino masses, the variations in the allowed parameter space do not change dramatically
when scanning over possible values of m22 and m33. For example, in the left panel of Fig. 3.15,
m22(m22 − m33) ' (0.1 eV)2 so that y2

33 is at its largest when x ∼ 1 for the same reasons
discussed in Sec. 3.8 for freeze-out. In this case, leptogenesis can probe lower vR due to the
slight enhancement in y33. In the right panel, m22(m22−m33)� (0.1 eV)2 so that y2

33 is much
smaller, and larger vR is required to realize the observed baryon asymmetry. The right panel
of Fig. 3.15 assumes m33 and m22 are not more degenerate than the observed neutrino mass
spectrum. If they are significantly more degenerate, y2

33 decreases and large vR is required
to generate the observed baryon asymmetry. Consequently, the naturally allowed triangular
region shifts to higher vR. Finally, the allowed region where m22(m22−m33) . (0.1 eV)2 lies
between the triangular regions in the left and right panels of Fig. 3.15.

Within the hatched violet region, the mass of N2 is greater than the mass of the heavy
fermion, MS, that generates it, which is inconsistent. This region is always more constrain-
ing than the region where the reheat temperature after inflation, T inf

RH , is below M2 and
leptogenesis becomes challenging. We do not analyze this region in this work.

Last, Fig. 3.15 does not show the region of parameter space where radiative corrections to
the mass of N1, (3.57), are greater than M1 for the same reasons discussed for the freeze-out
cosmology: the radiative corrections to M1 are weaker than the radiative corrections to y1i

and either do not show up on Fig. 3.15, or are already excluded by other means.

3.9 Conclusion and Discussion

The discovery of the Higgs with a mass of 125 GeV has revealed that the Higgs quartic
coupling nearly vanishes at a high energy scale (109 − 1013) GeV. In extensions of the SM
with a Z2 symmetry called Higgs Parity, the spontaneous breaking of Higgs Parity yields the
SM as a low energy effective theory. The SM Higgs quartic coupling is predicted to vanish
at the Z2 symmetry breaking scale, and hence precise measurements of SM parameters
can narrow down the symmetry breaking scale. Observable quantities correlated with the
symmetry breaking scale are correlated with SM parameters.

In this paper, we identified Higgs Parity with Left-Right symmetry, which is broken
at scale vR. By combining Left-Right Higgs Parity with space-time parity, the absence of
CP violation in strong interactions is explained. Left-Right symmetry predicts three right-
handed neutrinos. The lightest, N1, may be dark matter and the decay of a heavier one, N2,
may create the baryon asymmetry of the universe through leptogenesis.

We studied two cosmological histories of the universe. In the freeze-out cosmology, the
reheating temperature of the universe is high enough that right-handed neutrinos are initially
thermalized via exchange of additional gauge bosons required by Left-Right symmetry. Ni

later decouple from the thermal bath; N1 are overproduced, but are diluted by the late-time
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Figure 3.16: The parameter space of N1 DM from freeze-out, natural leptogenesis, and
consistent neutrino masses in terms of the mass of N1, M1, and the mass of the top quark, mt.
Remarkably, N1 DM, natural leptogenesis, and the observed neutrino masses are consistent
with the current measurement of mt = 173.0 ± 0.4 GeV. The center triangle fixes αS(MZ)
at its central value, and the triangles to the left and right at ±2σ values. We fix mh at its
central value throughout, since variations in mh within its uncertainty do not appreciably
change the parameter space. The ν2 and ν3 masses are fixed by: Left the Inverted Hierarchy
(IH) in accordance with the top left panel of Fig. 3.14 and Right by the Normal Hierarchy
(NH), in accordance with the bottom right panel of Fig. 3.14.

decay of N2. N2 decays also create the baryon asymmetry. In the freeze-in cosmology, the
reheating temperature is low, so that the right-handed neutrinos are not thermalized, but an
appropriate amount of N1 is produced via new gauge boson exchange around the completion
of reheating. N2 are produced by the new gauge boson exchange and by Yukawa couplings
to SM particles. The N2 decays again produce the baryon asymmetry.

The freeze-out cosmology is tightly constrained. With quark and lepton masses gener-
ated by the effective theory of (3.7) and (3.8), successful dark matter and baryogenesis can
be achieved simultaneously in the unshaded regions of the (vR,M1) plane of Fig. 3.4. The
symmetry breaking scale is predicted to be vR = 108 − 1013 GeV; remarkably, this coincides
with the window predicted from SM parameters and Higgs Parity. The parameter space can
be probed by 21cm line cosmology and by precise measurements of SM parameters. If the
effective theory has a UV completion below vR, the allowed region is slightly enlarged, as
shown in Fig. 3.11. The freeze-in cosmology, on the other hand, is consistent with simul-
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taneous dark matter and baryogenesis over a wide range of (vR,M1), including the entire
unshaded region of Fig. 3.3.

Naturalness of the scheme further constraints the parameter space as well as the origin of
the fermion masses in the model. The stability of N1 DM is not protected by any symmetry.
Quantum corrections may induce Yukawa couplings of N1 to the SM lepton doublets and
Higgs, making N1 decay too fast. We identified two types of quantum corrections. First,
N3 must have significant Yukawa couplings for efficient leptogenesis, while the tau Yukawa
coupling explicitly breaks any symmetry that distinguishes N3 from N1; quantum corrections
involving N3 and tau Yukawa couplings destabilize N1. In some of the parameter space, to
suppress these quantum corrections, the neutrino mass operators of (3.8) should be UV-
completed by fields with a mass below vR. Second, the SU(2)R doublet to which N1 is
embedded, ¯̀

1, has Yukawa couplings to generate the charged lepton Yukawa couplings. The
chiral symmetry of N1 which can forbid its decay is explicitly broken by a combination of
this Yukawa and the quark Yukawas. To suppress the resulting quantum corrections, the UV
completion of the operators of (3.7), that generate charged fermion masses, requires fields
with masses below vR.

In most of parameter space, sufficient baryon asymmetry requires either the two heavier
right-handed neutrinos N2,3 are nearly degenerate, or the see-saw contribution to the SM
neutrino masses from N3 is nearly cancelled by a contribution from dimension-5 operators.
These two features can be explained naturally by UV models of the neutrino sector presented
in Sec. 3.8. However, the near degeneracy or cancellation may be destabilized by quantum
corrections, limiting the enhancement. This excludes lower values of vR, where the masses
of N2,3 are small and significant enhancement of the CP asymmetry is required.

Constraints on the freeze-out cosmology, summarised in Fig. 3.14, allow vR ∼ 1010 −
1013(1012) GeV and M1 ∼ 2− 100(30) keV for the normal (inverted) hierarchy of SM neutri-
nos, respectively. Measurements of SM parameters, the warmness of DM, and the hierarchy
of SM neutrinos can probe this parameter space. For example, if an inverted hierarchy is
confirmed, vR < 1012 GeV is required, giving precise predictions for future measurements of
mt and αs. Also, observations of cosmic 21cm line radiation will discover DM to be warm,
unless vR ∼ 1011 GeV. For a normal hierarchy, a wider range of vR is allowed, but discovery
or constraints on the warmness of DM will narrow down vR, and hence SM parameters. If the
CP asymmetry of leptogenesis is not enhanced by either degeneracy or cancellation, vR and
M1 are required to be above 1012 GeV and around a few keV, respectively. This parameter
region can be probed by measurements of SM parameters and the warmness of DM.

In Fig. 3.16, we recast the constraints on the (mt,M1) plane for a fixed Higgs mass
and several values of a strong coupling constant. In Higgs Parity, the scale vR depends
dominantly on mt, and to a lesser extent, αS(MZ) and the Higgs mass, mh (see e.g. Fig. 3.1).
Consequently, for fixed αS(MZ) and mh, mt acts as a direct substitute for the scale vR. The
allowed parameter space is in remarkable agreement with the observed top quark mass.
Future measurements of mt, αS(MZ), and mh will hone in on the scale vR and, together with
determination of the neutrino mass hierarchy, will narrow the allowed range of M1. This can
then be confirmed or excluded by 21 cm line cosmology. Here we assume that the running
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of gauge coupling constants is that of the SM up to the scale vR. If the Dirac mass terms in
Eqs. (3.69) and (3.75) are smaller than vR, the running is slightly altered. If all of the Dirac
masses are smaller than yu,d,evR, there exists a set of new particles with masses yu,d,evR.
Even for this extreme case, the prediction for vR for given SM parameters is increased only
by a factor of two. For fixed vR, this corresponds to an increase in the prediction for the
top quark mass by 150 MeV. If the Dirac masses of fermions generating the first generation
Yukawas are above vR, the increase in vR is at most only 10%. The corresponding increase in
the top quark mass is 20 MeV, which is smaller than the expected uncertainty of top quark
mass measurements at future lepton colliders [617, 391, 440, 112].

In the freeze-out cosmology, if N2 decays dominantly via WR, a component of hot dark
matter is predicted due to the subdominant decay mode N2 → N1`

+`−. This is a very
natural possibility, occurring whenever the N2 Yukawa couplings are sufficiently small. In
this case the prediction for vR, or equivalently mt, is sharpened, corresponding to the right-
hand blue side of the allowed regions in Fig. 3.16. The branching ratio of the decay into
`H, which creates lepton asymmetry, is less than unity, but this can be compensated by the
enhancement of the CP asymmetry. When charged fermion masses arise from the effective
theory of (3.7), this hot component provides 10% of dark matter. However, in the case of
UV completions discussed in Sec. 3.7, for a normal neutrino mass hierarchy too much hot
dark matter is produced if N2 decays dominantly via WR, while for the inverted hierarchy
the hot fraction is only 0.7%. The relevant N2 branching ratios can be computed because
the lepton flavor mixing matrix for WR is the complex conjugate of the PMNS matrix.

The freeze-in cosmology is also constrained, as shown in Fig. 3.15; vR must be above 109

GeV. If the CP asymmetry of leptogenesis is not enhanced by degeneracy or cancellation,
vR is required to be above 1012 GeV, constraining the parameters.

Theories of Higgs Parity suffer from the domain wall problem [695] if the Higgs Parity
symmetry breaking occurs after inflation. To avoid the problem requires that the reheating
temperature is at most vR; the constraint is typically stronger since the maximal temperature
of the universe is in general higher than the reheating temperature [446, 356, 535] (see,
however, [191]). As we have shown in this paper, the baryon asymmetry can be produced
naturally via leptogenesis with the reheating temperature much smaller than vR, especially
in the freeze-in cosmology, safely avoiding the domain wall problem.

We conclude the paper by stressing the importance of cosmology and precise measure-
ments for Higgs Parity. New physics scales in theories of Higgs Parity are high. New particles
are heavy and/or very weakly coupled to SM particles. Direct confirmation of these theories
by discovery of new particles or deviation from SM predictions at collider experiments will be
difficult in the near future. In testing such theories, theoretical considerations on the early
universe, cosmological observations, and predictions of SM parameters (including those of
neutrinos) play key roles. In this paper, we investigated the production of dark matter and
baryon densities in a Left-Right symmetric Higgs Parity theory. The theory can be in fact
probed by the warmness of DM, precise determination of SM parameters by future colliders
and lattice computations, and by the measurement of the neutrino hierarchy.
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Chapter 4

Sterile Neutrino Dark Matter in
Left-Right Theories

4.1 Introduction

Left-right (LR) symmetry [553, 526, 619] is a possible remnant of grand unification [311, 296,
312, 436], can restore space-time parity at high energies, solve the strong CP problem [105,
528, 82, 81, 347], and explain the small Standard Model (SM) Higgs quartic coupling at high
energy scales [347, 265, 346, 264]. In LR theories, the electroweak gauge group, SU(2)L ×
U(1)Y , is extended to SU(2)L × SU(2)R × U(1)B−L, which is broken at a scale (vR) above
the weak scale (v), vR � v. LR symmetry predicts right-handed neutrinos, which, if their
masses and mixing with the left-handed neutrinos are sufficiently small, can be stable. Since
right-handed neutrinos are inert under the SM gauge group, they are candidates to make up
the observed dark matter (DM) density of the universe. Right-handed neutrino DM belongs
to a class of sterile neutrino DM, and we use “right-handed neutrino” and “sterile neutrino”
interchangeably.

How can right-handed neutrino DM be populated in the early universe? For large vR
and/or small reheating temperatures of the universe, production of right-handed neutrinos
through the exchange of heavy gauge bosons, WR and ZR, is negligible. Right-handed
neutrinos can still be produced by their Yukawa coupling with the SM lepton douplets and
Higgs [244]. However, this production mechanism is in tension with the constraints from
x-ray searches and structure formation of the universe (see e.g. [562]), unless a significant
lepton asymmetry is present [623].

Production of right-handed neutrinos by the exchange of WR and ZR becomes increas-
ingly effective for higher reheating temperatures. The resultant abundance reproduces the
observed DM density for an appropriate reheating temperature; above this temperature,
right-handed neutrinos are overproduced.

In the limit of high reheating temperatures, right-handed neutrinos are thermalized via
WR and ZR exchange. The DM phenomenology of LR theories in the case of high reheat
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temperatures was first studied in [120], which showed that the lightest right-handed neutrino
can make up DM if it decouples while relativistic and has its abundance diluted by decays
of heavier right-handed neutrinos into the SM bath through an off-shell WL via sterile-active
mixing. The requirement that the heavier neutrino freezes-out while relativistic leads to a
constraint on the WR mass, MWR

& 104 GeV, with no clear upper bound.
In this work we study the parameter space of LR models systematically, mainly for

reheat temperatures after inflation above the temperatures needed to thermalize the right-
handed neutrinos by WR and ZR exchange. As in [120], right-handed neutrinos decouple
relativistically, and the unstable but long-lived states decay to dilute the abundance of the
stable state to the observed DM abundance. We extend previous work, finding a bounded
parameter space from a combination of constraints including enough dilution, Big-Bang
Nucleosynthesis (BBN), warm DM, hot DM, and ∆Neff . Upper bounds on the DM neutrino
mass and on the SU(2)R symmetry breaking scale, vR, result from a detailed analysis of
the neutrino mass matrix, which takes a form constrained by LR symmetry. Furthermore,
the mass of the lightest active neutrino is constrained to be . 10−4 eV. We discuss how the
resulting parameter space will be probed observationally, especially using 21 cm cosmology,
and also how it is further constrained if decays of the long-lived right-handed neutrino
generate the observed baryon asymmetry via leptogenesis. The range of vR predicted by the
DM abundance is compared to ranges which lead to precision gauge coupling unification and
to the observed value of the Higgs boson mass.

In addition, we study the case of lower reheating scales, finding that freeze-in is also a
viable option to produce relic right-handed neutrinos. In this case, the sensitivity to the
reheat temperature after inflation leads to a wide open parameter space, with values of vR
as large as the Planck scale.

4.2 Left-right models and neutrino masses

In this section we summarize the neutrino sector of left-right theories, emphasizing the role
played by the LR symmetry. We begin by considering the effective theory of the SM with
3 additional gauge singlets, Ni, and then introduce LR symmetry. The leading operators in
the SM that give rise to masses for neutrinos are bilinear in lepton fields,

−LSM+N, eff ⊃ yij (`iNj)HL +
y′ij
Λ

(`i `j)H
2
L + y′′ijMR (NiNj) + h.c. . (4.1)

where `i ≡ (νi, ei) are the three lepton SU(2)L-doublet fields. This involves three indepen-
dent dimensionless flavor matrices (y, y′, y′′) and two mass scales: the SM cutoff scale Λ and
the right-handed neutrino mass scale, MR. Without Ni, the SM only contains the second of
these three operators [679], which is sufficient to adequately describe the observed neutrino
masses and mixings, once the SM Higgs field HL acquires its vacuum expection value, v.
When including Ni, the second term of (4.1) is often neglected, resulting in light neutrino
masses from the seesaw mechanism [692, 308, 522, 529] if MR � v.
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In this paper we study the extension of the SM electroweak gauge group to SU(2)L ×
SU(2)R × U(1)B−L. This simplifies the representation structure of the quarks and leptons:
q ≡ (u, d) and ` ≡ (ν, e) transforming as (2,1) under SU(2)L × SU(2)R and q̄ ≡ (ū, d̄) and
¯̀≡ (N, ē) transforming as (1,2). The presence of the right-handed neutrinos is now required
by the gauge symmetry, and this is their natural setting. We impose a discrete symmetry
that interchanges SU(2)L ↔ SU(2)R; the corresponding transformation on the fermions may
include spacetime parity, `↔ ¯̀†, or not, `↔ ¯̀.

We do not specify the full structure of the LR symmetric theory, though any such theory
must have the SU(2)R×U(1)B−L gauge symmetry broken to hypercharge at some scale vR �
v. We consider the effective field theory below vR, assuming that the only fermions relevant
for neutrino masses in the effective theory are νi and Ni, and the lepton-number violating
contribution to their masses is generated by a single type of LR symmetric interaction. In
this case, the leading operators for neutrino masses are

−LLR, eff ⊃ yij (`iNj)HL +
c y′ij
vR

(`i `j)H
2
L + y

′(∗)
ij vR (NiNj) + h.c. . (4.2)

If the LR symmetry includes spacetime parity, y is a Hermitian matrix and the complex
conjugation is included in the last term; otherwise y is symmetric and the complex conjuga-
tion is omitted. Even though LR symmetry has been spontaneously broken, the (`i `j) and
(NiNj) flavor matrices are identical, y′′ij = y′ij, reflecting the symmetry structure of the full
theory. This will have important consequences for the parameter space in which N1 can be
DM. Furthermore, comparing with (4.1) we find that MR = vR and Λ = vR/c, where the
constant c is discussed below, and is unity in certain theories.

The effective Lagrangian leads to a 6× 6 neutrino mass matrix,
(
νi Ni

) (
cMij v

2/v2
R yijv

yjiv M
(∗)
ij

)(
νj
Nj

)
, (4.3)

where Mij = y′ijvR. Without loss of generality we can work in a basis where y′ is diagonal
such that,

Mij = Mi δij, (4.4)

with all Mi real. Upon integrating out the three heavy states, we obtain a mass matrix for
the three light neutrinos:

mij = δijc
v2

v2
R

Mi − yikv
1

Mk

yjkv ≡ δijm
(5)
ν,i −m(ss,N)

ν,ij . (4.5)

In this basis, in the limit that yij is diagonal the lepton flavor mixing arises entirely from
the charged lepton mass matrix. Our results apply to any LR theory where neutrino physics
below vR is described by (4.2), together with the gauge interactions. Our results may not
apply if there are additional states below vR (e.g., neutral fermions with bilinear operators
mixing with ν or N).
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We now consider how the effective theory of (4.2) arises in two simple models. We begin
with the conventional LR theory with scalar multiplets ∆L,∆R and Φ which transform as
(3,1), (1,3) and (2,2) under SU(2)L × SU(2)R, respectively. This leads to the Lagrangian,

−LLR ⊃ yij (`i ¯̀
j) Φ + y′ij(`i `j) ∆L + y

′(∗)
ij (¯̀

i
¯̀
j) ∆R + h.c. . (4.6)

With this scalar spectrum, the LR symmetry is broken by 〈∆R〉 = vR, giving the (NiNj)
term of (4.2), and Φ contains the SM Higgs, HL, giving the (`iNj) term of (4.2). Finally, ∆L

acquires a mass of order vR and, when it is integrated out of the theory, leads to the (`i`j)
term of (4.2) via the quartic interaction λLR ∆L∆RΦ†Φ. The constant c is proportional to
λLR, and hence c is typically of order unity or smaller; c � 1 requires fine-tuning the mass
of ∆L to be far below vR and we do not consider this possibility.

There is a structurally simpler LR model involving just two scalar multiplets HL and HR

transforming as (2,1) and (1,2) under SU(2)L × SU(2)R. This theory has the virtue that, if
the LR symmetry is taken to include spacetime parity, it solves the strong CP problem [82,
81, 347]. Furthermore, the vanishing of the SM Higgs quartic coupling at high energies can
be understood in this theory from the Higgs Parity mechanism [347]. The pure doublet
symmetry breaking leads to leptonic interactions relevant for neutrino masses above vR of
the form

−LLR ⊃ fij
1

Λ
(`i ¯̀

j)HLHR + f ′ij
1

Λ
(`i `j)H

2
L + f

′(∗)
ij

1

Λ
(¯̀
i
¯̀
j)H

2
R + h.c. , (4.7)

where Λ is the UV cutoff for this theory. Inserting the LR symmetry breaking scale, 〈HR〉 =

vR, immediately gives (4.2), with y
(′)
ij = f

(′)
ij vR/Λ, and the added prediction that c = 1.

Right-handed neutrino DM in the keV to MeV mass range requires extremely small
numbers, whether in the context of (SM + N) or a LR theory. The requirement that N1 is
sufficiently light requires (in a LR theory y′′ = y′),

y′′11 ∼





10−20

(
M1

10 keV

)(
1015 GeV

MR

)
(SM +Ni)

10−15

(
M1

10 keV

)(
1010 GeV

vR

)
(LR)

, (4.8)

where we have normalized vR to a scale intermediate between the weak and grand unification
scales, which will follow from an N1 DM production mechanism studied below. Right-handed
neutrino DM runs counter to the simple seesaw understanding of why the neutrinos are much
lighter than the charged fermion masses [692, 308, 522, 529]. In (4.1), taking Λ� 1015 GeV
so that the second term is irrelevant, and taking MR ∼ 1015 GeV, gives the observed neutrino
masses for yij and y′′ij of order unity. Nevertheless, given the exceptionally small numbers that
arise in these theories to understand the weak scale (10−32) and the cosmological constant
(10−120), it seems worth pursuing right-handed neutrino DM, especially in LR theories where
their existence is a necessity.
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4.3 N1 stability

We define N1 as a cosmologically stable right-handed neutrino responsible for the DM density
of the universe. Even though there is no symmetry that stabilizes N1, it may be sufficiently
long-lived to be a DM candidate. The dominant decay of N1 is driven by N1 − ν mixing
controlled by y1i; hence y1i � 1 is needed for N1 to be long-lived.1

The N1 − ν mixing angle is given by

sin 2θ1 ≡
v

M1

√
Σi |y1i|2, (4.9)

where v ' 174 GeV. The experimental constraints on sin 2θ1 arise from two different pro-
cesses: For M1 below about 3 keV, the dominant constraint on the sterile-active mixing
angle comes from overproducing N1 DM via the Dodelson-Widrow mechanism [244]. For
heavier N1, the dominant constraint comes from overproducing photons by N1 DM decays,
most prominently through N1 → νγ [254]:

ΓN1→νγ '
9α

8192π4

M5
1

v4
sin2 2θ1 ,

'
(
1.5× 1030 sec

)−1
(

M1

1 keV

)5(
sin2 2θ1

5× 10−9

)
. (4.10)

As the decay rate is ∝ M5
1 it grows rapidly with M1 and is a powerful constraint on the

mixing angle for M1 & keV. Sufficient stability of N1 requires ΓN1→νγ . 1× 10−27s−1 [254]
and hence

|y1i| . 10−13

(
10 keV

M1

)3/2

(M1 & 3 keV) . (4.11)

The combination of the constraints leads to a limit on the mixing angle [254],

sin2 2θ1 ≤ 5× 10−9





(
M1

3 keV

)−1.8

×D (Overproduction)
(

M1

3 keV

)−5

(Decay).

(4.12)

D is the dilution factor required to reduce a thermal yield of N1 to the correct DM abundance.
The higher photometric sensitivities of next generation x-ray and gamma-ray telescopes
such as ATHENA [540] and e-ASTROGAM [645] may probe an order of magnitude smaller
sin2 2θ1 [165]. For M1 > 1 MeV, the tree-level decay N1 → e+e−ν is open and the resultant
constraint on y1i is similar to (4.11).

1Note that our numbering of SM neutrinos does not necessarily coincide with the neutrino numbering
commonly found in the literature.
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The smallness of the Yukawa coupling in (4.11) can be explained in the SM+Ni theory
by imposing a discrete Z2 symmetry under which Ni are odd so that the last operator of
(4.1) is forbidden, giving y1i = 0 and making N1 stable. Furthermore, introducing an inert
doublet H ′L, that has no vacuum expectation value and is odd under this parity, allows the
first operator of (4.1) to be generated from a 1-loop radiative correction [489]. In the LR
framework, a Z2 symmetry that sets y1i = 0 also forbids charged lepton Yukawa couplings.
However, in a LR theory one can alternatively impose a discrete Z4L×Z4R symmetry setting
y1i = 0, guaranteeing cosmologically stable N1, while allowing charged lepton masses. We
discuss how the model works in Appendix B.2.

If kinematically allowed, N1 can also beta decay via WR exchange to `±+ hadron(s),
where `± is any charged lepton, regardless of how small y1i is. The inclusive decay rate is,

ΓN1→`±+hadrons '
3

1536π3

M5
1

v4
R

'
(
1.4× 1024 sec

)−1
(

M1

150 MeV

)5 ( vR
1010 GeV

)−4

. (4.13)

For sufficiently small M1 or large vR, this is below the observational upper bounds of ∼
1025 sec [278].2 Here the decay rate is estimated in the quark picture, but the interpolation
to the meson regime M1 & mπ is correct at the order of magnitude level.

For M1 below the pion mass, beta decay to `+`−ν via WR −WL mixing is important.
This decay channel is also independent of y1i and given by

ΓN1→`+`−ν '
ΓN1→`±+hadrons

3
×





1 : (2,2) Breaking
(

1

16π2

mbmt

v2
ln

(
Λ

v

))2

: (2,1)+(1,2) Breaking.

(4.14)

When the electroweak symmetry is broken by an SU(2)L×SU(2)R bi-fundamental scalar, its
vacuum expectation value gives a WR−WL mixing at tree-level. If the electroweak symmetry
is broken by an SU(2)L doublet scalar, the mixing is generated by a top/bottom quark loop.
The quantum correction is logarithmically divergent in the effective theory where the quark
masses are given by dimension-5 operators, similar to Eq. (4.7). The scale Λ that cuts
off the divergence is model-dependent, but is close to vR since the top and bottom Yukawa
couplings are not small.

The WR −WL mixing also induces the decay of N1 into νγ [466, 120, 339] Connecting
the `+`− in the beta-decay diagram and attaching an external photon to this loop gives a
decay rate

ΓN1→νγ '
α

4π

m2
τ

M2
1

ΓN1→`+`−ν , (4.15)

2Although N1 decays via WR to charged pions which then decay to muons, for M1 � mπ, there may be
a large number of neutral pions in the decay shower, which subsequently decay to hard photons and yield
slightly stronger constraints on the N1 lifetime [278].
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which is observationally limited by photon searches to be less than about 10−27s−1.

4.4 Relativistic freeze-out and dilution

The right-handed neutrinos couple to the SM bath via WR exchange. If the reheat temper-
ature of the universe after inflation is sufficiently high,

T inf
RH & 108 GeV

( vR
1010 GeV

)4/3

, (4.16)

the right-handed neutrinos reach thermal equilibrium and subsequently decouple with a
thermal yield Yth ' 0.004.3 For N1 to have the observed DM abundance requires mN1 ' 100
eV; however, such light sterile neutrino DM is excluded by the Tremaine-Gunn [651, 141,
331] and warmness [541, 400, 693, 618] bounds; see [254] for a recent review.

Nevertheless, it is still possible to realize N1 as DM with M1 & keV, if they decouple
relativistically from the thermal bath and their abundance is diluted. If another right-handed
neutrino, N2, is sufficiently long-lived such that it comes to dominate the energy density of
the universe and produces entropy when it decays, it can dilute the DM abundance and cool
N1 below warmness bounds [73, 120]. The relic density of N1 is

ρN1

s
= 1.6

3

4

M1

M2

TRH ,

⇒ ΩN1

ΩDM

'
(

M1

10 keV

)(
300 GeV

M2

)(
TRH

10 MeV

)
, (4.17)

where the numerical factor 1.6 is taken from [354], ρN1 is the energy density, s is the en-
tropy density, ΩDM ' 0.25 is the observed cosmic relic abundance, and TRH is the decay
temperature of N2, as set by its total decay rate ΓN2

TRH =

(
10

π2g∗

)1/4√
ΓN2MPl. (4.18)

These formulae are also applicable to the case where N3 first dominates the universe and
decays to create entropy, and later N2 dominates and creates entropy again. Inserting the
warmness bound on N1, (M1 > 2 keV, see Sec. 4.5), and the reheating bound from hadronic

3The analysis is this section is also applicable to lower T inf
RH as long as N1 and N2 are frozen-in from

WR exchange, and N1 is overproduced as DM (see Eq. (4.32)). In such a scenario, the required dilution to
realize N1 DM is diminished, and hence the warmness constraints on N1 slightly increase above 2 keV. See
Fig. 4.4 for the warmness constraints on a pure freeze-in cosmology without any dilution.
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decays of N2 during BBN (TRH > 4 MeV) [426, 427, 368],4 into (4.17) requires5

M2 & 24 GeV. (Warmness, reheating, DM abundance) . (4.19)

There are several possible decay modes for N2, and which one dominates varies with
M2. N2 can always beta decay through WR exchange into right-handed fermions, N2 →
(`+ūd, `−ud̄) and N2 → N1`

+`−. These decay channels are unavoidable as they are indepen-
dent of the free-parameter y2i, and prevent N2 from efficiently diluting N1 in some regions
of parameter space. The N2 decay rate via WR exchange is

ΓN2→N1`+`− + ΓN2→(`+ūd, `−ud̄) =
1

1536π3

M5
2

v4
R

× 20 . (4.20)

In addition, when M2 & v, N2 can decay at tree-level via N2 → νh, νZ, `±W∓ while for M2 .
v, N2 can beta decay through WL/Z exchange and active-sterile mixing to SM fermions,
N2 → `ud, `+`−ν, ννν̄. These decay rates are given by

ΓN2→`HL =
1

8π

∑

i

|y2i|2M2 (M2 & v) (4.21)

ΓN2→(`+ūd, `+`−ν̄, ννν̄ or h.c.) '
171

8

1

1536π3

M3
2

v2

∑

i

|y2i|2 (M2 . v). (4.22)

For the latter we add up the results in [332, 120] in the limit of a vanishing Weinberg angle,
for simplicity. In either case, y2i must be sufficiently small so that N2 dominates the energy
density of the universe before decaying. Diluting N1 to the observed DM abundance requires

|y2i| .





3× 10−10

(
M2

24 GeV

)−1/2(
M1

2 keV

)−1

(M2 . v)

1× 10−11

(
M2

v

)1/2(
M1

2 keV

)−1

(M2 & v).

(4.23)

4Low reheating temperatures can also affect the CMB since some decays occur after neutrinos decouple,
reducing the effective number of neutrinos [426, 427, 398]. In our case, N2 also decays into neutrinos and
the bound from the CMB, TRH > 4 MeV [603], may be relaxed.

5Ref. [545] points out that if the mass eigenstate N1 forms an SU(2)R doublet with the mass eigenstate
τ , it might be possible for N1 to decouple earlier than N2 because of the Boltzmann-suppressed density of τ
relative to µ or e. This reduces the relic density of N1 compared to N2 which relaxes the necessary dilution
from N2 by a factor of 3 − 4 and hence lowers the bound on M2 from 24 GeV to 6 − 8 GeV. However, if
N2 decouples after N1, its density is Boltzmann-suppressed since M2 � mτ , making dilution ineffective.
Consequently, we find that the potential relaxation of the bound on M2 (4.19) unattainable. Ref. [545] also
points out that if N2 forms an SU(2)R doublet with µ and M2 ' mµ+mπ ' 250 MeV, the decay rate of N2

via WR exchange is suppressed by a small phase space, allowing N2 to be long-lived and provide sufficient
dilution even for vR around the TeV scale. Since we find that the possible relaxation of the lower bound on
M2 does not work, we also cannot confirm this claim.
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The equality sign applies when the contribution to the N2 decay rate from WR exchange,
(4.20), is sub-dominant.

In Appendix B.1, we use the above results, together with the radiative stability bound
on N1, to derive constrains on the neutrino mass matrix of (4.5).

1. For M1 < M3, we show that the lightest neutrino mass eigenstate is closely aligned
with ν1 and has a mass m1 �

√
∆m2

sol. In the case that M3 > M2, the other two
mass eigenstates are very close to ν2 and ν3 and have masses m2 = c (v2/v2

R)M2 and
m3 = c (v2/v2

R)M3 − y2
33v

2/M3. For M3 < M2, the (2, 3) entry of the mass matrix
may be non-negligible, so that the two heavy active mass eigenstates are each linear
combinations of ν2,3. In this case, we are able to derive a relation between the scale of
their masses and M2: M2 ' µ(vR/v)2c−1, where 0.01 eV . µ . 0.10 eV. In the rest of
the paper we take

M2 ' m2

(vR
v

)2 1

c
, (4.24)

but, in the case that M3 < M2, m2 should be taken in the range (0.01 − 0.10) eV and
not set to an active neutrino mass eigenvalue.

2. For M1 > M3, we show that the lightest neutrino mass is much smaller than
√

∆m2
sol

and that M2 is given by Eq. (4.24), with the parameter c replaced by a parameter
ceff < c.

In Fig. 4.1, we show the constraints on (vR,M1) when m2 =
√

∆m2
atm (left) and m2 =√

∆m2
sol (right). In the orange shaded region, the required TRH is below 4 MeV, which

is excluded by hadronic decays of N2 during BBN [426, 427]. The green-shaded region is
excluded due to the warmness of N1 affecting large scale structure. To the right of the blue
line, the beta decay rate of N2 via WR exchange is the dominant contribution to ΓN2 ; here,
the dilution of N1 is chiefly through N2 → N1`

+`− and N2 → (`+ūd, `−ud̄). Using (4.24),
these decay rates scale as a positive power of M2 and hence vR. Within the blue-shaded
region, the N2 decay rate becomes too fast to efficiently dilute the N1 energy density.

The blue line itself is an interesting region of parameter space, which does not require
any tuning but simply corresponds to the limit where the the dominant decay is set entirely
by the WR exchange terms in (4.20). In this limit the N1 abundance has two contributions:
from N2 decay through N2 → N1`

+`− as well as the abundance from relativistic decoupling.
While the latter is the dominant component, the former can also make up a significant
component of DM, which can be probed by future experiments as discussed in Sec. 4.5.

As can be seen from Fig. 4.1, the allowed region of frozen-out N1 DM from LR theories
forms a bounded triangle in the vR−M1 plane. The position and size of the triangle depends
on c, such that the allowed region shrinks in size and shifts to lower vR for smaller c. This
is because the ΩN1 > ΩDM bound depends more sensitively on M2 (and hence c) than the
TRH < 4 MeV bound. We show the effect of c on the allowed region for three values of c:
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Figure 4.1: The parameter space of N1 DM produced by relativistic freeze-out and dilu-
tion from N2 decay: constraints on the LR symmetry breaking scale vR and the mass N1.
The constraints from warm DM are in green, Big Bang Nucleosynthesis in orange, and
insufficient dilution in blue. The constraints depend on the LR-model dependent parameter
c . 1. Left: We fix the ν2 mass by the atmospheric neutrino mass difference, m2 =

√
∆m2

atm.

Right: We fix the ν2 mass by the solar neutrino mass difference, m2 =
√

∆m2
sol.

one near the experimental minimum, one near the natural maximum, and one in between.
As can be seen by the smallest triangle of Fig. 4.1, the allowed region of N1 DM disappears
for c . 1 × 10−4, placing an experimental lower bound on vR & 106 GeV. Similarly, the
naturalness argument discussed in Sec. 4.2 limits c near unity, and an upper bound on
vR . 1013 GeV as shown by the largest triangle of Fig. 4.1. For the remainder of this paper,
we conservatively focus on the case c = 1, the largest naturally allowed parameter space of
N1 DM, when considering signals and future experimental probes.

4.5 Signals and future probes

So far we have focused on the current constraints on sterile neutrino DM in general LR
theories and found freeze-out to be a viable option as long as the c parameter, characterizing
the seesaw contribution to the light neutrino masses, is not too small. In this section, we
discuss how future observations can probe the parameter space through dark radiation, warm
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Figure 4.2: The parameter space of N1 DM produced by relativistic freeze-out and dilution
from N2 decay in terms of the left-right symmetry breaking scale, vR, and the mass of N1,
M1, for c = 1. We show constraints from N2 decaying after Big Bang Nucleosynthesis
(orange), decaying too early to provide sufficient N1 dilution (blue), warm DM bounds
(green), and hot DM bounds (red). In addition we show prospects of future surveys of
TRH from pulsar timing on DM subhalos (dashed orange), improved searches for hot DM
from CMB telescopes (dashed red), and warm DM from 21-cm cosmology (dashed green).
Lastly, to the left of the dashed purple curve labeled ‘Leptogenesis’, the baryon asymmetry
produced by N2 decays is insufficient due to dilution and sphalerons, even with ε = 1. Left:
We fix the ν2 mass with the atmospheric neutrino mass difference, m2 =

√
∆m2

atm. Right:
We fix the ν2 mass with the solar neutrino mass difference, m2 =

√
∆m2

sol.

DM, and additional structure on very small scales. In addition, the requirement of viability
of leptogenesis greatly restricts the parameter space.

Warmness

The free-streaming length of thermally produced N1 can be large if N1 is light. When M1 is
O(keV), the free-streaming length of N1 approaches the size of galactic mass perturbations,
suppressing the matter power spectrum on scales k & 0.1 Mpc−1 [135, 606, 441, 675, 550].
A suppression can be observed through large scale structure surveys, perturbations in the
cosmic microwave background (CMB), or absorption of low-redshift Lyman-α photons by
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neutral hydrogen (a tracer of DM) in the intergalactic medium [508, 664, 30, 91]. For N1

that was thermally produced and diluted to the observed DM abundance, the bounds are
at O(1 − 5 keV) range. We adopt M1 & 2 keV as our constraint in the dark green region
of Fig. 4.2. Future 21-cm cosmology experiments, which can trace early star and galaxy
formation at cosmic dawn, are anticipated to probe the matter power spectrum on scales
k & 50 Mpc−1. If no suppression on such scales is observed, searches would constrain
M1 & 14 keV [537], which we show with the dashed green region of Fig. 4.2.

Hotness

Although N1 DM is dominantly produced thermally, a subdominant fraction is always pro-
duced non-thermally (see section 4.4). Specifically, the beta decay N2 → N1`

+`− produces
relativistic N1. This non-thermal population of N1 becomes non-relativistic at temperatures
O(eV) and contributes a hot component of DM. Constraints on hot DM are conventionally
given in terms of the effective number of neutrino species, ∆Neff , which parameterizes its
energy density while relativistic, and the effective neutrino mass, mν,eff , which parameterizes
its energy density when it has become non-relativistic matter [30, 282]. For LR models, this
is given by

∆Neff =
1

3
Br(N2 → N1`

+`−)

(
g4
∗,eq

g∗,TRH

)1
3 4

7

(
4

11

)−4
3

' 0.97 Br(N2 → N1`
+`−)

(
106.75

g∗,TRH

)1
3

,

mν,eff ≡ 94.1 eV ΩN1,hoth
2 ' 11 eV Br(N2 → N1`

+`−). (4.25)

When the WR-exchange decay is subdominant, Br(N2 → N1`
+`−) scales as M2

1 v
2
R, and it

saturates at 0.1 (since 90% of beta decays produce quarks and no N1) along the blue curve.
Along this line a significant amount of hot DM is predicted: ∆Neff ' 0.1 and mν,eff ' 1.1 eV.
Coincidentally, current limits on the two-dimensional marginalized distribution of ∆Neff and
mν,eff already require ∆Neff . 0.1 and mν,eff . 1.0 eV [282], which we indicate by the red-
shaded region labeled ‘Hot DM’ in Fig. 4.2.

CMB Stage IV [9], a collection of future ground based telescopes, will be able to search
for hot DM signals inside the currently allowed region. Assuming a null detection, the
experiment will be able limit ∆Neff . 0.06 [10], which we show by the dashed red region
of Fig. 4.2.6 Note that for vR . 1010 GeV, TRH occurs below the QCD phase transition,
which is accompanied by a sharp decrease of g∗,TRH

, leading to an enhancement in ∆Neff and
strengthening the red-shaded region. The limit where the the dominant decay of N2 is set
by the WR exchange can be probed by CMB Stage IV.

6Future space based telescopes such as CORE can theoretically detect mν,eff ∼ 0.04eV at 1σ, but only
if ∆Neff & 0.05 [138, 237].
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Early matter dominated era

The current bound on the reheat temperature, TRH & 4 MeV, comes from N2 decaying
during BBN, leading to its decay products altering the neutron to proton ratio enough to
conflict with the observed light element abundances [426, 427]. Presently, ideas to probe
higher reheat temperatures rely on the cosmological effects of the early matter dominated
era, namely the formation of ultra compact DM halos [274, 185]. For example, halos with
masses as low as Mhalo ' 10−10M� can be observed with pulsar timing arrays once the
Square Kilometer Area [430] is built [256] (in principle, gravitational microlensing could also
be used to look for sub-halos from early matter domination, but such halos would typically
have concentration parameters of O(103) and would be too diffuse to have a sizable signa-
ture [256, 212, 87]). The largest DM halo masses are correlated with TRH since the density
perturbations, k(a) ≡ aH(a), which enter the horizon during the early matter dominated
era and source the halos, are largest just before reheating:

Mhalo ≈
4

3
πk−3

RHρm,0 ≈ 10−10M�

(
T2

500 MeV

)−3(
g∗s(T2)

68

)(
g∗(T2)

68

)−3/2

. (4.26)

Here, kRH = a(TRH)H(TRH) is the scale of density perturbations entering the horizon at TRH,
and ρm,0 is the present-day mass density of non-relativistic matter [274]. From (4.26), we
see that pulsar timing arrays can probe reheat temperatures as high as ∼ 500 MeV.

An important caveat to these experimental searches arises when DM has such a large free-
streaming length that ultra compact halos cannot form during the early matter-dominated
era. The free-streaming length of N1 DM is [446]

λFS ≡
∫ teq

0

v(a)

a
dt 5

∫ teq

tRH

v(a)

a
dt =

1

HRHa2
RH

〈pdec〉adec

M1

ln

(
h(aeq)

h(aRH)

)
, (4.27)

where h(a) ≡
√
a2 + (〈pdec〉adec/M1)2 + a and,

〈pdec〉 ' 3.2Teq
aeq

adec

(
g∗s,eq

g∗s,dec

ρDM/s

M1Ytherm

)1/3

(4.28)

is the average momentum of N1 upon decoupling from the SM bath. When λFS & k−1
RH,

gravitational lensing and pulsar timing array searches cannot put a bound on TRH since
ultra compact halo objects do not exist in the present universe [274], as shown by the
dashed orange line of Fig. 4.2. From this bound, we see that probing reheat temperatures
above 4 MeV through observations of ultra compact DM halos requires M1 & MeV, which
is already excluded by the insufficient dilution of N1 DM.

Leptogenesis

Besides providing an excellent DM candidate in the form of N1, right-handed neutrinos
are also appealing in that they can generate the observed baryon asymmetry via leptoge-
nesis [300]. In a forthcoming paper [255], we show that the decay of a heavier, long-lived
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right-handed neutrino, N2, can not only provide the dilution necessary to realize N1 DM,
but also generate a large lepton asymmetry. In the usual way, this lepton asymmetry is con-
verted to a baryon asymmetry via electroweak sphalerons, generating the observed baryon
asymmetry of our universe. Since the sphaleron process ceases operation at temperatures
below the weak scale, baryogenesis is suppressed when TRH < v. In this case, the baryon
asymmetry is generated by the fraction (TRH/v)2 of N2 that decay in the N2 MD-era before
the temperature of the universe falls below the weak scale.7 Consequently, the generated
baryon asymmetry is

YB =
28

79
× ε3

4

TRH

M2

(
TRH

v

)2

(4.29)

where ε is the lepton asymmetry generated per N2 decay, and the factor of 28/79 accounts
for the conversion of the lepton asymmetry into the baryon asymmetry via sphalerons [367].

Independent of the model, ε is at most unity.8 Conservatively taking this maximum ε,
we see from Eq. (4.29) that generating the observed baryon asymmetry, YB ' 8 × 10−11,
is impossible when TRH � v, as shown by the dashed purple contour of Fig. 4.2. This
constraint demonstrates that incorporating leptogenesis intoN1 DM from LR models severely
diminishes the viable parameter space, and that future 21-cm cosmological probes of warm
DM can significantly probe this reduced parameter space.

4.6 Predictions on vR from UV physics

The cosmologically allowed region of initially thermalized N1 DM in LR theories constrains
the SU(2)R symmetry breaking scale vR well above the electroweak scale. As discussed in
Sec. 4.4, the viable region of the right-handed breaking scale is 106 . vR/GeV . 1013, for
any c ≤ 1, and 108 . vR/GeV . 1013 for the case of c = 1. In this section, we consider the
implications such a breaking scale has on prospective theories behind LR models.

Small Higgs quartic coupling at high energy scales

Intriguingly, this range of vR is predicted independently within ‘Higgs-Parity’ theories [347,
265, 346, 264], a subset of LR models with Higgs-doublets HL and HR and with the LR
symmetry spontaneously broken by 〈HR〉 � 〈HL〉. In Higgs-Parity models, the SM Higgs
quartic coupling λ is predicted to vanish at the scale vR. The SM renormalization group flow

7When v ' TRH, the thermal bath is not primordial but generated by N2 itself (see e.g. [446, 199]), and
the suppression is (TRH/v)4.

8Large ε requires a large Yukawa coupling y33, which naively produces too large SM neutrino masses by
the see-saw from N3. This can be avoided by a certain structure in y′ij and yij . The magnitude of ε is also
restricted by the stability of N1 against quantum correction from y33, further constraining the parameter
space. We study this in detail in a future work.
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of λ shows that λ = 0 for 109 . vR/GeV . 1013, with an uncertainty dominantly arising
from an uncertainty in the top quark mass [157].

The is shown explicitly in Fig. 4.3. The green band shows the relation between vR and the
top quark mass, mtop.9 The width of this green band arises from the uncertainty of the Higgs
mass mh = 125.18± 0.16 GeV and the strong coupling constant αs(mZ) = 0.1181± 0.0011
at 2σ [642]. The preferred value of the top quark mass (2σ) is shown by a horizontal gray
band. As a result, the LR symmetry breaking scale vR is predicted to be 109 . vR/GeV .
1013. The narrower green band shows the relation assuming that the uncertainties shrink
to mh = 125.18 ± .020 GeV and αs(mZ) = 0.1181 ± 0.0001, which is possible through
improved lattice calculations, measurements at future lepton colliders, and measurements at
HL-LHC [171, 474, 122]. The top quark mass can be measured with an accuracy of a few
tens of MeV by e+e− colliders [617, 391, 440, 112] such as ILC [84], narrowing down the
prediction on vR within a few tens of percent, as shown by the narrower gray band. In future
work, we will incorporate leptogenesis from N2 decays with N1 DM within the Higgs Parity
framework [255].

171

172

173

174

175

Figure 4.3: The predicted top quark mass in Higgs Parity theories is shown in green, as
a function of the right-handed symmetry breaking scale. The experimentally preferred top
mass is shown as a gray band, leading to the preferred range of vR shown by the vertical
blue band. The red band shows the range of vR preferred by gauge coupling unification.

9We ignore a UV completion-dependent part of the threshold correction to λ(vR) from mtop that in some
extreme cases can lower the value of vR by 1− 2 orders of magnitude [346].
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Gauge coupling unification

The cosmologically allowed range of vR is also consistent with gauge coupling unification.
The LR symmetric gauge group, SU(3)c×SU(2)L×SU(2)R×U(1)B−L is a subgroup of an
SO(10) unified gauge group. Assuming the minimal symmetry breaking chain containing
the LR symmetric gauge group as an intermediate scale gauge group,

SO(10) −→ SU(3)c × SU(2)L × SU(2)R × U(1)B−L
vR−→ SU(3)c × SU(2)L × U(1)Y ,

(4.30)

the scale vR is predicted to be 109 . vR/GeV . 1013 [593, 626, 346].
We note, however, that a stable right-handed neutrino, N1, is in tension with matter

unification. In fact, if the SM quarks and leptons as well as the right-handed neutrinos
are unified into a 16 representation of SO(10), Yukawa unification naively predicts that
the right-handed neutrinos are all heavy and unstable. To evade this naive expectation
would require a more sophisticated model in a four-dimensional SO(10) unified theory. This
could be possible with SO(10) unification in higher dimensions with orbifolding [423, 424,
47, 348], where Yukawa couplings do not necessarily unify if matter is localized on gauge
symmetry breaking branes [371]. Even if matter lives in the bulk, the SM quarks and
leptons as well as the right-handed neutrinos may arise from zero-modes of different 16’s by
the orbifold projections, as is realized in SU(5) [348, 371] or SO(10) [352] unification without
intermediate gauge symmetry. Breaking of SO(10) down into LR symmetry by orbifolding
is discussed in [123].

4.7 Freeze-In

When the reheat temperature of the universe is below the thermalization temperature of the
right-handed neutrinos (see (4.16)), neither N1 nor N2 have a thermal abundance. Instead,
the N1 abundance is determined by scattering via heavy WR and ZR exchange which, being
UV-dominated, depends on the reheating temperature,

ρN1

s
' 1× 10−5M1

(
T inf

RH

)3
Mpl

v4
R

, (4.31)

⇒ Ω

ΩDM

'
(

M1

150 keV

)(
1010 GeV

vR

)4(
T inf

RH

107 GeV

)3

. (4.32)

Freeze-in production from other sources, such as `H → N1, are subdominant since y1i � 1
is needed to ensure N1 is long-lived. Contributions to the N1 abundance may also arise from
beta decays of N2 and N3. These, however, are always subdominant to the direct freeze-in
production of N1, whether N2,3 are produced by the WR interaction or the `NH interaction.

In Fig. 4.4, we show the contours of the required reheat temperature after inflation to
freeze-in N1 DM for a given (vR,M1). In the green region, the warmness of N1 affects large
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scale structure. Since frozen-in N1 is never diluted, it is warmer than frozen-out N1 for a
fixed M1. More concretely, its free-streaming length is larger by a factor of approximately

4
3.2

(
M1Ytherm

ρDM/s

)1/3

, which gives a commensurately stronger warm DM bound compared to

Fig. 4.2. Here, the factor of 4/3.2 comes from the difference in 〈p/T 〉 for the non-thermal
frozen-in distribution, to the thermal frozen-out distribution, as discussed in [372]. In the
blue and pink regions, the decay of N1 mediated by WR, (4.13), or WR−WL mixing, (4.15),
overproduces the observed amount of galactic gamma-rays, respectively [278]. Similarly,
the decay of N1 via active-sterile mixing overproduces the observed galactic x-rays and
gamma-rays for the mixing angle sin2 2θ1 labeling the purple dotted contours. Unlike the WR-
mediated decay, which is fixed by vR, the decay via N1−ν mixing is set by the free parameter
θ1. Lastly, searches at the LHC for heavy charged boson resonances (pp → WR → N1`) [4]
and neutral boson resonances (pp → ZR → `+`−) [5] exclude vR below about 10 TeV, as
shown by the orange region.

Fig. 4.4 shows that the parameter space for N1 DM from freeze-in is weakly constrained
compared to that of N1 DM from freeze-out and dilution, shown in Fig. 4.1. For example,
vR could be as low as about 100 TeV, with the reheat temperature after inflation below
100 GeV. Likewise, bounds on M1 are weak; although as M1 increases sin2 2θ1 is constrained
to become extremely small to keep N1 sufficiently long-lived. However, if leptogenesis via
N2 decay is incorporated into the N1 DM freeze-in cosmology, the (M1, vR) parameter space
becomes more tightly constrained. In a future work, we discuss this viable parameter space
in the framework of Higgs Parity [255].

4.8 Conclusion and Discussion

Since right-handed neutrinos Ni have no SM gauge interactions, it is plausible that one of
them, N1, is sufficiently stable to make up dark matter. A theory containing Ni has three
types of neutrino masses: Dirac masses, (νiNj), and Majorana masses, (νiνj) and (NiNj).
In general, these are described by three independent mass matrices. In this paper we have
studied theories with a LR symmetry that forces the Majorana mass matrices for (νiνj)
and (NiNj) to be proportional. In simple theories with the SU(2)R and SU(2)L gauge
groups broken by doublet vacuum expectation values of strength vR and v, the constant of
proportionality is v2/v2

R, whereas in the conventional LR theory, with scalar triplets and
bidoublets, the constant of proportionality is c v2/v2

R, with c . 1.
At sufficiently high temperatures in the early universe, Ni are kept in thermal equilibrium

via the SU(2)R gauge interactions. The initially thermal N1 can account for the observed DM
if they are subsequently diluted by decays of the initially thermal N2. We have shown that
the (vR,M1) parameter space for this simple origin of DM is highly restricted, and indeed
bounded, as shown in Fig. 4.1. The allowed region is triangular with vR ' (108 − 3× 1012)
GeV and M1 ' (2 keV − 1 MeV) for c = 1. As c is reduced, the allowed region shrinks in
size and shifts to lower values of (vR,M1), disappearing entirely at (106 GeV, 2 keV) when
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Figure 4.4: The parameter space for N1 DM produced by freeze-in. The observed relic
abundance occurs in the unshaded region for values of T inf

RH shown by the dashed red contours.
Constraints from small scale structure are shown in green, with projections from future
probes of small scale structure using the 21cm line in dashed green. In the blue region
N1 decays too rapidly via WR to `±π∓, and in the pink region N1 decays too rapidly via
WR−WL mixing to νγ when SU(2)L is broken by (2, 1) + (1, 2) (solid) or by (2, 2) (dashed).
The decay via WR −WL mixing to `+`−ν is weaker and not shown. The horizontal dashed
blue lines show the limit (4.12) on the mixing angle of N1 with active neutrinos. Collider
searches for WR exclude vR below about 10 TeV, as shown in orange.

c ' 10−4.
Constraints that determine the lower bounds on M1 and vR are straightforward, arising

from requirements that DM not be too warm and N2 decays without disturbing nucleosyn-
thesis. However, there is a third constraint, which leads to upper bounds on both M1 and
vR, and is involved. In Appendix B.1 we show that this DM scenario places constraints on
the active neutrino masses in such a way that the mass of N2 is determined by (4.24), and
grows rapidly with vR. Thus at large enough vR, N2 decays dominantly via WR exchange; the
requirement that this decay is slow enough to sufficiently dilute N1 places an upper bound
on M1vR, as shown by the blue region of Fig. 4.1.

Observational probes of this N1 DM, from relativistic freeze-out and dilution by N2 decay,
are shown in Fig. 4.2 for c = 1. The bulk of the (vR,M1) parameter space is at lower values
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of M1, leading to signals of warmness in large scale structure. Indeed, a significant portion of
the parameter space can be observationally probed using 21 cm cosmology. A subdominant
component of N1 DM is produced non-thermally via the WR beta decay N2 → N1`

+`−,
producing N1 that become non-relativistic at temperatures O(eV) and are therefore hot.
The size of this component is proportional to (M1vR)2 and, coincidentally, present limits on
this hot DM component are close to the previously described limit on M1vR from too much
N1 DM. Indeed, the interesting case of N2 decaying dominantly via WR is already in tension
with observation, and future CMB measurements will thoroughly probe this possibility.
During the era of N2 matter domination, density perturbations on small enough scales grow
and could potentially lead to observable structures. Unfortunately, for pulsar timing arrays
to see a signal in the region of reheat temperatures above the 4 MeV BBN bound, requires
M1 > MeV, which is excluded by insufficient dilution of N1.

Given that the decays of N2 are out of thermal equilibrium, it is plausible that they lead
to leptogenesis. We explore this is detail in a future publication [255], and here we simply
observe that sufficient baryon asymmetry arises only if such decays are early enough, as
shown by the dashed purple line in Fig. 4.2. A large fraction of the parameter space that
allows leptogenesis can be probed by 21 cm cosmology.

The SU(2) × SU(2)R × U(1)B−L gauge group studied in this paper provides an elegant
setting for Higgs Parity [347, 265, 346, 264], which correlates the SM parameters including the
top quark and Higgs boson masses and the QCD coupling constant with the scale of SU(2)R
breaking. The predicted top quark mass in this scheme is consistent with the experimentally
preferred value of it for vR in the range of (109 − 1013) GeV, as shown in Fig. 4.3, which
includes much of the range relevant for N1 DM. As uncertainties in the Higgs mass and the
QCD coupling are reduced in near future measurements, vR is predicted within a factor of
10. It will be interesting to see whether the ranges of vR for Higgs Parity and N1 DM remain
consistent. Precise measurements of the top quark mass at future linear colliders such as ILC
can predict vR with an accuracy of a few tens of percent. The range of vR that gives precision
gauge coupling unification is also shown in Fig. 4.3; remarkably it is consistent with Higgs
Parity and much of the range needed for N1 DM. An important question is how easily the
conditions for cosmological stability of N1 can be implemented in a realistic SO(10) theory
of flavor.

In LR theories, if the reheat temperature after inflation is too low for WR exchange to put
Ni into thermal equilibrium, the N1 DM abundance can be successfully generated by freeze-
in, as shown by the solid red contours in Fig. 4.4. In this case the scale vR is unconstrained,
except by direct limits from LHC on the masses of WR and ZR. There are, however, strong
limits on M1 from warmness and from N1 stability requirements.
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Chapter 5

Dark Matter Detection, Standard
Model Parameters, and Intermediate
Scale Supersymmetry

5.1 Introduction

In 1985, Goodman and Witten proposed that halo dark matter could be detected directly in
terrestrial experiments by observing small energy depositions from elastic scattering of dark
matter particles from nuclei [330]. Their first illustration was of a neutral particle, such as
a heavy neutrino, scattering via t-channel Z exchange with a cross section per nucleon of
order σv ∼ G2

Fµ
2
red/2π, where µred is the reduced mass of the dark matter and nucleon. They

computed a signal of order 102 − 104 events per Kg per day for dark matter masses in the
GeV to TeV range, depending on nuclear target. In the intervening 35 years, a succession
of ever larger and more sensitive detectors have excluded this example by many orders of
magnitude, so that the focus has shifted to theories where there is no contribution to the
scattering from tree-level weak interactions. In fact, as the number density of dark matter
particles scales as the inverse of its mass, present data constrains the mass of dark matter
with tree-level Z exchange to be larger than 3 × 109 GeV [60]. Proposed detectors [61, 6,
37] will probe the mass range

MDM,Z-exchange = (3× 109 − 2× 1012) GeV. (5.1)

The discovery of the Higgs boson at the Large Hadron Collider (LHC) completes the
Standard Model (SM). Electroweak symmetry breaking arises from the potential

VSM(H) = −m2|H|2 + λ|H|4, (5.2)

via the ground state value of the Higgs field 〈H〉 = v ' 174 GeV. The Higgs boson mass
is m2

h = 4λv2. No other new particles have been discovered at the LHC so far, and in this
paper we assume that the SM is valid to very high energies. All the SM couplings can be
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computed at high energies to high precision, including the Higgs quartic coupling [157]. As
shown in Fig. 5.1, this running indicates that the Higgs quartic coupling vanishes at the
scale

µλ = 109−12 GeV, (5.3)

which we call the Higgs quartic scale. Indeed, within the context of the SM as an effective
field theory to very high energies, a key result of the LHC is the discovery of this new mass
scale. In this paper we assume that physics beyond the SM first appears at µλ, and the form
of the new physics explains why the Higgs quartic is so small at this scale. It is interesting
to note that, if dark matter couples to the weak interaction, the recent direct detection
experiments have started to explore dark matter masses in the vicinity of the Higgs quartic
scale. The mass range to be explored by the next generation of experiments, (5.1), will probe
the entire range of (5.3).

Since the discovery of a Higgs with mass of 125 GeV, several proposals have been made for
physics at µλ that explains the small quartic coupling, including supersymmetry [349, 350,
293], extra dimension [326], Peccei-Quinn symmetry [581], and Higgs Parity symmetry [347,
265, 346, 264, 266]. In this paper we pursue the case of Intermediate Scale Supersymmetry
(ISS), where the superpartner mass scale m̃ is of order the Higgs quartic scale. The iden-
tification of µλ with m̃ is natural [349, 350] since supersymmetry predicts a very small SM
Higgs quartic at the scale m̃ for a wide range of supersymmetry breaking parameters. Unlike
in [349, 350], we study the case of Higgsino or sneutrino Lightest Supersymmetric Particle
(LSP) dark matter with mass of order m̃, since this gives a direct detection signal that is
correlated with the Higgs quartic scale.

In this paper, we examine the correlation in ISS between the dark matter detection signal
via Z exchange and the precision measurement of the top quark mass, mt, the strong coupling
constant, αs(mZ), (and to a lesser extent, of the Higgs boson mass, mh). A dark matter
signal will determine the mass of the LSP and precision measurements will greatly reduce
the uncertainties in the Higgs quartic scale. In particular, we find that the discovery of a
direct detection signal implies an upper bound on the top quark mass and a lower bound on
the strong coupling constant. The effects on the running of the Higgs quartic in reducing
the uncertainties in mt, αs(mZ) and mh are shown by the colored bands in Fig. 5.1. Future
uncertainties in mt (0.01GeV), αs(mZ) (0.0001), and mh (0.01 GeV) from measurements at
future lepton colliders [617, 391, 440, 112, 122], improved lattice calculations [474], and the
high-luminosity LHC [171], will substantially reduce the uncertainty in µλ to within a few
tens of percents, as shown by the solid black strip in Fig. 5.1 which is centered at the current
central values of mt, αs(mZ), and mh.

In 1977, Lee and Weinberg showed dark matter, if coupled to the weak interaction, could
be produced in the early universe by freezing-out, losing thermal equilibrium while non-
relativistic [470]. Indeed, they discovered that a heavy neutrino, with a GeV-scale mass,
could yield the observed dark matter abundance. Many other electroweak dark matter
candidates arising from freeze-out were studied, with masses up to several TeV. Apparently
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Figure 5.1: Running of the SM quartic coupling with current and future uncertainties in mt,
αs(mZ), and mh. Their central values are mt = 172.76 GeV, αs(mZ) = 0.1179, and mh =
125.10 GeV.

our proposal of Higgsino or sneutrino dark matter with a mass of 109 − 1012 GeV leads
to a huge overproduction of dark matter. However, we find that the observed abundance
can result from freeze-out or freeze-in during a matter-dominated era after inflation. The
inflaton mass must be below the dark matter mass, otherwise the O(1) branching fraction of
the inflaton into sparticles leads to an overproduction of dark matter. Then during freeze-out
or freeze-in, the inflaton is dissipated by scattering reactions rather than by decays. If the
products of the scattering reactions are thermalized at a high enough temperature, freeze-out
occurs; otherwise, the abundance is set by freeze-in from non-thermal radiation. Either way,
determining the dark matter mass from direct detection will provide a correlation between
the reheat temperature after inflation and the inflaton mass.

In section 5.2, building on [349, 350], we show that if the UV completion of the SM EFT
is provided by ISS, there is a large region of parameter space where the SM quartic coupling
is predicted to be very small at m̃, and hence m̃ ∼ µλ. In section 5.3 we compute the
present limits on Higgsino and sneutrino dark matter, and compute the reaches expected for
XENONnT, LZ, and DARWIN. We then study the correlation between the dark matter signal
and future precision measurements of mt, αs(mZ), and mh. In section 5.4 we study how this
correlation is affected by supersymmetric threshold corrections to the Higgs quartic coupling
in the Minimal Supersymmetric Standard Model (MSSM). We find that these threshold
corrections can be significant and derive an upper bound on the Higgsino or sneutrino LSP
mass as a function of the top quark mass and the strong coupling constant. An observable
direct detection signal is predicted for top masses above a critical value. In section 5.5 we
compute the supersymmetric threshold corrections in a scheme where the supersymmetry
breaking parameters are constrained to a universal form at unified scales. In section 5.6
we compute the relic dark matter abundance from freeze-out or freeze-in during a matter
dominated era where the inflaton condensate is dissipated by scattering reactions. Finally,
we draw conclusions in section 5.7.
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5.2 The Tree-Level Boundary Condition on the SM

Quartic Coupling

We take the SM to be the effective theory below the scale of supersymmetry breaking, m̃.
In this section, we review the tree-level prediction for the SM Higgs quartic coupling, λtree.
At scale m̃, we assume that there is no gauge symmetry breaking and the theory contains
a single pair of Higgs doublets, (Hu, Hd), and no weak singlets or triplets which have a zero
hypercharge and couple to the Higgs doublets. For a wide range of parameters of this Higgs
sector, we find λ(m̃)� 0.01; remarkably there are large regions with λ(m̃) . 0.001, and the
supersymmetry breaking scale m̃ may be identified with the Higgs quartic scale µλ.

The Higgs potential is

V (Hu, Hd) = (µ2 +m2
Hu)H†uHu + (µ2 +m2

Hd
)H†dHd + (Bµ HuHd + h.c.)

+
g2

8
(H†u~σHu +H†d~σHd)

2 +
g′2

8
(H†uHu −H†dHd)

2, (5.4)

where µ is the supersymmetric Higgs mass parameter, whilem2
Hu
,m2

Hd
, andBµ are supersymmetry-

violating mass parameters. These parameters are all taken real, without loss of generality,
and have sizes determined by the scale of supersymmetry breaking, m̃. The constants g and
g′ are the SU(2) and U(1) gauge couplings. Requiring electroweak symmetry to be unbroken
at m̃ and one combination of the Higgs doublets to be much lighter than m̃ requires that
µ2 +m2

Hu,d
are both positive. The fine tune for a light doublet requires that Bµ is taken to

be the geometric mean of µ2 +m2
Hu,d

. The light SM Higgs doublet is

H = sin β Hu + cos β H†d, (5.5)

where tan2 β = (µ2 +m2
Hd

)/(µ2 +m2
Hu

), and we take β in the first quadrant.
Matching the two theories at m̃ gives the tree-level value for λ(m̃)

λ(m̃)tree =
g2(m̃)2 + g′(m̃)2

8
cos2 2β (5.6)

with

cos2 2β =

(
m2
Hu
−m2

Hd

m2
Hu

+m2
Hd

+ 2µ2

)2

. (5.7)

ISS gives 0 ≤ λ(m̃)tree ≤ (g2(m̃)2 + g′(m̃)2)/8 ' 0.06 and hence at tree level m̃ . µλ.
Furthermore, over a wide range of values for m2

Hu
,m2

Hd
, and µ the cos2 2β factor gives a

significant further suppression of λ(m̃)tree, as shown in Fig. 5.2. Indeed, cos 2β → 0 in the
limit that either µ2 � |m2

Hu,d
| or m2

Hu
→ m2

Hd
; in these limits m̃ is identified with µλ. The

gray-shaded region is excluded since µ2 + m2
Hu

< 0 or µ2 + m2
Hd

< 0 and there is no stable
vacuum with a large hierarchy between the weak scale and the supersymmetry breaking
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Figure 5.2: Regions of parameter space showing the smallness of the ISS tree-level prediction
for the Higgs quartic coupling at the scale m̃. λ(m̃)tree is less than 10−3 if µ is much greater
than mHu and mHd , or if mHu and mHd are nearly degenerate. The tree-level prediction is
zero when m2

Hd
= m2

Hu
, as indicated by the black horizontal line. In the gray region, one of

the Higgs doublets has a negative mass squared. With Higgsino or sneutrino LSP, the blue
region is excluded by XENON1T.

scale. In the blue-shaded region, where λ(m̃)tree > 0.01, m̃ is predicted to be below a few
109 GeV. As we will see in the next section, the Higgsino or sneutrino LSP then gives too
large a direct detection rate. However, there is a remarkably large region of parameter space
in Fig. 5.2 with λ(m̃)tree < 0.003.

5.3 Direct Detection of Dark Matter

In this section, we discuss direct detection of the Higgsino or sneutrino LSP dark matter in
nuclear recoil experiments and show that detection rates are correlated with SM parameters
through the connection between m̃ and µλ. An observable direct detection signal is predicted
for top masses below a critical value.

Higgsino or sneutrino dark matter

Higgsino dark matter

The neutral components and the charged component of the Higgsino are degenerate in mass
in the electroweak symmetric limit. With electroweak symmetry breaking, the charged com-
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ponent becomes heavier than the neutral components by O(100) MeV via one-loop quantum
corrections [190]. The neutral components slightly mix with the bino and the wino and
obtain a small mass splitting

∆m ∼ g2v2

M2

≈ 10 keV

(
M2

109 GeV

)−1

. (5.8)

The two mass eigenstates are Majorana fermions. For a soft mass scale above ∼ 109 GeV,
however, the splitting is smaller than the typical nucleon recoil energy of O(10− 100) keV,
and the Majorana nature does not affect the rate of dark matter signals. Specifically, Z
boson exchange leads to the up-scattering of the ligher state into the heavier state, which
almost behaves as scattering of a Dirac fermion.

Sneutrino dark matter

The sneutrino is lighter than its charged SU(2) partner because of electroweak symmetry
breaking and quantum corrections. The two components of the sneutrino obtain a small
mass splitting from the A term of the Majorana neutrino mass term,

∆m ∼ Amν

mν̃

, (5.9)

which is negligibly small. Sneutrino dark matter interacts with nucleon via Z boson exchange
as a complex scalar field.

If the slepton and squark masses are universal at the unification scale, the sneutrino
cannot be the LSP because renormalization running makes the right-handed stau the lightest
among them. Non-universality is required for the sneutrino LSP. We note that the sneutrino
LSP is consistent with SU(5) unification, since the sneutrinos and the right-handed sleptons
are not unified, and the right-handed down type squarks become heavier than the sneutrinos
by renormalization running.

Direct detection rate and standard model parameters

Both Higgsino and sneutrino dark matter scatter with nuclei, with an effective dark matter-
nucleon scattering cross section given by

σn =
G2
Fm

2
n

2π

[
(A− Z)− (1− 4sin2θW )Z

A

]2

, (5.10)

where GF is the Fermi constant, mn is the nucleon mass, A is the mass number, Z is the
atomic number, and θW is the Weinberg angle. The current constraint by XENON1T [60]
and the future sensitivities of LZ with an exposure of 15 ton·year, XENONnT with an
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Figure 5.3: Prediction for the top quark mass as a function of the sparticle mass scale, m̃,
and the tree-level Higgs quartic coupling at m̃. Contours of mtop span 3σ above and below
the current central value for mtop, (172.76± 0.30) GeV. For Higgsino or sneutrino LSP dark
matter, the green shaded region is excluded by XENON1T and dotted green lines show the
sensitivities of future experiments. Values of mt are experimentally disfavored in the dark
blue region

exposure of 20 ton·year, and DARWIN with an exposure of 1000 ton·year [37, 61, 6] are
given by

σn < 2× 10−11GeV−2 mDM

1010 GeV
(XENON1T, current). (5.11)

σn < 1× 10−12GeV−2 mDM

1010 GeV
(LZ, XENONnT, future). (5.12)

σn < 4× 10−14GeV−2 mDM

1010 GeV
(DARWIN, future), (5.13)

which translates into the constraint on and the sensitivity to the Higgsino or sneutrino dark
matter mass of

mDM > 3× 109 GeV (XENON1T, current), (5.14)

mDM > 6× 1010 GeV (LZ, XENONnT future), (5.15)

mDM > 2× 1012 GeV (DARWIN, future). (5.16)

Once dark matter signals are found in recoil experiments, within the framework of Hig-
gsino or sneutrino dark matter in ISS, the dark matter mass is fixed from the observed signal
rates. Since λ(m̃)tree is positive and mDM = mLSP < m̃, we obtain a bound on SM parame-
ters including an upper bound on the top quark mass. Conversely, for given SM parameters,



CHAPTER 5. DARK MATTER DETECTION, STANDARD MODEL PARAMETERS,
AND INTERMEDIATE SCALE SUPERSYMMETRY 120

mDM is bounded from above. The prediction for the top quark mass for given m̃ and λ(m̃)tree

is shown in Fig. 5.3. The right vertical axis shows cos2β corresponding to λ(m̃)tree. For a
given mDM, the prediction on mt for λ(m̃)tree = 0 and m̃ = 0 can be understood as an upper
bound on mt. For a given mt, m̃ such that λ(m̃)tree = 0 in an upper bound on mDM. To
obtain those bounds precisely, we include threshold corrections to λ(m̃) in the next section.

5.4 Including Threshold Corrections to the Higgs

Quartic

The full prediction for λ(m̃) in ISS is

λ(m̃) = λ(m̃)tree + δλ(m̃), (5.17)

where λtree is the tree-level result, (5.6), and δλ the quantum corrections that arise on
integrating out heavy sparticles. The largest contributions arise from sparticles with the
largest couplings to the light Higgs; hence the most important mass parameters are the
masses of the third generation doublet squark mq̃, the third generation up-type squark m˜̄u,
the bino M1, the wino M2, the heavy Higgs mA, and the A term of the top quark yukawa
At.

We choose the matching scale to be the lighter of mq̃ and m˜̄u, which we denote as m−.
Since quantum corrections are greater than λtree only for tan β ' 1, we neglect corrections
which vanish in this limit. Using the results in [324], the corrections are given by

32π2δλ(m−) = 3y4
t

(
ln
m2
q̃

m2
−

+ ln
m2

˜̄u

m2
−

+ 2XtF

(
mq̃

m˜̄u

)
− X2

t

6
G

(
mq̃

m˜̄u

))

− 1

4

(
g
′4 + 2g

′2g2 +
16

3
g4

)
− 4

3
g
′4f1

(
M1

µ

)
− 4g4f1

(
M2

µ

)
− 8

3
g
′2g2f2

(
M1

µ
,
M2

µ

)

− (g
′4 + 2g

′2g2 + 3g4) ln

(
µ

m−

)
+

1

8

(
g
′4 + 2g

′2g2 + 3g4
)

ln
m2
A

m2
−
.

(5.18)

Here, Xt ≡ (At − µ)2/m˜̄um˜̄q, and the functions F,G, f1, f2 are given by

F (x) =
2x lnx

x2 − 1
, G(x) =

12x2(1− x2 + (1 + x2) lnx)

(x2 − 1)3
,

f1(x) =
3(x+ 1)2

8(x− 1)2
+

3(x− 3)x2lnx

4(x− 1)3
,

f2(x, y) =
3(1 + x+ y − xy)

8(x− 1)(y − 1)
+

3x3lnx

4(x− 1)2(x− y)
− 3y3lny

4(y − 1)2(x− y)
. (5.19)

They are normalized so that they are unity when the arguments are unity. For a degenerate
mass spectrum and negligible Xt, δλ(m−) ' −0.002.
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Figure 5.4: Threshold corrections to the Higgs quartic coupling as a function of sparticle mass
parameters. The six curves correspond to m = (At, µ,m+,mA,M1,M2) with the remaining five
parameters fixed at m− = min(mq̃,m˜̄u). The Higgsino can be the LSP on the solid curves, but is
not the LSP on the dashed part of the curves for µ,M1 and M2. Left At > 0. Vacuum instability
occurs when At, µ & 4.2m−. Right At < 0. Vacuum instability occurs when |At|, µ & 2.2m−.

In Fig. 5.4, we evaluate Eq. (5.18) and show how δλ varies as a function of sparticle
masses. The left and right panels correspond to At positive and negative, respectively. Each
curve corresponds to varying one of (At, µ,m+,mA,M1,M2), while keeping all the others
fixed at m−. With all these parameters near m−, the correction is δλ(m−) ' −0.002 for
At > 0 or +0.002 for At < 0. For |Xt| & 10m−, the electroweak vacuum is unstable, as
shown by the sudden discontinuation of the At and µ curves. The bound on Xt from the
instability is derived in Appendix C.1. The Higgsino can be the LSP on the solid curves,
but is not the LSP on the dashed part of the curves for µ,M1 and M2. The slepton mass
parameter ml̃ may be taken small enough to give sneutrino LSP anywhere on the lines.

We show contours of the prediction for mt in the (m−, λ(m−)) plane in Fig. 5.5, with
the strong coupling constant varied within ±1σ uncertainty from its central value in the top
and bottom panels. The right axis shows cos2β corresponding to λ(m−) when δλ � λtree.
The lower bound on the dark matter mass from XENON1T is shown in green, and the lower
bound on threshold corrections to λ(m−) is shown in red. Together, these bounds require
mt . 174.2 GeV. The reach of the DARWIN experiment, shown by the dashed green line,
will strongly limit the top quark mass to mt . 172.4 GeV, if no signals are found. For the
central values of SM parameters, the dark matter mass is required to be below 7×1010 GeV,
and LZ and XENONnT can cover most of the parameter space.

The bounds on the dark matter and top quark masses may be relaxed by hierarchical



CHAPTER 5. DARK MATTER DETECTION, STANDARD MODEL PARAMETERS,
AND INTERMEDIATE SCALE SUPERSYMMETRY 122

sparticle masses. As shown in Fig. 5.4, large wino or bino masses give negative threshold
corrections to the quartic coupling, thereby relaxing the upper bounds on the top quark mass
and the dark matter mass. In Fig. 5.6, we show the upper bound on the dark matter mass
as a function of the top quark mass or, equivalently, the upper bound on the top quark mass
as a function of the dark matter mass. The blue curve is without threshold corrections, the
orange curve has threshold corrections for a degenerate mass spectrum with At ' µ, and on
the green curve, the degeneracy is lifted by taking M1,2 =

√
10m−. With this hierarchy, the

upper bound on the dark matter mass is relaxed by a factor of 2, and that on the top quark
mass is relaxed by 100 MeV. (Assuming a high mediation scale of supersymmetry breaking,
a larger hierarchy is destabilized by quantum corrections from the gauginos to the soft scalar
masses.)

In Fig. 5.7, the upper bound on the dark matter mass or, equivalently, the upper bound
on the top quark mass or the lower bound on the strong coupling constant, is shown. Here
we impose δλ(m−) > −0.002. The current 2σ uncertainty of mt and αs(mZ) are shown by
wide bands. The uncertainty of αs(mZ) can be reduced by a factor of 10 by measurements
at future lepton colliders [122] or improved lattice calculations [474]. The uncertainty of mt

can be reduced down to few 10 MeV by future lepton colliders [617, 391, 440, 112]. At this
stage, the theoretical computation of the running of the Higgs quartic coupling should be
improved; the most recent computation [157] has a theoretical uncertainty equivalent to the
shift of the top quark mass by 100 MeV.

5.5 Supersymmetry Breaking Constrained by

Unification

In this section, we discuss the quartic coupling at the supersymmetry breaking scale, m̃,
starting from boundary conditions at the unification scale ∼ 1016 GeV. We show that the
tree-level quartic coupling is typically 0.001− 0.01.

As we have seen, the quartic coupling at m̃ is small when m2
Hu
∼ m2

Hd
. A relation

m2
Hu

= m2
Hd

can be naturally realized at a high energy scale by a symmetry relating Hu

with Hd, such as a discrete symmetry or SO(10) gauge symmetry, or a universality of scalar
masses. The relation is necessarily destabilized by quantum correction from the top quark
Yukawa coupling,

d

dlnµ
m2
Hu =

3y2
t

8π2

(
m2
Hu +m2

q̃ +m2
˜̄u + A2

t

)
+ · · · , (5.20)

where the ellipsis denotes terms independent of the top Yukawa. We compute the renormal-
ization group running of the MSSM from a scale 1016 GeV down to m̃ with a UV boundary
condition motivated from SU(5) unification,

m2
Hu = m2

Hd
= m2

H , m2
q̃ = m2

˜̄u = m2
˜̄e = m2

10, m2
˜̄d

= m2
˜̀ = m2

5,

M1 = M2 = M3 = m1/2, At = At,G. (5.21)
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The SM top yukawa coupling is matched to the MSSM top yukawa coupling at m̃ assuming
tanβ ' 1, yt,MSSM =

√
2yt,SM. The soft masses m2

Hu
and m2

Hd
at the renormalization scale

(1010, 1012) GeV are given by the analytic results

m2
Hu(1010 GeV) =0.77m2

H −0.46m2
10 − 0.12A2

t,G +0.02m2
1/2 + 0.08m1/2At,G,

m2
Hd

(1010 GeV) =1.0m2
H +0.19m2

1/2, (5.22)

m2
Hu(1012 GeV) =0.86m2

H −0.28m2
10 − 0.10A2

t,G +0.06m2
1/2 + 0.04m1/2At,G,

m2
Hd

(1012 GeV) =1.0m2
H +0.12m2

1/2. (5.23)

In Fig. 5.8, we show the tree-level quartic coupling as a function of m1/2/mH for sev-
eral representative boundary conditions; the left (right) panels have mH = 1010 GeV (1012

GeV). We fix the renormalization scale to be the matching scale used in the previous sec-
tion, m−, the lighter of mq̃ and m˜̄u. The boundary condition for m2

5 is not specified as it
does not affect the renormalization group running of mHu . Note that the bino, b̃, is the
lightest gaugino and the right-handed slepton, ẽ, is the lightest scalar in the matter ten-
plet. We define m(b̃,ẽ) to be the smaller of mb̃ and mẽ. On the five lines, µ is fixed to be
(� m(b̃,ẽ), m(b̃,ẽ)/2, m(b̃,ẽ), mHd , 2mHd). As µ is increased, the tree-level quartic coupling

decreases rapidly, as expected from (5.6), (5.7) and Fig. 5.2. For large values of m2
5 the

Higgsino is the LSP above the green dot-dashed line, and the region below the line is ex-
cluded because at low (high) m1/2 the LSP is the bino (a charged right-handed slepton).
For small values of m2

5 the tau sneutrino can be the LSP throughout the plane, although
at low µ the Higgsino LSP is also possible. In the blue shaded region, the top quark mass
must be below 171.86 GeV, more than 3σ away from the central value, in order for λ(m−)
to be consistent with the running of the Higgs quartic coupling. To derive a conservative
bound, we take αs(mZ) = 0.1189, 1σ above the central value, and δλ = −0.002, the smallest
realistic threshold correction.

We see that smaller values of λtree result for larger mH , which gives less running, larger
values of µ/mH and smaller values of m10/mH and At,G/mH . For mH = 1012 GeV, λtree <
0.003 over much of the parameter space. Including threshold corrections, Fig. 5.5 shows
that this is ideal for consistency with the observed Higgs mass, and requires a low value of
the top quark mass. For mH = 1010 GeV, λtree < 0.01 over much of the parameter space,
except at low values of µ, which from Fig. 5.5 again shows excellent consistency with the
observed Higgs mass, and leads to the expectation that Higgsino/sneutrino dark matter will
be discovered at planned experiments.

5.6 Cosmological Abundance of LSP with

Intermediate Scale Mass

In this section, we discuss how the heavy LSP dark matter can be populated in the early
universe. Most of the discussion in this section is applicable to generic heavy dark matter



CHAPTER 5. DARK MATTER DETECTION, STANDARD MODEL PARAMETERS,
AND INTERMEDIATE SCALE SUPERSYMMETRY 124

with electroweak interactions. Standard freeze-out during the radiation dominated era over-
produces the LSP because of its large mass. To avoid this, the reheating temperature of the
universe must be smaller than the LSP mass, and the LSP must be produced during the
reheating process. We discuss reheating by the inflaton φ, but, if the LSPs produced during
inflaton reheating are subdominant, the following discussion also applies to the case where
some other particle or condensate dominates the energy density of the universe.

Direct decay of the inflaton

The inflaton can directly decay into sparticles if its mass is more than double the LSP mass.
The energy density of the LSP normalized by the entropy density is

ρLSP

s
' NLSP

mDMTRH

mφ

= 103 eV
mDM

1010 GeV

1013 GeV

mφ

TRH

MeV
NLSP, (5.24)

where NLSP is the number of LSPs produced per inflaton decay. Because of supersymmetry,
NLSP is at the smallest O(1). When mφ � mDM and the inflaton dominantly decays into SM
charged particles, showering leads to NLSP � 1 [453, 355]. Giving the lower bound TRH > 4
MeV [426, 427, 368], it is difficult to produce the correct LSP abundance in this way. Hence,
the inflaton mass must be below the sparticle mass scale. (In this case, production of the
LSP via scattering among the inflaton decay products and the thermal bath [360, 304, 357]
is absent.)

Production during the inflaton dominated era

We first derive the evolution of the temperature of the universe. We consider the case where
the dissipation of the inflaton occurs by perturbative processes, with dissipation rates given
by

Γ =

{
Γ0 : T < mφ

Γ0

(
T
mφ

)n
: mφ < T

. (5.25)

For T < mφ, dissipation is governed by the zero-temperature decay rate Γ0, while for mφ < T ,
thermal effects should be taken into account. n = 1 arises when dissipation is caused by
a dimensionless coupling, while n = −1 arises when dissipation is caused by a dimension-3
coupling, such as φhh†.

The dependence of the temperature on the Hubble scale is given by

TRH < mφ : T =




TRH

(
H
HRH

)1/4

: TRH < T < mφ

mφ

(
HT 4

RH

HRHm
4
φ

)1/(4−n)

: mφ < T,
(5.26)

mφ < TRH : T = TRH

(
H

HRH

)1/(4−n)

, (5.27)
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where HRH =
√
π2g∗/90 T 2

RH/MPl is the Hubble scale at the completion of reheating. We
implicitly assumed that the radiation is thermalized, which is not satisfied for small TRH

and/or large T . We discuss thermalization while discussing the production of the LSP
below.

Case 1: TFO < mφ < 2mDM

During freeze-out, when TFO = mφ/xFO < mφ, radiation is created from the zero-temperature
decay of the inflaton and the temperature of the universe is given by the first line of Eq. (5.26).
Such a case is studied in the literature assuming efficient thermalization [188, 325].

After freeze-out, the LSP number density, normalized by the inflaton energy density, is

nLSP

ρφ
' HFO

〈σv〉 ρφ
=

1

3 〈σv〉HFOM2
Pl

. (5.28)

Using ρφ/s ' 3TRH/4 at the completion of reheating, we obtain

ρLSP

s
' x4

FO

4

√
90

π2g∗

1

4πα2
2

T 3
RH

MPlmDM

4πα2
2/m

2
DM

〈σv〉 . (5.29)

Here, we assume that radiation thermalizes around the freeze-out temperature. This
assumption is valid if 4πα2TFO > HFO, requiring

TRH >

[
1

4α2

√
g∗
90

(mDM/xFO)3

MPl

]1/2

≡ TRH,th. (5.30)

If this condition is violated, the radiation produced from the inflaton does not reach thermal
equilibrium by the would-be freeze-out. We expect that the distribution of radiation in
this case is close to that after preheating [518, 519]. Since scattering is efficient at lower
energies, the lower energy modes are populated. The typical energy of the radiation is
below the would-be temperature and the radiation is in an over-occupied state. The energy
distribution has a cutoff, above which the scattering is inefficient and the distribution is
exponentially suppressed.

For large mDM, the reheating temperature to reproduce the observed abundance from
Eq. (5.29) is in fact smaller than TRH,th. Then the LSP abundance is exponentially sup-
pressed and LSPs are under-produced. As TRH approaches TRH,th, the LSP production is not
suppressed, and the freeze-out picture is applicable. Since TRH ∼ TRH,th is larger than that
to produce an appropriate amount of LSPs according to Eq. (5.29), LSPs are over-produced.
Thus, the observed dark matter abundance can be reproduced for TRH slightly below TRH,th.
We call this scenario non-thermal freeze-in.

The required reheating temperature to produce the observed dark matter abundance by
LSP production during reheating is shown in Fig. 5.9. Above the black dashed line, TFO <
mφ < 2mDM and the analysis shown above is applicable. To the left of the black dot-dashed
line, the LSP abundance is determined by freeze-out, while to the right, the abundance is
determined by the exponentially suppressed production just before thermalization.
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Case 2: TRH < mφ < TFO

For the inflaton mass between TRH and TFO, the temperature of the universe during freeze-
out is given by the second line of Eq. (5.26). By a computation similar to that which leads
to Eq. (5.29), we obtain

ρLSP

s
' x4−n

FO

4

√
90

π2g∗

1

4πα2
2

T 3
RH

MPlmn
φm

1−n
DM

4πα2
2/m

2
DM

〈σv〉 . (5.31)

Radiation thermalizes before freeze-out if

TRH >

[
1

4α2

√
g∗
90

(mDM/xFO)3−nmn
φ

MPl

]1/2

≡ TRH,th. (5.32)

The reheating temperature required to produce the observed dark matter abundance is shown
in Fig. 5.9. The above analysis is applicable between the dashed and dotted lines.

Case 3: mφ < TRH

For the inflaton mass below the reheating temperature, the temperature during freeze-out is
given by Eq. (5.27). The LSP density is given by

ρLSP

s
' x4−n

FO

4

√
90

π2g∗

1

4πα2
2

T 3−n
RH

MPlm
1−n
DM

4πα2
2/m

2
DM

〈σv〉 . (5.33)

Radiation thermalizes before freeze-out if

TRH >

[
1

4α2

√
g∗
90

(mDM/xFO)3−n

MPl

] 1
2−n

≡ TRH,th. (5.34)

The reheating temperature required to produce the observed dark matter abundance is shown
in Fig. 5.9. This analysis is applicable below the dotted line.

Other possibilities

It is possible that the maximal temperature of the universe is the reheating temperature. This
occurs when reheating is instantaneous, the dissipation rate of the inflaton increases towards
the end of inflation [191], or a kinematically available decay channel opens suddenly [297].
In this case, the correct LSP abundance is obtained if the reheating temperature is about
mDM/10, so that the LSP production is exponentially suppressed.

The inflaton may also dominantly decay into hidden sector particles with a small branch-
ing ratio into the visible sector including the LSP. The entropy of the visible sector can be
produced from a moduli field. As long as the mass of the moduli field is smaller than the
LSP mass, production of the LSP solely comes from the subdominant decay mode of the
inflaton and hence can be suppressed [44].
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Finally, the evolution of the early universe may include an era of domination by primordial
black holes (PBHs). If the initial Hawking temperature of the PBHs is below mDM, the PBHs
emit LSPs only after they lose most of their mass by Hawking radiation into light particles,
and the LSP abundance is suppressed. As a result the correct LSP abundance can be
obtained for sufficiently large initial PBH masses [338, 298].

5.7 Conclusion and Discussion

In recent decades, the theoretical and experimental investigations of supersymmetry were
focused on weak scale supersymmetry. The discovery of the Higgs with a mass of 125
GeV has revealed a new scale of the SM, the Higgs quartic scale µλ = 109−12 GeV, at
which the SM Higgs quartic coupling vanishes. In this paper, we focused on Intermediate
Scale Supersymmetry where supersymmetry is broken near the Higgs quartic scale. In this
framework, including threshold corrections we found a small SM Higgs quartic coupling for
a wide range of supersymmetry breaking parameters. The LSP is a dark matter candidate,
and we studied the cases of Higgsino and sneutrino LSP, which scatter with nuclei via tree-
level Z boson exchange. Direct detection experiments have already excluded the LSP mass
below 3× 109 GeV, and will probe it up to 1012 GeV.

The Higgs quartic scale is sensitive to SM parameters. Currently, the uncertainty of the
scale is dominated by the top quark mass and the strong coupling constant. We derived an
upper bound on the LSP mass as a function of the top quark mass and the strong coupling
constant shown in Fig. 5.7. Around the central value of SM parameters, dark matter signals
should be discovered by near future experiments. Conversely, the figure shows an upper
bound on the top quark mass and a lower bound on the strong coupling constant as a
function of the LSP mass.

We also discussed how this LSP dark matter may be populated in the early universe.
Because of the large LSP mass, the standard freeze-out mechanism overproduces the LSP.
We avoid this by taking the reheating temperature after inflation below the LSP mass. We
find that the observed dark matter abundance can be obtained during the reheating era,
and in most of the parameter space, the inflaton condensate is dissipated by thermal effects
during LSP production. We determined the required reheating temperature as a function of
the inflaton mass and the LSP mass. Once the LSP mass is fixed by the signal rate at direct
detection experiments, the reheating temperature is predicted from the inflaton mass.
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Figure 5.5: Prediction for the top quark mass as a function of m− = min(mq̃,m˜̄u) and
the Higgs quartic coupling at m−. Contours of mt span 3σ above and below the current
central value for mt, (172.76 ± 0.30) GeV. The red shaded region requires unrealistically
large negative supersymmetric threshold corrections to the quartic coupling. The green
shaded region and the green dotted lines are as in Fig. 5.3. Values of mt are experimentally
disfavored in the dark blue region.
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Figure 5.6: Upper bound on the dark matter mass mDM as a function of the top quark mass mt

for a range of typical threshold corrections. The blue curve shows the bound when the threshold
corrections are zero, the orange curve when the sparticle spectra are degenerate m−, and in green,
when M1,2 =

√
10m−. Equivalently, the figure shows an upper bound on mt as a function of mDM.
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Figure 5.7: Upper bound on the dark matter mass mDM as a function of the top quark mass mt

and the strong coupling constant αs(mZ) shown in blue. Equivalently, the figure shows an upper
bound on mt as a function of αs(mZ) and mDM, and a lower bound on αs(mZ) as a function of mt

and mDM. The wider gray bands show the current 2σ uncertainties of mt and αs(mZ), and the
narrower bands show the expected future uncertainties. Dark matter direct detection bounds are
shown in green.
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Figure 5.8: Prediction for the tree-level quartic coupling with a UV boundary condition
mHu = mHd . In the blue shaded region, reproducing λ(m−) requires mt < 171.86 GeV, 3σ
away from the central value. Here we impose αs(mZ) < 0.1189 and δλ(m−) > −0.002.
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Figure 5.9: Contours of the reheating temperature TRH required to produce the observed
dark matter abundance by LSP production during reheating. In the blue region, direct
decay of the inflaton into sparticles overproduces the LSP. To the right of the dot-dashed
line, radiation is not thermalized by the would-be freeze-out, and the LSP production occurs
just before the completion of thermalization.
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Part II

Astrophysical Probes of Physics
Beyond the Standard Model
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Overview of Part II

Part II of this dissertation focuses on astrophysical probes of BSM physics at energies and
couplings unreachable at current colliders. Ch. 6 investigates how supernova shocks can
constrain millicharged dark matter as a function of their electric charge, mass, and fraction
of the total dark matter density. We trace the history of millicharged dark matter in the
Milky Way, determining whether they collapse into the disk, thermalize with the ambient
plasma of the interstellar medium, are accelerated by supernova shocks via first order Fermi
acceleration, and diffuse into or out of the disk. We find that millicharged dark matter
which never thermalize in the Milky Way disk are easier to Fermi accelerate than protons
due to their far greater non-thermal speed when encountering a shock, thereby bypassing
complications associated with the so-called injection problem that plagues ordinary cosmic
rays. Moreover, we find the accelerated component of dark matter can provide unique
experimental signatures typically absent from dark matter moving at virial speeds. For
example, direct or indirect production of Cherenkov light in water or ice, or ionization
trails in deep underground detectors normally shielded from unaccelerated millicharged dark
matter. From this analysis, we rule out a millicharged dark matter explanation for EDGES
by many orders of magnitude. This is based on published work done with my collaborators,
Lawrence Hall and Keisuke Harigaya [262].

In the following chapter, we examine how Magnetic White Dwarfs (MWDs) can generate
leading constraints on the coupling of axions to photons. Extreme astrophysical environ-
ments that possess enormous magnetic fields over large distances provide a way to observe
the effects of the axion’s weak coupling with photons. In Ch. 7, we consider such en-
vironments by investigating the linear polarization induced in MWD starlight by axions.
This polarization arises because photons polarized along the MWD magnetic field have a
higher probability of converting into axions than those polarized perpendicular to the field.
We calculate this axion-induced polarization by solving the coupled axion-photon Maxwell
equations in the MWD magnetosphere. Moreover, we model the intrinsic astrophysical po-
larization through simple radiative transfer equations in the MWD atmosphere and compare
this with the axion-induced polarization. We find that the strong wavelength dependence of
astrophysical polarization compared to the relatively wavelength independent polarization
induced by the axion gives statistically robust constraints on the axion-photon coupling from
MWDs with observably small amounts of polarization. We also argue that our results still
hold when the quadratic Zeeman effect is included for MWDs with large fields (B > 100
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MG) or when including the effect of axion-plasma interactions in the MWD atmosphere.
This is based on published work done with my collaborators, Chris Dessert and Benjamin
Safdi [232].



136

Chapter 6

CHAMP Cosmic Rays

6.1 Introduction

Theories Beyond the Standard Model may contain exotic stable CHArged Massive Particles,
or CHAMPs, of mass m and electric charge qe. They may arise in a variety of ways:
for example, from exotic color-neutral matter added to the Standard Model, or even from
exotic heavy colored states that bind with the known quarks [548, 358, 227, 265]. Another
important possibility is that the gauge group is extended to a hidden sector where stable
particles couple to a hidden photon that is kinetically mixed with our photon [385].

In general, CHAMPs, X, are produced in the early universe. The genesis mechanism,
and hence the relic abundance, are extremely model-dependent so that, in addition to (m, q),
we take the abundance of X normalized by that of dark matter (DM), fX ≡ ΩX/ΩDM, to
be a free parameter. We study cases where CHAMPs account for the entire DM, and where
they form a sub-dominant component.

CHAMP DM has been considered for over 30 years. The kinetic mixing portal [327]
allows DM from a dark sector to become visible by acquiring a small electric charge, q. This
charge may be suppressed by a loop factor, involving a heavy connector particle of mass
M that carries both charges, suggesting values of q of order (10−2 − 10−3). However, in
unified theories where hypercharge and hidden U(1)s are embedded in non-Abelian factors
down to scales V and V ′ much less than M , the charge q receives a power suppression by
V V ′/M2, and hence may naturally be very small. Power suppression of q can also arise from
an approximate symmetry. One example is a hidden U(1) embedded in a hidden SU(2) that
is spontaneously broken by a triplet. A charge conjugation symmetry from SU(2) forbids
kinetic mixing until higher-dimensional operators are added. In summary, it is well-motivated
to examine a wide range of the (m, q) plane.

A variety of constraints and signals of CHAMP DM with order unity charges were con-
sidered in [229, 239], and for CHAMPs with q � 1 in [243]. An important cosmological
bound on CHAMP DM, arising from the era of recombination from constraints on the CMB
acoustic peaks and from damping of the density perturbations, requires m > 1012q2 GeV
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for m > 1 MeV [261, 153, 507, 247]. However, this bound disappears if X contributes less
than 1% of the DM. Chuzhoy and Kolb [189] proposed that, over a certain range of (m, q),
supernova (SN) shocks expel CHAMPs from the Milky Way, removing previous constraints
on charged dark matter based on bounds from terrestrial observations for these (m, q).

In this paper, we investigate the evolution of the density and spectrum of CHAMPs in
the galactic disk. We study rates for the three key processes: thermalization of X with
the InterStellar Medium (ISM), Fermi acceleration of X by SN shocks, and diffusion of X
through magnetic irregularities. In general, diffusion allows X to both enter and exit the
disk. We find that the (m, q) plane can be divided into three regions

(I) m > 1010 q GeV The density and spectrum of X in the disk are determined by
virialization of the halo. Thermalization, Fermi acceleration and diffusion are negligible
so that dark matter signals can be computed by ignoring them.

(II) 105 q2 GeV < m < 1010 q GeV X that are initially in the disk are efficiently ejected
by SN shocks; however, there is a continual replenishment of X by diffusion from the
halo and confinement region to the disk. The number density and spectrum of X in
the disk today follows from a balance between accretion and ejection.

(III) m < 105 q2 GeV X collapse with baryons into the disk as it forms. Thermalization
of X with the ISM reduces the efficiency of ejection, leading to large densities of X in
the disk today.

In both (II) and (III) there are large fluxes of Fermi accelerated Xs, that we call CHAMP
Cosmic Rays. These give signals in a variety of direct detection experiments deep under-
ground as well as on the surface of the Earth, via nuclear recoil, electron recoil, ionization
losses and Cherenkov radiation.

The parameter space where halo CHAMPs collapse into galactic disks is studied in
Sec. 6.2; determining the boundary between (II) and (III). After a halo virializes, CHAMPs
that thermalize with the infalling baryons within a free-fall time are dragged along into the
disk. CHAMPs that collapse cannot be halo dark matter. However, they may be a compo-
nent of dark matter, and the accelerated CHAMP flux is enhanced by a factor of about 102,
commensurate with the greater number of CHAMPs exposed to SN shocks in the disk.

In Sec. 6.3, we examine three fundamental rates that determine the fate of CHAMPs in
the galactic disk: their thermalization rate in the ISM, their encounter rate with SN shocks,
and their escape rate from the disk. The three rates generally depend on the CHAMP speed
as well as (m, q). The accelerated X spectrum is determined by a competition between
thermalization with the ISM plasma, SN shocks that accelerate X to shock speeds or beyond,
and the interstellar magnetic fields which confine X to the disk.

We investigate the efficiency of the acceleration of CHAMPs and calculate the differential
momentum spectrum f = dn/dp of a distribution of shocked CHAMPs during their journey
through the ISM in Sec. 6.4, taking into account thermalization, subsequent shock encoun-
ters, and escape losses, as depicted graphically by Figs. 6.4 and D.1. Initially, a single SN
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shock transforms a batch of thermal CHAMPs into a p−3 distribution such that the CHAMP
speed is the encountered shock speed and the amplitude is the relative probability of en-
countering a shock of that speed. Most CHAMPs thermalize quickly, but a small number
do not and either escape or encounter additional SN shocks. In the Milky Way the latter
dominates and produces a relativistic p−2 Fermi spectrum cutoff at p ∼ 5 × 104 q/β GeV,
determined by the required acceleration time exceeding the lifetime of the shock. CHAMPs
that obtain enough energy escape from the disk, with a high efficiency for m/q2 & 104 GeV.

Although CHAMPs are ejected from the disk by Fermi acceleration, they are replenished
by diffusion accretion from outside the disk. A balance between ejection and accretion leads
to a steady state distribution of CHAMPs in the disk. These accelerated CHAMPs can hit
the Earth before escaping from the disk, and we estimate the present flux of such cosmic ray
CHAMPs in Sec. 6.5

From the accelerated CHAMP spectrum impinging on the Earth, we calculate signal
rates in nuclear recoil, electron recoil, ionization and Cherenkov detectors in Sec. 6.6. Since
the accelerated CHAMPs are moving faster than typically assumed dark matter speeds (∼
220 km/s), there are new key features of these signals: (1) CHAMPs can reach underground
detectors easily, even if their charges are large. (2) CHAMPs below 1 GeV can impart nuclear
recoils above the ∼ keV threshold for direct detection experiments such as XENON1T and
CDMS. (3) Similarly, CHAMPs below 10 MeV impact electron recoils in direct detection
experiments such as XENON10. (4) They produce ionization losses in detectors such as
MAJORANA, MACRO and other monopole search experiments. (5) Relativistic CHAMPs,
or electrons produced by recoils, emit Cherenkov light when traveling through water, leading
to bounds from deep underground detectors such as Super Kamiokande and IceCube. These
signals of the accelerated cosmic ray CHAMP flux lead to powerful constraints, and point
to regions of parameter space where discoveries can be made at future experiments.

Conclusions are drawn in Sec. 6.7. Appendices consider CHAMP self interactions from
hidden photon exchange, the CHAMP spectrum resulting from repeated shocks, and the
diffuse extragalactic CHAMP flux from ejection from galaxies throughout the universe.

6.2 Collapse of CHAMPs into the Galactic Disk

Halos that virialize at redshift zvir have densities

ρvir = 18π2ρ0(1 + zvir)
3 (6.1)

where ρ0(1 + zvir)
3 is the background density [559], and temperatures

Tvir =
µmpv

2
vir

2
= 107 K

(
M

1012M�
h0

)2/3(
1 + zvir

10

)
(6.2)

where M is the halo mass and µ = 0.6 is the mean molecular weight of the baryonic gas.
The cosmological localities of CHAMPs and baryons can diverge during subsequent cool-

ing of these halos. As noted by the authors in [229], X is dragged into the galactic disk



CHAPTER 6. CHAMP COSMIC RAYS 139

with the baryons if the thermalization time of X with the baryonic plasma is less than the
dynamical or collapse time of the halo

tcoll =
√

3π/32Gρvir =
1

6
√

2

1

H0

√
ΩM

(1 + zvir)
−3/2 (6.3)

which is independent of halo mass.
Baryons with a cooling time shorter than tcoll are able to collapse into the disk on the time

scale tcoll. Pre-reionization (z & 6), halos with virial temperatures above 104 K radiatively
cool via bremsstrahlung and atomic line emission to 104 K, and then collapse isothermally
at this temperature within a time tcoll [584]. Note the gas in unable to cool further since the
tail of the Boltzmann distribution becomes insufficient to collisionally excite atoms [485].

However, post-reionization (z . 6), UV light from the first stars and galaxies permeate
the intergalactic medium (IGM), heating up and ionizing halo atoms, making atomic line
emission less effective and preventing plasma temperatures from dropping below ∼ 104−4.6 K,
depending on the degree of self-shielding which is set by the plasma density [524, 677] .
Consequently, post-reionization, only halos with virial temperatures above 105 K cool and
collapse [484].

Since X thermalizes with the plasma through electromagnetic collisions via Rutherford
scattering, the key difference between the pre- and post-reionization eras is the ionization
fraction in virialized halos. Equating recombination and collisional ionization rates at 104 K
implies the ionization fraction of the plasma is about 10−3 pre-reionization, while it is near
unity above 104 K post-reionization [253, 484].

Specifically, the thermalization time between X with mass m and charge qe, and a back-
ground plasma of temperature T is given by [229, 632]

ttherm =
3

8
√

2π

mme,p

q2α2 n ln Λ

(
TX
m

+
T

me,p

)3/2

(6.4)

where TX = mv2/3 is the effective temperature of X, n = ne = np is the density of protons or
electrons with mass me,p, and Λ = 3T/αkD is the IR cutoff where electromagnetic shielding

becomes effective beyond an inverse of the Debye momentum of the plasma, kD =
√

4πnα/T .
Initially, TX/m = Tvir/mp since the virial speeds of X and protons are identical, being

set by gravity. Because the proton and electron plasma quickly cools to a temperature
Tmin ≈ 104 K for halos that virialize before reionization and Tmin ≈ 104−4.6 K for halos that
virialize after, the second term in parenthesis of (6.4) quickly becomes Tmin/me,p. Likewise,
the ion number density is given by

n ≡ nBxion =
ΩB

ΩM

ρvir

mp

xion = 18π2

(
3

8πGmp

ΩBH
2
0

)
(1 + zvir)

3 xion (6.5)

where xion is the ionization fraction of the plasma and is 10−3 (1) before (after) reionization.
Inserting the plasma number density (6.5) into (6.4), and demanding ttherm < tcoll, yields

the parameter space where X collapses into the galactic disk with the baryons, as a function
of halo mass and m/q2, as shown by the shaded regions of Fig. 6.1.
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In general, the number of X in the disk of a galaxy with halo mass M is approximately

NX =
M

m
fXfD (6.6)

where fX ≡ ΩX/ΩDM and fD the fraction of CHAMPs that actually end up in the disk,
exposed to SN. Taking the disk formation efficiency to be similar for CHAMPs and baryons,
observations set fD ≈ 1/4 [525] if X collapse. The rest of X reside outside the disk.

On the other hand, if X do not collapse, the number of CHAMPs in the disk is suppressed,
and fD is approximately

fD =

∫
disk

ρDM(x) d3x∫
halo

ρDM(x) d3x
≈
(

xHxR
1 + xRcN

c2
N

log(cN + 1)− 1

)
≈ few 10−3 (6.7)

where we have evaluated the dark matter mass fraction in the disk using an NFW profile [542].
Here, xR (xH) is the ratio of disk radius (disk height) to the halo virial radius, and cN ≈
12.5(M/1012M�)−1/10(1 + zvir)

−1 the NFW halo concentration parameter [484]. Typical
values of xR, xH/xR, and cN [525, 484] imply (6.7) is a few 10−3 in our galaxy.

The result we need for the rest of the paper is that for the Milky Way (zvir ∼ 1, M
≈ 1012M�, Tmin ' 104.6 K), X collapse into the disk for m/q2 . 105 GeV, and the number
density of X inside the disk is about 100 times larger than the naive scaling of the local dark
matter density by fX = ΩX/ΩDM. In this region of parameter space, X cannot be the halo
dark matter. From Fig. 6.1, the excluded range of (m, q) for fX = 1 is somewhat larger, since
other galaxies also have halo dark matter. Furthermore, we will discover that the resulting
high density of X in the disk leads to a large SN-accelerated CHAMP flux, giving a strong
bound on fX .

One caveat is that when m < mp, thermalization increases the speed of X relative to the
proton thermal speed. To collapse fully, the orbital radius of X must decrease by a factor
R0/Rf = v2

vir/(3kTmin/m) ≈ 10, and hence X with m . 100 MeV do not completely collapse
for Tmin . 104.6 K. However, X with such small masses that do thermalize are already
excluded by direct searches (see Sec. 6.6).

Finally, note that the thermalization time is always shorter than (6.4) during the collapse
process because the plasma density increases while still maintaining a small, but non-neglible
ion fraction. Self-shielding from the background UV light starts becoming effective when HI

column densities exceed NHI ≈ 10−18 cm−2 [547], but transition to neutrality (xion . 0.1)
requires column densities two orders of magnitude greater [49]. Since the column density of
a collapsing cloud corresponds to a characteristic number density by NHI ≈ ncs/

√
Gρ [608,

547], densities of order 0.1 − 1 cm−3 are required for ionization fractions to drop below
0.1 [514]. Consequently, for lower mass halos which typically collapse at higher redshifts
and densities, the collapse of X into a disk may be partial. However, for the Milky Way,
whose self-shielding density coincides with its post-collapse density, it is possible that some
CHAMPs with m/q2 > 105 GeV may also thermalize and fall into the disk during the
collapse. As we will see in Sec. 6.4, however, for m/q2 > 105 GeV the ejection of X is
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Figure 6.1: Shaded regions indicate the parameter space where CHAMPs fall into disks
with baryons at a halo collapse redshift zvir, determined by setting ttherm(zvir) < tcoll(zvir).
Pre-reionization (left), the ion fraction is low and thermalization between X and the plasma
is difficult. Post-reionization (right) the ion fraction is high and thermalization between X
and the plasma is enhanced. At high redshifts, the halos are denser, and the thermalization
time shorter. The change in concavity for halos & 1011M� signifies where thermalization
with electrons dominate.

so efficient that most of X which were initially inside the disk are ejected, and hence the
accelerated CHAMPs which hit the Earth in the present universe are dominated by CHAMPs
which were initially outside the disk and diffused into the disk later. Therefore form/q2 > 105

GeV, it does not matter whether X collapses into the disk.

6.3 Three Key Rates in the Galactic Disk

In this section we introduce three key rates, 1) the thermalization rate, 2) the supernova shock
rate, and 3) the escape rate from galactic disks. The interplay of these rates determine the
probability for X to escape from galactic disks as well as the number density and spectrum
of those that remain, as discussed in Sec. 6.4.

Thermalization Rate in the Interstellar Medium

The X that do fall into the disk or happen to reside there are greatly influenced by the
environment of the ISM. In our Milky Way, the ISM consists of hot, warm, and cool phases
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in pressure equilibrium (nT ≈ constant), and a self-gravitating molecular phase [253]. The
cool phase is composed of small, atomic clouds and the warm and hot phases constitute the
intercloud medium and essentially the entire ISM by volume. Typical properties of these
phases for our Milky Way are shown in Table 6.1.

ISM Phase ntot (cm−3) ne (cm−3) T (K) Fractional Volume f

Hot Ionized 3× 10−3 3× 10−3 5× 105 0.5
Warm Ionized 0.3 0.2 8× 103 0.15
Warm Neutral 0.5 . 0.05 8× 103 0.3
Cold Neutral 50 < 0.1 80 0.04
Molecular > 300 < 0.1 10 0.01

Table 6.1: Components of the interstellar medium, taken from [634, 509].

An X moving through the ISM at a speed v 1 thermalizes at an expected rate

Γtherm =
∑

phase i

fi
ttherm,i

≈ fWIM

ttherm,WIM

≈
(
4× 107 yr

)−1
(

m/q2

106 GeV

)−1(
v

103 km/s

)−3 ( ne
0.2 cm3

)(fWIM

0.15

)
(6.8)

where ttherm,i is the thermalization time (6.4) of X in ISM phase i, and fi its corresponding
volumetric filling factor. The largest ambient electron density implies the shortest thermal-
ization time, and hence the warm ionized medium (WIM) dominates the thermalization rate,
as can be seen from Table 6.1. Thus, X is most likely to be found in the warm medium and
indeed, that is where about half the baryonic mass of the ISM lies [253]. Eq. (6.8) assumes
that v is larger than the thermal speed of protons, vp ' 10 km/s and electrons, ve ' 600
km/s. If vp < v < ve, v in Eq. (6.8) should be replaced by ve.

A natural way to obtain small q is to introduce a hidden U(1) under which X is charged,
and assume a small kinetic mixing between the hidden U(1) gauge field and the electro-
magnetic field. Then the interaction between Xs by the hidden U(1) also contributes to
thermalization. As is shown in Appendix D.1, this interaction does not change the estima-
tion of the efficiency of the evacuation if m > O(10) GeV or X is produced before the onset
of the Big-Bang Nucleosynthesis.

Supernova Shock Rate

CHAMPs are accelerated by SN shocks in the same way a ball is accelerated by reflecting
off a moving wall; the moving wall in this case is the moving magnetic field near the shock.

1Initially, v is set by the thermal speed if X is dragged into the disk, or the virial speed if not; later, v
is determined by SN shocks.



CHAPTER 6. CHAMP COSMIC RAYS 143

When moving slower than the shock, the CHAMP is accelerated to the shock speed. When
moving faster than the shock, the CHAMP may repeatedly reflect off the shock, resulting
in an exponential momentum gain due to the change in momentum ∆p ≈ p × (vs/v) with
each reflection. This latter process is known as first-order Fermi acceleration, and the rate
at which CHAMPs are accelerated is thus intimately tied to the rate of encountering strong
shocks in the ISM.

The expected rate of encountering a SN shock of speed vs is

ΓEnc(vs) =
VSN

Vdisk

ΓSN (6.9)

where Vdisk is the volume of disk, VSN ≈ 4πR(vs)
3/3 is the volume of a SN remnant with shock

speed vs, and ΓSN the rate of SN in the galaxy. Note that the shock radius is a decreasing
function of shock speed; that is, a CHAMP is much more likely to encounter a slower shock.
The SN remnant size and shock speed depend on the medium to which it expands, and the
theoretical evolution for a shock expanding into a homogenous ambient medium of density
0.2 cm−3 (the average intercloud density) is shown in Fig. 6.2 2

A SN shock begins life expanding at a constant speed near 104 km/s. Energy conservation
then demands that the shock speed decreases proportional to the square root of mass swept
up by the shock. For expansion into a homogenous medium with number density n, the
radius-velocity relation during this ‘Sedov-Taylor’ phase is [253]

R(vs) = 39 pc

(
vs

200 km/s

)−2/3 ( n

0.2 cm−3

)−1/3
(

E

1051 erg

)1/3

(6.10)

where E is the SN energy output.
As the shell expands, radiative losses from the shock heated gas become comparable to

the energy of the SN and the shell is propelled forward only by the pressure of the hot gas
inside. The radius-velocity relation during this ‘snowplow’ phase is

R(vs) = 48 pc

(
vs

100 km/s

)−2/5 ( n

0.2 cm−3

)−0.37
(

E

1051 erg

)0.32

(6.11)

The shock continues to expand until reaching a maximum size before merging with the ISM,
at which point its speed equals the thermal sound speed, around 10 km/s.

Now, as seen from (6.9), the largest shock size sets the shock encounter rate. However,
the largest shocks are unable to Fermi accelerate X. This is because the gas around the
shock front must be fully ionized to maintain the strong turbulence necessary for efficient
acceleration of X, as is shown below. This condition begins to fail early in the snowplow
phase, when neutrals begin forming near the shock [691]. Thus we take the shock at the end

2While the average density of the ISM is about 1 cm−3, the shock takes the path of least resistance,
propagating primarily through the warm/hot intercloud medium and around the dense atomic clouds [502,
627]. As a result, the mass swept up by the shock is primarily the intercloud mass.
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Figure 6.2: Evolution of a SN remnant in homogenous medium with average density of the
intercloud medium n ≈ 0.2 cm−3.

of the Sedov phase to be the largest shock capable of Fermi-accelerating X. This corresponds
to a minimum shock speed slightly below 200 km/s, a maximum radius (6.10) of 40 pc, and
hence an expected SN shock rate of

ΓSH =
(
2.5× 107 yr

)−1
(
Rmax

40 pc

)3(
Rdisk

15 kpc

)−2(
Hdisk

300 pc

)−1(
ΓSN

0.03 yr−1

)
. (6.12)

The strong turbulence is required so that the magnetic fields upstream and downstream
of the shock are sufficiently tangled, making the mean free path of X in the shock region
as small as its gyroradius (Bohm diffusion), the minimum possible mean free path [106,
691]. The necessity for such a small mean free path near the shock can be understood
by calculating the maximum possible rigidity, (the ratio of momentum to charge, p/q), a
SN shock can impart to a CHAMP. The maximum rigidity is set by spatial and temporal
constraints. Spatially, the shock cannot accelerate a CHAMP anymore once its mean free
path grows larger than the size of the shock region. For a SN of radius R in the Sedov phase,
hydrodynamic simulations show the thickness of the shock region is ≈ 0.05R [253]. A SN of
radius Rmax = 40 pc, then cannot accelerate X beyond

(
p

q

)

max

≈ 3× 107 GeV

(
B

15 µG

)(
Rmax

40 pc

)
(6.13)
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where we have taken the shock magnetic field about three times the ambient ISM field due to
shock compression [647]. Temporally, the shock cannot accelerate a CHAMP for longer than
the age of the remnant. The acceleration timecale to Fermi-accelerate a particle to rigidity
p/q and speed v is approximately tacc ≈ 8Ds/v

2
s where Ds = 1

3
λsv the diffusion constant near

the shock, and λs = rgyro the mean free path [106]. Equating the acceleration time with the
age of the remnant, τSN = (2/5)R/vs implies a SN of radius Rmax = 40 pc cannot accelerate
X beyond

(
p

q

)

max

≈ 5.5× 104 GeV

β

(
B

15 µG

)(
Rmax

40 pc

)(
vs

200 km/s

)
(6.14)

The maximum rigidities of (6.13) and (6.14) imply particles are unaffected by SN shocks
in the limit q → 0. This condition must be true since SN shocks transfer momentum to
encountered particles solely through electromagnetic scatterings.

Note the factor of β ≡ v/c in the denominator of (6.14) compared to (6.13). This is
because first-order Fermi acceleration is more efficient at slower speeds since the momentum
change upon reflection is greater for smaller v. For CHAMPs with β > βesc ' 2× 10−3, the
temporal constraint (6.14) dominates.3

Contours showing the largest possible γβ for a given CHAMP mass and charge is shown
in Fig. 6.3. CHAMPs with m/q & 1010 GeV cannot be ejected from the Milky Way as
βmax < βesc ' 2× 10−3, and hence remain throughout the halo and disk with the virialized
velocity distribution.

Escape Rate from the Disk

CHAMPs diffuse through the ISM by resonantly scattering off magnetic irregularities on
the scale k = 2π/rgyro, where rgyro = γmv/qB. This scattering leads to a mean free path
λ ∝ Ra, where R ≡ rgyroB = γmv/q is the magnetic rigidity, and a is set by the magnetic
field power spectrum [486, 408]. The observed steady-state cosmic ray secondary to primary
spallation ratios at various rigidities implies a ∼ 0.5 and leads to a mean free path

λ ' 10 pc

(
v

103 km/s

)1/2(
m/q

106 GeV

)1/2

γ1/2 (6.15)

for most cosmic ray propagation models [639, 408] 4

3Ordinary cosmic rays are believed to be injected when the shock is young and the magnetic field is
nearly a milligauss, which gives a maximum rigidity near 3 × 106 GeV, exactly where the proton ”knee”
is observed in the cosmic ray spectrum. Further evidence for the validity of (6.14) is the iron knee, which
drops at a momentum 26 times higher. CHAMPs which encounter young SN remnants can be accelerated
above the rigidity (6.14), but we do not consider such a process.

4The mean free path becomes rigidity independent at rigidities below ∼ GeV. However, the smallest
CHAMP rigidities we consider, mv1/q (see Eq. 6.18) are alway greater than a GeV, except in parameter
space already excluded by collider searches and Neff .
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Figure 6.3: Contours of the maximum γβ a CHAMP aquires from Fermi acceleration by a
SN shock.

For CHAMPs with speeds above the gravitational escape speed, vesc, the typical rate to
diffuse out of the disk is Γesc = 2D/H2

disk, where the diffusion constant D = λv/3. As with
cosmic rays, diffusion has the effect of increasing the time it takes for CHAMPs to escape
the disk. The resulting escape rate from the disk is 5

Γesc ≈
(
2× 107 yr

)−1
(

v

103 km/s

)3/2(
m/q2

106 GeV

)1/2(
Hdisk

300 pc

)−2

q1/2γ1/2θ (v − vesc)

(6.16)

5The cosmic ray lifetime in the entire galaxy, not just the disk, is determined from the relative abundance
of cosmic ray radioactive isotopes to their children, and is about 10 times longer than the lifetime in the
disk (6.16) [451, 486]. This is because diffusion continues above the disk into a ∼ 3 kpc high hot gas region,
so called the confinement region. However, the lifetime in the stellar disk, where X will encounter SN, is
bounded by the grammage of matter traversed as observed from spallation products, and agrees well with
(6.16) [451].
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This escape rate breaks down when λ > Hdisk and hence is valid only for particles with
rigidities γmv/q . 107 GeV. However, SN can only accelerate CHAMPs marginally beyond
this rigidity anyway (6.13), so the ISM mean free path essentially always remains below
Hdisk.

6.4 Acceleration and Ejection from the Galaxy

The Accelerated Spectrum

To understand the interplay between the thermalization rate in the ISM (6.8), the SN shock
rate (6.12), and the escape rate from the disk (6.16), we define the parameter

x ≡ v

103 km/s

(
m/q2

106 GeV

)1/3

, (6.17)

an independent-variable nearly mutual to each rate, and three values {x1, x2, x} such that
ΓSH(x1) = Γtherm(x1), ΓSH(x2) = Γesc(x2), and Γtherm(x) = Γesc(x) ≡ Γ. These critical points
are given by

x1 = 0.9×
(
Hdisk

300 pc

)1/3(
Rdisk

15 kpc

)2/3(
Rmax

40 pc

)−1(
ΓSN

.03 yr−1

)−1/3

(6.18)

x = 0.9×
(
Hdisk

300 pc

)4/9

q−1/9 γ(v)−1/9 (6.19)

x2 = 0.9×
(
Hdisk

300 pc

)2/3(
Rdisk

15 kpc

)−4/3(
Rmax

40 pc

)2(
ΓSN

.03 yr−1

)2/3

q−1/3 γ(v2)−1/3 (6.20)

We have normalized Hdisk, Rdisk, Rmax and ΓSN to values for the Milky Way. Accidentally
this leads to comparable prefactors when q = 1. However, for q < 1 the hierarchy of speeds
for the Milky Way is v2 > v̄ > v1 for any value of m/q2.

Galaxies with different disk and ISM properties will have different v1,2 and v̄; however,
there are only two possible orderings of these speeds corresponding to the two cases Γ <
ΓSH and Γ > ΓSH, as shown in top panels of Figs. 6.4, D.1. Equivalently, the two cases
correspond to whether a CHAMP that surpasses the thermalization bottleneck is more likely
to encounter another SN shock on the way out of the disk (and be Fermi-accelerated to
relativistic speeds) or to escape the disk without meeting any further shocks (and remain
non-relativistic upon escape). Our galaxy belongs to the first case for all q . 1 which we
investigate in the following.

Boom. A SN goes off and its shock expands in the ISM. We first consider the case that
X are thermal with speeds much less than v1. Since their speeds are also below the shock
speed, when hit by a first shock they are accelerated only to the shock speed. Since the
probability of a shock encounter goes as the shock radius cubed, we see from (6.10) and
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(6.11) that a SN remnant produces a CHAMP number density spectrum dn/d ln v ∝ v−2 in
the Sedov-Taylor phase (i.e. v & 200 km/s) and ∝ v−6/5 in the snowplow phase. The latter
thermalize so quickly that they are irrelevant to the following discussion.

We will now discuss the spectrum of this batch in terms of the differential momentum
spectrum f = dn/dp, since it is the momentum p which is the fundamental quantity that
describes the spectrum from non-relativistic to relativistic regimes. Because {x1, x2, x} all
occur at non-relativistic speeds, there is no loss in generality between xi, and its associated
momentum pi.

Thus, the relevant differential spectrum f(p) = dn/dp of this batch is initially propor-
tional to p−3, up to pblast = m × 104 km/s,6 as shown by the dashed blue line in Fig 6.4.
However, as time progresses, energy losses from thermalization even alter this spectrum,
chipping away at the slower moving CHAMPs which thermalize first. The evolution of this
differential spectrum due to thermalization obeys ∂f/∂t = (1/2)∂(pΓtherm(p)f)/∂p [486],
whose solution implies f ∝ p2 for tΓtherm(p) & 1 and unchanged for tΓtherm(p) . 1. There-
fore, when this batch encounters a second SN shock with speed vs ≈ 200 km/s a time
t ≈ 1/ΓSH later, its spectrum is peaked at p = p1, dropping as p2 for p < p1 and p−3 for
p > p1, as shown by the orange and dashed blue lines in Fig. 6.4.

The CHAMPs in the batch moving faster than the approaching shock can convectively
and diffusively travel back and forth across the shock front. The expected momentum gain for
each cycle as well as the probability of completing n cycles can be calculated, which together
yield the post-shock distribution [258]. The above physics is encoded in a transformation of
the original spectrum, fpre(p), to a final spectrum, fpost(p), by [108]

fpost(p) = (µ− 1)p−µ
∫ p

pmin

dk kµ−1fpre(k). (6.21)

Here, pmin ≈ m×(200 km/s)� p1 and µ = 2 is the theoretically predicted power dependence
from Rankine-Hugoniot plasma boundary conditions. Performing the convolution (6.21) on
the t ≈ 1/ΓSH spectrum, we find the effect of the second shock is to leave unchanged the p2

spectrum below p1 but to change the p−3 spectrum above p1 to a Fermi-accelerated p−µ = p−2

spectrum, as shown by the green and orange lines in Fig. 6.4. Qualitatively, this is because
the largest number of particles have initial momenta p1. Note the resulting p−2 spectrum
now includes CHAMPs with relativistic speeds.

Those CHAMPs with momenta now above p2 will quickly leave the disk and contribute
to the extragalactic spectrum, as shown by the dotted green line in Fig. 6.4. Meanwhile,
CHAMPs with momenta between p1 and p2 are more likely to stay in the disk and encounter

6For sufficiently large m/q, X cannot be accelerated to pblast for reasons discussed in Sec. 6.3. However,
the galactic spectrum remains the same as long as pmax > p1, which we find always true. There also exists a
momentum pbreak such that X with p > pbreak diffusively catch up the same shock that initially accelerated
X. When this occurs, X is Fermi-accelerated and the spectrum becomes p−2 above pbreak. This again does
not change the galactic spectrum since we also confirm that pbreak > p1.
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Figure 6.4: Comparison of the three key rates and the spectrum of accelerated CHAMPs for
case 1.

additional SN shocks before escaping and reaching the momentum p2.7 The evolution of the
CHAMP spectrum by the repeated encounters is investigated in Appendix D.2, and it is
shown that CHAMPs with momenta below p2 eventually escape from the disk with a time
scale ∼ Γ−1

SH.

7The escape probability for X with t < Γ−1
esc is exponentially suppressed. Only for X with t ≈ Γ−1

esc is
the escape proability non-negligible, with value tΓesc. Consequently, the probability galactic CHAMPs with
momenta less than p2 escape before encountering repeated shocks is negligible.
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The two-stage acceleration mechanism we consider becomes ineffective once v1 is above
vblast ≈ 104 km/s, as almost all CHAMPs accelerated by the first shock are thermalized
before encountering the next shock and hence cannot be ‘injected’, or Fermi-accelerated, at
the second shock. This is the case if m/q2 . 600 GeV, which is excluded by direct searches
for CHAMPs (see Sec. 6.6). Note that nuclei belong to this parameter region and cannot be
accelerated by the two-stage injection process described above. It is currently not understood
how a very small fraction of thermal nuclei are directly injected from a single, young, shock
(the so-called ‘injection-problem’ [451, 253]) to become cosmic rays. It is likely too that a
very small fraction of thermal CHAMPs are also directly injected by a single shock, though
large uncertainties exist since the process is not understood for even ordinary cosmic rays.
Nevertheless, the authors of [393] assume that CHAMPs are Fermi-accelerated in the same
manner as nuclei, and obtain the spectrum of CHAMP cosmic rays from that of protons
with the same rigidity. Since the efficiency of direct-injection is much less than two-stage
injection, the resultant CHAMP cosmic ray abundance is much smaller than ours.

In the above discussion we assumed that X are thermalized and have speeds below v1

before encountering a SN remnant. However, if m/q2 > 3 × 106 GeV, the thermalization
does not occur and X have velocities of vvir, which is larger than the shock speed. On
encountering the first SN shock, X undergo Fermi acceleration. Hence, whether or not there
is initial thermalization, the accelerated spectrum always has the form f(p) ∝ p−2, cutoff at
low speeds at

v0 ≡
{
v1 m/q2 < 3× 106 GeV

vvir m/q2 > 3× 106 GeV.
(6.22)

Efficiency of Expulsion

For now we ignore the diffusion of CHAMPs from outside the disk and compute the fraction
of CHAMPs that escape the disk. The fraction is given by the probability to encounter a
critical shock to overcome the thermalization bottleneck within the disk. As discussed in
Sec 6.3, for m/q2 > 3× 106 GeV it is enough to encounter a shock at the end of the Sedov-
Taylor phase because of the inefficient thermalization. For m/q2 < 3× 106 GeV, encounter
with a shock with a velocity vc > v1 is required. Shock speeds capable of reaching vc occur
during the early Sedov-Taylor phase, where the shock radius-velocity relation (6.10) implies
the expected encounter rate for a critical shock (6.9) is

ΓSH,c =





(108 yr)
−1
(

m/q2

3×106 GeV

)2/3

m/q2 < 3× 106 GeV

ΓSH m/q2 > 3× 106 GeV
(6.23)

Since the chance of encountering a critical shock is rare, we expect the number of critical
shocks encountered to be a Poisson random variable with an expected rate given by (6.23).
Consequently, the fraction of CHAMPs that never encounter a critical shock and thus remain
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Figure 6.5: The fraction of CHAMPs which do not encounter a shock with velocity above
the critical velocity and hence remain in the disk.

in the disk after a time T is

frem = exp

(
−
∫ T

0

ΓSH,c(t) dt

)
(6.24)

Assuming ΓSH,c is independent of time, T ∼ 1010 yr, and the shock expands into a homoge-
nous medium of density 0.2 cm−3, the fraction of CHAMPs that remain in the disk as a
function of m/q2 is shown in blue in Fig. 6.5. Note that while an order one fraction of the
CHAMP population in the disk may be ejected after one folding-time Γ−1

SH,c, efficient removal
from the disk requires many folding-times.

6.5 Diffusion into the Disk and the Local CHAMP

Flux

Although ejection from the disk is efficient for m/q2 & 104 GeV, this does not imply the
absence of CHAMPs in the disk. There is a continuous replenishing of CHAMPs in the
disk by diffusive accretion from the halo and the confinement region. The balance between
accretion and ejection leads to a (quasi-) steady state. Hence, even after 1010 years, there
are CHAMPs that have been recently accelerated by SNe and hit the Earth before escaping
from the disk. In this section we estimate the present flux of such accelerated CHAMPs.
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CHAMPs that do not Collapse into the Disk

We first consider m/q2 > 105 GeV, where CHAMPs do not collapse into the disk when it
forms. Most galactic CHAMPs are outside the disk, so that their diffusion into the disk plays
an important role. The disk of the Milky Way, which we take to have a width of Hd = 300 pc,
is surrounded by the confinement region, which we take to have a width of Hc = 6 kpc [486,
639]. This region has a random magnetic field similar to that of the disk, so we take the
CHAMPs to diffuse in this region with the same mean free path as in the disk. Diffusion
through the confinement region plays a key role in determining the accelerated CHAMP flux
hitting the Earth today.

We solve the following equations for n(t, z), the X number density inside the confinement
region with the virial speed, and for nA(t), the number density of accelerated Xs in the disk

∂n(t, z)

∂t
= D

∂2n(t, z)

∂z2
− ΓA θ(z +

Hdisk

2
) θ(

Hdisk

2
− z)n(t, z), (6.25)

n(0, z) = n(t,±Hc/2) = n0,

ΓA = ΓSH,c (6.26)

dnA(t)

dt
= ΓA n(t, 0)− ΓSH nA(t), nA(0) = 0, (6.27)

where n0 ' 0.3 fX/m GeV/cm3 is the initial local X number density, and the diffusion
constant D = λ(vvir)vvir/3, with λ given in (6.15).

We take the escape rate of the accelerated CHAMPs to be the SN shock rate ΓSH, as the
number density of accelerated Xs is dominated by ones with low momenta, p < p2, and these
typically escape by encountering SNe and are rapidly accelerated to momentum p2, where
the escape rate is equal to the shock rate. Moreover, as shown in Appendix D.2, CHAMPs
with momentum p0 < p < p2 are repeatedly shocked and quickly evacuate the disk in a time
∼ ΓSH as well.

Numerical results for the number density of the accelerated CHAMPs, nA(t0), are shown
in Fig. 6.6 as a function of m/q. These results, including the slopes and the kink at m/q = 106

GeV, can be understood from a simple analytic estimate. The acceleration of X in the disk
creates a gradient dn/dz in the confinement region that drives a diffusion current of X into
the disk, from above and below

J = n0

{(
d(t0)
2t0

)
m/q < 106 GeV

D
Hc/2

m/q > 106 GeV
(6.28)

where λ is the mean free path and d(t0) ∼
√
t0λvvir the diffusion distance in time t0. For

m/q > 106 GeV, d(t0) > Hc and we reach a steady state where X from the halo diffuse
through the confinement region to reach the disk. Even for the largest m/q that lead to shock
acceleration, this does not substantially alter the density of X in the halo. For m/q < 106

GeV, d(t0) < Hc so that J is time dependent; J(t0) arises from transporting X from the
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Figure 6.6: The accelerated X number density, normalized to the original local number
density.

confinement zone a distance d(t0) from the disk. Finally, note J must always be less than
n0vvir which it is, since the mean free path λ < Hdisk < Hc.

In the disk, Eq. (6.25)-(6.27) then reduce to ṅ ' 2J/Hd − ΓA n and ṅA ' ΓAn− ΓSHnA
leading to the (quasi-) steady state solutions nA = 2J/HdΓSH, n = 2J/HdΓA. Inserting J
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from (6.28) gives

nA
n0

' 0.02





(
m/q

106 GeV

)1/4

m/q < 106 GeV
(

m/q
106 GeV

)1/2

m/q > 106 GeV
(6.29)

n

n0

' nA
n0

×





1 m/q2 > 3× 106 GeV

6
(

m/q2

3×106 GeV

)−2/3

m/q2 < 3× 106 GeV
(6.30)

where the differing powers of m/q in (6.29) result from the different powers of λ in J for the
two cases. The continual accretion of CHAMPs onto the disk, followed by their acceleration
and expulsion, has led, remarkably, to a large accelerated cosmic ray flux of CHAMPs today
on Earth.

We take the CHAMP velocity to be the virial velocity to estimate the diffusion constant
D. Since X are efficiently ejected from the disk, refilling by diffusion from outside the
disk determines the present number density of CHAMPs. The diffusion of unaccelerated
CHAMPs inside the disk is not important. Outside the disk, thermalization is ineffective on
cosmological time scales for m/q2 > 2× 106 GeV and we may safely take the virial speed for
the above estimation. For m/q2 < 2× 106 GeV, the thermalization occurs and their velocity
decreases down to the thermal velocity. If the velocity is below the Alfven velocity ∼ 50
km/s, the scattering by the turbulent magnetic field accelerates CHAMPs up to the Alfven
velocity with the rate as large as the gyrofrequency [688], and hence the CHAMP velocity is
at the smallest the Alfven velocity. The diffusion constant for the Alfven velocity is about
8 times smaller than that for the virial velocity. For m/q2 < 2× 106 GeV, m/q . 106 GeV
and nA is proportional to D1/2. The accelerated number density decreases at the most by a
factor of three because of the thermalization. We neglect the small suppression.

Finally, it is worthwhile to mention that the steady-state accelerated spectrum is fairly
insensitive to whether or not X collapses. This is because n(t,±Hc/2) ∼ n0 either way, since
the baryon disk formation efficiency is only ∼ 25%. Moreover, since acceleration out of the
disk is efficient for CHAMPs that do not collapse, m/q2 & 105 GeV, the same steady-state
spectrum is quickly reached regardless of the initial disk density. Similarly, since acceleration
out of the disk and diffusion into the disk are less efficient for CHAMPs that do collapse,
m/q2 . 105 GeV, the same steady-state spectrum is reached regardless of the density at the
confinement-halo interface. We find that, even if we assume the collapse of CHAMPs (see
below), nA is enhanced by a factor of few for m/q2 just above 105 GeV.

CHAMPs that do Collapse into the Disk

For m/q2 < 105 GeV, CHAMPs collapse into the disk. We solve Eqs. (6.25, 6.27) with the
initial and boundary conditions

n(0, z) = 100n0 θ(z +Hdisk/2) θ(Hdisk/2− z) + 0.1n0, n(t,±Hc/2) ≈ 0.1n0, (6.31)
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where 100n0 is the initial concentration from collapse at disk formation and 0.1n0 the con-
centration that remain in the halo near the confinement interface [301]. For m/q2 < 105

GeV, even CHAMPs outside the disk but inside the confinement region are thermalized. We
take the velocity of the unaccelerated CHAMPs to be the maximal of the thermal velocity
and the Alfven velocity. We find that n and nA in the present universe are approximated by
the following semi-empirical formulae,

nA
n0

=100× exp

(
−ΓAt0 ×

Hd

Hd + 2
√
Dt0

)
× ΓA

ΓSH

, (6.32)

n

n0

=100× exp

(
−ΓAt0 ×

Hd

Hd + 2
√
Dt0

)
. (6.33)

This result can be understood as follows. The large charge and the low velocity implies
that diffusion is ineffective, so that the number density n inside the disk is basically given
by 100n0exp(−ΓAt0), which is corrected by the second factor in the exponent taking into
account the suppression of the ejection by small diffusion out from the disk. The number
density of accelerated CHAMPs is then determined by the quasi-steady state solution with
dnA/dt = 0.

The Local CHAMP Flux and Spectrum

The accelerated CHAMPs initially have the spectrum dnA/dp ∝ 1/p2. CHAMPs with mo-
mentum above p2 have an escape rate larger than ΓSH by a factor of (p/p2)3/2 for non-
relativistic p and (m/p2)3/2(p/m)1/2 for relativistic p. Taking account the larger escape rate,
the flux of the accelerated CHAMPs is given by

dnA
dp

v = n0 v0×
{
nA
n0

of Eq. (6.29) m/q2 > 105 GeV
nA
n0

of Eq. (6.32) m/q2 < 105 GeV

×
{

1
p

mv0 < p < max(p2,mvvir)
max(p2,mvvir)

3/2

p5/2 p > max(p2,mvvir).
(6.34)

We note that the spectrum in Eq. (6.34) may be further modified during the diffusion
between the acceleration site and the Earth. In Fig. 6.7, we show the typical distance X with
a velocity v0 can travel before encountering another shock,

√
2D/ΓSH. In the shaded region,

the distance is smaller than the typical distance between the acceleration site and the Earth,
∼ 100 pc, and X is likely to encounter multiple shocks before hitting the Earth. We define
the momentum of X above which the encounter typically does not occur as p̃0, which is at
the most as large as p2. Then the spectrum is the one with mv0 in Eq. (6.34) replaced by
p̃0, with a subdominant spectrum in p . p̃0. This does not weaken the constraints derived
in the next section, since the stopping by the Earth crust and/or the energy threshold of
the searches require the momentum of detectable X to be above p2 in the parameter region



CHAPTER 6. CHAMP COSMIC RAYS 156

10-3 10-2 10-1 1 10 102 103 104 105 106 107 108
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

m [GeV]

C
ha
rg
e
q

Diffusion Distance Beween Shocks

25

50

75
100 pc

Figure 6.7: The diffusion distance an X with a momentum p0 travels in a time Γ−1
SH.

with inefficient diffusion. Rather, the signal rates may be enhanced by a factor of p̃0/(mv0)
(which is at the most 10). Since we are not able to determine p̃0 in a reliable manner, we do
not consider this possible enhancement in this paper. One should take care of this issue if
momenta p < p̃0 are important for X searches.

CHAMPs that escape from other galaxies and reach our galaxy also contribute to the
accelerated CHAMP spectrum. The spectrum of the extragalactic CHAMP background is
estimated in Appendix D.3 and is found to be subdominant.

6.6 Direct Detection of Accelerated CHAMP Cosmic

Rays

In this section we discuss direct detections of CHAMPs on the Earth. We first investigate
two possible barriers for the detection: the solar wind and stopping in the Earth before



CHAPTER 6. CHAMP COSMIC RAYS 157

reaching detectors. Then we compute signal rates in experiments sensitive to nuclear recoil,
ionization and Cherenkov radiation. We assume that X couples to nucleons, electrons and
photons dominantly through the charge q. If X feels the strong interaction, as is the case
with heavy colored states that bind with the known quarks, the constraint is altered.

The Solar Wind and Stopping by the Earth

The direct detection of CHAMPs on Earth can dramatically be affected by the solar wind,
an outflow of charged particles and associated magnetic fields from the sun which suppress
the flux of interstellar charged particles that reach the earth.

The net flux of CHAMPs a distance r from the Sun is given by a convection-diffusion
equation [486]

J(r) = n(r)vw(r)−D∂n(r)

∂r
(6.35)

where n is the number density of CHAMPs, vw the solar wind speed, and D = 1
3
λ(R)v

the rigidity-dependent diffusion constant of charged particles in the interplanetary magnetic
field. The net flux (6.35) is zero in the steady-state regime and leads to the solution

n(r) = n0(r0) exp

(
−
∫ r0

r

vw(r)dr
1
3
λ(R)v

)
(6.36)

Observations of the low-energy cosmic ray flux on Earth find (6.36) to be well fit by [487,
517]

nE = n∞ exp

(
− η(t)

βg(R)

)
(6.37)

where η(t) parameterizes the modulation of the solar wind and the interplanetary magnetic
field, g(R) the rigidity dependence of the particle mean free path, and nE (n∞) the number
density of CHAMPs on Earth (far away in the ISM).

During the 11-year solar cycle minimum, when the solar wind suppression on the cosmic
ray flux is weakest, measurements indicate η(t) ≈ 0.3 GeV, and [487, 517]8

g(R) =

{
R for R > Rc ≈ 1 GeV

Rc for R < Rc.
(6.38)

CHAMPs with η/βg > 1 scatter frequently enough with the magnetic fields carried by the
solar wind that they cannot travel ‘upstream’ from the outskirts of the heliosphere to the
Earth. The parameter space where the solar wind suppression is significant is shown by the
shaded region of Fig. 6.8.

8The change in the rigidity dependence of the mean free path can be explained by a change in the
interplanetary magnetic field power spectrum. Measurements from the Mariner 4 spacecraft indicate the
power spectrum changes its power dependence at wavenumbers near kc ≈ 2π × 6 × 10−12 cm−1 [407],
corresponding to a scattering gyroradius of rgyro,c = 2π/kc ≈ 1011 cm [487]. Since the solar wind magnetic
field is around 50 µG, the critical rigidity occurs at Rc ≈ 1.5 GeV, in excellent agreement with (6.38).
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Figure 6.8: Contours of the fractional flux of X that penetrate the solar wind for a given
m/q and γβ.

CHAMPs that penetrate the solar wind must also penetrate the Earth’s atmosphere/
crust to the depth of the detector. CHAMPs with β & 0.01 passing through matter slow
down chiefly from electron ionization. The stopping power is well described by the Bethe
equation for β > 0.1,

−
〈
dE

dx

〉
= 0.15 MeV cm2/g

(
q

β

)2(
Z/A

1/2

)
ln

(
2meγ

2β2

10Z eV

)
. (6.39)

For CHAMPs slower than the Fermi-velocity (β . α = 1/137), energy losses from collisions
with electrons are proportional to the CHAMP velocity [699]. Unlike ions, which are partially
ionized in this velocity regime and must be assigned an effective nuclear charge as described
by the Lindhard-Scharff equation, the effective CHAMP charge remains q and hence its
stopping power through a material is just q2 times the proton stopping power [699], which
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Figure 6.9: Contours of the minimum βγ for CHAMPs to traverse 500m of Earth crust.
Contours for penetrating the Earth’s atmosphere may be obtained by shifting these contours
up above by a factor of 10 in charge q. The solar wind constraint is subdominant, and is
thus not displayed.

is given in the NIST Database [115]. We use the tabulated stopping power for β < 0.1 and
the Bethe equation for β > 0.1.

Contours in the (m, q) plane of the minimum (βγ)min to reach underground detectors
500 m below the Earth’s surface are shown in Fig. 6.9. Contours for penetrating the Earth’s
atmosphere may be obtained by shifting these contours up above by a factor of 10 in charge
q. At high βγ radiative losses dominate over electron ionization, but we find radiative losses
are not important for values of (m, q) that are allowed by direct searches and astrophysics.
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Nuclear Recoil at Deep Underground Detectors

The scattering cross section between X and a nucleus of mass mN and charge Z is

dσ

dΩ
=

α2Z2q2

µ2v4(1− cos θ)2
|F (Q)|2, (6.40)

where µ is the reduced mass, v is the speed of X, Q is the momentum transfer and F (Q) is
the nuclear form factor. The recoil energy of the nucleus is

ER =
µ2

mN

v2(1− cos θ) (6.41)

and the minimum speed to obtain such a recoil energy is

v2
R =

ERmN

2µ2
. (6.42)

The integrated cross section above a threshold ER,th for fixed speed v is

σ(ER > ER,th) =
2πα2Z2q2

mNER,thv2
f(ER,th) Θ(v − vR,th), (6.43)

where vR,th is vR evaluated at the threshold recoil energy and f(ER,th) takes into account
the suppression of the scattering by the form factor

f(ER,th) =

[∫ QR,max

QR,th

dQ|F (Q)|2Q−3

]
/

[∫ QR,max

QR,th

dQQ−3

]
,

QR,th =
√

2mNER,th, QR,max = 2mNvrel. (6.44)

Assuming the Helm form factor [374, 475], we find f(ER,th) ' 0.3. The signal rate in a given
detector with a number of target nuclei NN is

ΓSig = NN

∫
dv σ(ER > ER,th)v

dnA
dv
' NN

[
σ(ER > ER,th)v

dnA
dlnv

]

v=v−

, (6.45)

where v− is the minimum detectable X speed.
Using Eqs. (6.45), we compute the signal event rate at XENON1T [60] with Eth = 10 keV,

and require fewer than 16 expected events for a 1 ton-year exposure, putting an upper bound
on the fraction of X as dark matter, as shown in Fig. 6.10. In the analysis of [60], events
with extra ionization electrons are vetoed. Thus we conservatively require that the ionization
energy loss of X passing through 1m of liquid Xenon is below 10 eV, so that typically no
electron recoils occur. The minimal velocity v− is determined by this requirement through the
dependence of the ionization energy loss on the velocity, the threshold energy, the minimal
velocity to reach the detector, and v0.
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Figure 6.10: Upper bounds on the fraction of X as dark matter from XENON1T.

Below the thick solid line of Fig. 6.10, the maximum speed X can gain from SNe is below
the escape velocity, and the standard constraint is applicable. Above the dashed line X
collapse into the disk. Note that a bound exists even if m < 10 GeV, where XENON1T
is insensitive to dark matter with a virial speed due to the threshold. The accelerated
CHAMPs have speeds much larger than the virial speed, and easily deposit energies above
the threshold. The larger velocity also help CHAMPS to reach the underground detector,
strengthening the constraint at larger values of q. For q > few 10−5, electron recoils typically
occur while X pass through the detector, and hence X scattering events may be vetoed.

We also show bounds on the parameter space from direct searches [223, 573, 224, 177,
491], SN cooling [175] and from the dark radiation abundance in the universe. The constraint
from dark radiation is weaker than the one in [674], as entropy production could occur near
the MeV scale for m & 10 MeV.

We compute the signal rate at CDMS-II [35] with Eth = 10 keV, and require fewer than
10 expected events for a 600 kg-day exposure. The constraint is shown in Fig. 6.11. Signal
regions are defined by a small ionization yield, below 30% of the recoil energy. Thus we
require that the ionization energy loss of X passing through 1 cm of germanium is below
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Figure 6.11: Upper bounds on the fraction of X as dark matter from CDMS-II.

3 keV. A muon veto is also imposed, but we find that as long as the energy loss in the
germanium is below 3 keV X signals evade the veto. Although the constraint is weaker then
that from XENON1T, CDMS-II constrains a region with larger values of q, up to 10−2.

Electron Recoil at Deep Underground Detectors

Nuclear recoil experiments cannot probe the region with small m and q, since the maximum
velocity of CHAMPs are still below the threshold. Such a region can be probed by searches
for electron recoils at deep underground detectors with low thresholds. The estimation of
the precise signal rate requires a computation involving an atomic form factor and is beyond
the scope of the paper. Instead, we obtain a rough estimation of the constraint by scaling
the constraint in [277] in the following way. [277] defines a DM-free electron scattering cross
section with the matrix element artificially evaluated at the momentum transfer of meα as
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σ̄e. For CHAMPs, it is given by

σ̄e =
16πq2µ2

α2m4
e

, (6.46)

where µ is the reduced mass between an electron and a CHAMP. Assuming that the CHAMP
is the dominant component of dark matter and has a virial velocity, the upper bound is
σ̄e < 3×10−34 cm2(m/GeV) ≡ σ̄e,limit for m� 10 MeV. The bound becomes rapidly weaker
for m < 10 MeV as the kinetic energy of CHAMPs becomes smaller than the typical electron
binding energy. We adopt the following as a rough estimation of the bound,

σ̄e < σ̄e,limit ×
[
n0vvir

nAv
× dE/dx(vvir)

dE/dx(v)

]

v=v−

, (6.47)

where v− is the minimal detectable speed. It is the maximum of v0, βminc, vvir

√
10 MeV/m

for sufficient kinetic energy, and the minimal velocity to deposit less than 10 eV by ionization
while passing 40 cm of liquid Xenon. The constraint is shown in Fig. 6.12, which covers the
small m and q region.

Relativistic Electron Recoil and Subsequent Cherenkov Light

Relativistic CHAMPs passing through water may deposit enough energy to accelerate elec-
trons to relativistic speeds. If the speed of these recoiling electrons is > 0.75c, they emit
detectable Cherenkov light. Such events are detected by Super-Kamiokande for deposition
energies above the threshold of 100 MeV [415]. The main target of the search is dark matter
coming from the center of the galaxy, and constraints are put on events within a cone with
a certain opening angle measured from the center of the galaxy. The accelerated CHAMPs
come isotropically, and hence we use the bound on the signal rate for the largest cone, giving
limits on fX shown in Fig. 6.13. Below the dashed line, the maximum momentum of acceler-
ated CHAMPs is below the threshold, m

√
100 MeV/me. For q > 0.1, photomultiplier tubes

(PMTs) in the outer detector typically receive more than one photon from the Cherenkov
radiation of CHAMPs, giving events that are vetoed in the analysis of [415].

Cherenkov Light from Relativistic CHAMPs

Relativistic X with speeds above βC = 0.75 produce Cherenkov light when traveling through
water. For q � 1, the intensity of Cherenkov light is typically too low to observe individual
tracks of X in the ice. Nevertheless, the (m, q) parameter space can be constrained when
the total number of Cherenkov photons emitted from relativistic X surpasses the observed
540 Hz background count rate of the IceCube PMTs.9

The integrated flux of atmospheric muons 2 km below the Antarctic ice is Φµ/4π ≈
10−7 cm−2 s−1 sr−1 [643] and contributes 3% [12] of the background rate. The number of

9Radioactive decays are dominantly responsible for the remaining dark counts [12].
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Figure 6.12: Estimated upper bound on the fraction of X as dark matter from XENON10.

Cherenkov photons emitted per unit wavelength and unit pathlength of X is proportional
to q2 [402]. Requiring CHAMPs to give a signal below the observed PMT dark count rate
constrains the integrated CHAMP flux above β = βC

Φ < 30
Φµ

q2
where Φ(β > βC) ' Φ(β ∼ βC) ' p

dnA
dp

v

∣∣∣∣
β=βC

. (6.48)

The constraint (6.48) is shown in Fig. 6.14. It is generally weaker than constraints from
nuclear recoils in XENON1T or from energy deposition in MAJORANA.

Ionizing Particle Searches

As q grows, CHAMPs yield significant ionization. The MAJORANA experiment searches
for such ionizing particles with a threshold of 1 keV, and puts an upper bound on the
flux, ΦMAJORANA < 10−9 cm−2 s−1 sr−1 [50]. Taking β = max(βmin, v1, vvir, βion), where
βion is the minimum velocity to exceed the threshold, as the minimum X speed that can
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Figure 6.13: Upper bounds on the fraction of X as dark matter from Super Kamiokande.

reach MAJORANA and yield signals, we find the upper bound on the fraction of X as
dark matter as shown in Figure 6.15. The bound complements that from nuclear recoil
experiments. There is no constraint for q . 10−3.5, since even maximally ionizing X, with
a velocity β ∼ 0.01, cannot deposit an energy above the threshold. Here we use the NIST
Database [115] to calculate the typical energy deposit on germanium. In the region close
to the solid line, vmax < 0.01 and q must be larger to deposit enough energy. Similarly, for
small mX , the required value of q becomes larger, as X must have a larger velocity to reach
MAJORANA, and is less ionizing.

We expect that larger parameter regions are actually constrained. Even if the typical
energy deposit is below a keV, there is a probability for X to deposit an energy above
the threshold, as computed in [50] for a minimally ionizing speed. This effect will lead to
constraints in broader parameter regions, but is beyond the scope of our paper.

Relativistic CHAMPs with charges between 0.2 < q . 1 produce visible tracks in
MACRO’s scintillation and streamer detectors that can be distinguished from integer charged
cosmic rays through the q2 dependence of‘ dE/dx. The upper bound on the flux of CHAMPs
with β > 0.25 is ΦMACRO < 6.1×10−16 cm−2 s−1 sr−1 [53] for 1/4 < q < 1/2 and weaker out-
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Figure 6.14: Upper bounds on the fraction of X as dark matter from IceCube.

side this range. Taking the lowest X speed that MACRO can detect to be max(0.25, βmin),
we find the upper bound on the fraction of X as dark matter as shown in Figure 6.16. For
m & 106 GeV, vmax < 0.25 and hence the constraint is absent.

While the flux constraints from MACRO are strong, the trigger efficiency of the MACRO
hardware is sensitive only to relativisticX with β > 0.25. Moreover, the MACRO experiment
is over one km underground which prevents slower moving CHAMPs from reaching the
detector (see Fig. 6.9). An experiment at the Institute for Cosmic Ray Research (ICRR),
designed to look for the scintillation light of slow, penetrating, and highly ionizing particles
on the surface of the Earth, constrains the flux of CHAMPs with 2.5×10−4 . β . 1.0×10−1

to ΦICRR . 1.8× 10−12 cm−2 s−1 sr−1 [416]. The ICRR experiment is sensitive to ionization
deposits greater than 1/20 the minimum ionization Imin ∼ 1.6 MeV/cm [95]. As discussed in
Sec 6.6, the ionization losses of X with β < 0.1 can be read from the experimental stopping
power of protons, scaled by q2, and imply charges as low as 10−2 can be detected. From
the observed stopping power of protons through plastic scintillators [115], we find the upper
bound on the fraction of X as dark matter as shown in Figure 6.17. The lower edge of the
constrained region is determined by ionization losses. To the left of the dotted lines, the
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Figure 6.15: Upper bounds on the fraction of X as dark matter from MAJORANA. Here we
require that the typical energy deposit is above the threshold of 1 keV. A larger parameter
region will be constrained once accidentally large energy deposits are taken into account.

velocity of CHAMPs which reach the detector is larger than 0.1c. To compute vmin, we use
the stopping power of air, shown in the NIST Database [115] and a column depth of 103

g/cm2.
Last, the Baksan experiment [41, 42], an underground scintillation detector searching

for slowly-moving ionizing particles, complements MACRO by providing comparable flux
constraints to non-relativistic CHAMPs with β < 0.1. The upper bound on the flux of
CHAMPs with 2 × 10−4 . β . 10−1 is ΦBaksan . 2 × 10−15 cm−2 s−1 sr−1. The Baksan
experiment is sensitive to ionization deposits greater than min(1, .02/β)× .25 Imin [41], and
implies q as low as ∼ 1/40 can be constrained for β > 0.02. CHAMPs with β < 0.02 cannot
traverse the length of the detector within one integration time and thus must have greater
dE/dx (that is, greater q) to be detected. Taking into account the stopping by the Earth
and the stopping power of protons through liquid scintillators,10 we find the upper bound on

10Liquid scintillators have similar dE/dx/ρ to plastic-based ones since both are organic compounds.
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Figure 6.16: Upper bounds on the fraction of X as dark matter from MACRO.

the fraction of X as dark matter as shown in Figure 6.17. Note while Baksan and ICRR both
probe similar velocity ranges, Baksan has stronger flux constraints but is not as sensitive
to small q as ICRR, nor can it detect the slowest CHAMPs which stop in the Earth before
reaching it.

Constraints on DM or Thermally Produced CHAMPs

Fig. 6.18 summarizes the constraint on (m, q) assuming all of dark matter is X. In the
orange-shaded region indicated as “Coupled around recombination”, X couples to baryons
around the era of recombination, and the fluctuations of the cosmic microwave background
are altered [261, 247]. We also show the prospected sensitivity of the LZ experiment [532]
assuming a 15 ton-years exposure with a threshold energy of 10 keV. The purple dotted line
shows the prediction for the charge q from the Freeze-In production of X dark matter [187];
see below for a rough estimation. Nuclear recoil experiments have just begun to reach the
sensitivity to probe Freeze-In production.
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Figure 6.17: Upper bounds on the fraction of X as dark matter from ICRR and Baksan
experiments.

We take a closer look at the thermally produced X. We assume that initially only the
Standard Model sector is thermalized. The Freeze-In abundance of X from pair production
by s-channel photon exchange is

ρXFI
s
' 0.01

4πα2q2

√
gs(m)

MPl, (6.49)

where ρX is the energy density of X, s is the entropy density, and gs is the effective number
of degrees of freedom. It is almost independent of m but grows with q2. This gives fX = 1
for q ∼ 10−11. We use the precise estimation of [187] in the following. For large enough q
this abundance becomes sufficient for pair-annihilation of X to occurs, so that the final yield
is then given by Freeze-Out

ρXFO
s
' m/TFO

g
1/2
s (TFO)MPl σv

, (6.50)

where σv is the annihilation cross section, and TFO is the temperature at Freeze-Out. If
Freeze-Out occurs then it determines the final abundance, otherwise it is determined by
Freeze-In.

If X is taken to be the only addition to the Standard Model then almost the entire region
of interest having q larger than 10−11 is excluded because fX > 1. Hence we add a massless
dark photon so that X can pair-annihilate into dark photons. This simple scheme for dark
matter has been studied for general values of the U(1)′ gauge coupling in some depth [187].
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Figure 6.18: Constraints on (m, q) assuming all of dark matter is X.

Here, for simplicity, we fix the gauge coupling of X to the dark photon to be the same as
between an electron and photon. Fig. 6.19 shows the constraints on (m, q) resulting from
this thermal abundance of X. The abundance exceeds the dark matter abundance in the
purple-shaded region at the right of the figure. At the edge of this region fX = 1, with
production from Freeze-In along the bottom edge and from Freeze-Out along the left edge.
Moving to the left, fX drops as m2. The constraint from fluctuations of the cosmic microwave
background, the orange-shaded region, is applicable if X comprises more than 1% of dark
matter [247]. The constraint from dark radiation is taken from [674], with the latest bound
Neff . 3.5 [30].

Last, we comment on the possible effect of CHAMPs on the structure of the halo for
fX ∼ 1. For m/q . 1012 GeV, the mean free path and the gyro-radius of X with v = vvir is
smaller than the height of the confinement region. This means that the dynamics of X are
not only governed by the gravitational force but are also affected by the magnetic field in
the confinement region, which may change the distribution of CHAMP dark matter in the
inner part of the halo, and possibly lead to further limits/signals. The ejection of CHAMP
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Figure 6.19: Constraints on (m, q) assuming that X is produced thermally in the early
universe. Here we assume that the gauge coupling constant of the dark photon is the same
as the electro-magnetic coupling.

by SNe may further affect the halo structure. We do not pursue this possibility further in
this paper.

6.7 Conclusion and Discussion

Cosmological relics, whether comprising all of dark matter or just a component, are almost
always considered to be electrically neutral. However, charged relics may have escaped
detection either because their electric charge qe is very small, or because their mass, m, is
very large. While CHAMPs may arise as simple additions to the Standard Model, kinetic
mixing provides a window to dark sectors that contain a U(1) gauge group, greatly enhancing
the importance of CHAMP searches, and strongly motivating searches over a wide range of
the (m, q) plane.



CHAPTER 6. CHAMP COSMIC RAYS 172

For m > 1010q GeV, X form a virialized halo that is not disturbed on cosmological
time scales by interactions with the interstellar medium or by magnetic fields. However, for
smaller values of m/q, Fermi acceleration by shock waves of supernova remnants, diffusion
through magnetic inhomogeneities, and thermalization via Rutherford scattering with ion-
ized interstellar matter play crucial roles in determining the number density and spectrum
of X hitting the solar system today. We have discovered that, over a wide region of (m, q),
a steady state is established balancing efficient ejection of X from the galaxy by SN shocks
with continuous diffusion of X into the disk from the halo. The resulting accelerated cosmic
ray flux at the solar system today is shown in Eq. (6.34). It has a 1/p5/2 spectrum to a
maximum momentum determined by the size and the lifetime of the shock-wave accelerator,
as is shown in Fig. 6.3. The corresponding local number density of the accelerated X is
very large, (10−3 − 1) of the halo density for m/q = (102 − 1010) GeV. Hence, in this region
of (m, q), limits from direct detection experiments are very powerful, whereas previously,
neglecting diffusion in from the halo, they were believed to be absent.

For m < 105q2 GeV, X collapse into the disk as it forms. Clearly X cannot be halo
dark matter; however, they may still provide a window to the dark sector. The inefficient
diffusion in from the halo because of the thermalization or the small rigidity of X suggests
that constraints on a component of X might be weak. This is incorrect: X are strongly
coupled with the ISM giving a thermalization bottleneck, inhibiting Fermi acceleration and
ejection from the galaxy. Although most X are ejected by today, there remains a local flux
of accelerated X, and for m > MeV the charge q is sufficiently large that direct detection
limits are extremely powerful.

Over the entire (m, q) plane with m < 1010q GeV, the accelerated CHAMPs have speeds
larger than typically assumed for dark matter, opening up new signals and regions of pa-
rameter space to be probed by experiments. We have derived constraints from XENON1T,
CDMS II, XENON10, Super Kamiokande, IceCube, MAJORANA, MACRO, ICRR as well
as Baksan. Over a large part of the (m, q) plane, the most powerful constraints on fX , the
fraction of dark matter that can beX, arise from direct detection limits from nuclear/electron
recoil. Indeed, for q < 10−6, the only limits come from nuclear/electron recoil. Limits on fX
from the XENON1T, CDMS II and XENON10 experiments are shown in Figures 6.10, 6.11
and 6.12. At larger q the most powerful bounds on fX arise from signals from Cherenkov
light and ionization; frequently these bounds are extremely powerful, although they often
apply to only a small region of the (m, q) plane, as shown in Figures 6.13-6.17.

We briefly comment on the EDGES detection of an enhanced absorption feature in the
21-cm line at z ∼ 17 [140]. Such an anomaly can be explained if a fraction fX ∼ 10−3 of
DM are CHAMPs with mass 10 − 80 MeV and charge 10−6 − 10−4 [117]. However, such a
scenario is ruled out by XENON10 and Super-K experiments by 3− 5 orders of magnitude
according to Figs. 6.12 and 6.13.

Constraints on CHAMPs comprising all of dark matter, no matter what the production
mechanism, are severe, as shown in Figure 6.18. q > 10−9 is excluded for any m < 105 GeV.
It will be exciting to see how much of the Freeze-In region can be reached by future experi-
ments.
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There are two clear signal regions for thermally produced CHAMPs that contribute all of
dark matter in theories with a dark photon. In Figure 6.19, these are along the edges of the
purple region that is excluded by overproduction of dark matter. The first arises from Freeze-
In production of the CHAMPs from the Standard Model sector, and has q ∼ 4× 10−11 and
m > 1 TeV. The second arises from Freeze-Out annihilation to dark photons and has m ∼ 1
TeV, and q in the fairly narrow range of 4× 10−11 − 10−10, with larger q being excluded by
XENON1T. Future nuclear recoil experiments will continue to probe the Freeze-Out region
and may eventually reach the Freeze-In region. For m < 1 TeV, Freeze-out gives fX ∝ m2,
and future nuclear recoil experiments will probe significant regions of the (m, q) plane where
X is a sub-dominant component of dark matter.
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Chapter 7

Upper Limit on the Axion-Photon
Coupling from Magnetic White Dwarf
Polarization

7.1 Introduction

Ultralight axion-like particles are hypothetical extensions of the Standard Model that could
be remnants of new physics at energies well above those that may be probed by collider exper-
iments [590, 182, 236]. For example, in String Theory compactifications it is common to find
a spectrum of ultralight axions [641, 68]. At low energies the axions interact with the Stan-
dard Model through dimension-5 operators suppressed by the high scale fa & 107 GeV [334].
In particular, an axion a may interact with electromagnetism through the Lagrangian term
L = gaγγaE · B, where E and B are the electric and magnetic fields, respectively, and
gaγγ ∝ 1/fa is the coupling constant. In this work, we set some of the strongest constraints
to-date on gaγγ for low-mass axions using white dwarf (WD) polarization measurements.

Axions are notoriously difficult to probe experimentally due to their feeble interactions
with the Standard Model. The most powerful approach at present to probe ultralight axions
purely in the laboratory is that employed by light shining through walls experiments, which
leverage the fact that photons and axions mix in the presence of strong magnetic fields; the
ALPS [269] experiment has constrained |gaγγ| . 5×10−8 GeV−1 at 95% confidence for axion
masses ma . few × 10−4 eV. The upcoming experiment ALPS-II [86] may reach sensitivity
to |gaγγ| . 2 × 10−11 GeV−1 for a comparable mass range. Going to lower coupling values,
however, requires making use of astrophysical axion sources in order to access strong magnetic
fields, longer distances, and higher luminosities. For example, the CAST [55] experiment (see
Fig. 7.1) has set strong constraints on gaγγ by looking for axions produced in the Sun and
then converting to X-rays in the magnetic field of their detector, and the followup project
IAXO [67] may be able to cover significant unexplored parameter space (|gaγγ| . 4× 10−12

GeV−1 for ma . 5 × 10−3 eV). Purely astrophysical probes currently set the strongest
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Figure 7.1: Constraints on the axion-photon coupling gaγγ arise from searches for axion-
induced X-rays from super star clusters [233] and a nearby MWD [234] in addition to gamma-
rays from SN1987A [558], searches for spectral irregularities with Fermi-LAT [36, 696] and
H.E.S.S. [18], the CAST axion helioscope [55], HB star cooling [78], and constraints from
SHAFT [336], ABRACADABRA [551, 604], ADMX [259, 144], and RBF+UF [228, 344] that
are contingent on the axion being dark matter. The fiducial 95% upper limit from this work
from the non-observation of linear polarization from SDSS J135141 is computed assuming the
most conservative (at 1σ) magnetic field strength, MWD radius, and orientation. The shaded
orange region shows how the limits change when considering astrophysical uncertainties; the
dominant uncertainty is the inclination angle. The limit found using the best-fit astrophysical
parameters for the MWD is also indicated.

constraints on gaγγ at ultra-low axion masses. Observations of horizontal branch (HB) star
cooling [78] constrain gaγγ at a level comparable to CAST (|gaγγ| . 6.6 × 10−11 GeV−1, as
illustrated in Fig. 7.1, for axion masses less than the keV scale). The non-observation of
gamma-rays from SN1987A — which would be produced from Primakoff production in the
supernova core and converted to photons in the Galactic magnetic fields — leads to the limit
|gaγγ| . 5.3×10−12 GeV−1 for ma . 4.4×10−10 eV [558] (but see [93]). The non-observation
of X-rays from super star clusters, which may arise from axion production in the stellar
cores and conversion in Galactic magnetic fields, leads to the limit |gaγγ| . 3.6 × 10−12

GeV−1 for ma . 5× 10−11 eV [233]. Ref. [587] claims to constrain |gaγγ| . 8× 10−13 GeV−1

for ma . 10−12 eV using searches for X-ray spectral irregularities from the active galactic
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nucleus NGC 1275, though the magnetic field models in that work, and thus the resulting
limits, are subject to debate [479, 504].

There are a number of astrophysical anomalies that favor axions at |gaγγ| below current
constraints. For example, the unexplained transparency of the Universe to TeV gamma-
rays may be explained by the existence of axions with gaγγ ∼ 10−12 − 10−10 GeV−1 and
ma ∼ 10−9 − 10−8 eV (see Fig. 7.1) [251, 276, 392, 516, 596, 445] (but see [127, 252]).
The high-energy gamma-rays would convert to axions in the magnetic fields surrounding the
active galactic nuclei sources and then reconvert to photons closer to Earth in the inter-
galactic magnetic fields, effectively reducing the attenuation of gamma-rays caused by pair-
production off of the extragalactic background light. The gamma-ray transparency anomalies
are constrained in-part by searches for spectral irregularities from gamma-ray sources with
the H.E.S.S [18] and Fermi-LAT [36, 696] telescopes (but see [479]).

Magnetic WDs (MWDs) are natural targets for axion searches because of their large
magnetic field strengths, which can reach up to ∼109 G at the surface. Ref. [234] recently
constrained the coupling combination |gaγγgaee|, with gaee the axion-electron coupling, using
a Chandra X-ray observation of the MWD RE J0317−853. Axions would be produced
from electron bremsstrahlung within the MWD cores and then converted to X-rays in the
magnetosphere. Depending on the relation between gaee and gaγγ the constraint on gaγγ alone
could vary from |gaγγ| . few×10−13 GeV−1 to |gaγγ| . 4.4×10−11 GeV−1 for ma . 5×10−6

eV; the most conservative constraint from that work is illustrated in Fig. 7.1. (See [290, 291,
155, 292] for similar searches using neutron stars (NSs) as targets.) Note that WD cooling
provides one of the most sensitive probes of the axion-electron coupling alone, since the
axions produced by bremsstrahlung within the stellar cores provide an additional pathway
for the WDs to cool [579].

Refs. [458, 317] were the first to propose using MWD polarization measurements to con-
strain gaγγ. The basic idea behind this proposal, which is the central focus of this work, is
illustrated in Fig. 7.2. The MWD radiates thermally at its surface temperature. The thermal
radiation is unpolarized, but it may effectively acquire a linear polarization when traversing
the magnetosphere because photons polarized parallel to the transverse magnetic fields may
convert to axions, which are unobserved, while the orthogonal polarization direction is un-
affected. Ref. [317] claimed that MWD linear polarization measurements of the MWDs PG
1031+234 and Sloan Digital Sky Survey (SDSS) J234605+38533 may be used to constrain
|gaγγ| . (5− 9)× 10−13 GeV−1 for ma . few× 10−7 eV. Here we critically reassess the upper
limits from these MWDs and show that, while strong, the upper limits on gaγγ from these
MWDs are around an order of magnitude weaker than claimed in [317], when accounting for
astrophysical uncertainties on the magnetic field and its geometry. Additionally, we identify
two other MWDs — SDSS J135141.13+541947.4 (hereafter SDSS J135141) and Grw 70◦8247
— whose linear polarization measurements lead to strong constraints on gaγγ. The upper lim-
its on gaγγ from this work represent the strongest to-date for few×10−9 eV . ma . 10−6 eV.
We show that the axion-induced polarization signal is determined only by the magnetic field
strength and geometry far away from the MWD surface, outside of the atmosphere, where
the free-electron plasma does not play an important role. Lastly, we identify future MWD
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unpolarized light

MWD

B-field

linear polarization

axion (unobserved)

Figure 7.2: The MWD emits thermal, unpolarized light, but this light may acquire a linear
polarization when traversing the magnetosphere by photon-to-axion conversion. Photons
polarized along the direction of the transverse magnetic field may convert to axions, while
those polarized in the orthogonal direction are unaffected. Note that the conversion process
may take place well away from the MWD surface.

targets whose polarization observations could further constrain gaγγ or lead to evidence for
axions at currently un-probed coupling strengths. We begin, in Sec. 7.2, by outlining the
formalism for how to compute the axion-induced polarization signal.

7.2 Axion-Induced Polarization

In this section we outline the formalism for computing polarization signals from astrophysical
sources due to axion-photon mixing. While we ultimately focus on MWDs in this work, we
begin with a more general survey of possible astrophysical targets. The basic idea behind
this work is to focus on sources where the initial electromagnetic emission is known to be
unpolarized but where the radiation must traverse regions of large magnetic field strengths
before reaching Earth. Since photons polarized along the directions of the transverse mag-
netic fields may convert to axions, the presence of axions in the spectrum of nature will
effectively induce a level of linear polarization whose degree depends on the strength of the
axion-photon coupling. This process is illustrated for MWDs in Fig. 7.2, where the relevant
magnetic field is that directly surrounding the MWD.

The idea of searching for axion-induced polarization signals has been discussed in three
main contexts: MWDs [458, 317], NSs [458, 564], and quasars [404, 557, 24, 555, 25, 556, 503,
302]. In the first two cases the star is the source of both the initially-unpolarized photons and
the strong magnetic fields. In the latter case, the magnetic fields are much weaker but they
act over larger distances. In this section we focus on polarization signals of the former type,
where the star provides both the source of photons and magnetic fields, but first we briefly
discuss the results of the quasar searches. Ref. [556] claims to constrain |gaγγ| . few× 10−13

GeV−1 for ma . few×10−14 eV in order to not overproduce the measured optical polarization
signals from distant quasars; this upper limit would be the most stringent to-date on low



CHAPTER 7. UPPER LIMIT ON THE AXION-PHOTON COUPLING FROM
MAGNETIC WHITE DWARF POLARIZATION 178

mass axions. However, the results in [556] are dependent on the strength of the assumed
magnetic fields and plasma density profiles over distances ∼20 Mpc away from the sources.
Ref. [556] assumed supercluster magnetic fields ∼2µG in strength and coherent over ∼100
kpc distances within 20 Mpc of the quasars. On the other hand, simulations of supercluster
magnetic fields [246, 245, 495, 661, 303] find that the fields are filamentary and typically
orders of magnitude smaller than those assumed in [556] at such large distances away from
the clusters. The field strengths increase in the clusters themselves, but so too does the free-
electron density, which suppresses photon-to-axion conversion. At present it seems likely
that our knowledge of the supercluster-scale magnetic fields and plasma density profiles are
not robust enough to claim a bound on gaγγ, which is why we focus on stellar sources for
which the magnetic field profiles may be measured more precisely using e.g. the Zeeman
effect and for which, as we will show, knowledge of the free-electron density is not necessary.

Analytic aspects of axion-induced polarization

Consider an unpolarized monochromatic beam of photons with frequency ω propagating
through a medium with magnetic field profile B(s) and plasma-frequency profile ωpl(s), with
s the distance along the propagation direction. The plasma frequency is sourced by free
electrons for our purposes. We will track the Stokes parameters, which in terms of the
complex electric field E are defined by

I = |E1|2 + |E2|2 , Q = |E1|2 − |E2|2
U = 2Re (E1E2∗) , V = −2Im (E1E2∗) ,

(7.1)

with x1−x2 the transverse directions to the propagation direction x3. The linear polarization
fraction is conventionally defined by

Lp ≡
√
Q2 + U2

I
, (7.2)

while the circular polarization fraction, which we will discuss less in this work, is Cp ≡ V/I.
The linear polarization is also specified by an angle in the x1−x2 plane χ, with tan 2χ = U/Q.
Note that we are interested in time-averaged quantities. Thus, implicitly when we write
quantities like I and Q we are referring to 〈I〉 and 〈Q〉, where the brackets refer to time
averages over intervals much longer than 2π/ω.

As a first example let us consider the simple case of a static magnetic field B = B0x2

extending over a length L in the x3 direction, such that s ∈ (0, L). We also take ωpl(s) = ωpl

to be independent of distance. The point of this exercise is to gain familiarity with how
competing effects contribute to Lp before turning to the case of interest of conversion in
stellar magnetospheres. Under the assumption that the photon wavelength is much smaller
than the length L (2π/ω � L), one may use a WKB approximation (see, e.g., [577]) to
reduce the second-order axion-photon mixing equations to first-order mixing equations:

[
i∂s +

(
∆|| + ∆pl ∆B

∆B ∆a

)](
A2

a

)
= 0 , (7.3)
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with A2 = E2/(iω) the corresponding component of the vector potential in Weyl gauge
(A0 = 0), ∆a = −m2

a/ω, ∆pl = −ω2
pl/ω, ∆B = gaγγB0/2, and ∆|| = (7/2)ωξ, with ξ =

(αEM/45π)(B/Bcrit)
2, arising from the non-linear Euler-Heisenberg Lagrangian in strong-

field quantum electrodynamics, with Bcrit = m2
e/e ≈ 4.41× 1013 G [373].

Throughout this work we are interested in the weak mixing regime where the photon-to-
axion conversion probabilities (pγ→a) and axion-to-photon probabilities (pa→γ) are much less
than unity, so that we may work to leading non-trivial order in gaγγ. We may then solve (7.3)
in perturbation theory, treating the ∆B mixing term as a perturbation, since without this
term the mixing matrix in (7.3) is diagonal. We consider the initial state, at s = 0, to be
specified by the vector potential A = (A/

√
2) (a1x̂1 + a2x̂2) for an arbitrary real A, where

a1 and a2 are complex random variables that obey the relations: 〈a1a1∗〉 = 〈a2a2∗〉 = 1,
with 〈a1a1〉 = 〈a2a2〉 = 〈a1a2〉 = 〈a1a2∗〉 = 0. Referring to (7.1), and recalling that all such
quantities are subject to expectation values 〈. . . 〉, we see that at s = 0 we have I = A2, while
Q = U = V = 0, implying that the initial state is unpolarized. The perturbative solution to
the equations of motion at s > 0 is then, up to unimportant phases and to second-order in
perturbation theory,

A(s) =
A√
2

[
a1x̂1 + a2x̂2

(
1−

∫ s

0

ds∆B

∫ s′

0

ds′′∆Be
−i
∫ s′′
0 ds′′′∆tr

)]
,

(7.4)

where in general (7.4) would hold even if the mixing terms were s-dependent, though they
are not in this simple example. Note that we have defined ∆tr ≡ ∆||+ ∆pl−∆a. Performing
the integration in (7.4) out to s = L we find that

I = A2

(
1− ∆2

B[1− cos(L∆tr)]

∆2
tr

)
,

Lp =
∆2
B

∆2
tr

[1− cos(L∆tr)] ,

Cp = 0 ,

(7.5)

to leading non-trivial order in ∆B, with the polarization angle χ = 0. Note that by the same
logic the axion-to-photon conversion probability, for a pure initial axion state, is given by

pa→γ =

∣∣∣∣
∫ L

0

ds′∆Be
−i
∫ s′
0 ds′′∆tr

∣∣∣∣
2

= 2
∆2
B

∆2
tr

[1− cos(L∆tr)] ,

(7.6)

such that we may infer, at least for this example, that Lp = pa→γ/2 to leading order in ∆B.
This should not be surprising in light of the physical picture of the underlying mechanism that
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produces the linear polarization. The photons polarized in the x̂1 direction are unaffected by
the axion. However, those in the x̂2 direction have a probability to convert to axions, pγ→a,
which is equal to pa→γ. The photon survival probability is then pγ→γ = 1 − pa→γ. Then,
referring to (7.1) and (7.2), it is clear that Lp = pa→γ/2.

There are a few interesting points to be made about the expression for Lp. If |L∆tr| � 1
then Lp ≈ 1

2
∆2
BL

2; the quadratic growth of Lp with L is related to the fact that the axion and
photon remain in-phase during the mixing. As |L∆tr| becomes comparable to and greater
than unity we begin to notice the different dispersion relations between the axion and photon
over the distance L. The difference of dispersion relations suppresses mixing. Indeed, one
surprising aspect of (7.5) is that if we assume |∆||| � |∆a|, |∆pl| and L|∆||| � 1, which would
be the case appropriate for photons propagating over a large distance through a strongly
magnetized region with low plasma density and an ultra-light axion in the spectrum, then
the dependence of Lp on B0 is Lp ∝ 1/B2

0 . This is surprising because it suggests that when
the Euler-Heisenberg term dominates ∆tr, strong magnetic fields actually suppress mixing
compared to weaker magnetic fields.

Let us now generalize the example above to consider dipole magnetic fields. This is
instructive because the magnetic fields surrounding many stars, such as the MWDs that
are the main topic of this work but also the fields surrounding NSs and to a large extent
main sequence stars as well, may be described – at least to first approximation – by dipole
fields. Indeed, at distances far away from the star the field should approach that of a
dipole, since the higher multipole field components fall off faster with distance. Let us
assume that the star has a radius Rstar such that unpolarized emission radiates from the
surface and then propagates to infinity. For the purpose of this example we will assume
that B(s) = B0x̂2[Rstar/(Rstar + s)]3, and we will compute Lp with s → ∞. This magnetic
field profile is that seen by radial emission at the magnetic equator, where B(s) remains
perpendicular to the propagation direction for all s. Moreover, we will make the assumption
for this example that |∆||| dominates ∆tr, which is the case appropriate for low-mass axions
and low plasma densities. In this case we may use (7.4) to compute, to leading non-trivial
order in ∆B,

Lp ≈1.4× 10−4
( gaγγ

10−12 GeV−1

)2
(

B0

100 MG

)2/5(
1 eV

ω

)4/5(
Rstar

0.01 R�

)6/5

×

Abs
{

Re
[
(−1)2/5e−i

7
10
Rstarξ0ω

(
Γ
(

4
5

)
− Γ

(
4
5
,− 7

10
iRstarξ0ω

))]}

0.022
,

(7.7)

with ξ0 denoting the value at the surface such that

Rstarξ0ω ≈ 9 · 10−3

(
Rstar

0.01R�

)( ω

1 eV

)( B0

100 MG

)2

. (7.8)

Note that when Rstarξ0ω � 1, which is a limit applicable to many MWD in this work, we
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may expand (7.7) to write

Lp ≈1.4× 10−4
( gaγγ

10−12 GeV−1

)2
(

B0

100 MG

)2

×
(

Rstar

0.01 R�

)2

, Rstarξ0ω � 1 .

(7.9)

On the other hand, when Rstarξ0ω � 1, the term appearing in the second line of (7.7)
oscillates, with a typical magnitude around unity. That is, at very large magnetic field
values, when the Euler-Heisenberg term dominates, Lp ∝ B

2/5
0 , while in the low-field limit

the polarization scales more rapidly with magnetic field as Lp ∝ B2
0 .

There are a number of important points to be made regarding the formulae (7.7) and (7.9).
The MWDs in this work will have field values .1000 MG, and we will typically be considering
energies ω ∼ eV; thus, except in extreme cases – such as high energies and high field values
– the Euler-Heisenberg term will not significantly affect Lp. On the other hand, consider
the searches in [235, 234] for hard X-rays arising from axion production in the cores of
MWDs and converting to photons in the magnetospheres. In those works the typical axion
energies are ω ∼ keV, and thus we see that for the same MWDs the Euler-Heisenberg term
is important to accurately describe the axion-to-photon conversion at those energies. On
the other hand, consider an optical polarization signal arising from a strongly magnetic NS,
with Rstar ∼ 10 km, ω ∼ eV, and B0 ∼ 1014 G. Since Rstarξ0ω � 1 in that case we may infer
that Lp ≈ 5×10−5(gaγγ/10−12 GeV−1)2. Additionally, NS surface temperatures are typically
much larger than an eV, with ω ∼ 100 eV being a more appropriate reference energy, which
further suppresses Lp. We thus arrive at the surprising conclusion that despite their lower
magnetic field values, MWDs are more powerful probes of ultralight axions, with polarization
probes, than NSs because the Euler-Heisenberg term suppresses axion-photon mixing in NS
magnetospheres.

We may also use (7.9) to verify that MWDs are more efficient at producing linear polar-
ization than non-compact stars. The Sun, for example, has a dipole magnetic field strength
B0 ∼ 10 G. Thus, for unpolarized emission emanating from the non-active Sun we ex-

pect Lp ∼ 10−14
(
gaγγ/10−12 GeV−1

)2
. Note that one of the most magnetized non-compact

stars is HD 215441, which hosts a dipole magnetic field of strength ∼30 kG and a ra-
dius ∼2 R� [80]. The axion-induced linear polarization fraction from this star would be

Lp ∼ 5 · 10−7
(
gaγγ/10−12 GeV−1

)2
, which is still subdominant compared to the MWD ex-

pectation.
Indeed, we may make a general argument that, at least for ω ∼ eV, strongly-magnetic

MWDs are the optimal targets for axion-induced linear polarization searches. Stellar evo-
lution approximately conserves magnetic flux across a surface far away from the star, such
that the dipole field strength Bf in a final stellar evolution stage is related to the initial field
strength Bi by Bf ≈ Bi(Ri/Rf )

2, where Ri (Rf ) is the initial (final) stellar radius. Note that
with this approximation we may re-scale the magnetic field of HD 215441 down to WD-radii
stars (Rstar ≈ 0.01R�) to estimate that the most strongly magnetized MWDs should have



CHAPTER 7. UPPER LIMIT ON THE AXION-PHOTON COUPLING FROM
MAGNETIC WHITE DWARF POLARIZATION 182

field strengths B ∼ 1000 MG, which is approximately correct. Similarly, using this argu-
ment we may correctly infer that NSs can reach magnetic field values ∼1015 G. Using the flux
conservation argument and assuming that we remain in the limit where we may neglect the
Euler-Heisenberg term, we may relate the final-stage axion-induced polarization fraction Lfp
to the initial-stage polarization fraction Lip: L

f
p ≈ Lip(Ri/Rf )

2. This estimate suggests that
more compact stars, such as MWDs, will be more efficient at producing axion-induced linear
polarization than less compact stars. On the other hand, this argument stops being true
as soon as the Euler-Heisenberg term becomes important: at that point, the larger-radius
star will produce a larger Lp. As strongly-magnetic MWDs may achieve Rstarξ0ω ∼ 1, we
see that these are thus the optimal targets for axion-induced polarization studies. For this
reason, we will focus on these targets in this work.

So far we have neglected the possible effects of non-zero ∆pl. We now justify this
approximation for MWD magnetospheres. The free electron density in the interstellar
medium away from the Galactic Center may be as much as ne ∼ 10−1/cm3, though in
the outer parts of the Galaxy near the MWDs that are studied in this work it is typically
lower [208]. The plasma frequency associated with a free electron density ne = 10−1/cm3 is
ωpl =

√
4παEMne/me ≈ 10−11 eV, with me the electron mass. Referring back to e.g. (7.5),

the relevant dimensionless quantity to compute to assess the importance of the plasma mass
term is |Rstar∆pl| ≈ 4 × 10−9 for the above ne estimate, ω = 1 eV, and Rstar = 0.01R� ap-
propriate for a WD. Note that the plasma mass term would be important for |Rstar∆pl| & 1.
Thus, even accounting for a significantly enhanced interstellar free-electron density near
the MWD, it is unlikely that the ∆pl term would be important at optical frequencies. On
the other hand, within the MWD atmosphere the free-electron density may be significantly
higher, perhaps as high as ne ≈ 1017/cm3 [317]. However, the MWD atmosphere is expected
to have a density profile that falls exponentially with a characteristic scale height ∼100 m.
Considering that a typical WD radius is ∼ 7× 106 m, we see that the atmosphere only ex-
tends non-trivially over a very small fraction of the stellar radius away from the surface. The
photon-to-axion conversion takes place continuously over a characteristic distance of order
the MWD radius away from the stellar surface. Thus, the effect of the atmosphere on the
axion-induced contribution to Lp is negligible. More precisely, the effect of the atmosphere
on the conversion probability is suppressed by the ratio of the MWD atmosphere thickness
to the MWD radius; this ratio is 10−5.

In contrast to the axion-induced polarization signal, the standard astrophysical contribu-
tions to Lp and Cp arise solely within the atmosphere from anisotropic cyclotron absorption
and bound-free transitions [459, 58]. In general, the degree of polarization is proportional
to the optical depth of the atmosphere [459], so that the generation of astrophysical linear
polarization is dominantly localized to within a characteristic scale height from the surface of
the MWD. We discuss the astrophysical contributions to the linear polarization in Sec. 7.2,
as they are a possible confounding background for the axion search.

Faraday rotation within the MWD magnetosphere and in the interstellar medium could
in principle reduce the linear polarization fraction, though we estimate numerically that
Faraday rotation is small (rotation angles up to ∼10−10) for nearby MWDs with B . 103
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MG and free electron densities of order those in the interstellar medium.
Returning to the axion-induced polarization signal, in the limit where we may neglect

the Euler-Heisenberg term, we may also integrate (7.3) for a dipole magnetic field including
the ∆a term, but neglecting ∆pl for the reasons given above. In this case, we find

Lp ≈ 2× 10−8
( gaγγ

10−12 GeV−1

)2
(

B0

100 MG

)2

×
( ω

1 eV

)2
(

10−5 eV

ma

)4

,

(7.10)

which is valid for |r0∆a| � 1. Interestingly, Lp is independent of Rstar in the high axion
mass limit. Nevertheless, the transition from the low mass to high mass region is dependent
on Rstar, and in practice, the large-mass condition |r0∆a| � 1 is satisfied for

ma � 1.7× 10−7 eV

√( ω

1 eV

)(0.01 R�
Rstar

)
. (7.11)

Thus, we expect that MWD polarization studies to be insensitive to the axion mass for
ma . 10−7 eV, while for masses much larger than this the sensitivity to gaγγ should drop
off quadratically with increasing ma. Next, we present the generalized mixing equations for
non-radial trajectories including the Euler-Heisenberg Lagrangian.

General axion-photon mixing equations

In this work we numerically solve the axion-photon mixing equations including the Euler-
Heisenberg terms and also integrating over emission across the surface of the MWD. That
is, we assume that the MWD surfaces are isothermal (but see [659]), such that the emission
we see on Earth originates from across the full Earth-facing hemisphere of the MWD. How-
ever, this means that photons that originate from across this surface that reach Earth will
generically travel along non-radial trajectories, and this requires us to generalize the mixing
equations in (7.3) to include mixing of the axion with both transverse modes:


i∂s +




∆11 ∆12 ∆B1

∆12 ∆22 ∆B2

∆B1 ∆B2 ∆a








A1

A2

a


 = 0 . (7.12)

Above, we assume that the photon travels along a straight trajectory in the direction ŝ, with
coordinate s, with x̂1 and x̂2 spanning the transverse directions. We also neglect plasma
terms because, as discussed above, they play a subdominant role. The terms appearing
in the mixing Hamiltonian in (7.12) arise from axion-photon mixing, the Euler-Heisenberg
Lagrangian, and the axion mass, and those that differ from the terms in (7.3) are defined
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by [577]

∆11 =
2αEMω

45π

[
7

4

(
B1

Bcrit

)2

+

(
B2

Bcrit

)2
]

∆22 =
2αEMω

45π

[
7

4

(
B2

Bcrit

)2

+

(
B1

Bcrit

)2
]

∆12 =
3

4

2αEMω

45π

(
B1B2

B2
crit

)
, ∆Bi =

1

2
gaγγBi ,

(7.13)

with i = 1, 2 in the last line. Above, B1 and B2 are the magnetic field values in the transverse
directions, and they are generically functions of s.

When applying the formalism above to predict the axion-induced Lp from a MWD, we
begin by discretizing the surface of the hemisphere of the Earth-facing MWD. We consider
initially unpolarized emission from each surface element propagating in the x̂3 direction,
with the final A1 and A2 being the appropriate sum of the contributions from the different
surface elements. This is accomplished by letting the initial vector potential of each surface
element i be labeled as Ai = (Ai/

√
2)
(
ai1x̂1 + ai2x̂2

)
, where the ai1 and ai2 are uncorrelated

random variables such that 〈ai1aj1
∗〉 = δij with all other correlators vanishing. We adjust

the normalization parameter Ai such that Ai ∝
√

0.7 + 0.3 cos θi, with θi being the angle
between the normal vector to the sphere at pixel i and the x̂3 axis. This scaling reproduces
the limb darkening law for the intensity adopted in [280], who confirmed this scaling through
radiative transfer calculations.

Magnetic white dwarf magnetic field models

’ The magnetic field profile around a compact star will generically approach that of a dipole
configuration far away from the stellar surface, since higher-harmonic contributions to the
vacuum solutions to the Maxwell equations fall off faster with radius. In this work, we will
consider both pure dipole profiles and profiles containing higher harmonic modes, which
have been fit to luminosity and circular polarization data from specific MWDs. The dipole
solution may be written as

B(r) =
Bp

2

(
Rstar

r

)3

[3r̂(m̂ · r̂)− m̂] , (7.14)

where m̂ points along the polarization axis in the direction of the magnetic north pole and
r̂ is the position unit vector, with distance r from the center of the star. The field strength
Bp is the polar value at the surface of the star.

The general solution to the Maxwell equations in vacuum may be written in terms of
spherical harmonics; the associated magnetic scalar potential ψ, defined such that B = −∇ψ,
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is given by

ψ = −Rstar

∞∑

`=1

∑̀

m=0

(
Rstar

r

)`+1

[gm` cosmφ

+hm` sinmφ]Pm
` (cos θ) ,

(7.15)

where the coefficient gm` and hm` have dimensions of magnetic field strength. The angle θ is
the angle away from the polarization axis m̂, such that m̂ · r̂ = cos θ, and the angle φ is the
rotation angle about m̂. The Pm

` are the associated Legendre polynomials. Note that the
terms in (7.15) at ` = 1 are simply those in (7.14) for the dipole configuration. Ref. [411]
provides a fit of the harmonic solution in (7.15) to MWD circular polarization and spectra
data for Grw+70◦8247 up through ` ≤ 4; we will make use of this fit later in this work.

It is convenient to define an inclination angle i that is the angle between the magnetic
axis m̂ and the direction towards Earth. For definiteness, throughout this work we define the
coordinate system centered at the MWD center with ẑ pointing towards the Earth and with
m̂ = cos iẑ + sin iŷ. Note that for a dipole field configuration the linear polarization must
vanish as i→ 0, since in this limit there is no preferred direction for the linear polarization
to point.

Astrophysical contributions to the linear polarization

Astrophysical mechanisms exist within the MWD atmospheres for polarizing the outgo-
ing radiation. Like the axion mechanism that is the focus of this work, the astrophysical
mechanisms also rely on the polarizing effects of the magnetic field. Here, we overview
the calculation of the astrophysical polarization, as astrophysical emission serves as a back-
ground contribution in the axion searches that we discuss later in this work. As we will see
one crucial difference between the two sources of linear polarization is that the astrophysical
mechanisms lead to strong wavelength dependence of the polarization fraction, while the
axion-induced polarization depends less strongly on wavelength. This difference helps con-
strain the axion-induced linear polarization fraction even in the presence of an unconstrained
astrophysical polarization fraction, which in principle could partially interfere with the axion
signal at certain wavelengths.

In what follows we assume that the MWD atmosphere is composed primarily of hydrogen,
which is the case for the MWDs we consider in this work. The bound electrons in the MWD
atmosphere can be considered in the Paschen-Back regime, where the Hamiltonian is given
by

H =
p2

2me

− αEM

r
+

1

2
ΩCLz +

1

8
meΩ

2
Cr

2 sin2 θ , (7.16)

with the third term accounting for the linear Zeeman effect and the fourth term the quadratic
Zeeman effect. The electron mass is me, the cyclotron frequency is Ωc = eB/me, r is the
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atomic radial distance, and θ = 0 points along the magnetic field. At the fields under
consideration B & 100 MG, the quadratic Zeeman effect is important or dominant. However,
in this work we use an approximation for fields B . 100 MG to model the astrophysical linear
polarization, given by Ref. [459] and Ref. [410]. The reason is that the bound-free transition
cross sections have not yet been computed with sufficient resolution for the modeling of MWD
polarization at high field values. Recent advances in solving the Hamiltonian of (7.16) have
led to numerical cross sections for a limited number of these transitions, but they were not
reported on a fine enough grid of magnetic fields strengths for astrophysical modeling [513,
698, 697].

Here, we first describe the generation of polarization for low fields, where the quadratic
Zeeman effect is negligible. There are two main astrophysical processes that contribute
to continuum linear and circular polarization of MWD starlight: (1) the ionization of a
bound electron in a hydrogen atom (bound-free polarization) and (2) the absorption of a
photon by an ionized electron (free-free polarization) [459]. Bound-bound transitions of the
hydrogen atom can produce localized features in the MWD spectra, and the observation of
these features are used to estimate the surface magnetic fields of MWD, as the bound state
energies of the hydrogen atom have been solved. Bound-bound transitions can also contribute
to the polarization continuum, but these effects are washed-out by the large variation in the
field on the MWD surface. We discuss the bound-bound transitions further in the context
of SDSS J135141 in Sec. 7.3.

The MWD starlight is produced unpolarized deep within the atmosphere as blackbody
radiation. The polarization is generated as the light propagates through the thin atmo-
sphere and ionizes bound electrons and scatters on free electrons. Because the atmosphere
is thin compared to the coherence length of the magnetosphere, to a good approximation
the magnetic field is constant throughout the atmosphere at a given point on the surface of
the MWD. This surface magnetic field preferentially selects a direction for the absorption
to occur, which polarizes the blackbody radiation. The bound-free transitions must satisfy
the dipole selection rules q = 0,±1, where q is the difference between the initial and final
magnetic quantum numbers, mi and mf , respectively, of the transition. The transitions
with q = ±1 preferentially absorb photons polarized perpendicular to the magnetic field
and therefore polarizes the starlight parallel to the magnetic field. On the other hand, the
transitions with q = 0 preferentially absorb photons of the opposite polarization, so that
these transitions polarize the starlight perpendicular to the magnetic field. To determine
the overall effect of bound-free absorption, there is a competition between these two terms.
Over the majority of the photon energy range, the q = ±1 transitions are stronger such that
the starlight is polarized parallel to the magnetic field. Only for photon energies near the
hydrogen absorption edges does the polarization flip so that the linear polarization points
perpendicular to the magnetic field. Finally, for free-free absorption, light is preferentially
absorbed in the plane perpendicular to the magnetic field because the cyclotron motion of
the free electrons restricts them to this plane, and therefore this absorption polarizes the
light parallel to the magnetic field. If the axion-induced polarization is perpendicular to the
astrophysical polarization direction then the two signals may partially destructively interfere.
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Quantitatively, the effect of the bound-free and free-free absorption may be captured
though the transfer equation describing the evolution of the photon polarization state matrix
(effectively a photon density matrix),

F =

(
E1

E2

)(
E∗1 E∗2

)
=

1

2
Sµσµ , (7.17)

where Sµ = (I,Q, U, V ) and σµ = (1, σz, σx, σy) are the Stokes and Pauli vectors, respectively.
In the anisotropic atmospheric plasma of the MWD, the transfer equations take the form
[459],

dF
ds

= −1

2
(TF + FT †) + E , (7.18)

where the transfer matrix T = K − 2iR describes absorption (K) and refraction (R), while
E describes emission. Equation (7.18) can be solved analytically under the approximation
that the initially unpolarized blackbody radiation emanating from the MWD experiences a
constant magnetic field while traversing the thin, cold, atmosphere. As shown in [459], under
these assumptions, the solution to (7.18) as expressed in terms of the final polarization state
of starlight leaving the MWD atmosphere of thickness δs is given in terms of the Stokes
parameters by [459]

I = 1− δs

2
tr(K) , Q = −δs

2
tr(σzK) ,

U = −δs
2

tr(σxK) , V = −δs
2

tr(σyK) .

(7.19)

For dipole transitions like bound-free and cyclotron absorption, K is diagonal in the
complex spherical basis with matrix elements

Kq(ω) = nσq(ω) , (7.20)

where n is the number density of the absorbing species and σq the associated frequency-
dependent cross-section, with ω the radiation frequency.

The astrophysical linear polarization follows from (7.19) and (7.20) and is given by

Lp,astro =
|Q|
I

=
δs

4
|2K0 −K+ −K−| sin2 θ , (7.21)

since U = 0 in this basis. As in (7.16), θ is the angle between the surface magnetic field and
the light propagation direction, and K in general includes bound-bound, bound-free, and
free-free absorption contributions, although we do not consider bound-bound transitions.

Note that (7.21) holds for any MWD magnetic field strength. However, for MWDs with
high fields where the linear Zeeman effect breaks down (B & 100 MG), the bound-free
absorption cross-section become difficult to calculate. In this work we use an approximation
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that is common in the literature. For bound-free collisions where the quadratic Zeeman effect
is unimportant (B . 100 MG), Kq can be calculated analytically under the approximation
that the wavefunction of the bound electron is unaffected by the perturbing external magnetic
field while its energy shifts linearly by miΩC . Under these approximations, the bound-free
absorption cross-section was derived first in [459].

We use the improved approximation [410] that accounts for the energies of the hydrogen
absorption edges εnlmq as a function of magnetic field, εnlmq ≡ Enlm(B)+Θ (mfΩC) for Θ the
Heaviside step function. The first term accounts for the fact that the bound state energies
of hydrogen in the quadratic Zeeman regime depend on all three quantum numbers {n,l,m}
and the magnetic field strength B, because the Hamiltonian of (7.16) breaks spherical sym-
metry. These bound state energies Enlm(B) are tabulated in [610]. We also account for the
quantization of the free electrons into Landau levels, which yields the second term. Then
the bound-free absorption coefficients are given by

Kq,bf(ω) = nH
ω

ω − qΩC

n≤4∑

nlm

exp

(−Enlm(B)

T

)
×

{
σbf
n (ω − qΩC), ω ≥ εnlmq

0, ω < εnlmq
.

(7.22)

We weight the states with the Boltzmann factor, under the assumption of the fixed surface
temperature T = 15000 K, appropriate for the MWDs we consider in this work. σbf

n (ω) ∝
n−5ω−3 is the cross section for a photon of energy ω to ionize an electron of principal quantum
number n at zero magnetic field. The dependence on ω−qΩC is derived in the linear Zeeman
regime. For the optical spectra we consider in this work, we only need to consider n ≤ 4.

The free-free absorption matrix is proportional to the cyclotron absorption cross-section

Kq,ff(ω) =

{
neσ

ff q = +1

0 q 6= +1
, (7.23)

where ne the number density of free electrons. We take the cyclotron absorption cross-section
σff as given in [459]. Only the q = 1 component is nonzero due to selection rules that enforce
energy and angular momentum conservation along B [460], and this cross section is strongly
peaked around ω = ΩC .

At low magnetic fields B . 100 MG, the cyclotron frequency is much smaller than the
optical frequencies, so that we do not need to consider cyclotron absorption contributions
to the atmospheric opacity. Thus, only the bound-free absorption cross-section (7.22) con-
tributes to the polarization. Furthermore, the hydrogen absorption edges are close to their
zero-field values 13.6 eV/n2. Then, for energies far away from the absorption edges (7.21)
reduces to [459]

Lp,astro(ω) ∝ Ω2
C

ω5
sin2 θ . (7.24)
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The proportionality constant of (7.24) depends on the line-of-sight integrated bound electron
density in the MWD atmosphere. Since ΩC ∝ B, we see that in this regime the astrophysical
linear polarization scales as the transverse magnetic field strength squared like that induced
by the axion. However, the astrophysical polarization points parallel to the magnetic field
while the axion-induced polarization points perpendicular to the field, which means that the
two contributions may partially cancel each other depending on their relative magnitudes.

By contrast, even at low magnetic fields, the linear polarization displays strong localized
features near the absorption edges. The linear polarization becomes much larger in mag-
nitude and switches direction blueward of the edge so that it points perpendicular to the
magnetic field, in the same direction as the axion-induced polarization.

However, in this work we consider MWDs with large magnetic fields B & 100 MG. In
this case, the cyclotron frequency enters the optical, so that we must include the cyclotron
absorption contribution to the linear polarization. The bound-free absorption also becomes
more complex than at lower fields. The absorption edges cover nearly the entire optical
spectrum. Furthermore, the hydrogen bound state energies depend strongly on the magnetic
field strength, and the magnetic field strength on the surface of the MWD may span more
than a factor of two, which additionally broadens the absorption edge features. Under the
approximation used in this work (7.22), which assumes the bound-free cross section is simply
that at zero-field shifted by qΩC , we find that most of the linear polarization spectrum is
dominated by the absorption edge features rather than by the simple power law scaling
of (7.24). The exact cross sections have been previously computed numerically for a limited
number of transitions [513, 698, 697]. In these results there are additional oscillatory features
near Landau thresholds, where the photon energy matches the energy difference between a
Rydberg bound state and a Landau level. We thus expect that the eventual incorporation
of the numerical cross sections into MWD linear polarization calculations will introduce
additional features in the spectra due to these resonances, although these features will be
smeared out due to the range of field strengths on the MWD surface.

At still higher magnetic fields B & 5000 MG, the situation becomes less complicated.
The quadratic Zeeman term dominates the Coulomb term in (7.16). The approximation
that the Coulomb field is a perturbation on the background magnetic field becomes more
appropriate, and in this limit, we find, following [462], that σbf scales as ω−3 away from
absorption edges as in the low-field case.

Despite the uncertainties described above, essentially any energy dependence in the as-
trophysical polarization is sufficient to distinguish it from the axion-induced polarization for
the purpose of setting an upper limit on the axion-induced polarization contribution, which
is approximately energy independent, given spectropolarimetric data. As discussed further
in Sec. 7.3, this is because given some amount of energy dependence in the astrophysical
background, the axion and astrophysical contributions would not completely destructively
interfere across the full analysis energy range. On the other hand, in order to claim evidence
for an axion signal, the astrophysical linear polarization signal should be better understood in
the high-field regime. This is because without a full understanding of how the astrophysical
polarization emerges in the high field regime, one cannot be confident that a putative signal
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arises from axions and not the imprecisely known astrophysical polarization mechanisms.

7.3 Upper Limits on gaγγ from Magnetic White

Dwarfs

In this section we apply the formalism developed in the previous section to set upper limits
on |gaγγ| from linear polarization data towards the MWDs SDSS J135141 (Sec. 7.3) and
GRW+70◦8247 (Sec. 7.3). These MWDs are unique in that they have strong but well-
characterized magnetic field profiles in addition to dedicated linear polarization data. We
discuss additional MWDs that are promising but have somewhat incomplete data at present
in Sec. 7.3.

SDSS J135141

The MWD SDSS J135141 has one of the largest magnetic fields of all known MWDs.
Ref. [450] measured the polar magnetic field strength in the context of the dipole model
to be Bp = 761.0 ± 56.4 MG, with an inclination angle i = 74.2◦ ± 21.7◦.1 In the below
analysis we consider the dipole model, and we compute the 95% upper limit on |gaγγ| con-
sidering the range of allowable magnetic field parameters. In particular, we take our fiducial
limit to be the weakest one across the range of allowable magnetic field parameters, allowing
the parameters to vary within their 1σ ranges, while we calculate the 95% confidence level
statistical upper limit on the data itself.

Absorption lines and magnetic field model

In this section we overview the determination of the SDSS J135141 magnetic field strength.
To date, this determination has been made only through spectra rather than polarimetry, al-
though the addition of polarimetery would be beneficial to further constraining the magnetic
field profile on the surface. The spectrum of a MWD is that of a thermal distribution at
the temperature of the MWD surface, but with absorption features at wavelengths at which
bound-bound transitions occur in the atmosphere. The transition wavelengths are very
strongly dependent on the local magnetic field; therefore, the absorption lines are broadened
by the range of magnetic field strengths on the MWD surface. In many cases the features
are entirely washed out because the transition wavelengths are highly dependent on the lo-
cal magnetic field, but a few transitions are nearly stationary because they encounter local
extrema. The primary method for determining the magnetic field strength of MWDs is to
search for these stationary features in the spectrum. The bound-bound transitions and dipole
transition strengths of the hydrogen atom in a strong magnetic field are given in Ref. [597].

In Fig. 7.3 we show the wavelength dependence as a function of magnetic field for the
stationary bound-bound 3d−1 − 2p0 transition in the upper panel. The transition is nearly

1Note that Ref. [450] also considered an offset dipole model, but we do not consider this model here.
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stationary around across the full range of field strengths present on the surface of SDSS
J135141, assuming the 761 MG dipolar field. In the middle panel, we show the expected
line templates for two cases (i) the best-fit dipolar field of 761 MG [450] and inclination
angle i = 74.2◦, and (ii) a dipolar field of 400 MG with best-fitting i for that field strength.
To compute these templates, we histogram the wavelengths of the transition on the visible
hemisphere of the MWD and weight each contribution by the dipole transition strength. We
also incorporate the limb darkening law mentioned previously from Ref. [280], which weights
the intensities between pixels on the sphere such that I ∝ 0.7 + 0.3 cos θ, with θ the angle
of the normal to the x̂3 axis that points towards Earth. Note that due to the symmetry
present in a dipole field, it is only the limb darkening rule that changes the spectral shape of
the template with inclination angle i. The template is then convoluted with a Gaussian that
has standard deviation σstark. This broadening is due to the Stark effect, accounting for the
electric field that is also present on the MWD surface, and is the dominant broadening effect
for these lines. We treat σstark as a nuisance parameter that is determined by maximum
likelihood estimation.
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0.50

0.75

1.00

d
F
/d
λ

[a
rb

.]

Figure 7.3: (Top) The wavelength of the 3d−1−2p0 absorption line as a function of magnetic
field. The red shaded region indicates the range of field strengths present on the surface,
assuming the best-fit dipole field of 761 MG from [450]. (Middle) In solid black is the
3d−1 − 2p0 line template for a 761 MG dipolar field; in dashed black for 400 MG. (Bottom)
The flux of SDSS J135141 as measured by SDSS DR7 (gray). In solid black is the best fit
spectrum assuming a 761 MG dipole field. In dashed black is the best fit spectrum assuming
a 400 MG dipole field.

For the 761 MG case, the absorption line appears at approximately the same location
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across the entire hemisphere, so that the resulting feature is highly localized around 853 nm.
On the other hand, if the MWD had a lower field strength of 400 MG, the feature would be
significantly broadened because the transition is not stationary at those field strengths, and
additionally the feature would appear at shorter wavelengths ∼ 820− 860 nm. In the lower
panel, we fit expected flux models for each case to the SDSS data [450]. The models are a
power law background with free index and normalization with the multiplicative absorption
template as shown in the middle panel. For the 761 MG case, we see that the model prefers
an absorption line, indicating that the 761 MG dipole is a reasonable fit to the data. On
the other hand, for the 400 MG case, the fit finds no evidence for a line. Following a similar
procedure SDSS J135141 was determined to have a 761.0±56.4 MG field [450], although that
work fit to the broad-band flux spectra over a much larger wavelength range encompassing
many absorption lines. In fact, Ref. [450] did not include the wavelength range shown in
Fig. 7.3 in their fit; the fact that their best-fit model from lower wavelengths also explains
the 3d−1 − 2s0 absorption line feature provides non-trivial evidence that the magnetic fields
on the surface of the MWD are ∼400-700 MG.

Polarization data

The linear polarization of SDSS J135141 was measured in 2007 by [566] using the Special
Astrophysical Observatory (SAO) 6-m telescope with the Spectral Camera with Optical
Reducer for Photometric and Interferometrical Observations (SCORPIO) focal reducer [22].
Across the wavelength range 400 nm to 650 nm the linear polarization fraction was measured
to be Lp = 0.62%±0.4%. The uncertainty on Lp is dominated by the systematic uncertainty,
arising from effects such as scattered light and ghosts [22], though the exact systematic
uncertainty accounting that goes into the Lp measurement is not detailed in [566]. The
linear polarization fraction data from [566] is reproduced in Fig. 7.4.

An upper limit on the average axion-induced polarization fraction over the wavelength
range Lp,axion may be estimated by the requirement that axions not overproduce the ob-
served polarization, which at 95% confidence and assuming Wilks’ theorem implies Lp,axion .
0.62% +

√
2.71 × 0.4% ≈ 1.28% [210]. This upper limit is very close to that we will derive

below making use of the wavelength dependent data and incorporating the astrophysical
background model. This point illustrates that the astrophysical polarization contribution is
not a limiting background for constraining the axion-induced polarization, at least for this
example. This is fundamentally because the astrophysical background and the axion signal
are polarized in the same direction over the wavelength range relevant for this search. Our
polarization upper limit is also consistent with that found in [480], who performed spec-
tropolarimetric observations of the MWD using the Steward Observatory 2.3 m telescope in
1993 and state that the linear polarization of SDSS J135141 in the wavelength range 410 nm
to 728 nm was found to be less than 1%, though the confidence level of that statement is
not given in [480].

To analyze the wavelength dependent data, we adopt a Gaussian likelihood function
that incorporates the systematic uncertainty in a straightforward way, though the following
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Figure 7.4: The linear polarization data as a function of wavelength towards the MWD SDSS
J135141 as observed by [566] with the SAO 6-m telescope. We use a Gaussian likelihood to
fit a model to the data with three components: (i) the axion signal, (ii) the astrophysical
background, and (iii) an instrumental systematic contribution. We assume that the axion
signal and the instrumental systematic are wavelength-independent, while the astrophysical
background depends on wavelength as described in Sec. 7.3. The axion signal and the instru-
mental systematic contributions would be completely degenerate, given that the systematic
normalization parameter can take either sign, but for the prior on the systematic nuisance
parameter. The best fit model, along with the axion contribution to that model, are illus-
trated, along with the best-fit statistical uncertainties on the data; the statistical uncertainty
is treated as a hyperparameter that is determined by maximum likelihood estimation. The
red band illustrates the allowed axion contribution at 1σ confidence. At the best-fit point the
astrophysical normalization is zero. Still, we illustrate the astrophysical linear polarization
model, with an arbitrary normalization.

analysis could likely be improved in the future with a better understanding of the origin of
the systematic uncertainty. The likelihood we adopt is given by

p(d|M,θ) =

(∏

i

1

σ
e
−(di−Lp(θ))2

2σ2

)
e
−A2

sys

2σ2
sys. , (7.25)

where we leave off unimportant numerical normalization factors and where i labels the wave-
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length bins (there are 83 different wavelength bins, as illustrated in Fig. 7.4). The data d,
with entries di, are the observed polarization values, while the model M has parameters
θ = {Aaxion, Aastro, Asys, σ}. The signal parameter Aaxion controls the normalization of the
axion-induced polarization and, physically, is a proxy for gaγγ, at fixed ma. The parameter
Aastro controls the amplitude of the unknown astrophysical background. The instrumental (
e.g., systematic) contribution to the polarization is characterized by the nuisance parameter
Asys. The parameter σ may be interpreted as the uncorrelated statistical uncertainty on the
linear polarization data. We treat σ as a hyperparameter that is determined by maximum
likelihood estimation.

Both the astrophysical and axion contributions to the polarization in principle have non-
trivial wavelength dependence; in the axion case, the wavelength dependence is found by nu-
merically solving the axion-photon mixing equations, while for the astrophysical contribution
we use (7.21). For all of the magnetic field models, only bound-free absorption contributes, as
the cyclotron wavelength is not in the wavelength range of the data. We compute the Stokes
parameters by averaging them over ∼ 105 points on the MWD surface in each wavelength
bin. The full list of absorption edges and associated wavelength ranges that contribute to
features in the astrophysical linear polarization model are given in Tab. 7.1. Accounting for
the uncertainty on the magnetic field strength and orientation, the edges may shift by ∼ 10
nm. Note that over the range of magnetic field models and wavelengths analyzed, the axion
and astrophysical model contributions to the linear polarization point in the same direction.

Asys is given a zero-mean Gaussian prior distribution in (7.25), with variance σ2
sys. This

prior breaks the degeneracy between the axion signal and the contribution from Asys. We set
σsys = 0.4% since this is the uncertainty quoted in [566] on the average linear polarization
over this wavelength range and since the uncertainty in [566] is systematics dominated.

We fix Aaxion and Aastro to be positive, since as discussed above these two contributions
are polarized in the same direction for this MWD and wavelength range, while Asys is allowed
to be both positive and negative. This means that, for example, the axion and systematic
contributions may completely cancel each other, up to the prior contribution from Asys.

We compute the profile likelihood for Asig, profiling the likelihood over the nuisance
parameters {Aastro, Asys, σ} for each fixed value of Asig. We then assume Wilks’ theorem
such that the one-sided 95% upper limit on Asig is defined through the test statistic t

t(Aaxion) ≡ −2
[
log p(d|M, {Aaxion, Âastro, Âsys, σ̂})

− log p(d|M, θ̂)
]
,

(7.26)

by t(Aaxion) ≈ 2.71 for Asig > Âsig (see, e.g., [210]). Here, hatted quantities denote the values
that maximize the likelihood. In the first term in (7.26) the hatted nuisance parameters are
those at fixed values of Aaxion. Performing this analysis on the data illustrated in Fig. 7.4
we find Lp,axion . 1.25%, where Lp,axion is the average axion-induced polarization over the
wavelength range. We adopt this upper limit for our analysis. Note that the best-fit as-
trophysical normalization parameter is in fact zero. In the case where the axion signal has
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nlm q εnlmq
(nm)

2p1 −1 586+

3p−1 0,±1 463—529

3p0 0,−1 580—627

3p1 0 463—527

3d0 0,−1 609—673

4d−2 0,±1 542—648

4d2 0 542—644

4f−2 0,±1 365—458

4f2 0 365—456

Table 7.1: The list of absorption edges that contribute to features in the SDSS J135141
astrophysical linear polarization model, assuming the fiducial magnetic field model. The first
column shows the initial hydrogen state labeled by the zero-field quantum numbers nlm; the
second column labels the transition by q, the difference between the initial and final magnetic
quantum numbers. The absorption edge features for each respective transition appear in the
wavelength range listed in the third column in nm. This wavelength range is equivalent to
the range of εnlmq over the magnetic field strengths present on the surface, 353− 705 MG.

wavelength dependence Lp ∝ λ−2, as expected in the large-ma limit, the limit on Lp,axion is
strengthened to Lp,axion . 0.9%. However, even in the large ma limit we adopt the upper
limit of 1.25% to account for the possibility that the true wavelength dependence of the
systematic contribution to the polarization is more complicated than that assumed here.

In Fig. 7.4 we illustrate the best-fit model contributions to the data, along with the
inferred statistical uncertainty σ. The shaded red region shows the allowed values that the
axion contribution to Lp could take at 1σ significance. The best-fit model (solid black)
has clear evidence of mismodeling; for example, the model systematically under-predicts
the data at low λ while it over-predicts the data at other wavelengths. This mismodeling
may be from the systematic contribution to the linear polarization having more complicated
wavelength dependence than the assumed flat contribution that we take in our analysis.
Still, as the magnitude of the systematic deviations of the best-fit model from the data
is smaller, by a factor of a few, than our upper limit on Lp,axion, we hypothesize that a
more careful understanding of the instrumental systematic contributions to Lp would be
unlikely to significantly affect our estimate of the upper limit. As mentioned previously,
the best-fit astrophysical normalization is zero for polarization from bound-free absorption,
which we expect to dominate in this wavelength range. We thus conclude that the observed
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Figure 7.5: (Left) The Gaia EDR3 data set in the three bandpasses (dots), G, GBP, and
GRP, for SDSS J135141. The model from cooling sequences is shown as error bars in each
bandpass at the best fit WD mass of 0.7 M� and age. (Right) The same as the left panel,
but now for Grw+70◦8247 at the best fit WD mass of 1.0 M�.

polarization is likely systematic in nature. For illustration purposes, we show in Fig. 7.4
the linear polarization signal from bound-free emission for the best-fit magnetic field and
inclination angle, with an arbitrary normalization.

A better understanding of the astrophysical background and systematic contributions
would be needed to claim evidence for an axion signal. For this reason we focus in this work
only on producing upper limits on |gaγγ| and not on looking for evidence for the axion model
over the null hypothesis of astrophysical emission only.

WD radius from Gaia photometry

From (7.9) we see that Lp ∝ R2
star at low axion masses, so that the limit on gaγγ will scale

linearly with Rstar. WDs have radii ∼0.01R�, but as there is scatter from star-to-star it is
important to determine the radii on a per-star basis. We infer the WD radius from Gaia Early
Data Release 3 (EDR3) photometry [589]. Gaia has measured SDSS J135141’s apparent
magnitudes to be G = 16.4621± 0.0007, GBP = 16.486± 0.004, GRP = 16.414± 0.005.

To infer the WD radius from these data, we use WD cooling sequences [104] for WD
masses between 0.3 and 1.2 M� in steps of 0.1 M�. These sequences provide the expected
EDR3 magnitudes as the WD cools, along with a WD radius. For each mass, we infer the WD
radius for SDSS J135141 with a joint Gaussian likelihood over the three bands as a function
of age. At a fixed WD mass, we maximize this likelihood over the WD age. To account
for possible systematic issues, we additionally maximize over a common uncertainty for G,
GBP, and GRP. That is, we assume that the uncertainties on the magnitudes have a common
systematic component, which is added in quadrature with the statistical components and
then treated as a nuisance parameter. We then use the age-radius relation supplied by the
cooling sequence to obtain a radius estimate. In the left panel of Fig. 7.5, we show the Gaia
EDR3 data in each of these bands in absolute magnitudes. We also show the model from
the cooling sequence at the best fit WD mass and age.

The best-fit mass for SDSS J135141 is 0.7 M�. Within the context of this WD model,
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the expected radius is 0.0111336± 0.0000003 R�, where the 1σ error bars are computed by
solving for the ages where the ∆χ2 increases by 1 on either side. The WD radius is not highly
dependent on age; rather, it is more strongly dependent on mass. Therefore, although the 0.6
and 0.8 M� models are disfavored by the Gaia data by ∼ 4σ, to be conservative we adopt as
the radius uncertainties those from assuming the nearby WD masses provided in the cooling
sequences. (Ideally, we would use cooling sequences at higher mass resolution than provided
in [104].) Using this procedure we infer the radius of SDSS J135141 as Rstar = 0.011± 0.001
R�. Within the uncertainties the most conservative low-mass axion limit is then achieved
for Rstar = 0.01 R�.

Predicted axion-induced polarization signal

For simplicity we begin by fixing ma = 0 eV and considering how the predicted axion-induced
polarization signal varies as a function of the uncertain MWD parameters. The goal of this
exercise is to understand the importance of various sources of modeling uncertainty on the
final gaγγ upper limit and to determine the most conservative set of fiducial model parameters
for computing the upper limit. In performing these calculations we follow the formalism
described in Sec. 7.2; specifically, we discretize the surface of the MWD and for each discrete
point we solve the mixing equations in (7.12) to determine the linear polarization contribution
for initially unpolarized rays that leave the surface at that point. The final polarization signal
is the appropriately weighted sum of polarization vectors across the ensemble of all surface
points on the hemisphere facing Earth. We use 104 points on the hemisphere in performing
our calculations.

In Fig. 7.6 we show how the axion-induced polarization faction from SDSS J135141 varies
as functions of the inclination angle i (left panel) and the polar magnetic field strength Bp

(right panel). Note that for this example we fix Rstar = 0.01R� and gaγγ = 10−12 GeV−1,
though since Lp � 1 the scaling with gaγγ is simply Lp ∝ g2

aγγ. The Lp are computed
averaging over the wavelength range 400 nm to 650 nm in order to match the polarization
data from [566]. The right panel shows, as expected, that increasing field strengths increase
the predicted Lp; the scaling is roughly quadratic over the range shown. Shaded in orange is
the 1σ confidence interval for the polar field strength in the centered dipole model from [450].
The most conservative B field strength in this model is, at 1σ, ∼705 MG, as indicated by
the solid vertical orange line. The left panel fixes the polar field strength at this value and
shows how Lp varies as a function of the inclination angle i. Unsurprisingly, Lp is minimized
for Lp = 0◦ (or 180◦); the reason, as mentioned previously, is that in these limits for the
dipole model there is no preferred direction for the linear polarization to point, so it must
vanish. Thus, the most conservative value of i at 1σ is that closest to zero, which is i ≈ 53◦.

Note that the axion-induced Lp may be approximately a factor of two larger than it
is with our fiducial choices, if the B-field model parameters are in fact at more fortuitous
points in the 1σ parameter space. However, using the most pessimistic allowed magnetic
field parameters produces more robust upper limits on gaγγ. It is also important to keep
in mind that the Zeeman-split lines observed in the spectra give a robust indication of the
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Figure 7.6: (Left) The axion-induced linear polarization fraction Lp for SDSS J135141 as a
function of the inclination of the magnetic dipole moment relative to the line-of-sight. The
polarization fraction vanishes for i = 0◦ and 180◦ because in these cases there is no preferred
direction for the linear polarization to point. We highlight in orange the inclination angles
preferred at 1σ by the analysis in [450]. In our fiducial analysis we fix the inclination angle
at the value, indicated by vertical orange, within the 1σ band that leads to the weakest limit.
Note that in the figure we also fix the magnetic field at the lowest value allowed at 1σ, and
also the polarization fraction is illustrated for the indicated value of gaγγ. Since Lp � 1,
however, the polarization fraction scales approximately quadratically with gaγγ. (Right) As
in the left panel, but illustrating the dependence of Lp on the dipole magnetic field strength.
Note that the inclination angle is fixed at the conservative value indicated in the left panel.
The shaded orange region is that preferred at 1σ by [450]; in our fiducial analysis we fix the
magnetic field at the value corresponding to the lower edge of this region to be conservative.
In both panels that axion mass is ma � 10−7 eV such that Lp is independent of ma.

field strengths on the surface of the MWD on the Earth-facing hemisphere. The orientation
information may be extracted more precisely, however, using circular polarization data, but
Ref. [450] only used spectral data. Thus, the orientation determination in the context of
the inclination angle measured in Ref. [450] is that needed to get the correct distribution of
magnetic fields strengths on the Earth-facing hemisphere accounting for the limb darkening.
Analyses of the circular polarization data for this MWD would be useful to better constrain
the magnetic field geometry.

In Fig. 7.1 we illustrate the 95% upper limit on |gaγγ| determined from the non-observation
of axion-induced polarization from SDSS J135141. Our fiducial limit is illustrated in solid red
and is that obtained with the most pessimistic magnetic field model parameters allowed at
1σ from the fits presented in [450] (i ≈ 53◦ and Bp = 705 MG). In shaded orange we assess
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the systematic uncertainty from mismodeling the magnetic field by showing the inferred
95% limits over the full allowable 1σ parameter space for the magnetic field strength and
orientation (note that the MWD radius uncertainty is subdominant). The limit labeled “best-
fit” is that obtained with the best-fit dipole model parameters in [450]; the most aggressive
limit (labeled optimistic) is found in the offset dipole model by taking the magnetic field at
its largest allowed value and i = 90◦.

Grw+70◦8247

The MWD Grw+70◦8247 is thought to have a smaller magnetic field than SDSS J135141,
with typical surface field values ∼300 MG, but it is an interesting target for axion-induced
polarization searches because: (i) modern linear polarization data is available [85], and (ii)
the magnetic field profile has been well modelled in the context of a harmonic expansion
out to ` ≤ 4 [411]. In particular, Ref. [85] used the ISIS spectropolarimeter at the William
Herschel Telescope to measure the linear polarization of Grw+70◦8247 in 2015 and 2018.
The linear polarization was measured accross two bands: (i) a blue band (B) from 3700 to
530 nm, and (ii) a red band (R) from 6100 to 690 nm. The linear polarization Lp was found
to be non-zero at high significance in the B band, at a level ∼3%, but in the R band the
polarization was consistent with zero in both 2015 and 2018. This trend is consistent with
that found in earlier observations of Lp, going back to 1972 [56], where it is consistently
found that the linear polarization is non-zero for wavelengths shorter than ∼500 nm and
consistent with zero at lower frequencies. Note that an axion-induced linear polarization
signal would be non-zero across the full wavelength range; thus, we may use the R filter data
to set a constraint on the possible contribution to the linear polarization from axions.

The R filter linear polarization was measured to be Lp = 0.24% ± 0.08% in 2015 and
Lp = 0.44%±0.14% in 2017 [85], with uncertainties reflecting photon noise only. Systematic
uncertainties were estimated at ∼0.1-0.2% [85]. Assuming the systematic uncertainty is
correlated and maximal between the two observing dates, we may combine these results to
estimate Lp = 0.29% ± 0.07stat% ± 0.2sys%. Then, we assume Wilks’ theorem to estimate
Lp . 0.29% ±

√
2.71(0.07 + 0.2)% ≈ 0.73% at 95% confidence. Given that the within the

R band there is no significant evidence for wavelength dependence [85], we use our intuition
from the analysis in Sec. 7.3 to estimate that the 95% upper limit on the axion-contribution
to Lp, accounting for systematic and astrophysical contributions, will be comparable to the
estimate above on the total linear polarization limit. Thus, below we assume Lp,axion . 0.73%
at 95% confidence.

The MWD Grw+70◦8247 was the first identified MWD [432, 56] and thus its magnetic
field profile is well studied [56, 464, 463, 57, 410, 612, 411, 85]. Additionally, the MWD
is known to have a long period, with P & 20 yrs [85]. Ref. [411] fit a spherical harmonic
magnetic field model including modes with ` ≤ 4 to the flux and circular polarization data
from Grw+70◦8247; the result was a field profile of comparable magnitude to the dipole
profile but a more non-trivial and twisted spatial distribution. Interestingly, the dipole and
harmonic fits in [411] predict nearly identical flux spectra, since the Zeeman effect is only
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a function of the absolute magnetic field, but the circular polarization prediction from the
harmonic model provides a significantly improved fit to the polarization data than the dipole
model, since the circular polarization depends on the orientation of the magnetic field.

The best-fit dipole model from a fit to the flux and circular polarization data for Grw+70◦8247
was found in [411] to have dipole field strength Bp ≈ 347 MG at an inclination angle i ≈ 56◦.
By contrast, the best-fit harmonic model has i ≈ 75.9◦ and non-trivial gm` and hm` through
` = 4 that may be found in [411]; for example, g10 = 183 MG, g20 = −40.58 MG, g30 = 1.39
MG, and g40 = +1.45 MG, in the notation of (7.15).

The Grw+70◦8247 polarization data may naturally be explained by cyclotron absorption.
Under the best-fit dipole model, cyclotron absorption will contribute to linear polarization
in the range ∼ 309−617 nm. This range lies predominantly in the B band. Thus, we expect
the linear polarization to be much larger in the B band than in the R band, as observed in
the data.

Ref. [411] found that in detail the dipole model does not provide a satisfactory fit to
the circular polarization data. The harmonic model provided an improved fit to the circular
polarization data in [411], though we note that the linear polarization data was not included
in their fit. Under the harmonic model, the cyclotron absorption contributes to the linear
polarization over the full range of both the B and R bands, but the bulk of the support is
in the B band (we compute that the mean linear polarization predicted in the B band is ∼2
times higher than that in the R band in this model). Therefore, we expect that cyclotron
absorption accounts for the fact that higher linear polarization is observed in the B band
compared to the R band. On the other hand, note that we do not expect cyclotron absorption
to contribute to the linear polarization of the MWD SDSS J135141 in the wavelength range
of the data, 400 − 650 nm, because the field is much larger than that of Grw+70◦8247.
For a dipole field strength of 705 MG, as in the most conservative case for SDSS J135141,
cyclotron polarization appears only in the wavelength range ∼ 152 − 304 nm. For larger
polar field strengths, the cyclotron absorption wavelength range shifts blueward, so that we
do not need to consider cyclotron absorption in our analysis of SDSS J135141.

It is interesting to compare the predicted axion-induced polarization signals between the
harmonic and dipole models in order to understand the sensitivity of the polarization signal
to the magnetic field geometry at the surface of the star. Note, however, that the photon-
to-axion conversion takes place at distances of order multiple Rstar away from the surface,
where the field is dominated by the dipole contribution since the higher-harmonic terms fall
off faster with distance from the star. We infer Rstar for Grw+70◦8247 in the same way
as we do for SDSS J135141, and we obtain Rstar = 0.0078 ± 0.0011 R� corresponding to
Mstar = 1.0∓ 0.1; to be conservative, we fix Rstar = 6.7× 10−3 R� throughout this analysis.
We show the Gaia data and best-fit cooling sequence model in the right panel of Fig. 7.5.

In Fig. 7.7 we show the predicted axion-induced linear polarization fraction for gaγγ =
10−12 GeV−1 as a function of the inclination angle i, with all other parameters of the dipole
and harmonic magnetic field profiles fixed at the best-fit values provided in [411]. Note
that [411] does not provide uncertainties on the inferred model parameters. As we observe
in the previous section when studying SDSS J135141, the dominant uncertainty is likely that
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Figure 7.7: As in the left panel of Fig. 7.6 but for the MWD Grw+70◦8247. As in Fig. 7.6
we fix gaγγ = 10−12 GeV−1. We illustrate the dependence of Lp on the inclination angle
for both the dipole fit presented in [411], which has polar field strength Bp = 347 MG, and
for the best-fit harmonic model (out through ` ≤ 4) from [411]. The best-fit inclination
angles for both fits are indicated by the vertical lines (solid for harmonic and dashed for
dipole). Note that the harmonic model does not lead to vanishing Lp at i = 0◦ and i = 180◦

because their magnetic field profile is not symmetric about the magnetic axis in this case.
Ref. [411] does not present uncertainties on their fit parameters, so we estimate that the
leading uncertainty arises from the inclination angle. We estimate this uncertainty using the
difference between the inclination angles from the dipole and harmonic fits. In particular,
we take the uncertainty on the inclination angle to be twice the difference between the
inclination angles measured between the dipole and harmonic fits. To be conservative we
then, in our fiducial analysis, fix the inclination angle in the harmonic model at the indicated
value (solid, vertical orange) that leads to the smallest value of Lp.

arising from the inclination angle. The best-fit inclination angles quoted in [411] are indicated
by solid and dashed vertical lines for the harmonic and dipole models, respectively. We
estimate an uncertainty on the harmonic-fit inclination angle i using the difference between
the inclination angle measured from the harmonic fit and the dipole fit. In particular, we
take the uncertainty σi = 40◦ to be twice the difference between the best-fit inclination
angles measured between the two different magnetic field profiles. Note that this choice
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of uncertainty is somewhat arbitrary, but it allows us to estimate the possible uncertainty
that may arise from mismodeling in the absence of the actual measurement uncertainties.
Additionally, note that in Fig. 7.7 the linear polarization is relatively flat as a function of
i for the harmonic fit, except for inclination angles near 0◦ and 180◦ where the dipole and
m = 0 modes do not contribute. Indeed, it interesting to contrast the harmonic model
with the dipole model; the harmonic model generically predicts a larger linear polarization
fraction, and the polarization fraction is less sensitive to i in the harmonic case. The latter
point is explained by the fact the dipole model gives rise to vanishing Lp for magnetic axes
aligned with the line of sight, while the harmonic model does not because it need not be
azimuthally symmetric about the magnetic axis. To be conservative we compute our upper
limits on gaγγ by fixing i = 36◦ with the harmonic model, which is the inclination angle over
our uncertainty region that gives rise to the lowest Lp.

In Fig. 7.8 we illustrate the 95% upper limit on gaγγ as a function of the axion mass
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Figure 7.8: As in Fig. 7.1 but for the MWD Grw+70◦8247. We compute the upper limit
on gaγγ using the harmonic magnetic field model. The orange region arises from varying the
inclination angle over the region shown in Fig. 7.7; the fiducial upper limit is that computed
with the inclination angle shown in solid vertical in that figure. The upper limit computed
with the best-fit inclination angle in [411] is also indicated. Note that we fix the MWD
radius at Rstar = 6.7× 10−3 R�, which is the smallest value allowed at 1σ in our analysis, in
order to be conservative.
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ma, as in Fig. 7.1, for the Grw+70◦8247 analysis. We compute the 95% upper limit under
three assumptions: (i) the harmonic model with i = 36◦, which is our fiducial limit; (ii) the
harmonic model at the best-fit i ≈ 75.9◦, and (ii) the harmonic model with i ≈ 116◦, which
is the inclination angle within our 1σ band that gives rise to the maximal Lp prediction. The
shaded band in Fig. 7.1 covers this range of possibilities and is an estimate of the systematic
uncertainty from magnetic field mismodeling.

Additional MWDs

In this section we comment on additional promising MWDs where linear polarization data
is already available or where acquiring polarization data should be a priority for the future.
First note that Ref. [317] suggests upper limits on gaγγ at the level of |gaγγ| . (5 − 9) ×
10−13 GeV−1 using the linear polarization data from the MWDs PG 1031+234 and SDSS
J234605+38533. We begin by revisiting these MWDs to assess the robustness of the upper
limits from these stars.

A fit of the centered dipole magnetic field model to the intensity spectra for the MWD
SDSS J234605+38533 measured by the SDSS resulted in a polar field strength Bp = 798±
164 and inclination angle i = 2.5◦ ± 1.1◦ [450]. Note, however, that this analysis only
consider intensity spectra and not circular polarization, and so the orientation angle is only
constrained by producing the correct distribution of surface field strengths not directly by the
orientation of the magnetic field structure. Indeed, in the context of the offset dipole model a
comparable magnetic field strength was found but for i = 87◦±15◦ [450]. Ref. [660] measured
a linear polarization from SDSS J234605+38533 of Lp ≈ 1.33%, though with no uncertainties
quoted, across the wavelength range 420 nm to 840 nm using the SPOL instrument on
the Steward Observatory Bok Telescope and the Multiple Mirror Telescope (MMT) on Mt.
Hopkins (see [611] for details). Without uncertainties on the Lp measurement, it is difficult
to estimate the 95% upper limit on the linear polarization. For concreteness, let us imagine
that the upper limit is Lp . 2% over this wavelength range. To set a conservative upper
limit, we take i = 1.4◦ for the centered dipole with Bp = 634 MG, since this is the most
conservative scenario consistent within the 1σ uncertainties for Bp and i. We also fix Rstar =
0.01 R� for definiteness. For ma � 10−6 eV we find that this then translates into a limit
|gaγγ| . 2.1 × 10−11 GeV−1, though it is important to remember that this is an estimate
since no rigorous upper limit on Lp is available. This upper limit is comparable to the
conservative upper limit from Grw+70◦8247, weaker than the conservative upper limit from
SDSS J135141, and significantly weaker than the |gaγγ| . (5− 9)× 10−13 GeV−1 upper limit
quoted from this MWD and PG 1031+234 in [317]. However, it is possible that the limit
from SDSS J234605+38533 could be improved with a better determination of the magnetic
field geometry, since e.g. the off-set dipole model prefers much larger inclination angles.

Next, we consider PG 1031+234, which was the second MWD from [317] that led to the
proposed upper limit |gaγγ| . (5 − 9) × 10−13 GeV−1 for low axion masses. This MWD is
unique relative to the MWDs considered so far in this work in that it has a period ∼3 hr 24
min that leads to observable oscillations in the polarization and flux spectra [614, 565]. The
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linear polarization data from [614] stacked over the rotational phase of the MWD in the band
320–860 nm is illustrated in Fig. 7.9; the left (right) panel shows the Stokes parameter ratio
Q/I (U/I). These ratios are inferred from the data in [614] using the linear polarization data
and the polarization angle. The uncertainties in Fig. 7.9 are estimated during the model
fitting process, as described shortly.
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Figure 7.9: The linear polarization data from [614] for PG 1031+234 presented as ratios
of the Stokes parameters Q (left) and U (right) relative to the intensity I. We fit a model
consisting of an axion, astrophysical, and systematic contributions to the joint Q/I and
U/I data, treating the statistical uncertainty as a nuisance parameter. We display the
best-fit joint model, in addition to the best-fit components. The uncertainties on the data
points are the best-fit uncertainties from maximum likelihood estimation of the associated
hyperparameter. The magnetic field model consists of two dipoles, with one being offset,
and thus the axion and astrophysical contributions have varying phase differences over the
rotational phase of the MWD. We estimate the constraint |gaγγ| . 8.8×10−12 GeV−1 at 95%
confidence for ma � 10−7 eV, subject to the caveat that the magnetic field model is fixed at
the best-fit model from [614]. The best-fit axion coupling, corresponding to the illustrated
curve, is gaγγ ≈ 7.4× 10−12 GeV−1.

The MWD PG 1031+234 was modeled in [614] as having a centered dipole field with a
polar field strength ∼500 MG and a small magnetic hot-spot that has a much larger field
strength ∼103 MG. More specifically, Ref. [614] showed that the following magnetic field
model was able to explain the major features observed in the flux, circular polarization, and
linear polarization data by using radiative transfer models to estimate to the polarization
and absorption signals at different points on the MWD surface. Their model included a
centered dipole with polar field strength Bc ≈ 400 MG and magnetic axis inclined by 35◦

relative to the rotation axis. The rotation axis is at an inclination angle of i = 60◦ relative
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to the line of sight. The magnetic hot-spot is modeled by an offset dipole with magnetic
axis inclined at 55◦ relative to the rotation axis, polar surface field strength of 103 G, and
offset zoff = 0.4 Rstar along the magnetic axis. The magnetic hot-spot precedes the centered
dipole by a phase of 120◦. In Fig. 7.9 we adjust the phase such that zero corresponds to the
transit of the centered dipole. The radiative transfer calculation in [614] using this model
was able to explain the broad features observed in both the circular and linear polarization
data, though an axion signal would only contribute to the linear polarization.

We compute the astrophysical contribution to the linear polarization using a similar
method to that in [614]. In particular, we use the formalism in [459], including both the
bound-free and cyclotron contributions to the polarization, as cyclotron absorption is ex-
pected to contribute in the wavelength band of the observations. We compute the astrophys-
ical Stokes parameters averaged over wavelengths and over ∼ 105 points on the observable
hemisphere at a fixed phase. We repeat this process over all of the rotational phases of the
MWD. Note that we assign the astrophysical model two unconstrained nuisance parameters
that independently normalize the amplitudes of the linear polarization contributions from
bound-free and cyclotron absorption.

We compute the axion-induced linear polarization signal for the magnetic field model
described above assuming ma � 10−7 eV. The polarization signal is illustrated in Fig. 7.9
for the best-fit coupling gaγγ ≈ 7.4× 10−12 GeV.

In addition to the astrophysical and axion contributions to the polarization, we separately
add in phase-independent systematic contributions to Q/I and U/I. These contributions
are to allow for instrumental effects that could bias Q/I or U/I away from zero. We then
construct a joint likelihood over the Q/I and U/I data, with the axion and astrophysical
models contributing to both ratios. Since we do not know the alignment of the MWD on
the sky, we allow for an additional nuisance parameter that rotates the projection of the
MWD on the sky. Note, however, that the astrophysical and axion contributions rotate by
the same amount for a given orientation. Lastly, we determine the uncertainties on the data
in a data-driven way by assigning the uncertainties to be hyperparameter that is treated as
a nuisance parameter and determined by maximum likelihood estimation, as in e.g. (7.25).
In total, we thus have our signal parameter gaγγ and six additional nuisance parameters.

The best fit of the joint signal and background model is illustrated in Fig. 7.9, along
with the best-fit component contributions. Note that while the model is able to describe the
broad features in the data, there is clear evidence for mismodeling across the phase of the
MWD. On the other hand, our goal here is not to derive a precise limit, since for example
we do not account for uncertainties on the magnetic field model, but rather to illustrate key
points behind the phase-resolved analysis and to roughly estimate the magnitude of the limit
that may emerge from a more careful analysis.

Importantly, the Q/I and U/I axion and astrophysical contributions vary independently
over the phase of the MWD, since they depend differently on the observable magnetic field
geometry. Thus, large cancellations between the axion and astrophysical contributions are
not possible across all phases and for both Q/I and U/I. This leads to the result that the
95% upper limit on gaγγ, as determined from the profile likelihood, is estimated as |gaγγ| .
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MWD Name Bp [MG]
RE J0317-853 ∼200− 800

SDSS J033320.36+000720.6 849± 42
SDSS J002129.00+150223.7 531± 64
SDSS J100356.32+053825.6 672± 119

HE 1043−0502 ∼820
SDSS J120609.80+081323.7 761± 282
ZTF J190132.9+145808.7 ∼600− 900

Table 7.2: MWDs without existing linear polarization data but which would be promising
targets for future axion searches, due to their large magnetic fields. The magnetic fields for
these targets were determined by Refs. [450, 613, 158].

8.8×10−12 GeV−1, which is relatively close to the best-fit axion coupling of gaγγ ≈ 7.4×10−12

GeV−1. We caution, however, that this upper limit should be treated with caution, since it
does not account for uncertainties on the magnetic field profile and since the fits in Fig. 7.9
show evidence for mismodeling. Still, it is striking that our estimate for the upper limit
around an order of magnitude weaker than the upper limit estimate in [317] for the same
MWD.

The example of PG 1031+234 highlights how rotational-phase resolved data may be useful
in the context of the axion-induced linear polarization search. This example motivates, in
particular, a search for axion-induced polarization from the MWD RE J0317-853. This MWD
is rotating quickly with a period ∼725 s [99]. The magnetic field varies across the surface
over the rotation period between ∼200 – 800 MG [152]. Moreover, Ref. [152] presented a
model for the magnetic field structure in terms of a harmonic expansion through ` ≤ 3 with
a magnetic axis offset from the rotation axis, which is at a non-zero angle to the line-of-
sight. Unfortunately, no linear polarization data is available for RE J0317-853 at present,
but acquiring such data and interpreting it in the context of the axion model should be a
priority. We note that [234] recently used X-ray data from RE J0317-853 to search for axion-
induced hard X-ray signals. A list of MWDs which do not currently have linear polarization
data but with large magnetic fields, including RE J0317-853, is in Tab. 7.2. In addition to
high-resolution linear polarization data from the MWDs, circular polarization data would be
useful in order to better constrain the magnetic geometries of these MWDs using radiative
transfer theory.

7.4 Conclusion and Discussion

In this work we model how axions may induce polarization signals in the otherwise unpo-
larized thermal emission from MWD surfaces. We show that MWDs are optimal targets for
axion-induced polarization searches because they have large magnetic fields but not so large
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that the Euler-Heisenberg Lagrangian suppresses the photon-to-axion conversion probability.
Larger stars with lower magnetic field strengths have reduced conversion probabilities be-
cause of the axion-to-photon mixing term, while the more compact NSs, which have stronger
magnetic fields, are in the regime where the Euler-Heisenberg term suppresses the mixing
by modifying the photon dispersion relation relative to that of the axion. At the same time,
the predicted astrophysical backgrounds to the linear polarization from MWDs are minimal,
relative to e.g. those from NSs, and induced by polarization-dependent radiative transfer
processes for initially unpolarized surface emission propagating through the thin, magnetized
MWD atmospheres.

The axion-induced polarization signal from MWDs was previously discussed in [458, 317],
where it was claimed that linear polarization data from the MWDs SDSS J234605+38533
and PG 1031+234 may already constrain the axion-photon coupling to |gaγγ| . (5−9)×10−13

GeV−1 for low axion masses ma � 10−7 eV. We provide a simple formalism for predicting the
axion-induced polarization signal, which only involves the field configuration far away from
the MWD surface, and we show that these previous limits are likely overstated. However, we
present analyses from two MWDs with dedicated linear polarization data and well-measured
magnetic field distributions: SDSS J135141 and GRW+70◦8247. The conservative upper
limit from SDSS J135141, which is |gaγγ| . 5.4 × 10−12 GeV−1, is the strongest to-date
over a large region of axion masses and strongly disfavors the axion interpretation of the
previously-observed gamma-ray transparency anomalies. Future linear polarization mea-
surements, in conjunction with dedicated modeling efforts for the magnetic field geometries
and astrophysical linear polarization backgrounds, towards promising targets such as RE
J0317-853 could further strengthen these limits and perhaps unveil evidence for low-mass
axions.
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Part III

Gravitational Wave Probes of Physics
Beyond the Standard Model
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Overview of Part III

Part III focuses on new signals of ultra high-energy physics from primoridial gravitational
waves, oftentimes probing scales associated with grand unification or inflation.

Ch. 8 investigates the gravitational wave spectrum from a stochastic cosmic string back-
ground experiencing an exotic equation of state in the early Universe known as kination,
which can arise from the rotation of an axion field. Particular to the axion rotation cosmol-
ogy, the energy density of the Universe undergoes a sequence of domination by radiation,
matter, kination, and back to radiation, all without entropy production. We find that this
distinctive cosmological sequence gives rise to a unique triangular peaked gravitational wave
spectrum that can provide a smoking gun signal for the existence of an early era of axion
rotation. This is based on published work done with my collaborators, Raymond Co, Nicolas
Fernandez, Akshay Ghalsasi, Lawrence Hall, Keisuke Harigaya, and Jessie Shelton [200].

Last, Ch. 9 discusses new gravitational wave signals from the decay of hybrid topological
defects in the early Universe which can arise in many grand unified theory (GUT) symmetry
chains. In general, hybrid defects such as cosmic strings bounded by magnetic monopoles
or domain walls bounded by cosmic strings are unstable and decay via gravitational waves,
with one defect “eating” the other via the conversion of its rest mass into the other’s kinetic
energy. In this chapter, we calculate the gravitational wave spectrum from 1) the destruction
of a cosmic string network by the nucleation of monopoles which cut up and “eat” the strings,
2) the collapse and decay of a monopole-string network by strings that “eat” the monopoles,
3) the destruction of a domain wall network by the nucleation of string-bounded holes on
the wall that expand and “eat” the wall, and 4) the collapse and decay of a string-bounded
wall network by walls that “eat” the strings. We call the gravitational wave signals produced
from the “eating” of one topological defect by another “gravitational wave gastronomy” and
find that these gravitational wave gastronomy signals generate unique spectra that can be
used to narrow down the GUT symmetry breaking chain to the Standard Model and the
scales of symmetry breaking associated with the consumed topological defects. This is based
on published work done with my collaborators, Anish Ghoshal, Hitoshi Murayama, Yuki
Sakakihara, and Graham White [267].
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Chapter 8

Gravitational Wave and CMB Probes
of Axion Kination

8.1 Introduction

The thermal history of the very early Universe remains uncertain. It involved a sequence of
eras, where each era was characterized by a certain expansion rate. The expansion rate is
key to understanding the physical processes occurring during any era and is determined by
ρ(a), the dependence of the energy density on the Friedmann-Robertson-Walker scale factor
a. From the precise observations of the cosmic microwave background (CMB), we know
that as the temperature cooled through the eV region, the universe transitioned from being
dominated by radiation, with ρ(a) ∝ 1/a4, to being dominated by matter, with ρ(a) ∝ 1/a3.
This matter-dominated era lasted until relatively recently when the universe entered an era
apparently dominated by vacuum energy, with ρ independent of a. Furthermore, at the
time of Big Bang Nucleosynthesis (BBN), when the temperature was in the MeV region, the
universe was radiation-dominated, and there was likely a very early era of vacuum domination
known as inflation, when ρ was independent of a. Since this is the total observational
evidence we have of the very early evolution of our universe, there are clearly many possible
cosmological histories, each having a different sequence of transitions between eras of differing
ρ(a).

It is remarkable that if the universe underwent an era of “kination”, with ρ dominated
by the kinetic energy of a classical homogeneous scalar field, then ρ(a) falls very rapidly as
1/a6, which can lead to interesting physical phenomena. Kination was first considered in
the context of ending inflation [633], and subsequently as a source for a strongly first-order
electroweak phase transition that could enhance baryogenesis [412]. Such a rapid evolution
can also greatly affect the abundance of dark matter [672, 220, 582, 219, 671], alter the
spectrum of gravitational waves being emitted from cosmic strings [216, 217, 119, 580, 75,
174, 333, 173] or originated from inflation [318, 319, 320, 588, 599, 644, 143, 322, 321, 455,
478, 454, 118, 284, 222, 389, 477] during such an era, and boost the matter power spectrum,
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enhancing small-scale structure formation [583, 673].
What is the underlying field theory and cosmology that leads to an era of kination? Once

kination starts, it is easy to end since the kination energy density dilutes under expansion
much faster than radiation, so a transition to radiation domination will occur. But how does
kination begin? Going to earlier times during the kination era, the kinetic energy density of
the scalar field rapidly increases. This issue is particularly important for primordial gravita-
tional waves, whether produced from quantum fluctuations during inflation and entering the
horizon during a kination era or from emission from cosmic strings during a kination era,
since the spectrum for both increases linearly with frequency. This UV catastrophe must get
cut off by the physics that initiates the kination era, and hence the peak of the gravitational
wave distribution will have a shape determined by this physics.

Recently a field theory and cosmology for kination was proposed by two of us: axion
kination [195]. An approximate U(1) global symmetry is spontaneously broken by a complex
field. Early on there are oscillations in both angular and radial modes, which we call axion
and saxion modes, in an approximately quadratic potential. The radial oscillation results
from a large initial field displacement, and the angular mode is excited by higher-dimensional
operators that break the U(1) symmetry. At some point the radial mode is damped, but
by this time the “angular momentum” in the field, that is the charge density, is conserved,
except for cosmic dilution, and a period of circular evolution sets in. This era is assumed to
occur when the radial field is much larger than the vacuum value, fa, the symmetry-breaking
scale for the axion. In fact, at first the trajectory is not quite circular, as the cosmic dilution
of charge leads to a slow inward spiral of the trajectory. If the energy density of the universe
is dominated by the scalar field energy, this inspiral era is a matter-dominated era with
ρ(a) ∝ 1/a3. This era ends when the radial mode settles to fa; the potential vanishes and
the axion energy density is now entirely kinetic so that an era of kination ensues. Kination
ends when the axion energy density falls below that of radiation.

The rotation of an axion field was used in [195] to generate a baryon asymmetry via
Axiogenesis and in [192] to generate axion dark matter via the Kinetic Misalignment Mech-
anism. In fact, such schemes did not rely on the axion field energy becoming larger than the
radiation energy, so an era of kination was possible but not required. In this paper we study
the implications of a kination-dominated era from this mechanism, where the era is cut off
in the UV by an early matter-dominated era. We consider both the QCD axion [561, 560,
678, 685] that solves the strong CP problem and generic axion-like particles (ALPs).

The early matter-dominated era regulates the spectrum of gravitational waves from in-
flation or cosmic strings. After the linear increase with frequency from the kination era, the
magnitude of the gravitational wave spectrum decreases, producing a triangular peak in the
spectrum.1 Interestingly, the shape of the peak contains information about the shape of the
potential of the complex field and could reveal the origin of the spontaneous U(1) symmetry

1This is in contrast to the scenarios previously considered in Refs. [143, 322, 478, 284, 477], where a
kination era follows immediately after inflation and BBN limits the duration of the kination era through the
dark radiation constraint.
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breaking resulting in an axion as a Nambu-Goldstone boson.
It is natural to expect this kination era to occur early in the cosmic history, ending

well before BBN. Remarkably, for low fa and large charge density, a late era of kination
domination can occur after BBN, but before matter-radiation equality. This possibility
arises because axion field rotations do not generate entropy. In such scenarios, the beginning
of the matter-dominated era is constrained by BBN and the end of the kination-dominated
era is constrained by the CMB.

We also examine the implication of the NANOGrav signal [70] to axion kination. Similar
signals are also reported by PPTA [329] and and EPTA [178]. The signal may be explained by
gravitational waves emitted from cosmic strings [271, 132]. We discuss how the gravitational
wave spectrum from low to high frequency is modified by axion kination and the modification,
including the peak, can be detected by future observations.

In Sec. 8.2, we discuss the above mechanism of axion kination cosmology, including two
theories for the potential of the radial mode. We study the transition from the early matter-
dominated era to the kination-dominated era, and also the thermalization of the radial mode,
as this leads to important constraints on the signals. We derive the dependence of the matter
and kination transition temperatures on the axion model parameters. In Sec. 8.3, we analyze
the constraints on axion kination from both BBN and the CMB. In Sec. 8.4, we review the
kinetic misalignment mechanism and axiogenesis and derive predictions for the parameters
of axion kination. In Sec. 8.5, we compute the spectrum of gravitational waves produced
from inflation and cosmic strings in the axion kination cosmology. The spectra depend on
and can be used to infer the kination and matter transition temperatures and hence axion
parameters. We discuss whether future observations of gravitational waves can detect the
imprints of axion kination. We pay particular attention to the parameter space where the
axion rotation also lead to dark matter or to the baryon asymmetry and also to the case of
the QCD axion. Sec. 8.6 is dedicated to summary and discussion.

8.2 Axion rotations and kination

Axion rotations

In field-theoretical realizations of an axion, the axion field φa is the angular direction θ ≡
φa/fa of a complex scalar field P ,

P =
1√
2
Seiθ, (8.1)

where S is the radial direction which we call the saxion. In the present universe, S = fa,
the decay constant, spontaneously breaking an approximate U(1) symmetry. The potential
for P contains small explicit U(1)-breaking terms that give a small mass to the axion. For
simplicity, we take the domain wall number to be unity.

Given that the U(1) symmetry is explicitly broken to yield a non-zero axion mass, from
the effective field theory point of view, it is plausible that the symmetry is also explicitly
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broken by a higher dimensional operator,

V =
P n

Mn−4
+ h.c., (8.2)

where M is a dimensionful parameter. Such a term is in fact expected in theories where the
U(1) symmetry arises as an accidental one [387, 98, 418, 240] and is broken by the effects
of quantum gravity [314, 204, 315, 362, 363]. In the early universe, S may take on a field
value much larger than fa. The potential gradient to the angular direction given by the
higher-dimensional operator then gives a kick to the angular direction and the complex field
begins to rotate. As the universe expands, the field value of S decreases and the higher-
dimensional operator becomes ineffective. The field P continues to rotate while preserving
its angular momentum θ̇S2 up to the cosmic expansion. Such dynamics of complex scalar
fields was proposed in the context of Affleck-Dine baryogenesis [23]. The angular momentum
θ̇S2 is nothing but the conserved charge density associated with the U(1) symmetry. It is
convenient to normalize this charge density by the entropy density of the universe s,

Yθ =
θ̇S2

s
, (8.3)

which remains constant as long as entropy is not produced. As we will see, the charge
density must be large enough to obtain kination domination. This can be easily achieved in
our scenario because of the large initial S.

Soon after the field rotation begins, the motion is generically a superposition of angular
and radial motion and has non-zero ellipticity. Once P is thermalized, the radial motion
is dissipated, while the angular motion remains because of angular momentum conserva-
tion. One may think that the angular momentum is transferred into particle-antiparticle
asymmetry in the thermal bath. It is, however, free-energetically favored to keep most of
the charge in the form of axion rotations as long as S � T [195]. The resultant motion
after thermalizaion is a circular one without ellipticity. The parameter space that leads to
successful thermalization is investigated in Sec. 8.2.

If the axion couples to a gauge field, the angular momentum can be also transferred into
the helicity of the gauge field through tachyonic instability [32, 196]. The gauge field in the
tachyonic instability band have a wavelength ∼ (αθ̇/π)−1 � T−1 and the resultant gauge
field cannot be treated as excitations in the thermal bath, and the above thermodynamical
argument is not applicable. However, as is shown in [250], the back reaction from charged
fermions prevents efficient production of the gauge field. Using the upper bound on the
magnitude of the gauge field derived in the reference, one can show that the energy density of
the gauge field produced by the tachyonic instability is much smaller than the energy density
of the axion rotation. Therefore, the axion rotation is not destroyed by the production of
the gauge field. Note that [250] assumes no fermions besides that are created from the gauge
field. With the thermal bath in our setup, the production of the gauge fields will be even
more ineffective.
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Axion kination

The evolution of the energy density of the axion rotations depends on the shape of the
potential of the saxion. A very interesting evolution involving kination is predicted when
the saxion potential is nearly quadratic at S � fa [195]. Such a potential arises naturally
in supersymmetic theories, where the saxion is the scalar partner of the axion: the saxion
potential may be flat in the supersymmetric limit and generated by supersymmetry breaking.

For example, the soft supersymmetry breaking coefficient of P ∗P = S2/2 may be positive
at high scales but evolve under renormalization to negative values at low scales. This triggers
spontaneous breaking of the U(1) symmetry, which can be described by the potential [533],

V (P ) = m2
S|P |2

(
ln

2|P |2
f 2
a

− 1

)
, (8.4)

which is nearly quadratic for S � fa. Another example is a two-field model with soft masses,

W = X(PP̄ − v2
P ), Vsoft = m2

P |P |2 +m2
P̄ |P̄ |2. (8.5)

Here X is a stabilizer field that fixes the symmetry breaking field P and P̄ on a moduli
space PP̄ = v2

P . For P � vP or P̄ � vP , the saxion potential is dominated by the soft
mass mP and mP̄ , respectively. Without loss of generality, we choose P to be initially much
larger than vP and identify the saxion with the radial direction of P . We neglect possible
renormalization running of mP which modifies the saxion potential only by a small amount.

For these potentials, the axion rotations evolve as follows. When S � fa, the potential
of S is nearly quadratic, and the equation of motion of the radial direction requires θ̇2 =
V ′(S)/S ' m2

S. The conservation of the angular momentum, θ̇S2 ∝ a−3, then requires
S2 ∝ a−3. Here a is the scale factor of the universe, not to be confused with the axion
field which we denote as φa. The potential energy ∼ m2

SS
2 and the kinetic energy ∼ θ̇2S2

are comparable. Once S decreases and S ' fa, the conservation of the angular momentum
requires θ̇ ∝ a−3. The kinetic energy dominates over the potential energy. The scaling of
the energy density in these two regimes is

ρθ ∝
{
a−3 : S � fa

a−6 : S ' fa.
(8.6)

The scaling of the energy density naturally leads to kination domination [195]. When
S � fa, the rotation behaves as matter and is red-shifted slower than radiation is, so
the universe may become matter-dominated by the axion rotation. Once S approaches fa,
kination domination by the axion rotation begins.

Throughout most of this paper, we adopt a piecewise approximation where ρθ ∝ a−3 for
S > fa and ρθ ∝ a−6 for S = fa. We will comment on how the actual evolution differs
from this. Within this approximation, the Hubble expansion rate H as a function of the
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temperature T is given by

H(T ) =
1

MPl

√
π2

90
g∗ ×





T 2 for RD : T � TRM

T 2
RM

(
T

TRM

)3
2

for MD : TRM � T � TMK

T 2
KR

(
T
TKR

)3

for KD : TMK � T � TKR

T 2 for RD : TKR � T

. (8.7)

Here TRM is the temperature at which the matter domination (MD) by the axion rotation
begins, TMK is the temperature at which the kination domination (KD) begins, and TKR is
the temperature at which the KD ends and radiation domination (RD) begins.

In Eq. (8.7), it is assumed that P is thermalized when the rotation is still a subdominant
component of the universe. It is also possible that the thermalization occurs after the rotation
dominates the universe. In this case, the energy associated with the radial mode, which is
comparable to or larger than the angular mode, is converted into radiation energy. Then the
universe evolves as RD → MD → RD → MD → KD → RD, and the scaling in Eq. (8.7) is
applicable to the last four eras. The second RD is very short when the radial and the angular
component of the initial rotation is comparable, which naturally occurs in supersymmetric
theories; see [201] for details. Yθ computed after the initiation of the rotation receives entropy
production from the dissipation of the radial mode, and is conserved again afterward. It is
this final value of Yθ that concerns us, and we do not investigate how it is related to the UV
parameters of the theory.

The cosmological progression from RD → MD → KD → RD described above is deter-
mined by three parameters, (fa,mS, Yθ), and the three temperatures (TRM, TMK, TKR) can
be expressed in terms of these,

TRM =
4

3
mSYθ ' 1.3× 107GeV

( mS

100TeV

)( Yθ
100

)
, (8.8)

TMK =

(
45

2π2g∗

mSf
2
a

Yθ

)1
3

(8.9)

' 2.8× 106GeV
( mS

100TeV

)1
3

(
fa

109GeV

)2
3
(

100

Yθ

)1
3
(
g∗,SM

g∗

)1
3
, (8.10)

TKR =
3
√

15

2
√
g∗π

fa
Yθ
' 1.8× 106GeV

(
fa

109GeV

)(
100

Yθ

)(
g∗,SM

g∗

)1
2
. (8.11)

The kination-dominated era exists if TKR < TRM,

Yθ & 37

(
100TeV

mS

)1/2(
fa

109GeV

)1/2(
g∗,SM

g∗

)1/4

. (8.12)
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Figure 8.1: Scaling evolution of the energy density ρ with scale factor a (left axis) as well
as the equation of state w (right axis) as a function of temperature in units of TMK, the
transition temperature from matter to kination. The colored curves are for the two-field
model (blue) and the logarithmic potential (orange), whereas the step function (black) is the
piecewise approximation we employ in the remainder of the paper. For the two-field model,
we show the blue dotted curves for different ratios of the soft masses of the two fields P̄ and
P , and the blue shading indicates the entire possible range of the model.

The scalings of (8.7) imply that these three temperatures are not independent, but are related
by T 3

MK ' TRMT
2
KR. The expansion history of the universe is therefore determined by two

combinations of (fa,mS, Yθ) such as (mSfa, Yθ), but other phenomenology depends also on
the third combination. In what follows, according to convenience, we use a variety of ways
of spanning the 3-dimensional parameter space. For discussion of axion physics we must
include the axion mass ma as a fourth parameter. The axion mass is determined by fa for
the QCD axion [561, 560, 678, 685].

Note that TRMTKR ∝ mSfa, so one can in principle determine the product mSfa by
a measurement of TRM and TKR through gravitational wave spectra discussed in Sec. 8.5.
Moreover, additional theoretical considerations such as the baryon asymmetry and/or axion
dark matter abundance from the axion rotation, as discussed in Sec. 8.4, will help determine
mS and fa individually. If fa and ma are also measured by axion experiments, then the
theory parameters are over-constrained so that the theory can be confirmed or ruled out.

A unique feature of our kination scenario is that matter domination preceding kination
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domination ends without creating entropy. This is quite different from usual matter domina-
tion, where matter domination ends by dissipation of matter into radiation creating a huge
amount of entropy. Because of the absence of entropy production in our scenario, matter
and kination domination can occur even after BBN and before recombination.

The precise evolution of the universe differs from the piecewise approximation and de-
pends on the saxion potential. The evolution for the one-field model of Eq. (8.4) is derived
in [195] and reviewed in Appendix E.1, and is shown by the orange solid line in Fig. 8.1.
Beyond the piecewise approximation, there is no sharply defined TMK, so we first define TRM

and TKR by the equality of the axion energy density with the radiation energy density and
then define TMK ≡ T

1/3
RMT

2/3
KR . The transition from matter to kination domination is not sharp,

but still occurs within a temperature change of O(10). The evolution for the two-field model
of Eq. (8.5) is derived in Appendix E.1 and is shown by the blue-dashed lines. The evolution
depends on the ratio mP/mP̄ , but the transition is sharper than the one-field model and
occurs within a temperature change of O(1). As we will see, this difference shows up in
the spectrum of primordial gravitational waves and allows the determination of the saxion
potential.

Thermalization

As discussed in the previous subsection, the motion of the field P is initiated in both angular
and radial components, and the energy density associated with the radial mode is comparable
to or more than the rotational energy. Since the radial mode also evolves as matter, if
it is thermalized after S reaches fa, no kination-dominated era is present. Thus earlier
thermalization is required. In the simplest case, we consider a Yukawa coupling between the
saxion and fermions ψ and ψ̄ that couple with the thermal bath,

L ⊃ yψSψψ̄. (8.13)

The simplest possibility is a Standard Model gauge charged fermion, but we may also consider
a dark sector fermion. The thermalization rate is given by [534],

ΓSψψ̄ = by2
ψT, (8.14)

where b is a constant and is O(0.1) when the coupling of the fermion with the thermal bath
is O(1). The fermion is heavy in the early universe because of a large saxion field value,
mψ = yψS, while the fermions themselves need to be populated in the thermal bath in order
to thermalize the saxion at the temperature Tth. Such a requirement, yψSth ≤ Tth, leads to
an upper bound on the Yukawa coupling as well as on the rate

ΓSψψ̄ ≤
bT 3

th

S2
th

. (8.15)

We obtain the same bound for a saxion-scalar coupling. For gauge boson couplings, which
arise after integrating out charged fermions or scalars, the thermalization rate' 10−5T 3/S2 [534],
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so the constraints on the parameter space for this case can be obtained by putting b = 10−5

in the following equations.
For a fixed Yθ = mSS

2
th/(2π

2g∗T
3
th/45), one can now use Eq. (8.15) to derive the maximal

thermalization temperature as well as the saxion field value at the time,

Tmax
th ' 4× 107GeV

(
b

0.1

)1
2 ( mS

TeV

)1
2

(
103
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)1
2
(
g∗,SM

g∗(Tth)

) 3
4

(8.16)
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.

Here Yθ is determined from a fixed TKR using Eq. (8.11). In this case, the thermaliza-
tion constraints can be imposed by the consistency conditions: 1) the saxion field value at
thermalization must be larger than fa, i.e., Smax

th ≥ fa; otherwise, thermalization would not
occur or the Universe would not be kination-dominated, 2) the radiation energy density after
thermalization is at least that of the saxion, i.e., π2g∗(Tth)T 4

th/30 ≥ m2
S(Smax

th )2, where the
inequality is saturated when the saxion dominates and reheats the universe. In fact, upon
assuming the existence of kination domination, TRM > TKR, condition (2) automatically
guarantees that (1) is satisfied. Therefore, only condition (2) is relevant and leads to the
constraint on the saxion mass

mS . 1.5× 105GeV

(
b

0.1

)(
109GeV

fa

)3(
TKR

105GeV

)3(
g∗(TKR)

g∗(Tth)

) 3
2

. (8.18)

This thermalization constraint is shown as the green regions in the figures we will show in the
following sections. For consistency with the assumption of the rotation in the vacuum poten-
tial, the thermal mass of mS must be subdominant to the vacuum one, yψTth < mS. However,
using condition (2), one finds that this constraint becomes yψ < (π2g∗(Tth)/30)1/2Tth/Sth,
which is always weaker than the earlier constraint from requiring ψ in thermal equilibrium,
yψ < Tth/Sth.

When the thermalization temperature is much lower than the QCD scale, additional
constraints may become important [196]. For example, the energy density deposited into the
bath (or dark radiation) at late thermalization may contribute to excessive ∆Neff since this
energy deposit cannot be absorbed by the Standard Model bath nor diluted by the change
of g∗ in the Standard Model across the QCD phase transition. Effectively, the constraint
from condition (2) above is strengthened by replacing g∗(Tth) by 7∆Neff/4. We impose the
limit ∆Neff > 0.17 from the CMB and BBN [283].
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In the case when TRM � O(GeV), the saxion has to be very light and is thus subject to
quantum corrections, which require the coupling yψ < 4πmS/msoft where msoft is the soft
mass of ψ’s scalar partner, ψ̃. We do not impose this constraint since one can simply assume
that msoft is generated in the same way as and is of the same order of mS, in which case the
constraint is trivially satisfied.

One may expect additional constraints from the relic density and warmness of ψ especially
when fa is very small and ψ may be very light. However, one may consider a model where
ψ has a sufficiently large vector-like mass and freezes out non-relativistically much before
BBN (see Ref. [196] for details), or ψ is dark gauge-charged and effectively annihilates into
massless dark gauge bosons.

8.3 Cosmological constraints

The axion rotations lead to matter and kination-dominated eras. If these happen close to
BBN or recombination, the modified expansion rate alters primordial light element abun-
dances or the spectrum of the CMB. Constraints from BBN divide kination into two paradigms
- “early kination” for TKR > O(MeV ) and “late kination” with TRM < O(10keV). In this
section, we discuss the constraints on the axion rotation on both early and late kination from
BBN and the late kination from CMB.

BBN

When kination domination occurs before BBN, the strongest constraint comes from the
helium abundance, since it is sensitive to the freeze-out of neutron-proton conversions, which
occurs at an early stage of BBN. Using AlterBBN [63, 62], we show the prediction on the
primordial helium abundance as a function of TKR with varying the baryon abundance within
values allowed by Planck 2018 (TT,TE,EE+lowE) [31], together with the constraint on the
abundance [701], in the left panel of Fig. 8.2. The width of the prediction originates from
the uncertainty in nuclear reaction rates and the neutron lifetime. From this, we obtain
the constraint TKR & 2.5MeV. This is stronger than the bounds obtained from other more
simplified approaches in Refs. [476, 220].

Here we use Planck’s allowed range for the baryon abundance with the BBN consistency
condition imposed on the helium abundance for the following reason: the BBN prediction for
the helium abundance with kination does not deviate from the standard prediction as much
to make the helium abundance a free parameter (see Fig. 40 of [31]). Since BBN and CMB
results for baryon abundance are in excellent agreement, relaxing the consistency condition
and allowing the baryon abundance to range more freely gives very similar results for the
allowed parameter space.

When kination domination occurs after BBN, but before recombination, the strongest
constraint comes from the abundance of deuterium whose destruction freezes out at a late
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Figure 8.2: Primordial helium (left panel) and deuterium (right panel) abundances as a
function of TKR and TRM, respectively. The gray bands show the experimental constraints.

stage of BBN. We show the prediction on the primordial deuterium abundance as a function
of TRM in the right panel of Fig. 8.2 from which we obtain TRM . 6keV.

CMB

The case of an early kination-dominated era with TKR > 2.5 MeV has no observable impact
on the CMB. On the other hand, in the case with TRM < 6 keV the modified expansion rate
of the universe can potentially lead to significant deviations in the evolution of modes on
scales probed by the CMB.

The angular size of the sound horizon at the surface of last scattering, which is precisely
measured, is one quantity that can be altered by a modified cosmic expansion history. We
will develop some intuition for how the sound horizon is changed by assuming a kination-
dominated era with TRM < 6keV and TKR > Teq, where Teq ' 0.8 eV is the approximate
temperature at matter-radiation equality.

The comoving sound horizon can be written as

rs(η) =

∫ η

0

dη
′
cs(η

′
), (8.19)
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where η is the comoving horizon and cs =
√

1

3
(

1+
(

3ρb
4ργ

)) . Here for simplicity we will assume

cs =
√

1
3
. We can then rewrite the integral for the comoving sound horizon at matter-

radiation equality as

rs(ηeq) =
ηeq√

3
=

1√
3

∫ aeq

0

da
1

a2H(a)
, (8.20)

where aeq is the scale factor at matter-radiation equality. The ΛCDM comoving sound
horizon at matter-radiation equality can then be written as

rs(ηeq,ΛCDM) =
1√
3

∫ aeq

ai

da
1

a2Hi

(
ai
a

)2 '
1√
3

aeq
a2
iHi

, (8.21)

where ai → 0 and Hi denote the scale factor and the Hubble scale deep in radiation domi-
nation and in the last equality we have used ai � aeq. For the comoving sound horizon in
the case of kination cosmology, we can divide the universe into two successive eras, a < aMK

and aMK ≤ a ≤ aeq, where we assume that aeq � aKR � aRM. We consider the energy
density of a scalar field that behaves like matter for a < aMK and kination for a > aMK in
addition to the standard radiation density. The sound horizon in our kination cosmology up
to matter-radiation equality can then be written as

rs(ηeq, kination) =
1√
3

∫ aMK

ai

da
1

a2HRM

((
aRM

a

)3
+
(
aRM

a

)4
)1/2

+
1√
3

∫ aeq

aMK

da
1

a2HRM

((
aRM

aMK

)3 (
aMK

a

)6
+
(
aRM

aMK

)4 (
aMK

a

)4
)1/2

' 1√
3

aeq

(
1− aKR

aeq

(
1 +O

(
a

2/3
RM

a
2/3
KR

, aKR

aeq

)))

a2
RMHRM

, (8.22)

where in the last approximation we have used ai � aeq and the identity aRM =
a3

MK

a2
KR

. Here√
2HRM is the Hubble at the early matter radiation equality. Assuming aeq � aKR and

a2
iHi = a2

RMHRM in Eq. (8.21), the relative difference between the sound horizons in ΛCDM
and kination cosmology at last scattering is approximated by

∆rs(ηls)

rs(ηls,ΛCDM)
' aKR

2.4aeq
= 3× 10−3

(
100eV

TKR

)
, (8.23)

where ηls is the comoving horizon at the surface of last scattering and we have assumed
als ' 3aeq, Teq = 0.8eV in the last equality. Thus for large enough TKR, the deviation in the
angular scale of the sound horizon at last scattering can be minimal.
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Figure 8.3: Posterior distribution for TKR for a late era of kination. We use Planck temper-
ature and polarization data (highTTTEEE+lowEE+lowTT) to constrain TKR > 130 eV at
95% (vertical dashed line). See Fig. E.1 for the complete 2-dimensional posterior distribu-
tions for ΛCDM + TKR parameters.

The above gives some intuition for how, at fixed values of the other cosmological param-
eters, a kination cosmology changes the sound horizon at last scattering and by implication
the angular scale of the sound horizon θs. However, allowing the remaining cosmological
parameters to vary—in particular H0 or the baryon fraction Ωb, which enters the speed of
sound—can also alter the angular scale of the sound horizon at last scattering and possibly
compensate. Moreover, the enhanced Hubble rate during the early matter-dominated era,
as well as kination, changes the time-temperature relationship and modifies the evolution
of perturbations, which in turn substantially impacts the oscillations in the CMB power
spectrum in detail. To assess the impact of low-scale kination on the CMB in full, we thus
need to solve the coupled Boltzmann equations governing the evolution of gravitational and
matter perturbations in the modified cosmology.

In order to quantify the bounds on the kination parameters TKR and TRM, we modify
the publicly available CMB code, CLASS [130], to include kination cosmology. We also use
Monte Python [146], a Markov Chain Monte Carlo (MCMC) code, along with CLASS to
derive the posterior probability distribution on the cosmological parameters. We assume a
sudden transition between the matter-dominated and kination-dominated era at TMK. For
simplicity we also fix TRM = 5keV, near the upper bound from BBN. We, however, find that
the lower bound on TKR from the CMB is insensitive to TRM, as the CMB is mainly probing
modes that enter the horizon at lower temperatures. We consider the following cosmolog-
ical parameters (Ωb, Ωc, ΩΛ, YHe, θs, As, ns, τ, TKR). We use the Planck 2018 CMB data
(TT,TE,EE+lowE) to derive our constraints. The posterior distribution of TKR is shown
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For kination cosmology we use TKR = 130 eV and TRM = 5 keV. Kination leads to an
enhanced linear power spectrum above k ≈ O(1) h/Mpc.

in Fig. 8.3, from which we obtain the constraint TKR > 130 eV at 95%. The posterior
distributions of other parameters are shown in Figs. E.1 and E.2 in Appendix E.2.

During early matter domination and kination (i.e., between TRM and TKR), matter per-
turbations grow linearly [583]. This rapid growth can result in an enhancement of the matter
power spectrum on scales that were inside the horizon during the epochs of modified expan-
sion. The excellent constraints provided by the CMB require that substantial modifications
to the matter power spectrum must occur on scales k � O(0.1) h Mpc−1 (see Fig. 8.4).
Probes of the matter power spectrum at low redshifts (such as Lyman-α) can be used to
constrain the non-linear power spectrum at k ' O(10)h Mpc−1 and hence raise the lower
bound on TKR. However, in order to accurately derive the constraint one needs to evolve the
kination matter power spectrum into the non-linear regime and then use hydrodynamical
simulations to derive the Lyman-α flux power spectrum to compare to experiments. This is
beyond the scope of the present publication, but we will return to this in future work.

8.4 Dark matter and baryogenesis from axion

rotations

In this section, we discuss the production of axion dark matter and baryon asymmetry from
axion rotations by the kinetic misalignment and axiogenesis mechanisms in the following
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subsections, respectively. We show the implications of these mechanisms for the parameter
space (fa,mS, Yθ,ma).

Axion dark matter from kinetic misalignment

Axion rotations can lead to a larger axion abundance today via the kinetic misalignment
mechanism [192] than that from the conventional misalignment mechanism [572, 14, 241]. As
long as the axion field velocity is much larger than its mass θ̇ � ma, the axion continues to
run over the potential barriers. If this motion continues past the time when the mass is equal
to Hubble, then the axion kinetic energy θ̇2f 2

a is much larger than the maximum possible
potential energy θ2

im
2
af

2
a in the conventional case and thus the abundance is enhanced.

Even when the axion field velocity is larger than the mass, the axion self-interactions
can cause parametric resonance (PR) [248, 650, 443, 624, 444], which fragments the axion
rotation into axion fluctuations [403, 116, 286]. The production of fluctuations by PR occurs
at an effective rate2 given by [286]

ΓPR =
m4
a

θ̇3
. (8.24)

In order for kinetic misalignment to be effective, θ̇ must be larger than ma when H ∼ ma.
Before θ̇ would become as small as ma so that the axion field would be trapped by the poten-
tial barrier, ΓPR already becomes larger than H. Therefore, unless the angular momentum
is close to the critical value for kinetic misalignment to occur, parametric resonance always
becomes effective before the trapping by the potential occurs. On the other hand, the axion
momentum kPR generated at the time of PR is of order θ̇/2 due to the resonance condition.
Therefore, the abundance of the axion is estimated as

ρa
s

= maYa = Cma
ρθ/s

kPR

= CmaYθ, (8.25)

where the axion yield Ya is approximately conserved after PR. Here C is a factor that should
be determined by numerical computation. In Ref. [192], C ' 2 was derived assuming the
coherence of the axion rotation throughout the evolution. As noted in Ref. [196], the axion
abundance is reduced by an O(1) factor in comparison with the estimation in Ref. [192]
because of the extra energy of axions from non-zero momenta sourced by PR. Just after PR
effectively occurs, the number-changing scattering rate of axion fluctuations is comparable
to the Hubble expansion rate while axion fluctuations are over-occupied, so the number
density may be further reduced by an O(1) factor, which should be determined by lattice
computation; see also the discussion in [518, 519, 194]. We use the reference value C = 1
in this paper and demonstrate the impact of C < 1 on observations by showing results for

2The effective rate is much smaller than the PR rate at the center of the first resonance band ∼ m2
a/θ̇

because of the narrow width of the band, the reduction of the axion velocity by the PR production [286],
and the reduction of the axion momentum by cosmic expansion.
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C = 0.3. Requiring axion dark matter from the kinetic misalignment mechanism, we obtain
a prediction on TKR,

TKR ' 2.4× 106GeV × C
(

fa
109GeV

)( ma

6 meV

)( g∗,SM

g∗(TKR)

)1
2

for ALPs

' 2.4× 106GeV × C
(

g∗,SM

g∗(TKR)

)1
2

for the QCD axion. (8.26)

The prediction for an ALP is shown by the purple dashed lines in the left panel of Fig. 8.5.
To avoid overproduction of axion dark matter by the kinetic misalignment mechanism, this
prediction is also a lower bound on TKR. The bound can be avoided if the rotation is washed
out at T < TKR. This is difficult for the QCD axion with the Standard Model because
of the suppression of the washout rate by the small up Yukawa coupling [195, 511], but is
possible in extensions of the Standard Model. For example, squark mixing in the minimal
supersymmetric standard model can indeed wash out the rotation [197]. We do not pursue
this possibility further. The prediction on ma as a function on fa and TKR is shown in the
right panel of Fig. 8.5; here the prediction is also an upper bound on ma.

Parametric resonance becomes effective when ΓPR ' H. One can obtain θ̇(T ), which
is relevant for ΓPR, by using Eq. (8.3) and requiring the axion abundance in Eq. (8.25) to
reproduce the observed dark matter abundance ρDM/s ' 0.44 eV. The temperature TPR

when PR occurs is given by

TPR ' 100MeV

(
fa

109GeV

) 6
11 ( ma

10−6eV

) 7
11

(
g∗,SM

g∗(TPR)

) 7
22
C3/11, (8.27)

where we assume that the axion mass at T = TPR, is the same as the one in vacuum,
ma(TPR) = ma, and the saxion is at the minimum of the potential, S(TPR) = fa. As with PR
production from radial motion of the symmetry breaking field [194, 198], the produced axions
are initially relativistic. They may become cold enough to be dark matter by red-shifting,
and will have residual warmness [116, 196]. They become non-relativistic at temperature

TNR ' 10MeV

(
fa

109GeV

)10
11 ( ma

10−6eV

) 8
11

(
g∗,SM

g∗(TPR)

) 1
33

C5/11. (8.28)

For sufficiently small ma and/or fa, these axions are too warm to be dark matter based on
the current warmness constraint from the Lyman-α measurements [400], TNR > 5keV. This
constraint is shown by the red regions of Fig. 8.5.

Baryon asymmetry from axiogenesis

The observed cosmological excess of matter over antimatter can also originate from the axion
rotation. The U(1) charge associated with the rotation defined in Eq. (8.3) can be transferred
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Figure 8.5: Axion dark matter and the baryon asymmetry from axion rotation. Left panel:
in the axion parameter space, contours of TKR = 1GeV (1TeV) are shown in dashed (dot-
dashed) lines as predicted by dark matter from kinetic misalignment (purple) and for the
baryon asymmetry from minimal ALPgenesis (blue). The contours intersect along the green
line where dark matter and the baryon asymmetry are simultaneously explained as in ALP
cogenesis. Right panel: the purple lines are the contours of the mass of axion dark matter
predicted by kinetic misalignment as a function of fa and TKR. In both panels, the red
region is excluded by the warmness of axion dark matter from kinetic misalignment. The
yellow line in either plot shows the prediction assuming a QCD axion which terminates at
fa = 108GeV since lower fa is disfavored by astrophysical constraints.

to the baryon asymmetry as shown in [195, 193, 201]. In the case of the QCD axion, the
strong anomaly necessarily transfers the rotation into the quark chiral asymmetry, which
is distributed into other particle-antiparticle asymmetry. More generically, the couplings of
the QCD axion or an ALP with the thermal bath can transfer the rotation into particle-
antiparticle asymmetry. The particle-antiparticle asymmetry can be further transferred to
baryon asymmetry via processes that violate the baryon number. We call this scheme,
applicable to the QCD axion and ALPs, axiogenesis. To specifically refer to the QCD axion
and ALPs, we use QCD axiogenesis and ALPgenesis, respectively.
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Minimal axiogenesis

In the minimal scenario, which we call minimal axiogenesis, the particle-antiparticle asym-
metry is reprocessed into the baryon asymmetry via the electroweak sphaleron processes.
If the QCD axion or an ALP has an electroweak anomaly, then the rotation can directly
produce the baryon asymmetry by the electroweak sphaleron processes. The contribution to
the yield of the baryon asymmetry is given by [195]

YB =
nB
s

=
45cB
2g∗π2

θ̇

T

∣∣∣∣∣
T=Tws

' 8.2× 10−11
( cB

0.1

)( θ̇(Tws)

5keV

)(
130GeV

Tws

)
, (8.29)

where Tws is the temperature at which the electroweak sphaleron processes go out of equi-
librium and is approximately 130GeV in the Standard Model [221], and cB is a model-
dependent coefficient given in Ref. [193] that parameterizes the anomaly coefficients and the
axion-fermion couplings. When the transfer is dominated by axion-gauge boson couplings,
cB is typically O(0.1), while if dominated by axion-fermion couplings, it can be much smaller.

For the QCD axion, to produce sufficient YB and to avoid overproduction of dark matter
by kinetic misalignment requires that fa . 107GeVcB/C, which is disfavored by astrophysical
constraints [273, 576, 653, 505, 578, 558, 93] unless cB/C > 10. The baryon asymmetry can
be enhanced if the electroweak phase transition occurs at a higher temperature,

Tws ≥ 1 TeV

(
fa

108GeV

)1
2
(

0.1

cB

)
C1/2, (8.30)

with both dark matter and baryon asymmetry of the universe explained by the rotation of
the QCD axion when the inequality is saturated.

For an ALP, we may choose sufficiently small ma to avoid the over production without
modifying the electroweak phase transition temperature. Requiring that the baryon yield
of Eq. (8.29) match the observed baryon asymmetry gives a constraint on θ̇(Tws); using
Eq. (8.11) this can be converted to a prediction for TKR

TKR = 3.5 TeV

(
109GeV

fa

)(
fa

S(Tws)

)2
cB
0.1

(
g∗,SM

g∗

)1
2
, (8.31)

which is shown by the blue dot-dashed line in the left panel of Fig. 8.5, assuming S(Tws) = fa.
Note that this is necessarily the case when TMK > Tws. For lower TMK, S(Tws) > fa is
possible. Since θ̇ ' mS when S > fa and θ̇ ∝ T 3 after S = fa, we have θ̇(Tws) . mS and
therefore the saxion mass is predicted to be

mS > 5keV

(
0.1

cB

)
. (8.32)

The bound is saturated when S(Tws) > fa, which is the case if TMK < Tws.
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Both dark matter and baryon asymmetry of the universe is explained by the axion rota-
tion, which is called ALP cogenesis [193], when

ma = 8.5 µeV

(
109GeV

fa

)2(
fa

S(Tws)

)2 ( cB
0.1

)( 1

C

)
. (8.33)

This prediction is shown by the green lines in Fig. 8.5.

B − L number violation by new physics

In the presence of an operator that violates lepton number and generates Majorana neutrino
masses, the transfer of asymmetries can be more efficient. The operator creates a non-
zero B−L number, which is preserved by Standard Model electroweak sphaleron processes.
Since the production of B−L at high temperatures depends on whether the lepton number
violating interactions are in equilibrium, the determination of the final baryon number in
this scenario is sensitive to the full cosmological evolution. As an example, for the models
studied in Ref. [201], the baryon asymmetry is given by

YB ' 8.7× 10−11NDW

( cB
0.1

)(gMSSM

g∗

)3
2
(

m̄2

0.03 eV 2

)( mS

30TeV

)(D
23

)
, (8.34)

where m̄2 = Σim
2
i is the sum of the square of the neutrino masses mi, NDW is the domain

wall number (which is assumed to be unity in other parts of the paper), and the function
D parameterizes the different cosmological scenarios. In particular, D = O(20) for the case
where no entropy is produced after the production of B−L and is logarithmically dependent
on fa as well as the saxion field values at various temperatures. Alternatively, if the saxion
dominates before decaying and reheating the Universe D = 1, and (8.34) yields a sharp
prediction for mS, valid when the saxion is thermalized before settling to fa. For details of
the evaluation of D, one can refer to Ref. [201]. Regardless, the saxion mass is generically
predicted to be O(30 − 104)TeV × (0.1/cB) by this baryogenesis mechanism, named lepto-
axiogenesis generically, QCD lepto-axiogenesis for the QCD axion, and lepto-ALPgenesis for
the ALP. While mS � 30TeV appears difficult based on Eq. (8.34), the case of TeV scale
supersymmetry is possible in some special cases presented in Ref. [201], using a thermal
potential.

Other axiogenesis scenarios are are also considered in the literature [359, 172]. Baryon
asymmetry may be dominantly produced at a temperature Tdec with YB ∼ θ̇/T×min(1,ΓB/H),
where ΓB is the transfer rate of the axion rotation into baryon asymmetry. For models with
Tdec > Tws, the lower bound on mS is generically stronger than that for ALPgenesis.

Implications to axion kination parameters

In Fig. 8.6, we show constraints on the parameter space for several reference values of TKR.
The green-shaded regions are excluded because of the failure of thermalization of the initial
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Figure 8.6: The unshaded regions show the allowed parameter space for axion kination for
the fixed values of TKR labeled in each panel. Contours of TMK are shown in these regions
with kination. The excluded shaded regions are discussed in the text. To achieve minimal
ALPgenesis, the parameter space collapses into mS ' 5keV(0.1/cB) as shown by the black
solid line in the upper-right panel, or into fa given by Eq. (8.31) with S(Tws) = fa as shown
by the black solid line in the lower-right panel, where we take cB = 0.1. On the other
hand, lepto-ALPgenesis restricts the parameter space to mS & 30TeV. The axion cannot
constitute dark matter via kinetic misalignment in the upper panels due to the warmness
constraint in Eq. (8.28).
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radial oscillation, as described in Sec. 8.2. No kination-dominated era arises in the lower
orange-shaded regions. The upper orange-shaded region in the upper-left panel is excluded
by BBN. The orange lines are the contours of TMK. In the gray-shaded region, mS is above
fa and the perturbativity of the potential of the U(1) symmetry breaking field breaks down.
The red-shaded region is excluded by dark radiation produced by the decay of thermalized
saxions into axions. The remaining unshaded regions give the allowed parameter space
where axion rotation leads to realistic cosmologies with early eras of matter and kination
domination. Contours of TMK are shown in these kination regions.

In the lower two panels, the horizontal black dashed lines show the prediction for the
axion mass from requiring that the observed dark matter result from the kinetic misalign-
ment mechanism. In the upper two panels, axion dark matter from kinetic misalignment is
excluded as it is too warm.

In the upper-left panel, no parameter region is consistent with the lower bound on mS

from axiogenesis above the electroweak scale. In the upper-right panel, mS can be above
the keV scale. TMK is below the electroweak scale, so S(Tws) > fa and θ̇ws = mS = 5
keV (0.1/cB) is required. In the lower-left panel, TMK > 100 GeV, so that the condition
for successful minimal ALPgenesis is given by (8.31) with S(Tws) = fa, requiring cB � 1.
Lepto-ALPgenesis is possible to the right of the black solid line. In the lower-right panel,
where TMK > 100 GeV, minimal ALPgenesis requires fa shown by the vertical black solid
line according to Eq. (8.31) with cB = 0.1. Lower fa is possible if cB < 0.1.

8.5 Gravitational waves

In this section, we discuss how the spectrum of primordial gravitational waves is modified
by eras of matter and kination domination generated from axion rotation, as discussed in
Sec. 8.2. We consider gravitational waves created by quantum fluctuations during inflation
and by local cosmic strings. In both production mechanisms, the spectrum is nearly flat in
the standard cosmology with radiation domination. As we will see, the evolution of a universe
with successive eras dominated by radiation, matter, kination, and back to radiation induces
a triangular peak in the gravitational wave spectrum that can provide a unique signal for
axion rotation and kination cosmology.

From inflation

We first discuss the primordial gravitational waves produced from quantum fluctuations
during inflation [635]. In the standard cosmology with radiation domination, the spectrum
is nearly flat for the following reason. After inflation, a given mode k is frozen outside the
horizon, k < H. As the mode reenters the horizon, k > H, it begins to oscillate and behaves
as radiation. The energy density of the mode at that point ∼ k2h2(k)M2

Pl, where h is the
metric perturbation, whose spectrum is almost flat for slow-roll inflation. Since k ∼ H at
the beginning of the oscillation, the energy density of the gravitational waves normalized by
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the radiation energy density ∼ H2M2
Pl is nearly independent of k up to a correction by the

degree of freedom of the thermal bath3

During matter or kination domination in our scenario, the energy density at the horizon
crossing is still H2h2M2

Pl, but the radiation energy density is now much smaller than H2M2
Pl.

As a result, the energy density of gravitational waves with a mode k is inversely proportional
to the fraction of the radiation energy density to the total energy density when the mode
enters the horizon. This means that the spectrum should feature a triangular peak in axion
kination. The modes that enter the horizon at T > TRM are not affected and remain flat.
(See, however, a comment below). Therefore, as the horizon-crossing temperature decreases
below TRM, the gravitational waves are enhanced and reach the maximal value at TMK, where
the fraction of the radiation energy is minimized. The gravitational wave strength decreases
again for the horizon crossing temperatures below TMK, and returns to a flat spectrum below
TKR. Note that gravitational waves that enter the horizon during matter domination are
also enhanced because of the absence of entropy production after matter domination. We
use an analytical approximation where each mode begins oscillations suddenly at the horizon
crossing. Also approximating the evolution of H by a piecewise function with kinks at the
three transition, the resultant spectrum of gravitational waves is given by

ΩGWh
2 ' 1.4× 10−17

(
V

1/4
inf

1016GeV

)4(
g∗,SM

g∗(Thc)

)1
3





1 RD : fRM < f(
fRM

f

)2

MD : fMK < f < fRM

f
fKR

KD : fKR < f < fMK

1 RD : f < fKR

, (8.35)

fRM,KR ' 27 µHz

(
TRM,KR

TeV

)(
g∗(TRM,KR)

g∗,SM

)1
6
, (8.36)

fMK = (f 2
RMfKR)1/3 ' 27 µHz

(
TRM

TeV

)2
3
(
TKR

TeV

)1
3
(
g∗(TRM)

g∗,SM

)1
9
(
g∗(TKR)

g∗,SM

) 1
18
, (8.37)

where Vinf is the potential energy during inflation. We normalize the spectrum to match
a full numerical result at f < fKR and f > fRM, which is found to be consistent with the
result of the numerical computation in Ref. [601].

In Fig. 8.7, we illustrate the spectrum of gravitational waves in axion kination. Through-
out this paper, we use the sensitivity curves derived in Ref. [615] for NANOGrav [510, 69, 26,
145], PPTA [494, 621], EPTA [448, 473, 79], IPTA [382, 493, 662, 370], SKA [166, 405, 683],
LISA [51, 90], BBO [214, 207, 364], DECIGO [620, 421, 690], CE [13, 585] and ET [574, 375,
605, 490], and aLIGO and aVirgo [366, 7, 19, 15]. The black solid and dashed curves are both
based on the piecewise approximation of the ρθ contribution to the Hubble rate, whereas the
black solid (dashed) curve is with the analytical approximation (numerical solution) of the
horizon crossing. Here H is computed by the addition of ρθ and the radiation energy density,

3Free-streaming neutrinos damp the amplitude of the gravitational waves for f . 0.1nHz [680].
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Figure 8.7: An illustration of the model dependence in the primordial gravitational wave
spectrum. Here we fix TKR = 104GeV, TRM = 108GeV (and accordingly TMK ' 2×105GeV),

and the inflationary energy scale V
1/4

inf = 1016GeV. The black lines are for the case where the
rotation energy density ρθ follows a piecewise scaling when T ≶ TMK as shown in Fig. 8.1.
The solid (dashed) black lines are obtained from an analytic (numerical) derivation of the
evolution of the metric perturbations. The colored curves are for the two-field model (blue)
and the logarithmic potential (orange) with evolution demonstrated in Fig. 8.1. For the
two-field model, we show the blue dotted curves for different ratios of the soft masses of the
two fields P̄ and P , m2

P̄
/m2

P = 1, 2,∞ from top to bottom.

so smoothly changes around TRM and TKR. As the analytic approximation reproduces the
numerical result very well, we use the analytic approximation of the horizon crossing in the
remainder of this paper. The blue dotted and orange solid lines show the spectrum for the
two-field model and the log potential, respectively. The spectrum for the two-field model is
close to that for the piecewise approximation, while that for the log potential deviates from
them. Remarkably, the measurement of the gravitational wave spectrum around the peak
can reveal the shape of the potential that spontaneously breaks the U(1) symmetry.

We comment on possible further modification of the spectrum. Axion kination relies on a
nearly quadratic saxion potential, which is natural in supersymmetric theories. The degrees
of freedom of the thermal bath change by about a factor of two across the superpartner
mass threshold, suppressing the gravitational wave signals by a few tens of a percent at
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Figure 8.8: GW spectra from inflation for inflationary energy scale V
1/4

inf of 1.6×1016 GeV (left
panel) and 6 × 1015 GeV (right panel). Each panel contains various choices of (TKR, TRM).
The left (right) vertex of each triangle approximately indicates the choice of TKR (TRM)
labeled at the top axis, while T 3

MK = TRMT
2
KR. The (TKR, TRM) choices are (3MeV, 3GeV)

for red, (10−2, 107)GeV for purple, (104, 8 × 107)GeV for blue, and (105, 3 × 109)GeV for
brown. Finally, for QCD axion dark matter to be produced by kinetic misalignment with
C = 1 and 0.3, TKR is predicted to be 2 × 106 and 7 × 105 GeV as shown in the solid and
dotted orange curves with the maximal TRM of 7 × 1010 and 4 × 1010 GeV allowed by the
constraints shown in Fig. 8.9. These curves assume g∗(T ) for the Standard Model and H
with individual energy density contributions including a piecewise ρθ.

high frequency [676]. This depends on the superpartner masses, and we do not include
this effect for simplicity. We also assume that the radial mode of P does not dominate the
energy density of the universe. If it does, entropy is created by the thermalization of the
radial mode and gravitational waves at f > fRM can be suppressed. If the initial rotation
before thermalization is highly elliptical, after the thermalization the universe is radiation
dominated for a long time because of the radial mode energy much larger than the angular
mode energy, so the suppression occurs at f � fRM. If the initial rotation is close to a
circular one, the universe is radiation dominated only for a short period, so the suppression
occurs right above fRM. In principle, we can learn about the very UV dynamics of axion
rotations through the observations of gravitational waves.

In Fig. 8.8, we show the gravitational wave spectra for two choices of the inflaton potential
energy scale Vinf . The inflationary energy scales of V

1/4
inf = 1.6× 1016 GeV and 6× 1015 GeV

correspond to the tensor fractions of r = 0.056 near the upper bound from the CMB [31]
and r = 0.001 near the sensitivity limit of future CMB observations [11], respectively. We
show the spectrum for several sets of (TKR, TRM) in different colored curves.
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Figure 8.9: Parameter space for the QCD axion dark matter produced by kinetic misalign-
ment, which predicts TKR ' C × 2 × 106GeV as can be seen in Fig. 8.5. The left (right)
panel assumes C = 1 (0.3). The regions above the thick magenta and orange lines lead to a
primordial gravitation wave signal that can be probed by DECIGO and BBO for the labeled
choices of V

1/4
inf , while within the adjacent transparent shadings, the peak of the spectrum can

be detected by each observatory. The signal is made possible by the kination era; otherwise,
V

1/4
inf > 1.2× 1016GeV is required for DECIGO.

The spectrum shown in the solid (dotted) orange curve corresponds to the value of TKR

predicted from QCD axion dark matter via the kinetic misalignment mechanism with C = 1
(C = 0.3) according to Eq. (8.26), with the maximal TRM allowed by the constraints shown
in Fig. 8.9. In Fig. 8.9, we explore the parameter space for the QCD axion for C = 1
(left panel) and C = 0.3 (right panel). Most features of Fig. 8.9 are analogous to those
in Fig. 8.6, whereas the gray hatched region indicates the range of mS compatible with
lepto-axiogenesis based on Eq. (8.34). If the inflation scale is not much below the present
upper bound, DECIGO and BBO can detect the modification of the spectrum arising from
the QCD axion kination era if the parameters of the theory lie anywhere above the thick
magenta and orange lines in Fig. 8.9. Inside the transparent shaded regions with TRM lower
than the maximum allowed, BBO and DECIGO can also observe the peak of the spectrum
peculiar to axion kination and identify how the Peccei-Quinn symmetry is spontaneously
broken. If C < 1 and TRM is close to the maximum, CE can also observe the signal, but the
inflation scale must be almost at the present upper bound as seen in Fig. 8.8.

The parameter space for ALPgenesis is shown in Fig. 8.10. In the allowed parameter
region at the bottom-left of the figure, TMK is below the electroweak scale and θ̇ws ' mS = 5
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Figure 8.10: Possible ranges of temperatures are shown for ALPgenesis assuming cB = 0.1.
Contours of required fa and mS are shown by the blue and red lines respectively. White
and transparent regions are allowed. Thanks to a kination era, the primordial gravitational
waves for V

1/4
inf = 1016GeV (left panel) and 6 × 1015GeV (right panel) become detectable

by the experiments specified next to the colored sensitivity curves. The transparent colored
shading for each gravitational wave observatory indicates the regions where the peak in the
gravitational wave spectrum falls within the experimental sensitivity.

keV (0.1/cB). fa is determined according to Eqs. (8.9) and (8.11). In the allowed parameter
region in the upper-right corner, TMK is above the electroweak scale and S(Tws) = fa, so
fa is determined by Eq. (8.31). mS is determined by Eqs. (8.9) and (8.11). Above each
colored line, each experiment can detect the gravitational wave spectrum enhanced by axion
kination. In the transparent shaded region, the triangular peak can be detected. Here we
take cB = 0.1. For smaller cB, the prediction on fa and mS becomes larger, and the allowed
range of (TKR, TMK) expands, as can be seen from the black solid lines in Fig. 8.6.

The parameter space for lepto-ALPgenesis is shown in Fig. 8.11. Here mS is fixed so that
the observed baryon asymmetry is explained by lepto-ALPgenesis; see Eq. (8.34). fa is then
fixed by Eqs. (8.9) and (8.11). The meaning of shaded regions and contours are the same as
in Fig. 8.10.

Lastly, we comment on a potential constraint from high scale inflation. During inflation,
light scalar fields receive quantum fluctuations with a magnitude ∼ Hinf/2π with Hinf the
Hubble scale during inflation [536, 369, 636, 343, 94]. If the axion rotation is responsible
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Figure 8.11: Possible ranges of temperatures are shown for lepto-ALPgenesis. The left two
columns are for the case with entropy production from saxion domination (D = 1), while
the right column assumes radiation domination (D = O(20)) with degenerated neutrinos.
These different cases are explained in Sec. 8.4 and Ref. [201]. The dark matter abundance is
explained by an appropriate ALP mass determined by fa and TKR using Fig. 8.5. Thanks to
a kination era, the primordial gravitational waves for V

1/4
inf = 1016GeV (6× 1015GeV) in the

upper (lower) panels become detectable by the experiments labeled next to the colored sen-
sitivity curves. The transparent colored shadings indicate that the peak of the gravitational
wave spectrum due to kination lies inside the corresponding experimental reach.
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for the dark matter or baryon density, this leads to the matter isocurvature perturbation of
order Piso ' H2

inf/(2πSinf )
2 with Sinf the saxion field value during inflation. For the high

inflation scale considered in this section, this is in conflict with the CMB observation [38]
unless Sinf is close to the Planck scale, placing constraints in the parameter space. However,
since the PQ symmetry is explicitly broken by higher dimensional operators, the axion field
does not necessarily stay light during inflation. If the axion mass during inflation exceeds
Hinf , the quantum fluctuations are exponentially damped instead [406]. Therefore, we do
not impose the model-dependent constraints from isocurvature perturbations. (The higher
dimensional operator that gives the axion mass during inflation should be different from the
one that initiates the axion rotation, since otherwise the angular kick is suppressed.)

From cosmic strings

We next discuss gravitational waves emitted from local cosmic strings [657]. Local cosmic
strings are topological defects produced upon gauge symmetry breaking in the early universe,
such as U(1) symmetry breaking [435]. The breaking of a local U(1) symmetry, and hence
formation of a cosmic string network, arises in many theories beyond the Standard Model.
For example, one of the best motivated cases is U(1)B−L, which is the unique flavor univer-
sal U(1) symmetry that does not have a mixed anomaly with the Standard Model gauge
symmetry. Moreover, U(1)B−L can be embedded into SO(10) together with the Standard
Model gauge group, and whose spontaneous symmetry breaking can provide the right-handed
neutrino masses in the see-saw mechanism [522, 692, 307, 529].

After production, the cosmic string network follows a scaling law with approximatelyO(1)
long strings per Hubble volume which is maintained from the balance between conformal ex-
pansion with the universe and losses from self-intercommutation. The self-intercommutation
byproducts of the long string network lead to the formation of a network of string loops with
a new loop forming nearly every Hubble time and with a loop size proportional to the hori-
zon [670]. These subhorizon loops oscillate and redshift like matter before decaying from the
emission of gravitational waves. Because of the specific scaling law of the string network,
the energy density fraction of the cosmic strings is nearly independent of temperature, and
the spectrum of gravitational waves emitted from the local cosmic strings during radiation
domination is nearly flat.

During kination or matter domination by axion rotation, the size of the horizon for a
given temperature is smaller than it would be in a radiation dominated universe. This
enhances the energy density of strings relative to the radiation density, and the spectrum
of gravitational waves feature a triangular peak in our axion kination cosmology. Since the
production of gravitational waves involves two steps that occur at widely separated times–
the production of string loops and their later decay–the computation is more involved than
the inflation case of Sec. 8.5.

The present day gravitational wave spectrum from a stochastic background of cosmic
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string loops is [657, 75]

ΩGW (f) ≡ 1

ρc

dρGW

d ln f
=

8π

3H2
0

f

∞∑

m=1

Gµ2PmCm. (8.38)

Here Gµ2Pm = ΓGµ2m−q/ζ(q) is the power radiated by the mth mode of an oscillating string
loop with Γ ' 50 being a constant determined from the average power over many types of
string loop configurations [128, 75, 670]. The power index q is 4

3
, 5

3
, or 2, if the gravitational

power is dominated by cusps, kinks, or kink-kink collisions, respectively [657, 126, 75]. We
will take q = 4/3, but for now we keep it as a free parameter. The present day critical
density is ρc, and the factor Cm is given by

Cm =

∫ t

tscl

dt′
(
a(t′)

a(t)

)3
dn

df ′
(t′, f ′) (8.39)

dn

df ′
(t′, f ′) =

dn

dtk

dtk
dl

dl

df ′
=

(FCeff(tk)

αt4k

a(tk)
3

a(t′)3

)(
1

α + ΓGµ

)(
2m

f 2

a(t′)2

a(t)2

)
. (8.40)

Here tk(t
′, f) =

(
2m
f
a(t′)
a(t)

+ ΓGµt′
)

(α + ΓGµ)−1 denotes the formation time of a string loop

of length l that emits gravitational waves at frequency f ′ = 2m/l at time t′. The lower
integration time, tscl, is the time the infinite string network reaches scaling. F ≈ 0.1 [129]
characterizes the fraction of energy that is transferred by the infinite string network into
loops of size lk = αtk

4 , and Ceff characterizes the loop formation efficiency which depends
on the equation of state of the universe at loop formation time tk. Ceff can be estimated
from the velocity-one-scale model of the infinite string network and is found to be [131, 216]

Ceff(tk) ≈





5.4 tk during RD

0.39 tk during MD

30 tk during KD.

(8.41)

The effect of the equation of state of the universe on the frequency dependence of
ΩGW (f) can be seen by piecewise integrating Cm in two regions: one where tk ≈ (2/f)(α +
ΓGµ)−1a(t′)/a(t) and the other where tk ≈ (ΓGµt′)(α + ΓGµ)−1 [217]. The split occurs at
time tΓ when the length of string lost to gravitational radiation, ΓGµtΓ, equals the original
loop formation length, (2m/f)a(tΓ)/a(t). The integral over Cm is easily computed in either
integration region by considering string loops that form when the equation of state of the
universe is w1, (a(tk) ∝ t

−3(1+w1)
k ), and emit gravitational radiation when the equation of

state is w2 (a(t′) ∝ t′−3(1+w2)). The spectral frequency dependence of the m = 1 mode of

4Simulations suggest that roughly 90% of the energy transferred by the infinite string network into
loops goes into loops smaller than lk which are short lived and subdominantly contribute to ΩGW , or into
translational kinetic energy which redshifts away [129, 260]
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Loop Formation Era
Radiation Matter Kination

Radiation f 0 f−1 f

L
o
op

D
ec

ay
E

ra

Matter f−1/2 f−1 f

Kination f 1/4 f−1/2 f

Table 8.1: Frequency dependence of the m = 1 mode amplitude, Ω(1)(f), for loops that form
and decay in a radiation, matter, or kination-dominated universe.

oscillation is then [217]

Ω
(1)
GW (f) ∝ fλ λ =





w1(6w2 + 4)− 2

(w1 + 1)(3w2 + 1)
tΓ < t, p < 0

−1 tΓ < t, p ≥ 0

3− 2

w1 + 1
tΓ > t

(8.42)

where p = −3 + 2/(1 + w1) + 4/(3(1 + w2)) characterizes whether the integral (8.39) is
dominated at tΓ (p < 0) or the latest possible emission time t′ in that cosmological era

(p ≥ 0) [217].5 The frequency dependence of Ω
(1)
GW (f) according to Eq. (8.42) is shown in

Table 8.1. In the modified cosmology under consideration, the universe transitions from
being dominated by radiation to matter at TRM, to kination at TMK, and back to radiation
upon merging with the standard cosmology at TKR. From Table 8.1, we may therefore expect

for sufficiently long eras of radiation, matter, and kination that Ω
(1)
GW ∝ f 0 TRM−−→ f−1 TMK−−→

f 1 TKR−−→ f 0 as f drops from high to low frequencies. That is, a triangular shaped peak in
spectrum.

Although the first mode dominates the total power emitted by a string loop, the sum of
the contributions from all higher modes can appreciably change this power dependence of
the total spectrum [132, 333]. The effect of the higher modes can be analytically estimated

by noting that Ω
(m)
GW = m−qΩ

(1)
GW (f/m) [132]. For example, assuming that Ω

(1)
GW is a broken

power law proportional to fα for f < f0 and fβ for f ≥ f0, we may write the total spectrum

5In a standard radiation dominated era, ΩGW is dominantly sourced by the smallest loops in the horizon
due to their greater population and the independence of gravitational wave power, ΓGµ2, on loop size. The
smallest loops are those about to decay and hence for the standard cosmology, p < 0. However, this is not
the case in more general cosmologies.
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as

ΩGW (f) =
∞∑

m=1

m−q Ω
(1)
GW (f/m) ≈

f/f0∑

m=1

m−q−β Ω0

(
f

f0

)β
+

∞∑

m=f/f0+1

m−q−α Ω0

(
f

f0

)α
(8.43)

where Ω0 = Ω
(1)
GW (f0). In the limit f � f0, (8.43) reduces to

ΩGW (f)
f�f0−−−→ Ω0

[
ζ(q + β)

(
f

f0

)β
+

(
1

q + α− 1
− 1

q + β − 1

)(
f

f0

)−q+1
]
. (8.44)

Consequently, if 1 − q > β, the high frequency contribution from the sum over all string
modes can make a steeply decaying spectrum shallower. Eq. (8.44) shows that the f 1 power
law during the kination era induced by axion rotations remains unchanged from summing
all string modes, but the the f−1 power law during the preceding matter-dominated era
becomes f 1−q = f−1/3 for cusp dominated strings [131], f−2/3 for kink dominated strings,
and unchanged for kink-kink collision dominated strings. In this work, we focus on cusp
dominated strings which are common on string trajectories [670]. Interestingly, the determi-
nation of the spectral slope during this early matter-dominated era can potentially indicate
the value of q.

The peak amplitude and frequency of the stochastic string spectrum can be estimated an-
alytically in terms of the key temperatures associated with axion kination, namely TKR, TMK,
and TRM. From Table 8.1, we see that loops forming in the matter dominated era and de-
caying in the late radiation dominated era enjoy an f−1 growth, while loops that form in
the kination era and decay in the late radiation dominated era experience an f 1 decay. Con-
sequently, loops that form at time tk = tMK are responsible for the peak amplitude and
frequency of the triangular peak spectrum when decaying. For example, the energy den-
sity of these loops immediately prior to decaying is ρ(tΓ) ≈ µ l(tMK)n(tMK)a(tMK/a(tΓ))3

where l(tMK) = αtMK, n(tMK) ≈ FCeff/3αt
3
MK, and the decay time tΓ = µl(tMK)/ΓGµ2. The

resultant spectrum of gravitational waves is then given by

ΩGWh
2
∣∣
peak
≈ 10−8

(
100 MeV

TKR

)3
2
(
TMK

2 GeV

)3
2
(

Gµ

6× 10−11

)1
2 ( α

0.1

)1
2

(
50

Γ

)1
2

(8.45)

fpeak ≈ 0.1 Hz

(
100 MeV

TKR

)1
2
(
TMK

2 GeV

)3
2
(

6× 10−11

Gµ

)1
2
(

0.1

α

)1
2
(

50

Γ

)1
2

(8.46)

fKR ≈ 1 mHz

(
TKR

100 MeV

)(
6× 10−11

Gµ

)1
2
(

0.1

α

)1
2
(

50

Γ

)1
2
. (8.47)

where the peak amplitude of the triangular spectrum, ΩGWh
2|peak, and the peak frequency

fpeak, can be thought of as ΩGWh
2|MK and fMK, since the peak is associated with loops

formed at TMK. The frequency of the peak, Eq. (8.46), is set by the invariant size of the



CHAPTER 8. GRAVITATIONAL WAVE AND CMB PROBES OF AXION KINATION
241

loop at the formation time tMK with the emission frequency at decay 2/l(tMK) redshifted to
the present. Similarly, from Table 8.1, we can see that the loops that form at the transition
from matter to late era radiation, tKR, are responsible for the amplitude of the lower left
vertex of the axion kination triangle. Again, the frequency of these loops is the emission
frequency at decay, 2/l(tKR) redshifted to the present as given by Eq. (8.47). Last, note that
the fiducial values of TKR = 100 MeV and TMK = 2 GeV, correspond to TRM ≈ 100 GeV,
which corresponds to the dark purple curve of Fig. 8.13.

In general, for brief eras of kination and matter domination, the gravitational wave

spectrum will not reach its asymptotic dependence, Ωtot
GW ∝ f 0 TRM−−→ f−1/3 TKM−−→ f 1 TKR−−→ f 0;

nor will the kination era peak be sharply defined. Consequently, we numerically evaluate
Eq. (8.38) to precisely determine ΩGW over a wide range of {TKR, TRM, TMK}. In doing so,
we numerically compute the time evolution of the scale factor from the Friedmann equation

ȧ(t)

a(t)
= H0

[
ΩΛ + Ωr

(
a(t0)

a(t)

)4

+ Ωm

(
a(t0)

a(t)

)3

+ Ωk,θ

(
aKR

a(t)

)6

+ Ωm,θ

(
aMK

a(t)

)3]1
2

(8.48)

where Ωk,θ = Ωr

(
a(t0)
aKR

)4

Θ(a(t) − aMK) and Ωm,θ = Ωk,θ

(
aKR

aMK

)6

Θ(a(t) − aRM) are the

critical densities of the axion induced kination and matter dominated eras, respectively,
while Ωr = 9.038 × 10−5, Ωm = 0.315, and ΩΛ = 1 − Ωr − Ωm [31] are the critical energy
densities of radiation, matter and vacuum energy in the standard ΛCDM cosmology. H0 '
67.4 km s−1 Mpc−1 is the present-day Hubble constant [31].

The left panel of Fig. 8.12 shows the imprint of the saxion potential on the stochastic
string gravitational wave background. The black curve corresponds to the piecewise approx-
imation of the ρθ contribution to the Hubble rate as used in Eq. (8.48). The blue dotted and
orange solid lines show the spectrum for the two-field model and the log potential, respec-
tively. Similar to the gravitational wave spectrum of Fig. 8.7 for inflation, the spectrum for
the two-field model is close to that for the piecewise approximation, while that for the log
potential deviates from them. In what follows, we use the piecewise approximation of ρθ.

The right panel of Fig. 8.12 illustrates two key features that axion kination imparts
to the stochastic string gravitational wave background. First, the purple curves show the
m = 1 contribution to the spectrum, Ω

(1)
GW, while the red curves shows ΩGW after summing

over 104 harmonics. For the m = 1 amplitude, the triangular shaped peak approaches
the expected f−1 rise and f 1 fall as shown in Table 8.1. The amplitude summed over 104

modes, however, demonstrates how the total amplitude deviates from the m = 1 amplitude.
Summing over higher harmonics increases the amplitude roughly by a factor of ζ(4/3), and
most importantly, the contribution from the higher harmonics changes the f−1 tail on the
right side of the kination induced triangle into a much shallower f−1/3 tail while leaving the
f 1 decay on the left side the triangle the same. Such a long and shallow UV tail allows high
frequency gravitational wave detectors to discern axion kination from the standard ΛCDM
spectrum even when the triangular kination peak is at much lower frequencies. In addition,
a second key feature of axion kination is shown in the second, smaller triangle at higher
frequencies compared to the main triangle. The second triangular bump in the spectrum
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Figure 8.12: Left: An illustration of the model dependence in the stochastic string gravita-
tional wave spectrum. The solid black line is the case where the rotation energy density ρθ
follows a piecewise scaling T ≶ TMK as shown in Fig. 8.1. The colored curves are for the
two-field model (blue) and the logarithmic potential (orange) with evolution demonstrated
in Fig. 8.1. For the two-field model, we show the blue dotted curves for different ratios of the
soft masses of the two fields P̄ and P , mP̄/mP = 1, 100. The dashed black curve shows the
standard string spectrum in a ΛCDM cosmology. We fix (TKR, TRM) = (1 GeV, 100 GeV).
Right: An illustration of the difference between the m = 1 amplitude (purple) and the total
amplitude summed over 104 harmonics (red). The sum over high modes partially flattens
the right side of the kination induced peak, shifting the spectral dependence from f−1 to
f−1/3. We fix (TKR, TRM) = (1GeV, 10TeV). In both panels, the second, smaller triangle
at high frequencies is an additional fingerprint of axion kination and arises from loops that
form in the early radiation dominated era and decay in the subsequent matter or kination
dominated eras (see Table 8.1). Both panels assume Gµ = 5×10−15, and α = 0.1. The drop
in the spectrum above f ∼ 1012 Hz arises from only considering loops that form after the
string network reaches scaling, tk > tscl. We take scaling to be reached shortly after string
formation, tk ∼ 1/H(T =

√
µ). However, string friction with the thermal bath can delay

scaling and shift this high frequency cutoff to lower frequencies [43, 665, 670, 333]. We do
not include this model dependent effect in this work.
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Figure 8.13: Representative spectra of primordial gravitational waves emitted from local cos-
mic strings experiencing axion kination (solid) and the standard ΛCDM cosmology (dashed).
Long eras of kination exhibit greater amplitudes in the triangular shaped peak of ΩGWh

2,
which is a key signature of axion kination. Of crucial importance is the slowly decaying
high frequency tail arising from the sum over high mode numbers which enables detectors
like BBO, DECIGO, and CE to detect deviations from the ΛCDM spectrum even when
the kination peak is not located within their frequency domain. Left: Early axion kination
cosmology where kination occurs before BBN. The top most contour shows the gravitational
wave amplitude when Gµ is fixed to pass through the NANOGrav signal. Right: Late axion
kination cosmology where kination occurs in the epoch between CMB and BBN. For each
contour, we plot the required Gµ to pass through the NANOGrav signal.

arises from loops that form in the early radiation dominated era prior to kination, and decay
in the matter, kination, or late radiation era. As seen from Table 8.1, loops that form in the
early radiation era and decay in these other eras are expected to exhibit a shallower rise and
fall in amplitude akin to the main triangular shaped enhancement from loops that form in
the matter or kination eras. For sufficiently short eras of kination and matter domination,
the smaller, second bump is visible even after summing over higher harmonics. For long
eras of kination, the sum over higher harmonics can merge the main kination induced peak
with this smaller second peak, as shown for instance, in the purple curves in the left panel
of Fig. 8.13. Nevertheless, the slightly broken power law near 103 Hz for the solid purple
and 105 Hz for the lighter purple contour is a remnant left over from this second triangular
peak. The observation of a broken decaying power law or the second triangular bump itself
may provide a unique gravitational wave fingerprint for axion induced kination.

Fig. 8.13 shows the typical gravitational wave spectrum for a stochastic string background
experiencing axion kination. Here, we numerically compute (8.38) up to 104 modes and fix
α = 0.1 in accordance with simulations [128, 129]. The solid contours show ΩGWh

2 in
the modified axion kination cosmology for a variety of {TKR, TMK, TRM}, while the dashed
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contours show the amplitude in the standard ΛCDM cosmology. The left and right panels
of Fig. 8.13 represent the expected spectral shape for early and late axion kination eras,
respectively. We define early (late) axion kination cosmologies as those that end before
(after) BBN. To be consistent with BBN and CMB bounds, this entails that TKR & 2.5 MeV
for early axion kination cosmologies and that 130 eV . TKR ≤ TRM . 6 keV for late kination
cosmologies as discussed in Sec. 8.3.

The free parameters {Gµ, α, TKR, TMK} set the spectral shape of the stochastic back-
ground. Independent of the axion kination cosmology, larger Gµ and α elevate the overall
amplitude of the spectrum such that the base amplitude of the kination induced triangle
scales as ΩGW,baseh

2 ' 2 × 10−4
√
Gµα for α & ΓGµ [131]. On the other hand, the param-

eters TKR and TMK determine the size and location of the triangular ‘bump’ with a larger
peak corresponding to longer duration of kination 6 and occurring at a higher frequency the
greater TMK is. For example, the solid and light purple contours on the left panel of Fig. 8.13
illustrate the growth and blueshift of the kination induced peak when the duration of the
kination era increases for fixed Gµ and TKR. The red and blue contours in the same panel
illustrate the overall decrease in amplitude and the blueshift of the spectrum when lowering
Gµ for a fixed duration of kination. In addition, the purple and red contours (Gµ = 6×10−11

and 5× 10−15, respectively) illustrate that an era of axion induced kination provides future
detectors such as LISA with an excellent opportunity to measure the significant deviation
from the standard string spectrum (dashed) over a wide range of Gµ and (TKR, TMK). More-
over, an axion induced kination cosmology may provide the only way to detect extremely
small string tensions in future detectors like BBO and CE as shown by the blue contour
(Gµ = 5× 10−20).

Similarly, the right panel of Fig. 8.13 shows the modified gravitational wave spectrum
for late kination cosmologies. Here we show a collection of spectra that pass through the
observed NANOGrav signal [70] that are consistent with CMB and BBN constraints. The
dashed black contour shows ΩGWh

2 for the standard ΛCDM cosmology [132, 271] while
the gray contour (Gµ = 3.5 × 10−11) shows ΩGWh

2 for the maximum allowed TRM (6 keV )
and near the minimum allowed TKR (130 eV), producing the largest kination peak passing
through NANOGrav that is consistent with CMB and BBN. As TKR and TRM converge and
the kination era decreases in duration, ΩGWh

2 converges with the standard result, shown,
for example, by the magenta contour (Gµ = 4.0 × 10−11). Fig. 8.13 demonstrates that
a striking difference can exist between ΩGWh

2 in the axion kination cosmologies and the
standard ΛCDM cosmology.

To understand the connection between the experimental detection of axion kination via
string gravitational waves and axion kination parameters, we first reduce the four dimensional
parameter space {Gµ, α, TKR, TMK} into a simpler two dimensional space of TKR and TMK.
This is achieved by fixing Gµ so that the gravitational wave amplitude in the modified cos-
mology passes through the NANOGrav signal (ΩGWh

2, f) ' (7.5×10−10, 5.2×10−9 Hz)) [70]

6Equivalently, the greater the duration of the matter-dominated era. This follows from the temperature
relationship T 3

MK = TRMT
2
KRg∗(TRM)/g∗(TKR).
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7 , and fixing α = 0.1 which best matches simulations. For early kination cosmologies (left
panel of Fig. 8.13), this requires Gµ ' 6× 10−11. For late kination cosmologies (right panel
Fig. 8.13), which generally exhibit a ‘bump’ in the spectrum at nanohertz frequencies, we
decrease Gµ for a given (TKR, TMK) so that ΩGWh

2 still crosses through the NANOGrav
signal. The left panel of Fig. 8.14 demonstrates this effect by showing the necessary Gµ to
match the NANOGrav signal in the (TKR TRM) plane. For relative long durations of kination
(TRM � TKR), the necessary Gµ decreases by a factor of a few to near Gµ = 3× 10−11 (blue
region) whereas in the limit of no kination (TRM � TKR), the necessary Gµ asymptotes to
its ΛCDM value of 6× 10−11 (red region).

For a given (TKR, TMK), we register a detection of axion kination in a similar manner to
the “turning-point” prescription of [333]: First, ΩGWh

2 must be greater than the threshold
for detection in a given experiment. Second, to actually distinguish between ΩGWh

2 in the
axion cosmology and the ΛCDM cosmology, we require that their percent relative difference
be greater than a certain threshold within the frequency domain of the experiment. Follow-
ing [333], we take this threshold at a realistic 10% and a more conservative 100% relative
difference. For more rigorous approaches in distinguishing similar gravitational wave spectra,
see [454, 159].

The right panel of Fig. 8.14 shows the parameter space in the (TKR, TRM) plane where
late axion kination can be detected and distinguished from the standard cosmology with
difference of 10% (solid) and 100% (dashed) in ΩGWh

2. Here we choose Gµ for each point
according to the left panel for axion kination cosmology and take Gµ = 6 × 10−11 for the
standard cosmology. For most of the parameter space consistent with CMB and BBN, an
era of kination can be detected and distinguished from the standard cosmological stochastic
string background. In addition to the change of the required value of Gµ, remarkably, the
slowly decaying f−1/3 tail originating from the sum over high frequency harmonics, as shown
for example by the right panel of Fig. 8.13, allows detectors like LISA, BBO, DECIGO,
and CE to detect late axion kination cosmology. Future detectors like SKA can probe the
nanohertz triangular bump. For sufficiently low TKR and high TRM, a kination signal may
already be observable or excluded at NANOGrav.

Early axion kination is consistent with axiogenesis above the electroweak scale, and can be
probed by laser interferometers. We show the constraints on the parameter space of minimal
ALPgenesis together with the detection prospects in the upper panels of Fig. 8.15. The
top-right panel zooms in on the bottom-left part of the top-left panel. The slowly decaying
f−1/3 tail allows detectors like LISA, BBO, DECIGO, and CE to distinguish an early era
of axion cosmology for most TKR ∈ (10−3 GeV, 5 × 104 GeV). For TKR & 5 × 104 GeV,
the kination spectrum merges with the standard spectrum at frequencies above f & 103

Hz, thereby evading detection. Still, a good portion of the parameter space with fa . 108

7In this work, we do not fit the spectral index to NANOGrav. For early kination cosmologies, the
nanohertz region of ΩGWh

2 is effectively identical to the standard cosmology result and the best fit results of
[132, 271] apply. For the late kination cosmologies, the slope of the signal through NANOGrav can increase
compared to the relatively flat slope of ΛCDM spectrum. It is possible a larger spectral index provides a
better fit, but we leave that for future work.
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Figure 8.14: Left: Required Gµ for ΩGWh
2 to pass through the NANOGrav signal [70, 132,

271]. For long kination eras, which occur when TRM � TKR, Gµ decreases with respect to the
standard ΛCDM cosmology so that the kination peak does not exceed the NANOGrav signal.
Right : The parameter region of axion kination whose imprints on the gravitational wave
spectrum from cosmic strings can be detected. For each (TRM, TKR), we fix Gµ according
to the left panel so that spectrum passes through the NANOGrav signal. For the reference
ΛCDM cosmology, we fix Gµ and α to 6×10−11 and 0.1, respectively, to also fit NANOGrav.
For a given (TKR, TMK), a detection is registered when the difference in amplitudes, ΩGW −
ΩGW,0 is greater than 10% (solid) or 100% (dashed) of the standard cosmological amplitude,
ΩGW,0, within the sensitivity curve of the detector.

GeV can imprint signals that are detectable by future observations. Future gravitational
wave detectors that can observe super-kilohertz frequencies can potentially probe earlier
eras of axion kination and hence larger fa. In the transparent shaded region, the peak of the
spectrum produced by axion kination can be detected. As we argued, this is a smoking-gun
signature of axion kination and the detailed shape of the peak contains information about
the shape of the potential of the complex field that breaks the U(1) symmetry. The lower
two panels of Fig. 8.15 show the constraints and prospects for lepto-ALPgenesis, for values
of mS used in Fig. 8.11. Future laser interferometers can probe much of the parameter region
with low fa . 108 GeV.
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Figure 8.15: Detector reach of the kination cosmic string gravitational wave spectrum for
a range of TKR and TMK consistent with minimal ALPgenesis (top) and lepto-ALPgenesis
(bottom). The top-right panel zooms in on the bottom-left part of the top-left panel. Gµ
and α are fixed at 6 × 10−11 and 0.1, respectively, to fit the NANOGrav data [70]. For a
given (TKR, TMK), a detection is registered when the difference in amplitudes, ΩGW −ΩGW,0

is greater than 10% (solid) or 100% (dashed) of the standard cosmological amplitude, ΩGW,0,
within the sensitivity curve the detector. In the transparent shared regions, the peak of the
spectrum originated from axion kination can be detected.
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8.6 Conclusion and Discussion

Axion fields, due to their lightness, may have rich dynamics in the early universe. In this
paper, we considered rotations of an axion in field space that naturally provide kination
domination preceded by matter domination, which we call axion kination. This non-standard
evolution affects the spectrum of possible gravitational waves produced in the early universe.
To be concrete, we investigated gravitational waves from inflation and local cosmic strings,
which have a nearly flat spectrum when they begin oscillations or are produced during
radiation domination. We found that kination domination preceded by matter domination
induces a triangular peak in the gravitational wave spectrum.

We studied the theory for axion kination, which involves an approximately quadratic
potential for the radial mode and has three parameters: the mass of the radial mode, the
axion decay constant, and the comoving charge density. We derived constraints on this
parameter space from successful thermalization of the radial mode, BBN, and the CMB. We
found large areas of fully realistic parameter space where the theory yields axion kination.
The allowed region splits into two pieces, one having early kination domination before BBN
and the other having late kination after BBN but well before the CMB last scattering.

Introducing a mass for the axion, we found that part of the axion kination parameter
space is consistent with axion dark matter by the kinetic misalignment mechanism while
part is not, due to the warmness constraint on dark matter. Similarly, we showed that part
of the axion kination parameter space is consistent with generating the baryon asymmetry
by ALPgenesis. Furthermore, there are constrained regions with ALP cogenesis yielding
both dark matter and the baryon asymmetry, and also regions with the baryon asymmetry
successfully generated by lepto-ALPgenesis.

As demonstrated in Sec. 8.5, axion kination modifies the spectrum of possible primordial
gravitational waves through the modification of the expansion history of the universe. By
analyzing the spectrum, we can in principle determine the product of the radial mode mass
mS and the decay constant fa using the relations given in Eqs. (8.8), (8.9), and (8.11). By
further determining fa from axion searches, we may obtain mS. In the simplest scenario
of gravity mediation in supersymmetry, mS is as large as the masses of the gravitino and
scalar partners of Standard Model particles; in other words, we can determine the scale of
supersymmetry breaking.

We can further narrow down the parameter space by requiring that the baryon asymmetry
of the universe be created from the axion rotation. As shown in Sec. 8.4, this imposes an
extra relation on (mS, fa), and in conjunction with the gravitational wave spectrum, we may
make a prediction on both fa and mS, which could be confirmed or excluded by measuring
fa in axion experiments or mS in collider experiments assuming that mS is tied to the masses
of the scalar partners of Standard Model particles.

If the inflation scale is not much below the current upper bound, future observation of
gravitational waves can detect the spectrum modified by axion kination, or even the peak of
the spectrum that contains information on the shape of the potential of the U(1) symmetry
breaking field. In particular, if the QCD axion accounts for dark matter via the kinetic
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misalignment mechanism, a modification of the gravitational wave spectrum is predicted at
high frequencies, f & 10−2 Hz, as shown in Fig. 8.8. In this case it is very interesting that
this gravitational wave signal can be detected by DECIGO and BBO over most of the allowed
parameter space, as shown in Fig. 8.9; in a significant fraction of the parameter space the
gravitational wave peak will be probed. Furthermore, a signal may also be seen at CE if the
inflation scale is very near the current upper bound or the sensitivity of CE is improved.

For gravitational waves from cosmic strings, for fixed axion kination cosmology param-
eters, the modification of the spectrum is predicted at higher frequency, so the QCD axion
will not affect the spectrum observable by near future planned experiments. ALPs can affect
the spectrum in an observable frequency range.

Gravitational waves from cosmic strings provide signals that can probe axion kination
over a wide range of Gµ, TRM and TKR, as illustrated in Fig. 8.13. We examined cosmic
strings with a tension suggested by NANOGrav in detail. If axion kination occurs before
BBN, the NANOGrav signal can be fitted by the same cosmic strings parameters as in stan-
dard cosmology. Importantly, axion kination enhances the spectrum at higher frequencies,
allowing laser interferometers to probe the kination era. The enhancement can occur in the
parameter region consistent with axiogenesis scenarios, as shown in Fig. 8.15. If axion kina-
tion occurs after BBN, the NANOGrav signal is fitted by a smaller string tension, as shown
in the left panel of Fig. 8.14, and a detailed examination of the spectrum will determine
if axion kination is involved. The spectrum at higher frequencies is suppressed, which can
be detected by laser interferometers in the parameter region shown in the right panel of
Fig. 8.14.

Our kination era is preceded by an epoch of matter domination that ends without cre-
ating entropy. Therefore, matter and kination domination can occur even after BBN. This
allows for enhancements to the matter spectrum on small scales that may be probed by ob-
servations of Lyman-α and 21 cm lines. Evolving the enhanced matter power spectrum into
the non-linear regime and understanding its effects on the Lyman-α flux spectrum as well as
hierarchical galaxy formation, and constraints arising from corresponding observations will
be discussed in future work.

In this paper, we concentrated on gravitational waves produced by inflation or local
cosmic strings and modified by axion kination. At any temperature with early matter or
kination domination, the Hubble scale is larger than with radiation domination, and hence,
quite generally, primordial gravitational waves are enhanced by axion kination. Further-
more, a distinctive feature appears in the spectrum, a peak or bump depending on the field
potential, containing information that probes in detail the era of kination and its origin. It
will be interesting to investigate other sources of primordial gravitational waves.
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Chapter 9

Gravitational Wave Gastronomy

9.1 Introduction

The Universe is transparent to gravitational waves, even at very early times. Therefore, the
search for a cosmological gravitational wave background provides a new way of observing our
early cosmic history. Furthermore, the Hubble scale H for cosmic inflation in the primordial
universe could be as large as 5 × 1013 GeV [38] (for a review see [101]), implying the early
Universe could have reached energies far beyond that of Earth based colliders. Therefore,
gravitational wave physics is a unique probe of extremely high scale physics.

A particularly promising class of sources for primordial gravitational waves arises from
topological defects produced during certain types of transitions that spontaneously break a
symmetry. Cosmic strings, domain walls and textures all produce a gravitational wave power
spectrum with an amplitude that monotonically increases with the scale of the symmetry
breaking [666]. This implies that gravitational waves from topological defects are a unique
probe of very high scale physics. We are coming into a golden age of gravitational wave
cosmology, with new experiments using pulsar timing arrays [405, 473, 567], astrometry
[133, 531, 305], space and ground based interferometry [8, 530, 399, 490, 161, 585, 422] all
due to come online in the next few decades and probing frequencies from the nanohertz
to kilohertz range. Indeed, NANOGrav and PPTA might have already seen evidence of a
primordial gravitational wave background [567, 329] which can be corroborated by future
pulsar timing arrays and astrometry [305]. Information about the Universe at very early
times and very high energy could be just over the horizon.

Of particular interest at the high scale is the possibility that the gauge groups in the
Standard Model could unify to a single gauge group, perhaps through a series of intermediate
steps (for a review see [213]). There are two remarkable hints that this might be the case:
First, the gauge anomalies of the Standard Model miraculously cancel — a miracle that is
necessary for the consistency of the theory and can be explained by an anomaly-free unified
gauge group that has been spontaneously broken. Second, the gauge coupling constants in
the standard model approximately unify at a scale of around 1015 GeV. On top of these
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hints, if B − L local symmetry is embedded in a unified group, the Baryon asymmetry can
be generated through leptogenesis when this U(1)B−L is spontaneously broken in the early
Universe [147].

While elegant, these Grand Unified Theories (GUTs) are notoriously difficult to test due
to the high scales involved. Many symmetry breaking paths predict topological defects that
are in conflict with present day cosmology unless their relic abundances are heavily diluted.
For example, even a small flux of monopoles can destroy the magnetic fields of galaxies or
potentially catalyze proton decays [552, 654, 160, 594]. Moreover, domain walls, which dilute
slowly with the expansion of the Universe, can come to dominate the energy density of the
Universe which conflicts with the standard ΛCDM cosmology [695].

A solution to these problematic defects is for inflation to dilute their abundance [342,
481], which puts a qualitative constraint on the cosmological history of the Universe. Another
possibility is for the problematic defects to be ‘eaten’ by another defect which is determined
solely by the symmetry breaking. For example, for some symmetry breaking chains, strings
can be cut by the Schwinger nucleation of monopole-antimonopole pairs [465, 468, 669] which
‘eat’ the string before annihilating themselves. Similarly, in other symmetry breaking chains,
domain walls can be consumed by the Schwinger nucleation of strings on their surface or can
be cut into pieces of string-bounded walls by a pre-existing string network [434, 436, 281]
and later decay via gravitational waves. We call the gravitational wave signatures from the
‘eating’ of one defect by another gravitational wave gastronomy.

We for the first time derive the gravitational wave spectrum that arises from symmetry
breaking paths that form walls bounded by strings. The case where the domain walls destroy
a pre-existing string network and where the walls are consumed by string nucleation generate
distinct gravitational wave spectra. The former scenario is particularly interesting since it
always occurs in chains that allow hybrid wall-bounded strings when inflation occurs prior to
string formation. 1 The latter scenario arises when inflation occurs between string and wall
formation scale. Moreover, string nucleation on the wall is a tunneling process exponentially
sensitive to the degeneracy between the cube of the string tension, µ3, and square of the
wall tension, σ2, and hence requires a coincidence of scales that is unnecessary in the first
case. We also revisit the gravitational wave spectrum predicted from monopoles consuming
strings [150, 148, 333] and derive, for the first time, the gravitational wave spectrum that
arises from strings eating a pre-existing monopole network. This case is again particularly
interesting since it always occurs in chains that allow hybrid monopole-bounded strings when
inflation occurs before monopole formation. 2.

Overall, we find that all types of hybrid defects generate distinguishable gravitational

1Domain walls bounded by strings can also appear in the breaking of an approximate U(1) global
symmetry, such as with axions. [667, 625, 637, 656, 395, 598, 379, 381, 154, 694, 156]. Unlike gauged defects,
these global defects decay mostly via pseudo-goldstone boson emission, not gravitational waves. This work
focuses on gauged hybrid defects.

2During the writing of this manuscript, the power spectrum we predict was independently derived in
Ref. [149] which confirms the results in this paper for the monopole-eating strings gastronomy scenario of
Sec. 9.4.
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wave signals, implying that gravitational wave gastronomy is a remarkably promising method
for learning information about the symmetry breaking chain that Nature chose to follow.
Such a program is at the very least complimentary to other probes of high scale physics
including searches for lepton number violation in neutrinoless double beta decay [609, 249],
searches for non-Gaussianities in the CMB [179, 102, 74, 180, 549, 65, 238, 471, 431, 54,
452, 103, 294, 66] and searches for proton decay [679, 686, 682, 602, 17, 16, 439, 438].
Finally, in the case where monopoles are produced alongside strings, the possibility was
raised that the strings dilute slowly enough that they can be replenished after there is
enough e-foldings of inflation to dilute the monopoles. This results in potentially observable
burst [215] or stochastic signals [341, 333]. We show explicit symmetry breaking chains that
can accommodate this signal in Sec. 9.8 and discuss how both strings and domain walls can
sometimes replenish after monopoles are diluted away to reform a scaling network.

The structure of this paper is as follows. In Section 9.2 we review the menu of topological
defects that can be generated from symmetry breaking and give an overview of all possible
symmetry breaking paths from the SO(10) GUT group that generate that can generate an
observable gravitational wave signature. Finally, we make more general statements about all
gauge groups by deriving a set of homotopy selection rules in order to argue that our menu
of possible signals is complete and general. In Section 9.3, we review upcoming prospects
for gravitational wave detection, including possible ways of constraining or detecting high
frequency signals. In section 9.4 we consider the gravitational wave spectrum of monopoles
consuming strings via Schwinger nucleation, and in Section 9.5, strings consuming a pre-
existing monopoles network. In Section 9.6 we consider strings consuming domain walls
via Schwinger nucleation, and in Section 9.7 domain walls consuming a pre-existing string
network. In Section 9.8 we briefly discuss topological defects that are washed out by inflation
before summarizing our results and discussing how each gravitational wave signal from hybrid
defects can be distinguished in Section 9.9.

9.2 Topological defects generated from Grand Unified

Theories

In this section, we review the menu of topological defects that can be produced by symmetry
breaking chains. We then derive a set of topological selection rules and discuss four types of
hybrid defects that commonly appear in SO(10) GUTs.

Menu of Topological Defects in Symmetry Breaking Paths

Let us begin by discussing the full set of defects that can occur in a symmetry breaking chain.
As well as overviewing the defects conceptually, we will discuss the connection between the
scale of symmetry breaking and the physical quantities - the domain wall surface tension, the
string tension, and the monopole mass. We will find there is substantial flexibility in surface
tension of the domain wall and the monopole mass, up to naturalness concerns, and only a
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moderate amount of flexibility in the relationship of the string tension and the associated
symmetry breaking scales.

Consider a gauge group G spontaneously breaking to H. In four dimensional spacetime,
we have four possible topological defects that can arise during such a transition. Depend-
ing on the characteristics of the vacuum manifold M = G/H, one can produce domain
walls, cosmic strings, monopoles, and textures. The vacuum manifold is characterized by
its homotopy class, that is the equivalence class of the maps from an n-dimensional sphere
Sn into M, denoted as πn(M). We use the notation I for trivial homotopy groups. If M
is disconnected, π0(M) 6= I, and two dimensional topological defects (domain walls) are
formed through the symmetry breaking. Similarly, π1(M) 6= I predicts one dimensional
defects (cosmic strings), π2(M) 6= I predicts point-like defects (monopoles), and π3(M) 6= I
predicts three-dimensional defects (textures).

Let us begin with a qualitative discussion of domain walls. A standard Mexican hat
potential with a Z2 discrete symmetry

V (φ) =
λσ
4

(φ2 − v2
σ)2 , (9.1)

will have a vacuum manifold that satisfies π0(M) 6= I and therefore admits domain walls.
Consider a kink solution to the equation of motion between two degenerate vacuua

φ(x) = vσ tanh

(√
λσ
2
vσx

)
. (9.2)

The surface tension of the wall is

σ =

∫ ∞

−∞
dx

(
1

2

[
∂φ(x)

dx

]2

+ V (φ(x))

)
=

√
8λσ
9
v3
σ, (9.3)

which, depending on the value of λσ, can in principle vary from an order of magnitude
above v3

σ to arbitrarily small values (for a review see [539]). To avoid committing to a
particular form of a potential, throughout this paper we will parametrize the flexibility of
the relationship between the surface tension and the symmetry breaking scale as

σ = εv3
σ . (9.4)

Note that although ε in principle can be arbitrarily small, naturalness will require ε &
g2/4π & 10−3. with the lower limit arising from Coleman-Weinberg one-loop quantum cor-
rections, where g ∼ 0.1 is the grand unified gauge coupling associated with the Z2 symmetry
above the scale vσ.

Next let us consider the case where the first homotopy group of the vacuum manifold
is non-trivial, that is when strings can form. Consider a scalar theory with a U(1) gauge
symmetry,

L = |Dφ|2 + V (φ) +
1

4
F 2, (9.5)
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where Dµ = ∂µ − ieAµ is the covariant derivative. Again, we use the same form of the
potential

V =
λµ
4

(|φ|2 − v2
µ)2 . (9.6)

The classical equations of motion have the form

D2φ+
λµ
2

(|φ|2 − v2
µ)φ = 0 (9.7)

∂µFµν − ie(φ∗Dνφ−Dνφ
∗φ) = 0 (9.8)

and admit a non-trivial solution of the form

φ(r) = f(r)vµe
iθ, Ai =

1

er
Aθ(r)θ̂i, (9.9)

where A(∞) = f(∞) = 1 and A(0) = f(0) = 0. The string tension can be found by
substituting the string solution into the classical equations of motion into the Hamiltonian
and integrating over the loop

µ =

∫
rdrdφ

[∣∣∣∣
∂φ

∂r

∣∣∣∣
2

+

∣∣∣∣
1

4

dφ

dθ
− iqA′θφ

∣∣∣∣
2

+V (φ) +
B′2

2

]
(9.10)

= 2πv2B

(
2λ

e2

)
. (9.11)

where B′ is the magnetic field related to the cosmic string. B(x) is a slowly varying function
that is equal to 1 when x = 1 and [376]

B(x) ∼
{

2.4/ ln(2/x) x < 10−2

1.04x0.195 10−2 < x� 1.
(9.12)

for x < 1. Since 2λµ/e
2 can in principle take a large range of values, there are many orders of

magnitude that the argument of B can take. However, as the function is so slowly varying,
µ ∼ v2

µ within an order of magnitude.
Finally, let us consider monopoles which exist in the case where the second homotopy

group of the vacuum manifold is non-trivial. That is, the vacuum is topologically equivalent
to a sphere. For a simple example, consider a model with an SU(2) gauge symmetry

L =
1

2
DµφDµφ−

1

4
BµνB

µν − λ

4

(
φ2 − v2

m

)2
, (9.13)

where φ is a real SU(2) triplet. The ‘t Hooft-Polyakov monopole [1, 568] has the behavior

φ = r̂
h(vmer)

er

W i
a = εaijx̂

j 1− f(vmer)

er
W 0
a = 0 , (9.14)
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where, using the shorthand ξ = vmer for the product of vm with the gauge coupling constant
e and radial coordinate r, the functions f and h are solutions to the equations [1, 568]

ξ2d
2f

dξ2
= f(ξ)h(ξ)2 + f(ξ)(f(ξ)2 − 1) (9.15)

ξ2d
2h

dξ2
= 2f(ξ)2h(ξ) +

λ

e2
h(ξ)(h(ξ)2 − ξ2) . (9.16)

The boundary conditions satisfy limξ→0 f(ξ)−1 = limξ→0 h(ξ) ∼ O(ξ) and limξ→∞ f(ξ) = 0,
limξ→∞ h(ξ) ∼ ξ. The monopole mass again comes from solving the equations of motion and
then calculating the static Hamiltonian,

E = m =
4πvm
e

∫ ∞

0

dξ

ξ2

[
ξ2

(
df

dξ

)2

+
1

2

(
ξ
dh

dξ
− h
)2

+
1

2
(f 2 − 1)2 + f 2h2 +

λ

4e2
(h2 − ξ2)2

]
. (9.17)

It has the form

m =
4πvm
e

f(λ/e2) . (9.18)

The solution (9.17) has been calculated numerically for multiple values, and one finds that
for 0.1 < λ/e2 < 101, f(λ/e2) is slowly varying O(1) function [1].

In conclusion there is a reasonably tight relationship between the symmetry breaking
scale and the string tension µ ∼ v2

µ. However, domain walls can have a significantly smaller
surface tension than the cube of the symmetry breaking scale and the monopole mass can be
well above vm. Even still, one should expect from naturalness considerations for all relevant
quantities to be within a few orders of magnitude of the relevant powers of the symmetry
breaking scale.

Hybrid Defects in Grand Unified Theories

In the previous subsection, we considered the various types of topological defects that can be
generated during a single symmetry breaking G→ H. Now, with the table set, we consider
how a sequence of multiple transitions,

G→ H → K, (9.19)

can give rise to hybrid topological defects composed of two different dimensional defects. For
these hybrid defects, the bulk topological defect converts its rest mass to the kinetic energy
of the boundary defect, leading to the appearance of one defect consuming the other. The
relativistic motion of these defects leads to gravitational wave emission and eventual decay
of the composite defect.
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Strings

<latexit sha1_base64="iP1Y/AhjPigl1OJu+wGCIdYEuVQ=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseiF48V7Qe0oWy2m3bpZhN2J0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2il9gNqoYamX664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzcKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjMficDoTlDObGEMi3srYSNqKYMbUIlG4K3/PIqadWq3kX18r5Wqd/kcRThBE7hHDy4gjrcQQOawGAMz/AKb07ivDjvzseiteDkM8fwB87nD4M2j7A=</latexit>

422

<latexit sha1_base64="PAJgjlueBHBJtm3dxPrLWU8eqtE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3ddrtX654lbdOcgq8XJSgRzNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF75mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6Rdq3r16sVdvdK4zuMowgmcwjl4cAkNuIUmtIDBEJ7hFd4c6bw4787HorXg5DPH8AfO5w9jxI04</latexit>

51

<latexit sha1_base64="MFDOzFGnUHxdNkpoaNusS/TU1ZE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0UPP65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80un5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazt8mAK2RGTCyhTHF7K2EjqigzNpySDcFbfnmVtC6q3mW1dn9Zqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD/KijPw=</latexit>

5F1

<latexit sha1_base64="SDrqbupb8qHHCaXBgXpibuVPW0k=">AAAB8XicbVBNSwMxEJ2tX7V+rXr0EiyCp7IrLXosCuKxgv3AdinZNNuGJtklyQpl6b/w4kERr/4bb/4b03YP2vpg4PHeDDPzwoQzbTzv2ymsrW9sbhW3Szu7e/sH7uFRS8epIrRJYh6rTog15UzSpmGG006iKBYhp+1wfDPz209UaRbLBzNJaCDwULKIEWys9FjrZz0l0O3U77tlr+LNgVaJn5My5Gj03a/eICapoNIQjrXu+l5iggwrwwin01Iv1TTBZIyHtGupxILqIJtfPEVnVhmgKFa2pEFz9fdEhoXWExHaToHNSC97M/E/r5ua6CrImExSQyVZLIpSjkyMZu+jAVOUGD6xBBPF7K2IjLDCxNiQSjYEf/nlVdK6qPjVSu2+Wq5f53EU4QRO4Rx8uIQ63EEDmkBAwjO8wpujnRfn3flYtBacfOYY/sD5/AGpwJBE</latexit>

321Z2

<latexit sha1_base64="W0zjP+3lJPhrLgEvTiXGNErgnrU=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmLiiewiRI9ELx4xkY8IG9ItXah0203bNSEb/oMXDxrj1f/jzX9jgT0o+JJJXt6bycy8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCopWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2Mb2Z++4kqzaS4N5OY+hEeChYygo2VWhcV76Ff6RdLbtmdA60SLyMlyNDoF796A0mSiApDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lAkdU++n82ik6s8oAhVLZEgbN1d8TKY60nkSB7YywGellbyb+53UTE175KRNxYqggi0VhwpGRaPY6GjBFieETSzBRzN6KyAgrTIwNqGBD8JZfXiWtStmrlmt31VL9OosjDydwCufgwSXU4RYa0AQCj/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8ANpeOPw==</latexit>

321

<latexit sha1_base64="UhQ6L7xXjeLFWcrMWBH9sg4wrOQ=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYRo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKDxcVr1csuWV3DrJKvIyUIEO9V/zq9mOWRlwhk9SYjucm6E+oRsEknxa6qeEJZSM64B1LFY248SfzU6fkzCp9EsbalkIyV39PTGhkzDgKbGdEcWiWvZn4n9dJMbz2J0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5JmpexVy5f31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz9guo02</latexit>

321Z2

<latexit sha1_base64="W0zjP+3lJPhrLgEvTiXGNErgnrU=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmLiiewiRI9ELx4xkY8IG9ItXah0203bNSEb/oMXDxrj1f/jzX9jgT0o+JJJXt6bycy8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCopWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2Mb2Z++4kqzaS4N5OY+hEeChYygo2VWhcV76Ff6RdLbtmdA60SLyMlyNDoF796A0mSiApDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lAkdU++n82ik6s8oAhVLZEgbN1d8TKY60nkSB7YywGellbyb+53UTE175KRNxYqggi0VhwpGRaPY6GjBFieETSzBRzN6KyAgrTIwNqGBD8JZfXiWtStmrlmt31VL9OosjDydwCufgwSXU4RYa0AQCj/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8ANpeOPw==</latexit>

3211

<latexit sha1_base64="LLnFtBIEhezeJkeHf5rGcpiO0UM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mtLXosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwy6armecNyxa26C6B14uWkAjlaw/LXYBSRRFBpCMda9z03Nn6KlWGE03lpkGgaYzLFY9q3VGJBtZ8ubp2jC6uMUBgpW9Kghfp7IsVC65kIbKfAZqJXvUz8z+snJrzxUybjxFBJlovChCMToexxNGKKEsNnlmCimL0VkQlWmBgbT8mG4K2+vE46tapXrzYe6pXmbR5HEc7gHC7Bg2towj20oA0EJvAMr/DmCOfFeXc+lq0FJ585hT9wPn8A0HyNcQ==</latexit>

3221

<latexit sha1_base64="pa7WfJBAezArAiv1PTKYj2NXzfk=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mtLXosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwy6apW84blilt1F0DrxMtJBXK0huWvwSgiiaDSEI617ntubPwUK8MIp/PSINE0xmSKx7RvqcSCaj9d3DpHF1YZoTBStqRBC/X3RIqF1jMR2E6BzUSvepn4n9dPTHjjp0zGiaGSLBeFCUcmQtnjaMQUJYbPLMFEMXsrIhOsMDE2npINwVt9eZ10alWvXm081CvN2zyOIpzBOVyCB9fQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4A0gGNcg==</latexit>

3221D

<latexit sha1_base64="97/4fxFwct/YNMza47MShP2V0Yw=">AAAB7HicbVBNTwIxEJ3iF+IX6tFLIzHxRHYRo0eiHjxi4gIJbEi3dKGh2920XROy4Td48aAxXv1B3vw3FtiDgi+Z5OW9mczMCxLBtXGcb1RYW9/Y3Cpul3Z29/YPyodHLR2nijKPxiJWnYBoJrhknuFGsE6iGIkCwdrB+Hbmt5+Y0jyWj2aSMD8iQ8lDTomxkndRq7l3/XLFqTpz4FXi5qQCOZr98ldvENM0YtJQQbTuuk5i/Iwow6lg01Iv1SwhdEyGrGupJBHTfjY/dorPrDLAYaxsSYPn6u+JjERaT6LAdkbEjPSyNxP/87qpCa/9jMskNUzSxaIwFdjEePY5HnDFqBETSwhV3N6K6YgoQo3Np2RDcJdfXiWtWtWtVy8f6pXGTR5HEU7gFM7BhStowD00wQMKHJ7hFd6QRC/oHX0sWgsonzmGP0CfP17SjcA=</latexit>

321

<latexit sha1_base64="UhQ6L7xXjeLFWcrMWBH9sg4wrOQ=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYRo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKDxcVr1csuWV3DrJKvIyUIEO9V/zq9mOWRlwhk9SYjucm6E+oRsEknxa6qeEJZSM64B1LFY248SfzU6fkzCp9EsbalkIyV39PTGhkzDgKbGdEcWiWvZn4n9dJMbz2J0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5JmpexVy5f31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz9guo02</latexit>

321Z2

<latexit sha1_base64="W0zjP+3lJPhrLgEvTiXGNErgnrU=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmLiiewiRI9ELx4xkY8IG9ItXah0203bNSEb/oMXDxrj1f/jzX9jgT0o+JJJXt6bycy8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCopWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2Mb2Z++4kqzaS4N5OY+hEeChYygo2VWhcV76Ff6RdLbtmdA60SLyMlyNDoF796A0mSiApDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lAkdU++n82ik6s8oAhVLZEgbN1d8TKY60nkSB7YywGellbyb+53UTE175KRNxYqggi0VhwpGRaPY6GjBFieETSzBRzN6KyAgrTIwNqGBD8JZfXiWtStmrlmt31VL9OosjDydwCufgwSXU4RYa0AQCj/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8ANpeOPw==</latexit>

321

<latexit sha1_base64="UhQ6L7xXjeLFWcrMWBH9sg4wrOQ=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYRo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKDxcVr1csuWV3DrJKvIyUIEO9V/zq9mOWRlwhk9SYjucm6E+oRsEknxa6qeEJZSM64B1LFY248SfzU6fkzCp9EsbalkIyV39PTGhkzDgKbGdEcWiWvZn4n9dJMbz2J0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5JmpexVy5f31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz9guo02</latexit>

3211

<latexit sha1_base64="LLnFtBIEhezeJkeHf5rGcpiO0UM=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbBU9mtLXosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwy6armecNyxa26C6B14uWkAjlaw/LXYBSRRFBpCMda9z03Nn6KlWGE03lpkGgaYzLFY9q3VGJBtZ8ubp2jC6uMUBgpW9Kghfp7IsVC65kIbKfAZqJXvUz8z+snJrzxUybjxFBJlovChCMToexxNGKKEsNnlmCimL0VkQlWmBgbT8mG4K2+vE46tapXrzYe6pXmbR5HEc7gHC7Bg2towj20oA0EJvAMr/DmCOfFeXc+lq0FJ585hT9wPn8A0HyNcQ==</latexit>

321Z2

<latexit sha1_base64="W0zjP+3lJPhrLgEvTiXGNErgnrU=">AAAB7XicbVBNTwIxEJ3FL8Qv1KOXRmLiiewiRI9ELx4xkY8IG9ItXah0203bNSEb/oMXDxrj1f/jzX9jgT0o+JJJXt6bycy8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCopWWiCG0SyaXqBFhTzgRtGmY47cSK4ijgtB2Mb2Z++4kqzaS4N5OY+hEeChYygo2VWhcV76Ff6RdLbtmdA60SLyMlyNDoF796A0mSiApDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lAkdU++n82ik6s8oAhVLZEgbN1d8TKY60nkSB7YywGellbyb+53UTE175KRNxYqggi0VhwpGRaPY6GjBFieETSzBRzN6KyAgrTIwNqGBD8JZfXiWtStmrlmt31VL9OosjDydwCufgwSXU4RYa0AQCj/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8ANpeOPw==</latexit>

321

<latexit sha1_base64="UhQ6L7xXjeLFWcrMWBH9sg4wrOQ=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYRo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKDxcVr1csuWV3DrJKvIyUIEO9V/zq9mOWRlwhk9SYjucm6E+oRsEknxa6qeEJZSM64B1LFY248SfzU6fkzCp9EsbalkIyV39PTGhkzDgKbGdEcWiWvZn4n9dJMbz2J0IlKXLFFovCVBKMyexv0heaM5RjSyjTwt5K2JBqytCmU7AheMsvr5JmpexVy5f31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz9guo02</latexit>

Monopoles

<latexit sha1_base64="je7KR5MVvHd0UDVlymiNdlqvWLI=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBA8hd2g6DHoxYsQwTwkWcLsZDYZMo9lZlYIS77CiwdFvPo53vwbJ8keNLGgoajqprsrSjgz1ve/vZXVtfWNzcJWcXtnd2+/dHDYNCrVhDaI4kq3I2woZ5I2LLOcthNNsYg4bUWjm6nfeqLaMCUf7DihocADyWJGsHXS452SKlGcml6p7Ff8GdAyCXJShhz1Xumr21ckFVRawrExncBPbJhhbRnhdFLspoYmmIzwgHYclVhQE2azgyfo1Cl9FCvtSlo0U39PZFgYMxaR6xTYDs2iNxX/8zqpja/CjMkktVSS+aI45cgqNP0e9ZmmxPKxI5ho5m5FZIg1JtZlVHQhBIsvL5NmtRKcVy7uq+XadR5HAY7hBM4ggEuowS3UoQEEBDzDK7x52nvx3r2PeeuKl88cwR94nz8RfJCW</latexit>

Inflation

<latexit sha1_base64="5s6062eDzbEoQetRjAltzxqR3a4=">AAAB8HicbZDLSgMxFIbP1Futt6pLN8EiuCozxaLLohvdVbAXaYeSSTNtaJIZkoxQhj6FGxeKuPVx3Pk2ptNZaOsPgY//nEPO+YOYM21c99sprK1vbG4Vt0s7u3v7B+XDo7aOEkVoi0Q8Ut0Aa8qZpC3DDKfdWFEsAk47weRmXu88UaVZJB/MNKa+wCPJQkawsdbjnQx5RoNyxa26mdAqeDlUIFdzUP7qDyOSCCoN4VjrnufGxk+xMoxwOiv1E01jTCZ4RHsWJRZU+2m28AydWWeIwkjZJw3K3N8TKRZaT0VgOwU2Y71cm5v/1XqJCa/8lMk4MVSSxUdhwpGJ0Px6NGSKEsOnFjBRzO6KyBgrTIzNqGRD8JZPXoV2repdVOv3tUrjOo+jCCdwCufgwSU04Baa0AICAp7hFd4c5bw4787HorXg5DPH8EfO5w/sfpB+</latexit>

Required

<latexit sha1_base64="CkXe1fWD4V1bvXgKDp3/6UCboWg=">AAAB73icbVDLSsNAFL2pr1pfVZdugkVwVZKi6LLoxmUV+4A2lMnkph06maQzE6GE/oQbF4q49Xfc+TdO2yy09cDA4Zx7mXuOn3CmtON8W4W19Y3NreJ2aWd3b/+gfHjUUnEqKTZpzGPZ8YlCzgQ2NdMcO4lEEvkc2/7odua3n1AqFotHPUnQi8hAsJBRoo3UecBxyiQG/XLFqTpz2KvEzUkFcjT65a9eENM0QqEpJ0p1XSfRXkakZpTjtNRLFSaEjsgAu4YKEqHysvm9U/vMKIEdxtI8oe25+nsjI5FSk8g3kxHRQ7XszcT/vG6qw2svYyJJNQq6+ChMua1jexbeDkxWqvnEEEIlM7fadEgkodpUVDIluMuRV0mrVnUvqpf3tUr9Jq+jCCdwCufgwhXU4Q4a0AQKHJ7hFd6ssfVivVsfi9GCle8cwx9Ynz8uvpAR</latexit>

Figure 9.1: A sample of SO(10) symmetry breaking paths down to the Standard Model that
produce hybrid defects. The color of the arrows denotes the type of topological defect pro-
duced; red corresponds to magnetic monopoles, blue to cosmic strings, and green to domain
walls. A red (blue) glow on an arrow indicates that defect becomes part of a monopole-
bounded string (string-bounded wall). For example, monopoles formed at a red arrow with
red glow become attached to strings formed at a blue arrow with red glow. Likewise, strings
formed at a blue arrow with blue glow become attached to domain walls formed at a green
arrow with blue glow. Note that the lower dimensional (boundary) defect of a hybrid de-
fect always arises from an earlier stage of symmetry breaking than the higher dimensional
(bulk) defect as discussed in Appendix F.1. A dot on a red arrow indicates stable monopoles
form at that stage of symmetry breaking and need to be inflated away. If other monopoles,
strings, or domain walls exist at this time, they will also be inflated away. However, inflated
defects can later destabilize the bulk defects and generate gravitational waves via nucleation
of monopoles on strings (red glow) or string holes on walls (blue glow).
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Consider first the case when the vacuum manifold H/K is not simply connected but the
full vacuum manifold, G/K is. Then π1(H/K) 6= I and strings form at the transition H →
K. However, these strings are topologically unstable since in the full theory, π1(G/K) = I,
which does not permit stable strings below K. The topological instability of strings manifests
itself by the nucleation of magnetic monopole pairs that cut and ‘eat’ the string [468, 669]
(see Fig. 9.2). A set of homotopy selection rules proven in Appendix F.1 show that the
monopoles that nucleate on the string boundaries must always arise from the earlier phase
transition G→ H so that π2(G/H) 6= I and vm ≥ vµ. The gastronomy scenario of monopoles
nucleating and eating a string network is discussed in Sec. 9.4.

The requirement that G → H generates monopoles that can attach to strings implies
that, if inflation occurs before monopole formation, a significant number of monopoles can
already be in the horizon at the time of string formation. In this scenario, the magnetic
field lines between monopole and antimonopole pairs squeeze into flux tubes (strings) after
H → K (see Fig. 9.5) and hence strings bounded by monopoles form right at the string
formation scale vµ [465, 468, 669]. The gastronomy scenario of strings attaching to and
eating a pre-existing monopole network is discussed in Sec. 9.5.

Similarly, consider now the case when the vacuum manifold H/K is disconnected but the
full vacuum manifold, G/K is connected. Then π0(H/K) 6= I and domain walls form at the
transition H → K. However, these domain walls are topologically unstable since in the full
theory, π0(G/K) = I, which does not permit stable domain walls below K. The topological
instability of walls manifests itself by the nucleation of string-bounded holes on the wall (see
Fig. 9.8) which expand and ‘eat’ the wall [436]. The same set of homotopy selection rules
derived in Appendix F.1 shows that the strings that nucleate on the wall must always arise
from the earlier phase transition G→ H so that π1(G/H) 6= I and vµ ≥ vσ. The gastronomy
scenario of strings nucleating and eating a domain wall network is discussed in Sec. 9.6.

The requirement that G → H generates strings that can attach to walls implies that, if
inflation occurs before string formation, a significant number of strings can already be in the
horizon at the time of wall formation. In this scenario, the space between strings is filled
with a wall after H → K (see Fig. 9.11) and hence walls bounded by strings form right at
the wall formation scale vσ [436, 281]. The gastronomy scenario of walls attaching to and
eating a pre-existing string network is discussed in Sec. 9.7.

In many GUT symmetry breaking chains to the Standard Model gauge group GSM, these
type of homotopy sequences occur and hybrid defects form. Indeed, both π1(SO(10)/GSM) =
I and π0(SO(10)/GSM) = I so that at least one string or domain wall that forms during
the intermediate breaking of SO(10) down to GSM must become part of a composite defect
which can lead to the gastronomy signals of Sec. 9.4-9.7.

To see how ubiquitous hybrid topological defects are, we depict in Fig. 9.1 a sample of
possible cosmic histories of SO(10) breaking and the topological defects produced at each
stage. The color of the arrows in Fig. 9.1 denotes which type of defect is produced at each
stage of breaking, with strings in blue, walls in green, and monopoles in red. The chains
which produce monopoles that become attached to strings are shown by the glowing red
paths while the chains which produce strings that become attached to walls are shown by
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the glowing blue paths. The meaning of each gauge group abbreviation is as follows:

51 = SU(5)× U(1)X/Z5 ,

5F1 = SU(5)flipped × U(1)flipped/Z5 ,

422 = SU(4)c × SU(2)L × SU(2)R/Z2 ,

3221 = SU(3)c × SU(2)L × SU(2)R × U(1)B−L/Z6 ,

3211 = SU(3)c × SU(2)L × U(1)Y × U(1)X/Z6 ,

321 = SU(3)c × SU(2)L × U(1)Y /Z6. (9.20)

D refers to D-parity, a discrete charge conjugation symmetry [434, 436], Z2 refers to matter
parity, and GSM = 321.

Note that the sequence for forming strings bounded by monopoles in Fig. 9.1 is typically
realized by the two-stage sequence [670]

G
monopoles−−−−−−→ H × U(1)

strings−−−→ H, (9.21)

with π1(G/H) = I. Monopoles form in the first transition when G breaks to a subgroup
containing a U(1) and strings form and connect to the monopoles when this same U(1)
is later broken. Likewise, walls bounded by strings are typically realized in the two-stage
sequence [670]

G
strings−−−→ H × Z2

walls−−→ H, (9.22)

with π0(G/H) = I. Strings form in the first transition when G breaks to a subgroup
containing a discrete symmetry (since π1(G/(H ×Z2)) ⊇ π0(H ×Z2) 6= I)). The walls form
and connect to the strings when the same discrete symmetry associated with the strings is
broken.

As indicated in Fig. 9.1, many symmetry breaking paths from SO(10) to the Standard
Model yield hybrid defects. An example chain that produces all hybrid defects discussed in
this paper is SO(10) → 5F1 → 3211 → 321Z2 → 321, which we now go over as a concrete
example of the different types of gastronomy signals discussed in this paper.

In the first breaking, SO(10) → 5F1 generates monopoles which must be inflated away.
The second breaking, 5F1 → 3211, also generates monopoles, but these lighter monopoles
can get connected by the strings formed at the third breaking, 3211 → 321Z2. Thus,
this sequence can produce gravitational wave gastronomy signals discussed in Secs. 9.4
and 9.5 with each section corresponding to when inflation occurs relative to monopole and
string formation. Specifically, if inflation dilutes both heavy and light monopoles before the
strings form, then the string network evolves as a pure string network until light monopoles
nucleate and ‘eat’ the string network (Sec. 9.4). Note that for the nucleation to occur
within cosmological timescales, the relative hierarchy between the second and third symmetry
breaking chains cannot be too large. However, if inflation occurs before the formation of the
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light monopoles, then the light monopoles connect to strings at the string formation scale
and ‘eat’ the monopole network (Sec. 9.5).

At the third breaking, in addition to the previous strings, Z2-strings appear and get
filled by the domain wall formed at the fourth breaking, 321 × Z2 → 321. This sequence
can produce gravitational wave gastronomy signals discussed in Secs. 9.6 and 9.7, with
each section corresponding to when inflation occurs relative to string and wall formation.
If inflation dilutes the Z2 strings before the walls form, then the wall network evolves as a
pure wall network until Z2 strings nucleate and ‘eat’ the wall (Sec. 9.6). For the wall to
nucleate strings before dominating the energy density of the Universe requires a relatively
small hierarchy between the third and fourth symmetry breaking scales. However, if inflation
occurs before the Z2 strings form, then the strings get filled by the domain walls and the walls
proceed to ‘eat’ the string network (Sec. 9.7). In this gastronomy scenario, no degeneracy
between scales is necessary.

9.3 Gravitational wave detectors

Topological defects leave a variety of gravitational wave signals that are in many cases
detectable by proposed experiments. This means that gravitational wave detectors have a
unique opportunity to probe the cosmological history of symmetry breaking. In the nHz to
µHz range, pulsar timing arrays including EPTA, PPTA, NANOGrav and SKA [71, 492,
473, 405] and astrometry including Gaia and Theia [136, 531, 520, 521, 305] can reach
impressive sensitivity over the next few years. Spaced based interferometry experiments
including LISA [52] (Tianqin [488, 512] and Taiji [394] also cover similar regions), DECIGO
[422], and the Big Bang Observer (BBO) [364], all will probe mHZ to Hz frequencies. Atom
interferometry experiments including AEDGE [543], AION [83] and MAGIS [335] will probe
a similar range. Finally, ground based experiments including aLIGO and aVIRGO [365, 7,
19, 15], KAGRA [39], the Cosmic Explorer (CE) [585], and the Einstein Telescope (ET)
[490] are in principle sensitive to the frequencies up to around a kHz.

Many topological defects leave quite broad spectra which can lead to a boost in the naive
sensitivity of a detector [648]. The integrated sensitivity of a detector to a specific signal is
given by the signal to noise ratio

SNR =

√
T

∫ fmax

fmin

df

[
h2ΩGW(f)

h2Ωsens(f)

]2

(9.23)

where T is the observation time of the detector, Ωsens(f) is the sensitivity to a monochromatic
gravitational wave spectrum. To register a detection, the SNR must be above 1 as indicated
by the sensitivity curves of [615], which we use throughout this work. In some cases the
defects are only visible at frequencies higher than the reach of the above experiments. This
can occur either in the case of strings consuming a pre-existing monopole network or walls
consuming a pre-existing string network. Unfortunately, the strongest projected sensitivity
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at present for frequencies above a few kHz is the bound arising from constraints on the
expansion of the Universe during big bang nucleosynthesis and recombination [27]. The
current constraint on the expansion rate of the Universe is generally expressed in terms of
the departure from the Standard Model prediction of the effective number of relativistic
degrees of freedom,

∆Neff =
8

7

(
11

4

)4/3
Ω0

GW

Ωγ

(9.24)

where

Ω0
GW =

∫
df

f
ΩGW(f) . (9.25)

∆Neff constraints on the total energy density of gravitational waves can provide powerful
bounds on defects which only leave a high frequency, but large amplitude, gravitational wave
spectrum. Current constraints on ∆Neff < 0.284 arise from the Planck 2018 dataset using
TT,TE,EE+lowE+lensing [30]. This is expected to improve significantly to ∆Neff < 0.03 as
a conservative estimate of the sensitivity of next generation experiments [10]. A hypothetical
experiment limited only by the cosmic variance limit was found to be sensitive to changes
to the number of relativistic degrees of freedom as small as [109]

∆NCVL
eff < 3.1× 10−6 (9.26)

which is in principle sensitive to gravitational wave spectra at arbitrary frequency with an
amplitude as small as O(10−12). Beyond cosmological limits, there are promising proposals
using interferometers [40, 546, 186, 498, 663] (103 − 107 Hz), levitated sensors [28] (103 −
104 Hz) and magnetic conversion [591] (109 − 1010 Hz) which may probe high frequency
gravitational wave cosmology as summarized in ref. [27].

We now turn to calculating the gravitational wave gastronomy signal for strings bounded
by monopoles and walls bounded by strings.

9.4 Monopoles Eating Strings

In this section, we consider the gastronomy signal of monopoles nucleating on strings. As
shown in Sec. 9.2, if they are related by the same U(1), monopoles form first, (in the
initial phase transition that leaves an unbroken U(1) symmetry), and connect to strings
in the second phase transition (when the U(1) is broken). When inflation occurs after
the formation of monopoles but before strings, the monopole abundance is heavily diluted
by the time the strings form. The absence of monopoles initially prevents the formation of
monopole-bounded strings at the second stage of symmetry breaking and the strings initially
evolve as a normal string network. Nevertheless, the strings can later become bounded by
monopoles by the Schwinger nucleation of monopole-antimonopole pairs, which cuts the
string into pieces bounded by monopoles as shown in Fig. 9.2. Conversion of string rest
mass into monopole kinetic energy leads to relativistic oscillations of the monopoles before
the system decays via gravitational radiation and monopole annihilation [496, 469, 149].
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Figure 9.2: Top: Free energy diagram for a pair of monopoles nucleating on a string vs their
nucleation separation, l. For l > ltp, the free energy of the system turns negative and it
becomes energetically possible to nucleate a pair of monopoles in place of a string segment
of length ltp. Bottom: Illustration of the nucleation process. For strings with length l > ltp
a string segment of length ltp is ‘eaten’ and replaced with a monopole-antimonopole pair
which form the boundaries of the cut string piece.

Monopoles can only nucleate if it is energetically possible to. The energy cost of producing
a monopole-antimonopole pair is 2m where m is the mass of each monopole, and the energy
gained from reducing a string segment of length l is µl where µ is the string tension. The
free energy of the monopole-string system is then

E = 2m− µl . (9.27)

The energy balance between monopole creation and string length reduction leads to a critical
string length, ltp, above which it is energetically favorable for the string to form a gap of
length ltp separating two monopole endpoints, as shown in Fig 9.2. E < 0 gives this turning
point length

ltp =
2m

µ
. (9.28)
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The probability for the monopoles to tunnel through the classically forbidden region out to
radius ltp can be estimated from the WKB approximation. The nucleation rate per unit
string length is

Γm ∝ µe−SE , (9.29)

where

SE =

∫ ltp

0

dl
√

2mE ∝ m2

µ
, (9.30)

More precisely, the tunneling rate per unit string length can be estimated from the bounce
action formalism [436, 571] and is found to be [469]

Γm =
µ

2π
exp(−πκm) , (9.31)

where κm = m2/µ. As we saw in section 9.2, typically m ∼ vm and µ ∼ v2
µ with little

flexibility. Therefore, the exponential sensitivity of the decay rate (9.31) implies that if
the hierarchy between the monopole and string breaking energy scales is large, κm � 1
and the string is stable against monopole nucleation on time scales greater than the age of
the Universe. If this occurs, the gravitational wave spectrum is identical to the standard
stochastic string spectrum and no gastronomy signal is observable. Consequently, monopole
nucleation typically requires a moderate coincidence of string and monopole scales, vm ∼ vµ,
so that κ is not extremely large.

The remaining ingredients needed to determine the gravitational wave power spectrum
for a stochastic background of metastable strings is the string number density spectrum as a
function of the loop size and time as well as the gravitational power spectrum for an individual
string. Here, we use the number density of string loops, formed by the intercommutation
of long (‘infinite’) strings in the superhorizon string network, as derived by the velocity-
dependent one-scale (VOS) model [501, 500, 499, 630]. After their formation, the infinite
string network quickly approaches a scaling regime, with approximately O(1) long strings
per horizon with curvature radius R ≈ t for all time t prior to nucleation. In the one-scale
model, the typical curvature radius and separation between infinite strings is the same scale,
R, so that the energy density of the infinite string network is

ρ∞ ≈
µR

R3
≈ µ

t2
. (9.32)

Prior to monopole nucleation, string loops break off from the infinite string network as
intercommutation byproducts, with roughly one new loop formed every Hubble time. Loops
that form at time tk typically are of length lk ≈ αtk, where α ≈ 0.1 is found in simulations
[128, 129]. If the probability a long string intersection produces a string loop is p ∼ 1, and
the number of string intersections per Hubble volume in a time interval dt is dNint ∼ dt/t
[668], then the rate of loop formation per volume at time tk is of the form

dn

dtk
∼ p

ρ∞
µlk

dNint

dtk
=

p

αt4k
. (9.33)
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Indeed, the loop number density production rate as calculated from the one-scale model
and calibrated from simulations is [217, 333, 631]

dn

dtk
=

(FCeff(tk)

αt4k

a(tk)
3

a(t)3

)
. (9.34)

Here, F and Ceff are roughly constants refined from the one-scale model and simulations.
Ceff ≈ 5.4 is the loop formation efficiency in a radiation dominated era [216, 131, 333] , and
F ≈ 0.1 is the fraction of energy ultimately transferred by the infinite string network into
loops of size lk [129].

Since the loops are inside the horizon, they oscillate with roughly constant amplitude and
hence redshift ∝ 1/a3, as shown by the rightmost term of Eq. (9.34), before decaying via
gravitational radiation emission. Because the length of new string loops increases linearly
with time, the nucleation probability of monopoles also grows with time, eventually cutting
off loop production if κm is sufficiently small. This results in a maximum string size

`max ≈
1

tΓm
≈
√

α

Γm
(9.35)

which is generally much greater than ltp.
The total power emitted in gravitational waves by strings loops prior to nucleation or by

the relativistic monopoles post-nucleation can be estimated from the quadrupole formula,
PGW ≈ G

45

∑
i,j〈

...
Qij

...
Qij〉 ∼ G(µlkl

2
k ω

3)2 ∝ Gµ2. The power emitted by the string loops or
monopole-bounded strings should be comparable since the kinetic energy of the relativistic
monopoles originates from rest mass of the string. Indeed, more precise numerical compu-
tations and calibrations with simulations find the total power emitted [666, 575, 128]

PGW = ΓGµ2 (9.36)

where Γ ≈ 50 for string loops prior to nucleation and Γ ≈ 4 ln γ2
0 for relativistic monopoles

bounded to strings post-nucleation [469]. Here, γ0 ≈ 1 + µl/2m is the monopole Lorentz
factor arising from the conversion of string rest mass energy to monopole kinetic energy.

The power emitted by gravitational waves reduces the string length, evolving in time as

l = αtk − ΓGµ(t− tk) . (9.37)

giving a loop lifetime of order αtk/ΓGµ. The string length and harmonic number n is set
by the emission frequency, f ′ = n/T = 2n/l, where T = l/2 is the period of any string loop
[681, 670]. The frequency observed today arises from redshift of f ′ with the expansion of
the Universe,

f =
2n

l

a(t0)

a(t)
, (9.38)

where t0 the present time.
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The number density spectrum of string loops then follows from Eqns. (9.31), (9.34) and
(9.37),

N (l, t)Schwinger ≡
dn

dl
(l, t) ≈ dn

dtk

dtk
dl
e−Γml(t−tk)

=
FCeff(tk)

t4kα(α + ΓGµ)

(a(tk)

a(t)

)3

e−Γml(t−tk), (9.39)

The exponential factor on the right side of (9.39) is the monopole nucleation probability
which effectively cuts off loop production and destroys loops with lengths large enough to
nucleate with significant probability. For Γml(t − tk) � 1, the probability of nucleation is
negligible and the string network evolves like a standard, stable string network. 3 Note that
this cutoff is time-dependent,

Γm l(t− tk) = Γm
2n

f

a(t)

a(t0)
(t− tk) . (9.40)

Although the number density of string loops decreases when nucleation occurs, as mani-
fest by the exponential drop in the loop number density of Eq. (9.39), the number density of
string-bounded monopoles increases. Since lmax � ltp, a loop that nucleates monopoles will
continue to nucleate and fragment into many monopole-bounded strings, each with asymp-
totic size of order l ∼ ltp � lmax. While the total energy density in these pieces is comparable
to the original energy density of the parent string loop, the net energy density eventually
deposited into gravitational waves is much less. This is because the lifetime of the string-
bounded monopoles ∼ µltp/ΓGµ

2 is much smaller than the parent loop because their power
emitted in gravational waves is similar to pure loops while their mass is much smaller. The
net energy density that is transferred into gravitational waves is, to a good approximation,
the energy density of the defect at the time of decay. Since these pieces decay quickly and do
not redshift ∝ a3 for as long as pure string loops, their relative energy density compared to
the background at their time of decay is much less than for pure string loops. Consequently,
the net energy density that goes into gravitational radiation by monopole-bounded string
pieces compared to string loops is small, and we do not consider their contribution to the
spectrum.

The gravitational wave energy density spectrum generated from a network of metastable
cosmic strings, including dilution and redshifting due to the expansion history of the Universe

3Using a Heaviside function θ(Γml(t− tk)−1) or θ(Γmlt−1) to cutoff the loop production gives a nearly
identical spectrum.
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is

dρGW(t)

df
=

∫ t

tscl

dt′
a(t′)4

a(t)4

∫
dl
dn(l, t′)

dl

dP (l, t′)

df ′
df ′

df
(9.41)

df ′

df
=
a(t)

a(t′)

dn

dl
(l, t′) = N (l, t′)Schwinger (9.42)

dP (l, t′)

df ′
= ΓGµ2l g

(
f
a(t)

a(t′)
l

)
, (9.43)

where t′ is the emission time, f ′ = a(t)/a(t′)f is the emission frequency, and f is the
redshifted frequency observed at time t. The normalized power spectrum for a discrete
spectrum is [670, 631]

g(x) =
∑

n

Pnδ(x− 2n) (9.44)

which ensures the emission frequency is f ′ = 2n/l. Pn = n−q/ζ(q) is the fractional power
radiated by the nth mode of an oscillating string loop where the power spectral index, q, is
found to be 4/3 for string loops containing cusps [75, 658]. Eqns. (9.41)-(9.44) allow the
stochastic gravitational wave spectrum from metastable strings to be written as

ΩGW(f) ≡ f
ρc

dρGW

df
(9.45)

=
8π

3H2
0

(Gµ)2

∞∑

n=1

2n

f

∫ t0

tform

dt

(
a(t)

a(t0)

)5

×NSchwinger

(
l =

2n

f

a(t)

a(t0)
, t
)
Pn. (9.46)

We numerically compute the gravitational wave spectrum, Eq. (9.46), over a range of
string tensions µ and monopole masses m. Fig. 9.3 shows a benchmark plot of the gravita-
tional wave spectrum from cosmic strings consumed by monopoles for fixed Gµ = 1× 10−8

and a variety of κm = m2/µ. In computing the spectrum, we sum up 104 normal modes
and solve for the evolution of the scale factor from the Friedmann equations in a ΛCDM
cosmology. The colored contours in Fig. 9.3 show the effect of the nucleation rate param-
eter, κm, on the spectrum, with larger κm corresponding to a longer lived string network.
In the limit

√
κm & 9, the nucleation rate is so weak that the string network is stable on

cosmological time scales, reducing to the standard stochastic string spectrum as shown by
the black contour. Larger loops, corresponding to lower frequencies and later times of for-
mation, vanish because of Schwinger production of monopole-antimonopole pairs and hence
the gravitational wave spectrum is suppressed at low frequencies, scaling as an f 2 power law
in the infrared. The slope is easily distinguishable from other signals such as strings without
monopole pair production and strings consumed by domain walls, as discussed in Sections
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9.6 and 9.7. Importantly, from Fig. 9.3, we see that it is possible to detect the f 2 slope in
the low frequency region of the power spectrum through many gravitational wave detectors,
including NANOGrav, PPTA, SKA, THEIA, LISA, DECIGO, BBO, and CE.

Fig. 9.4 shows the parameter space in the Gµ–
√
κm plane where the f 2 decaying slope can

be detected and distinguished from the standard string spectrum. For a given (Gµ,
√
κm),

we register a detection of the monopole nucleation gastronomy in a similar manner to the
“turning-point” recipe of [333]: First, ΩGWh

2 must exceed the threshold of detection for
a given experiment. Second, to actually distinguish between the monopole-nucleation gas-
tronomy spectrum and the standard string spectrum, we require that their percent relative
difference be greater than a certain threshold within the frequency domain of the experi-
ment. Following [333], we take this threshold at a conservative 10 %. Fig. 9.4 demonstrates
that a wide range of µ and κm can be probed. String symmetry breaking scales vµ ≡ √µ
between 109 GeV and 1016 GeV and κm between 30 − 80 can be detected by current and
near future gravitational wave detectors. Interestingly, the yellow and blue dashed boxes
show the particular µ and

√
κm that generate a spectrum that passes through the recent

NANOGrav (yellow) [71] and PPTA (blue) [329] signals.
Last, note that the benchmark spectra of Fig. 9.3 are similar to the spectra found in

a previous paper [150], but the slope in the low frequency region is not f 3/2 as found in
[150], but f 2. The difference comes from the authors of [150] using a fixed time at which
loop production ceases, corresponding to when the average length of the string loop network,
〈l〉 = lmax. However, the average length of string loops in the loop network is dominated by
the smallest loops, even though there exists much larger loops up to l ≈ αt in the network
at any given time. We take into account the nucleation rate on individual loop basis. This is
necessary due to the shorter nucleation lifetime of longer strings than shorter strings because
the probability of pair production of monopoles on a string is proportional to the length of
the string. Our results agree with the more recent work of [149].

9.5 Strings Eating Monopoles

In this section, we consider the case where strings attach to, and consume, a pre-existing
monopole network. The symmetry breaking chains that allow this are the same as in Sec.
9.4, with the difference between the two scenarios arising from when inflation occurs relative
to monopole formation. For the monopole nucleation gastronomy of Sec. 9.4, inflation occurs
after monopole formation but before string formation. For strings attaching to a pre-existing
monopole network as considered in this section, inflation occurs before monopole and string
formation. In this scenario, the monopole network is not diluted by inflation and at tem-
peratures below the string symmetry breaking scale vµ, the magnetic field of the monopoles
squeezes into flux tubes (cosmic strings) connecting each monopole and antimonopole pair
[468, 668]. Note that since this is not a tunneling process, there does not have to be a
coincidence of scales between vm and vµ as in the case of monopoles nucleating on strings
as discussed in Sec. 9.4. Moreover, since every monopole and antimonopole get connected
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Figure 9.3: Representative spectra of gravitational waves emitted by cosmic strings that
are eaten by the nucleation of monopoles for fixed Gµ = 1 × 10−8. Each colored con-
tour corresponds to a different value of κm = m2/µ which parameterizes the ratio between
monopole and string symmetry breaking scales and sets the nucleation time of the monopoles
on the string. Since nucleation is an exponentially suppressed process, the metastable string
network is typically cosmologically long-lived and behaves as pure string network before nu-
cleation. At high frequencies, ΩGW ∝ f 0 like a pure string network while after nucleation,
ΩGW decays as f 2. The black contour shows the pure string spectrum without monopoles.
For κ ≥ 9, the nucleation timescale of monopoles is greater than the age of the Universe
and the metastable string network is indistinguishable from the pure string spectrum. The
dotted-yellow and blue boxes highlight the potential signals of NANOGrav [71] and PPTA
[329], respectively.

to a string which eventually shrinks and causes the monopoles to annihilate, the monopole
problem is absent in such symmetry breaking chains. As shown in Fig. 9.1, an example chain
where this gastronomy scenario occurs is 3221 → 3211 → 321. The first breaking produces
monopoles and the second breaking connects the monopoles to strings. Since there are no
stable monopoles or domain walls that are also generated in this breaking pattern, inflation
need not occur after the monopoles form when 3221 breaks to 3211.

The scenario where strings attach to a pre-existing monopole network has been consid-
ered before [468, 386, 497, 670], but only with an initial monopole abundance of roughly
one monopole per horizon at formation as computed originally by Kibble [435], and with
the conclusion that there is no gravitational wave amplitude. 4 Here, we redo the calcula-

4The case where monopoles are only partially inflated away so that eventually monopoles re-enter the
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Figure 9.4: The parameter region in the Gµ–
√
κm plane where the gravitational wave spec-

trum from cosmic strings eaten by the nucleation of monopoles can be detected. For a
given (Gµ,

√
κm), a detection is registered when ΩGW is greater than the sensitivity curve

of the given detector and the relative difference in spectra between cosmic strings eaten by
monopoles and a pure string spectrum with the same Gµ is greater than 10%. The latter
condition ensures the two signals are sufficiently distinguishable and the detection of the
infrared f 2 slope shown, for example in Fig. 9.3, can be achieved. The yellow and blue
dashed lines highlight the potential signals by NANOGrav and PPTA, respectively, as in
Fig. 9.3

.
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tion with the enhanced abundance of monopoles using the Kibble–Zurek mechanism [700]
and take into account monopole-antimonopole freeze-out that can occur between monopole
and string formation [570]. We find that after string formation, monopole-antimonopole
pairs annihilate in generally less than a Hubble time with the typical monopole velocities
being non-relativistic, often leading to no gravitational wave spectrum. However, for some
monopole masses m and string scales vµ, the monopole-bounded strings can be relativistic
and emit a pulse of gravitational waves before decaying if friction is not severe. Moreover, the
greater number density of monopoles predicted in the Kibble–Zurek mechanism compared to
Kibble’s original estimate gives rise to significantly enhanced gravitational wave amplitude.

We begin with the Kibble–Zurek mechanism, where the initial number density of monopoles
is set by the correlation length, ξm, of the Higgs field associated with the monopole symmetry
breaking scale, vm. For a Landau-Ginzburg free energy near the critical temperature Tc of
the phase transition of the form

V (φ) = (T − Tc)mφ2 +
1

4
λφ4, (9.47)

the initial number density of monopoles is approximately [538]

nm(Tc) =
1

ξ3
m

≈ λ

2
HT 2

c (9.48)

where H is the Hubble scale. Note that the monopole formation density calculated by Zurek,
(9.48), is roughly a factor of (MPl/Tc)

2 ≈ (MPl/vm)2 � 1 greater than the original estimate
by Kibble. MPl = 1/

√
G is the Planck mass.

After formation, the monopole-antimonopole pairs annihilate, with a freeze-out abun-
dance [570]

nm(T )

T 3
=

[
T 3
c

nm(Tc)
+
h2

βm

CMPl

m

(
m

T
− m

Tc

)]−1

(9.49)

where C = (8π3g∗/90)−1/2 and

βm '
2π

9

∑

i

bi

(
hei
4π

)2

ln Λ (9.50)

counts the particles of charge ei in the background plasma that the monopole scatters off
of. The magnetic coupling is h = 2π/e where e is the U(1) gauge coupling constant,
Λ ∼ 1/(g∗e

4/16π2) is the ratio of maximum to minimum scattering angles of charged
particles in the plasma, and bi = 1/2 for fermions and 1 for bosons [670, 328]. With
e ∼ 0.3 and a comparable number of electromagnetic degrees of freedom as in the Stan-
dard Model, βm ∼ 20. For T � vm, Eq. 9.49 asymptotes to a frozen-out abundance
nm/T

3 ' βmMax(T, T∗)/h
2CMp, where T∗ = (4π/h2)2m/β2

m is approximately the temper-
ature when the monopole mean free path becomes longer than the monopole-antimonopole
capture distance [570]

horizon was considered in [496, 497]. We do not consider that scenario.
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Figure 9.5: Illustration of monopoles connecting to strings below the string formation scale,
vµ. At vµ, the magnetic field of the monopoles squeezes into flux tubes (strings) with the
typical string length l set by the monopole density at vµ.

Below the scale vµ, the magnetic fields of the monopoles squeeze into flux tubes, with
the string length set by the typical separation distance between monopoles,

l ≈ 1

nm(T = vµ)1/3
. (9.51)

Eq. (9.51) is valid when the correlation length of the string Higgs field, ξµ ≥ l [670]. If ξµ < l,
the monopole-bounded strings are straight on scales smaller than ξµ and Brownian on greater
scales which gives the strings a length longer than (9.51). For an initial abundance of strings
set by the Kibble–Zurek mechanism, ξµ/l(T = vµ) ≈ (2βm/λµh

2)1/3, which coincidentally, is
usually of order or just marginally less than unity. Nevertheless, since the string correlation
length grows quickly with time ∝ t5/4 [435, 670], the string-bounded monopole becomes
straightened out within roughly a Hubble time of string formation and ends up with a length
close to Eq. (9.51). For Tc = vm . 1017 GeV, l is far below the horizon scale. Consequently, l
is not conformally stretched by Hubble expansion and only can decrease with time by energy
losses from friction and gravitational waves.

Because the string rest mass is converted to monopole kinetic energy, the initial string
length (9.51) determines whether or not the monopoles can potentially move relativistically.
Relativistic monopoles can emit a brief pulse of gravitational radiation before annihilating
while non-relativistic monopoles will generally not. Energy conservation implies the maxi-
mum speed of the two monopoles on each string is roughly

vmax ≈
√

1−
(

1 +
µl

2m

)−2

∼ Min

{√
µl

m
, 1

}
. (9.52)

The density plot of Fig. 9.6 shows the parameter space in the vµ− vm plane where vmax ∼ 1
(in red) and the monopoles can reach relativistic speeds according to Eq. (9.52). Initially,
however, monopole friction can prevent the monopoles from reaching vmax. This is because
the relative velocity of the monopoles induced by the string produces an electromagnetic
frictional force on the monopoles scattering with the background plasma. The force of
friction between the monopole and plasma is [670, 669]

Ff ≈ −βmT 2ve−Mr(T ) (1 +Mr(T )) (9.53)
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Figure 9.6: The vm − vµ parameter space where monopoles attached to strings can be
relativistic. In the dark blue region at large vm, the monopoles are sufficiently heavy that the
conversion of string rest mass to monopole kinetic energy cannot accelerate the monopoles to
relativistic speeds and any gravitational wave signal is heavily suppressed. In the red region,
the monopoles are light enough that the string can accelerate them to relativistic speeds,
neglecting friction. This region of parameter space can potentially generate a gravitational
wave signal. The black contours shows the typical maximum drag speed of the monopoles
from friction with the thermal bath. For sufficiently large βm, a model dependent friction
parameter, the drag speed prevents the monopoles from reaching relativistic speeds and the
gravitational wave signal can be suppressed. In the light blue region, vµ > vm, which is
forbidden for composite monopole-bounded strings.
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where v is the relative speed between monopole and the bulk plasma flow. We include the
Yukawa exponential factor, e−Mr(1 + Mr) to take into account the exchange of the now
massive photon of mass M ' evµ/2 at temperatures below vµ. r(T ) '

√
4πT/e2ne is the

inverse plasma mass associated with the screened magnetic field of the monopole. To a good
approximation then,

Mr(T ) =
vµ
T

√
30

ζ(3)πg∗e
≈ vµ
T

(9.54)

where g∗e is the charged relativistic degrees of freedom in the thermal bath.
The balance between the string tension and friction is described by the equation of motion

of each monopole,

m
dv

dt
' µ+ Ff (T ). (9.55)

To an excellent approximation, the drag speed, or terminal velocity, of the monopoles satisfy
the quasi-steady state solution dv/dt ' 0, which gives the monopole drag speed as a function
of temperature

vdrag =
µ

βmT 2e−vµ/T (1 + vµ
T

)
. (9.56)

The frictional damping of the monopole motion ends when vdrag equals vmax, which occurs
roughly a Hubble time after formation because of the decrease in T . However, even in this
brief period of damping, the friction force (9.53) causes the string-monopole system to lose
energy at a rate

Pf ≈ −βmT 2v2e−vµ/T
(

1 +
vµ
T

)
, (9.57)

which can be considerable even in a Hubble time. Above, v = max (vdrag, vmax). For example,
near string formation when T 2 ∼ µ, the power lost to friction is roughly βm/ΓGµv

4 � 1
greater than the power lost to gravitational radiation, PGW ≈ ΓGµ2v6. Note that for the
monopole nucleation gastronomy of Sec. 9.4, the monopole nucleation occurs at a far lower
temperature than the string formation time, and hence Pf � PGW for that gastronomy sce-
nario. In the gastronomy scenario of this section, where strings eat a pre-existing monopole
network, Pf � PGW. Consequently, the power lost from friction determines the lifetime, τ ,
of the string-bounded monopoles, with

τ ≈ − E

Pf

∣∣∣∣
T'vµ

≈ µl

βmµv2
≈





βml v = vdrag

m

βmµ
v = vmax . 1

l

βm
v = vmax ∼ 1 .

(9.58)
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To more precisely determine the monopole-string lifetime, we integrate Eq. (9.57) to de-
termine the energy of the string-monopole system as a function of time and find that for
βm & 3, the energy in the monopole-string system is entirely dissipated by friction before
vdrag reaches vmax and hence relativistic speeds. The contours of Fig. 9.6 show the typical
highest speed of the monopoles before losing energy via friction. Since the energy of the sys-
tem is entirely dissipated in around a Hubble time, the largest monopole speed is typically
set by the drag speed when T 2 ∼ µ; that is, vdrag ∼ β−1

m according to Eq. (9.56). Conse-
quently, we see analytically that the terminal velocity of the monopoles is not relativistic
unless βm ∼ 1. If the number of particles interacting with the monopole in the primordial
thermal bath is comparable to the number of electrically charged particles in the Standard
Model and with similar charge assignments, then βm ∼ 20 and thus the monopole-string
system is never relativistic before decaying. In this scenario, the gravitational wave signal is
heavily suppressed.

If βm ∼ 1, however, which can occur in a dark sector with fewer charged particles in the
thermal bath or with smaller U(1) charges, then the monopoles reach the speed vmax before
decaying via friction. In this case, the red region of Fig. 9.6 indicates where a gravitational
wave signal can be efficiently emitted by the monopoles before annihilating. Unlike the
monopole nucleation gastronomy of Sec. 9.4, vµ does not need to be as nearly degenerate
with vm for gravitational waves to be produced. Moreover, since the lifetime of the string
pieces is shorter than Hubble, the pulse of energy density emitted by relativistic monopoles
in gravitational waves is well approximated by

ρGW,burst ≈ nm(vµ)PGW τ, (9.59)

where PGW = ΓGµ2 is the power emitted by oscillating monopoles connected to strings
(9.36). The peak amplitude of the monopole gravitational wave burst is

ΩGW,burst =
ρGW,burst

ρc(vµ)
Ωr

(
g∗0

g∗(vµ)

)1
3

≈ 30π2

g∗(vµ)βm
ΓGµ

(
δ
m

MPl

)2
3
, (9.60)

where

δ =
1

Cβmh2

(
4π

h2

)2

Max

{
1,
vµ
m

(
βmh

2

4π

)2
}
. (9.61)

and ρc(vµ) is the critical energy density of the Universe at string formation, which is assumed
to be in a radiation dominated era. The ‘Max’ argument of (9.61) characterizes the amount
of monopole-antimonopole annihilation that occurs prior to string formation at T = vµ. For
sufficiently small vµ/m, the freeze-out annihilation completes before string formation and
the max function of (9.61) is saturated at its lowest value of 1. In this conservative scenario,
δ ≈ 10−4β−1

m (e/0.5)4.
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Similarly, the peak frequency is

fburst ∼
1

l

a(tµ)

a(t0)
≈ 108 Hz

(
vm

1014 GeV

δ

10−4

106.75

g∗(vµ)

)1
3

(9.62)

where a(vµ) and a(t0) are the scale factors at string formation and today, respectively. Note
that redoing the analysis of this section but with Kibble’s original estimate for the number
density of monopoles yields a gravitational wave spectrum that is roughly (vm/MPl)

4/3 � 1
suppressed compared to Eq. (9.60).

With the qualitative features of the monopole burst spectrum understood, we can turn to
a numerical computation of ΩGW in the case where βm ∼ 1. The gravitational wave energy
density spectrum is

dρGW(t)

df
=

∫ t

dt′
a(t′)4

a(t)4

∫
dl
dn(l, t′)

dl

dPl(l, t
′)

df ′
df ′

df
, (9.63)

df ′

df
=
a(t)

a(t′)
,

dn

dl
(l, t′) =

dn

dtk

dtk
dl

, (9.64)

dPl(l, t
′)

df ′
= ΓGµ2l g

(
f
a(t)

a(t′)
l

)
, (9.65)

where primed coordinates refer to emission and unprimed refer to the present so that grav-
itational waves emitted from the monopoles at time t′ with frequency f ′ will be observed
today with frequency f = f ′a(t′)/a(t). tk is the formation time of monopole-bounded strings
of length l(tk),

dn

dtk
' nm(tk)δ(tk − tµ)

(
a(tk)

a(t)

)3

(9.66)

is the string-bounded monopole production rate, which is localized in time to the string
formation time, tµ ' CMPl/v

2
µ . dtk/dl is found by noting that the energy lost by relativistic

monopoles separated by a string of length l is

dE

dt
=

d

dt
(µl + 2m) ≈ −βmv2µ . (9.67)

In the red region of Fig. 9.6 where a gravitational wave signal can be generated, µl � 2m
(otherwise the monopoles would not be relativistic). As a result, monopole-bounded strings
that form at time tk with initial size l(tk) decrease in length according to

l(t) ' l(tk)− βmv2(t− tk) (9.68)

so that

dtk
dl
' 1

βmv2
≈ 1. (9.69)
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The normalized power spectrum for a discrete spectrum is

g(x) =
∑

n

Pnδ(x− nξ) ξ ≡ l

T
(9.70)

ensures the emission frequency of the nth harmonic is f ′ = n/T , where T is the oscillation
period of the monopoles. For pure string loops, T = l/2 (ξ = 2, reducing to Eq. (9.44)),
whereas for monopoles connected to strings, T = 2m/µ+ l ' l [469, 496] (ξ ≈ 1). Pn ≈ n−1

is found [469, 496] for harmonics up to n ≈ γ2
0 , where γ0 ' (1+µl/2m), is the Lorentz factor

of the monopoles. For n > γ2
0 , Pn ∝ n−2. Γ ≈ 4 ln γ2

0 .
Integrating the energy density spectrum (9.63) and normalizing by the present day critical

density, ρc = 3H2
0/8πG, yields the present day gravitational wave spectrum from monopoles

eaten by strings

ΩGW =
∑

n

8π(Gµ)2

3H2
0

(
a(tµ − l∗)
a(t0)

)5(
a(tµ)

a(tµ − l∗)

)3

× ΓPn
ξn

f

nm(tµ)

βmv2
(9.71)

where

l∗ =

ξn
f

a(tµ)

a(t0)
− nm(tµ)−

1
3

βmv2
. (9.72)

The contours of Fig. 9.7 show ΩGWh
2 for range of a vµ and vm where monopoles can oscillate

relativistically before decaying via friction, assuming βmv
2 ∼ 1. For frequencies much lower

than the inverse string length, we take the causality limited spectrum f 3 [164]. Fig. 9.7
shows that the spectral shape goes as f−1 at high frequencies, plateaus logarithmically for
a brief period, and decays as f 3 at low frequencies. The duration of the logarithmic plateau
corresponds to the number of modes where Pn ∝ 1/n, which is set by γ0 and hence vmax.
As suggested by the estimate fburst, the frequency at which the spectrum decays typically
occurs at very high frequencies because the separation length of the monopoles is small when
eaten by strings at T ' vµ. Consequently, to observe the monopole burst gastronomy signal,
future gravitational wave detectors near megahertz frequencies are needed.

Finally, we comment that string loops or open strings without monopoles also form at
the string symmetry breaking scale vµ. For ξs ∼ l, as is generally the case, both simula-
tions and free-energy arguments [523, 206, 670] suggest that these pure strings are clustered
around the monopole separation scale l, with the distribution of strings of length greater
than l exponentially suppressed and only making a subdominant . 10% of all strings [206].
Essentially, it becomes exponentially unlikely for a string with length greater than l to not
terminate on two monopoles.

Like the monopole string segments, the dominant energy loss mechanism for these loops
is friction with the plasma. Here, the friction is mainly due to Aharonov-Bohm scattering,
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Figure 9.7: Representative spectra of gravitational waves emitted by monopoles that are
eaten by strings. Each colored contour corresponds to a different value of symmetry breaking
scales (vm, vµ). In all cases, we fix βm and the monopole speed v near unity. The dominant
energy loss by the monopoles is from friction which causes the monopole-bounded string to
decay within a Hubble time. The emission of gravitational waves thus occurs in a ‘burst’
and is peaked at high frequencies corresponding to the monopole-antimonopole separation
distance when T ≈ vµ. At high frequencies, ΩGW ∝ f−1 while at low frequencies ΩGW ∝ f 3

by causality. The frequency dependence near the peak of the spectrum interpolates scales
as ΩGW ∝ ln f .

which exerts a force

FAB ' −βsT 3vl (9.73)

where

βs '
2ζ(3)

π2

∑

i

ai sin
2(πνi) (9.74)

counts the particles in the background plasma that experience a phase change 2πνi = eiΦ
when moving around the string of magnetic flux Φ, thereby scattering off the string via the
Aharonov-Bohm mechanism [43, 670]. ai = 3/4 for fermions and 1 for bosons. v is the
relative perpendicular motion of the string with respect to the plasma.

Just like the monopoles, the frictional force on the strings initially prevents the string
loops, which are subhorizon, from freely oscillating relativistically [306]. Balancing the string
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curvature tension, µ, and friction force gives the string drag speed as a function of temper-
ature

vdrag ≈
µ

βsT 3l
. (9.75)

For T 2 ∼ µ, βs ≥ 1, and for string lengths of order the monopole separation distance, (9.51),
the string drag velocity is initially non-relativistic for all vµ, vm . 1017 GeV. The frictional
damping of the string motion causes the string loops to be conformally stretched, l(t) ∝ a(t),
until vdrag becomes relativistic, or equivalently, their conformally stretched size drops below
the friction scale Lf ≈ µl/|FAB| (see Sec. 9.7 for a further discussion). This occurs at time
tf ≈ t0 max(βsl0vµ, 1) and final string size lf ≈ l0 max((βsl0vµ)1/2, 1), where l0 = l(T = vµ)
is the typical monopole separation at string formation. However, even after this brief period
of damping, the Aharonov-Bohm friction force, (9.73) still causes the string to lose energy
at a rate µdl/dt = −PAB, where

PAB = −βsT 3v2l. (9.76)

with v ∼ 1. The power lost via Ahronov-Bohm friction causes the string length to exponential
decrease in size. These small loops will then completely and quickly decay via gravitational
radiation that, depending on the fraction of stings in loops, can generate a comparable ΩGW

to the monopole burst spectrum of Fig. 9.7. Unlike the monopole bursts, the ultraviolet
frequency dependence of the string burst spectrum will scale approximately as f 1−q, where
q = 4/3 is the power spectral index of string loops with cusps. This is because for Pn ∝ n−q,
the contribution of higher harmonics, and hence higher frequencies, becomes more important
for smaller q, as discussed in [131, 333, 200].

9.6 Strings Eating Domain Walls

In this section, we consider the case of strings nucleating on domain walls. As discussed
in Sec. 9.2, if they are related by the same discrete symmetry, strings form first (in the
initial phase transition that leaves an unbroken discrete symmetry), and connect to domain
walls in the second phase transition (when the discrete symmetry is broken). When inflation
occurs after the formation of strings but before domain walls, the string abundance is heavy
diluted by the time the walls form. The absence of strings initially prevents the formation of
string-bounded walls at the second stage of symmetry breaking and the walls initially evolve
as a normal wall network. Nevertheless, the walls can become bounded by strings later by
the Schwinger nucleation of string holes as shown in Fig. 9.8. Conversion of wall rest mass
into string kinetic energy causes the string to rapidly expand and ‘eat’ the wall, causing the
wall network to decay.

Strings can only nucleate on the wall if it is energetically possible to. The energy cost
of producing a circular string loop is µl where l = 2πR is the length of the string, and the
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Figure 9.8: Top: Free energy diagram for a circular string-bounded hole nucleating on a
domain wall vs the string nucleation radius, R. For R > Rtp, the free energy of the system
turns negative and it becomes energetically possible to nucleate a string in place of a wall
element of area πR2

tp. Bottom: Illustration of the nucleation process. For walls with radii
R > Rtp a piece of wall with area πR2

tp is ‘eaten’ and replaced with a string which forms the
boundary of the punctured hole.

energy gained from destroying the interior wall is σA where A = πR2 is the area of the eaten
wall. The free energy of the string-wall system is then

E = µ2πR− σπR2 . (9.77)

The balance between string creation and domain wall destruction leads to a critical string
radius, Rtp, above which it is energetically favorable for the string to nucleate and continue
expanding and consuming the wall as shown in Fig. 9.8. E < 0 gives this turning point
radius

Rtp = 2Rc Rc ≡
µ

σ
. (9.78)
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The probability for the string to tunnel through the classically forbidden region out to radius
Rtp can be estimated from the WKB approximation. The nucleation rate per unit area is

Γs ∝ σe−SE , (9.79)

where

SE =

∫ Rtp

0

dr
√
µrE ∝ µ3

σ2
, (9.80)

More precisely, the tunneling rate can be estimated from the bounce action formalism
and is found to be [436, 571]

Γs ∼ σ exp(−16π

3
κs) (9.81)

where κs = µ3/σ2. As a result, the string nucleation rate on the domain wall is typically
exponential suppressed and the domain wall can be cosmologically long-lived if µ3 and σ2

are disparate, similar to the string and monopole scales in Sec. 9.4. For the coincidence of
scales µ3 ∼ σ2, the domain wall network is metastable and may decay before dominating the
energy density of the Universe.

In terms of the symmetry breaking scale, Eqs. (9.3) and (9.11) suggest

κs =
9π3

λσ

(
B

(
2λ

e2

))3(
vµ
vσ

)6

. (9.82)

for the fiducial models of Sec. 9.2. Since the homotopy selection rules require vµ ≥ vσ,
nucleation of strings within cosmological timescales requires B(2λ/e2)� 1, which can occur
for λ� e2.

Before decaying via string nucleation, the evolution of the metastable domain wall net-
work is that of a pure domain wall network. The dynamics of a pure domain wall is well-
described by the wall Nambu-Goto action [670]

S = −σ
∫
d3ζ
√
γ , (9.83)

where d3ζ is the infinitesimal worldvolume swept out by the domain wall of tension σ,
γ ≡ | det(γab)| is the determinant of the induced metric on the wall with γab = gµν

∂Xµ

∂ζa
∂Xν

∂ζb
.

Xµ(ξa) are the spacetime coordinates of the wall with ξa(a = 1, 2, 3) parameterizing the
wall hypersurface, and gµν = a2(η)(dη2 − dx2) is the Friedmann-Robertson-Walker metric
in conformal gauge. For large, roughly planar walls with a typical curvature radius, R, the
Euler-Lagrange equation of motion of (9.83) is [425, 77]

dvw
dt

= (1− v2
w)

(
kw
R
− 3Hvw

)
, (9.84)
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where vw is the average wall velocity perpendicular to the wall surface, H is Hubble, and kw
is an O(1) velocity-dependent function that parameterizes the effect of the wall curvature
on the wall dynamics. Conservation of energy implies

dρw
dt

+H(1 + 3v2
w)ρw = −cwvw

R
ρw, (9.85)

which is coupled to Eq. (9.84) via the ‘one scale’ ansatz

ρw ≡
σR2

R3
=
σ

R
. (9.86)

Eq. (9.86) states that the typical curvature and separation between infinite walls is the same
scale, R. cw is an O(1) constant parameterizing the chopping efficiency of the infinite wall
network into enclosed domain walls 5. Note that Eq. (9.85) does not include gravitational
wave losses which are small as long as the walls do not dominate the Universe.

Generally, the tunneling rate is sufficiently suppressed so that the domain walls reach the
steady-state solution of Eqns. (9.84)-(9.86) before decaying, which is the scaling-regime such
that R/t ∼ 1 [77]. In the scaling regime, the energy lost by the infinite wall network from
self-intercommutation balances with the energy gained from conformal stretching by Hubble
expansion so that the network maintains roughly one domain wall per horizon, similar to
the scaling regime of the infinite string network in Sec. 9.4. As a result, the energy density
in the domain wall network before decay evolves with time as

ρw = Aσt
2

t3
= Aσ

t
, (9.87)

where A is found to be O(1) from simulations [380]. For domain walls that are not highly
relativistic, the total power emitted as gravitational radiation for a wall of mass Mw and
curvature radius R follows from the quadrupole formula [668],

PGW ≈
G

45

∑

i,j

〈
...
Qij

...
Qij〉 ∼ G(MwR

2 ω3)2 = BGσMw. (9.88)

In the last equation, we take the typical oscillation frequency ω and curvature R−1 to be
comparable. Numerical simulations of domain walls in the scaling regime confirm Eq. (9.88)
with B ≈ O(1) [380, 600] .

In the scaling regime and prior to nucleation, the energy density rate lost into gravita-
tional waves by the domain walls at time t is then

dρw
dt

(GW)

= −nwPGW ' −AB
Gσ2

t
. (9.89)

5These enclosed walls, known as ‘vacuum bags’, are analogous to string loops forming from the intercom-
mutation of a infinite string network. However, unlike string loops which can be long-lived, the vacuum bags
collapse under their own tension and decay quickly. This is because the wall velocity becomes highly rela-
tivistic during collapse causing length contraction of the wall thickness and hence efficient particle emission
of the scalar field associated with the wall [684].
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In writing the right hand side of (9.89), we use ρw ' nwMw and insert Eq. (9.87). The
energy density injected into gravitational waves is subsequently diluted with the expansion
of the Universe. The total energy density, ρGW in the gravitational wave background is thus
described by the Boltzmann equation,

dρGW

dt
+ 4HρGW = ABGσ

2

t
θ(tΓ − t)− x

dρDW

dt
θ(t− tΓ), (9.90)

where x ∈ [0, 1] is an efficiency parameter characterizing the fraction of the energy density
of the wall transferred into gravitational waves after strings begin nucleating and eating the
wall, which occurs at time

tΓ ∼
1

σA
eSE ∼ 1

σ1/3
exp

16πκs
9

. (9.91)

Here, we take the wall area, A at time tΓ to be ∼ t2Γ in accordance with the scaling regime.
When the strings begin nucleating at tΓ, they quickly expand from an initial radius Rtp = 2Rc

according to

Rs(t) =
√

4R2
c + (t− tΓ)2, (9.92)

as shown in Appendix F.2 for circular string-bounded holes. Consequently, the strings rapidly
accelerate to near the speed of light as they ‘eat’ the wall. The increase in string kinetic
energy arises from the devoured wall mass. Thus, shortly after tΓ, most of the energy density
of the wall is transferred to strings and string kinetic energy. Numerical simulations outside
the scope of this work are required to accurately determine the gravitational waves emitted
from the typical relativistic collisions of the string bounded holes which mark the end of
the domain wall network and hence the determination of x. As a result, we conservative
take x = 0 when computing the resulting gravitational wave spectrum. Nevertheless, we can
estimate the potential effect of non-zero x by taking the sudden decay approximation for the
wall. That is, assuming the destruction of the wall following nucleation occurs shortly after
tΓ, we may take dρDW/dt ≈ −ρDWδ(t− tΓ).

The solution to (9.90) during an era with scale factor expansion a(t) ∝ tν is then

ρGW(t) =





ABGσ
2

4ν

(
1−

(
tscl

t

)4ν
)

t ≤ tΓ

(
ρGW(tΓ) + xA σ

tΓ

)(
a(tΓ)

a(t)

)4

t > tΓ.

(9.93)

Eq. (9.93) demonstrates that the gravitational wave energy density background quickly
asymptotes to a constant value after reaching scaling at time tscl and to a maximum at
the nucleation time tΓ. We thus expect a peak in the gravitational wave amplitude of ap-
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proximately

ΩGW,max ≈
ρGW(tΓ)

ρc(tΓ)

(
g∗0
g∗(tΓ)

)1
3

(9.94)

=
16π

3

[
(GσtΓ)2 + 2xGσtΓ

]
Ωr

(
g∗0
g∗(tΓ)

)1
3

(9.95)

where we take tΓ > tscl, A = B = 1, and a radiation dominated background at the time of
decay with ν = 1

2
. Ωr = 9.038× 10−5 is the critical energy in radiation today [30].

The first term in the second line of (9.94), the contribution to the peak amplitude from
gravitational waves emitted prior to nucleation, agrees well with the numerical results of
[380] if tΓ maps to the decay time of unstable walls in the authors’ simulations. Note that in
[380], the domain walls are global domain walls and are unstable due to a vacuum pressure
difference arising from the insertion of a Z2 breaking term in the domain wall potential.
In this work, we consider gauged domain walls in which such a discrete breaking term is
forbidden.

The second term in (9.94), the contribution to the peak amplitude from gravitational
waves emitted after nucleation, has not been considered in numerical simulations. The post-
nucleation contribution dominates the pre-nucleation contribution if x & GσtΓ, which may
be important for short-lived walls. The complex dynamics of string collisions during the
nucleation phase motivates further numerical simulations.

The frequency dependence on the gravitational wave amplitude may be extracted from
numerical simulations of domain walls in the scaling regime. The form of the spectrum was
found in [380] to scale as

ΩGW(f) =
f

ρc

dρGW(t0, f)

df

≈ ΩGW,max





(
f

fpeak

)−1

f > fpeak

(
f

fpeak

)3

f ≤ fpeak

(9.96)

where

fpeak ∼
1

tΓ

a(tΓ)

a(t0)
(9.97)

is the fundamental mode of oscillation at the time of decay. The infrared f 3 dependence for
f < fpeak arises from causality arguments for an instantly decaying source [164].

Fig. 9.9 shows a benchmark plot of the gravitational wave spectrum from domain walls
consumed by string nucleation for fixed σ = (1012 GeV )3 and a variety of κs = µ3/σ2.
In computing the spectrum, we evaluate (9.96), in the conservative limit of x = 0. The
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corresponding dots above each triangular vertex shows the potential peak of the spectrum in
the x→ 1 limit which corresponds to the assumption that all of the wall energy at nucleation
goes into gravitational waves. For sufficiently large κs, the domain wall energy density grows
relative to the background and can come to dominate the critical density of the Universe
at the time of decay. This can lead to gravitational radiation producing too large ∆Neff ,
(9.24), as shown by the red region. For relatively long-lived walls nucleating prior to wall
domination, it is possible for many gravitational wave detectors to observe the ΩGW,peak and
the characteristic f−1 ultraviolet slope and f 3 infrared slope.

Fig. 9.10, shows the detector reach of ΩGW in the vσ − κs plane. Here we take ε = 1 so
that vσ = σ1/3. Since the triangular shaped spectrum from a domain wall eaten by strings is
sufficiently different compared to a flat, stochastic string background, we register a detection
of the string nucleation gastronomy as long as ΩGWh

2 exceeds the threshold of detection for
a given experiment. Fig. 9.10 demonstrates that a wide range of σ and κs can be probed.
Note that most detection occurs when the walls decay shortly before coming to dominate
the Universe as shown by the diagonal red ∆Neff region. In general, wall symmetry breaking
scales vσ between 1 and 1013 GeV and κs between 4 − 15 can be detected by current and
near future gravitational wave detectors.

In addition, while the infrared (f−3) and ultraviolet (f−1) wall spectrum is similar to
the monopole burst spectrum of Sec. 9.5, there is a logarithmic plateau at the peak of the
monopole burst spectrum that is absent for the walls and hence can be used to distinguish
both gastronomy signals. Moreover, in first order phase transitions where the bulk of the
energy goes into the scalar shells, the envelope approximation predicts a similar spectrum
(f 3 in the infrared, f−1 in the ultraviolet) [447]. However, more sophisticated analyses of
this type of phase transition appear to predict a UV spectrum that scales as f−1.5 [218]
making it unlikely that a wall or monopole network eaten by strings can be mimicked by a
first order phase transition.

9.7 Domain Walls Eating Strings

In this section, we consider the gastronomy case where domain walls attach to, and consume,
a pre-existing string network. The symmetry breaking chains that allow this are the same
as in the previous section, with the difference between the two scenarios arising from when
inflation occurs relative to string formation. For the string nucleation gastronomy of Sec.
9.6, inflation occurs after string formation but before wall formation. For walls attaching
to a pre-existing string network as considered in this section, inflation occurs before string
and wall formation. In this scenario, the string network is not diluted by inflation and at
temperatures below the wall symmetry breaking scale, vσ, walls fill in the space between
strings. Note that since the attachment of walls to a pre-existing string network is not a
nucleation process, there does not have to be a coincidence of scales between vµ and vσ as
in the case of strings nucleating on walls as discussed in Sec. 9.6.

The outline of this section is as follows: First, we derive the equation of motion for the
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Figure 9.9: Representative spectra of gravitational waves emitted by domain walls that are
eaten by nucleation of strings for fixed σ1/3 = 1012 GeV. Each colored contour corresponds
to a different value of κs = µ3/σ2 which parameterizes the ratio between string and wall
symmetry breaking scales and sets the nucleation time of the strings on the wall. Since
nucleation is an exponentially suppressed process, the metastable wall network is typically
cosmologically long-lived and behaves as pure wall network before nucleation. At high fre-
quencies, ΩGW scales as f−1 while after nucleation, ΩGW decays as f 3 by causality [380]. For
sufficiently large κs, the domain wall network is long-lived enough to dominate the energy
density of the Universe at decay and emits enough gravitational radiation to violate mea-
surements of ∆Neff , as shown by the red region. Consequently, κs must be close to unity so
that walls decay by string nucleation before wall domination.

string boundary of a circular wall and quantitatively show how the wall tension dominates
the string dynamics when the radius, R, of the hybrid defect is greater than Rc ≡ µ/σ,
and how the string dynamics reduce to pure string loop motion for R � Rc. We then run
a velocity one-scale model on an infinite string-wall network, and show how the walls pull
their attached strings into the horizon when the curvature radius of the hybrid network
grows above Rc. Once inside the horizon, the domain wall bounded string pieces oscillate
and emit gravitational radiation, which we compute numerically. We find that power emit-
ted in gravitational waves asymptotes to the pure string limit, PGW ∝ Gµ2 for pieces of
string-bounded bounded walls with radii R � Rc, and to the expected power emitted by
domain walls from the quadrupole approximation, PGW ∝ Gσ2R2, for R � Rc. We use
the numerically computed gravitational wave power to derive the energy density evolution
and the gravitational wave spectrum of a network of circular string-bounded wall pieces. We
discuss the features of this gastronomy signal and its experimental detectability with current
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Figure 9.10: The parameter region in the vσ−κs plane where the gravitational wave spectrum
from domain walls eaten by the nucleation of strings can be detected. We take the fiducial
value ε = 1 so that σ = v3

σ. For a given (vσ, κs), a detection is registered when ΩGW is greater
than the sensitivity curve of the given detector. In the red region, the energy density emitted
by walls into gravitational radiation is large enough to be excluded by ∆Neff bounds. Deep
in the red region, κs is sufficiently large that the walls are so long-lived that they dominate
the energy density of the Universe.

and future gravitational wave detectors. Last, we discuss how model dependent effects such
as friction on the string or wall can affect the spectrum.

The String-Wall Equation of Motion

Let us begin with the total action of a wall bounded by a string with wall tension σ and
string tension µ,

S = −σ
∫
d3ζ
√
γ − µ

∫
d2ζ
√

Υ. (9.98)

The parameters of the wall action (left term) are the same as in Eq. (9.83). For the string ac-
tion (right term), d2ζ is the infinitesimal wordsheet swept out by the string, Υ ≡ | det(Υab)| is
the determinant of the induced metric on the string, and Υab = gµν

∂Y µ

∂ζa
∂Y ν

∂ζb
, where Y µ(ζ0, ζ1)

are the spacetime coordinates of the string which is fixed to lie at on the boundary of the
wall.
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Figure 9.11: Illustration of strings connecting to walls below the wall formation scale, vσ.
The walls fill in the area between strings because winding the Higgs field, φ, responsible for
the symmetry breaking at vσ around a string necessarily generates a discontinuity in φ [569,
378]. As a result, a structure must abruptly change φ back to ensure the continuity of φ.
This structure is the domain wall.

Assuming the wall velocities are not ultra-relativistic and the string boundary on the
wall is approximately circular, one can derive the the Lagrangian for the string boundary of
the wall to be

L = −2πµ|rs(η)|a2(η)

√
1−

(
drs
dη

)2

− σπrs(η)2a3(η), (9.99)

where rs is the comoving position vector of the string boundary, η is conformal time, and
a the scale factor of the Universe. See Appendix F.2 for details, including a justification of
the assumptions. The Lagrangian (9.99) generates the following Euler-Lagrange equation of
motion

d2rs
dη2

= −σ
µ

(
1−

(
drs
dη

)2
)3/2

a(η)r̂s

−
(

1−
(
drs
dη

)2
)(

r̂s
|rs|

+ 2Hdrs
dη

)
, (9.100)

where H = d ln a/dη = Ha is the conformal Hubble rate.
In the limit that the physical size of the wall, Rs = rsa is much smaller than the critical

radius Rc ≡ µ/σ, the equation of motion for the string bounded wall reduces to the standard
result of a pure circular string loop [306, 670]. However, for |Rs| ≥ Rc, the domain wall
tension dominates the string tension and the string motion becomes more relativistic. This
can also be simply understood by noting that a wall-bounded string of curvature radius R
experiences a wall tension force F ∼ σR and a string tension force F ∼ µ, which become
comparable at R = Rc [281, 668].

Fig. 9.12 shows the numerical solution of Eq. (9.100) for the string boundary as a function
of the initial string size in the flat spacetime limit, (a→ 1, η → t), or equivalently, after the
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loops have entered the horizon. For |Rs| � Rc, the evolution of Rs for the string-bounded
wall is identical to the pure string loop motion (dashed lines) [306]. For string-bounded
walls with |Rs| & Rc, the evolution deviates from the pure string loop, with the domain
wall accelerating its string boundary to highly relativistic speeds for most of its oscillation
period. The highly relativistic string boundaries are responsible for the gravitational wave
emission of string-bounded walls as discussed later in this section.

Collapse of the Infinite String-Wall Network

For subhorizon loops, |Rs| . t, the Hubble term in Eq. (9.100) is subdominant compared
to the string curvature term and hence the motion of the domain wall bounded string loops
approaches the flat spacetime limit. However, for superhorizon or ‘infinite’ strings, the effect
of the expansion of the Universe is critical. To understand the evolution and collapse of the
infinite string-wall network, we implement a ‘one-scale’ model [501, 500, 499] by rewriting
Eq. (9.100) in terms of the RMS comoving velocity, vs ≡ −

√
〈vs · vs〉 = −

√
〈dr/dη · dr/dη〉

of the typical long string,

dvs
dt

= (1− v2
s)
k(R, vs)

R
− 2Hv∞ (9.101)

where

k(vs, R) =
〈(1− v2

s + R
Rc

(1− v2
s)

3/2)vs · r̂s〉
vs(1− v2

s)
(9.102)

is the wall-modified curvature parameter. Similarly, the energy density of the infinite net-
work, ρ∞, can be decomposed into infinite string, ρs = βρ∞, and wall, ρw = (1 − β)ρ∞,
contributions. That is, 0 ≤ β ≤ 1 parameterizes the relative energy density between strings
and walls with the entire energy density in strings when β = 1 and the entire energy density
in walls when β = 0. 6 The energy density evolution of the infinite string-wall network is
then

dρ∞
dt

+ 3H(1 + w)ρ∞ = −cv∞
R

ρ∞, (9.103)

where c is a chopping efficiency parameter and

w =
2

3
(1 + v2

s)β + (
1

3
+ v2

w)(1− β)− 1 (9.104)

is the equation of state of the infinite wall-string network [134, 629], with vs and vw the
average string and wall speeds, respectively. Note the wall speed is unimportant to the

6A similar analysis for a string-monopole network with ZN≥3 strings was considered in [655]. In [655],
monopoles are connected to multiple strings which allows the monopole-string ‘web’ to be long-lived and
reach a steady-state scaling regime.
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Figure 9.12: Evolution of a circular string radius Rs as a function of time in the flat spacetime
limit (ie subhorizon strings) when the string is the boundary of domain wall (solid) and when
it is a pure string loop (dashed). The colored contours show the evolution for a variety of
different string sizes. When the string is small compared to Rc = µ/σ, the string dominates
the dynamics and circular string-bounded walls oscillate similarly to pure string loops of
the same size. However, when the string size becomes of order or greater than Rc, the wall
dominates the dynamics of the string and causes the string to oscillate highly relativistically
compared to pure string loops of the same size. This can be seen by the increase of the
period-averaged velocity squared, 〈v2〉, which increases from approximately 0.5 in the pure
string loop limit to more relativistic values as the size of the string-bounded wall grows above
Rc.
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Figure 9.13: Evolution of the infinite string-wall network. The blue curve shows the curvature
radius of the string-bounded walls over time, R/t, while the orange curve shows the string
RMS velocity, vRMS. Top: Representative case where tDW < Rc so that walls form before
dominating the string dynamics. For t < Rc, we numerically compute the modified one-
scale model equations. The string-wall network reaches a scaling regime where R maintains
a constant fraction of the horizon. As t approaches Rc, the walls begin dominating the
dynamics and the strings move more relativistically. At t = Rc, infinite string-bounded
walls with curvature radius R behave like wall-bounded strings of curvature radius R. We
approximate this transition by piecewise connecting the one-scale model solution to the
numerical solution of the Euler-Lagrange equation of motion for a circular string-bounded
wall. For t > Rc, the infinite network collapses and the pieces oscillate at constant physical
size before decaying via gravitational waves. Bottom: Same as the top but representative
of the case where tDW > Rc so that walls form already dominating the string dynamics. In
this scenario, vRMS of the infinite wall network abruptly increases at wall formation. We
transition from the one-scale to the Euler-Lagrange solution when vRMS of the infinite strings
approximately reaches vRMS of a string-bounded wall piece of the same curvature radius.

wall-string evolution for the following reason: For R . Rc, the strings dominate the energy
density and β ' 1. For R & Rc, the energy density is initially mostly in the walls, but is
quickly converted to string kinetic energy with vs and then β quickly becoming approximately
1. Thus, for any R, we expect the wall contribution in Eq. (9.104) (second term) to be
subdominant to the string contribution (first term) and set β ' 1 for all time which eliminates
vw from the wall-string dynamics.

The chopping efficiency, c, of the infinite network into loops is expected to be an O(1)
number [668]. For definiteness, we take the pure-string result c ≈ 0.23 inferred from simula-
tions [499]. Last, the ‘momentum parameter’ k, is an O(1) number which parameterizes the
effect of the string curvature and wall tension on the infinite string dynamics and vanishes
when v∞ matches the RMS velocity, v0, of the string loops in flat space [499]. v0 = 1/

√
2 for

any pure string loop [670], but is an increasing function of R/Rc for string-bounded walls
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as shown graphically by Fig. 9.12. As a result, we approximate k(v,R) by the pure-string
momentum parameter [499]

k(vs, R) ≈ 2
√

2

π
(1− v2

s)(1 + 2
√

2v3
s)
v0(R)6 − v6

s

v0(R)6 + v6
s

, (9.105)

but with v0 now the R/Rc dependent RMS velocity of the string bounded walls as computed
numerically from Eq. (9.100). In the pure string limit, Rc → ∞, equations (9.101)-(9.105)
reduce to the standard one scale model.

The two equations (9.101), (9.103), are coupled via the ‘one scale’ ansatz

ρ∞ ≡
µR + σR2θ(t− tDW)

R3
=

µ

R2

(
1 +

R

Rc

θ(t− tDW)

)
, (9.106)

where tDW ≈MPlC/v
2
σ is the wall formation time. The ansatz (9.106) amounts to assuming

the typical curvature and separation between infinite string-bounded walls is the same scale,
R. Note that while ρ∞ is the total rest mass energy density of the combined string-wall
network, the allocation of the total energy density is shared among the two defects.

We evaluate the coupled system of equations (9.101)-(9.105) in time up until the one-
scale ansatz breaks down. This occurs when the curvature radius R of the infinite strings
approaches Rc, at which point the wall tension dominates the string tension and the walls
pull the infinite strings with curvature radius R effectively into string bounded domain walls
of radius R. At this point, we evaluate Eq. (9.100) with the initial conditions taken from
the one-scale solution and piecewise connect the two solutions so that each solution is valid
in their respective regimes.

For a given string tension µ and wall tension σ, two general collapse scenarios arise. One,
when the walls form before R ∼ Rc and the other when they form after, as represented by the
top and bottom panels of Fig. 9.13 , respectively. If the wall formation time tDW < Rc, the
walls gradually come to dominate the infinite string dynamics with vs and R rising slightly
before t = Rc as shown by the orange and blue curves, respectively. Here, we define the
right-axis vRMS as the RMS velocity for the infinite strings vs prior to network collapse,
and to the RMS velocity of the wall-bounded string pieces, v0, after network collapse. 7

In this scenario, we define the network collapse time as t∗ = Rc from which point on we
evaluate Eq. (9.100) to determine the dynamics of the string system. If the wall formation
time tDW > Rc, the walls dominate the strings upon formation, and vs increases abruptly
as shown in the bottom panel of Fig. 9.13. In this scenario, we define the network collapse
time as the time when vs approximately matches v0 as determined from Eq. (9.100), from
which point on we evaluate Eq. (9.100) to determine the dynamics of the system. Since
the collapse proceeds shortly after domain wall formation, the collapse time of the infinite
network is effectively at t∗ = tDW.

7For the one-scale model, the energy density decreases as R increases. R increases slightly before t = t∗
because ρ∞ redshifts faster. This is because the equation of state of the wall-string network briefly behaves
more like radiation due to the sudden increase in vs caused by the walls.
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In summary, we take the time of collapse of the infinite string-wall network and hence
the end of loop production, to be

t∗ ≡ Max(Rc, tDW), (9.107)

as first proposed by [497]. More realistic simulations beyond our one-scale analysis and
piecewise approximations are required to more precisely determine t∗. Nevertheless, the
sudden increase in vs and R around t∗ according to the one-scale analysis or comparing each
term in the string equation of motion to determine at what time each term dominates as
done in subsection 9.7 when we consider friction, indicate that the walls begin dominating
the infinite string dynamics near a time of order Eq. (9.107). Moreover, the gravitational
wave spectrum from wall-bounded strings is fairly weakly dependent on the precise value
of t∗, and knowing t∗ to within a factor of a few is sufficient to accurately compute the
gravitational wave spectrum as discussed later in this section.

Gravitational Wave Emission from String-Bounded Walls

When a string-bounded domain wall piece enters the horizon, it oscillates at constant am-
plitude as shown by the dotted green curves of Fig. 9.13 since they are subhorizon and do
not experience the conformal expansion with the horizon. As they oscillate, the loops emit
gravitational waves with a total power [681]

PGW =
∑

n

∫
dΩ

dPn
dΩ

(9.108)

dPn
dΩ

=
Gω2

n

π

[
T µν∗(k, ωn)Tµν(k, ωn)− 1

2
|T µµ(k, ωn)|2

]
(9.109)

where ωn = |k| = 2πn/T is the frequency of the nth harmonic of the string-bounded wall
oscillating with period T . The stress tensor of the string-wall system is

T µν(k, ωn) =
1

T

∫ T

0

dt eiωnt
∫
d3xe−ik·xT µν(x, t) (9.110)

T µν(x, t) =

∫

string

µ |Rs|dθ γ
dY µ

dt

dY ν

dt
δ3(x−Rs(t)) (9.111)

where dY/dt = (1,Vs), γ = (1 −Vs ·Vs)
−1/2, and Vs = dRs/dt is the physical velocity of

the string.
We calculate the gravitational wave power of the string-wall system by numerically com-

puting Eqns. (9.108) - (9.111) for circular string-bounded walls using the numerically com-
puted time evolution of Rs from the Euler-Lagrange equation of motion (9.100). The orange
contour of Fig. 9.14 shows the ratio of the gravitational wave power in the first harmonic,
P1, to Gµ2 as a function of R/Rc, where R is the string oscillation radius. For R � Rc,
the string dominates the dynamics and the power is independent of loop size, in agreement
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Figure 9.14: Top: The gravitational power, PGW, emitted by string-bounded walls as a
function of R/Rc. The orange contour shows the power in the first harmonic P1 while the
blue contour shows the total power. For R� Rc, the string dominates the dynamics and we
recover the pure string loop limit, namely PGW/Gµ

2 = Γs, where Γs ≈ 50 is a constant and
is independent of string size. For R� Rc, the wall dominates the dynamics and we recover
the pure domain wall limit, namely PGW ≈ GσMDW. Bottom: The power spectral index as
a function of R/Rc, defined by Pn ∝ n−q. In the pure string limit, q → 1 and in the pure
wall limit, q → 3/2.
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with the pure string case. However, for R � Rc, the domain wall dominates the dynamics
and the power deviates from the pure string case, increasing quadratically with R/Rc. Since
Rc ≡ µ/σ, this is equivalent to PGW ∝ Gσ2R2 ∝ GσMDW, in agreement with the quadrupole
formula expectation for gravitational wave emission from domain walls.

The bottom panel of Fig. 9.14 shows the power spectral index, q, as a function of R/Rc

where q is defined by the index Pn ∝ n−q. We numerically determine q by examining the
asymptotic dependence of Pn for n up to ∼ 300. In the string dominated regime (R� Rc),
q ' 1 which agrees with the pure string result of a perfectly circular string loop [100]. In the
domain wall dominated regime (R� Rc) we find q ' 3/2.

Note the mild (logarithmic) divergence in the total power for R � Rc is an artifact of
perfectly circular loops [658, 100] and more realistic loops, which will not be perfectly circular
but have cusps, will moderate the divergence such that Pn ∝ n−4/3 for large n. Although
realistic loops are not perfectly circular, nearly all loop configurations emit similar total
power in gravitational waves [658, 151, 670], including nearly circular, but not completely
symmetric loops. Indeed, numerically calculations of nearly circular pure string loops have
P1 nearly identical to our numerical result in the R� Rc limit, but have finite total power
similar to most string loop geometries, Ptot ≈ (50 − 100)Gµ2 [658]. As a result, to match
with a realistic ensemble of loops which are not perfectly circular and contain cusps, we
cut-off the artificial logarithmic divergence in the R � Rc regime by normalizing Ptot to
the typical string loop such that Ptot/Gµ

2 ≡ Γs ' 50. For R > Rc when q < 1, we take
the total power Ptot ' P1/ζ(q) which is the total power for Pn = P1n

−q. For convenience
in computing the gravitational wave spectrum in the following subsection, we define the
function Γ(R) ≡ PGW(R)/Gµ2 for string-bounded walls, where Γ(R) is now a function of
R/Rc. The blue contour of Fig. 9.14 shows Γ(R) as a function of R/Rc. For R/Rc � 1,
Γ → Γs while for R/Rc � 1, Γ → 3.7(R/Rc)

2. Note the power in the large R/Rc regime is
equivalent to PGW ' 1.2GσMDW for a circular string-bounded wall, which agrees well with
the numerical power inferred from simulations of domain walls in a scaling regime [380].

Gravitational Wave Spectrum from String-Bounded Walls

Now that the gravitational wave power emitted by a string-bounded domain wall is known,
we may calculate the gravitational wave spectrum from a network of circular string-bounded
walls. First, we analytically estimate the expected amplitude and frequency of the spectrum
to gain intuition before computing it numerically.

Consider first a pure string loop without walls that forms at time tk with initial length
lk = αtk, where α ' 0.1 is the typical fixed ratio between loop formation length and horizon
size found in simulations [128, 129]. Once inside the horizon, these loops oscillate and their
energy density redshifts ∝ a−3 because their energy E = µl is constant in the flatspace
limit. The loops emit gravitational radiation with power PGW = ΓsGµ

2, where Γs ≈ 50, and
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eventually decay from gravitational radiation at time

tΓ ≈
µlk

ΓsGµ2
(Pure string loop lifetime). (9.112)

When the pure string loops form and decay in a radiation dominated era, their energy density
at decay is

ρ(tΓ) ≈ µlkn(tk)

(
tk
tΓ

)3/2 ( Pure string
decay density

)
(9.113)

where n(tk) ≈ 1
3
FCeff

αt3k
is the initial number density of loops of size lk that break off from the

infinite string network in a scaling regime [217, 333, 631]. As found by simulations, F ≈ 0.1
[129] is the fraction of energy ultimately transferred by the infinite string network into loops
of size lk and Ceff ≈ 5.4 is the loop formation efficiency in a radiation dominated era [216,
131, 333].

As a result, the gravitational wave amplitude arising from these pure string loops is
approximately

Ω
(str)
GW ≈

ρ(tΓ)

ρc(tΓ)
Ωr

(
g∗0
g∗(tΓ)

)1
3

(9.114)

=
32π

9
FCeff

√
αGµ

Γs
Ωr

(
g∗0
g∗(tΓ)

)1
3 ( Pure-string

amplitude

)

where ρc(tΓ) is the critical energy density of the Universe at tΓ.
Until t = t∗, the strings dominate the dynamics of any string-bounded walls, and the spec-

trum must be approximately that of a pure string spectrum with ΩGW given approximately
by Eq. (9.114), independent of frequency. Now, consider a near circular string-bounded wall
that forms at time tk = t∗ with initial circumference lk = αtk. If lk . 2πRc, the power
emitted and total mass of the system is effectively identical to the pure string case so that
the ΩGW is again the same as Eq. 9.114. However, if lk & 2πRc, the power emitted and
mass of the system is dominated by the wall contribution of the wall-string piece. In this
case, the wall bounded string decays from gravitational radiation at time

tΓ ≈
σl2k/4π

Γ(lk)Gµ2
≈ 1

Gσ

(
String-bounded

wall lifetime

)
(9.115)

When the wall bounded strings form and decay in a radiation dominated era, their energy
density at decay is

ρ(tΓ) ≈ σl2k
4π

n(tk)

(
tk
tΓ

)3/2 ( String-bounded
wall decay

density

)
(9.116)
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where n(tk) ≈ 1
3
FCeff

αt3k
follows from the infinite string-wall network being in the scaling regime

with F and Ceff expected to be similar to the pure string values right before the infinite
network collapses at t∗.

As a result, the gravitational wave amplitude arising from these string-bounded wall
pieces is approximately

ΩGW ≈
ρ(tΓ)

ρc(tΓ)
Ωr

(
g∗0
g∗(tΓ)

)1/3

(9.117)

=
8

9
FCeffα

√
GσtkΩr

( g∗0
g∗(tΓ)

)1
3
(

String-bounded
wall amplitude

)
.

The largest amplitude of (9.117) occurs at the latest formation time tk, which is t∗, the
collapse time of the infinite network. Consequently, a ‘bump’ relative to the flat string
amplitude occurs if

ΩGW

Ω
(str)
GW

≈ 1

4π

√
Γsαt∗
Rc

≈ 0.2
( α

0.1

)1
2

(
Γs
50

)1
2
(
t∗
Rc

)1
2

(9.118)

is greater than 1 and at a frequency

fpeak ∼
1

lk

a(tΓ)

a(t0)
. (9.119)

since the walls remain the same size once inside the horizon and dominantly emit at the
frequency of the harmonic, femit ∼ l−1

k . Here, lk ≈ αt∗.
The estimation of Eq. (9.118) indicates that if t∗ � Rc, then ΩGW features a ‘bump’

relative to the flat string spectrum before decaying. Qualitatively, in this limit, the walls are
large enough and hence massive enough to live much longer than the pure string loops of
the same size. As a result, their energy density before decaying from gravitational radiation
is enhanced relative to shorter-lived pure string loops. For t∗ ≈ Rc, the spectrum does not
feature an enhancement over the pure string spectrum because the string-bounded walls are
small in size and decay quickly. Nevertheless, as we will show numerically, the spectrum still
decays as f 3 which can still be distinguished from the f 2 decay signal from monopoles eating
strings as discussed in Sec. 9.5. As a result, for any t∗, we expect a unique gravitational
wave gastronomy signature from gauge groups that produce string-bounded walls.

Fig. 9.15 shows the parameter space in the vµ − vσ plane where we can expect certain
gravitational wave signatures from cosmic gastronomy. Here, vµ ≡ µ1/2 and vσ ≡ (σ/ε)1/3

where ε . 1 is parameterizes the coupling constant of the scalar field which breaks the
discrete symmetry associated with the domain wall.

With the qualitative features of the spectrum understood, we turn to a numerical com-
putation of ΩGW.
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Figure 9.15: The vσ − vµ parameter space where wall-bounded strings can generate a grav-
itational wave signal. In the green region, the largest string-bounded walls at the network
collapse time, t∗ have a lifetime comparable to pure-string loops of the same size. The en-
ergy density they deposit into gravitational waves when they decay is comparable to pure
string loops and hence they do not produce a ‘bump’ in ΩGW relative to the flat pure-string
spectrum at high frequencies. In the yellow region, the largest string-bounded walls at the
network collapse time, t∗ are sufficiently large that their lifetime is long compared to a pure
string loop of the same size. The energy density they deposit into gravitational waves when
they decay is greater than pure string loops and a ‘bump’ in ΩGW can be observed relative
to the flat string spectrum. In the blue region, vµ < vσ which is forbidden for composite
string-bounded walls. The black contours show the approximate frequency, f∗, where ΩGW

decays from the pure string spectrum. The top and bottom panels show the same regions
for ε ≡ σ/v3

σ = 1 and 10−2, respectively.

The energy lost by oscillating circular loops of length l = 2πR is

dE

dt
=

d

dt

(
µl +

σl2

4π

)
= −Γ(l)Gµ2, (9.120)

As a result, loops that form at time tk with initial size lk = αtk slowly decrease in size
according to

Gµ(t− tk) =

∫ αtk

l

dl′
1 + l′

2πRc

Γ(l′)
. (9.121)
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As before, the stochastic gravitational wave energy density spectrum is

dρGW(t)

df
=

∫ t

tsc

dt′
a(t′)4

a(t)4

∫
dl
dn(l, t′)

dl

dP (l, t′)

df ′
df ′

df
(9.122)

df ′

df
=
a(t)

a(t′)

dn

dl
(l, t′) =

dn

dtk

dtk
dl

(9.123)

dP (l, t′)

df ′
= Γ(l)Gµ2l g

(
f
a(t)

a(t′)
l

)
(9.124)

where

dn

dtk
=

(FCeff(tk)

αt4k

a(tk)
3

a(t′)3

)
θ(t∗ − tk) (9.125)

is the loop number density production rate which follows from roughly one loop of size αtk
breaking off from the infinite wall-string network every Hubble time and then redshifting
∝ a−3.

dtk
dl

=
1 + l

2πRc

Γ(l)Gµ

(
1 +

α(1 + αtk
2πRc

)

Γ(αtk)Gµ

)−1

(9.126)

follows from differentiating Eq. (9.121) with respect to tk, and

g(x) =
∑

n

Pnδ(x− ξn) ξ ≡ l

T
(9.127)

is the normalized power spectrum for a discrete spectrum where 2 ≤ ξ ≤ π with ξ = 2
corresponding to the pure string limit (l � 2πRc) and ξ = π corresponding to the ultrarel-
ativistic limit (l � 2πRc). As discussed in the previous subsection, we take Pn = n−q/ζ(q)
with q = 4/3 to match on to more realistic non-circular strings with cusps. Above, primed
coordinates refer to emission and unprimed refer to the present so that gravitational waves
emitted from the string-bounded wall at time t′ with frequency f ′ will be observed today
with frequency f = f ′a(t′)/a(t). Last, tk is solved for numerically from Eq. (9.121).

Integrating the energy density spectrum, (9.122) over loop length l and normalizing by
the present day energy density, ρc = 3H2

0/8πG, yields the present day gravitational wave
spectrum from domain wall bounded strings

ΩGW =
∑

n

8π(Gµ)2

3H2
0

∫ t0

tsc

dt′
a(t′)5

a(t0)5

(FCeff(tk)

αt4k

a(tk)
3

a(t′)3

)

Pn
ξn

f

(
1 +

ξn

2πRcf

a(t′)

a(t0)

)
Γ(αtk)θ(t∗ − tk)

Γ(αtk)Gµ+ α(1 + αtk
2πRc

)
. (9.128)

Fig. 9.16 shows a benchmark plot of the gravitational wave spectrum from cosmic strings
consumed by domain walls for fixed vµ ≡ √µ = 1012 GeV and a variety of vσ ≡ (σ/ε)1/3,
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Figure 9.16: Representative spectra of gravitational waves emitted by strings that are eaten
by domain walls for fixed

√
µ = 1012 GeV. Each colored contour corresponds to a different

value of the wall symmetry breaking scales vσ. Prior to wall domination at t∗, the wall-string
network behaves similarly to a pure string network and ΩGW ∝ f 0 at high frequencies. After
the network collapses and the largest string-bounded walls decay, ΩGW drops as f 3 at low
frequencies. For tDW < Rc, the largest wall-bounded string pieces at decay do not live longer
compared to pure string loops of the same size and hence do not deposit significantly more
energy density into gravitational waves compared to pure string loops. There is no ‘bump’
in ΩGW in this case. For tDW � Rc, the largest wall-bounded strings pieces at decay have
size R� Rc and are long-lived compared to pure string loops of the same size. These pieces
deposit significant energy into gravitational waves at decay and generate a ‘bump’ in ΩGW

as shown by the vσ = 1011 GeV contour.

where we take ε = 1. In computing the spectrum, we sum up 104 normal modes and solve
for the evolution of the scale factor in a ΛCDM cosmology. The colored contours in Fig.
9.16 show the effect of t∗ on the spectrum while the black contour shows the pure string
spectrum, equivalent to the limit t∗ →∞. When vσ � vµ, the walls form before dominating
the strings and the network collapses at t∗ = Rc, with the largest wall bounded strings
approximately of size αRc. These wall bounded string pieces decay approximately with the
same lifetime as pure strings of the same size, implying the spectrum is not enhanced over
the pure string spectrum before decay. The smaller Rc is, the longer the string network
evolves as a pure string network, which is why the f 3 decaying spectrum in Fig. 9.16 occurs
at lower frequencies the lower vσ is. Conversely, when vσ ∼ vµ, as shown for instance, by the
brown vσ = 1011 GeV contour, the walls form already dominating the strings. The network
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collapses at t∗ = tDW � Rc with the largest string-bounded walls approximately of size
αtDW. These string-bounded wall pieces decay much later than pure string loops of the same
size, causing the spectrum to be enhanced over the pure string spectrum before decay, as
shown by the bump near 1011 Hz. Because vσ must be near vµ in this scenario, the frequency
of the bump generally occurs at very high frequencies, as shown, for instance, by the yellow
region of Fig. 9.15.

Finally, note that the spectrum is identical to the monopole nucleation spectrum of Sec.
9.4 at high frequencies, namely a pure string spectrum, but at low frequencies, the two
gastronomy spectra are distinguishable by the slope of their infrared tails, which goes as f 3

and f 2, respectively.

Frictional Losses and Chopping

. Until now, we have ignored the effect of string friction and wall friction on the gastronomy
signal from walls eating strings. In this subsection, we investigate how friction can affect the
evolution of the wall-string network and hence the gastronomy signal.

First, we consider friction on the strings due to the Aharonov-Bohm force, Eq. (9.73). It
can be shown [43, 665, 670] that the effect of this frictional force on the string equation of
motion, (9.100), is to replace H → H + a(t)/Lf , where Lf = µ/βsT

3 is known as friction
length, which is effectively the reciprocal of the friction force per unit string mass. There
are then four relevant scales (forces per unit mass) in the string equation of motion, with
each dominating at a different stage in the evolution of the wall-string network:

(a) 2Hv (Hubble)

(b)
βsT

3v

µ
(String Friction)

(c)
1

R
(String Tension)

(d)
σ

µ
=

1

Rc

(Wall Tension)

Consider first the network evolution when R < Rc, which is the pure string limit. In this
case, strings will be damped by friction until the Hubble (a) and friction terms (b) are equal.
For a radiation-dominated era, this occurs at time

tf =
M3

Plβ
2
sC

3

8µ2
. (9.129)

where C = (8π3g∗/90)−1/2 as before. After tf , the Hubble (a) and string curvature (c) terms
dominate; the strings oscillate freely and the network reaches the standard scaling regime.
If Rc > tf , the walls do not dominate the string network until after the strings reach scaling
and the results of this section are unchanged. The condition for the wall to dominate the
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string dynamics only after tf then occurs when

Rc

tDW

≥ β
2/3
s

ε
(9.130)

is satisfied. For nearly all (µ, σ) with t∗ = Rc, Rc � tDW and hence Eq. (9.130) is easily
satisfied and the gastronomy signal discussed in the previous subsection remain unchanged.

However, for t∗ = tDW, Rc < tDW and Eq. (9.130) is generally not satisfied. In this
case, the walls dominate the string dynamics during the initial string friction era. In this
scenario, the two largest terms in the string equation of motion around the time of domain
wall formation are the string friction term (b) and the wall tension term (d). Balancing the
two terms gives the string terminal velocity

v =
σ

βsT 3
' ε

βs

(
t

tDW

)3/2

, (9.131)

valid until v becomes relativistic. Friction prevents the string-wall system from initially
collapsing since the friction scale of the system, 8

Rf ∼ vt = t

(
t

tDW

)3/2
ε

βs
(9.132)

can be smaller than R. Specifically, perturbuations on the string larger than Rf remain stuck
by friction while those smaller than R have been smoothed out by friction and can move
freely. The wall-bounded strings cease expanding conformally when Rf equals the string
radius, R = R(tDW)(t/tDW)1/2, which occurs at radius

R ≈ R(tDW)×Max

(
1,

(
R(tDW)βs
tDWε

)1/4
)
. (9.133)

Unless ε� 1 or βs � 1, Eq. (9.133) occurs at or very close to the string curvature radius at
wall formation, R(tDW), since R(tDW)/tDW < 1 in the friction regime. Thus, when t∗ = tDW,
the strings oscillate highly relativistically nearly immediately after wall formation, even with
string friction. Nevertheless, there are still frictional energy losses after the strings move
freely shortly after tDW. The power lost to Aharonov-Bohm friction for these pieces is given
by equation (9.76). Since the energy of the wall-bounded string piece is dominated by walls
in this case, E ∼ σR2, Eq. (9.76) can be integrated to obtain the string-wall size vs time,

R(t) ≈ R(tDW)− βsC
3/2

σG3/4
(t
−1/2
DW − t−1/2). (9.134)

8We find a more rigorous derivation of the evolution of the string curvature from the Euler-Lagrange
equation of motion gives the same scaling. Also note the different scaling compared to pure strings when
the string curvature and friction balance, which gives R ∝ t5/4, known as the Kibble regime [435, 378].
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where we take v ∼ 1. For t > tDW, the curvature radius quickly decreases to its asymptotic
size

Rfinal ' R(tDW)

(
1− βs

ε

tDW

R(tDW)

)
. (9.135)

If the term in parenthesis remains of O(1), the wall bounded string pieces do not appreciably
shrink due to friction and will decay via gravitational radiation. In such a scenario, the
domain wall induced bump in ΩGW right before decay, a feature of the t∗ = tDW regime, still
occurs but without the flat f 0 part of the spectrum to the right because the string network
is frozen prior to tDW and does not significantly emit gravitational waves. According to
Eq. (9.135), the condition for the wall-bounded string pieces to remain long-lived is then

R(tDW) &
βs
ε
tDW. (9.136)

In the friction regime, it is generally the case that R(tDW) � tDW, in contrast to the fric-
tionless scaling regime when R ∼ t at wall formation. 9 As a result, if t∗ = tDW < tf ,
the wall-string sytem decays quickly to friction unless βs � 1. If βs ∼ 1 at wall formation,
the friction dominates and the wall-string system decays via friction in around a Hubble
time, and the gastronomy signal is suppressed. This may eliminate the ‘bump’ feature that
occurs in t∗ = tDW cosmologies, as shown, for example, by the rightmost contour of Fig.
9.16. Nevertheless, there can still be an appreciable gravitational wave pulse from walls
bounded by strings in this scenario. This is because the number of string-bounded walls in
the horizon in the friction era can be significant, giving rise to a brief, but significant pulse
of graviational waves similar to the monopole burst of Sec. 9.5. Moreover, the gastronomy
signal for walls eating strings for the case of t∗ = Rc is still observable and distinguishable
from other gastronomy signals even without its bump due to its f 3 infrared spectrum.

In addition, after the string friction era, there can be friction on the walls from scattering
with the bulk motion of the plasma [435, 281]. Like string friction, wall friction is model
dependent, and gives rise to a temperature dependent retarding force [281, 670]

Fw ∼ −βwT 4vR2, (9.137)

where v is the velocity of the wall relative to the plasma, R the wall curvature radius, and

βw ∼
∑

i

wi
30ζ(3)

π4
(9.138)

9If the number of strings in the horizon at string formation time tµ is sufficiently dilute such that
(Gµ/β2

sC
2)1/4 . R(tµ)/tµ . 1 [501, 76], the strings are stretched with the scale factor R(t)/tµ = ξ(t/tµ)1/2

where ξ ≡ R(tµ)/tµ. Since the horizon grows with t, the abundance of strings in the horizon in-
creases with time. For sufficiently large string densities within the horizon, whether initially at tµ or
after increasing in the stretching regime, the curvature radius of strings enters the Kibble regime with
R(t)/tµ ∼ (Gµ/β2

sC
2)1/4(t/tµ)5/4, independent of whether the strings start in the stretching regime or Kib-

ble regime. Only at the very beginning of the stretching regime if ξ0 ∼ 1 or at the end of the Kibble regime
does R ∼ t, (the latter of which anyway marks the end of the friction era), can Eq. (9.136) be satisfied and
a gastronomy signal be observed.
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characterizes the number of relativistic particles that scatter with the scalar field composing
the wall and where wi = 1 for bosons and 6/7 for fermions. If there are no particles with mass
m � T in the bath that stongly scatter with the scalar field of the wall, then βw = 0, and
the following discussion is inapplicable. Likewise, if the only particles that strongly scatter
with the wall are of order vµ, such as scalar field of the wall itself, βw quickly becomes
exponentially suppressed and the following discussion is inapplicable. If there exists such
particles and βw & 1, the balance of the friction force (9.137), with the wall tension force,
F ∼ σR, gives the terminal velocity of the walls,

v ∼ 4Gσt2

βwc2R
(9.139)

in a radiation dominated era. We now follow the discussion of [281], but further generalize
the authors’ results to the case when t∗ = tDW which was not considered previously. The
wall friction scale is

Rf ∼ vt ≈
√

4Gσt3

βwc2
(9.140)

whereas the string curvature of the infinite string-wall network scales as R ∼ t in the scaling
regime. Perturbations on the wall larger than Rf remain stuck by friction while those
smaller than R have been smoothed out by friction and can move freely. At t = t∗, the wall
dominates the string dynamics, and normally, this would cause the walls to pull the strings
into the horizon and oscillate at constant amplitude as discussed in Sec. 9.7. However, the
R > Rf periphery of the wall and hence string boundary (which goes along for the ride) is
conformally stretched until Rf equals the string radius, R = R(t∗)(t/t∗)

1/2, which occurs at
time t1 and curvature radius

t1 ∼
t∗
δ

R(t1) ∼ t∗√
δ

(9.141)

where

δ =

√
Gσt∗
βwC2

(9.142)

valid for t∗ = Rc or t∗ = tDW. At time t1, the wall-bounded string pieces cease being
conformally stretched and oscillate at constant size. Nevertheless, the walls lose energy via
friction. The power lost to friction by the walls is

Pf = Fwv ∼ −
βwc

2

Gt2
R(t1)2v2 (9.143)

where v = δ1/2(t/t1)2 for t > t1 using Eq. (9.139) and (9.141). The integral of (9.143)
gives the energy of the system as a function of time,

E(t) = E(t1)− 1

3
E(t1)

(
t3

t31
− 1

)
(9.144)
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where E(t1) ∼ σR(t1)2 = Gσ2t31/βwC
2 is the initial energy of the wall at t1. Eq. (9.144)

demonstrates that the walls lose most of their energy in a Hubble time after t1. The energy
loss causes the size of the string-bounded walls to shrink until they become relativistic, which
occurs at t2 ∼ t1, and, according to (9.139), at R(t2) ∼ t∗. At this point, Eq. (9.144) is invalid
and we must return to Eq. (9.143) to describe the power lost to friction by the relativistic
wall-string piece. If t∗ = Rc, the time at which the walls become relativistic coincides with
the moment the strings return to dominating the dynamics of the shrinking wall-bounded
string piece, that is, R ≈ Rc when v becomes 1. If t∗ = tDW, R > Rc when v becomes 1,
and the walls still dominate the dynamics. However, it is easy to see that if the wall still
dominates the dynamics for v ∼ 1, the curvature radius exponentially drops in time so that
even for the case t∗ = tDW, the wall-bounded string pieces will shrink to Rc at t ∼ t1.

But the shrinking can continue further. Once the string dominates the dynamics and
v ∼ 1, the integration of the power loss, Eq. (9.143), gives the curvature radius of the
wall-bounded string piece as

R(t) =

[
1

R(t2)
− βwc

2

Gµ

(
1

t
− 1

t2

)]−1

(9.145)

which asymptotically shrinks to

Rfinal =
Gµt2
βwc2

= Rcδ. (9.146)

For βw & 1, δ � 1 and the wall-bounded string pieces shrink far below Rc and subsequently
decay quickly via gravitational radiation. In this scenario, the gastronomy signal is again
suppressed, even for t∗ = Rc, unlike the case for string friction. However, this is highly model
dependent and requires relativistic particles in the thermal bath to scatter off the domain
wall far past wall formation so that βw & 1 still at t1. If the only particles that scatter with
the wall have mass compared to vσ, then βw � 1 by t1 so that the wall friction becomes
negligible and the gastronomy discussion of the previous subsections are unchanged.

Last, we mention that it is possible that the wall-bounded string pieces can potentially
lose energy from self-intercommutation when they oscillate, thereby chopping themselves into
finer pieces. If this occurs, the chopping is likely to stop becoming important once the pieces
slice and dice themselves below R < Rc at which point the strings dominate the dynamics
and the wall-bounded string pieces dynamically behave similar to pure string loops. If this
occurs, it only effects the t∗ = tDW parameter space where the wall-bounded string pieces can
have curvature radii R > Rc. Moreover, the final number of chopped pieces of size Rc will be
greater than the usual t∗ = Rc cosmology because the total energy in the wall-bounded string
pieces post chopping is similar to pre-chopping due to energy conservation 10. Furthermore,
for an asymptotic chopped radius of R ∼ Rc, the lifetime of the chopped wall-bounded string
pieces is comparable to larger pieces with R > Rc because the gravitational wave power at

10The total energy density of the system pre and post chopping may be somewhat smaller if the chopped
pieces inherit a large translation kinetic energy which can be redshifted away by the expansion of the Universe.



CHAPTER 9. GRAVITATIONAL WAVE GASTRONOMY 304

this radius is approximately proportional to the wall mass so that the lifetime is the same
for string-bounded walls for any size R & Rc. Thus, because the total energy density and
lifetime of the chopped pieces remains similar to the pre-chopped pieces, the ‘bump’ in the
spectrum for t∗ = tDW cosmologies should stay roughly the same height if there was no
chopping, but may be shifted to slightly higher frequencies because the pieces are smaller
than before.

9.8 Topological defects washed out by inflation

Inflation exponentially dilutes all topological defects. This is useful for removing monopoles,
for which even small relic abundances are in tension with present-day cosmology. However
other topological defects such as superhorizon strings and domain walls dilute slower than the
background radiation and hence can replenish even after enduring many e−folds of inflation.
Examples of symmetry breaking chains in Fig. 9.1 where this can occur are

SO(10) → GSM × Z2

SO(10) → 3221D

since these chains simultaneously produce stable monopoles and strings and thus require the
strings to be diluted by inflation too.

Recent work [215] found that if a string network forms early in inflation, the strings
can replenish enough such that bursts emanating from ultrarelativistic cusps can give an
observable signal at frequencies around pulsar timing arrays. However, there is a limit to
how many e-folds strings can be diluted and still leave an observable signal.

Limits on monopole flux are most stringent for monopoles that catalyze baryon number
violation. Such bounds on the flux, Φ, are at no stricter than [295]

Φ . 10−28cm−2sr−1sec−1 (9.147)

which requires at least 30 e−foldings of inflation to dilute, whereas strings can replenish
after many more e−foldings [215] - up to about 54.

Domain walls in principle can also replenish after being diluted by inflation. The evolution
of a domain wall network can be estimated by taking a conservative initial number density to
be H3

I (the Kibble or scaling limit) and the initial mass of a domain wall to be σ/H2
I , where

HI is the value of Hubble during inflation. After formation, the domain wall is stretched by N
e-foldings and the number density is diluted by a factor e−3N . Due to the superhorizon size,
the walls are conformally stretched with the evolution of the curvature radius R stretching
with the scale factor until horizon re-entry when HR = 1. After horizon re-entry, that
is when the domain wall size is the Hubble size, the domain walls reach a scaling regime
and ρDW ≈ σ/R ∝ 1/t, which is slower than all other energy densities bar the vacuum
contribution. In order to not dominate the energy density today and taking H = 1013 GeV,
domain walls require nearly 100 e-foldings. In principle, if a small amount of the energy
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budget today is from domain walls, a larger fraction could occur during recombination,
implying a larger expansion rate in the early Universe. We leave the phenomenology of such
a possibility to future work.

9.9 Conclusion and Discussion

In this work, we have studied the formation, evolution, decay, and gravitational wave gas-
tronomy signatures of hybrid topological defects. These objects, composed of two different
dimensional topological defects bounded to each other, come in two flavors: cosmic strings
bounded by monopoles and domain walls bounded by cosmic strings. As shown in Fig. 9.1,
these hybrid defects are common in many breaking chains from SO(10) to the Standard
Model. As a result, if the early Universe reached sufficiently high temperatures, it is possible
that hybrid defects were once part of our cosmic history.

The relativistic motion of defects, and especially during the ‘devouring’ of one defect by
the other, leads to interesting gravitational wave signatures. We revisited the gravitational
wave spectrum of strings unstable toward monopole pair creation in Sec. 9.4 and found a
range of monopole and string symmetry breaking scales that are observable at near-future
gravitational wave detectors, including within the recent NANOGrav and PPTA signal re-
gion. Similarly, we estimated the gravitational wave signal from domain walls unstable
toward string holes nucleating on their surface in Sec. 9.6. In both nucleation cases, the
gravitational wave spectrum prior to nucleation behaves as a pure string or wall network,
respectively. The frequency dependence of the nucleation gastronomy scenarios are summa-
rized in Table 9.1.

Note that since nucleation is an exponentially suppressed process, the defect can be long-
lived, therefore the scale size of the topological defect at decay can be large and hence emit
in low frequencies observable at near future gravitational wave detectors. Nevertheless, while
nucleation gastronomy scenarios typically involve easier to detect lower frequency gravita-
tional waves, the likelihood of a nucleation gastronomy may be challenging as it requires a
near degeneracy in symmetry breaking scales of the bulk and boundary defects.

Other types of cosmological scenarios with hybrid defects, such as a monopole network
becoming connected to (and eaten by) strings, and string loops becoming filled with (and
eaten by) domain walls do not require any fine-tuning of the symmetry breaking energy
scales. We constructed analytic models for these hybrid defects and found that they predict
gravitational waves typically at high frequencies of order 101−10 Hz, which will be explored by
interferometers in some parts of parameter space, but will typically need new experimental
techniques to detect the signal. Unlike nucleation, the gravitational wave signals for these
gastronomy scenarios are typically high frequency because the hybrid defects decay around
the time of string or domain wall formation, respectively. This can occur in the early Universe
when the defects are physically small. If future high frequency detectors can observe such
a signal, they may be able to see unique spectral features as shown in Table 9.1 or even a
characteristic ‘bump’ on top of a pure string spectrum when domain walls eat strings. To
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Cosmic Course IR UV
Monopoles Eating String Net-
work (Nucleation)

f 2 f 0

Strings Eating Monopole Net-
work (Collapse)

f 3 ln f →
f−1

Strings Eating Domain Wall
Network (Nucleation)

f 3 f−1

Domain Walls Eating String
Network (Collapse)

f 3 f 0

Table 9.1: A summary of the different gastronomy signals and the characteristic finger-
prints of their gravitational wave spectra at low (IR) and high (UV) frequencies. Since each
gastronomy signal has a unique combination of the spectral index in the IR and UV, it is
possible to map a gravitational wave spectrum to a given gastronomy scenario and hence a
subset of GUT symmetry breaking chains.

confirm our analytic models describing the hybrid defects in this paper, numerical simulations
will be needed.

Because all four gastronomy spectra are distinguishable by their UV and IR frequency
dependence, a measurement around the peak of ΩGW can be used to determine the IR and
UV spectral dependence. In some cases this only requires detecting the spectra over a relative
small frequency domain. It may then be possible to infer which of the four types of cosmic
courses generated ΩGW. Knowledge of the gastronomy course thus elucidates the hybrid
defect which created that signal. Consequently, knowing that a certain hybrid defect existed
in the early Universe can be used to narrow down the subset of GUT symmetry chains that
produce that hybrid defect. Moreover, the amplitude and frequency dependence ΩGW can
be used to infer the scales of symmetry breaking associated with both the boundary and bulk
defects. Thus, gravitational wave gastronomy has the ingredients to infer many fundamental
properties of Nature.
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Appendix A

Mirror QCD Boltzmann and State
Equations

A.1 Boltzmann Equations for the e′ and u′

Abundances

In this appendix we show the Boltzmann equations governing the thermal relic abundance
of e′ and u′. To simplify the expression, we omit the superscript ′ except for the titles of
sections and the mirror temperature T ′. The number densities are that per color.

Freeze-Out

For TRH > Tdec, the relic abundances of e and u are set by freeze-out.

b′ freeze-out

During the freeze-out of b, the decay of b is negligible and we solve the following equation,

ṅb + 3Hnb = −〈σbvrel〉 (n2
b − nb,eq), (A.1)

〈σbv〉 is the thermal average of the annihilation cross section times the relative velocity of
bb̄. We include the Sommerfeld effect [628],

σqvrel =
2πα2

3q,UV

27m2
q

f(
2πc1α3q,IR

vrel

) +
(5 + 6N<q)πα

2
3q,UV

27m2
q

f(
2πc8α3q,IR

vrel

),

f(x) =
x

ex − 1
, c1 = −4

3
, c8 =

1

6
,

α3q,UV ≡ α3(mq), α3q,IR = α3(mqα3(mq)), (A.2)

where N<q is the total number of quarks and mirror quarks lighter than the mirror quark q
(e.g. N<b = 4). Here α3q,UV is used for the process with a momentum exchange around the
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mass of q, namely the annihilation, while α3q,IR is used for the process with a momentum
exchange around the inverse of the Bohr radius of the qq̄ bound state, namely the soft gluon
exchange to attract qq̄.

c′, µ′ and s′ freeze-out

During the freeze-out of c, µ and s, the decays of µ and s are negligible. We solve the
following equations,

ṅb + 3Hnb =− 8|Vcb|2Γbnb, (A.3)

ṅc + 3Hnc =− 〈σcv〉 (n2
c − nc,eq)− 5Γcnc + 11|Vcb|2Γbnb, (A.4)

ṅµ + 3Hnµ =− 〈σµv〉 (n2
µ − nµ,eq) + 3|Vcb|2Γbnb + 3Γcnc, (A.5)

ṅs + 3Hns =− 〈σsv〉 (n2
s − ns,eq) + 3|Vcb|2Γbnb + 5Γcnc, (A.6)

Here Γf is defined by

Γf =
m5
f

1536π3v4
. (A.7)

The annihilation cross section of a mirror lepton ` are

σ`vrel = (1 +
∑

f<`

q2
f )
πα2

m2
`

f(−2πα

vrel

), (A.8)

where the summation is taken for mirror fermions lighter than ` with a charge qf .

d′, u′ and e′ freeze-out

During the freeze-out of d, u and e, the decay of d is negligible. The Boltzmann equation is
given by

ṅµ + 3Hnµ =− 4Γµnµ, (A.9)

ṅs + 3Hns =− 4|Vus|2Γsns, (A.10)

ṅd + 3Hnd =− 〈σdvrel〉 (n2
d − nd,eq) + Γµnµ + 3|Vus|2Γsns, (A.11)

ṅu + 3Hnu =− 〈σuvrel〉 (n2
u − nu,eq) + Γµnµ + 7|Vus|2Γsns, (A.12)

ṅe + 3Hne =− 〈σevrel〉 (n2
e − ne,eq) + Γµnµ + 3|Vus|2Γsns. (A.13)

The freeze-out abundance of d is transferred into the abundance of u and e by the mirror
beta decay.
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Freeze-In

For TRH < Tdec, the relic abundances of e and u are set by freeze-in. During the reheating
era, the Boltzmann equations are given by

ṅf + 3Hnf =
〈
σHH†→ff̄ vrel

〉
(n2

H − n2
f ) + 〈σtherm vrel〉 (n2

g − n2
f )Θ(T ′ −mf ) + (A.14)

〈σtherm vrel〉 (n2
γ − n2

f )Θ(T ′ −mf ) + 〈σf vrel〉 (n2
γ,eq(mf/T

′, µγ)− n2
f )Θ(mf − T ′),

ṅe + 3Hne = 〈σHH†→eē vrel〉 (n2
H − n2

e) + (A.15)

〈σtherm vrel〉 (n2
γ − n2

e)Θ(T ′ −me) + 〈σe vrel〉 (n2
γ,eq(me/T

′, µγ)− n2
e)Θ(me − T ′),

ṅγ + 3Hnγ =
〈
σHH†→2γ vrel

〉
(n2

H − n2
γ) + 〈σ2→3 vrel〉 (n2

f − n2
f

nγ
nγ,eq(T ′, µ = 0)

) + (A.16)

〈σtherm vrel〉 (n2
f − n2

γ)Θ(T ′ −mf ) + 〈σtherm vrel〉 (n2
e − n2

γ)Θ(T ′ −me),

ṅg + 3Hng =
〈
σHH†→2g vrel

〉
(n2

H − n2
g) + 〈σtherm vrel〉 (n2

f − n2
g)Θ(T ′ −mf ) + (A.17)

〈σ2→3 vrel〉 (n2
f − n2

f

ng
ng,eq(T ′, µ = 0)

+ n2
g − n2

g

ng
ng,eq(T ′, µ = 0)

).

f is the mirror fermion with the largest mass below TRH and subscript H is the SM Higgs.
The production cross sections from the SM Higgs are [270, 586]

〈
σHH†→ff̄ vrel

〉
' 1

8π

y2
f

v′2
(A.18)

〈
σHH†→2γ vrel

〉
' 1

16π

( α
4π

)2 T 2

v′4

(∑

f

Q2
f

3

)2

(A.19)

〈
σHH†→2g vrel

〉
' 1

2π

(αS
4π

)2 T 2

v′4

(∑

q

1

6

)2

, (A.20)

where the summation on f and q is taken for mirror fermions and quarks with masses greater
than T . Initially possessing a typical energy ∼ T , the thermalization cross-section among
mirror charged fermions is given by

〈σtherm vrel〉 ≈
4πα2

i

T ′2
. (A.21)

while the soft, number-changing (ff̄ → ff̄γ, f f̄ → ff̄g, gg → ggg) bremsstrahlung cross-
sections are given by

〈σ2→3 vrel〉 ≈
α3
i

2

(αini
T ′

)−1

ln

(
T ′3

αini

)
, (A.22)

and

H =
5

18

(
π2

10
g∗

)1/2
T 4

T 2
RHMPl

(A.23)
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is the Hubble scale during the reheating matter-dominated era. Here, αi equals αEM or
αS(T ′) and ni equals ne or nf depending on whether the exchange involves mirror photons
or gluons.

Soft-scattering keeps the mirror bath in kinetic equilibrium (but not necessarily chemical
equilibrium), establishing an effective temperature

T ′ =
1

3

ρ′tot(T )

n′tot(T )
(A.24)

where ρ′tot(T ) is the total energy density of the mirror sector frozen in via the Higgs portal
when the universe is at a temperature T , and n′tot is the total number density of the mirror
sector determined from the Boltzmann equations. For mirror photons, γ, and gluons, g, the
equilbrium number densities are

neq

(m
T ′
, µ
)

= g

(
mT ′

2π

)3/2

exp
(
−m
T ′

+
µ

T ′

)
=

√
π

8

(m
T ′

)3/2

exp
(
−m
T ′

)
n (A.25)

neq(T
′, µ = 0) =

2g

π2
T ′3. (A.26)

For low v′ and high TRH, thermalization of e and γ via 2 → 3 (A.22) and 2 → 2 (A.21)
processes are effective, thereby increasing n′tot and decreasing T ′. This thermalization acts
to cool the mirror bath so that mirror particles freeze-out instantly with an annihilation
cross-section 〈σf vrel〉 given by (A.2) if a quark, and (A.8) if a lepton. Nevertheless, these
frozen-out particles are then continually replenished by fresh particles from the Higgs portal.
Since freeze-in production is maximized at TRH and any pre-thermalized contribution is
typically small, the most important contributions to the present-day abundance of e′ occurs
at and below TRH, discussed below (A.27)-(A.33).

For T < TRH, the universe is radiation dominated. The mirror bath remains in kinetic
equilibrium (not necessarily chemical equilibrium), establishing an effective temperature

T ′ =
1

3

ρ′tot

n′tot

' 1

3

ρ′tot(TRH)

nf + ne + nγ + ng

(
T

TRH

)4

. (A.27)

The Boltzmann equations for me < T ′ < TRH determine the evolution of nf , ne, ng, and nγ,
and are given by

ṅf + 3Hnf =
〈
σHH†→ff̄ vrel

〉
(n2

H,eq(mf/T )− n2
f ) + (A.28)

〈σf vrel〉 (n2
γ,eq(mf/T

′, µγ)− n2
f ) + 〈σf vrel〉 (n2

g,eq(mf/T
′, µg)− n2

f ), (A.29)

ṅe + 3Hne = 〈σHH†→eē vrel〉 (n2
H − n2

e) + 〈σtherm vrel〉 (n2
γ − n2

e), (A.30)

ṅγ + 3Hnγ =
〈
σHH†→2γ vrel

〉
(n2

H − n2
γ) + 〈σf vrel〉 (n2

f − n2
γ,eq(mf/T

′, µγ)) + (A.31)

〈σ2→3 vrel〉 (n2
f − n2

f

nγ
nγ,eq(T ′, µ = 0)

) + 〈σtherm vrel〉 (n2
e − n2

γ)Θ(T ′ −me).

ṅg + 3Hng =
〈
σHH†→2g vrel

〉
(n2

H − n2
g) + 〈σf vrel〉 (n2

f − n2
g,eq(mf/T

′, µg)) + (A.32)

〈σ2→3 vrel〉 (n2
f − n2

f

ng
ng,eq(T ′, µ = 0)

+ n2
g − n2

g

ng
ng,eq(T ′, µ = 0)

))
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Last, e′ freezes-out when T ′ drops below its mass. The Boltzmann equation for T ′ < me is

ṅe + 3Hne = 〈σe vrel〉 (n2
γ,eq(me/T

′, µγ)− n2
e) (A.33)

A.2 Energy Densities of the Mirror QCD Bath

In this appendix we estimate the energy density of the mirror QCD bath. We derive the en-
ergy density at the phase transition, which is used to estimate the magnitude of gravitational
waves, and the energy density of the mirror glueballs after the transition, which is used to
estimate the dark radiation abundance. We assume entropy conservation around the mirror
QCD phase transition. Entropy production via super-cooling will result in enhancement of
the signals.

The SM and mirror sectors decouple from each other at the temperature shown in
Eq. (2.19). Around this temperature, e′, µ′, u′, d′, s′, g′, and γ′ are in the thermal bath; the
effective number of degrees of freedom of the mirror sector is g′dec ' 60. After decoupling,
the entropies of the two sectors are separately conserved. Around the mirror QCD phase
transition, the mirror gluon bath is nearly pressureless. Parametrizing the energy density of
the mirror gluon bath by ρg′ = b T ′4, the ratio of the temperatures of the two sectors is

TSM

Tg′
= 0.3

(
gdec

gc

60

g′dec

b

0.5

)1/3

, (A.34)

where gc is the effective number of degrees of freedom of the SM bath at the mirror QCD
phase transition. The ratio of the energy densities is

ρSM

ρg′
= 0.5

(
106.75

gc

b

0.5

)1/3(
gdec

106.75

60

g′dec

)4/3

. (A.35)

For T ′ . 0.7T ′c, the energy and the entropy density of the mirror QCD bath is well-
approximated by that of the ideal gas of the lightest mirror glueballs with a mass mS′ '
5.3T ′c [137]. Entropy conservation within this decoupled mirror bath implies its entropy
density scales as ∝ a−3. 3 → 2 annihilations keep warm the mirror glueballs so that their
temperature falls approximately as ∝ ln a and energy density as ∝ a−3 (ln a)−1 until they
decouple or decay [167, 383, 289]. Here, a is the scale factor of the universe. The 3 → 2
cross-section is given by [289]

〈σ3→2v
2〉 ' B

(4π)3

(
4π

3

)6
1

m5
S′
, (A.36)

where B is an O(1) number whose value weakly affects af . We take B = 1.
As discussed in Sec. 2.5, the non-trivial dynamics around the mirror QCD phase transition

are encoded in the modification factor A, the ratio of the actual mirror glueball energy
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Figure A.1: The QCD′ modification factor A as a function of af/ac. A is defined as the energy
density ratio of the actual glueball gas to that derived by a non-interacting ideal gas approximation
and glueball number conservation.

density to that derived by a non-interacting ideal gas approximation and the glueball number
conservation,

A =
4T ′f
3T ′c

=
4

3

2mS′

T ′c
W

(
2

(2π)3

(
45

32π2

)2(
mS′

T ′c

af
ac

)6
)−1

∝∼
(

ln
af
ac

)−1

. (A.37)

Here, W (x) is the product-log function, which is a solution of WeW = x. ac is the would-be
scale factor at T ′ = T ′c if the mirror gluons remain an ideal gas until the phase transition,
and af is the scale factor of the universe when the 3 → 2 reactions among mirror glueballs
freeze-out, or the mirror glueballs decay. For v′ > 109 GeV, af is determined by the former
and otherwise by the latter.

For 0.7T ′c . T ′ . T ′c, the energy density of the mirror glueball bath deviates from that
of a weakly-interacting ideal gas composed of the lightest mirror glueballs, and hence the
second equality of (A.37) is invalid. In this strongly interacting regime, A is determined by
taking the lattice result for ρg′(T

′
f/T

′
c) from [137] and equating it with sg′T

′
f - an excellent

approximation since the glueball gas is nearly pressureless. Here, sg′ = 32π2/45T ′c
3(ac/af )

3

is the entropy density of the mirror glueball bath. T ′f/T
′
c is then numerically solved for as a

function of af/ac and inserted into (A.37) to determine A as function of af/ac as shown for
both regimes in Fig. A.1.
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Appendix B

Sterile Neutrino Mass Relations and
Stability

B.1 Neutrino mass relations

In this appendix, we show the constraints on the mass eigenvalues of the active neutrinos
through the requirements of abundance and radiative stability of N1 DM, together with
cosmological bounds on the warmness of N1 and the reheating temperature from N2 decay.
We remind the reader that we work in a mass basis for Ni, which have masses Mi. The
states νi are related to Ni by LR symmetry, and are not necessarily mass eigenstates.

We first consider the case M3 > M1. Constraints on the Yukawa matrix yij, and lower
bounds on M1 and M2, then ensure that the seesaw mechanism is operative, so that the νi
mass matrix is

mij = δijc
v2

v2
R

Mi −
3∑

k=1

yikyjk
Mk

v2 (B.1)

as in (3.12). We will demonstrate two claims:

Claim 1: The lightest eigenstate is aligned with ν1, with mass m1 �
√

∆m2
sol ' 0.01 eV.

Claim 2: The mass of N2 is determined by M2 ' µ(vR/v)2c−1, where 0.01 eV . µ .
0.10 eV. This is key to constraining the parameter space of frozen-out N1 DM.

The stability of N1 and N2 require |y1i|, |y2i| � 1, as indicated by Eqs. (3.15) and (4.23),
implying that the seesaw contributions from N1 and N2 exchange are both much less than
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0.01 eV. Hence, to an excellent approximation, Eq. (B.1) can be written as

mij '




c

(
v

vR

)2

M1 −
y2

13

M3

v2 −y23y13

M3

v2 −y13y33

M3

v2

−y23y13

M3

c

(
v

vR

)2

M2 −
y2

23

M3

v2 −y23y33

M3

v2

−y13y33

M3

v2 −y23y33

M3

v2 c

(
v

vR

)2

M3 −
y2

33

M3

v2




. (B.2)

Next we find that the entry m11 is much smaller than
√

∆m2
sol:

c

(
v

vR

)2

M1 ≤ v2M1

(
1536π3

14M5
2MPl

(
π2g∗(TRH)

10

)1/2(
ρDM/sM2

1.63
4
M1

)2
)1/2

(N2 stability)

= 6× 10−6 eV

(
24 GeV

M2

)3/2(
g∗(TRH)

10.9

)1/4

, (B.3)

|y13|2
M3

v2 ≤ M2
1

M3

sin2 2θ1

≤ 8× 10−5 eV

(
2 keV

M1

)4(
M1/M3

1

)
. (N1 stability)

Now we argue thatm13 is also negligible. The upper bound on |y13| of (3.15) from the stability

of N1 implies that m13 is non-negligible only if |y33| is large, such that |y33|2v2/M3 �
√

∆m2
sol.

To ensure that the observed sum of neutrino masses does not exceed 0.06 − 0.10 eV, m33

must be tuned such that |y33|2v2/M3 ' c(v/vR)2M3. However,

|y13y33|
M3

v2 ' √c |y31|v2

vR
(B.4)

≤ √cM1 sin θ1
v

vR

≤M1 sin θ1v

(
1536π3

14M5
2MPl

(
π2g∗(TRH)

10

)1/2(
ρDM/sM2

1.63
4
M1

)2
)1/4

(N2 stability)

≤ 2× 10−5 eV

(
M1

2 keV

)−2(
M2

24 GeV

)−3/4

. (N1 stability)

Hence, from the lower bounds on M1,2 we conclude that m13 is negligible.
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The mass matrix of the active neutrinos is therefore approximately

mij '




0 −y23y13

M3

v2 0

−y23y13

M3

c

(
v

vR

)2

M2 −
y2

23

M3

v2 −y23y33

M3

v2

0 −y23y33

M3

v2 c

(
v

vR

)2

M3 −
y2

33

M3

v2




. (B.5)

We put further constraints on the mass matrix by considering the two cases of M3: greater
than or less than M2.

Case 1: M3 > M2

For this case, the entry m12 is negligible. This is because the upper bound on y32 is

|y23|2 ≤
1

Γ0MPl

(
π2g∗(TRH)

10

)1/2(
M2 ρDM/s

1.63
4
M1

)2

, (N2 stability)

Γ0 ≡





171/8

1536π3

M3
2

v2
M2 < v

1

8π
M2 M2 > v,

(B.6)

so that

|m12| =
|y13y23|v2

M3

(B.7)

≤ sin θ1v

(
1

Γ0MPl

(
π2g∗(TRH)

10

)1/2(
ρDM/s

1.63
4

)2
)1/2

.

(Stability of N1 and N2, M3 > M2)

≤ 9× 10−10 eV

(
M1

2 keV

)−5/2(
M2

24 GeV

)−3/2

(B.8)
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Next we show that m23 is also small. The upper bound on y33 is

|y33|2 =
M2

3

v2

∣∣∣∣∣
m22 +

y2
23

M3
v2

M2

− m33

M3

∣∣∣∣∣ (Rewriting m33)

≤ M2
3

v2

(∣∣∣∣
m22

M2

∣∣∣∣+

∣∣∣∣
y2

23v
2

M2M3

∣∣∣∣+

∣∣∣∣
m33

M3

∣∣∣∣
)

(Triangle inequality)

≤ M2
3

v2M2

(
|m22|+

∣∣∣∣
y2

23v
2

M2

∣∣∣∣+ |m33|
)

(M2 < M3)

.
M2

3

v2

∑
mi

M2

. (Upper bound on m22 and m33, N2 stability)

Hence, m23 is at most

|m23| ≤ v

√√√√
(

1

Γ0MPl

(
π2g∗(TRH)

10

)1/2(
M2 ρDM/s

1.63
4
M1

)2
)(∑

mi

M2

)
. (B.9)

Fig. B.1 (left) shows the region where the right-side of Eq. (B.9) is greater than
√

∆m2
sol

in the M1 − M2 plane. As can be seen, everywhere in the cosmologically allowed region
|m23| �

√
∆m2

sol. In the active neutrino mass matrix, only m22 and m33 can be comparable
to the observed neutrino masses; for M3 > M2 the νi basis is accurately the mass basis. The
lightest active neutrino mass m1 is much smaller than

√
∆m2

sol, showing Claim 1.
The two heavier active neutrino masses (m2,m3) are simply given by

m2 ' m22 = c

(
v

vR

)2

M2 −
y2

23

M3

v2 (B.10)

m3 ' m33 = c

(
v

vR

)2

M3 −
y2

33

M3

v2 (B.11)

Furthermore,

|y23|2
M3

v2 ≤ |y23|2
M2

v2 (M2 < M3)

�
√

∆m2
sol. (N2 stability)

Therefore, we obtain Claim 2, with µ identified as m2, the mass of ν2

M2 ' m2

(vR
v

)2 1

c
. (B.12)
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Case 2: M3 < M2

We first show that |y23|2v2/M3 cannot be larger than the active neutrino mass by contra-
diction. Let us assume that |y23|2v2/M3 is larger than the active neutrino mass. Then to
suppress m22, we need

|y23|2
M3

v2 ' c

(
v

vR

)2

M2. (B.13)

If |y33| is larger than |y23|, |y33|2v2/M3 is also larger than the active neutrino mass and
must be cancelled by cM3(v/vR)2, which is impossible since M3 < M2. We conclude that
|y33| < |y22|, which is used later.

Since M3 > M1, the case where N3 decays after matter-radiation equality is excluded
due to entropy production by the decay, or too much N3 DM if N3 is cosmologically stable.
We thus assume that N3 decays before matter-radiation equality.

Case 2-1: M2 < v

Since |y33| < |y23| and |y13| is small, the decay of N3 by WL exchange is determined by y23.
Then the decay rate of N3 by WR exchange is negligible. In fact, if N3 decays dominantly
by WR exchange,

|y23|2
M3

3

v2
<
M5

3

v4
R

. (B.14)

In this case, however,

|y23|2v2

M3

≤M2v
4

(
1536π3

14M5
2MPl

(
π2g∗(TRH)

10

)1/2(
ρDM/sM2

1.63
4
M1

)2
)

(N2 stability, M2 > M3)

= 2× 10−7 eV

(
M2

24 GeV

)−2(
M1

2 keV

)−2

(B.15)

which is in contradiction. Thus N3 decays dominantly by y32.
In order for N2 to be the diluter (by definition), it must be that

M2√
ΓN2

>
M3√
ΓN3

, (Dilution factor)

M2√
|y23|2M3

2

>
M3√
|y23|2M3

3

(ΓWL
∝ y2M3)

⇒M3 > M2, (B.16)

which is a contradiction with our assumption that M3 < M2.
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Case 2-2: M2 > v

When M2 > v, N2 decays to `H via y2i or beta-decays via WR exchange. Both decay channels
limit |y23|2v2/M3 to ensure N2 is long-lived enough to provide dilution of N1.

From the decay via y2i,

|y23|2
M3

v2 ≤ v2

M3

8π

M2MPl

(
π2g∗(TRH)

10

)1/2(
ρDM/sM2

1.63
4
M1

)2

(N2 stability)

To be compatible with our assumption that |y23|2v2/M3 > m1 +m2 +m3, it is required that

M3

M2

<
8πv2

MPl

∑
mi

(
π2g∗(TRH)

10

)1/2(
ρDM/s

1.63
4
M1

)2

(B.17)

= 2× 10−9

(√
∆m2

atm∑
mi

)(
g∗(TRH)

106.5

)1/2(
2 keV

M1

)2

. (B.18)

The turquoise shaded region in Fig. B.1 (right) violates this condition for the minimum
value of M1 = 2 keV; larger M1 enlarges the region. From the decay via WR exchange,

|y23|2
M3

v2 ≤M2

(
v

vR

)2

(Since c ≤ 1)

≤ v2

(
1536π3

20M3
2MPl

(
π2g∗(TRH)

10

)1/2(
ρDM/sM2

1.63
4
M1

)2
)1/2

. (N2 stability)

In the purple region of Fig. B.1 (right), the inequality is less than
∑
mi, also for the minimum

value of M1 = 2 keV.
There are additional constraints on M2 and M3 if N3 decays after BBN. This occurs when

ΓN3 ' (2− 20)× 1

1536π3

M3
3

v2
|y2

23| < (0.1 sec)−1, (B.19)

where the coefficient depends on the kinematically available final states. If M3 > few MeV,
then the decay products of N3 carry enough energy to dissociate light elements formed during
BBN, altering their relic abundances (see [428] and references therein).1 If M3 . MeV, the
decay after BBN does not necessarily dissociate any light elements, but can still alter their
relic abundance if N3 is long-lived enough to induce a matter-dominated era before decaying.
This occur when

ΓN3 .

(
π2g∗
10

)1/2
1

MPl

(
M3

M1

ρDM

s

)2

. (B.20)

1For M3 < 100 MeV hadronic decays of N3 are absent and the effect on BBN only comes from photo-
dissociation which is effective for T < 0.01 MeV. We find that N3 decays below T = 0.01 MeV for M3 <
100 MeV.
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Figure B.1: The right-handed neutrino mass parameter space showing the constraints which
prove Claim 1 and Claim 2. Left: M2 < M3 (Case 1) – the relation M2 = m2(vR/v)2/c

is guaranteed if |m23| <
√

∆msol
2. Stability of N2 ensures |m23| <

√
∆m2

sol in blue, which
encompasses all of the parameter space not excluded by the warmness of DM (green) or
Big Bang Nucleosynthesis (orange). Right: M2 > M3 (Case 2) – the relation M2 =
µ(vR/v)2/c, where 0.01 eV . µ . 0.10 eV, is guaranteed if |y23|2v2/M3 <

∑
mi. Stability

of N2 ensures |y23|2v2/M3 <
∑
mi in the purple and turqoise regions which encompass

all of the parameter space not excluded from N3 decaying after Big Bang Nucleosynthesis
(orange). N3 disrupts Big Bang Nucleosynthesis from the energy released in its decays when
M3 > 1 MeV in the orange region, and from the entropy produced from its decays in the
intersection of the orange and red regions.

These constraints are shown as the orange region of Fig. B.1 (right), where we use the
upper bound on |y23| from the stability of N2 as discussed above and use the decay rate for
M3 & 2me. For smaller M3, the actual decay rate is smaller and the abundance becomes
larger. In the red shaded region of Fig. B.1 (right), N3 decays after it dominates the universe
for the maximum value of M1 = M3; smaller M1 enlarges the region. In the union of orange
and red shaded regions, N3 creates entropy after BBN, which is excluded since the baryon
abundance at BBN and at CMB would differ. We see that no parameter region is then
consistent with |y23|2v2/M3 being larger than the active neutrino mass, completing the proof.
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B.2 A symmetry for the cosmological stability of N1

For N1 to make up dark matter, the mixing of active and sterile neutrinos must be very
small to avoid limits on the radiative decay N1 → νγ, as shown in (4.12). Sufficient stability
can be a natural if a symmetry forbids the `N1HL interaction in the effective theory (4.2),
so that y1i = 0. Any LR theory giving an effective theory below vR with no interactions
for Ni is particularly interesting: not only is N1 cosmologically stable, but if N2 has a mass
significantly less than vR, it is necessarily long-lived with a lifetime governed by WR-mediated
beta decay. In this case the allowed values of vR and M1 are correlated - it is necessary to be
on the blue line of Fig. 3.2 rather than in the unshaded triangle. Furthermore, since N2 has
a 10% branching ratio to decay to N1, there is a component of DM that is hot, becoming
non-relativistic around the eV era, with ∆Neff ∼ 0.1 and mν,eff ∼ 1.1 eV. As described in
Sec. 4.5, and shown in Fig. 4.2, this is close to present limits and will be discovered or refuted
by CMB Stage IV [10].

For a LR model based on Higgs doublets HL,R, such a symmetry must forbid the operator

`¯̀HLHR, which leads to `NHL, while allowing `¯̀H†LH
†
R, which yields the charged lepton

Yukawa couplings `ēH†L, as well as the Majorana mass operators ``HLHL and ¯̀̀̄ HRHR. For
example, this could be accomplished by a Z4L×Z4R symmetry with ` and HL transforming as
(i, 1) and (¯̀, HR) as (1, i). The operator qq̄HLHR or qq̄H†LH

†
R is inconsistent with this Z4L×

Z4R symmetry, so that the down and/or up-type quark Yukawa couplings must be generated

by a different set of doublets, H
(q)
L,R, with the effective theory below vR containing the two

doublets HL and H
(q)
L . A weak-scale Nambu-Goldstone boson is avoided by introducing a

soft breaking of the Z4L × Z4R symmetry via the mass operator H†LH
(q)
L .
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Appendix C

Stability bound on a trilinear coupling

C.1 Stability bound on a trilinear coupling

In this appendix, we derive an upper bound on the trilinear coupling between between the
Higgs and stops from the stability of the electroweak vacuum. We consider the case of
tanβ ' 1 and field directions parameterized by

Hu →
1

2

(
h−H

0

)
, Hd →

1

2

(
0

h+H

)
, q → 1√

2



u 0
0 0
0 0


 , ū→ 1√

2



ū
0
0


 , (C.1)

where h, H, u, and ū are real fields with potential

V (h,H, q, ū) =
1

2
m2
AH

2 +
1

2
m2
q̃q

2 +
1

2
m2
ũu

2 − 1√
2
yth(A− µ)uū− 1√

2
ytH(A+ µ)uū

+ y2
t

(
1

2
u2ū2 +

1

4
(h+H)2 (u2 + ū2

))
+
g
′2

2

(
1

2
hH +

1

12
u2 − 1

3
ū2

)2

+
g2

2

(
1

2
hH − 1

4
u2

)2

+
g2

3

24

(
u2 − ū2

)2
. (C.2)

The renormalization scale of the coupling constants is taken to be around the sparticle mass
scale.

The tunneling rate per volume is given by [203]

Γ

V
= M4exp−SB , (C.3)

where SB is a bounce action and M is a pre-factor as large as the typical energy scale
associated with the tunneling, which we take to be the sparticle mass scale. To avoid
tunneling into another vacuum, we require that Γ/V ×H4

0 < 1. For sparticle masses around
1010 GeV, this corresponds to

SB < 480. (C.4)
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We computed the bounce action using SimpleBounce [607]. For mq̃ = mũ = mA ≡ m̃
and A+ µ = 0, we obtain

|A− µ| < (3.2− 3.3)m̃ (C.5)

for m̃ = (1010− 1012) GeV. The upper bound excludes large values of A−µ that would give
a negative threshold correction to λ. For A + µ 6= 0, the bound becomes stronger. Larger
mA slightly relaxes the bound, but not enough to enable a negative threshold correction to
λ from the trilinear coupling.
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Appendix D

Additional CHAMP Dynamics

D.1 Interaction between CHAMPs

In computing the ejection of X from the disk, we have ignored any XX scattering between
CHAMPs. In particular, after X particles are accelerated by a SN shock, they could be
slowed down by scattering from ambient X in the disk. In this appendix we consider such
scattering to arise from massless hidden photon exchange, and derive the condition such that
the scattering does not change our estimation of the accelerated CHAMPs. We show that
our previous results are not affected if X is produced before Big-Bang Nucleosynthesis, or
m > 10 GeV.

For a hidden charge Qe, the thermalization rate of X via hidden photon exchange is

Γth,X '
8
√

2π

3

ρXQ
4α2

m3v3
. (D.1)

The velocity of X above which the thermalization rate is smaller than the encounter rate
with SNe is

v′1 = 3000 km/s

(
fX

n

n0

)1/3

Q4/3

(
GeV

m

)
, (D.2)

which is analogous to v1 derived in the main text based on the X-baryons scattering. In
order for our previous results not to be affected, v′1 should be smaller than v0;

Q4fX
n

n0

< 3× 10−4
( m

GeV

)3

×





20
(

m/q2

3×106 GeV

)−1

m/q2 < 3× 106 GeV

1 m/q2 > 3× 106 GeV
(D.3)

If this condition is violated, v0 in Eq. (6.34) is replaced with v′1.
The XX scattering can also affect the estimation of nA/n0. The encounter rate with SNe

with a shock velocity above v′1 is

Γ′SH,c = (7× 109 years)−1
( m

GeV

)2
(
Q4fX

n

n0

)−2/3

. (D.4)
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For m/q2 < 105 GeV, nA/n0 is not affected as long as this encounter rate is larger than
ΓSH,c, which requires that

Q4fX
n

n0

< 0.1
( m

GeV

)3
(

m/q2

105 GeV

)−1

. (D.5)

If this condition is violated, ΓA in Eq. (6.32) is replaced with Γ′SH,c. For m/q2 > 105 GeV,
nA/n0 is insensitive to ΓA and hence to Γ′SH,c. This is however not the case if n/n0 becomes
close to 1 because of inefficient acceleration. Requiring that n/n0 < 1, we obtain

Q4fX
n

n0

< 0.1
( m

GeV

)3

×





(
m/q

106 GeV

)−3/8

m/q < 106 GeV
(

m/q
106 GeV

)−3/4

m/q > 106 GeV.
(D.6)

If this condition is violated, n/n0 ' 1, and nA/n0 ' Γ′SH,c/ΓSH.
In the parameter space of our interest, m/q < 1010 GeV, all of the above conditions are

weaker than the restriction Q < 1 if m & 10 GeV.
Note that the fraction fX is bounded from above for a given Q and the production

temperature. We assume that X is produced at the temperature of Tpro. The number
density of X is bounded by the annihilation of X into hidden photons,

nX
πQ4α2

m2
X

.
T 2

pro

MPl

(D.7)

The fraction fX and the charge Q is bounded as

Q4fX < 3× 10−4
( m

GeV

)3 4 MeV

Tpro

. (D.8)

Let us assume that Tpro is above 4 MeV, as required if the X production mechanism also
produces Standard Model particles with an energy density comparable to that of X. For
CHAMPs satisfying the condition (D.8), all off the conditions above are satisfied.

D.2 Repeated Shock Encounters

Here we consider the effect of repeated shocks on the galactic CHAMP spectrum, which
occurs for CHAMPs residing in case 1 galaxies. We show that X with a momentum below
p2 is ejected from the disk within a time ∼ Γ−1

SH. Consequently, using ΓSH as the escape rate
in (6.27) is a good approximation.

First note the spectrum of a batch of CHAMPs after one shock can be written as a
transformation on the original spectrum [107]

f1(p) = (µ− 1)p−µ
∫ p

0

dk kµ−1f0(k) (D.9)
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where f0 is the original spectrum and µ = 2 the theoretical value from Rankine-Hugeniot
plasma boundary conditions at the shock discontinuity. Without loss of generality, let f0(q) =
n0δ(k − p0) so that the spectrum after the one shock is

f1(p) = n0(µ− 1)pµ−1
0 p−µ θ(p− p0) (D.10)

which is the standard Fermi spectrum. Now, the CHAMPs in this spectrum with momentum
above p2 are more likely to escape the disk before encountering another shock, while those
with momentum below p2 more likely to encounter another shock before escaping. Thus,
the spectrum after one shock approximately bifurcates into a galactic and extragalactic
spectrum:

f1(p)→
{
f1(p)In = n0(µ− 1)pµ−1

0 p−µ θ(p2 − p)
f1(p)Out = n0(µ− 1)pµ−1

0 p−µ θ(p− p2)

After the next shock, the galactic spectrum is

f2(p) = (µ− 1)p−µ
∫ p

p0

dk kµ−1f1(k)In (D.11)

= n0(µ− 1)2pµ−1
0 p−µ ln

(
min{p, p2}

p0

)
(D.12)

Which again bifurcates into a galactic (where min{p, p2} = p) and extragalactic (where
min{p, p2} = p2) spectrum and so on. After n shocks, the galactic spectrum is

fn(p)In = n0(µ− 1)npµ−1
0 p−µ ln

(
p

p0

)n−1
1

(n− 1)!
θ(p2 − p) (D.13)

which quickly approaches 0 for n > ln(p/p0), which is O(1) in the parameter space of the
interest. As a result CHAMPs with an initial momentum p < p2 escape from the disk with
the time scale ∼ Γ−1

SH. Meanwhile, the extragalactic spectrum is

f(p)Out =
∑

i≥1

fi(p)Out (D.14)

= n0 p
µ−1
0 p−µ θ(p− p2)

∑

i≥1

(µ− 1)i ln

(
p2

p0

)i−1
1

(i− 1)!
(D.15)

i�1−−→ n0 p
µ−1
0 p−µ θ(p− p2)(µ− 1) exp [(µ− 1) ln(p2/p0)] (D.16)

= n0(µ− 1)pµ−1
2 p−µ θ(p− p2) (D.17)

which approaches the Fermi accelerated spectrum of single shock with an input spectrum
n0δ(k− p2). Note the extragalactic spectrum is independent of initial conditions, given that
X initially reaches a speed greater than or equal to v0 for case 1.
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D.3 The Diffuse Extragalactic CHAMP Background

In this appendix we investigate the ejection of CHAMPs in galaxies and estimate the extra-
galactic CHAMPs spectrum.

In case one galaxies, with rate orderings of Fig. 6.4, CHAMPs with momentum p1 <
p < p2 repeatedly encounter shock and are accelerated. Once the momenta are above
p2, they escape from the disks before encountering another shock, ultimately producing an
extragalactic spectrum

f1(p) = NXp2
1

p2
for p > p2, (D.18)

where NX is the total number of ejected CHAMPs from that galaxy.
In case two galaxies, with rate orderings of Fig. D.1, CHAMPs with momentum p2 <

p < p1 generally enconter one shock before escape. Just as before, when a SN explodes, its
Sedov-Taylor shock produces a batch of CHAMPs with a p−3 differential spectrum as shown
by the dashed blue line of Fig. D.1. As time progresses, the numerous slower CHAMPs at
the far left of the spectrum again thermalize first, and are converted to a p2 spectrum which
moves to the right with time. Concurrently, the scarce number of faster CHAMPs at the
far right of the spectrum escape first, and are converted to a non-relativistic extragalactic
spectrum which moves to the left with time. The last, and greatest number of CHAMPs to
escape have momentum p = p, the momentum when the escape and thermalization rates are
equal. When this occurs at time t ≈ 1/Γesc(p̄), the galactic and extragalactic spectrums are
peaked at p = p̄, with the galactic spectrum dropping as p2 for p < p̄ and the extragalactic
spectrum dropping as p−3 for p > p̄, as shown by the orange and dotted red lines in Fig. D.1.
Finally, note that a fraction, (p2/p)

3/2 of the escaping CHAMPs will encounter a second SN
shock and be Fermi-accelerated before escaping. The probability is peaked at p = p, which
leads to a subdominant p−2 extragalactic spectrum, as shown by the dotted green line in
Fig. D.1. Consequently, the final extragalactic spectrum produced from galaxies in case 2 is
given by the sum of the following two contributions,

f2(p) =





1

2
NXp

2 1

p3
for p < p < pblast

1

2
NXp

(
p2

p

)3/2
1

p2
for p < p < pmax.

(D.19)

The key difference between galaxies of case 1 (D.18) and galaxies of case 2 (D.19) is the
resulting relativistic extragalactic CHAMP spectrum. In case 1, CHAMPs faster than the
thermalization bottleneck generally encounter an additional SN shock before escaping, re-
sulting in a dominant p−2 relativistic extragalactic spectrum. However, in case 2, CHAMPs
faster than the thermalization bottleneck generally escape before encountering an additional
SN shock, resulting in a dominant p−3 non-relativistic extragalactic spectrum and a sub-
dominant p−2 relativistic spectrum.
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Original Spectrum

Thermalized Spectrum

Extragalactic Spectrum

Extragalactic Spectrum, Multiple Encounter

Momentum

Time

Figure D.1: Comparison of the three key rates and the spectrum of accelerated CHAMPs
for case 2.

As can be seen from (6.18), (6.19), and (6.20), the critical points {x1, x2, x} depend
on various ratios of the disk volume, disk height, SN rate, and SN volume. Consequently,
for a fixed (m, q), the momenta p1, p2, and p may vary between galaxies, implying each
galaxy produces a potentially different p−2 extragalactic spectrum. However, galaxies, unlike
snowflakes, are not completely unique. Scaling relations allow us to estimate how the three
fundamental rates depend on a given halo mass.

First, let us consider the disk radius. In current theories of disk formation, the baryonic
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mass in the halo which cools and falls cannot collapse to a central point due to angular
momentum conservation. Instead, the baryons pancake into a disk with a radius proportional
to the halo virial radius [483, 525]. Thus,

Rdisk ∝ Rvir ∝M1/3 (1 + zvir)
−1 (D.20)

which is supported observationally [483].
Similarly, energy conservation dictates that the disk height Hdisk is proportional to

σ2/Σdisk, where σ is the velocity dispersion of gas in the disk and Σdisk = Mdisk/(2πR
2
disk)

the mass surface density. If the centrifugal force cannot balance the gravitational force,
the disk is subject to fragmentation and collapse. This instability occurs when the Toomre
parameter Q =

√
2σΩ/πGΣdisk < 1 [649, 390], where Ω = vc/Rdisk is the angular frequency.

Amazingly, via self-regulation, star formation and SN feedback maintain Q = 1 over the
disk [390].1 Combining these two conditions imply

Hdisk ∝
Mdisk

v2
c

∝ Mdisk

M2/3(1 + zvir)
(D.21)

where we assume the asymptotic circular speed of the disk vc is proportional to the virial
speed.

To determine how the SN rate ΓSN depends on galactic parameters, we first note that
ΓSN is dominated by core-collapse SN so that on cosmological timescales, there is little delay
between the star formation rate and the SN rate and hence they are proportional. The global
star formation rate per area is empirically observed to be proportional to Σ

3/2
gas [253], where

Σgas = mpngasHdisk is the gas surface density of the disk,2 which implies

ΓSN ∝ R2
diskH

3/2
diskn

3/2
gas (D.22)

Last, since the SN radius goes as n
−1/3
gas , the max SN volume goes as

VSN ∝ n−1
gas (D.23)

Putting this altogether, we find

ΓSH =
VSNΓSN

Vdisk

∝ M
1/2
disk

M1/3
(1 + zvir)

−1/2 n1/2
gas (D.24)

Γesc =
2D

H2
disk

∝ M4/3

M2
disk

(1 + zvir)
2 D(R) (D.25)

Γtherm ≈ fWIM

ttherm,WIM

∝ fWIM nWIM (D.26)

To simplify these rates further, we note:
1Disk regions where Q > 1 do not initially collapse but eventually cool and then collapse; hence Q drops

below 1. Regions where Q < 1 collapse and form stars which inject energy so that σ increases and collapse
is halted; hence Q rises above 1.

2This relation is known as the Schmidt-Konneticut Law and is observed over a wide-range of galactic
environments. One theoretical motivation for the 3/2 power is the star formation rate should be proportional

mgas/tdyn ∝ mgas

√
Gρ ∝ m3/2

gas , where mgas is the mass of the gas in the disk.
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1. Simulations indicate that the number densities, temperatures, and filling factors of the
ISM in other star-forming galaxies are very similar to our own (Tab. 6.1), being self-
regulated by SN shocks [390]. Thus fWIM, nWIM and ngas are independent of galaxy
and Γtherm (D.26) is constant.

2. Simulations show the turbulent ∼ µG magnetic field in our disk is similar to those
in other galaxies and forms very early in the formation of the disk. Thus we assume
D(R) is universal in other galaxies.

3. Observations and simulations show that Mdisk ∝M for halo masses M & 1011M�, but
falls much more steeply (≥ 3

2
power) for lower mass halos [638].3 Therefore, in this

lower mass halo regime, the SN encounter rate mildly drops as M5/12 while the escape
rate sharply rises as M−5/3, implying CHAMPs in these disks are typically far in the
case 2 regime and easily escape non-relativistically, just as the baryons do. Moreover,
even CHAMPs with a very small charge that remain in the case 1 regime for small mass
galaxies still have an extragalactic spectrum dominated by high mass galaxies since
p2 is greater for heavier mass galaxies (and p1 is nearly constant). Thus, we will only
consider the extragalactic flux of CHAMPs from disks with halo masses M & 1011M�,
which at worst, underestimates the diffuse CHAMP flux. Lighter galaxies can dominate
p < p2(M = 1011M�).

4. Likewise, we do not consider halo masses M & 1012M� since such massive halos have
difficulty cooling and cannot form disks within 1010 yr [584].

5. Since the relevant halo mass range to consider is 1011M� . M . 1012M�, which
typically virialize near zvir = 2 (see Fig. 6.1), we have zvir a constant.

Putting this all together, the three fundamental rates scale as

ΓSH ∝M1/6 ≈ const (D.27)

Γesc ∝M−2/3 (D.28)

Γtherm ∝ const (D.29)

3Since the size and escape speed of these galaxies are small, one idea to explain their lack of gas (and
hence stars and low luminosity) is the SN remnants from their first stars blew out of the disk and into the
halo, expelling or disrupting the disk and halo gas and severely hampering subsequent star formation [231,
483].
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so that

v1 = 900 km/s

(
m/q2

106 GeV

)−1/3(
M

MMW

)−1/18

θ(104 km/s− v1) (D.30)

v = 900 km/s

(
m/q2

106 GeV

)−1/3(
M

MMW

)4/27

q−1/9 γ(v)−1/9 (D.31)

v2 = max

{
900 km/s

(
m/q2

106 GeV

)−1/3(
M

MMW

)5/9

q−1/3 γ(v2)−1/3, vesc

}
(D.32)

After escaping from a galaxy, the CHAMPs diffuse into the intergalactic medium (IGM).
If the CHAMPs traverse intergalactic distances (Rsep ∼ 1 Mpc) within the lifetime of the
universe, the extragalactic fluxes from different galaxies overlap and produce a steady-state,
diffuse background of CHAMPs. That is, the CHAMPs ejected from galactic disks get
smeared over the entire universe so that disk densities are essentially diluted by a factor
(Vdisk/R

3
sep) ∼ 10−8. More rigorously, consider the transport equation for the total extra-

galactic spectrum expelled from a disk

∂f

∂t
= ∇ · (D∇f) (D.33)

where D is the IGM diffusion constant, which may depend on particle rigidity and position.
Taking the initial spectrum to be a point source in space and time (on cosmological scales),4

the solution to (D.33) is

f(r, t) =
A

(4πDt)3/2
exp

(−r2

4Dt

)
(D.34)

where A =
∫
fd3x = dN(p)/dp = (NXp2/p

2)θ(p − p2). NX is the number of CHAMPs
evacuated from the disk.

If we take r = 0 to be the position of our Milky Way, the total observed CHAMP
spectrum is the superposition of all other extragalactic spectra

f =

∫ A(M)

(4πDt)3/2
exp

(−r2

4Dt

)
4πr2dr dngal(M) (D.35)

where 4πr2dr dngal(M) is the differential number of galaxies with halo mass M a distance
r away. For now we assume that dngal(M) can be treated as continuous on the scale

√
4Dt.

4The condition of the spectrum initially being localized in space and time relative to cosmological scales
just simplifies the solution of (D.33) to be the Green’s function. Since we are considering intergalactic
distances on the Mpc scale, and typical disk sizes are kpc size, localization in space is a good approximation.
Likewise, an order one number of the CHAMPs ejected from disks occurs in a billion years or so, which is
less (though not much less) than the age of the universe.
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By the Press-Schechter formalism, dngal = M0dM/M2 (Mpc)−3 where M0 ≈ 109M� [483],
so that (D.35) becomes

f =

∫ (
M

m
fXfD

p2(M)

p2

)(
exp (−r2/4Dt)

(4πDt)3/2

)(
4πr2dr

M0

M2
dM Mpc−3

)

=

∫ 1012M�

1011M�

fXfD
m

p2(M)

p2

M0

M
dM Mpc−3

Note both time and the diffusion constant drop out from the integration over r when going
from the first to second line.

Integrating over the massive galaxies which dominantly eject CHAMPs relativistically,
we find a steady-state, diffuse CHAMP differential momentum spectrum

f =
dn

dp
≈ 10−7 cm−3

( m

GeV

)−1

fXfD F
p2(1012M�)

p2
(D.36)

where fX = ΩX/ΩDM is the fractional abundance of CHAMPs to dark matter, fD is the
fraction of halo CHAMPs exposed to SNs, F is the fraction of CHAMPs ejected from the
disk as given by (6.24), and p2 = γmv2, with v2 given by (D.32). The fraction fD is
determined by whether or not CHAMPs collapse into the disks and the diffusion into the
disks,

fD =

{
1/4 m/q2 < 105GeV,

10−3 × Jt0
n0Hd

105GeV < m/q2,
(D.37)

where the diffusion current J is given in Eq. (6.28). Eq. (D.36) shows the extragalactic
CHAMP signal is subdominant in comparison with the galactic CHAMP signal discussed in
the main text.

Finally, we investigate the validity of (D.36) for the slowest moving CHAMPs (with
speeds near v2), which may not be able to diffuse intergalactic distances within the age of the
universe. The intergalactic magnetic field is not well known, though flux-freezing arguments
suggest magnetic fields below a nanogauss permeate the IGM, with up to hundred nanogauss
fields within large galactic clusters [20, 46]. In contrast to the MW disk, it is unlikely that
a turbulent (nanogauss) spectrum can form over 1 Mpc intergalactic distances within the
age of the universe [46], so that the magnetic field lines connecting nearby galaxies are taut
and the mean free path λ of CHAMPs is just the coherence length of the field lc ∼ 1 Mpc,
independent of magnetic field strength [20]. Thus the diffusion length of a CHAMP in the
IGM is approximately

R0 =
√

2Dt =
√

2tλv/3 = 2 Mpc

(
λ

1 Mpc

)1/2(
t

1010 yr

)1/2(
v

600 km/s

)1/2

. (D.38)
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Consequently, if the typical intergalactic magnetic field is non-turbulent, then expelled
CHAMPS easily traverse intergalactic distances and (D.36) should be a good approxima-
tion to the diffuse CHAMP background.5

On the other hand, if the intergalactic magnetic field is actually turbulent, then the
CHAMP mean free path is generally much less than 1 Mpc. For a turbulent, Kolmogorov
spectrum, the mean free path is [46]

λturb ≈ .75 lc

(
rg
lc

)1/3

= .01 Mpc

(
m/q

106 GeV

)1/3(
γv

103 km/s

)1/3(
B

1 nG

)−1/3(
lc

1 Mpc

)2/3

(D.39)

and hence the slowest moving CHAMPs expelled from disks are unable to reach the Milky
Way within the lifetime of the universe.

5According to the Press-Schecter halo distribution function, the large spirals we consider are typically
separated slightly farther apart than 2 Mpc. However, our galactic neighbor, Andromeda, is atypically close
(∼ .8 Mpc). In fact, the slow-moving CHAMP spectrum is likely dominated by Andromeda: Inserting (D.38)
into (D.34), implies the low-speed CHAMPs escaping Andromeda produce a spectrum a few times greater
than the diffuse background (D.36).
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Appendix E

Axion Kination Details

E.1 Evolution of the energy density of axion rotations

In this appendix, we derive the evolution of the axion rotations for the nearly quadratic
potentials.

Logarithmic potential

We first consider the logarithmic potential in Eq. (8.4). The evolution of the axion rotations
for this potential is derived in Ref. [195].

We are interested in the rotation dynamics when the Hubble expansion is negligible,
mS � H. In this case, we may obtain short-time scale dynamics ignoring the Hubble
expansion and include it when we derive the scaling in a long cosmic time scale. We are also
interested in the circular motion after thermalization. Under these assumptions, we may put
S̈ = Ṡ = 0, and the equation of motion of S requires that

θ̇2 =
V ′(S)

S
= m2

Sln
S2

f 2
a

. (E.1)

The equation of motion of θ gives a conservation law of the angular momentum in the field
space up to cosmic expansion,

nθ = θ̇S2 = mSS
2

(
ln
S2

f 2
a

)1/2

∝ a−3. (E.2)

Using these two equations, we may obtain the dependence of S and θ̇ on the scale factor a,

S2 = S2
i

a3
i

a3
2

√√√√ lnSi/fa

W (
4a6
iS

4
i ln(Si/fa)

a6f4
a

)
,

θ̇2 =
1

2
m2
SW (

4a6
iS

4
i ln(Si/fa)

a6f 4
a

), (E.3)
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where W is the Lambert W function and Si is an initial field value at a scale factor of ai.
When Si � fa and a is not much above ai, S

2 ∝ a−3 and θ̇ is nearly a constant. For a� ai,
S ' fa and θ̇ ∝ a−3.

The dependence of the energy density

ρθ =
1

2
θ̇2S2 +

1

2
m2
SS

2

(
ln
S2

f 2
a

− 1

)
+

1

2
m2
Sf

2
a (E.4)

can be obtained by using Eq. (E.3). One can then show that the dependence of ρθ on the
scale factor a is

d ln ρθ
d ln a

=
−6
(
S
fa

)2

ln
(
S2

f2
a

)

1−
(
S
fa

)2

+ 2
(
S
fa

)2

ln
(
S2

f2
a

) =

{
−3 : S � fa

−6 : S ' fa.
, (E.5)

so at early times, S � fa, the rotation behaves as matter ρθ ∝ a−3, while at late times,
S ' fa, the rotation behaves as kination ρθ ∝ a−6. This behavior is seen in the orange curve
of Fig. 8.1.

Two-field model

We next consider the two-field model in Eq. (8.5). We assume that the saxion field value is
much larger than the soft masses, so that we may integrate out a linear combination of P
and P̄ that is paired with X and obtain a mass ∼ S. Using the constraint P̄ = v2

P/P , from
the kinetic and mass terms of P and P̄ , we obtain an effective Lagrangian

L =

(
1 +

v4
P

|P |4
)
|∂P |2 −m2

P |P |2
(

1 + r2
P

v4
P

|P |4
)
, rP ≡

mP̄

mP

. (E.6)

The potential has a minimum at |P | = √rPvP when both m2
P and m2

P̄
are positive.

The equation of motion of S ≡
√

2|P | with S̈ = Ṡ = 0 requires that

θ̇2

(
1− 4v4

P

S4

)
−m2

P

(
1− 4r2

Pv
4
P

S4

)
= 0. (E.7)

The equation of motion of θ gives a conservation of the angular momentum,

nθ = θ̇S2

(
1 +

4v4
P

S4

)
∝ a−3. (E.8)

Without loss of generality, we assume that P � vP , i.e., S � vP initially. We first
consider rP > 1 (mP < mP̄ ). Eq. (E.7) means

θ̇2 =
1− 4r2

Pv
4
P/S

4

1− 4v4
P/S

4
m2
P . (E.9)
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When S � vP , we obtain θ̇2 ' m2
P . As S approaches the minimum

√
2rPvP , θ̇ approaches

0. The scaling of S can be derived from charge conservation,

nθ = θ̇S2

(
1 +

4v4
P

S4

)
= mPS

2

(
1 +

4v4
P

S4

)(
1− 4v4

P

S4

)−1/2(
1− 4r2

Pv
4
P

S4

)1/2

∝ a−3. (E.10)

The scaling of the energy density

ρθ =
1

2
S2θ̇2

(
1 +

4v4
P

S4

)
+

1

2
m2
PS

2

(
1 +

4r2
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4
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S4

)
− 2rPm

2
Pv

2
P (E.11)

can be derived from these two equations. Here a constant term is subtracted from the energy
density so that the energy density vanishes at the minimum. The dependence of ρθ on the
scale factor a is

d ln ρθ
d ln a

=

−3

(
1 +

(
S√

2rP vP

)2
)(

1 + r2
P

(
S√

2rP vP

)4
)

1 + r2
P

(
S√

2rP vP

)6 =

{
−3 : S � √2rPvP

−6 : S ' √2rPvP
, (E.12)

from which we again observe that at early times, S � √2rPvP , the rotation behaves as
matter ρθ ∝ a−3, whereas at late times, S ' √2rPvP , the rotation behaves as kination
ρθ ∝ a−6. This evolution is illustrated by the blue curves of Fig. 8.1 for various values of rP .

We next consider rP = 1. Eq. (E.7) has two solutions, 1) θ̇2 = m2
P with S 6=

√
2vP and 2)

S =
√

2vP with unrestricted θ̇. For S � vP , the solution is in the branch 1) and gives matter
scaling. Charge conservation implies S2(1 + 4v4

P/S
4) ∝ a−3. As S decreases according to

this scaling and reaches
√

2vP , the branch 2) should be used and charge conservation implies
θ̇ ∝ a−3, giving kination scaling.

Finally, consider rP < 1. When S � vP , we again obtain θ̇2 ' m2
P . However, as S

approaches
√

2vP (before reaching the minimum at
√

2rPvP ), θ̇2 derived from Eq. (E.9)
diverges. This is the point at which the solution becomes unstable. Indeed, when rP < 1,
for a fixed charge, it is energetically favored to have rotations in P̄ rather than in P , so the
rotation dominantly in P is at the most a meta-stable solution. When S reaches

√
2vP , the

solution becomes unstable. Quantum tunneling may occur before the instability is reached.
We leave the investigation of this scenario to future work and assume rP ≥ 1.

E.2 CMB cosmological constrains from Planck

We use a modified version of CLASS [130] to solve the coupled Boltzmann equations and
Monte Python [146] and perform a parameter estimation with the Planck 2018 likelihoods
(TT,TE,EE+lowE) data [29] . Fig. E.1 shows the posterior distributions of the six cosmo-
logical input parameters for ΛCDM and the axion kination model: baryon density Ωbh

2,
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Figure E.1: Corner plot for the posterior distributions for the ΛCDM independent parameters
and for the axion kination model. We use the highTTTEEE+lowEE+lowTT likelihood
combination from Planck 2018. Contours contain 68% and 95% of the probability.

DM density Ωch
2, spectral index ns, primordial amplitude As, optical depth at reionization

τ and the temperature at kination radiation equality TKR. We fix Neff = 3.046 and assume
log flat prior for TKR between 1eV ≤ TKR ≤ 5keV. We fix TRM = 5keV and use the identity
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Figure E.2: Corner plot for the posterior distributions for the calculated values ΛCDM
parameters and axion kination cosmology. Contours contain 68% and 95% of the probability.

T 3
MK = T 2

KRTRM, obtaining TKR > 130 eV at 95%.
For completeness, Fig. E.2 shows the derived parameters: the effective redshift at reion-

ization zreio, dark energy density ΩΛ, Hubble expansion rate todayH0, and matter fluctuation
amplitude σ8.
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Appendix F

Homotopy Selection Rules and
Hybrid Nambu-Goto Equations

F.1 Homotopy Selection Rules

As can be seen from Fig. 9.1, all hybrid defects from the breaking of SO(10) involve a
symmetry breaking chain where the homotopy group of the first symmetry breaking step
has a higher group number, n, then the succeeding one, e.g., for monopole-bounded strings,
the monopoles form prior to strings. In order to show that the feature is a generic feature of
any symmetry breaking group, we derive homotopy selection rules leading to hybrid defects.

For any groups G ⊃ H ⊃ K, there is a fiber bundle1

H/K → G/K → G/H. (F.1)

It leads to the exact sequence of homotopy groups,

· · · → πn(H/K)→ πn(G/K)→ πn(G/H)

→ πn−1(H/K)→ πn−1(G/K)→ πn−1(G/H)→ · · · (F.2)

with each arrow indicating a homomorphism whose image is equal to the kernel of the
following homomorphism. For a topological defect of dimension k in three-dimensional space,
its stability is guaranteed by π2−k. If a defect is stable at one step of symmetry breaking,
we need a non-trivial π2−k(H/K) or π2−k(G/H), while if it is unstable in the whole theory,
we need π2−k(G/K) = I. This tells us to study a part of the exact sequence, (n = 2− k)

I = πn(G/K)→ πn(G/H)→ πn−1(H/K), (F.3)

or

πn(G/H)→ πn−1(H/K)→ πn−1(G/K) = I. (F.4)

1For a proof, see this page.

https://ncatlab.org/nlab/show/principal+bundle
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In the first case (F.3), the image of the homomorphism between πn(G/K) and πn(G/H) is
I. Thus, the kernel of the homomorphism between πn(G/H) and πn−1(H/K) is I, implying
the homomorphism is injective and hence πn(G/H) ⊆ πn−1(H/K). Therefore, any element
of πn(G/H) at the first stage of symmetry breaking can be “undone” by an element of
πn−1(G/K) at the second stage of symmetry breaking, and hence a k-dimensional defect
formed at the first phase transition can be destabilized by a (k + 1)-dimensional defect
formed at the second phase transition. For example, a string can be filled with a wall, or
monopoles can be connected by a string to destabilize the defect.

In the second case (F.4), the kernel of the homomorphism between πn−1(H/K) and
πn−1(G/K) is πn−1(H/K). Thus, the image of the homomorphism between πn(G/H) and
πn−1(H/K) is πn−1(H/K) and hence πn(G/H) ⊇ πn−1(H/K). Therefore, any element of
πn−1(H/K) at the second stage of the symmetry breaking can be “undone” by an element
of πn(G/H) at the first stage of symmetry breaking, and hence a (k+ 1)-dimensional defect
formed at the second phase transition can be destroyed by the production of k-dimensional
defect formed at the first transition. For example, a string can be cut by the nucleation
of a monopole-antimonopole pair, or a domain wall can be punctured by the nucleation a
string-bounded hole.

In summary, the lower dimensional topological defect (boundary defect) of a hybrid defect
forms earlier than the one dimensional higher topological defect (bulk defect) that it attaches
to.

F.2 Action of a String-Bounded Domain Wall

Here we derive the Lagrangian, (9.99), from section (4.12) Since the worldvolumes of the
string and wall are invariant under re-parameterizations of the coordinates ζ, we choose a
coordinate system on the wall and string such that ζ0 = η, ζ1 = θ, ζ2 = ρ, where 0 ≤ θ < 2π
parameterizes the polar direction in the plane of the wall and 0 ≤ ρ ≤ ρstring parameterizes
the radial direction in the plane of the wall. ρstring is the boundary of the wall located at
the attached string, as shown in Fig. F.1. In this basis, Xµ = (η,X), Y µ = Xµ|ρstring

,
(∂ρX)2 = 1, and ∂ρX · ∂θX = 0.

The determinant of the induced metric on the wall may be written as

γ = a6(η)

∣∣∣∣∣∣

1− (∂ηX)2 −∂ηX · ∂θX −∂ηX · ∂ρX
−∂ηX · ∂θX −(∂θX)2 0
−∂ηX · ∂ρX 0 −1

∣∣∣∣∣∣
(F.5)

=
a6(η)

γ2
⊥,w

(∂θX)2, (F.6)

where we define γ⊥,w = (1− v2
⊥,w)−1/2 as the Lorentz factor for motion perpendicular to the

wall. In going from Eq. (F.5) to (F.6), we decompose the wall velocity into perpendicular
and tangential motion, ∂ηX = v⊥,wθ̂ × ρ̂ + v‖, where v‖ = (∂ηX · ∂ρX)|∂ρX|−1ρ̂ + (∂ηX ·
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∂θX)|∂θX|−1θ̂. As indicated by Eq. (F.6), only the motion perpendicular to the wall is
physical, and any use of ‘vw’ in the text means v⊥,w. Similarly, the determinant of the
induced metric on the string worldsheet is

Υ = a4(η)

∣∣∣∣
1− (∂ηY)2 −∂ηY · ∂θY
−∂ηY · ∂θY −(∂θY)2

∣∣∣∣ (F.7)

=
a4(η)

γ2
⊥,s

(∂θY)2, (F.8)

where Y = X(θ, ρstring) and γ⊥,s = (1− v2
⊥,s)

−1/2 is the Lorentz factor for motion perpendic-
ular to the string, which will dominantly be in the tangent plane of the wall when the wall
dominates the string dynamics. As a result of Eqns. (F.6) and (F.8), the combined action
of the domain wall and string system (9.98) becomes

S = −σ
∫
dη

∫ 2π

0

dθ

∣∣∣∣
dX

dθ

∣∣∣∣
∫ ρstring

0

dρ
a3(η)

γ⊥,w

− µ
∫
dη

∫ 2π

0

dθ

∣∣∣∣
dY

dθ

∣∣∣∣
a2(η)

γ⊥,s
. (F.9)

Because the ‘eating’ of the wall by the string converts wall rest mass energy to string kinetic
energy, we expect γ⊥,s > γ⊥,w ∼ 1, 2 and for the string velocity, v⊥,s to be directed in the
tangent plane of the wall. As a result, we analyze Eq. (F.9) in the limit γ⊥,w → 1 where

2Simulations of domain walls without strings, which do not transfer any mass energy into string kinetic
energy, only have perpendicular RMS velocities mildly relativistic, v⊥,w ∼ 0.3 [77], while pure string loops

⇢
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Figure F.1: Coordinate parameterization of a wall-bounded string. The coordinates ξ1 = ρ
and ξ2 = θ are orthogonal and parameterize the radial and azimuthal directions in the plane
of the wall, respectively. The string lies on the boundary of the wall at the coordinate ρstring.
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the perpendicular wall velocity is small and subdominant compared to the string velocity.
In addition, we take the string boundary to be a circular loop Y = rs of coordinate radius
rs (physical radius Rs = rsa(η)), though we do not expect more realistic loops that are
not perfectly circular to behave quantitatively different since the key relationship between
wall mass and string radius, MDW ∼ σ|Rs|2 will still hold for more complicated loop geome-
tries, and it is this energy which is transferred to the string as kinetic energy. Under these
assumptions, we obtain the Lagrangian for a domain wall disc with a circular string loop
boundary Eq. (9.99).

For a nucleated string hole, the string forms the inner boundaries of a domain wall and
the integration over the radial coordinate ρ in Eq. (F.9) then begins at ρ = ρstring up to
some arbitary bulk ρ. The effect is thus a relative minus sign in the of Lagrangian Eq. (9.99)
between the string and domain wall terms. In an non-expanding Universe, or for subhorizon
times and distances, the solution to the Euler-Lagrange equation of motion is the relativistic
rocket, of Eq. (F.9), which is in agreement with results found in [670].

have intermediate RMS velocities v⊥,s =
√

2 ' .707. Strings attached to walls become even more relativistic
from the conversion of wall rest mass to string kinetic energy during the ‘eating’ process (see Fig. 9.12)
which makes this approximation better. Only for enclosed domain walls without strings, or ‘vacuum bags’,
which collapse relativistically under their own tension, do we expect v⊥,w to be significant.
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